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Abstract

We present a new category of games on graphs and de-
rive from it a model for Intuitionistic Linear Logic. Our cat-
egory has the computational flavour of concrete data struc-
tures but embeds fully and faithfully in an abstract games
model. It differs markedly from the usual Intuitionistic Lin-
ear Logic setting for sequential algorithms. However, we
show that with a natural exponential we obtain a model
for PCF essentially equivalent to the sequential algorithms
model. We briefly consider a more extensional setting and
the prospects for a better understanding of the Longley Con-
jecture.

1 Introduction

Ehrhard’s striking result that his hypercoherence model
for PCF can be obtained as the extensional collapse of
the sequential algorithms [6] was the first evidence that
there is a natural class of those extensional functionals of
higher type which can be computed by a sequential pro-
gram. Other characterizations of this class have been given
by van Oosten [12] and by Longley whose substantial pa-
per [10] describes equivalences which support the identifi-
cation of this canonical class. We call the idea that there is
just one natural such class (and its identification) the Lon-
gley Conjecture1 and in this paper we present some further
evidence for it. We provide a new approach to the sequen-
tially realizable functionals via a new notion of computa-
tion. We hope this latter will serve to clarify the relation
between other characterizations.

We seek a notion of higher type computation which on
the one hand is not too far from the sequential algorithm
model and on the other relates well to a variety of game
models, both concrete and abstract. The hypercoherence

1See Sections 12.2 and 12.3 in [10] for a discussion.

model is an example of an abstract games model, but we
can make the connections (more directly) between our mod-
els and the versions of abstract games described in our [7]
and [8]. Observe that a related model is described from a
different point of view at the end of [1]. The graph games
model we analyse here embeds fully and faithfully into
these abstract games models. On the other hand, in recent
related work Melliés [11] has given a direct analysis of the
relation between the sequential algorithms model and the
hypercoherence model. It seems likely that his insights can
be exploited to round out the picture we present here.

The notion of computation we use is given by games on
graphs. This is a very concrete model which differs from
previous models in that the strategies (programs) operate
on the position (data) reached and not on the details of how
the data was obtained. In this it is faithful to the concrete
data structure conception of computation (see [2, 9]). In [7]
we explained the connections with abstract games. Here we
concentrate on the sequential algorithms point of view, and
connections with the Longley Conjecture.

2 Graph Games

While traditionally games have been formalized via
game trees, there is a way of using graphs as the under-
lying structure codifying the rules of playing. This allows
there to be different routes (sequences of moves) to the same
position. If we restrict the graphs slightly we obtain a cat-
egory which is a model for Linear Logic. We assume that
there are two entities playing games, referred to as Player
(P ) and Opponent (O).

Definition 1 A graph game A is given by

• a set A = AP + AO of positions together with an
initial position ∗A ∈ AP ;

– AP is the set of Player positions (where Oppo-
nent is to move) and
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– AO is the set of Opponent positions (where
Player is to move);

• the structure a −→ a′ on A of an acyclic directed
(AP , AO)-bipartite graph (so a −→ a′ implies that
a ∈ AP if and only if a′ ∈ AO) such that for any a ∈
A, {a′ ∈ A | a′ −→∗ a} is well-founded with respect
to (−→∗)

op, that is there are no infinite sequences
∗A −→ a1 −→ a2 −→ · · · satisfying ai −→ a for all
i ∈ N.

The graph structure describes the valid moves from each
position. We think of a game A as being played from ∗A
with Opponent making the first move: positions which are
not reachable from ∗A play no part in the game and we
could assume that they have been deleted. (But then we
would have to insist on reachability in all constructions
on games, and that obscures the connection with abstract
games.) A P -move is a move to a P -position, anO-move is
one to an O-position. We sometimes speak of the ‘colour’
of positions or moves in this context. A finite play of A
consists of a sequence of positions ∗A = a0a1 · · · an such
that for all 0 ≤ i < n, ai −→ ai+1, in other words it is
a sequence of valid moves. We sometimes use a −→∗ a′

to indicate that there is a valid sequences of moves leading
from a to a′, and we use a −→+ a′ if that sequence consists
of at least one move, thus ruling out a = a′.

Assume we have a partial function α : AO ⇀ AP sat-
isfying a −→ α(a) whenever α(a) is defined. We induc-
tively define the set R(α) of reachable positions for α:

• ∗A ∈ R(α);

• if a ∈ R(α) ∩AP and a −→ a′ then a′ ∈ R(α);

• if a ∈ R(α) ∩ AO and α(a) = a′ (and thus a −→ a′)
then a′ ∈ R(α).

Since we often need to distinguish between the Player
and the Opponent positions occurring in R(α) we use
RP (α) to denote the former and RO(α) for the latter.

Definition 2 A pre-strategy on A (for Player) is given by a
partial map α : AO ⇀ AP such that a −→ α(a) when-
ever α(a) is defined and such that the domain of definition
of α is a subset of R(α).

A strategy on a graph game is a conflict-free2 pre-
strategy, that is a pre-strategy α : AO ⇀ AP such that
whenever a′ ∈ RP (α) is reachable from a ∈ RO(α) then
α(a) is defined and a′ is reachable from α(a).

The idea is that if Player, when playing according to
some strategy α, is prepared to reach a position a ∈ RP (α)

2The terminology hints at a connection with concrete data structures [9]
and event structures [13], see also [3].

then he should be prepared to do so from every position that
might come up in a play in accord with α. We briefly de-
scribe a concrete data structure intuition. A P -position a′

can be thought of as representing a situation in which cer-
tain specified cells have all been filled by Player (in an order
determined by Opponent). The conflict-freeness condition
ensures that Player will fill these cells with the same values
no matter in which order Opponent presents them. For if a
is an O-position with a −→∗ a′ then a describes a situation
where some of the cells filled in a′ have been filled already
(with the correct values), and Opponent has just presented
a further cell (which is also filled in a′). Now α(a) −→∗ a′

means that Player has to fill that cell with the value pre-
scribed by a′.

If α is a strategy for a game A then a finite play p in
accord with α is a sequence of positions p = a0a1a2 · · · an
with a0 = ∗A such that

• for 0 ≤ i < n it is the case that ai −→ ai+1 and

• for 1 ≤ i < n odd it is the case that α(ai) = an.

We write Πα for the set of plays in accord with α and
p ∈ Πα for such a play. It is then the case that α(a) = a′

if and only if there exists p ∈ Πα ending with these two
positions, that is p = · · · aa′.

2.1 Multiplicative structure

In order to describe the category of graph games we de-
scribe the multiplicative structure. The tensor unit I is the
game with just one position which is initial.

The tensor A⊗B is the game with

• P -positions AP ×BP ;
• O-positions (AP ×BO) + (AO ×BP ).

The initial position is (∗A, ∗B) and there are moves
(a, b) −→ (a′, b′) just when

either a −→ a′ and b = b′ ‘a move in A’
or a = a′ and b −→ b′ ‘a move in B’.

The linear function space A( B is the game with

• P -positions (AP ×BP ) + (AO ×BO);
• O-positions AP ×BO.

The initial position is (∗A, ∗B) and there are moves
(a, b) −→ (a′, b′) just when

either a −→ a′ and b = b′ ‘a move in A’
or a = a′ and b −→ b′ ‘a move in B’.

As a consequence of this definition, a play of A ( B
consists of the merging of a play from A and B subject to
the following rules:
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• The first move is anO-move in B which is anO-move
in A(B;

• a P -move in A(B which is given by a P -move in B
can only be followed by an O-move in B (which is an
O-move in A(B);

• a P -move in A( B which is given by an O-move in
A can only be followed by a P -move inA (which is an
O-move in A(B.

Therefore the linear function space for graph games is
subject to the usual ‘switching’ conditions, that is, only
Player is allowed to switch between games.

The category of graph games has as objects graph games;
the morphismsA - B are the strategies onA(B. The
critical problem is to show that the composition σ ◦ ρ of
ρ : A - B and σ : B - C defined by parallel com-
position and hiding is well-defined and associative.

To give the definition we consider combined sequences
of triples of positions of the form (a, b, c) where

(a, b) ∈ A( B and (b, c) ∈ B ( C;

we can view these as ‘combined positions’. The possible
patterns therefore are

(P, P, P ), (P, P,O), (P,O,O), (O,O,O).

The sequences under consideration are of the form u =
u0u1 · · ·un where each ui is of the form (ai, bi, ci) a triple
as described above, where u0 = (∗A, ∗B, ∗C) and each
ui+1 differs from ui by just one move in either A, B, or C,
that is

either ai −→ ai+1 and bi = bi+1 and ci = ci+1;

or bi −→ bi+1 and ai = ai+1 and ci = ci+1;

or ci −→ ci+1 and ai = ai+1 and bi = bi+1.

The pattern of possible changes is then

(P, P, P )←→ (P, P,O) ←→ (P,O,O) ←→ (O,O,O).

Given a sequence we write u|A(B for the sequence of pro-
jections of the ui toA×B with repetitions deleted (creating
an effective projection, just ontoA(B this time) and sim-
ilarly for u|B(C : so the moves in u|A(B (u|B(C) are the
moves in u which are moves in A ( B (B ( C). In par-
ticular u|A(B is a play in A( B and u|B(C is a play in
B ( C. Furthermore

(u|A(B)|B = (u|B(C)|B

is a play in B. Conversely given a play r in A ( B and
a play s in B ( C such that r|B = s|B there is a unique
combined sequence u as above with

u|A(B = r and u|B(C = s.

Definition 3 Let ρ : A - B and σ : B - C. A com-
bined sequence according to ρ and σ is given by a sequence
of triples (a0, b0, c0), (a1, b1, c1), . . . from A×B ×C sat-
isfying the following conditions:

It starts at (a0, b0, c0) = (∗A, ∗B, ∗C).
We make a case distinction here for (ai, ci) in

• (A( C)P :

– (ai, bi, ci):(P, P, P ): then ai = ai+1, bi = bi+1,
ci −→ ci+1;

– (ai, bi, ci):(O,O,O): then ai −→ ai=1 and
bi = bi+1, ci = ci+1;

• (A( C)O:

– (ai, bi, ci):(P, P,O): then ai = ai+1 and
σ(bi, ci) = (bi+1, ci+1);

– (ai, bi, ci):(P,O,O): then ci = ci+1 and
ρ(ai, bi) = (ai+1, bi+1).

Remark. (a) In a sequence according to ρ and σ, for all i

(ai, bi) −→
∗ (ai+1, bi+1) in A( B and

(bi, ci) −→
∗ (bi+1, ci+1) in B ( C.

(b) If u is a combined sequence according to ρ and σ then
u|A(B is a play according to ρ in A( B and u|B(C is a
play according to σ in B (C. Further the plays u|A(B |B
and u|B(C |B coincide.

We need to establish that a strategy defined via combined
sequences as indicated above is well-defined and conflict-
free. For these purposes we need a number of lemmas.

Lemma 2.1 Let

u = (a0, b0, c0), (a1, b1, c1), . . . , (an+1, bn+1, cn+1)

be a combined sequence according to ρ and σ. Suppose
(an, cn) ∈ (A(C)O , and suppose there is (a′, b′, c′) with

• (a′, b′) ∈ R(ρ),

• (b′, c′) ∈ R(σ) and

• (a′, c′) ∈ (A( C)P .

If an −→∗ a′ and cn −→∗ c′ then

(an+1, bn+1) −→
∗ (a′, b′) and (bn+1, cn+1) −→

∗ (b′, c′).

Corollary 2.2 Let

(a0, b0, c0), . . . , (am, b, cm), (am+1, b, cm+1)

and (a′0, b
′

0, c
′

0), . . . , (a
′

n, b
′, c′n), (a′n+1, b

′, c′n+1)

be sequences according to ρ and σ with

(am, cm) = (a′n, c
′

n) = (a, c) ∈ (A( C)O .
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Then

• (am+1, cm+1) = (a′n+1, c
′

n+1);

• b = b′.

Now we have enough information in place to make the
following definition. If ρ : A - B and σ : B - C
then their composite, σ ◦ ρ, is defined by

(σ ◦ ρ)(a, c) = (a′, c′)

if and only if there is a sequence according to ρ and σ ending
in

. . . , (a, b, c), (a′, b, c′)

for some b.

Corollary 2.3 Let (a0, c0), (a1, b1), . . . , (am, cm) be a
play in A(C in accord with σ ◦ ρ. Then there is a unique
sequence according to ρ and σ of the form

(a′0, b
′

0, c
′

0), . . . , (a′n−1, b
′, c′n−1), (a′n, b

′, c′n)

whose effective projection to A(C is the given play. Thus
σ ◦ ρ is a well-defined pre-strategy.

Finally we check conflict-freeness for which we use the
well-foundedness condition.

Lemma 2.4 The composite of two conflict-free strategies is
conflict-free.

We explain associativity of composition as follows. If
ρ : A - B and r ∈ Πρ then r is an interleaving of se-
quences r|A of positions inA and r|B of positions inB. We
can then regard this interleaving r : r|A - r|B as a map
in a category DTI described in more detail in Appendix A.
Strategies are determined by the set of plays to which they
give rise. Thus we can identify ρ with a set of maps

Πρ = {r : r|A - r|B}

with various domains and codomains.
For ρ : A - B and σ : B - C we define the plays

in accord with σ ◦ ρ via composition and hiding; we show
that σ ◦ ρ is a strategy and moreover

Πσ◦ρ = {s ◦ r | r ∈ Πρ, s ∈ Πσ , and
doms = codr}

is the set of compositions of interleavings, thought of as
maps in DTI.

Since composition in DTI is associative it is now im-
mediate that composition of strategies is associative. The
usual copy-cat strategy is identified with a full set of identi-
ties and so acts as the identity under composition. Now the
explicit description of the multiplicative structure makes the
following routine.

Proposition 2.5 The category of graph games is symmetric
monoidal closed.

2.2 Additive structure

There is more categorical structure to be found in the
category of graph games. The additive structure does not
bring any surprises.

The terminal object 1 is (again) the game I with just one
(initial) position.

The product A × B is the ‘coalesced sum’ of the games
A and B, identifying ∗A with ∗B to give the new initial
position. Player and Opponent positions and moves are all
inherited from A and B. Projections are given by copy-cat
type strategies.

Proposition 2.6 The category of graph games has arbi-
trary products.

2.3 Exponential structure

To obtain a model of (Intuitionistic) Linear Logic3 we
have to restrict ourselves to a full subcategory.

Definition 4 We say that a graph game is regulated if
and only if the following conditions are satisfied. If a
and a′ are of the same colour then a −→∗ a′ −→ ā′ and
a −→ ā −→+ ā′ together imply ā −→∗ a′. Let GGam be
the full subcategory of regulated graph games.

Being regulated is a condition on how plays split and
merge in a graph game: If a from the definition is a P -
position then any two plays splitting at a merge for the first
time at a P -position (either a′ or an earlier P -position).
Again there is a concrete data structure intuition. From a
P -position play continues with Opponent presenting Player
with another cell to fill. Plays split if Opponent presents
different cells. Plays merge if the same cells have been pre-
sented by Opponent in different orders, but have been filled
by Player with the same values. Hence the last move be-
fore the plays merge once more must be a value placed by
Player.

From now on when we refer to a ‘graph game’ we will
tacitly assume that we speak of a regulated one.

Proposition 2.7 The category GGam (of regulated graph
games) is closed under tensor, linear function space and
products.

Regulated4 games have an interesting property. Let a
strategy on A ( B be given by its reachable positions
(which are pairs consisting of a position in A and a posi-
tion in B), and read these as a relation from positions in A
to positions in B. Then composition of strategies is given
by relational composition. Thus there is a good connection
with the relational model of Linear Logic and so with cate-
gories of abstract games based on it.

3See for example [8] for a precise definition of what we mean by that.
4There is in fact a weaker condition with this effect.
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Proposition 2.8 There is a faithful linearly distributive
functor GGam - Rel.

As we explain in Section 4 this leads us to hope that we
can in some sense borrow an exponential from the relational
model.

The linear exponential we introduce here is somewhat
unusual in that it has the property that applied to a finite
game, it results in a finite game. We say that a strategy is
finite if its image (when viewed as partial function) is finite.
In other words α onA is finite if and only ifRP (α) is finite.
We order strategies in the usual way as partial functions,
that is a strategy can be increased by extending its domain of
definition. Note that because of conflict-freeness, extending
the domain of definition by just one element may not be
possible with strategies on tree-games—a number of further
elements may have to be added.

The P -position of !A are the finite strategies onA. From
such a finite strategy α, a valid move consists of pairing α
with one of the elements ofRO(α) on which α is undefined.
In keeping with the concrete data structure intuition we can
view this as Opponent now asking Player to fill another cell
given by a. From such a pair (α, a) there is a move to a
(finite) P -strategy α′ if

• α′ extends α (as partial functions);

• α′ is defined at a;

• α′ is minimal with that property.

Note that for tree games (where strategies are automat-
ically conflict-free) one can always extend the domain of
definition of a strategy by just one element; the conflict-
freeness condition means that this need not be possible for
general graph games. This means that a ‘one step exten-
sion’ α −→ (α, a) −→ α′ need not be uniquely defined,
even when a is given, but below each extension there is a
unique least one. In terms of concrete data structures this
kind of situation might apply if, in order to fill the cell Op-
ponent asked for (given by a), Player first needs to fill other
cells, but those ‘other cells’ are not uniquely defined.

The result is a regulated graph game !A, and ! can be
extended to an endofunctor on GGam. All the struc-
ture maps for the comonad can be viewed as copy-cat type
strategies, but the details are quite delicate and we lack
space to give them here.

Theorem 2.9 The category GGam of (regulated) graph
games is a model of Intuitionistic Linear Logic.

This provides us with a cartesian closed structure on
GGam in the usual way. The product remains the old
product, and the function space is given by the Girard for-
mula

A⇒ B = !A( B.

3 Graph games and tree games

There are categories of traditional tree games which also
give models for Linear Logic. One such category, TGam

(on which most categories of games in semantics are based),
is identified in [7], and we will describe here how it is con-
nected to the category of graph games. A tree game (in the
traditional sense) is just a game whose underlying graph is a
tree. LetA andB be tree games. Then the positions of their
linear function space A (t B (in the traditional sense, as
tree games), can be mapped to pairs of positions, one in A
and one in B in an obvious way. This turns out to be a posi-
tion inA(B. We can now interpret a morphismA - B
in TGam, that is a strategy on A (t B, as a strategy on
A(B. For any pair of positions (a, b) in the trees forA and
B occurs in a play in A(t B according to a tree strategy ρ
in at most one way, and therefore given a O-position (a, b)
in A ( B we can use ρ to tell us how the corresponding
graph game strategy replies. That this gives a valid conflict-
free pre-strategy is somewhat surprising, the reason for this
is given by the ‘switching conditions’ inA(B: only Player
is allowed to switch between the component games. We
thus obtain an embedding TGam - GGam.

Proposition 3.1 There exists a full monoidal embedding
J : TGam - GGam which preserves all products.

Given a graph gameA, we can ‘treeify’ it. The positions
of the resulting game TA are plays of the graph game. Plays
of even length areO-positions while plays of odd length be-
come P -positions.5 There is a move in the treeified game
from one such position to another if and only if the lat-
ter extends the former by one move. It then turns out that
TA(t TB and T (A( B) are naturally isomorphic, and
functoriality of T comes for free, as does monoidality of T .

Proposition 3.2 The functor T : GGam - TGam

preserves products, tensor products and linear function
spaces.

It is worth pointing out that these two functors are not
adjoint to each other. The reason for this is that the obvious
copy-cat strategiesA - JTA and JTA - A are not
conflict-free.

We get these results for general reasons. The functor
JT is a monoidal endofunctor on GGam which can be
equipped with coherent isomorphisms

JT (JTA⊗B) ∼= JT (A⊗B) and
JT (JTA(B) ∼= JT (A(B)

∼= JT (A( JTB).

5If this sounds different from the usual conventions it is because our
games are based on the notion of position rather than that of move.
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Using this the multiplicative structure on the image
TGam of JT can be defined by

A⊗t B = T (JA⊗ JB) and
A(t B = T (JA( JB).

More significantly we have natural transformations

φ : ! - !JT and
ψ : ! - JT !

satisfying natural coherence conditions. Those relevant for
the exponential on TGam are

(T !
Tψ
- TJT ! ∼= T !) = idT !

(!J
φJ
- !JTJ ∼=!J) = id!J

(!!
!ψ
- !JT !) = (!!

φ!
- !JT !)

These conditions allow us to define an exponential on
TGam within GGam by

!t = T !J.

We omit the full definition of the exponential structure for
lack of space. One can deduce abstractly from our Theo-
rem 2.9 the following result.

Theorem 3.3 TGam is a model of Intuitionistic Linear
Logic.

The exponential we obtain in Theorem 3.3 is the Curien
exponential [4] so this result is already known. We note
however that it appears that one cannot obtain other known
exponentials on TGam in this way. Other well-known ex-
ponentials on TGam do not seem to give rise to exponen-
tials on GGam, so the connection between TGam and
GGam privileges the Curien exponential on the former.

We now show that the type structure N
(σ)
g and N

(σ)
t are

closely related. Say that a regulated game A is P -tree-like
if and only if whenever two plays merge they do so at an
O-position (and so the two plays diverged also from an O-
position). Dually there is a notion of O-tree-like. We have
the following.

Lemma 3.4 For any A, !A is O-tree-like.

Lemma 3.5 SupposeA is P -tree-like.

(i) Strategies inA correspond exactly to strategies in TA,
that is we have

T : GGam(1, A) ∼= TGam(1, TA).

(ii) The functor T commutes with ! on A, that is,

T !A ∼= T !JTA.

Lemma 3.6 Suppose thatA is O-tree-like and thatB is P -
tree-like. Then A( B is P -tree-like.

Proposition 3.7 SupposeA andB are P -tree-like. Then so
is A⇒ B and moreover

T (A⇒ B) ∼= TA⇒t TB.

We give the final calculation.

T (A⇒ B) ∼= T (!A( B)
∼= T !A(t TB
∼= T (JT !JTA( JTB)
∼= TA⇒t TB .

Let Nt in TGam and Ng in GGam be the game with
one opening O-move to which P may respond by playing
any natural number. We define N

(σ)
g for higher types σ in-

ductively via

N
(0)
g = Ng

N
(σ×τ)
g = N

(σ)
g × N

(τ)
g

N
(σ→τ)
g = N

(σ)
g ⇒ N

(τ)
g

and similarly for N
(σ)
t . Note that the type structure N

(σ)
t

is the sequential algorithms model of Berry and Curien
(see [2]).

As models for this type structure, the category of regu-
lated graph games and that of tree games are very closely
connected.

Theorem 3.8 The functor T induces an isomorphism

TN
(σ)
g
∼= N

(σ)
t

for all types σ.

4 An extensional exponential

By working with graph games we aim to force a degree
of extensionality into our strategies. (This idea goes back to
approaches to PCF sequentiality developed by Gandy and
Pani in unpublished work.) The analysis we have just given
shows us that our simple exponential subverts that purpose
(at least for PCF types).

We believe that there is a natural more extensional ex-
ponential which better serves this purpose and is consonant
with the approach of Gandy and Pani. This is based in ef-
fect on sets of (maximal) positions rather than on the in-
tensional strategies themselves (so it derives from the expo-
nential on abstract games). If we are right this gives a new
model for Intuitionistic Linear Logic and a new cartesian
closed type structure N

(σ)
e . We comment on the relation we
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expect between the type structures N
(σ)
e and N

(σ)
t . Clearly

Ne and Nt will have the same elements (global sections)
and the same should be essentially true for any type of the
form (0× · · · × 0 → 0). In particular both N

(0×0→0)
e and

N
(0×0→0)
t will contain left and right algorithms ζl and ζr

for a function which takes (0, 0) to 0 and is otherwise un-
defined. So ζl and ζr are approximations to the familiar left
and right algorithms +l and +r for addition. In the sequen-
tial algorithms model N

(σ)
t there is an algorithm δ which

distinguishes between ζl and ζr, that is with δ(ζl) = 0 and
δ(ζr) = 1. But since running ζl and ζr in the graph game
model will end in the same position, δ should not exist in
N

(σ)
e . Generally at the type 2 level the elements of N

(σ)
e

should be included in those of N
(σ)
t . At higher levels this

ceases even to make sense; at type 3 level the positions of
N

(σ)
e should be identifiable with equivalence classes of ele-

ments of N
(σ)
t .

Recall that Ehrhard identified the extensional collapse of
the sequential algorithms model of higher types with the
hypercoherence model [5]. In other words if one starts
with ∼0 the identity relation on N

(0)
t and defines the par-

tial equivalence relations ∼σ inductively in the usual real-
izability style (see for example [10]) then the equivalence
classes N

(σ)
t /∼σ are the sequentially realizable functionals

and correspond to the points of the hypercoherence model.
Despite the marked differences between N

(σ)
t and N

(σ)
e we

expect, in view of results in Longley [10], that the same will
be true of the equivalence classes in the extensional collapse
of N

(σ)
e .

5 Conclusions and Further Work

We have provided a new concrete data structure-style
model for sequential computation and, using a simple ex-
ponential, we have shown that it gives rise to the sequential
algorithms model. This provides rather modest support for
the Longley conjecture. We hope that we can provide more
telling evidence for it using a more extensional exponential.

We make two further observations. First our model is
computational yet there is a good connection with a cate-
gory of abstract games. This raises the possibility, not anal-
ysed here, that one could use our model to provide cleaner
proofs of the harder equivalences in Longley’s [10]. In par-
ticular we observe that Melliés in [11] has independently
considered issues connected with equivalences of plays in
the sequential algorithms model. While he deals only with
that setting, he is able to use his notion of extensional data
structure to provide a direct link with the general notion of
coherence on which the hypercoherence model is based, al-
lowing him to give a computational interpretation of same.
There should be connections with our work and one might

hope to exploit Melliés’ insights further in exploring the
world of sequentially realizable functionals.

Secondly if our suggestion for a more extensional ex-
ponential works it provides a model with less ‘junk’ (that
is non-extensional programs/strategies) than the sequential
algorithms model. It therefore might be a first step to-
wards the answer to a question posed in [10]: Is there a
‘games style’ model for the sequentially realizable func-
tionals without junk? This is a modern reading of a question
which Gandy was constantly addressing in his last years.

Appendix

A Merging sequences

Let TI be the category whose objects are finite totally
ordered sets (which we think of as plays) and whose mor-
phisms are ‘merges’, or ‘total interleavings’ of the two, that
is, if A and B are finite totally ordered sets then a mor-
phism A - B is a total order on A + B respecting the
given orders on A and B. These morphisms are uniquely
represented by relations F : A +- B such that

a′ ≥ a F b ≥ b′ implies a′ F b′.

The total order on A + B then is the disjoint union of the
orders on A and B with

b < a if and only if a F b and
a < b if and only if ¬(a F b)

Composition is given by relational composition, and the
identity on A is given by the > relation on A.

The order obtained onA+A by the identity ‘interleaves’
the two copies of A in such a way that identical elements
become neighbours and the right copy always comes first.

The order obtained on A + C obtained by composing
F : A +- B and G : B +- C is identical with the one
obtained as follows. View A+C as embedded in A+B +
C with the order given by the transitive closure of those
defined on A+B and B +C via F and G respectively. So
c < a if and only if there exists b ∈ B with c < b < a.

For our application we are actually interested in merging
plays, where moves come in two flavours: P -moves and
O-moves. For that purpose we consider the ‘dualized’ cat-
egory

DTI = TI×TI
op.6

This category has objects of the form (A+, A−) and we
think of the elements of A+ as P -moves, and of the ele-
ments of A− as O-moves. Clearly if we split a finite play
into these two sets then the size of the former is either equal

6See [8] for a sketch of the properties of categories formed in this way.
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to the size of the latter, or it is smaller by one, and the merge
is ‘perfect’, starting with an element of −. Hence not all ob-
jects in the category can be viewed as plays.

The identity on (A+, A−) gives rise to a total order on
(A+ +A+) + (A− +A−) as follows. The least element of
‘the right’ copy of A− is followed by the least element of
‘the left’ copy of A−, then we get the least element of ‘the
left’ copy ofA+ followed by the least element of ‘the right’
copy of A+, and the circle starts over. This is the order of
moves carried out by the standard copy-cat strategy.

The order given on (A+ + C+, A−, C−) given by the
composite of the morphisms

(F+, F−) : (A+, A−) - (B+, B−) and
(G+, G−) : (B+, B−) - (C+, C−)

is the one inherited from that on

(A+ +B+ + C+) + (A− +B− + C−)

which is given by the transitive closure of the orders given
on (A++B+)+(A−+B−) and (B+ +C+)+(B−+C−)
by the two morphisms. For objects which arise from plays
this corresponds to ‘parallel composition and hiding’—the
hidden positions are those in B.
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