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Computational Adequacy for Recursive Types
in Models of Intuitionistic Set Theory

Alex Simpson∗

LFCS, Division of Informatics,
University of Edinburgh, Scotland

Abstract

We present a general axiomatic construction of models
of FPC, a recursively typed lambda-calculus with call-by-
value operational semantics. Our method of construction is
to obtain such models as full subcategories of categorical
models of intuitionistic set theory. This allows us to obtain
a notion of model that encompasses both domain-theoretic
and realizability models. We show that the existence of so-
lutions to recursive domain equations, needed for the inter-
pretation of recursive types, depends on the strength of the
set theory. The internal set theory of an elementary topos
is not strong enough to guarantee their existence. However,
solutions to recursive domain equations do exist if models of
intuitionistic Zermelo-Fraenkel set theory are used instead,
We apply this result to interpret FPC, and we provide neces-
sary and sufficient conditions on a model for the interpreta-
tion to be computationally adequate, i.e. for the operational
and denotational notions of termination to agree.

1. Introduction

In this paper, we present a general axiomatic account
of the construction of denotational models ofFPC, a
recursively-typedλ-calculus with sum and product types. A
vital property of a model is that it should becomputation-
ally adequate, i.e. that the denotational account of termina-
tion should coincide with the operational one. We provide
necessary and sufficient conditions on a model for compu-
tational adequacy to hold.

BecauseFPC is a typed functional language, its models
are necessarily categories. In fact, one can identify exactly
the structure required by a category,P, to model the lan-
guage. It must have: finite sums and products, to interpret
the corresponding type constructors; a lifting monad,L, to
account for the possible nontermination of programs; par-
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tial (relative toL) exponentials, to interpret function types;
and finally, to interpret recursive types, the derived cate-
gory, pP, of partial maps, induced byL on P, must be
algebraically compactin the sense of Freyd [7, 8], at least
with repect to functors defined by type expressions.

The above identifies the structure required by a model
of FPC, but does not indicate where to find examples of
models. Nevertheless, several sources of such models are
known. Domain theory provides the classical example of
the category ofωcpos [24]. More generally, axiomatic
domain theory has successfully abstracted the idiosyncra-
cies of domains to provide a host of “neo-classical” mod-
els [2, 4]. A quite different type of model is given by game-
theoretic semantics [18]. Finally, while the structure has
not previously been exhibited in the form above, it has long
been known that there should be a variety of models based
on realizability semantics [9, 20, 21, 22, 17]. What has been
missing hitherto is a single unifying treatment accounting
for the existence of all these types of model. In this paper,
we provide such a treatment.

In [28], Dana Scott observed that categories of domains
can live as full subcategories of models of intuitionistic set
theory. We exploit this idea to construct models ofFPC
in a uniform way. Roughly speaking, we start off with a
categoryS of intuitionistic sets that satisfies one simple ax-
iom, Axiom N of Section 2, which, although classically
inconsistent, is intuitionistically consistent. From any such
categoryS, we extract a full subcategory ofpredomains,
P ⊂ - S, with all the structure identified above, and hence
we have a model ofFPC.

This approach directly follows [30], where it is shown
that a model of the simply-typed languagePCF [23] can be
similarly extracted from any elementary toposS (with nat-
ural numbers object) satisfying AxiomN. The additional
goal of the present paper is to show thatP also models re-
cursive types. This is a non-trivial task.

In fact, we immediately encounter a problem. As our
first result, Proposition 1, we show that there exists an el-
ementary topos satisfying AxiomN for which the derived
categorypP is notalgebraically compact. Thus some mod-
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ification to the above method of constructingP is neces-
sary in order to interpret recursive types. This is not, at first
sight, surprising. AxiomN is designed merely to guarantee
that P models the recursive definition of functions. Thus
there is noa priori reason to expect recursive types to have
interpretations inpP.

However, we identify the difficulty as stemming from a
perhaps unexpected source. The problem is that elemen-
tary toposes, although models of intuitionistic higher-order
logic, are not, in general, models of a sufficiently powerful
set theory. Thus, instead of working with an arbitrary ele-
mentary topos, we shall require thatS have enough struc-
ture to model fullIntuitionistic Zermelo-Fraenkel(IZF) set
theory, see e.g. [27]. Technically, this is implemented by
asking forS to be given as the full subcategory ofsmallob-
jects in a categoryC with class(ic) structureanduniversal
object, in the sense of [31] (developed from [15]). As our
first main result, Theorem 1, we prove that, with such a cat-
egoryS, the derived categorypP is algebraically compact
whenever AxiomN holds. Thus, with enough set-theoretic
power to back it up, AxiomN is, after all, sufficient for the
solution of recursive domain equations.

The proof of Theorem 1 occupies Sections 4–6. An in-
formal outline of the proof structure, including a discussion
of the technical innovations required, is given in Section 3.

By Theorem 1, it is possible to interpretFPC in P. We
give the interpretation explicitly in Sections 7 and 9. Re-
call that the interpretation is said to becomputationally ad-
equateif the denotational account of program termination
coincides with actual termination in the operational seman-
tics. As Theorem 2, we prove that the interpretation ofFPC
is computationally adequate if and only if the internal logic
of S is 1-consistent (i.e. only genuinely trueΣ0

1-sentences
are true inS). Thus the programming-language-sensitive
property of computational adequacy is reduced to a purely
logical property ofS. This result is based on the sim-
ilar characterisation of computational adequacy forPCF
in [30]. However, the extension of the result toFPC is
non-trivial, see Section 8.

Finally, in Section 10, we present applications of our
work across the range models discussed earlier. The classi-
cal domain-theoretic models, such as the category ofωcpos,
and their generalizations [2, 4], all embed in Grothendieck
toposes [3, 5], and hence, by [15, Ch. IV], in categories
with class structure. Moreover, under mild conditions, Ax-
iom N is satisfied. Also, by their very definition, realiz-
ability models [9, 20, 21, 22, 16, 17] embed in realizability
toposes [10, 12], and hence in categories with class struc-
ture [15, Ch. IV]. Again, AxiomN is satisfied. Thus, The-
orem 1 gives an account of the construction of solutions to
recursive domain equations that applies simultaneously to
domain-theoretic and to realizability models.

As all nontrivial Grothendieck and realizability toposes

are 1-consistent, we obtain a uniform proof of compu-
tational adequacy for the models discussed above. For
domain-theoretic models, computational adequacy has pre-
viously only been proved in an order-enriched setting [2],
whereas our result applies also to the more general class
of enriched models axiomatized in [4, 3]. For realizability
models, the only existing proof of computational adequacy
for a language (implicitly) containing recursive types, ap-
plies to just one specific model [1]. We thus obtain the first
proof of computational adequacy, for the interpretation of a
language with recursive types, in all the realizability models
of [9, 20, 21, 22, 16, 17].

AcknowledgementsThis paper was conceived during a
visit to Genova in April 1995, for which I express my warm
thanks to Pino Rosolini. Over the lengthy period of its de-
velopment, I have benefited from discussions with Marcelo
Fiore, Edmund Robinson, Pino Rosolini, Thomas Streicher
and Paul Taylor, the last of whom is also acknowledged for
providing the macros used to format the diagrams.

2. Classes, sets and predomains

As discussed in the introduction, our work will involve
both elementary toposes and also categorical models of In-
tuitionistic Zermelo-Fraenkel (IZF) set theory [27]. Both
types of model arise as instances of regular categories with
class(ic) structure, as defined in [31]. We briefly recount
the main features of this notion, using, as far as posible,
set-theoretic intuition. For the category-theoretic details see
op. cit.

In a regular category,1 C, with class structure, the ob-
jects are to be thought of as classes and the morphisms as
functions between classes. There is a distinguished full sub-
category,S, of smallobjects, which is to be thought of as the
subcategory of sets. More generally, there is a distinguished
collection of morphisms, thesmall maps, where intuitively
f : X - Y is small if, for everyy in the classY , its
fibref−1(y), which is a subclass of the classX, is actually
a set. Smallness interacts with the regular structure onC as
follows. If X- - Y is mono andY is small thenX is
small, i.e. every subclass of a set is a set. This expresses the
Separation axiom of set theory. Dually, ifX -- Y is epi
(n.b. class structure implies that every epi is regular) andX
is small thenY is small, i.e. the image of a function from
a set to a class is itself a set. This expresses the Replace-
ment axiom of set theory. The other important structure on
C is that, for every classX, there is another classPSX the
small powerobjectof X, which is intuitively the class of all
subsets ofX. The objectPSX comes with an associated
membershiprelation3X - - PSX × X, for which the

1A regular categoryis a category with finite limits in which every mor-
phism has a stable factorization as a regular epi followed by a mono.



composite

γX = 3X- - PSX ×X
π1- PSX (1)

is a small map. It is also required that ifX is small then so
isPSX. This expresses the Powerset axiom of set theory. It
follows that the full subcategoryS is an elementary topos.
Further,C has finite coproducts andS is closed under finite
limits and coproducts inC. We shall make liberal use of the
internal logic ofC, which is intuitionistic first-order logic,
with the predicates onX being arbitrary subobjects ofX.
We write C |= ϕ to mean that statementϕ holds in the
internal logic ofC. The objectΩ = PS1 (where1 is the
terminal object inC), which is the subobject classifier inS,
is also a subobject classifier inC. ThusΩ can be thought of
as the set of all internal propositions inC.

As we shall make heavy use of indexed families inC,
we summarise the legitimate constructions on them in the
context of class structure. As usual, we considerI-indexed
families as being given by morphismsX - I, although
we shall often use the convenient notation{Xi}i : I for
them. Given such an internal familyX - I, the ob-
jectX itself provides a dependent sum

∑
i : I Xi. However,

a dependent product
∏
i : I Xi is only guaranteed to exist in

the case thatI is a small object. If, in addition toI being
small,X - I is a small map then

∏
i : I Xi is itself a

small object. In the case of a constant families{X}y :Y

(given by projectionsX × Y - Y ), dependent products
specialise to function spaces. Thus the above remarks im-
ply thatY X exists wheneverX is a small object, and that
Y X is itself small if bothX andY are small.

Henceforth in this paper, letC be a regular category with
class structure, and letS be its full subcategory of small ob-
jects. Further, we assume thatC has a small natural num-
bers object (nno)N. This implements the Infinity axiom of
set theory. However, in spite of the motivating references
to set theory, the assumed structure onC andS does not
yet provide the full power of IZF set theory. For exam-
ple, given any elementary topos with nno,S, one can obtain
class structure by puttingC = S and stipulating that every
map be small.

The remaining goal of this section is to isolate a full
subcategory ofS to act as a category of predomains. This
will require imposing further axioms onC. Many axiom-
atizations have been proposed for this purpose, see e.g.
[26, 11, 20, 33, 17, 30, 25, 19]. Here, we follow [30].

As first proposed in [26], the definition of predomain is
predicated on a notion of partiality. To implement this, we
require a distinguished subobjectΣ- - Ω. Intuitively
Σ corresponds to the subobject of those propositions inΩ
that express the termination of programs. AsΣ is a sub-
object of Ω, it classifies a collection of subobjects inC,
namely those whose characteristic map toΩ factors through
Σ- - Ω. Intuitively, suchΣ-subobjectsof X correspond

to those subobjects determined as the domains of termina-
tion of programs taking input inX. Because there exist
terminating programs, and because programs can be run un-
der sequential composition, it makes sense to require thatΣ
contains the true proposition,>, and thatΣ-subobjects are
closed under composition. This implies, in particular, that
Σ is closed under finite conjunction inΩ. Taken together,
these requirements state thatΣ is adominance[26].

The dominanceΣ determines alifting functor onC. For
an objectX, we saye :PSX is subterminalif

∀x, x′ :X. x ∈ e ∧ x′ ∈ e → x = x′.

We say thate is Σ-subterminalif it is subterminal and also

(∃x :X. x ∈ e) ∈ Σ,

i.e. the proposition stating thate is inhabited is aΣ-
proposition. Using the internal logic ofC, define

LX = {e :PSX | e is Σ-subterminal}.

TheL operation extends to a functorL : C → C, where,
onf : X - Y , the morphism actionLf : LX - LY
is defined by

(Lf)(e) = {f(x) | x ∈ e}.

Further, the endofuctorL carries a monad structure. The
unit is singleton{·} : X - LX, and the multiplication
is union

⋃
: LLX - LX.

As in [14], the endofunctorL has a final coalgebra,
τ : F - LF (necessarily an isomorphism), defined by:

F = {c : ΣN | ∀n : N. c(n+ 1)→ c(n)}
τ(c) = {(n 7→ c(n+ 1)) | c(0)}.

BecauseF is small, there exists a smallest subalgebra,
σ : LI - I, of τ−1, defined internally inC as the inter-
section of all subalgebras ofτ−1. It is a consequence of [31,
Theorem 5] thatσ : LI - I is an initial algebra for the
endofunctorL on C. By construction, the unique algebra
homomorphism,ι : I - F, fromσ to τ−1 is mono.

One can viewI as the object obtained from the initial ob-
ject0 by freely iterating theL functor. In the sequel,I will
play the r̂ole of a generic “ω-chain” in C, andI- - F
will exhibits F, which has the additional “infinite” point
∞ = (n 7→ >), as its “chain-completion”. This intu-
ition plays a fundamental rôle in developing a basic notion
of “chain completeness” used to define a full subcategory
of predomains withinS, see [17].

Definition 2.1 (Complete object) An object X is com-
pleteif Xι : XF - XI is an isomorphism.



Examples in [19] show that complete objects do not them-
selves form a suitable category of predomains as they are
not necessarily closed under lifting. Following [17], we
avoid this problem usng the property ofwell-completeness.

Definition 2.2 (Well-complete object) An object X is
well-completeif LX is complete.

The results below, which are standard, see e.g. [30], state
the basic properties of well-completeness. In them, we
write 2 for the object1 + 1, which we view as a subob-
ject ofΩ via [⊥,>] : 2- - Ω, where⊥ is falsum.

Lemma 2.3

1. If 2 is well-complete then so are1 and0.

2. If N is well-complete then so is2.

The converse implications do not hold in general, see [19].

Lemma 2.4 If 1 is well-complete then:

1. X well-complete impliesX complete.

2. X well-complete impliesLX well-complete.

3. For any internal family{Xi}i : I with I small,

C |= (∀i : I. Xi is well-complete) →

(
∏
i : I

Xi) is well-complete.

Two special cases:

If X,Y are well-complete then so isX × Y .

If X is small andY is well-complete thenY X is well-
complete.

4. Given two morphismsf, g : X - Y with X,Y
well-complete then, in the equalisere : E- - X of
f andg, the objectE is well-complete.

5. 0 is well-complete if and only if⊥ ∈ Σ.

6. 2 is well-complete if and only ifX,Y well-complete
impliesX + Y well-complete.

7. N is well-complete if and only if2 is well-complete
and also

C |= ∀P : 2N. (∃n : N. P (n)) ∈ Σ . (2)

Here, statement 3 makes use of the fact that well-
completeness can be formulated in the internal logic. Also
(2) states that, for any logically decidable predicateP on
N, the proposition∃n : N. P (n) is aΣ-proposition.

In this paper, apredomain is simply a small well-
complete object. We writeP for the full subcategory of
predomains. Thus we have full subcategory inclusions
P ⊂ - S ⊂ - C. For P to be well behaved, we need
axioms to assume that basic objects are predomains. As all
the obects we consider for this purpose are already small,
the axioms are formulated in terms of well-completeness
alone. We use a single format for all axioms.

Axiom X The objectX is well-complete.

We shall instantiate this format in three instances only: Ax-
iom 1, which, by Lemma 2.4.3, implies thatP is cartesian
closed; Axiom2 which, by Lemma 2.4.6, implies that,P
has finite coproducts (inherited fromC); and Axiom N,
which, as is shown in [30], implies thatP has all the struc-
ture required by a model ofPCF. The implications between
these three axioms are given by Lemma 2.3.

Our goal, in this paper, is to address the interpretation
of recursive types inP. This requires that recursive domain
equations have solutions up to isomorphism in an associated
categorypP of partial maps, which we now define.

For objectsX,Y of C, aΣ-partial mapis a partial map
from X to Y whose domainX ′- - X is aΣ-subobject
of X. BecauseΣ is a dominance,Σ-partial maps are closed
under composition. As the only partial maps we are inter-
ested in areΣ-partial, we henceforth drop theΣ. We write
pC for the category of partial maps between objects ofC,
and we writepP for the full subcateory ofpC on predo-
mains. We writeX ⇀ Y for the object of partial maps from
X to Y , which is easily defined in the internal logic. The
objectX ⇀ Y is isomorphic to the exponential(LY )X .
Thus, by Lemma 2.4, if Axiom1 holds then, forX small
andY a predomain,X ⇀ Y is a predomain.

The first new result of this paper shows that, in the con-
text of the assumed structure onC, Axiom N is not suf-
ficient to allow recursive domain equations to be solved in
pP. The statement makes use of the fact, already discussed,
that any elementary toposS arises as the full subcategory
of small objects in a category with class structure, by taking
C = S.

Proposition 1 There is an elementary topos satisfying Ax-
iom N in which there exists a predomainΥ such that no
solutionX to the isomorphismX ∼= X ⇀ Υ exists inpP.

We just state what the example is. Letω be the set of or-
dinals≤ ω, with their usual ordering, endowed with the
Scott topology. The Grothendieck toposH, from [5], is
the topos of sheaves over the canonical Grothendieck topol-
ogy on the monoid of continuous endofunctions onω. Let
Hiω be the full subcategory ofH on those sheavesA for
which the setA(ω) has cardinality strictly less thaniω,

whereiω = sup{2ℵ0 , 22ℵ0
, 222ℵ0

, . . . }. As in [5], there
is a full embeddingy : ωcpo

iω
⊂ - Hiω of the category



of ω-cpos of cardinality< iω in Hiω . Using this, define
Σ = y(O), whereO is Sierpinski space. Then, as in [5],
Axiom N is satisfied. Finally, defineΥ = y(Z) whereZ is
theωcpo (the well-known countably-based L-domain that
is not bifinite) drawn in [34, Example 9.6.15(c)]. One can
show that any solutionX to X ∼= X ⇀ Υ would have
|X(ω)| ≥ iω, hence no such solution exists inHiω .

3. Algebraic compactness

As indicated in the introduction, we address the interpre-
tation of recursive types by strengthening the assumptions
on our ambient category of classesC. A universal object
is an objectU such that, for every objectX, there exists a
monoX- - U . ThusU can be thought of as an object
that collects the elements of all classes together within one
universal class. In set-theoretic terms,U is simply the class
of all sets (and atoms if permitted). In [31] it is shown how
the existence of a universal object implies thatC contains
an internal model of IZF set theory.

Henceforth we require thatC have a universal object.
For the purposes of this paper, a vital consequence of the
universal object is that the categoriesS, P andpP all live
as internal categories withinC.

As usual, an internal category,K, in C is given by an
object (i.e. a class),|K|, of K-objects, and an internal fam-
ily, {K(A,B)}A,B : |K|, of K-morphisms indexed by domain
and codomain, satisfying the expected axioms for identities
and composition, see e.g. [13]. We say that an internal cat-
egoryK in C is locally smallif the internal family

{K(A,B)}A,B : |K| - |K| × |K|

is a small map inC. It is small if, in addition,|K| is small.
An internal functor, F , from an internal categoryK to

anotherL is given by a morphism

F : |K| - |L|,

expressing the action on objects, together with a family

{FA,B : K(A,B) - L(FA,FB)}A,B : |K|

that preserves identities and composition, again see [13].
We briefly exhibitS as an internal category inC, before

turning attention toP andpP, which are the categories of
interest to us. The internal categoryS is defined by

|S| = PSU S(A,B) = BA,

where the family{BA}A,B :PSU is defined as an exponen-
tial of small objects in the slice categoryC/(PSU ×PSU).
Identities and composition are defined in the obvious way.
By the earlier remarks on smallness and function spaces,S
is a locally small internal category inC. Using the theory

of fibrations, see [13], one can formulate a precise statement
that the categoryS is theexternalizationof the internal cat-
egoryS.

Analogously, we next construe bothP andpP as inter-
nal categoriesP andpP respectively. First we defineP by

|P| = {A : PS U | A is a predomain} P(A,B) = BA ,

using the evident formulation of the property of being a pre-
domain in the internal logic ofC. ThusP is an internal full
subcategory ofS, and hence locally small. The internal cat-
egorypP is defined by

|pP| = |P| pP(A,B) = A ⇀ B ,

with the obvious identities and composition. Again,pP is
locally small (becauseA ⇀ B ∼= (LB)A).

As before, using the theory of fibrations, one can make
precise thatP andpP are the externalizations ofP andpP
respectively. A crucial consequence of such externalization
results is that fibred (overC) structure onP andpP gives
rise to corresponding internal structure on the internal cat-
egoriesP and pP. For example, assuming Axiom1, the
L-monad onP determines an internal monad(L, {·},

⋃
)

on P. Also, Lemma 2.4 can be interpreted as an internal
proposition about the internal categorypP. Statements 3
and 4 of the proposition together imply that, in the presence
of Axiom 1, it holds in C that the internal categoryP is
small-complete2, with limits inherited fromS. Thus there
are morphisms inC that find limiting cones for small dia-
grams inP. The internal categorypP is not small-complete.
Nevertheless, one can derive internal functors:

pP× pP
×- pP (3)

pPop × pP
⇀- pP (4)

pP× pP
+- pP , (5)

where (3) and (4) require Axiom1, and (5) requires Axiom
2. N.b. although× extends product onP, it is not a carte-
sian product onpP, whereas+ is a binary coproduct functor
on pP.

Our goal is to prove the algebraic compactness, in the
sense of Freyd [7, 8], of the internal categorypP. We recall
this notion for ordinary categories. Given an endofunctor
F on an arbitrary categoryK, a bifree algebra is an initial
F -algebraa : FA - A for whicha−1 is also a finalF -
coalgebra (by Lambek’s Lemma, an initial algebra is always
an isomorphism). A categoryK is said to bealgebraically
compactif every endofunctor on it has a bifree algebra.

The correct formulation of algebraic compactness for an
internal categoryK in C is slightly subtle because there

2N.b. P, although locally small, is not a small internal category.



need not be any object of allK-endofunctors inC to al-
low an internal universal quantification. Instead, we make
an external quantification over internal families of internal
functors. Technically, this ensures that the definition is sta-
ble under the formation of slice categories ofC.

Definition 3.1 (Algebraic compactness)An internal cate-
goryK is said to bealgebraically compactif, for every inter-
nal family {Fi : K → K}i : I in C of internal endofunctors,
there exists a morphismA(−) : I - |K|, and a family
{ai : K(FiAi, Ai)}i : I such that

C |= ∀i : I. ai is a bifreeFi-algebra.

Moreover, the above data must be preserved by reindex-
ing: i.e., for f : J - I in C, let B(−) : J - |K|
and{bj : K(FiBj , Bj)}j : J be determined, as above, by the
J-indexed family{Ff(j) : K → K}j : J , then it must hold
thatB(−) = A(−) ◦ f andb(−) = a(−) ◦ f .

Lemma 3.2 (Parametrized algebraic compactness)
SupposeK and L are internal categories withK al-
gebraically compact, and supposeF : L × K → K
is an internal functor. LetA(−) : |L| - |K| and
{aB : K(F (B,AB), AB)}B : |L| be the data given by alge-
braic compactness, viewingF as indexed over|L|. Then
there exists a unique internal functorF † : L→ K such that
F †B = AB andaB : F (B,F †B) ∼= F †B is natural inB.

Theorem 1 If Axiom1 holds then the internal categorypP
is algebraically compact.

The proof of Theorem 1 occupies Sections 4–6. The strat-
egy is to establish a version of the limit-colimit coincidence
of classical domain theory (see, e.g. [32]), and apply it to
pP. However, a major complication arises. In many re-
alizability models of our setting, the usual limit-colimit-
coincidence is simply false, at least when formulated using
diagrams indexed by the natural numbersN, see [19] for
a counterexample. We solve this problem by developing
a non-trivial variant, under which diagrams are indexed by
the carrierI of the initial-algebra structure forL. This is
presented as Proposition 2.

We apply Proposition 2, by developing sufficient con-
ditions for an internal categoryK in C to be algebraically
compact, Proposition 3. A first crucial feature here is that
|K|, the class of objects ofK, should carry an algebra struc-
ture for theL functor. This allowsI-indexed diagrams, of
the form required by the limit-colimit coincidence, to be
constructed using the initial algebra property ofI . A sec-
ond crucial feature is that all such diagrams must have a
limit in pP, or equivalently a colimit.

Finally, as Proposition 4, we show thatpP does indeed
satisfy the conditions of Proposition 3. This concludes the
proof of Theorem 1.

4. Pointed objects and multistrict maps

As crucial preparation for the proof of Theorem 1, we
use the lifting monad to implement a notion of pointed ob-
ject, and of strict map between pointed objects. For us, a
pointed object(X,α) is simply an Eilenberg-Moore algebra
α : LX - X for the monad(L, {·},

⋃
). If ⊥ ∈ Σ then

one can think ofα(∅) as the identified “point” ofX, but the
notion of pointed object also makes sense without the as-
sumption that⊥ ∈ Σ. A strict maph : (X,α) - (Y, β)
between pointed objects is simply an algebra homorphism
(i.e. a morphismh : X - Y such thath ◦ α = β ◦ Lh).
Given pointed objects(X1, α1), . . . , (Xk, αk) and(Y, β), a
k-strict mapis a morphismh : X1×· · ·×Xk

- Y such
that, for eachi with 1 ≤ i ≤ k, it holds inC that

∀x1 :X1, . . . , xi−1 :Xi−1, xi+1 :Xi+1, . . . , xk :Xk.

xi 7→ h(x1, . . . , xk) is a strict map fromXi to Y .

We usebistrict for the casesk = 2, andmultistrict if we
leavek implicit. The lemma below is a special feature of
lifting monads.

Lemma 4.1 Given pointed objects(X1, α1), (X2, α2) and
(Y, β), then any bistrict maph : X1×X2

- Y is a strict
map from the pointed objectX1 ×X2 to Y .

The initial algebra of the endofunctorL caries a pointed
structureφ = σ ◦

⋃
◦Lσ−1 : LI - I. The pointed struc-

ture onI interacts nicely with the initial algebra property.
Define a “successor” functions = σ ◦ {·} : I - I. The
lemma below generalizes [15, Theorem A.5].

Lemma 4.2 Suppose that(X,α) is a pointed object and
thatf : X - X is any (not necessarily strict) morphism.
Then, for everyk ≥ 1, there exists a uniquek-strict map
h : Ik - X such that the diagram below commutes.

k︷ ︸︸ ︷
I× · · · × I

h - X

I× · · · × I

s× · · · × s

? h - X

f

?

Using Lemma 4.2, definemin : I × I - I to be the
unique bistrict map such thatmin(si, sj) = s(min(i, j)).
Then, by Lemmas 4.1 and Lemma 4.2 in the casesk = 1, 3,

min(i, i) = i

min(i,min(j, k)) = min(min(i, j), k).

Thusmin gives an internal semilattice structure toI. In the
standard way, we use this to define an internal partial order



on I by

i v j iff i = min(i, j).

The next lemma, which play an important rôle in the se-
quel, seems very much a peculiarity of lifting monads.

Lemma 4.3 Given an internal family{(Yx, βx)}x :X of
pointed objects, where(X,α) is also pointed, then so is
(
∑
x :X Yx, γ), whereγ : L(

∑
x :X Yx) - ∑

x :X Yx is
defined byγ(e) = (γ1(e), γ2(e)), where

γ1(e) = α{x | (x, y) ∈ e}
γ2(e) = βγ1(e){y | (x, y) ∈ e}.

We shall also need a notion of strictness for dependent fam-
ilies, which again seems peculiar to lifting monads.

Definition 4.4 (Strict family) Given an internal family
{(Yx, βx)}x :X of pointed objects, where(X,α) is also
pointed, we say thaty(−) :

∏
x :X Yx is a strict family if,

for all e :LX,

yα(e) = βα(e){yx | x ∈ e}.

The above definition relates to Lemma 4.3, as it is easily
seen thaty(−) is a strict family if and only if the morphism

x 7→ (x, yx) : X -
∑
x :X

Yx

is strict.
Next we use Definition 4.4 to derive a natural notion of

multistrict dependent family, and we generalise Lemma 4.2
to apply to such families.

Definition 4.5 (Multistrict family) Given an internal fam-
ily {(Yx1...xk , βx1...xk)}x1 :X1,...,xk :Xk of pointed objects,
where(X1, α1), . . . , (Xk, αk) are pointed, we say that

y(−)...(−) :
∏

x1 :X1

· · ·
∏

xk :Xk

Yx1...xk

is ak-strict family if, for eachi with 1 ≤ i ≤ k, it holds in
C that

∀x1 :X1, . . . , xi−1 :Xi−1, xi+1 :Xi+1, . . . , xk :Xk.

xi 7→ yx1...xk is a strict family in
∏
xi :Xi

Yx1...xk .

Lemma 4.6 For internal families

{(Yi1...ik , βi1...ik)}i1 : I,...,ik : I,

{fi1...ik :Yi1...ik → Ysi1...sik}i1 : I,...,ik : I,

of pointed objects and functions respectively, there exists a
uniquek-strict family

y(−)...(−) :
∏
i1 : I

· · ·
∏
ik : I

Yi1...ik

satisfyingysi1...sik = fi1...ik(yi1...ik).

This lemma will be crucial in Section 6.

5. The limit-colimit coincidence

One of the main tools in the proof of Theorem 1 will
be a variant of the limit-colimit coincidence of domain the-
ory. The standard domain-theoretic version of this coin-
cidence usesN-indexed diagrams ofembedding-projection
pairs, see e.g. [32]. We wish to establish an analogous co-
incidence for internal categories inC. For this, we have
to make two important modifications. First, as motivated
in Section 3, the diagram must be indexed byI rather than
by N. Second, we have to manage without any notion of
embedding-projection pair. Instead, the use ofI as an in-
dexing object miraculously enables us to prove the limit-
colimit coincidence for arbitrary diagrams satisfying some
simple equational properties.

Let K be an internal category inC. For this entire sec-
tion, we reason internally inC aboutK. As we do not re-
quire K to be locally small, we refer to{K(A,B)}A,B∈|K|
as the family ofhom-classes.

An I-bichain in K is given by families,

A(−) : |K|I

x(−)(−) :
∏
i : I

∏
j : I

K(Ai, Aj),

satisfying the equations

xii = idAi (6)

xjk ◦ xij = xmin(i,j,k) k ◦ ximin(i,j,k). (7)

Here min(i, j, k) meansmin(i,min(j, k)), using the op-
eration from Section 4. Equations (6) and (7) have useful
consequences relatingx(−)(−) to the partial orderv on I.

Lemma 5.1 For anyi, j, k : I, if i v j thenxjk ◦ xij = xik
andxji ◦ xkj = xki, so, in particular,xji ◦ xij = idAi .

Thus if i v j thenxij andxji form a section-retraction
pair. The limit-colimit coincidence will relate the colimit
of the diagram of sections to the limit of the diagram of
retractions.

Given anI-bichain,(A(−), x(−)(−)), we write (xij)ivj
for the evident partially-ordered diagram of shape(I,v),
consisting entirely of sections. The notion ofcoconeand



colimit for such diagrams are defined as usual. Dually, we
write (xij)iwj for the evident partially-ordered diagram of
shape(I,w), consisting of retractions. The notion ofcone
andlimit are defined as usual.

Lemma 5.2 If X is complete then there exists a unique map⊔
: XI - X satisfying

C |= ∀x(−) :XI. ∀i : I. xi =
⊔
j

xmin(i,j),

where
⊔
j xmin(i,j) means

⊔
(j 7→ xmin(i,j)).

Proposition 2 (Limit-colimit coincidence)
If K is an internal category in which all hom-classes are
complete then, for anyI-bichain (A(−), x(−)(−)) in K, the
following statements are equivalent.

1. B is a limiting object for(xij)iwj .

2. There exist a conel(−) :
∏
i : I K(B,Ai) for (xij)iwj

and coconec(−) :
∏
i : I K(Ai, B) for (xij)ivj such

that:

for all i, j : I, it holds thatlj ◦ ci = xij , (8)⊔
i

(ci ◦ li) = idB . (9)

3. B is a colimiting object for(xij)ivj .

Moreover, if 2 holds thenl(−) is a limiting cone andc(−) is
a colimiting cone. Furthermore, (8) and (9) together imply
that each ofl(−) andc(−) determines the other.

In view of the proposition, we shall henceforth refer to
(B, l(−), c(−)) satisfying (8) and (9) as abilimit of the I-
bichain(A(−), x(−)(−)).

6. Conditions for algebraic compactness

In this section we define a notion ofsuitable internal
category—one satisfying conditions that are sufficient for
algebraic compactness to hold. These conditions are conve-
nient for establishing the algebraic compactness of specific
internal categories, e.g.pP.

Definition 6.1 (Suitable category)A suitablecategory is
given by an internal categoryK together with a pointed
structure (|K|, α) and a family of pointed structures
{(K(A,B), βA,B)}A,B : |K| satisfying: for allA,B : |K|, the
hom-classK(A,B) is complete; for allA,B,C : |K|, the
composition functionK(B,C) × K(A,B) → K(A,C) is
bistrict; the familyid(−) :

∏
A : |K| K(A,A) is strict; and ev-

ery I-bichain inK has a specified bilimit.

In this definition, by having a specified bilimit
we mean that bilimits are given by a morphism
BichainsK

- BiconesK in C, where BichainsK

is the class of standardI-bichains inK andBiconesK is the
class of cone/cocone tuples(B, l(−), c(−)) for I-bichains.

The next result is the reason for introducing the notion
of suitable category.

Proposition 3 Every suitable internal category is alge-
braically compact.

To prove Proposition 3, letK be a suitable category. The
notion of suitable category is stable under slicing ofC, thus
it suffices to show that Definition 3.1 applies in the special
case of a singleton family. Accordingly, letF be an internal
endofunctor onK.

As (|K|, α) is pointed, there is, by Lemma 4.2, a unique
strict mapF (−)0 : I → |K| such thatF (F i0) = F si0.
Here the notation is to convey the idea that one should think
of F i0 as thei-th iterate ofF applied to a zero object0 in
K. However, this intuition is subject to two caveats: firstly
i comes fromI rather than fromN, so the notion of iterate
is non-standard; secondly, we do not yet know thatK has a
zero object, although the existence of one will, in the end,
follow from Proposition 3, once proven.

As each(K(A,B), βA,B) is pointed, there exists, by
Lemma 4.6, a unique bistrict family

x(−)(−) :
∏
i : I

∏
j : I

K(F i0, F j0)

satisfyingx si sj = F (xij).

Lemma 6.2 (F (−)0, x(−)(−)) is anI-bichain.

The proof is a straightforward application of Lemma 4.1
and Lemma 4.6 in the casesk = 1, 3.

Now we are in a position to construct the bifree alge-
bra for F . Accordingly, let (B, l(−), c(−)) be the spec-
ified bilimit of (F (−)0, x(−)(−)). Define a morphism

FB
b- B by b =

⊔
i (csi ◦ Fli).

Lemma 6.3 (B, b) is a bifreeF -algebra.

The proof is by establishing thatFB
b- B is aspecial-

F -invariant objectin the sense of [6, 29], and that this prop-
erty is characteristic of bifreeF -algebras, again see [6, 29].
This concludes the proof of Proposition 3.

We now complete the proof of Theorem 1 by establishing
the result below.

Proposition 4 If Axiom1 holds then the internal category
pP is suitable.



The proof of this proposition is very long. In this conference
version of the paper, we just state the non-obvious lemmas,
all of whichassume Axiom1.

Lemma 6.4 The morphism
⋃

: L(PSU) - PSU re-
stricts to a morphism

⋃
: L|pP| - |pP|, giving a pointed

structure(|pP|,
⋃

).

The proof uses [30, Lemma 6], which gives a useful inter-
polation condition for establishing well-completeness.

Lemma 6.5 The internal functorL : pP → P creates (up
to isomorphism) limits for diagrams of shape(I,w).

Corollary 6.6 pP has bilimits ofI-bichains.

7. An internal interpretation of FPC

In this section, we apply Theorem 1 to obtain an in-
terpretation of Plotkin’s call-by-value recursively typedλ-
calculus,FPC, in the internal categorypP.

We give a brief summary of the languageFPC, intro-
duced in [24]. For full details see [2]. We useX,Y, . . . to
range over type variables, andσ, τ, . . . to range over types,
which are given by:

σ ::= X | σ + τ | σ × τ | σ → τ | µX.σ.

Here the prefixµX bindsX. We useΘ, . . . to range over
finite sequences of distinct type variables. We writeΘ ` σ
to mean that all free type variables inσ appear inΘ.

We use x, y, . . . to range over term variables, and
s, t, . . . to range over terms, which are given by:

t ::= x | inl(t) | inr(t) | case(s) of x.t or y.u | (s, t) |
fst(t) | snd(t) | λx. t | s(t) | intro(t) | elim(t),

where, to ease clutter, we omit certain necessary type
information from inl(t), inr(t), intro(t) and λx. t,
see [2]. We useΓ, . . . to range over sequences of the form
x1 : σ1, . . . , xk : σk with all xi distinct and allσi closed.
For closed typesσ, we writeΓ ` t : σ to mean thatt is a
well-formed term of typeσ relative toΓ, where the rules for
deriving such typing assertions are as in [2].

To define a call-by-value operational semantics forFPC,
we first specify thevalues, closed termsv, . . . of the form:

v ::= inl(v) | inr(v) | (v1, v2) | λx. t | intro(v).

The call-by-value evaluation relationt v between closed
termst and valuesv is defined as in [2]. We say that a closed
term t converges, notationt⇓, if there exists (a necessarily
unique)v such thatt v.

To interpretFPC in pP, we needpP to be closed under
+, so henceforth in this section weassume Axiom2.

First, we interpret types. To apply algebraic compact-
ness it is necesary to interpret open types as internal func-
tors. Moreover, because of the bivariance of⇀, they must
be interpreted as internal functors on the internal category
pPop×pP, for which we writep̂P. The functors will all be
symmetric in the sense of [2,§6.3]. Indeed, an open type
σ is interpreted, relative to anyΘ = X1, . . . , Xk such that
Θ ` σ, as a symmetric internal functor,

([Θ ` σ]) : p̂P
k
→ p̂P .

The interpretation is defined by induction on the structure
of σ. Type variables, sum, product and function types are
easily handled using symmetric extensions of projections,
+,× and⇀ to p̂P. The definition for recursive types is

([Θ ` µX.σ′]) = ([Θ, X ` σ′])† ,

using Lemma 3.2. (It follows from the construction of
bifree algebras in suitable categories that([Θ, X ` σ′])† is
symmetric whenever([Θ ` µX.σ′]) is.)

For closed types, the functor([` σ]) : 1 → p̂P, where1
is the terminal internal category, corresponds, by symmetry,
to an object in̂pP of the form(A,A). We write([σ]) for the
corresponding objectA of pP.

For a closed typeµX.σ, we have that([` µX.σ]) car-
ries the canonical bifree algebra structure for the symmetric
functor ([X ` σ]) : p̂P → p̂P. The bifree algebra unpacks
to give isomorphisms inpP

ιµX.σ : ([σ[µX.σ/X]]) - ([µX.σ]) (10)

εµX.σ : ([µX.σ]) - ([σ[µX.σ/X]]) , (11)

whereιµX.σ = εµX.σ
−1.

To interpret the terms ofFPC in pP, a contextΓ =
x1 : σ1, . . . , xk : σk is interpreted as the object([Γ]) =
([σ1]) × · · · × ([σk]) of pP. A term Γ ` t : σ is interpreted
as a morphism([t])Γ from ([Γ]) to ([σ]) in pP, i.e. as a point
([t])Γ : 1 - pP(([Γ]), ([σ])) in C. The definition of([t])Γ,
by induction on the structure oft, is standard, see e.g. [2].
WhenΓ is empty (i.e.t is closed), we simply write([t]).

8. Internal computational adequacy

Assuming Axiom2, we have interpretedFPC in the in-
ternal categorypP. To proceed further, we need to formal-
ize the the syntax ofFPC and its operational semantics in
C. This is an exercise in G̈odel numbering. Types and terms
are thus encoded as natural numbers. We writeTσ for the
object of G̈odel numbers of closed terms of typeσ, andVσ
for the object of G̈odel numbers of closed values of type
σ. Both Vσ andTσ are primitive recursive subobjects of
N. The operational semantics is encoded so thatt  v



andt⇓ are bothΣ0
1 relations on G̈odel numbers fort andv.

For notational convenience, we choose not to make a syn-
tactic distinction between the formalized relations and the
actual relations. The meaning should always be clear from
the context. For example, the statementt⇓ in Proposition 5
below obviously uses the formalized operational semantics.

The main result of this section establishes the equiv-
alence of operational and denotational notions of con-
vergence, as interpreted withinC. For the denota-
tional notion, given ` t : σ, we write ([t])↓ if the
point ([t]) : 1 - pP(1, ([σ])) gives a total function in
pP(1, ([σ])) = 1 ⇀ ([σ]).

Proposition 5 (Internal computational adequacy) If Ax-
iom N holds then, for all terms` t : σ, it holds that
C |= t⇓ ↔ ([t])↓ .

The implicationt ⇓ → ([t]) ↓ is easily proved by induc-
tion on the derivation of the evaluation relation fort, and
does not require AxiomN. For the proof of the converse
implication, we adapt the approach of [24, 2] to our setting.

The strategy is to define binary relations relating closed
terms to their internal denotations. A closed termt : σ has
a denotation([t]) : pP(1, ([σ])). However, valuesv : σ enjoy
the extra property that([v])↓, i.e. that([v]) : P(1, ([σ])), using
the hom-set inclusion given by

P(A,B) = {f : pP(A,B) | f is total}- - pP(A,B) ,

which holds for anyA,B : |P| (equivalentlyA,B : |pP|).
For each closed typeσ, we define binary relations inC,

�σ - - P(1, ([σ]))× Vσ
-σ - - pP(1, ([σ]))× Tσ ,

related to each other by

e -σ t iff e↓ implies∃v :Vσ. t v ande �σ v , (12)

making use of the operational semantics as formalized inC.
The relations�σ and-σ are defined so that they satisfy

the following internal equivalences inC.

d �σ+τ inl(v) iff d = inl(c) wherec �σ v
d �σ+τ inr(v) iff d = inr(c) wherec �τ v

(c, d) �σ×τ (u, v) iff c �σ u andd �τ v
f �σ→τ λx. t iff ∀ d : P(1, ([σ])), ∀ v : Tσ.

d �σ v → f(d) -τ t[v/x]
d �µX.σ intro(v) iff εµX.σ(d) �σ[µX.σ/X] v

The clauses for the non-recursive types apply the internal
partial bicartesian-closed structure (+,×,⇀) of pP, using
a self-explanatory notation. The clause forµX.σ involves
the isomorphism (11), which, because it is an isomorphism
in pP, is also an isomorphism inP.

Because the above relations are recursively specified,
constructing them takes considerable work. They can be
obtained by adapting the approach of [24, 2]. Very briefly,
for each closedσ, we define an internal categoryRσ. Inter-
nally in C, objects are pairsR = (|R|,�R) satisfying,

1. |R| : PSU is a predomain,

2. �R is a binary relation betweenP(1, |R|) andVσ,

3. for all v :Vσ, {d : P(1, |R|) | d �R v} is a preomain.

Morphisms are partial functions preserving the relations.
One proves that each categoryRσ is suitable, hence alge-
braically compact. Following [24, 2], the relations�σ are
then constructed by defining a non-standard interpretation
of types in theRσ categories, using relational “liftings” of
the functors+, × and⇀, onpP, to theRσ categories. Ax-
iom N, in the guise of Lemma 2.4.7, is used crucially in
obtaining the relational lifting of⇀.

Once the relations have been defined, the lemma below
can be established by a straightforward (external) induction
on the structure oft.

Lemma 8.1 If x1 : τ1, . . . , xk : τk ` t : σ then

C |= ∀ d1 : P(1, ([τ1])), . . . , dk : P(1, ([τk])),
∀ v1 :Vτ1 , . . . , vk :Vτk .
d1 �τ1 v1 ∧ . . . ∧ dk �τk vk →

([t])Γ(d1, . . . , dk) -σ t[v1, . . . , vk/x1, . . . , xk].

To show that Proposition 5 follows from Lemma 8.1, take
any closed termt : σ. Then, by the lemma,C |= ([t]) -σ t.
Hence, by (12),C |= ([t])↓→ (∃v :Vσ. t v ∧ ([t]) �σ v).
So indeedC |= ([t])↓→ t⇓.

9 An external interpretation of FPC

So far, we have given aninternal interpretation ofFPC,
in the internal categorypP. We now extract anexternal
“real world” interpretation in the categorypP. A closed
type σ is interpreted as an object[[σ]] of pP, by defining
[[σ]] as the pullback below.

[[σ]] - 3U

1
?

([σ])
- |pP|- - PSU ,

γU

?

whereγU is as in (1) from Section 2. The object[[σ]] is in-
deed a predomain by the definition of|pP| as a subobject of
PSU . Similarly, a contextΓ is interpreted as an object[[Γ]],



by replacingσ with Γ in the diagram above. We interpret a
termΓ ` t : σ as a morphism[[t]]Γ : [[Γ]] ⇀ [[σ]] in pP, by
transposing([t])Γ : pP(([Γ]), ([σ])) in the evident way. When
Γ is empty, we write simply[[t]] : 1 ⇀ [[σ]]. We write[[t]]↓
if the partial map[[t]] is total.

Our last main result is a complete characterisation, in
terms of a property of the internal logic ofC, of when the
external interpretation ofFPC is computationally adequate.
Using the natural numbers objectN, one can define a stan-
dard encoding of any primitive recursive predicate as a (de-
cidable) subobjectP- - N. A Σ0

1-sentence is a statement
of the form∃n : N. P (n) whereP is a primitive recursive
predicate. We say thatC is 1-consistentif, for every Σ0

1-
sentenceϕ, C |= ϕ implies thatφ is true in reality.

Theorem 2 (External computational adequacy)If
AxiomN holds then the following are equivalent.

1. For all ` t : σ, it holds thatt⇓ if and only if [[t]]↓, i.e.
the interpretation is computationally adequate.

2. C (equivalentlyS) is 1-consistent.

An in [30, Corollary 1], a consequence of the theorem is
that there exist categories with class structure,C, satisfying
Axiom N, for which the interpretation ofFPC in pP is
not computationally adequate. However, such categoriesC
are pathologies. Instead, the main force of Theorem 2 is
in the converse implication, which reduces computational
adequacy to a very weak and ubiquitous condition. This
will be exploited in Section 10.

We only briefly outline the proof of Theorem 2. To prove
that computational adequacy implies 1-consistency, we use
the standard encoding of the type of natural numbers as the
FPC typeµY. (µX.X → µX.X) + Y . The usual primi-
tives on natural numbers are easily defined. AlsoFPC sup-
ports the recursive definition of functions, see e.g. [2]. Thus
one can interpret call-by-valuePCF in FPC. The proof that
computational adequacy implies 1-consistency, can now be
borrowed from [30,§6]. The simple idea is to encode any
Σ0

1-sentence as a search program that terminates if and only
if the sentence is true.

The converse implication, that 1-consistency implies
computational adequacy, follows swiftly from Proposi-
tion 5. For the interesting implication, suppose that[[t]] ↓,
or equivalentlyC |= ([t]) ↓. By Proposition 5,C |= t ⇓.
However,t ⇓ is aΣ0

1 sentence, so ifC is 1-consistent then
indeedt⇓.

10. Applications

10.1. Realizability models

A realizability model is specified by a partial combina-
tory algebra(A, ·), which determines a categoryMod(A)

of modest setsoverA, see e.g. [17,§2–3]. In many such
categories, one can find a dominanceΣ, often conveniently
determined by adivergenceD ⊂ A (see [17, Def. 4.1]),
such that Axiom2 holds. Numerous examples are presented
in [16, 17]. Furthermore, by [17, Theorem 7.5], it follows
that AxiomN holds.

As is well-known, there is a full embedding

Mod(A) ⊂ - RT(A)

of modest sets into therealizability toposoverA [10, 12].
Assuming a strongly inaccessible cardinal, one can fol-
low [15, §IV.4] and endowRT(A) with class structure.
By constructing the initial ZF-algebraV in RT(A), and
then applying [31, Theorem 7], one extracts a full sub-
categoryRT<V (A) ⊂ - RT(A), with class structure,
in which V is a universal object. This category contains
the dominanceΣ, and inherits AxiomN from Mod(A).
Thus the results of this paper can be applied to obtain
a category of predomainsP ⊂ - RT<V (A) in which
FPC can be interpreted. Moreover, it can be shown that
the interpretation ofFPC lives within the subcategory
Mod(A) ⊂ - RT<V (A).

If A is nontrivial then the categoryRT<V (A) is 1-
consistent, because its numerals are standard. Thus, by The-
orem 2, the interpretation ofFPC in Mod(A) is computa-
tionally adequate. This gives the first proof of computa-
tional adequacy for the interpretation ofFPC in the realiz-
ability models of [9, 20, 21, 22, 16, 17].

10.2. Models of axiomatic domain theory

In [2], an axiomatization of a general order-enriched no-
tion of model forFPC is given, and computational ade-
quacy is proved for any nontrivial model satisfying an addi-
tional absolutenesscondition. In [4, 3], a much more gen-
eral class of enriched models is introduced, although the
interpretation ofFPC is not explicitly considered. Follow-
ing the approach of [3], we can accommodate many of the
models of [2, 4, 3] within our setting.

LetC be anylifting monadic enrichment basein the sense
of [3, Def. 1.12]. In particular,C has dominanceΣ and a lift-
ing functorL. We assume further thatC has stable countable
coproducts. The Yoneda functor gives a full embedding

y : C ⊂ - Sh(C,Can) ,

whereSh(C,Can) is the category of sheaves for the canoni-
cal Grothendieck topologyCan onC. It holds thaty(Σ) is a
dominance inSh(C,Can), and, becauseC has stable count-
able coproducts, AxiomN is satisfied (n.b. coproducts are
automatically disjoint by [2, Prop. 5.3.12]).

Assuming a strongly inaccessible cardinal, one can
follow [15, §IV.3] and endow Sh(C,Can) with class



structure. As before, by constructing the initial ZF-
algebraV in Sh(C,Can), one extracts a full subcategory
Sh<V (C,Can) ⊂ - Sh(C,Can), with class structure, in
which V is a universal object. This category contains the
dominancey(Σ), and inherits AxiomN from Sh(C,Can).
Thus the results of this paper can be applied to obtain a
category of predomainsP ⊂ - Sh<V (C,Can) in which
FPC can be interpreted. Furthemore, under the condition
that C is a KADT model[3, Def. 1.12], it can be shown
that the interpretation ofFPC lives within the subcategory
C ⊂ - Sh<V (C,Can).

In any nontrivial Grothendieck topos, internal first-
order arithmetic is simply classical true arithmetic. Thus
Sh(C,Can) is 1-consistent and hence so isSh<V (C,Can).
Therefore the interpretation ofFPC in any KADT model
with stable countable coproducts is computationally ade-
quate. As a special case, we obtain that the interpretation of
FPC in any nontrivialdomain-theoretic model(in the sense
of [2, §8.5.1]) with stable countable coproducts is computa-
tionally adequate. Thus we replace theabsolutenesscondi-
tion for computational adequacy in [2] with the apparently
incomparable requirement of stable countable coproducts.
More strikingly, we also have the first computational ade-
quacy result that applies to the more general class of en-
riched models considered in [4, 3].
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