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Computational Adequacy for Recursive Types
in Models of Intuitionistic Set Theory

Alex Simpsori
LFCS, Division of Informatics,
University of Edinburgh, Scotland

Abstract tial (relative tolL) exponentials, to interpret function types;
and finally, to interpret recursive types, the derived cate-

We present a general axiomatic construction of models gory, pP, of partial maps, induced bl on P, must be
of FPC, a recursively typed lambda-calculus with call-by- algebraically compacin the sense of Freyd [7, 8], at least
value operational semantics. Our method of construction is with repect to functors defined by type expressions.
to obtain such models as full subcategories of categorical The above identifies the structure required by a model
models of intuitionistic set theory. This allows us to obtain of FPC, but does not indicate where to find examples of
a notion of model that encompasses both domain-theoreticmodels. Nevertheless, several sources of such models are
and realizability models. We show that the existence of so-known. Domain theory provides the classical example of
lutions to recursive domain equations, needed for the inter- the category ofucpos [24]. More generally, axiomatic
pretation of recursive types, depends on the strength of thedomain theory has successfully abstracted the idiosyncra-
set theory. The internal set theory of an elementary toposcies of domains to provide a host of “neo-classical” mod-
is not strong enough to guarantee their existence. However,els [2, 4]. A quite different type of model is given by game-
solutions to recursive domain equations do exist if models oftheoretic semantics [18]. Finally, while the structure has
intuitionistic Zermelo-Fraenkel set theory are used instead, not previously been exhibited in the form above, it has long
We apply this result to interpret FPC, and we provide neces- been known that there should be a variety of models based
sary and sufficient conditions on a model for the interpreta- on realizability semantics [9, 20, 21, 22, 17]. What has been
tion to be computationally adequate, i.e. for the operational missing hitherto is a single unifying treatment accounting
and denotational notions of termination to agree. for the existence of all these types of model. In this paper,
we provide such a treatment.

In [28], Dana Scott observed that categories of domains
can live as full subcategories of models of intuitionistic set
theory. We exploit this idea to construct modelsk#C
. ) ] in a uniform way. Roughly speaking, we start off with a

In this paper, we present a general axiomatic accountcategoryS of intuitionistic sets that satisfies one simple ax-
of the construction of denotational models BPC, a iom, Axiom N of Section 2, which, although classically
recursively-typed\-calculus with sum and product types. A jnconsistent, is intuitionistically consistent. From any such
vital property of a model is that it should lm®mputation- categoryS, we extract a full subcategory @redomains
ally adequatei.e. that the denotational account of termina- p «__, g with all the structure identified above, and hence
tion should coincide with the operational one. We provide \ye have a model ofPC.
necessary and sufficient conditions on a model for compu-  This approach directly follows [30], where it is shown

tational adequacy to hold. . _ that a model of the simply-typed languaB€F [23] can be
Becausd'PC is a typed functional language, its models sjmijlarly extracted from any elementary top®gwith nat-
are necessarily categories. In fact, one can identify exactly,ral numbers object) satisfying AxiolN. The additional

the structure required by a categoB, to model the lan- o3| of the present paper is to show tiaglso models re-

the corresponding type constructors; a lifting moriad{o In fact, we immediately encounter a problem. As our
account for the possible nontermination of programs; par-first result, Proposition 1, we show that there exists an el-

*Research supported by EPSRC Research Grant no. K06109 and affmentary tOPOS SatiSfying AxioN for which the derived
EPSRC Advanced Research Fellowship. categorypP is notalgebraically compact. Thus some mod-

1. Introduction



v1lfass
Typewritten Text

v1lfass
Typewritten Text
Simpson, A. (2002). Computational Adequacy for Recursive Types in Models of Intuitionistic Set Theory. In Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on . (pp. 287-298). IEEE Computer Society. doi: 10.1109/LICS.2002.1029837 


ification to the above method of constructilyis neces-  are 1-consistent, we obtain a uniform proof of compu-
sary in order to interpret recursive types. This is not, at first tational adequacy for the models discussed above. For
sight, surprising. AxionN is designed merely to guarantee domain-theoretic models, computational adequacy has pre-
that P models the recursive definition of functions. Thus viously only been proved in an order-enriched setting [2],
there is naa priori reason to expect recursive types to have whereas our result applies also to the more general class
interpretations ipP. of enriched models axiomatized in [4, 3]. For realizability

However, we identify the difficulty as stemming from a models, the only existing proof of computational adequacy
perhaps unexpected source. The problem is that elemenfor a language (implicitly) containing recursive types, ap-
tary toposes, although models of intuitionistic higher-order plies to just one specific model [1]. We thus obtain the first
logic, are not, in general, models of a sufficiently powerful proof of computational adequacy, for the interpretation of a
set theory. Thus, instead of working with an arbitrary ele- language with recursive types, in all the realizability models
mentary topos, we shall require tHaithave enough struc-  0of [9, 20, 21, 22, 16, 17].

ture to model fullintuitionistic Zermelo-FraenkdllZF) set Acknowledgements This paper was conceived during a
theory, see e.g. [27]. Technically, this is implemented by st to Genova in April 1995, for which | express my warm
asking forS to be given as the full subcategorysshallob-  hanks to Pino Rosolini. Over the lengthy period of its de-
jects in a category” with class(ic) structurenduniversal  \gjopment, | have benefited from discussions with Marcelo
object in the sense of [31] (developed from [15]). As our Fjgre, Edmund Robinson, Pino Rosolini, Thomas Streicher
first main result, Theorem 1, we prove that, with such a cat- 544 paul Taylor, the last of whom is also acknowledged for

egoryS, the derived categorgP is algebraically compact providing the macros used to format the diagrams.
whenever AxiomN holds. Thus, with enough set-theoretic

power to back it up, AxionN is, after all, sufficient for the .
solution of recursive domain equations. 2. Classes, sets and predomains

The proof of Theorem 1 occupies Sections 4—6. An in-
formal outline of the proof structure, including a discussion  As discussed in the introduction, our work will involve
of the technical innovations required, is given in Section 3. both elementary toposes and also categorical models of In-
By Theorem 1, it is possible to interprBPC in P. We tuitionistic Zermelo-Fraenkel (IZF) set theory [27]. Both
give the interpretation explicitly in Sections 7 and 9. Re- types of model arise as instances of regular categories with
call that the interpretation is said to bemputationally ad-  class(ic) structureas defined in [31]. We briefly recount
equateif the denotational account of program termination the main features of this notion, using, as far as posible,
coincides with actual termination in the operational seman- Set-theoretic intuition. For the category-theoretic details see
tics. As Theorem 2, we prove that the interpretatioR BC op. cit.
is computationally adequate if and only if the internal logic ~ In a regular category,C, with class structure, the ob-
of S is 1-consistent (i.e. only genuinely tra&-sentences  jects are to be thought of as classes and the morphisms as
are true inS). Thus the programming-language-sensitive functions between classes. There is a distinguished full sub-
property of computational adequacy is reduced to a purelycategoryS, of smallobjects, which is to be thought of as the
logical property ofS. This result is based on the sim- subcategory of sets. More generally, there is a distinguished

ilar characterisation of computational adequacy RérF collection of morphisms, themall mapswhere intuitively
in [30]. However, the extension of the result EPC is f: X —— Y is small if, for everyy in the classY, its
non-trivial, see Section 8. fibore f~1(y), which is a subclass of the clas is actually

Finally, in Section 10, we present applications of our @ Set. Smallness interacts with the regular structur€ ais

work across the range models discussed earlier. The classifollows. If X —— Y is mono andy” is small thenX is

cal domain-theoretic models, such as the categogycpbs, small, i.e. every subclass of a set is a set. This expresses the
and their generalizations [2, 4], all embed in Grothendieck Separation axiom of set theory. Dually,Xf — Y is epi
toposes [3, 5], and hence, by [15, Ch. 1V], in categories (n.b. class structure implies that every epi is regular) &nd
with class structure. Moreover, under mild conditions, Ax- 1S small thenY” is small, i.e. the image of a function from
iom N is satisfied. Also, by their very definition, realiz- @ setto a class is itself a set. This expresses the Replace-
ability models [9, 20, 21, 22, 16, 17] embed in realizability ment axiom of set theory. The other important structure on
toposes [10, 12], and hence in categories with class struc-C is that, for every clasx’, there is another clagds X the

ture [15, Ch. 1V]. Again, AxiomN is satisfied. Thus, The- small powerobjecof X, which is intuitively the class of all
orem 1 gives an account of the construction of solutions to Subsets ofX'. The objectPsX comes with an associated
recursive domain equations that applies simultaneously tomembershipelation>x ~—— PsX x X, for which the

domam'theore_tlf: and to realllzablhty mOdells' N 1A regular categoryis a category with finite limits in which every mor-
As all nontrivial Grothendieck and realizability toposes phism has a stable factorization as a regular epi followed by a mono.




composite to those subobjects determined as the domains of termina-
- tion of programs taking input ifX. Because there exist

Yx = 3x =+ PsX xX — PsX (1) terminating programs, and because programs can be run un-
der sequential composition, it makes sense to requiréthat
contains the true propositiof,, and that:-subobjects are
closed under composition. This implies, in particular, that
Y is closed under finite conjunction . Taken together,
these requirements state thats adominancd26].

The dominancé& determines difting functor onC. For

an objectX, we saye: Ps X is subterminaif

is a small map. It is also required thatXf is small then so

is Ps X. This expresses the Powerset axiom of set theory. It
follows that the full subcategor$ is an elementary topos.
Further,C has finite coproducts arfilis closed under finite
limits and coproducts iC. We shall make liberal use of the
internal logic ofC, which is intuitionistic first-order logic,
with the predicates oX being arbitrary subobjects of.

We write C = ¢ to mean that statement holds in the
internal logic ofC. The object) = Pg1 (wherel is the
terminal object inC), which is the subobject classifier) e say that is $-subterminalf it is subterminal and also
is also a subobject classifier@. ThusS2 can be thought of

as the set of all internal propositions@ (Fz:X.z€e) € X,

As we shall make heavy use of indexed familiesGn
we summarise the legitimate constructions on them in thei.e. the proposition stating that is inhabited is ax-
context of class structure. As usual, we consifiardexed proposition. Using the internal logic @, define
families as being given by morphismd —— I, although
we shall often use the convenient notati¢X; };.; for LX = {e:PsX | eis X-subterming}.
them. Given such an internal famil{Y{ —— I, the ob-
ject X itself provides a dependent sum, . ; X;. However, ~ ThelL operation extends to a functér: C — C, where,
a dependent produ§, . ; X; is only guaranteed to existin onf: X — Y, the morphism actiof.f: LX — LY
the case thaf is a small object. If, in addition td being Is defined by
small, X —— I is a small map thef[,.; X, is itself a
small object. In the case of a constant familigk},.y (Lf)(e) = {f(z) | = €e}.

(given by projectionsX’ x Y —— Y’), dependent products
specialise to function spaces. Thus the above remarks im-"- """ i
ply thatYX exists wheneveK is a small object, and that ~UNitis singleton{-} : X’ — X, and the multiplication
Y ¥ is itself small if bothX andY are small. is union(J : LLX — LX. .

Henceforth in this paper, €t be a regular category with As in [14], the endofunctoil. has a final coalgebra,
class structure, and I&tbe its full subcategory of small ob- 7: F — LF (necessarily an isomorphism), defined by:
jects. Further, we assume thdthas a small natural num- N
bers object (nnoN. This implements the Infinity axiom of F = {¥7 [Vn:N.c(n+1) —c(n)}
set theory. However, in spite of the motivating references () = {(n—c(n+1))]c(0)}
to set theory, the assumed structure@rand S does not
yet provide the full power of IZF set theory. For exam- BecauseF is small, there exists a smallest subalgebra,
ple, given any elementary topos with nish,one can obtain @ : LT — I, of 71, defined internally irC as the inter-
class structure by putting = S and stipulating that every ~ Seéction of all subalgebras of 1. Itis a consequence of [31,
map be small. Theorem 5] that : LI — I is an initial algebra for the

The remaining goal of this section is to isolate a full €ndofunctorl on C. By construction, the unique algebra
subcategory o8 to act as a category of predomains. This nomomorphism; : T — F, fromo to 7" is mono.
will require imposing further axioms o@. Many axiom_ One can viewvl as the ObjeCt obtained from the initial ob-
atizations have been proposed for this purpose, see e.g€ctO by freely iterating thel. functor. In the sequel, will
[26, 11, 20, 33, 17, 30, 25, 19]. Here, we follow [30]. play the ble of a generic &-chain” in C, andl —— F

As first proposed in [26], the definition of predomain is will exhibits F, which has the additional “infinite” pOint
predicated on a notion of partiality. To implement this, we o© = (n — T), as its “chain-completion”. This intu-
require a distinguished subobjeEt— €. Intuitively ition plays a fundamentabte in developing a basic notion
% corresponds to the subobject of those propositior@ in  Of “chain completeness” used to define a full subcategory
that express the termination of programs. ¥ss a sub-  Of predomains withirs, see [17].
object of Q, it classifies a collection of subobjects @,
namely those whose characteristic maptfactors through  Definition 2.1 (Complete object) An object X is com-
¥ —— Q. Intuitively, such-subobject®f X correspond  pleteif X* : X¥ — X' is anisomorphism.

Ve, 2':X. x€ena’ e — x=2a.

Further, the endofuctdL carries a monad structure. The



Examples in [19] show that complete objects do not them-

In this paper, apredomainis simply a small well-

selves form a suitable category of predomains as they arecomplete object. We writ® for the full subcategory of

not necessarily closed under lifting. Following [17], we predomains.

avoid this problem usng the propertywéll-completeness

Definition 2.2 (Well-complete object) An object X is
well-completef LX is complete.

Thus we have full subcategory inclusions
P~——+ S~ C. ForP to be well behaved, we need
axioms to assume that basic objects are predomains. As all
the obects we consider for this purpose are already small,
the axioms are formulated in terms of well-completeness
alone. We use a single format for all axioms.

The results below, which are standard, see e.qg. [30], state

the basic properties of well-completeness.
write 2 for the objectl + 1, which we view as a subob-

jectofQvia[Ll, T]: 2 —— Q, whereL is falsum

Lemma 2.3

1.
2.

The converse implications do not hold in general, see [19].

If 2 is well-complete then so akeandO.

If N is well-complete then so &

Lemma 2.4 If 1 is well-complete then:

1.
2.
3.

X well-complete implies( complete.
X well-complete implie&. X well-complete.

For any internal family{ X };. ; with I small,

C [ (Vi:I. X, is well-completg —
(T x:) is well-complete
i1
Two special cases:
If X,Y are well-complete thensoi§ x Y.

If X is small andY” is well-complete thel X is well-
complete.

. Given two morphismg,g: X —— Y with XY

well-complete then, in the equaliser & —— X of
f andg, the objectF is well-complete.

. 0is well-complete if and only if € X.

. 2 is well-complete if and only i, Y well-complete

impliesX + Y well-complete.

. N is well-complete if and only i2 is well-complete

and also

CEVP: 2N, 3n:N.P(n)) € . (2

In them, we

Axiom X The objectX is well-complete.

We shall instantiate this format in three instances only: Ax-
iom 1, which, by Lemma 2.4.3, implies th# is cartesian
closed; Axiom2 which, by Lemma 2.4.6, implies thaB,
has finite coproducts (inherited fro®); and Axiom N,
which, as is shown in [30], implies th& has all the struc-
ture required by a model &CF. The implications between
these three axioms are given by Lemma 2.3.

Our goal, in this paper, is to address the interpretation
of recursive types if. This requires that recursive domain
equations have solutions up to isomorphism in an associated
categorypP of partial maps, which we now define.

For objectsX, Y of C, aX-partial mapis a partial map
from X to Y whose domainX’ —— X is aX-subobject
of X. Becausé&: is a dominancey:-partial maps are closed
under composition. As the only partial maps we are inter-
ested in ar&-partial, we henceforth drop the. We write
pC for the category of partial maps between object€of
and we writepP for the full subcateory opC on predo-
mains. We writeX — Y for the object of partial maps from
X toY, which is easily defined in the internal logic. The
object X — Y is isomorphic to the exponentidlLY ).
Thus, by Lemma 2.4, if Axioml. holds then, forX small
andY a predomainX — Y is a predomain.

The first new result of this paper shows that, in the con-
text of the assumed structure @ Axiom N is not suf-
ficient to allow recursive domain equations to be solved in
pP. The statement makes use of the fact, already discussed,
that any elementary topds arises as the full subcategory
of small objects in a category with class structure, by taking
C=S.

Proposition 1 There is an elementary topos satisfying Ax-
iom N in which there exists a predomaifi such that no
solution X to the isomorphisnX = X — T exists inpP.

We just state what the example is. lete the set of or-
dinals < w, with their usual ordering, endowed with the
Scott topology. The Grothendieck top®s from [5], is

the topos of sheaves over the canonical Grothendieck topol-
ogy on the monoid of continuous endofunctionsianL et

Here, statement 3 makes use of the fact that well- 72, be the full subcategory oft on those sheaves for
completeness can be formulated in the internal logic. Also Which the setd(w) has cardinality strictly less thaD,,,
(2) states that, for any logically decidable predic&ten
N, the propositiordn: N. P(n) is aX-proposition.

22“0

whered,, = sup{2%,22° 22"}, Asin [5], there
is a full embedding : wcpo5  — Ho, of the category



of w-cpos of cardinality< 3, in Ho. Using this, define

¥ = y(0), whereQ is Sierpinski space. Then, as in [5],
Axiom N is satisfied. Finally, defin® = y(Z) whereZ is
the wcpo (the well-known countably-based L-domain that
is not bifinite) drawn in [34, Example 9.6.15(c)]. One can
show that any solutiodl to X = X — 7T would have
|X (w)| > 3., hence no such solution exists#fn_, .

3. Algebraic compactness

As indicated in the introduction, we address the interpre-

tation of recursive types by strengthening the assumptions

on our ambient category of class€s A universal object
is an object/ such that, for every object, there exists a
mono X —— U. ThusU can be thought of as an object

of fibrations, see [13], one can formulate a precise statement
that the categor$ is theexternalizatiorof the internal cat-
egorys.

Analogously, we next construe bokhandpP as inter-
nal categorie® andpP respectively. First we define by

IP|={A: PsU | Ais apredomaih P(A, B) = B4,

using the evident formulation of the property of being a pre-
domain in the internal logic of. ThusP is an internal full
subcategory o6, and hence locally small. The internal cat-
egorypP is defined by

IpP| = [P pP(A,B) = A— B,

with the obvious identities and composition. Aga®, is

that collects the elements of all classes together within ON€|ocally small (becausd — B = (LB)4).

universal class. In set-theoretic termsis simply the class
of all sets (and atoms if permitted). In [31] it is shown how
the existence of a universal object implies thatontains
an internal model of IZF set theory.

Henceforth we require thaf have a universal object.

As before, using the theory of fibrations, one can make
precise thaP andpP are the externalizations &f andpP
respectively. A crucial consequence of such externalization
results is that fibred (ovet) structure onP andpP gives
rise to corresponding internal structure on the internal cat-

For the purposes of this paper, a vital consequence of theegoriesP andpP. For example, assuming Axiorh, the

universal object is that the categorfesP andpP all live
as internal categories withi@.

As usual, an internal categori, in C is given by an
object (i.e. a class)K]|, of K-objects, and an internal fam-
ily, {K(4, B)} 4,5: k|, of K-morphisms indexed by domain

and codomain, satisfying the expected axioms for identities
and composition, see e.g. [13]. We say that an internal cat-

egoryK in C is locally smallif the internal family
{K(A,B)} a,: k| — K| x |K]

is a small map irC. Itis smallif, in addition, |K| is small.
An internal functor F', from an internal categori to
anothell is given by a morphism

F K] — L],
expressing the action on objects, together with a family
{Fap: K(A,B) — L(FA,FB)}aB: K|

that preserves identities and composition, again see [13].
We briefly exhibitS as an internal category i@, before
turning attention td andpP, which are the categories of

interest to us. The internal categdsys defined by

PsU

IS| S(A,B) B4,

where the family{BA}AB:»psU is defined as an exponen-
tial of small objects in the slice catego@/(PsU x PsU).
Identities and composition are defined in the obvious way.
By the earlier remarks on smallness and function spé&ces,

is a locally small internal category &. Using the theory

L-monad onP determines an internal mondd, {-},))

on P. Also, Lemma 2.4 can be interpreted as an internal
proposition about the internal categgsf?. Statements 3
and 4 of the proposition together imply that, in the presence
of Axiom 1, it holds in C that the internal categork is
small-completg with limits inherited fromS. Thus there
are morphisms irC that find limiting cones for small dia-
grams inP. The internal categoryP is not small-complete.
Nevertheless, one can derive internal functors:

pP x pP —» pP 3
pP? x pP — pP @
pP x pP ——» pP, (5)

where (3) and (4) require Axiorh, and (5) requires Axiom
2. N.b. althoughx extends product oR, it is not a carte-
sian product opP, whereast is a binary coproduct functor
onpP.

Our goal is to prove the algebraic compactness, in the
sense of Freyd [7, 8], of the internal categpB. We recall
this notion for ordinary categories. Given an endofunctor
F on an arbitrary categori, a bifree algebra is an initial
F-algebraa: FA —— A for whicha™! is also a finalF-
coalgebra (by Lambek’s Lemma, an initial algebra is always
an isomorphism). A categori is said to bealgebraically
compactf every endofunctor on it has a bifree algebra.

The correct formulation of algebraic compactness for an
internal categonK in C is slightly subtle because there

2N.b. P, although locally small, is not a small internal category.



need not be any object of ai-endofunctors inC to al- 4. Pointed objects and multistrict maps
low an internal universal quantification. Instead, we make
an external quantification over internal families of internal As crucial preparation for the proof of Theorem 1, we
functors. Technically, this ensures that the definition is sta- use the lifting monad to implement a notion of pointed ob-
ble under the formation of slice categories(®f ject, and of strict map between pointed objects. For us, a
pointed object X, «) is simply an Eilenberg-Moore algebra
Definition 3.1 (Algebraic compactness)An internal cate- . .x _ . X for the monadL, {-},|J). If L € ¥ then
goryKiis said to bealgebraically compadf, for every inter-  gne can think ofy(f) as the identified “point” ofX, but the
nal family {F;: K — K};. 7 in C of internal endofunctors,  notion of pointed object also makes sense without the as-
there exists a morphism_): I —— [K|, and a family  symption thatl € . A strict maph: (X, o) — (Y, )
{ai: K(FiA;, A;) }i: 1 such that between pointed objects is simply an algebra homorphism
. r . 3 (i.e. amorphisnmh: X —— Y such thati o « = o Lh).

C |= Vi:I. ;s abifreef;-algebra Given pointed objectéX;, o), . . ., (Xi, o) and(Y, 3), a
Moreover, the above data must be preserved by reindex-k-strict mapis a morphisnh: X; x --- x X}, — Y such
ing: i.e, forf: J ——1inC, let B_y: J —— [K] that, for each with 1 < i < k, it holds inC that
and{b; : K(F;Bj, B;)},. s be determined, as above, by the

J-indexed family{Fy(;,: K — K};. s, then it must hold Vo Xy, @ie1i X1, i i, - Tt X
thatB(_) = A(_) o f andb(_) =a(-)° f ZT; h(xl, Ce ,l‘k) is a strict map fromXi toY.
Lemma 3.2 (Parametrized algebraic compactness) We usebistrict for the cases = 2, andmultistrict if we
SupposeK and L are internal categories withK al- leavek implicit. The lemma below is a special feature of
gebraically compact, and supposé: L x K — K lifting monads.

is an internal functor. LetA_: |[L| —— |K| and

{ap:K(F(B,Ag), Ap)} .|| be the data given by alge- Lemma 4.1 Given pointed objectsX, a1), (X2, a2) and
braic compactness, viewing as indexed ovefL|. Then  (Y,/3), thenany bistrictmap: X; x X, — Yis astrict
there exists a unique internal functéi': L — K suchthat ~ Map from the pointed objedf; x X; oY

B — . T ~ FtBj i
FIB = Ap andap: F(B, F1B) = F'Bis natural in B. The initial algebra of the endofunctircaries a pointed

structurep = ool JoLLo~!: LI — I. The pointed struc-
ture onlI interacts nicely with the initial algebra property.
Define a “successor” function= o o {-}: I — I. The
The proof of Theorem 1 occupies Sections 4-6. The strat-lemma below generalizes [15, Theorem A.5].

egy is to establish a version of the limit-colimit coincidence

of classical domain theory (see, e.g. [32]), and apply it to Lemma 4.2 Suppose tha{X, «) is a pointed object and
pP. However, a major complication arises. In many re- thatf : X — X is any (not necessarily strict) morphism.
alizability models of our setting, the usual limit-colimit- Then, for everyc > 1, there exists a uniqug-strict map
coincidence is simply false, at least when formulated using # : I* — X such that the diagram below commutes.
diagrams indexed by the natural numb&¥s see [19] for

Theorem 1 If Axiom1 holds then the internal categopP
is algebraically compact.

k

a counterexample. We solve this problem by developing —  h

a non-trivial variant, under which diagrams are indexed by I Xl —— X
the carrierI of the initial-algebra structure fdt. This is

presented as Proposition 2. SX - XS§ f

We apply Proposition 2, by developing sufficient con-
ditions for an internal categor in C to be algebraically
compact, Proposition 3. A first crucial feature here is that oo xl—— X
|K|, the class of objects d¢f, should carry an algebra struc- Using Lemma 4.2, defingin : I x I — I to be the
ture for thell. functor. This allowsl-indexed diagrams, of  ynique bistrict map such thatin(si, sj) = s(min(i, 5)).
the form required by the limit-colimit coincidence, to be Then, by Lemmas 4.1 and Lemma 4.2 in the cdsesl, 3,
constructed using the initial algebra propertylaf A sec-
ond crucial feature is that all such diagrams must have a min(i,i) =1
Iimit_in pP, or equival_e_ntly a colimit. _ min(i, min(j, k) = min(min(i, 7), k).

Finally, as Proposition 4, we show thgl® does indeed
satisfy the conditions of Proposition 3. This concludes the Thusmin gives an internal semilattice structureltdn the
proof of Theorem 1. standard way, we use this to define an internal partial order



onI by
1 C g iff i = min(i,j).

The next lemma, which play an importaiéie in the se-
quel, seems very much a peculiarity of lifting monads.

Lemma 4.3 Given an internal family{(Y,,8.)}..x of

pointed objects, wheréX, «) is also pointed, then so is

(Zr:X YI’ ’V); Where’y: L(ZzXYJ/’) - ZmXYm is
defined byy(e) = (71(e),v2(e)), where

mle) =afz | (z,y) €€}
72(6) = ﬁ'yl(e){y | (:E,y) € 6}'

of pointed objects and functions respectively, there exists a
uniquek-strict family

vy T T Y

i1:1 i I

SatiSfyingySil st T fi1 g (ynlk)

This lemma will be crucial in Section 6.

5. The limit-colimit coincidence

One of the main tools in the proof of Theorem 1 will
be a variant of the limit-colimit coincidence of domain the-
ory. The standard domain-theoretic version of this coin-

We shall also need a notion of strictness for dependent fam-cidence use®-indexed diagrams afmbedding-projection

ilies, which again seems peculiar to lifting monads.

Definition 4.4 (Strict family) Given an internal family
{(Yz, 8:)}. x of pointed objects, wher¢X, «) is also
pointed, we say thay_y: [],. Yz is astrict familyf,

foralle: LX,

Ya(e) = ﬂa(e){ym | HAS 6}.

The above definition relates to Lemma 4.3, as it is easily

seen thay_) is a strict family if and only if the morphism

e (2,y,): X — ZYw
xr: X

is strict.

Next we use Definition 4.4 to derive a natural notion of
multistrict dependent family, and we generalise Lemma 4.2

to apply to such families.

Definition 4.5 (Multistrict family) Given an internal fam-
iy {(Yar..2ns Baroozn) baor: Xm0 : X Of pOinted objects,

where(X1, 1), ..., (Xk, i) are pointed, we say that
Y(—)o(—) " H H Yooz
z1: X1 Tr: Xk

is ak-strict familyif, for eachi with 1 < ¢ < k, it holds in
C that

V$11X1,...71‘i,1:Xi,1, LL'Z'+1ZXZ‘+1,...7$U]€ZX]€.

Ti — Yo,..z, IS @ strict family in H Y, -
x;: X;

Lemma 4.6 For internal families

{(Yay. i Binig) Yir Lo 1
{lelk : }/tll’bk - Ysil‘..sik}iltl,..‘,ikllﬂ

pairs, see e.g. [32]. We wish to establish an analogous co-
incidence for internal categories {@. For this, we have

to make two important modifications. First, as motivated
in Section 3, the diagram must be indexedImather than

by N. Second, we have to manage without any notion of
embedding-projection pair. Instead, the usd @fs an in-
dexing object miraculously enables us to prove the limit-
colimit coincidence for arbitrary diagrams satisfying some
simple equational properties.

Let K be an internal category i€@. For this entire sec-
tion, we reason internally i€ aboutK. As we do not re-
quire K to be locally small, we refer t§K(A, B)} 4 pek|
as the family ohom-classes

An I-bichainin K is given by families,

A(_): |K|I

v [TTTKAA)),

i:Ij5:1
satisfying the equations

Tjk © Tij = Tmin(i,j,k) k © Ti min(i,jk)- (7)

Here min(i, j, k) meansmin(i, min(j, k)), using the op-
eration from Section 4. Equations (6) and (7) have useful
consequences relating_) ) to the partial orde- on1I.

Lemma 5.1 For anys, j, k:1,if i C j thenzj; o x;; = xi
andxj; o xy; = w;, SO, in particulars;; o x;; = ida,.

Thus ifi C j thenz;; andz;; form a section-retraction
pair. The limit-colimit coincidence will relate the colimit
of the diagram of sections to the limit of the diagram of
retractions.

Given anI-bichain, (A, z(_y)), we write (z;;)ic;
for the evident partially-ordered diagram of shafieC),
consisting entirely of sections. The notion afconeand



colimit for such diagrams are defined as usual. Dually, we In this definition,

write (x;;);3, for the evident partially-ordered diagram of
shape(I, 3J), consisting of retractions. The notion céne
andlimit are defined as usual.

Lemma 5.2 If X is complete then there exists a unique map
L|: XT — X satisfying

C ): Vl’(_) : XI. Vi:1. xTr; = |_|.’Emm(7;7j),
J

Wherel_lj Tomin(,5) meanq_l(j = mmzn(z,]))

Proposition 2 (Limit-colimit coincidence)

If K is an internal category in which all hom-classes are
complete then, for anf-bichain (A, z(_y)) in K, the
following statements are equivalent.

1. Bis alimiting object for(x;;);1;.

2. There exist a cong_y : [[,.; K(B, A;) for (z;)i0;

and coconec_y : [[;.;K(4;, B) for (x;;);c; such
that:
forall 4, j:1, it holds thatl; o ¢; = z;;, (8)
| J(cioli) =idp. 9)

[
3. Bis a colimiting object fo(z;; ).c;.

Moreover, if 2 holds thery_) is a limiting cone and:_ is
a colimiting cone. Furthermore, (8) and (9) together imply
that each of _) andc_ determines the other.

In view of the proposition, we shall henceforth refer to

(B,l(-),c(~)) satisfying (8) and (9) as hilimit of the I-
bichain(A(,),x(,)(,)).

6. Conditions for algebraic compactness

In this section we define a notion slitable internal
category—one satisfying conditions that are sufficient for

by having a specified bilimit
we mean that bilimits are given by a morphism
Bichainsy Biconesk in C, where Bichainsk
is the class of standaildbichains inK and Biconesk is the
class of cone/cocone tupléB, [, c¢._y) for I-bichains.

The next result is the reason for introducing the notion
of suitable category.

Proposition 3 Every suitable internal category is alge-
braically compact.

To prove Proposition 3, leK be a suitable category. The
notion of suitable category is stable under slicinghthus

it suffices to show that Definition 3.1 applies in the special
case of a singleton family. Accordingly, |€tbe an internal
endofunctor orK.

As (K|, «) is pointed, there is, by Lemma 4.2, a unique
strict mapF (=)0 : T — |K| such thatF'(Fi0) = F*0.
Here the notation is to convey the idea that one should think
of F0 as thei-th iterate of  applied to a zero obje€tin
K. However, this intuition is subject to two caveats: firstly
1 comes froml rather than fromN, so the notion of iterate
is non-standard; secondly, we do not yet know tditas a
zero object, although the existence of one will, in the end,
follow from Proposition 3, once proven.

As each(K(A, B), 84 5) is pointed, there exists, by
Lemma 4.6, a unique bistrict family

.’L‘(_)(_) : H H K(FZO, FJO)

i:Ij5:1

satisfyingz 5; 5; = F(z45).

Lemma 6.2 (F(-)0,z(_))) is anI-bichain.

The proof is a straightforward application of Lemma 4.1
and Lemma 4.6 in the casés= 1, 3.

Now we are in a position to construct the bifree alge-
bra for F. Accordingly, let(B,[_),c)) be the spec-
ified bilimit of (F(7)0,z(_)_)). Define a morphism

FB —"+ Bbyb=|], (cs o Fl;).

algebraic compactness to hold. These conditions are conve- _ _
nient for establishing the algebraic compactness of specific,emma 6.3 (B, b) is a bifree'-algebra.

internal categories, e.gP.

Definition 6.1 (Suitable category) A suitable category is
given by an internal categori together with a pointed
structure (|K|,«) and a family of pointed structures
{(K(A, B), Ba,B)} a,B: k| satisfying: for allA, B: |K], the
hom-classK(A4, B) is complete; for allA, B, C': |K|, the
composition functiorK(B,C) x K(A,B) — K(A4,C) is
bistrict; the familyid(_): 4.k K(A, A) is strict; and ev-
eryI-bichain inK has a speci}ied bilimit.

The proof is by establishing th#&tB . Bis aspecial-
F-invariant objectin the sense of [6, 29], and that this prop-
erty is characteristic of bifre€'-algebras, again see [6, 29].
This concludes the proof of Proposition 3.

We now complete the proof of Theorem 1 by establishing
the result below.

Proposition 4 If Axiom1 holds then the internal category
pP is suitable.



The proof of this proposition is very long. In this conference

First, we interpret types. To apply algebraic compact-

version of the paper, we just state the non-obvious lemmasness it is necesary to interpret open types as internal func-

all of whichassume Axiom1.

Lemma 6.4 The morphismJ: L(PsU) —— PsU re-
stricts to a morphisryJ: L|pP| — |pP|, giving a pointed
structure(|pP|, ).

The proof uses [30, Lemma 6], which gives a useful inter-
polation condition for establishing well-completeness.

Lemma 6.5 The internal functor : pP — P creates (up
to isomorphism) limits for diagrams of shafle J).

Corollary 6.6 pP has bilimits ofI-bichains.

7. An internal interpretation of FPC

In this section, we apply Theorem 1 to obtain an in-
terpretation of Plotkin’s call-by-value recursively typae
calculus FPC, in the internal categoryP.

We give a brief summary of the languag®C, intro-
duced in [24]. For full details see [2]. We usg Y, ... to
range over type variables, andr, ... to range over types,
which are given by:

o] X|o+7|oxt|o—71| puXo.

Here the prefixu X binds X. We use©, ... to range over
finite sequences of distinct type variables. We wéité- o
to mean that all free type variablesdrappear iro.

We useuz,y,... to range over term variables, and
s,t,... to range over terms, which are given by:

t = |inl(t) | inr(¢) | case(s) of z.t or y.u | (s,t) |
fst(t) | snd(t) | Ax.t | s(t) | intro(t) | elim(t),

where, to ease clutter, we omit certain necessary type(oi]) x ---

information from inl(¢), inr(¢), intro(t) and Az.t,
see [2]. We usé', ... to range over sequences of the form
r1: 01,...,25: o With all z; distinct and allo; closed.
For closed types, we writeT" + ¢: o to mean that is a
well-formed term of typer relative tol", where the rules for
deriving such typing assertions are as in [2].

To define a call-by-value operational semanticSBIC,
we first specify thevalues closed terms, . . . of the form:

v == 1inl(v) | inr(v) | (v1,v2) | Az.t | intro(v).
The call-by-value evaluation relatian~ v between closed
termst and valuew is defined as in [2]. We say that a closed
termt convergesnotationt |}, if there exists (a necessarily
unigue)v such that ~- v.

To interpretFPC in pP, we needP to be closed under
+, so henceforth in this section vessume Axiom2.

tors. Moreover, because of the bivariance-of they must
be interpreted as internal functors on the internal category
pP°? x pP, for which we WriteBI\D. The functors will all be
symmetric in the sense of [26.3]. Indeed, an open type
o is interpreted, relative to any = X,..., X, such that
O + o, as a symmetric internal functor,

—~—k —

(©F o) pP — pP.

The interpretation is defined by induction on the structure
of o. Type variables, sum, product and function types are
easily handled using symmetric extensions of projections,
+, x and—to Els. The definition for recursive types is

(©Fux.o) = (©,X )T,

using Lemma 3.2. (It follows from the construction of
bifree algebras in suitable categories tf@t X - o'])f is
symmetric whenevef® F pX.0’)) is.)

For closed types, the functdrt- o)): 1 — pP, wherel
is the terminal internal category, corresponds, by symmetry,
to an object irpP of the form(A, A). We write (o)) for the
corresponding object of pP.

For a closed type:X.o, we have that{- pX.o)) car-
ries the canonical bifree algebra structure for the symmetric
functor (X + o)): |§|3 — EF’. The bifree algebra unpacks
to give isomorphisms ipP

tx.o: [oluX.0/X]) — (uX.0)
euxot (1X.0) — (oluX.0/X]),

(10)
(11)

wheres, x.o = €,x.0 '

To interpret the terms of PC in pP, a contextl’
.,x: oy is interpreted as the objed)
x (o)) of pP. AtermT F ¢: o is interpreted
as a morphisnft]r from (T')) to (o]) in pP, i.e. as a point
(t)r: 1 —— pP((I), (o)) in C. The definition of(¢])r,
by induction on the structure of is standard, see e.g. [2].
WhenT is empty (i.e.t is closed), we simply writd¢]).

T1: O01,y..

8. Internal computational adequacy

Assuming Axiom2, we have interpreteBPC in the in-
ternal categoryP. To proceed further, we need to formal-
ize the the syntax of PC and its operational semantics in
C. Thisis an exercise in@lel numbering. Types and terms
are thus encoded as natural numbers. We viiiitdéor the
object of @del numbers of closed terms of typeand),
for the object of @del numbers of closed values of type
o. BothV, and 7, are primitive recursive subobjects of
N. The operational semantics is encoded so that v



andt |} are bothx{ relations on ®del numbers fot andwv. Because the above relations are recursively specified,

For notational convenience, we choose not to make a syn-constructing them takes considerable work. They can be

tactic distinction between the formalized relations and the obtained by adapting the approach of [24, 2]. Very briefly,

actual relations. The meaning should always be clear fromfor each closed, we define an internal categoRy,. Inter-

the context. For example, the statem#&hin Proposition 5 nally in C, objects are pair® = (|R|, <) satisfying,

below obviously uses the formalized operational semantics.
The main result of this section establishes the equiv-

alence of oper_ational and d_eqotational notions of con- o < r is a binary relation betwed?(1, | R|) andV,,

vergence, as interpreted withi@€. For the denota-

tional notion, givenk t¢: o, we write (t])| if the 3. forallv:V,, {d:P(1,|R|) | d <g v} is a preomain.

point (¢): 1 —— pP(1, (o])) gives a total function in

pP(1, (o)) =1 = (o).

1. |R|: PsU is a predomain,

Morphisms are partial functions preserving the relations.
One proves that each categdy is suitable, hence alge-

Proposition 5 (Internal computational adequacy) If Ax- braically compact. Following [24, 2], the relations, are
iom N holds then, for all terms— ¢: o, it holds that then constructed by defining a non-standard interpretation
CEtlo ()]. of types in theR, categories, using relational “liftings” of

the functors+, x and—, onpP, to theR, categories. Ax-
The implicationt || — (t]) | is easily proved by induc- jom N, in the guise of Lemma 2.4.7, is used crucially in
tion on the derivation of the evaluation relation forand obtaining the relational lifting of~.
does not require AxionIN. For the proof of the converse Once the relations have been defined, the lemma below
implication, we adapt the approach of [24, 2] to our setting. can be established by a straightforward (external) induction
The strategy is to define binary relations relating closed on the structure of.
terms to their internal denotations. A closed termw has

a denotatior([t)) : pP(1, (o])). However, values: o enjoy Lemma8.1Ifzi:7,...,z5:7: - t: o then
the extra property thd) |, i.e. that(v]): P(1, (o)), using
the hom-set inclusion given by C EVdi:P(, (1)), ..., di: P, (7)),

Vo1V, oo, 05 Vry

di 2pv1 Ao ANd 2 v —
which holds for anyA, B: |P| (equivalently A, B: |pP|). e (dy, . ... dr) Sotlve,... o521,
For each closed type, we define binary relations i€, ~

P(A,B) = {f: pP(A,B) | fistotall —— pP(A4,B),

..,.’Ek]‘

~ To show that Proposition 5 follows from Lemma 8.1, take
- P, (o)) x Vo any closed tern: o. Then, by the lemmeC = (t]) 3, t.
Jo = pP(1, (o)) x 75, Hence, by (12)C = ([t) | — (Fv:Vy. t ~v A (t]) =0 v).

related to each other by SoindeedC [= () | — t4.

e 35t iff e] implies3v:V,. t ~ vande <, v, (12) 9 An external interpretation of FPC

making use of the operational semantics as formaliz€dl in
The relations<, and =, are defined so that they satisfy
the following internal equivalences (@.

So far, we have given anternal interpretation o' PC,
in the internal categorpP. We now extract arexternal
“real world” interpretation in the categopyP. A closed

d =44rinl(v) iff d = inl(c) wherec <, v type o is interpreted as an objeft] of pP, by defining
d =<y, inc(v) iff d = inr(c) wherec <, v [o] as the pullback below.
(¢,d) Zoxr (u,v) iff ¢=<,wandd <, v [o] Sy
f Zor Ax.t iff Vd:P(1, (o)), Yv: T, _|
d=,v — f(d) 37 t[v/a] W
d Zux.0 intro(v) iff e,x.,(d) SoluX.o/X] U
The clauses for the non-recursive types apply the internal 1 (o) pP[ ~ -~ PsU,

partial bicartesian-closed structure,(x, —) of pP, using

a self-explanatory notation. The clause foX.o involves where~y is as in (1) from Section 2. The objefet] is in-
the isomorphism (11), which, because it is an isomorphism deed a predomain by the definition|pP| as a subobject of
in pP, is also an isomorphism ii. PsU. Similarly, a contexI" is interpreted as an objefi],



by replacings with I" in the diagram above. We interpret a
termI F ¢: o as amorphisnfit]r: [I'] — [o] in pP, by
transposing(t)r : pP((T)), (o)) in the evident way. When
I is empty, we write simplft]: 1 —— [o]. We write[¢] |

if the partial map[t] is total.

Our last main result is a complete characterisation, in
terms of a property of the internal logic @f, of when the
external interpretation dfPC is computationally adequate.
Using the natural numbers objast, one can define a stan-
dard encoding of any primitive recursive predicate as a (de-
cidable) subobjedP ~—— N. A X{-sentence is a statement
of the form3n: N. P(n) whereP is a primitive recursive
predicate. We say thaf is 1-consistentf, for every 3¢-
sentencer, C = ¢ implies thaty is true in reality.

Theorem 2 (External computational adequacy)If
AxiomN holds then the following are equivalent.

1. Forall - ¢: o, it holds thatt |} if and only if[¢] |, i.e.
the interpretation is computationally adequate.

2. C (equivalentlyS) is 1-consistent.

An in [30, Corollary 1], a consequence of the theorem is
that there exist categories with class struct@esatisfying
Axiom N, for which the interpretation oFPC in pP is
not computationally adequate. However, such categ@ries
are pathologies. Instead, the main force of Theorem 2 is
in the converse implication, which reduces computational
adequacy to a very weak and ubiquitous condition. This
will be exploited in Section 10.

We only briefly outline the proof of Theorem 2. To prove
that computational adequacy implies 1-consistency,

we use

of modest setsver A, see e.g. [17§2-3]. In many such
categories, one can find a dominangeoften conveniently
determined by alivergenceD C A (see [17, Def. 4.1]),
such that Axion® holds. Numerous examples are presented
in [16, 17]. Furthermore, by [17, Theorem 7.5], it follows
that AxiomN holds.

As is well-known, there is a full embedding

Mod(A) —— RT(A)

of modest sets into theealizability toposover A [10, 12].
Assuming a strongly inaccessible cardinal, one can fol-
low [15, §IV.4] and endowRT(A) with class structure.
By constructing the initial ZF-algebr& in RT(A), and
then applying [31, Theorem 7], one extracts a full sub-
categoryRT .y (A) —— RT(A), with class structure,

in which V' is a universal object. This category contains
the dominancez, and inherits AxiomN from Mod(A).
Thus the results of this paper can be applied to obtain
a category of predomainB ——— RT_y(A) in which
FPC can be interpreted. Moreover, it can be shown that
the interpretation ofFPC lives within the subcategory
Mod(A) = RT .y (A).

If A is nontrivial then the categorRT .y (4) is 1-
consistent, because its numerals are standard. Thus, by The-
orem 2, the interpretation &PC in Mod(A) is computa-
tionally adequate. This gives the first proof of computa-
tional adequacy for the interpretation 8P C in the realiz-
ability models of [9, 20, 21, 22, 16, 17].

10.2. Models of axiomatic domain theory

the standard encoding of the type of natural numbers as the

FPC typepY. (uX.X — pX.X) + Y. The usual primi-
tives on natural numbers are easily defined. A% sup-
ports the recursive definition of functions, see e.g. [2]. Thus
one can interpret call-by-valdeCF in FPC. The proof that
computational adequacy implies 1-consistency, can now b
borrowed from [3056]. The simple idea is to encode any
¥Y-sentence as a search program that terminates if and onl
if the sentence is true.

The converse implication, that 1-consistency implies
computational adequacy, follows swiftly from Proposi-
tion 5. For the interesting implication, suppose tf¥dt/,
or equivalentlyC = ([¢]) |. By Proposition 5C = ¢ |.
However,t |} is aX{ sentence, so i€ is 1-consistent then
indeedt ||

10. Applications

10.1. Realizability models

A realizability model is specified by a partial combina-
tory algebra( 4, -), which determines a categoMod(A)

€

In [2], an axiomatization of a general order-enriched no-
tion of model forFPC is given, and computational ade-
guacy is proved for any nontrivial model satisfying an addi-
tional absolutenessondition. In [4, 3], a much more gen-
eral class of enriched models is introduced, although the
interpretation offPC is not explicitly considered. Follow-

)if'g the approach of [3], we can accommodate many of the

models of [2, 4, 3] within our setting.

LetC be anylifting monadic enrichment base the sense
of [3, Def. 1.12]. In particularg has dominanc& and a lift-
ing functorlL. We assume further théthas stable countable
coproducts. The Yoneda functor gives a full embedding

y: C = Sh(C,Can),

whereSh(C, Can) is the category of sheaves for the canoni-
cal Grothendieck topolog§an onC. It holds thaty (%) is a
dominance inSh(C, Can), and, becausé has stable count-
able coproducts, AxionN is satisfied (n.b. coproducts are
automatically disjoint by [2, Prop. 5.3.12]).

Assuming a strongly inaccessible cardinal, one can
follow [15, §IV.3] and endow Sh(C,Can) with class
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that the interpretation df PC lives within the subcategory ture Notes 220, CUP, 1995.
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