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Abstract same property ofS} that the provably recursive functions
are polynomial-time computable. Cook and Urquhart then
We present a constructive procedure for extracting developed variants of Kreisel's modified realizability and
polynomial-time realizers from ineffective proofs Iaf- Godel's functional interpretation for the systdRv“. The
theorems in feasible analysis. By ineffective proof we meanlatter via negative translation applies alsod®Vv«. Given
a proof which involves the non-computational principle a proof of all3-theorem oflPV“ or CPV“, these interpre-
weak Konig's lemmaWKL, and by feasible analysis we tations provide a simple procedure for extracting from this
mean Cook and Urquhart's syste@PV« plus quantifier- proof a polynomial-time algorithm realizing the theorem.
free choiceQF-AC. We shall also discuss the relation be- The main contribution of the present paper is to extend
tween the syste@PV«~ +QF-AC and Ferreira’s base theory  Cook and Urquhart’s functional interpretation, via nega-
for feasible analysi8TFA, for whichII3-conservation of tive translation, ofCPV* to include quantifier-free choice
WKL has been non-constructively proven. This paper treats QF-AC and the non-computational principle weak{g’s
the case of weak #hig's lemma for trees defined &Y - lemmaWKL (for I19-definable trees). The interpretation
formulas. lllustrating the applicability oEPV“ + QF-AC uses a novel form of binary bar recursion. We also show
extended with this form of weakoKig's lemma, we indi-  that the type one terms of the systéRV« extended with
cate how to formalize the proof of the Heine/Borel covering this new form of bar recursion are polynomial-time com-
lemma in this system. The main techniques used in the paputable. This gives a procedure for extracting polynomial-
per are Gdel’s functional interpretation and a novel form time realizers from proofs involving weakdgig’s lemma
of binary bar recursion. of I19-theorems over the basic thedfpV« + QF-AC.
Weak Konig's lemma states that every infinite binary
branching tree has an infinite path. This principle relies on
1. Introduction the existence of non-computable functions, in the sense that
it does not hold in a model where all functions are recursive.

With the aim of capturing the notion édasibly construc- ~ As it is well-known in Reverse Mathematics [20KL is
tive proof Stephen Cook [4] introduced in 1975 the equa- actually equivalerdtoverRCA, to numerous mathematical
tional system of arithmeti®V (polynomially verifiable) principles, such as the existence and the attainment of the
whose definable terms are polynomial-time computable.infimum by a continuous function on a closed interval and
Later, Samuel Buss [2] developed the subsystem of clasthe Heine/Borel covering lemma. Nevertheless, Friedman
sical arithmeticS} and showed that the provably recursive Showed (in an unpublished paper) that ifigtheorems of
functions of his system are polynomial-time computable. RCAo + WKL are precisely the same as thoseP®A, in
Buss [3] also defined an intuitionistic version®}, called ~ the sense thatifz3y A(z, y), for A quantifier-free, is prov-
ISL, and an intricate variant of Kleene realizability to prove able inRCAq 4 WKL then there exists rimitive recursive
that everylId-theorem ofiS} has a polynomial-time com- ~ Programh such thatPRA = A(z, ha). In another words,
putable realizer. Having as one of the motivations to sim- RCAg + WKL is IT3-conservative ovelPRA.
plify Buss’ proof, Cook and Urquhart [5] defined systems  Friedman’s original proof of thi§l3-conservation result
both extendind®V to higher types, obtainingVv+, and ex- is based on non-constructive model-theoretic arguments.
tendingPV with intuitionistic and classical logic, obtain- Therefore, it does not provide a procedure for extracting
ing IPV andCPV. A combination of those two extensions

gives the system®V« andCPV*. Those systems have the 1The subsystem of second order arithm@&€A, was first defined in
[8], it contains the usual axioms for successor, addition and multiplication;

*Basic Research in Computer Science, funded by the Danish Nationalinduction restricted t&{-formulas and comprehension for recursively de-
Research Foundation. fined sets.




the primitive recursive prograrh from a given proof of a The rest of the article is organized as follows. In Sections
13-theorem inRCA, + WKL. Friedman’s result was later 2 and 3 we present the systeBiEFA andCPV« + QF-AC,
extended by Harrington, who proved (also in an unpub- in order to discuss the relation between them. The reader
lished paper]I3-conservation oRCAq + WKL overRCA,. with knowledge ornCPV“ can start reading from Section 4
The first effective version of Friedman’s result was given where we introduce the new form of bar recursion, which
by Sieg [19] using cut-elimination, a Herbrand analysis and is going to be used in the interpretation of weakrg’s
a simple form of Howard’s majorizability for primitive re-  lemma forII?-definable treed19-WKL®“. In Section 4 we
cursive terms. In [12], a combination ofo@él’s functional also prove that this new bar recursion does not give rise to
interpretation with Howard'’s hereditary majorizability for any new functions when added|®V“. The functional in-
functionals in all finite types is developed to extract uni- terpretation of the negative translation&f-WKL® is given
form bounds folv3-theorems in analysis from proofs based in Section 5. For illustrating the applicability of thi?-
on various analytical principles includingyKL. In particu- form of weak Konig’s lemma, in Section 6 we indicate how
lar, [12] yields effective forms of extensions of Friedman’s to formalize the proof of Heine/Borel covering lemma in the
WKL-conservation result to higher types (cf. also [1], The- systemCPV* + QF-AC + I19-WKL".
orem 7.1.1). A functional interpretation of the negative translation of
In 1985, Sieg [18] proposed the problem of finding math- weak Konig’'s lemma, using a different form of binary bar
ematically significant subsystems of analysis whose classrecursion, had already been given by Howard [9]. Howard’s
of provably recursive functions consists only @mputa- proof, however, does not carry through to the feasible set-
tionally feasibleones. Fernando Ferreira took up the chal- ting under consideration since it is based on exponential
lenge and in [6] defined the systeBiT FA (Base Theory for ~ search. We comment further on that in Section 7.
Feasible Analysis) whose provably recursive functions are
precisely the polynomial-time computable functidéns\s 2  Preliminaries
done by Harrington foRCA,, Ferreira then showed that by
addingWKL (for bounded formula&?, ) to BTFA one does
not get any newl}-theorems. This shows a nice correspon-

dence with respect t&/KL between the systefRCAg, on : : . . .
w P W Y CAo a smooth introduction to functional interpretation see [1].

the level of primitive recursion, anBTFA, on the level of \ . . . ;
o . . We shall use Kuroda’s variant of negative translation which
polynomial-time. This correspondence can be expressed in- ; : o .
places double negations after universal quantifiers and in

In the following we shall assume some basic knowledge
on negative translation and functional interpretation. For

formally as front of the whole formula. As shown in [16], the different
RCA, BTFA variations of negative translation are over intuitionistic logic
RCAg + WKL ~ BTFA L 20 ‘WKL equivalent. The negative translation of a formdlavill be
(o)

denoted by4™.

The congruity between the two sides of the equation Thefinite typesare defined inductively as followsy is
goes even further. Ferreira’s proof Hf-conservation, as @ finite type, and i ando are finite types thep — o is
the fore-mentioned Friedman’s proof, is also based on non-also a finite type. We shall write . : p to denote that term
constructive model-theoretic arguments and does not give a - - has typep.

procedure for extracting, from a proof The two feasible subsystems of analysis discussed here,
BTFA and CPV“ + QF-AC, have two main differences.
BTFA + X% -WKL F Va3yA(z, y), Firstly, BTFA is based on second order logic, and there-
fore, has variables and quantifiers for sets, whereas, the the-
where A is quantifier-free, gpolynomial-time functiorh ory CPV¥ + QF-AC is based on the language of function-

such thatA(z, hx) holds, for allz. We present here an  als of all finite types, and therefore, has variables for each
effective procedure for extracting polynomial-time realiz- finite type. The second main difference is that the stan-
ers from proofs of1y-theorems involvingVKL in feasible dard model ofBTFA is based on finite 0-1 sequencég
analysis (here meaningPV« + QF-AC). Itis important  while CPV* 4 QF-AC has standard model based on the nat-
to note, however, that Ferreira proved conservatioivii ural numbeilN (which we shall confuse with the basic finite
for trees defined by formulas of the kindT'(w, z), T'be-  type). We shall in this paper define both theories and discuss
ing abounded formulaThis paper treats the case whéte  priefly the relation between them.
is aquantifier-free formula In a feasible setting, where the length of the representa-
2Kohlenbach [13] also developed a subsystem of analysis (including tion mgtters, itis often useful to work Wlt-h 0-1 seguences
WKL) Whoseng—theorems have polynomibbundsi.e. if Va3y A(z, y), as bas_lc elements. Therefore, W.h.en dealmg Wity we .
A quantifier-free, is a theorem of the system, then there exists effectively Shall view natural numbers as finite sequences of 0-1, via
a polynomialp(z) such thatz3y < p(x)A(z, y). their binary expansion. Given a numhewe shall denote




thei-th bit of the binary expansion af by z(i). We often
write 20 instead oRx, andz1 instead oRx + 1. In general,
given a sequence of bits,, ..., by € {0,1} (with b,, = 1)
we shall writeb,, . . . by for the natural number having such
binary expansion. Moreover, we writ& for the sequence
of n bits 1 and we usdx| for the length of the binary ex-
pansion ofz, i.e. [log,(z + 1)]. Although the function - |
is not a basic symbol in either systeB$FA or CPV¥, itis
easily definable and we shall use it freely.

In Section 2.1 (orBTFA) we shall talk about three re-
lations on binary wordsxz C y for x being a prefix ofy;
x <y for |z| being less than or equal tg|, andz C* y say-
ing thatz is a subword ofy, i.e. if there exists a such that
zx C y. When treatingCPV* we usex < y for x being
a number smaller than or equal o andx < y for say-
ing that the binary expansion afis a prefix of the binary
expansion ofy. In both systems only the first relation is a

primitive symbol, the others are definable relations. Based
on those relations, in this paper the reader shall encountef

three sorts of quantifiers:
e unbounded quantifier®)x(. . .),

e bounded quantifiersQx < ¢(...) in BTFA andQz <
t(...)in CPV¥, and

e sharply bounded quantifiersQx
t(...)in BTFA andQz =< ¢(...)
CPVY,

C t...),Qx C*
,Qx < [t|(...)in

Informally, bounded quantifiers correspond to an ex-
ponential search, while sharply bounded quantifiers cor-

respond to linear or quadratic search. A formuldlis
(resp.11Y) if it is of the formVz A(z) (resp.VzIyA(z, y)),
where A is a quantifier-free formula. While in stronger
systems, such aRCA,, a quantifier-free formula is one

not containing unbounded quantifiers, in the feasible set-

ting aquantifier-freformula is one containing only sharply
bounded quantifiers.

Notice that, via paring, formulas of the kind
VaxIyA(z,y), with A being quantifier-free, are as general
as whend is aX? formula.

2.1 The systenBTFA

Ferreira’s systenBTFA [6] has as basis the first order
theory X%-NIA, whose standard model is the set of finite
strings over{0, 1} denoted byW. The language afi¢-NIA
contains symbols, 0 and1, function symbols: —~ y for
the concatenation af with y (we usually omit—~ and just
write xy), « x y for the concatenation of with itself |y|
times, and a binary relation symbalfor string prefix.

The class ofsubword quantification-formulaésw.q.-

formulas for short) is the smallest class of formulas closed
under boolean operations and subword quantification, i.e.

quantification of the formrQxz C* ¢(...), where the vari-
ablez does not occur in the termh The class obounded
formulas X%, is the smallest class of formulas contain-
ing the sw.q.-formulas and closed under boolean operations
and bounded quantification, i.e. quantification of the form
Qx < t(...), where the variable: does not occur in the
termt. The class of formulas of the forax <t A, A being
a sw.q.-formula, is denoted 1.

Besides fourteen basic axioms governing the behaviour
of the non-logical symbols;%-NIA contains thenduction
schemez}-IND

Ale) ANVx(A(z) — A(z0) A A(z1)) — Ve A(z),

for A € ¥4. The theory=-NIA is equivalent, in a sense
that could be made precise, to Buss’ theSky(cf. [2]),
and therefore, has the property that evBf¢theorem has
a polynomial-time realizer. The second order theBiyFA
s obtained from>:%-NIA by adding thebounded collection

principle $2_-BC
Vo QtyA(z,y) — F2Ve <ty < zA(x, y),
for A € ¥%_, andcomprehensiot\9-CA

{ Va(3yA(z,y) o V2mB(z, 2)) —

for A, B € 338,

Lemma 2.1 ([6]) Let A be a bounded formula. If
BTFA - VzIyA(x,y)

then:-NIA - Va3yA(z, ).

In the feasible setting of second order arithmetic
WKL(T) is formulated as

Treeoo (T) — 3S(Pathoo (8) AVw(w € § — T'(w)),

whereS is a set variableTree, (T') is defined as

{ Yw, v(T(w) Av Cw — T(v)A
VyFw(|w| = |y[ AT (w)),

andPath(S) as
Treeso(w € S) AVz,y € S(x CyVy C x).

If @ is a class of formulas, we shall denote yWKL
the principleWKL(T") for T restricted to the clags.

Using non-constructive model-theoretic arguments, Fer-
reira showed thaBTFA extended withz%_-WKL has the
samev3xt -theorems ax?-NIA.

Theorem 2.2 ([6]) Let A be a bounded formula. If
BTFA + X% -WKL F VadyA(z, v)



thenl-NIA - VaTy A(z, y).

As a corollary, one obtains that the provably recursive
functions of BTFA + %% -WKL are polynomial-time com-
putable.

Corollary 2.3 Let A be quantifier-free. If
BTFA + X% -WKL F VadyA(z, y)

then there exists a polynomial-time computable function
such thatA(z, hzx) holds, for allz.

The main result of this paper is an effective version of
Corollary 2.3 for the syster@PV« + QF-AC + I19-WKL*.
In the following section we present the syst&iRV« +
QF-AC and we explain how it relates ®TFA.

3 The systemCPV* + QF-AC

The systenCPV* [5] builds on the equational calculus
PV¥. The language dPV* contains a single constant sym-
bol 0, for the number zero. The function symbolsFf«,
with their intended interpretation, are

e so(z), s1(z) extendse to the right with the bit and1,
respectively, i.eso(z) = 22 ands; (z) = 2z + 1;

Parity(z) returns0 if the rightmost bit ofx is 0;

| 2] chops off the rightmost bit of;

Chop(z, y) chops off|y| bits from the right of;

Pad(z,y) appendsy| zero bits to the right of;

Smash(z,y) returns the bit1’ followed by |x| times
ly| zeros.

e Cond(z,y, z) returnsy if x is zero and: otherwise.

PV« has infinitely many variables for each finite type.
Unless stated otherwise, the variableg, = andw shall
have typeN. PV“ has also a recurs@® of type

N-(N->N—-N)- (N-N)->N-=N.

The terms oPV* are formed out of variables and func-
tion symbols as usually done in the typgatalculus.PV«
contains only the predicate symbelfor the basic typeN.

The formulas oPV* consists of all equations= u, where

s andu are terms of typéN. The axioms ofPV“ are the
defining equations for the function symbols listed above, the
axiom forhigher type limited recursion on notatidiil LRN

x ify=20
Rz, h,g,y) =9 9) if[t]>[g(y)]
t otherwise,

wheret abbreviated(y, R(z, h, g, L%yj)), and further ax-
ioms for normalising\-terms. MoreoverPV« has four
rules R1“—R4“ governing the behaviour of the equality
predicate and a rule for induction on notation (for further
details see [5]).

The systemPV¥ is defined as follows. The terms of
IPV« are those oPV*. The predicate symbols t®V« are
= and<, for typeN only. The atomic formulas are = «
ands < wu, wheres andu are terms of typ&N. The for-
mulas ofIPV“ are built out of atomic formulas via logical
connectives and quantifiers for each finite type. The logical
axioms of IPV¥ are the usual ones for many-sorted intu-
itionistic predicate logic. The non-logical axioms &V«
consist of all the theorems &« plus’®

e r <y < Lessequ(z,y) =0,

o x=sol3z] Vo =s1]3z],

e Cond(z,a,b) =c«<
(x=0Na=c)V (~(z

and theinduction axionPIND“ (A4)
(A(0) A V(AL 57]) — AG) — VaA(@)

where A is of the form3y < ¢(s = «) and all the free-
variables oft have typeN. At this point we note that in
IPV«, for each quantifier-free formula$(xz) one can build
aterms such thalPV¥ - A(z) < sz = 0.

The systenTCPV¥ is obtained fromPV“ by adding all
instances of the law of excluded middlev —A.

In the following we shall make use of two further logical
principles, namely, thecheme of quantifier-free choice

QF-AC VaedyA(z,y) — IFhVz Az, ha),

andMarkov'’s principle

Mp« =3z A(z) — JrA(x),

where in both cased is a quantifier-free formula, and in the
case of Markov’s principle the variabtecan be of arbitrary
type. We shall use Markov’s principle in connection with
the negative translation of the syst€iaV« + QF-AC.

As shown in [5], the systerGPV“ contains a set dea-
sible coding functionsTherefore, one can for instance re-
place a sequence of quantifiers of the same kind by a singe
quantifier. For simplicity, we shall state results without
making it explicit that tuples of quantifiers are allowed.

The next lemma is a simple extension of the negative
translation ofCPV“ in IPV¥ + MP¥, given in [5] (Lemma
10.3), to include quantifier-free choice.

SLessequ(z,y) is a definable function oPV* which represents the
characteristic function of the inequality predicate.



Lemma 3.1 The theoryCPV* + QF-AC has a negative
translation inIPV« + MP“ 4+ QF-AC.

Since the functional interpretation 8P« and QF-AC
are trivial, we obtain the following extension of Theorem
10.4 of [5].

Lemma 3.2 Let A be a quantifier-free formula. If
CPV¥ + QF-AC + VadyA(x, y),

then from this proof one can extract a closed terof type
N — Nof IPV¥ such thalPV* I Vz A(z, tx).

Moreover, since the terms of tyg8 — N of IPV¥

denote polynomial-time computable functions, we get a
procedure from extracting polynomial-time realizers from

proofs of[19-theorems irCPV< + QF-AC.
3.1 The systenCPV* + QF-AC + I19-WKL*

As we have mentioned, the thed®y FA has as standard
model the set of finite 0-1 sequend®s This setting is par-
ticularly convenient for working with weak étiig’s lemma,
since the prefix relatiof is one of the primitives of the sys-
tem. The systen@PV¥, however, has the natural numbers

Tree(T) := Vw, v(T'(w) Av X w — T'(v)).

A function f : N — N is aninfinite pathif f(y) €
{0,1},forally, andf(0) =1, i.e.

Path(f) :=Vy(f(y) < 1) A £(0) = L.

We require thatf(0) = 1 since we shall view initial seg-
ments off as numbers, and finite 0-1 sequences of the form
0{0, 1}* do not correspond to valid natural numbers.

We say that an infinite patfibelongs to a tred” if every
initial segment off belongs tdT’, i.e. VyT(fy), where for
a given pathf, the functionf : N — N is defined as

_ 0 ify=0
fly) = { FO)f(1)...f(Al¥I=1)  otherwise.

Therefore, in the feasible setting of finite types weak
Kodnig's lemma for a predicatg is expressed as

{ Tree(T) AVyTw(|w| = |y| AT (w)) —

3f (Path(f) AVYT (f(y)))-

The predicate3ree andPath can actually be omitted via
the use of feasible operations (cf. [12]). The transformation

T!(w) := Yo < wT'(v),

as its standard model. Therefore, based on the bijective feamakes an arbitrary predicafeinto a tree7™. It is easy to

sible mapping; (which assign$ to € and positive numbers

show that if T'(w) is already a tree, thei(w) holds iff

to their binary expansion) between natural number and theT'(w) holds. Moreover, via the transformation

set of stringd {0, 1}* U {e}, we define the prefix relatio
in CPV“ as

r 2y :=n(w) Cny),

wherex,y are numbers. The prefix relatian in W is a
partial order which can be depicted as

11
1410
e/
\0<01

00

Notice that the binary words of the foré{0, 1}* are not

1 ify=0
friy) = { Parity(f(y)) otherwise,

we can make an arbitrary functigh: N — N into an in-
finite path f?. Again, if f is already a path thefi*(y) =
f(y), for all y. Using these transformations, weak{g's
lemma (in the language of higher typ&KL*(T") can be
stated as

VyJw(|w| = [y| AT (w)) — 3fVyT (fP(y). (1)

Since the formulation of weak dfiig’s lemma changes
from the setting of second order arithmetic to the setting
of finite types, we use the superscripfor the latter. The

valid binary representation of any natural number. There-two definitions, however, can be easily shown to be equiv-

fore, under the mapping, in N the prefix relation< gives
rise to the partial order
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A predicateT on numbers is said to defineteee if it
is closed under the prefix relation, i.e. whenevefl'(w)
holds andv < w thenT'(v) also holds. Formally

alent, i.e. one can define feasible functionals which given
the characteristic function of a path produces a patlf,
and vice-versa.

The transformatiorf — fP used above actually allows
for quantification over infinite paths. Therefore, in the fol-
lowing we takef as a meta-variable for infinite paths, and
omit the transformatiorf?.

In order to carry out the functional interpretation of
WKL (T) it will be particularly convenient to treat it as
an axiom (rather than an axiom schema)

WKLY : Vg WKL (gw = 0).



TheTl{-form of weak Konig's lemma is then stated as (N>N)—»N)-» (N->N)->N-=N,

We shall use the superscriptto differentiate between

. - . z if |[Yw,|<|w
Ferreira’s and our formulation of weakoKig’s lemma. [Vibe| < fw|

B(Y,W,z) = or [w:| # |2| )

3.2 BTFA VersusCPV + QF-AC B(Y,W,21) otherwise,
. ) . wherew, abbreviate$V z, and for a givenw € N, the func-

In the systenCPV*, using limited recursion on notation, o . . v — {0,1} is defined as

sharply bounded quantifiers can be absorbed by quantifier- '

free matrices. Therefore, fof quantifier-free, the subword oy w(yl) i Y| < w

quantification ofBTFA (which is definable irCPV+) can By) =1 otherwise.

be also absorbed by two applications of recursion, since

Qua C* tA(z) can be rewritten as The functionw denotes the infinite 0-1 sequence ob-
o tained by extending the binary expansioruofvith 0’s. In
Qy 2 tQz = yA(Interv(z,y,1)), order to make sure that always represents an infinite path

where the feasible functiomterv(z,y, z) returns all the  (as defined in Section 3.1), we need to consider the partic-
bits of z betweer|z| and|y|. In this way, the sw.q.-formulas ~ ular casew = 0, since0(0) = 0. Therefore, we change
of BTFA correspond to quantifier-free formulas OPV<. slightly the definition of and se0) = 1. Itis important to
The predicated can be easily defined using, so thatthe ~ Nnote, moreover, that for the functiai : N — {0, 1} only
formulasx? of BTFA correspond to formulas of the form the length of the argument is considered. This shall often

Jo < t(s = u) in CPV¥, be used since in a feasible setting functions should be com-
Moreover, the systeiPV“ + QF-AC proves compre-  puted in polynomial-time on the length of the input. In fact,
hension forA{-formulas in those cases it is more convenient to use the tally part of

N instead. We abstain from that in order to keep the basic

Vr(A(z) < =B(x)) — Ihve(he =0 — Az)), setup ofCPV* unchanged.

whereA, B € X9, which corresponds precisely td?-CA The main result of this paper is based on the fact that
of BTFA, and the following weaker form of bounded col- [IPV¥ is closed under the “rule version” of (2), i.e. if is
lection a closed term of typ& — (N — N) — N and® a closed

term of typeN — N — N then there exists a closed term
t : N — Nsuch thatz = B(Vz, ®x,0), for all z. In fact,
for A € Y. It does not seem to prove, however, the more even 0-1 oracles are allowed (cf. Lemma 4.4).

generab’ -BC.

One advantage ofPV¥ + QF-AC over BTFA is the Remark 4.1 Note that the functionals only applies the
availability of higher order functionals. In this way one can first argumentY” to 0-1 functions. Therefore, i¥; and
talk about transformation between numbers (objects of typeY> coincide on all 0-1 functions the8(Y;, W, z) =
N), real numbers and continuous functions (objects of type B(Y>, W, z), for all W and z.

N — N) in a straightforward way, as opposed to using en-

Vo < tIyA(z,y) — F2Ve <ty < zA(z,y),

codings with sets. Notice that the functiona(Y, W, z) can also be viewed
In Section 6 we shall illustrate how the syst&RVv« + as the unbounded search

QF-AC can be used for practical applications by sketching

the proof of Heine/Borel theorem iGPV* + QF-AC + miny ~ 21" (|[Yady| < [wy| V [wy| # [y]),  (3)

IT9-WKL.

wherew, abbreviate$l'y andy ~ z1™ means thay has the

same binary expansion agollowed by a finite number of

ones. The functionad has a flavour of bar recursion since

) ) the sequences,, on the “hat transformation” of which the
Howard showed in [9] that a simpler form of Spector's g nctionaly is applied, gets longer and longer as the recur-

[21] bar recursion was sufficient for giving a functional gy, progresses.

interpretation of the negative translation of wea&rkg’s For justifying this new form of binary bar recursion (2)

lemma. Howard’s proof, howev:er, (_does.not seem to be.suit-(or’ equivalently, for bounding the search (3)) we can, for
able for weak theories such&8/*, since it makes essential  j\stance, assurteoundedness of functionals of ty(é —

use of exponential search (cf. Section 7). For our consernvayy) _, N on 0-1 functions
tion result we shall add to the languagd®Y¥“ the constant
(of binary bar recursion having type BND : VY 3JuVa(Vo(a(v) <1) — |Ya| < |ul),

4 A simple form of (binary) bar recursion



which is a consequence of uniform continuity for function-
alsY : (N — N) — N on the Cantor space. The idea is
that, since|z| keeps increasing in the recursion (2), either
|w.| # |z| for somez, or the length ofw, also increases,
and eventually reaches the length of the boun@he con-
dition |Yw.| < |w.| is then satisfied. We shall neB#3ID in
the verification of our interpretation of wealoKig's lemma
(cf. Theorem 5.1).

For the rest of this section the variabte should be
viewed as a sequence of variables of tf}panda as a se-
guence of variables of ty@é — N.

Lemma 4.2 ([10], Lemma 5.4)For any closed term¥ of
typeN — (N — N) — N of IPV¥ there exist constants
c1 andcs such that for any: and 0-1 functiongx we have
|[Pzal < |z| + co.

Using Lemma 4.2 one can show thBY* is closed un-
der the “rule version” of (2).

Lemma 4.3 Let ¥ be a closed term of typl — (N —
N) — (N — N) — N and® a closed term of typ& —
(N —- N) - N — Nof IPV¥. Then, there exists a closed
term¢ : N — (N — N) — N such that for allz and for all
0-1 functionsy, tza = B(Yza, xa, 0).

Proof. Let ¥ and® be fixed. We shall defineé by lim-

ited recursion on notation. Let; and ¢y be such that
(cf. Lemma 4.2) for allx and 0-1 valued functions

and g, |Yzap| < |z|* + co. For a givenz, let d, de-

note the number having binary expansibtfil +<2, then
|ds| = |z]°* + c2. We then define two functions

ha (Y, 2) = {

where v abbreviatesChop(d,,y) and w, abbreviates
dxaw; andg, (y) := d., 1.€. g, is a constant function with
valued,. Finally, we definetza R0, by, s Ga» dss).-
O

v if [Pzad,| < |w,| or |wy| #wv
z otherwise,

The following lemma shows that arbitrary terms of type
N — (N — N) — N (on 0-1 functions) o (IPV¥) + {B}

denote polynomial-time computable functions with boolean

oracles.

Lemma 4.4 Lett[z, o] be aterm ofZ(IPV«) U {B} of type
N, having as only free-variablesand«, such that (for sim-
plicity) B is always applied to zero on the third argument.
Then, there exists a polynomial-time computable fundtion
(with 0-1 oracle) such that for all input and for all 0-1

all possible logical reductions on the tedm, o.t[x, o). We
get aterm\x, a.t1 [z, o such that; [z, o] is of the form:

e 0orx; (z; in the tuplex). We are done.

e g(ta]z,]), whereg is either one ofa or a func-
tion symbol of IPV“. By induction there exists a
polynomial-time computabli, such that for all inputs
2 and 0-1 oracles, ha(x,«) = t2[x, . Hence, for
all inputsz and 0-1 oracles, h(z, ) := g(ha(z, )
does the job.

o R(ta[z,al,ts[x, o, ts|z, a], t5]z, a]). The terms
to[x, ] andts[z, o] are again typ&N, and by induc-
tion there are polynomial-time computable functions
ha(z, ) and hs(z,«) which coincide withts[z, o
andts[xz,a] on all inputsz and 0-1 oracles.. The
termsts[z, o] andty[z, o] are of typeN — N — N
andN — N respectively. We therefore add an extra
variablesy and z to bring them to typeN. By in-
duction there are polynomial-time computable func-
tions hs(x,y,z,«) and hy(z,y,«) which coincide
with ¢z, alyz andis[x, o]y on all inputsz, y, z and
0-1 oraclesy. Then, for all inputse and 0-1 oracles
the polynomial-time computable function

h(z, ) := R(haza, Ay, z.hszyza, \y.hazya, hsza)
does the job.

o B(Us[z, ], t3[x,a],0). The term¥yx, o] is of type
(N - N) — N. Let 3 be a variables of type
N — N. By induction there exists a polynomial-
time computabléi, such that for all inputs: and O-
1 oraclesa, 3, ho(z,a, 8) = VUsx,a]B. The term
ts[z,a] is of typeN — N. Adding an extra vari-
able to bring it to typeN we obtain, by induction
hypothesis, that there exists a polynomial-time com-
putablehs such that for all inputs;, y and 0-1 oracles
a,hs(z,y,a) = ts[z,aly. By Lemma 4.3 and Re-
mark 4.1, there exists a polynomial-time computable
h such that for all inputg and 0-1 oracle&

B()\ﬁhg(ﬂ?, aaﬁ)7 )‘yh3(ma Y, Oé), 0)
B(\IIQ[:Ca Oé],tg[lﬂ, 0‘]7 O) U

h(z, @)

5 Interpreting I19-WKL*

We shall now present the functional interpretation (via
negative translation) dEPV« + QF-AC + IT19-WKL® in the

systemPV* extended with a constant symt®|BND and
the axiom (2).

oraclesa, h(z, o) = t[z, a].

Proof. The proof follows closely the normalisation argu-
ment given in the proof of Proposition 4.2 in [14]. In the fol-
lowing we saypolynomial-time computabfer polynomial-
time computable with 0-1 oracléNe start by carrying out

Theorem 5.1 The theoryCPV“ + QF-AC + TI9-WKL"
has a functional interpretation (via negative translation) in
IPV“ + BND + (2).



Proof. By Lemma 3.1, we just need to show that
IPV + MP* + QF-AC + (Vg WKL* (Vz(gwz = 0)))V

has a functional interpretation IRV + BND + (2). The

functional interpretations oMP“ and QF-AC are trivial.

Let T'(w, z) abbreviatevv < w(gvz = 0). The negative
translation offg WKL (Vz(gwz = 0)) gives

3y, z==T(f(y), 2)),
which is equivalent to

{ Vg(Vy——3w(|w] = [y| AV2T(w, 2)) —

{ —=Vg==(Vy=—Jw(lw| = |y| AVz—=T(w, 2)) —

~=3fVy, 2T(f(y), 2)),

Since we shall give realizers independently of the free
henceforth omit the quantifier over Then

{ Vy—w(wl = [y A V2T (w, 2)) —

_‘_Elnya ZT(f(y)v Z)v
has the functional interpretation (in three steps)

{ Yy, hdw(|w| = |y| AT (w, hw)) —

VY, Z3fT(f(Y [), Zf),

{ AWy, h((Wyh| = |y| AT (Wyh, h(Wyh))) —
VY, Z3fT(f(Y f), Zf),

VW.Y,Z3y,h, f
(IWyh| = |yl AT(Wyh, (Wyh)) —
T(f(Yf).Zf)).

Uniformly in W, Y, Z we producey, h and f satisfying

(Wyh| =yl AT(Wyh, \(Wyh)) — T(f(Y f), Zf).

Define| h(w) := Z(w) |and letw, abbreviatdVyh. Now,
we need to producgand f satisfying

wy| = |yl AT (wy, Z(iy)) — T(F(Y ), Z]).

Define‘ y = B(Y, \y.Wyh,0) ‘ By BND one can prove
that

[Yidy| < fuwy|V |wy| # [y-

Finally, defin. Then, assumingw, | = |y|, we
havef (Y f) < w,, and

T(wy, Zf) = T(f(Y ), Zf)

follows from the fact thaf is a tree. O

Combined with Lemma 4.4, Theorem 5.1 gives an effec-

tive procedure from extracting polynomial-time algorithms
from WKL-proofs ofI19-theorems in feasible analysis.

Corollary 5.2 Let A be a quantifier-free formula. From
a proof of Vz3yA(z,y) in the systenCPV* + QF-AC +
I1Y-WKL® one can extract a polynomial-time computable
functionh such that for alle, A(x, ha) is true.

Proof. Via negative translation and functional interpreta-
tion one can extract a termof L(IPV¥) + B such that
IPV¥ + BND + (2) + VxA(z,tx). By Lemma 4.4 the
recursor3 can be eliminated from giving rise to a ternk

of L(IPV¥) such thailPV¥ + BND + (2) + VzA(x, hx).
Scarpellini’'s [17] type structure of all continuous set-
theoretical functional€ is a model ofPV* + BND + (2).
Therefore, since& coincides with the full type structure
in the types zero and one, the conclusion of the corollary
follows. O

We have used Lemma 4.4 in the above proof in order
to verify that the termt denotes a polynomial-time com-
putable function. Notice, however, that in the present con-
text the binary bar recursiofi has the same computational
behaviour as the limited recursion on notation by which it
gets replaced. Therefore, for practical applications, when
one is only interested in obtaining a polynomial-time com-
putable realizer for the giver-theorem, we can directly
use the program, avoiding the normalization procedure
used in Lemma 4.4.

We can strengthen Corollary 5.2, by noticing that
Lemma 4.4 holds even for terntswhich have 0-1 oracle
variables.

Corollary 5.3 Let A be a quantifier-free formula. From a
proof ofVaVz3Iy A(«, z,y) in the systendPV« + QF-AC+
IY-WKL“ one can extract a polynomial-time computable
function (with 0-1 oracle} such that for all 0-1 oracles
and inputz, A(«, x, hax) holds.

Notice that, in order to turn the above results iobmser-
vation resultsone needs furthermore to show thav« +
BND + (2) is I13-conservative ovelPV<.

6 The Heine/Borel covering lemma

In this section we indicate how to formalize @GPV« +
QF-AC + I19-WKL" the proof of the Heine/Borel covering
lemma. Our formalization follows closely the ones given in
[7] (Theorem 1) and [20] (Lemma IV.1.1).

In the systenCPV* we shall represent thally part of
N (to be used as unary numbers)Tas Those are natural
numbers having binary expansion in the fotth In the
following we use variable, j andn to range ovefT, and
p, q to range ovefQ. Real number®R are represented via
functionsy : T — Q satisfying

VZ,](Z <rj— AbS(@/)(i) —Q 1/)(])) < 2*1’)7



whereAbs(q) returns the absolute value of a rational num-
ber. A real numben), is said to besmallerthani,, written
Y1 <g 1o, if

Fi(1(i +11) + 27 <g ta(i +11)).

The Heine/Borel covering lemma says that if a sequence

of open set$y -, 1 2);cr covers the unitintervdl, 1], then
an initial segment of the sequence already colers.

Theorem 6.1 The following is provable inCPV¥ +
QF-AC + I19-WKL". Given two sequences of real numbers

(WE)ier and (), if
Vi € [0,1]3i(Yf < ¢ <r ®f)
thenInvy € [0,1]3i < n(Pl <g ¢ <g ¥F).

Proof. For each positive number € N (having binary ex-
pansiorb,,b,,_1 ... by with b,,, = 1) we define two rational
numbers, written for simplicity in radix notation,

Pw = 0.b,,—1 . ..bg,
quw = O-b’m—l . bO 4 2—m,

For completeness we sg§ := p; andqy := ¢;. That s,
for each positive humbet» we have partitioned the unit
interval [0, 1] into 2™ subintervals of lengtB—". Let

T(’LU) = ﬂa’t(l < |U}| A ?ﬂZL <R Pw <R qw <R sz)

It is easy to show thal'(w) defines a tree, i.e. iT'(w)
holds andv < w thenT(v) also holds. Moreover, notice
thatT (w) is I19. Assuming that

() Vo € [0,1]Fi(¥} < ¥ <r ]

we claim thatl” has no infinite path. For the sake of contra-
diction, assumg is an infinite path ifl". Define then the
real number) as (in radix notation)

PYn):=0.f(1)... f(n—11).

Note that for allj € T, p7; < ¥ < a5, and moreover, as
j increases botp?j andq?j converge tap. For suchy, let

i be as in assumptiofx), i.e. ¥F <g ¥ <g Y. Letn be
so large that < n andy” <w p5, <wr ¢7, <r ¢*. Then

—T'(fn), which proves the claim. By weakdfiig’s lemma
it follows thatT is finite. Letn € T be such that

Yw(T (w) — |w| < n).
Therefore
Vw(lw| = n — Ji < n(F <g pw <w ¢w <z V1)),
which implies

Invy € 0,1)3i < n(df <p ¢ <g ¥F). O

7 Related results and open problems

As mentioned above, Howard [9] gave a functional inter-
pretation (of the negative translation KL using a dif-
ferent form of binary bar recursion, namely

0 ifYZz<|
H _ <
B(Y,2) = { t otherwise,

wheret = 1 + max{B*(Y,20),B%(Y,21)}. Note that
BH(Y,0) can also be defined in terms of unbounded search
as

min nVw(|jw| =n — Iz K w(Y2 < |z2])).

(4)

As opposed to the matrix of the search (3), which is asso-
ciated tos, the above unbounded search apparently requires
at each step of the computation an exponential search. This
reflects, as we shall see, the fact that Howard interpretation
of WKL does not take bounded quantifier into considera-
tion.

In the following let7'(w) abbreviate’v < w(gv = 0).
Consider the negative translation\&KL (over intuitionis-
tic logic andMP«)*

Yg(Vn--3w(|w| = n A T(w)) — —=3f¥nT(fn)).

In a system where exponential search is available, the
bounded quantifiefw(jw| = n A ...) can be absorbed by
guantifier-free matrices and functional interpretation does
not witness it. Hence, in this case the functional interpre-
tation of WKLY asks forn and f (uniformly in g andY’)
realizing

Vg, Y3n, fQuw(jw] =n AT (w)) = T(f(Y ).

The functionalB¥ is used to realizex by settingn :
BH(Y,0). Then, in order to producg satisfying

Vg, Y3f (Gu(jw| = n AT(w)) — T(f(Y 1)),

one looks for aw of lengthn such thatT'(w) holds. If
suchw is found, meaning that the premise holds,ddie
the shortest prefix ofv such thatt's < |v|. We then set
f:=1,sothat(sinc& f = Yo < |v| < n) the conclusion
also holds. If no suchy exists we can safely takgto be an
arbitrary path.

It is important to note that Howard’s work concerns sys-
tems in which exponential search is available, i.e. bounded
guantifiers can be absorbed by quantifier-free matrices. In
the present context of feasible analysis, negative transla-
tion and functional interpretation need to take such quanti-
fiers into consideration. Notice, however, that by taking the
guantification overw into consideration we obtain a new

4In stronger settings the operatigris normally defined as
ifn=0
otherwise.

— 0
f”*:{fmyuﬂnfn



functional as input¥l’ in the proof of Theorem 5.1) which
we could use to realizg and f in afeasible wayby using
the simpler search (3) instead of (4).

An interesting follow-up of the present paper is to find
ineffective proofs ofl13-theorems which can be formalized
in CPV*+QF-AC+I19-WKL®, and carry out the extraction
of polynomial-time algorithms (cf. [15] where, in the con-
text of classical analysis, a proof based\WiKL has been
analyzed providing the first effective realizer for the theo-
rem). It would be also interesting to investigate whether
Kohlenbach’s proof ofVKL elimination can be translated
to the feasible setting, by making a more careful treatment
of bounded quantifiers.

The author has been recently informed by Avigad
that Sieg's proof of WKL elimination was successfully
translated to the feasible setting by Kauffmann [11],
using an extension d} with 0-1 function variables and
guantifier-free choice for those functions. In fact, by mak-
ing use of Parikh’s lemma, Kauffmann obtains an effective
WKL elimination for trees defined by arbitrary bounded
formulas. This provides another effective procedure for
extracting polynomial-time realizers frokVKL-proofs in
feasible analysis, via an initial elimination YKL from
the proof. It should be noticed, however, that our algorithm
produces a polynomial-time realizatirectly from the
original WKL-proof, without having to initially go through

the elimination procedure. Moreover, our approach has a[15]

finite type theory as basis and enjoys fiad modularity
of the negative translation and functional interpretation,

whereas Sieg’s proof, as well as Parikh’s lemma, are based[16]

on cut-elimination.
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