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Abstract

A retraction from a structure P to its substructure Q is a homomorphism from P onto Q that is
the identity on Q. We present an algebraic condition which completely characterises all posets and all
reflexive graphs Q with the following property: the class of all posets or reflexive graphs, respectively,
that admit a retraction onto Q is first-order definable.
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1 Introduction

Let π be a vocabulary that may contain only relation and constant symbols. Throughout the paper we use
the same boldface and slanted capital letters to denote a structure and its universe, respectively. Recall that
a homomorphism from a π-structure P to a π-structure Q is a mapping h from P to Q such that, for any
relation symbol R in π, we have h(x) ∈ RQ whenever x ∈ RP, and, for any constant symbol c ∈ π, we
have h(cP) = cQ. If, in addition, Q is a substructure of P and h fixes every element of Q then h is said to
be a retraction.

Homomorphism and retraction problems have been an object of intensive study in combinatorics, logic,
and computer science. The homomorphism problem for a fixed π-structure Q (denotedHom(Q)) is whether
a given π-structure P admits a homomorphism to Q. The retraction problem for Q (denoted Ret(Q)) is
defined similarly. The homomorphism and retraction problems are equivalent to constraint satisfaction
problems that are much studied in computer science (and, in particular, in finite model theory) and artificial
intelligence (see, e.g., [5, 7, 14, 33]).

Note that Hom(Q) and Ret(Q) can be viewed as classes of structures that admit a homomorphism or
retraction, respectively, to Q. Hence one can try to describe these classes (or their complements ¬Hom(Q)

∗A short version of this paper appeared in the Proceedings of the 19th Symposium on Logic in Computer Science (LICS 2004).
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and ¬Ret(Q)) in various logics (see, e.g., [1, 8, 9, 14, 22]). In this paper, we will describe the complements
because they are homomorphism-closed and it is perhaps more customary to consider homomorphism-
closed classes (see, e.g., [14, 15]). If Q is a structure over the relational vocabulary π, andQ = {q1, . . . , qk}
then, in order to describe Ret(Q) or ¬Ret(Q) in logics, it is natural to consider structures over the vo-
cabulary σ = π ∪ {c1, . . . , ck} obtained from π by adding k constant symbols c1, . . . , ck, viewing Q as a

σ-structure such that cQi = qi for all i, and assuming that all σ-structures P under consideration contain Q,

that is, the constants interpret in P as a substructure isomorphic to Q under the map cPi �→ qi. A closely
related problem to Ret(Q) is the one-or-all list homomorphism problem which can be viewed as the ho-
momorphism problem, where, in addition, each element of the input structure is assigned a list of possible
target values in Q, and each of these lists consists either of a single element or of Q itself. More formally,
let τ = π ∪ {R1, . . . , Rk} where R1, . . . , Rk are unary relation symbols, and view Q as a τ -structure with

R
Q
i = {qi} for all i. We denote by Homτ (Q) the class of all τ -structures P admitting a homomorphism to

Q (as a τ -structure). Such problems have been considered for graphs (see, e.g., [13]). It is easy to notice that
from the computational complexity point of view Ret(Q) and Homτ (Q) are always equivalent. However,
it is not so evident, if true at all, that these problems have the same descriptive complexity (that is, for any
logic L, they are definable or not definable in L simultaneously).

In this paper we will consider two important special cases of problems Ret(Q) and Homτ (Q): those
where π consists of a single binary relation symbol and Q is either a poset or a reflexive (undirected) graph.
(Note that Hom(Q) for such structures is trivial). Retractions play an important role in the structure theory
of graphs and orders [11, 17, 18]. The computational complexity of these problems has been extensively
studied [13, 14, 16, 23, 27, 31] in an attempt to distinguish tractable cases from NP-complete ones. However,
this seems to be a very difficult problem in general because it is known [13, 14] that every constraint satisfac-
tion problem can be encoded as Ret(Q) for a suitable poset or for a suitable reflexive graph Q, and general
constraint satisfaction problems are known to be very difficult to classify. Here we will study the descriptive
complexity of these problems: classify problems Ret(Q) and Homτ (Q) (for all possible Q) with respect
to definability in a given logic L. More specifically, we take L to be the most studied logic FO (first-order
logic), and we give a complete classification for this case. Atserias [1] characterized all first-order defin-
able problems of the form Hom(Q), where Q is any finite structure, as those having finitary duality (see
also [29]). The results of [1] concern a larger class of problems than the one considered in this paper, but our
characterization is different and more explicit – in particular, it implies that reflexive graphs and posets Q
for which problems Ret(Q) and Homτ (Q) are first-order definable can be recognized in polynomial time.
We remark that our results are also similar in spirit to the classification of Fixed Subgraph Homeomorphism
problems for directed graphs with respect to definability in logical program language Datalog( �=) and in the
infinitary logic Lω∞,ω(�=) [20, 21].

Our proofs are based on algebraic and combinatorial characterisations of certain graphs and posets [24,
25, 26] and on the Ehrenfeucht-Fraı̈ssé method for proving inexpressibilty in FO [12, 20]. An n-ary op-
eration f on a relational structure Q is said to be a polymorphism of Q if it is a homomorphism from the
Cartesian power Qn to Q. For posets and graphs, this means that if a, b ∈ Qn are such that (ai, bi) ∈ θ for all
i (where θ is the relation in Q) then we also have (f(a), f(b)) ∈ θ. If f is a polymorphism of a poset then f
is also said to be monotone on it. We now define operations that play a most important role in this paper. An
n-ary (n ≥ 3) operation f satisfying the condition that, for any a, f(x1, . . . , xn) = awhenever at least n−1
of the xi’s are equal to a is called a near-unanimity (NU) operation. It is known that, for relational struc-
tures with a NU polymorphism, the problem Hom(Q) can be solved in polynomial time [14, 19]. For the
sake of brevity, we shall call posets or graphs with a NU polymorphism NU-posets and NU-graphs. Along
with connectedness, this will be the property responsible for FO-definability (see Theorems 3.1 and 4.1).
It was shown in [24, 25, 26] that for connected posets and reflexive graphs, this property is equivalent on
the one hand to the finiteness of obstructions for Homτ (Q), which we use to prove FO-definability, and
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on the other hand to connectedness of certain substructures in powers of Q, which we use together with the
Ehrenfeucht-Fraı̈ssé method to show that the NU property is also a necessary condition for FO-definability.

The NU property has attracted much attention in algebra and combinatorics (see, e.g., [4, 10, 19, 24, 25,
26, 34]). Examples of reflexive NU-graphs include all chordal reflexive graphs while no reflexive cycle of
length at least 4 has a NU polymorphism [4]. A poset is called a lattice if every pair of its elements has a
least upper bound and a greatest lower bound. Lattices are the simplest examples of NU-posets. Examples
of posets without NU polymorphisms are non-dismantlable posets, including all posets in which every non-
minimal element covers at least two elements, and every non-maximal element is covered by at least two
elements (e.g., crowns in Fig. 2) [26]. A combinatorial characterisation of (reflexive) NU graphs and NU
posets was obtained in [25, 26] (see Theorem 2.1).

Note that it is not possible to bound the arity of NU polymorphisms to define NU-graphs or NU-posets,
since by results of [4, 10], for every n ≥ 3, there is a NU-poset and a reflexive NU-graph having no NU
polymorphisms of arity less than n. On the positive note, NU-graphs and NU-posets can be recognized in
polynomial time (in the size of the structure) [24, 25].

2 Preliminaries

Fix a structure Q = 〈Q; θ〉 where Q = {q1, . . . , qk} and θ is a binary relation on Q. There are two
vocabularies that we consider throughout:

• σ = {E, c1, . . . , ck} consisting of one binary relation symbol E and k constant symbols c1, . . . , ck;
and

• τ = {E,R1, . . . , Rk} consisting of one binary relation symbol E and k unary relation symbols
R1, . . . , Rk.

The structure Q will also be interpreted both as a σ-structure and a τ -structure, where EQ is θ, cQi is qi
and RQ

i is {qi} for all 1 ≤ i ≤ k. It will always be clear from the context which vocabulary is assumed.
Similarly, any σ-structure P can be viewed as a τ -structure with RP

i = {cPi }.
As mentioned above, we consider the following two cases for Q: (A) Q is a graph, which we assume to

be reflexive (i.e. with all loops) and symmetric (i.e. undirected) or (B) Q is a poset, i.e. where θ is reflexive,
anti-symmetric and transitive.

A σ-structure P is said to contain Q if the constants interpret in P as a substructure isomorphic to Q
under the map cPi �→ qi.

Our results will rely on the following concept of obstruction (also called zig-zag in the case of posets)
introduced in [34]. We define a partial ordering on τ -structures as follows: we write that H � H′ if (i)
H ⊆ H ′, (ii) EH ⊆ EH′

and (iii) RH
i = RH′

i ∩H for all 1 ≤ i ≤ k. Clearly if H � H′ then the inclusion
map is a homomorphism from H to H′.

An obstruction for the graph (resp. poset) Q is a τ -structure H where H is a graph (resp. poset) such that
(1) there is no homomorphism (of τ -structures) from H to Q, (2) H is minimal with respect to property (1)
(in the ordering �) and (3) the unary relations in H are pairwise disjoint. It is clear that for any τ -structure
P which is a graph or poset, there is no homomorphism from P to Q if and only if some unary relations of
P intersect or H � P for some obstruction H for Q. Note that there are other notions of obstruction used
in the study of homomorphisms (see, e.g., [8]).

We shall also need the following notion from universal algebra: let Q be a graph (resp. poset) and
let n ≥ 1: Qn denotes the Cartesian power of Q, that is, (a, b) ∈ EQn

if and only if (ai, bi) ∈ θ for
all 1 ≤ i ≤ n. An idempotent subalgebra of Qn is a subset X ⊆ Qn that can be described as follows:
there exists a triple (Y, (y1, . . . , yn), γ) where Y is a graph (resp. poset), yi ∈ Y for all i = 1, . . . , n and
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γ is a partial map from Y to Q with domain Y ′ with the following property: X consists of all n-tuples
(δ(y1), . . . , δ(yn)) where δ : Y → Q runs through all edge-preserving (resp. monotone) maps whose
restriction to Y ′ is equal to γ.

The name “idempotent subalgebra” comes from an equivalent algebraic description which goes as fol-
lows. An m-ary operation f on Q is called idempotent if f(x, . . . , x) = x for all x ∈ Q. A subset X ⊆ Qn

is an idempotent subalgebra of Qn if and only if it is preserved by all idempotent polymorphisms of Q, that
is, f(a1, . . . , am) ∈ X for all m-ary idempotent polymorphisms f of Q and all a1, . . . , am ∈ X , m ≥ 1,
where f acts on tuples componentwise.

Another equivalent defintion for idempotent subalgebras is that they are exactly those subsets X of Qn,
n ≥ 1, which can be defined by primitive positive first-order formulas (with n free variables) in Q (as a
τ -structure). Equivalence of the last two definitions follows from Theorems 1.2.3 and 2.1.3 in [30], while
equivalence of the first and the third definitions is rather straightforward.

A combinatorial characterisation of NU posets and NU graphs is based on the notion of dismantling. A
graph G1 is said to dismantle to its subgraph G2 if there is a sequence G′

1, . . . ,G
′
n of subgraphs of G1 such

that G′
1 = G1, G′

n = G2, and, for i = 1, . . . n− 1, G′
i+1 is obtained from G′

i by removing a vertex vi such
that vi is dominated by some other vertex ui in G′

i (i.e., every neighbour of vi, including vi itself, in Gi is
also a neighbour of ui). Similarly, a poset P1 is said to dismantle to its subposet P2 if there is a sequence
P′

1, . . . ,P
′
n of subposets of P1 such that P′

1 = P1, P′
n = P2, and, for i = 1, . . . n − 1, P′

i+1 is obtained
from P′

i by removing a vertex vi such that vi is dominated by some other vertex ui in the comparability
graph of P′

i. If Q is a graph or a poset, then the diagonal of Q2 is its subgraph (subposet, respectively)
induced by all nodes of the form (x, x). It is easy to see that the diagonal of Q2 is isomorphic to Q.

The following result was proved in [24, 26] for posets and in [25] for graphs.

Theorem 2.1 Let Q be a connected graph or poset. Then the following are equivalent:

1. there are finitely many obstructions for Q;

2. Q admits an NU polymorphism (of some arity);

3. for every n ≥ 1, every idempotent subalgebra of Qn is connected;

4. Q2 dismantles to its diagonal.

Note that, for posets, it is enough to take to n = 1 in condition 3 of the above theorem [26], but, for
graphs, we need to consider all n ≥ 1 [25].

We also need the following: if P is a σ- or τ -structure, let P denote its symmetric, reflexive closure, i.e.
the similar structure on the same universe such that (x, x) ∈ EP for all x ∈ P and (x, y) ∈ EP whenever
(x, y) ∈ EP or (y, x) ∈ EP. The following is immediate: there is a homomorphism from P to the graph
Q if and only if there is a homomorphism from P to Q; and if there is a homomorphism from P to P′ then
there is one from P to P′.

Finally, we define for each τ -structure a sentence in the language of τ which will encode the given
structure, see [6] and [9]: let H be a τ -structure and let H = {h1, . . . , hl}. Denote by TH the τ -sentence

∃xh1 . . .∃xhl
(
∧
E(xh, xh′)) ∧ (

∧
Ri(xh))

where the first conjunction is taken over all pairs (h, h′) ∈ EH and the second over all h ∈ RH
i and all

1 ≤ i ≤ k.
When the structure has the property that its unary relations are pairwise disjoint and each contain at most

one element, we can define a sentence in the language of σ which will encode the given structure: let H be
such a τ -structure. Denote by H ′ the set of all h ∈ H such that h �∈ RH

i for all i. For every h ∈ H , set

4



hf = xh if h ∈ H ′ and hf = ci, where h ∈ RH
i otherwise. Suppose H ′ = {h1, . . . , hs}. Denote by SH the

σ-sentence
∃xh1 . . .∃xhs(

∧
E(hf , h′f ))

where the conjunction is taken over all pairs (h, h′) such that (h, h′) ∈ EH.
The first statement in the next lemma is a special case of a result in [6]. Both proofs are staightforward.

Lemma 2.2 Let H and P be τ -structures and let P′ be a σ-structure.

1. the sentence TH is true in P if and only if there is a homomorphism from H to P;

2. if cP
′

i �= cP
′

j whenever qi �= qj , and RH
i contains at most one element for all 1 ≤ i ≤ k, then the

sentence SH is true in P′ if and only if there is a τ -homomorphism from H to P′.

3 Graph retraction problems in FO

In this section Q is a graph. Recall that by a graph we always mean a reflexive graph. Let ¬Ret(Q) denote
the class of all σ-structures that contain Q but do not retract onto Q. Let ¬Homτ (Q) denote the class of all
τ -structures that do not admit a τ -homomorphism to Q.

Our main result for graphs is the following:

Theorem 3.1 Let Q be a graph. Then the following conditions are equivalent:

(1) the class ¬Ret(Q) is FO-definable;

(2) the class ¬Homτ (Q) is FO-definable;

(3) Q is a connected NU-graph.

Moreover, if any of these conditions holds then both of the above classes can be defined by a first-order
formula that contains neither negation nor universal quantification.

Note that the last statement of the theorem can also be obtained by combining the first part of the theorem
with the Finite Homomorphism Preservation Theorem [32] recently proved by Rossman.

We shall require the following notion from finite model theory (see [12] Definition 2.3.1):
Definition. Let A and A′ be two structures over the same vocabulary, and let m be a non-negative

integer. We say that A and A′ are said to be m-isomorphic if there exists a sequence (Ij)j≤m with the
following properties:

1. Every Ij is a non-empty set of partial isomorphisms from A to A′;

2. (Forth property) For every j < m, p ∈ Ij+1 and a ∈ A there is a q ∈ Ij such that q is an extension of
p and a is in the domain of q;

3. (Back property) For every j < m, p ∈ Ij+1 and b ∈ A′ there is a q ∈ Ij such that q is an extension of
p and b is in the range of q.

The following result is well known (see Theorem 2.2.12 and Corollary 2.3.4 of [12]).

Proposition 3.2 Let K be a class of finite structures such that, for every m ≥ 1, there are m-isomorphic
structures Am and A′

m with Am ∈ K and A′
m �∈ K. Then K is not FO-definable.

The main technical result used in the proof is the following lemma:
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Proposition 3.3 Let Q be a graph. If Q is not connected or admits no NU polymorphism then, for every
integer m ≥ 1, there exist graphs P and P′ with the following properties:

(i) P and P′ contain Q;

(ii) P and P′ are m-isomorphic (as σ- or τ -structures);

(iii) P retracts onto Q but P′ does not.

The proof of Proposition 3.3 is found in Section 5.

Proof of Theorem 3.1. It follows from Propositions 3.2 and 3.3 that if Q is either disconnected or does
not admit an NU polymorphism then none of the two classes are FO-definable. So now assume that Q is
connected and admits an NU polymorphism. First we show that (2) holds. We build a sentence as follows:
by Theorem 2.1, there exist finitely many obstructions for Q, say H1, . . . ,Hm. Note that the Hi’s are
obstructions in the class of all reflexive graphs, and general τ -structures are not necessarily reflexive graphs
(with added unary relations), hence we consider the following sets. For every 1 ≤ i ≤ m, let L(Hi) denote
the set of all τ -structures G such that G = Hi. Consider the sentence

(
m∨
i=1

∨
G∈L(Hi)

TG) ∨ (∃x(
∨

1≤i�=j≤k
(Ri(x) ∧Rj(x))),

where TG is as defined in Section 2. We claim that this sentence captures precisely those τ -structures that
admit no homomorphism to Q. Indeed, suppose that the sentence is true in a structure P. If the second
part of this sentence is true in P then trivially there is no homomorphism from P to Q. Assume that the
second part is false. This means that TG is true in P for some structure G such that G = Hi for some
i. Hence by Lemma 2.2 there exists a τ -homomorphism from G to P, and consequently a homomorphism
from Hi to P. It follows that we cannot have a τ -homomorphism from P to Q. Conversely, suppose that
there is no homomorphism from P to Q and that the unary relations in P are pairwise disjoint; thus there
is no homomorphism from P to Q and hence there exists some i such that Hi � P. We show that there
exists some G ∈ L(Hi) that admits a homomorphism in P. Indeed, we create a substructure G of Hi by
setting G = Hi, EG = EHi ∩ EP and RG

j = RHi
j for all 1 ≤ j ≤ k. Clearly G is a substructure of P and

furthermore G = Hi, since for each edge (x, y) ∈ EHi with x �= y, we have that either (x, y) or (y, x) is
in EP. Thus the sentence TG is true in P.

Next we show that (1) holds. Let L′(Hi) denote the set of all τ -structures G such that G = Hi, and
such that each RG

i contains at most one element of G. Consider the sentence

m∨
i=1

∨
G∈L′(Hi)

SG,

where SG is as defined in Section 2. We claim that a σ-structure P containing Q does not retract onto Q if
and only if this sentence is true in P. Suppose that SG is true in P for some τ -structure G ∈ L′(Hi). By
Lemma 2.2 there is a τ -homomorphism from G to P, and hence from Hi to P; consequently there cannot
be a τ -homomorphism from P to Q; and hence no retraction either.

For the converse, suppose that there is no retraction of P onto Q, i.e. there is no σ-homomorphism from
P to Q; then there is no τ -homomorphism either, and so there is no τ -homomorphism from P to Q. Now
proceed exactly as in the proof of (2): there exists an obstruction Hi of Q such that Hi � P; and simply
notice that, since P is a σ-structure, the τ -structure G produced as above will have at most one element in
each unary relation.
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4 Poset retraction problems in FO

In this section Q is a poset. Let ¬PoRet(Q) denote the class of all posets that contain Q that do not retract
onto Q. Let ¬PoHomτ (Q) denote the class of all posets that do not admit a τ -homomorphism to Q.

We consider PoRet(Q) rather than Ret(Q) for the following reason: Ret(Q) is not FO-definable for
any poset Q with more than one element. Indeed, it follows from the proof of Theorem 4.1 that if Q is
not connected then Ret(Q) is not FO-definable. Assume that Q is connected and fix elements a < b in
Q such that a is minimal and b is maximal. One can slightly modify the construction in Exercise 2.3.9
of [12] to obtain m-isomorphic structures with the desired properties. Let Pn be the structure obtained
from Q by adding to EQ pairs forming two sufficiently long oriented (reflexive) paths an, . . . , a1 = a and
b = b1, . . . , bn and also add a sufficiently long oriented (reflexive) cycle C not connected with the rest of
the digraph. Let P′

n be the structure obtained from Pn by adding the pair (bn, an) to EPn and removing one
arc from the cycle C. Clearly, Pn retracts onto Q (by sending all ai’s to a and all bi’s and C to b) while P′

n

does not (because it contains a cycle with a and b in it). One can show that, for every m ≥ 0, there is a
sufficiently large n such that Pn and P′

n are m-isomorphic, which implies that, by Proposition 3.2, Ret(Q)
is not FO-definable.

The problem PoRet(Q) has been studied in connection with type reconstruction [2, 28] and constraint
satisfaction [14, 23], and is a natural choice for a restriction of Ret(Q).

Our main result for posets is the following:

Theorem 4.1 Let Q be a poset. The following conditions are equivalent:

1. the class ¬PoRet(Q) is FO-definable;

2. the class ¬PoHomτ (Q) is FO-definable;

3. Q is a connected NU-poset.

Moreover, if any of these conditions holds then both of the above classes can be defined by a first-order
formula that contains neither negation nor universal quantification.

Similarly to Theorem 3.1, the last statement of the theorem can also be obtained by combining the first
part of the theorem with the Finite Homomorphism Preservation Theorem.

The proof of the result is similar to the graph case, with two notable differences: first, the glueing
construction we use in the poset case is more involved than in the case of graphs, because we must guarantee
that the resulting structure is transitive. On the other hand, it has been shown in [24] that if a connected poset
Q admits no NU polymorphism then it has a disconnected idempotent subalgebra, so we do not need to
consider higher powers of Q (this result is not valid for graphs, see [25]). The rest of the proof of Theorem
4.1 is quite similar to that of Theorem 3.1 (and is in fact slightly simpler because there is no need to consider
symmetric reflexive closures of relations). The main technical result used in the proof is the following
proposition, proven in Section 6.

Proposition 4.2 Let Q be a poset. If Q is not connected or admits no NU polymorphism then, for every
integer m ≥ 1, there exist posets P and P′ with the following properties:

1. P and P′ contain Q;

2. P and P′ are m-isomorphic (as σ- or τ -structures);

3. P retracts onto Q but P′ does not.

7



Proof of Theorem 4.1. Just as in Theorem 3.1 it is immediate from Lemma 4.2 that if Q is either dis-
connected or admits no NU polymorphism then ¬PoRet(Q) and ¬PoHomτ (Q) are not FO-definable.
So now assume that Q is connected and admits an NU polymorphism. First we show that (2) holds. We
build a sentence as follows: by Theorem 2.1, there exist finitely many obstructions for Q, say H1, . . . ,Hm.
Consider the sentence

(
m∨
i=1

THi) ∨ (∃x(
∨

1≤i�=j≤k
(Ri(x) ∧Rj(x))).

We claim that this sentence captures precisely those posets that admit no τ -homomorphism to Q. Indeed,
suppose that the sentence is true in the structure P. If the second part of this sentence is true then trivially
there is no homomorphism, so assume that is is false. This means that THi is true in P for some i. Hence
there exists a τ -homomorphism from Hi to P. It follows that we cannot have a τ -homomorphism from P
to Q. Conversely, suppose that there is no homomorphism from P to Q and the unary relations in P are
pairwise disjoint; thus there exists some i such that Hi � P. Thus the sentence THi is true in P.

Next we show that (1) holds. Let H1, . . . ,Hl denote all the obstructions for Q such that each RHi
i

contains at most one element of Hi. Consider the sentence

l∨
i=1

SHi .

We claim that a poset P containing Q does not retract onto Q if and only if this sentence is true in P.
Suppose that SHi is true in P for some i. This implies that there is a τ -homomorphism from Hi to P
(viewed as a τ -structure), and consequently there cannot be a τ -homomorphism from P to Q; it follows that
there is no σ-homomorphism either.

For the converse, suppose that P does not retract onto Q; this means that there is no σ-homomorphism
of P to Q, and no τ -homomorphism either. Now proceed exactly as in the proof of (2): there exists an
obstruction Hi of Q such that Hi � P; and simply notice that, since P is a σ-structure, the obstruction Hi

will have at most one element in each unary relation.

5 Proof of Proposition 3.3

We shall begin with a general construction akin to the well-known attaching construction in topology (see,
e.g., Definition 13.13 in [3]). Let T and Q be graphs, let C ⊆ T be a subgraph of T and let φ : C → Q
be edge-preserving. We construct a new graph Tφ obtained by glueing T and Q, identifying elements of C
with their corresponding images in Q. More formally, let K denote the disjoint union of the graphs T and
Q, and define a partial function φ′ from K to Q by

φ′(x) =
{
x, if x ∈ Q,
q, if φ(x) = q.

Let C ′ denote the domain of φ′. Notice that by definition φ′(x) = φ(x) for all x ∈ C. It is clear that φ′ is
edge-preserving onC ′. Define an equivalence relation onK as follows: let x ∼ y if x = y or φ′(x) = φ′(y).
The base set of the graph Tφ is the set of equivalence classes of the relation ∼; denote the class of element
x by [x]. We declare [x][y] to be an edge of Tφ if uv is an edge of K for some u ∈ [x] and some v ∈ [y]. (It
is immediate that the resulting binary relation is reflexive and symmetric.)

Fact 5.1 (i) Tφ contains a copy Q′ of Q;
(ii) Tφ retracts onto Q′ if and only if there exists a homomorphism φ : T → Q that extends φ.
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Proof. (i) Let q1, q2 ∈ Q. Then obviously [q1] = [q2] if and only if q1 = q2. Now suppose that
[q1][q2] is an edge of Tφ. This means there exist q1 ∼ u and v ∼ q2 where uv is an edge of K; but then
q1 = φ′(u) and φ′(v) = q2 implies that q1q2 is an edge of Q. (ii) If r is a retraction of Tφ onto Q′ define
φ(x) = i(r([x])) where i is the isomorphism from Q′ to Q; it is easy to verify that this is the desired map.
Conversely, let φ be an extension of φ. Clearly φ is an extension of φ′ when this last map is restricted to T .
Define r([x]) = [φ(x)] if x �∈ Q and r([x]) = [x] otherwise. This is well defined: indeed, if [x] = [y] and
without loss of generality x �∈ Q, then φ′(x) = φ′(y) and clearly we have φ(x) = φ(y) if y �∈ Q; otherwise
we certainly have φ′(x) = y = φ(x). Now we show that r is a homomorphism: let [x][y] be an edge, i.e.
x ∼ u and v ∼ y where uv is an edge of K. But then r([x]) = [φ(u)] and [φ(v)] = r([y]) and we are done.

5.1 The construction of the graphs

Let Q be a graph which is either disconnected or does not admit an NU polymorphism. By Theorem 2.1
there exists an idempotent subalgebra X of a finite power of Q which is not connected (if Q is disconnected
take X = Q). More precisely, there exists a triple (Y, (y1, . . . , yn), γ) where Y is a graph, yi ∈ Y for all
i = 1, . . . , n and γ is a partial map from Y to Q with domain Y ′ with the following property: if X denotes
the subset of Qn that consists of all n-tuples

(δ(y1), . . . , δ(yn))

where δ : Y → Q runs through homomorphisms whose restriction to Y ′ is equal to γ, then X is not
connected. Let (x1, . . . , xn) and (x′1, . . . , x′n) be in distinct components of X .

Notice that by choosing n as small as possible we may assume that yi �∈ Y ′ for all 1 ≤ i ≤ n; for
otherwise we could simply project X onto the remaining coordinates to obtain a disconnected idempotent
subalgebra in a smaller power of Q.

Let l = 2p ≥ 2 be an even integer, and let Cl denote the reflexive cycle on l elements, i.e. the graph on
the set {0, 1, . . . , l−1} where ij is an edge if and only if |i−j| ≤ 1 (sum modulo l). Consider also the graph

Cp
·∪ Cp, the disjoint union of two cycles on p elements. We shall assume that the underlying set of vertices

of this graph is the same as that of Cl, where {0, . . . , p− 1} will be one copy of Cp and {p, . . . , 2p− 1} the
other.

Lemma 5.2 Let m ≥ 1, l = 2 · 3m+3, and p = 3m+3. Then the graphs Cl and Cp
·∪ Cp are m-isomorphic

via a sequence (Ij)j≤m such that f(0) = 0 and f(p) = p for all f ∈ Ij and all j.

Proof: Let A and A′ be obtained from Cl and Cp
·∪ Cp, respectively, by endowing both of them with two

unary relations {0} and {p}. By Hanf’s Locality Lemma (see [12] Theorem 2.4.1) structures A and A′ are
(m + 2)-isomorphic. To see this, notice that both graphs have exactly the same number of occurrences of
every 3m+2-ball type: one, if the ball is centered at 0 or p, two if it is not centered at 0 or p but contains
one of them and finally (2 · 3m+3 − 4 · 3m+2 − 2) if the ball does not contain 0 or p. Let (I ′j)j≤m+2 be the
sequence whose existence is guaranteed by Hanf’s Lemma. For any 0 ≤ j ≤ m, let Ij contain those f in I ′j
such that f(0) = 0 and f(p) = p. By applying the forth property on I ′m+2 with 0 and in I ′m+1 with p we
can guarantee that Im (and consequently (Ij), j ≤ m) is nonempty.

We shall now construct graphs S and T starting from the above graphs. We shall take n disjoint copies

of the cycle Cl (respectively the union of cycles Cp
·∪ Cp) and we glue l copies of Y in the following manner
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(see Fig. 1): the element yi of the j-th copy of Y is identified to the element j of the i-th cycle (respectively,

of the i-th union of cycles Cp
·∪ Cp). More precisely, let U be the disjoint union of l copies of Y, say Y×{z}

for z ∈ {0, . . . , l − 1}. Let C (resp. D) denote the disjoint union of n cycles Cl (respectively the union of

cycles Cp
·∪ Cp), say {t} × Cl (resp. {t} × (Cp

·∪ Cp) ) for t ∈ {1, . . . , n}. Let μ (resp. ν) be the partial
map from U to C (respectively to D) that sends (yi, z) to (i, z); then S is the graph Uμ, and T is the graph
Uν .

y1
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yn

..
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y1

y2

yn

..
.
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y2

yn
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.
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Y x {0} Y x {1} Y x ...

Figure 1: A partial view of the coloured graphs Y glued to the n cycles Cl.

Another way of viewing this: the graph S (and similarly for T) is obtained from the disjoint copies
Y × {z} by adding the edges (yi, j)(yi, k) when jk is an edge in Cl.

Define partial maps φ and ψ from S and T, respectively, to Q as follows:

φ(t) = ψ(t) =

⎧⎨
⎩

γ(y), if t = (y, z) for some y ∈ Y ′,
xi, if t = (yi, 0),
x′i, if t = (yi, p).

Fact 5.3 The maps φ and ψ are edge-preserving.

Proof. We prove the result for φ. Let t1t2 be an edge in the domain of φ. Notice that these elements
must be in the same copy of Y, i.e. t1 = (u, z) and t2 = (v, z) where uv is an edge of Y. If z �= 0 and
z �= p then φ is equal to γ and we are done. If z = 0, let δ be an extension of γ such that δ(yi) = xi for all
1 ≤ i ≤ n: it must exist, since (x1, . . . , xn) ∈ X . Clearly φ is a restriction of δ (on Y × {0}) and hence is
edge-preserving. The case z = p is identical.

Fact 5.4 (i) The map ψ admits an edge-preserving extension to T; (ii) the map φ admits no edge-preserving
extension to S.

Proof. (i) Since (x1, . . . , xn) and (x′1, . . . , x′n) belong to X , there exist extensions δ and δ′ of γ from Y
to Q that map (y1, . . . , yn) to (x1, . . . , xn) and (x′1, . . . , x′n) respectively. Define an extension β of ψ by
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β(t) =
{
δ(y), if t = (y, z) with z < p,
δ′(y), if t = (y, z) with z ≥ p.

Since our graphs are reflexive, this is an edge-preserving extension of ψ.
(ii) Suppose that there exists an edge-preserving extension β of φ; then for any 0 ≤ z ≤ l − 1 the

restriction of β to Y × {z} can be seen an extension of γ, and hence the tuple (β(y1, z), . . . , β(yn, z)) is in
X . But then we have a path (β(y1, 0), . . . , β(yn, 0)), (β(y1, 1), . . . , β(yn, 1)), . . . , (β(y1, p), . . . , β(yn, p))
in X from (x1, . . . , xn) to (x′1, . . . , x′n), a contradiction with the choice of these two tuples.

Corollary 5.5 The graph Tψ retracts onto Q′; the graph Sφ does not retract onto Q′.

Proof. Follows from Facts 5.1, 5.3 and 5.4.

5.2 Proof of m-isomorphism

To finish the proof of Proposition 3.3 we will show that Tψ and Sφ are the desired graphs P and P′ (if we
identify Q with Q′). It remains to prove that the graphs Sφ and Tψ are m-isomorphic. Let (Ij)j≤m be the
sequence whose existence is guaranteed by Lemma 5.2: we proceed to construct a sequence (Ĩj)j≤m. Fix
0 ≤ j ≤ m. For any f ∈ Ij , define a partial map f̃ from Sφ to Tψ as follows: let B be any element of Sφ.
If B contains no element in the domain of φ, then B = {(y, z)} and we put f̃(B) = [(y, f(z))] provided
z is in the domain of f , otherwise we leave f̃(B) undefined; if B contains an element in the domain of φ,
then it contains a unique element q ∈ Q and we define f̃(B) = [q]. Finally, define Ĩj = {f̃ : f ∈ Ij} for all
0 ≤ j ≤ m.

Lemma 5.6 The graphs Sφ and Tψ are m-isomorphic via (Ĩj)j≤m; moreover every partial isomorphism
in every Ĩj in the sequence fixes every element of Q′.

Proof. Fix some 0 ≤ j ≤ m and some f ∈ Ij . It is clear that the function f̃ is well-defined and that it
fixes all elements in Q′, i.e. f̃([q]) = [q] for all q ∈ Q.

Claim 1. Let B ∈ Sφ. Then B ∩Q �= ∅ if and only if f̃(B) ∩Q �= ∅.
Proof of Claim 1. One direction is obvious by definition of f̃ . Now suppose that f̃(B) ∩Q �= ∅ and let

(y, z) ∈ B. If (y, z) is in the domain of φ we are done. Otherwise f̃(B) = [(y, f(z))] intersects Q so either
y is in the domain of γ, and hence (y, z) is in the domain of φ, or else y = yi for some i and f(z) ∈ {0, p};
by the properties of f we get that z ∈ {0, p} which again shows that (y, z) is in the domain of φ. In both
cases, we conclude by definition of Sφ that B ∩Q �= ∅.

Claim 2. The map f̃ is injective.
Proof of Claim 2. Let f̃(B) = f̃(B′). There are two cases: (i) if f̃(B) = f̃(B′) intersects Q then by

the last claim both B and B′ intersect Q; if q ∈ B ∩ Q and q′ ∈ B′ ∩ Q then by definition of f̃ we have
that [q] = f̃(B) = f̃(B′) = [q′] and hence q = q′ so B = B′. (ii) if f̃(B) = f̃(B′) does not intersect Q
then we have by Claim 1 that B = {(y, z)} and B′ = {(y′, z′)} for some y, y′ ∈ Y and z, z′ ∈ Cl. By
definition of f̃ and the last claim we get that (y, f(z)) = (y′, f(z′)) and, since f is injective, we conclude
that (y, z) = (y′, z′) so we are done.

Claim 3. The map f̃ is edge-preserving.
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Proof of Claim 3. Let BB′ be an edge of Sφ, i.e. there exist u ∈ B and v ∈ B′ such that uv is an edge
of S; we show that f̃(B)f̃(B′) is an edge in Tψ (assuming both are defined). The result is obvious if both
B and B′ meet Q. Suppose next that neither meets Q: then B = {(y, z)} and B′ = {(y′, z′)} and either (i)
z = z′, and yy′ is an edge of Y so the result follows easily, or (ii) y = y′ = yi for some 1 ≤ i ≤ n, zz′ is
an edge of Cl and z �∈ {0, p}; thus f(z)f(z′) is an edge and the result follows once again. By symmetry
we may now suppose without loss of generality that B = [q] and B′ = {(y′, z′)}. Then (y, z) is adjacent
to (y′, z′) for some (y, z) in the domain of φ. Then there are two cases: (i) z = z′, and yy′ is an edge
of Y. Then ψ((y, f(z))) = q, (y, f(z)) and (y′, f(z)) are adjacent so f̃(B)f̃(B′) is an edge in Tψ; (ii)
y = y′ = yi for some i, z ∈ {0, p} and zz′ is an edge of Cl. But f is edge-preserving so (yi, f(z)) is
adjacent to (yi, f(z′)) in T and, since f fixes 0 and p, we get that ψ((yi, f(z))) = q, so we are done.

Claim 4. The inverse of the map f̃ is edge-preserving.
Proof of Claim 4. Suppose that f̃(B)f̃(B′) is an edge in Tψ, i.e. there are elements u ∈ f̃(B) and

v ∈ f̃(B′) such that uv is an edge of T. We show that BB′ is an edge of Sφ. Suppose first that both blocks
meet Q, say q ∈ f̃(B) and q′ ∈ f̃(B′) where q, q′ ∈ Q. Then of course qq′ is an edge of Q, and by Claim
1 and definition of f̃ we get that B = [q] is adjacent to [q′] = B′. Secondly, suppose that neither block
meets Q. Then f̃(B) = {(y, f(z))} and f̃(B′) = {(y′, f(z′))} where (y, f(z))(y′, f(z′)) is an edge in
T. This means that either (i) f(z) = f(z′) and yy′ is an edge of Y, and, since f is injective, we get that

z = z′ so (y, z)(y′, z′) is an edge of S, or (ii) y = y′ = yi for some i and f(z)f(z′) is an edge of Cp
·∪ Cp.

Since f ∈ Ij , we get that zz′ is an edge of Cl and the rest follows easily. Finally suppose that f̃(B) = [q]
and f̃(B′) = {(y′, f(z′))}. Then there exists some (y, w) in the domain of ψ such that ψ((y, w)) = q and
(y, w)(y′, f(z′)) is an edge in T. If w = f(z′) and yy′ is an edge of Y, then by Claim 1 (y′, z′) ∈ B′

and it is adjacent to (y, z′) in S, and either y is in the domain of γ or y = yi and z′ = f(z′) ∈ {0, p} so

(y, z′) ∈ B and we are done. Otherwise we have that y = y′ = yi for some i, wf(z′) is an edge of Cp
·∪ Cp

and w ∈ {0, p}. But then f(w) = w and f is a partial isomorphism so wz′ is an edge of Cl, and the rest
follows easily.

We have now proved that the sets Ĩj consist only of partial isomorphisms. Finally, we prove:

Claim 5. The sequence (Ĩj)j≤m has the ‘back and forth’ property.
Proof of Claim 5. Let j < m and let f̃ ∈ Ij+1. Let B ∈ Sφ (the other case, B′ ∈ Tψ, is identical.) If

B intersects Q then it is in the domain of f̃ and we are done (we may certainly suppose that the sequence
(Ĩj)j≤m is decreasing.) So now assume that B does not meet Q, so B = {(y, z)} where (y, z) is not in the
domain of f̃ , which means that z is not in the domain of f . By the back and forth property of the sequence
(Ij)j≤m we can find g ∈ Ij such that z is in its domain and g is an extension of f . But then it is clear that
(y, z) is in the domain of g̃ ∈ Ĩj and that g̃ is an extension of f̃ .

6 Proof of Proposition 4.2

6.1 A construction

Let T and Q be posets, let C ⊆ T and let φ : C → Q be a monotone map. We construct a new poset Tφ

obtained by glueing T and Q, identifying an element of C with its image in Q. More formally, let K denote
the disjoint union of the posets T and Q, and define a partial function φ′ from K to Q by

φ′(x) =

⎧⎨
⎩

x, if x ∈ Q,
q, if there exist u ≤ x ≤ v such that
φ(u) = φ(v) = q.
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Let C ′ denote the domain of φ′. Notice that by definition φ′(x) = φ(x) for all x ∈ C.
A subset A of a poset P is called convex if b ∈ A whenever a ≤ b ≤ c with a, c ∈ A.

Fact 6.1 (i) φ′−1(q) is convex in K for all q ∈ Q; (ii) φ′ is monotone on C ′.

Proof. (i) Let x ≤ y ≤ z with φ′(x) = φ′(z) = q. If any of x, y, z is equal to q then so are the others so
we are done. Otherwise, by definition of φ′ there exist u ≤ x and z ≤ v such that φ(u) = φ(v) = q hence
φ′(y) = q. (ii) Let x ≤ y in C ′. If one of these is in Q we are done. Otherwise, there exist u ≤ x and y ≤ v
such that φ′(x) = φ(u) ≤ φ(v) = φ′(y).

Define an equivalence relation on K as follows: let x ∼ y if x = y or φ′(x) = φ′(y). The base set of the
poset Tφ is the set of equivalence classes of the relation ∼; denote the class of element x by [x]. We define
[x] � [y] if u ≤ v for some u ∈ [x] and some v ∈ [y]. The ordering on Tφ is the transitive closure of the
relation �. (In what follows, we shall denote the ordering on any poset by the same symbol ≤, as usual.)

Fact 6.2 The relation � defines a partial order.

Proof. The relation is clearly reflexive and transitive so we must show that � is acyclic. Suppose that
we have a sequence of elements of K as follows:

x1 ∼ y1 ≤ x2 ∼ y2 ≤ x3 · · ·xn ∼ yn ≤ xn+1 ∼ x1.

We must show that [x1] = [x2] = · · · = [xn]. If xi = yi for all i but one then we are done. Otherwise, there
exists some i < j such that xi �= yi and xj �= yj . Choose i < j as close to one another as possible in the
cycle: then we get that yi ≤ xi+1 ≤ · · · ≤ xj−1 ≤ xj so that φ′(xi) ≤ φ′(xj) by Fact 1 (ii). Repeating this
argument for all indices k such that xk �= yk shows that φ′ is constant on those elements of the sequence
where it is defined; and by Fact 1 (i) it follows that in fact φ′ is defined for all elements of the sequence.

Fact 6.3 (i) Tφ contains a copy Q′ of Q; (ii) Tφ retracts onto Q if and only if there exists a monotone map
φ : T → Q that extends φ.

Proof. (i) Let q1, q2 ∈ Q. Then obviously [q1] = [q2] if and only if q1 = q2. Now suppose that
[q1] � [q2] in Tφ. This means there exist q1 ∼ u ≤ v ∼ q2. But then q1 = φ′(u) ≤ φ′(v) = q2. (ii) If r is
a retraction of Tφ onto Q define φ(x) = r([x]); it is easy to verify that this is the desired map. Conversely,
let φ be an extension of φ. Clearly φ is an extension of φ′ when this last map is restricted to T . Define
r([x]) = [φ(x)] if x �∈ Q and r([x]) = [x] otherwise. This is well defined: indeed, if [x] = [y] and without
loss of generality x �∈ Q, then φ′(x) = φ′(y) and clearly we have φ(x) = φ(y) if y �∈ Q; otherwise we
certainly have φ′(x) = y = φ(x). Now we show that r is monotone. Let [x] � [y], i.e. x ∼ u ≤ v ∼ y. But
then r([x]) = [φ(u)] � [φ(v)] = r([y]).
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6.2 The construction of the posets

Let Q be a poset which is either disconnected or does not admit an NU polymorphism. By Theorem 2.1
there exists an idempotent subalgebra X of some power Qn which is not connected (if Q is disconnected
take X = Q). In fact, by a result of [24] we may assume that n = 1. More precisely, there exists a triple
(Y, y0, γ) where Y is a poset, y0 ∈ Y and γ is a partial map from Y to Q with domain Y ′ with the following
property: ifX denotes the subset ofQ that consists of all δ(y0) where δ : Y → Q runs through all monotone
maps whose restriction to Y ′ is equal to γ, then X is not connected. Let x and x′ be in distinct components
of X .

We claim that we may choose (Y, y0, γ) with the following properties: (i) if y ∈ Y ′ is comparable to y0

then γ(y) �∈ {x, x′} and (ii) if y < y′ in Y ′ then γ(y) < γ(y′).
Indeed, the first condition follows from the fact that x and x′ are both in X and are incomparable. For

the second statement: clearly γ is monotone on its domain (since X in nonempty) so if (ii) does not hold
then we have γ(y) = γ(y′) = q for some y < y′ in Y ′ and some q ∈ Q. Obviously we may assume in
that case that γ(u) = q for all y ≤ u ≤ y′. It is easy to see that one may ‘fuse’ all these elements into one
to obtain a new triple (Y1, y0, γ1) with the same properties as before, namely that X is the set of all δ(y0),
where δ ranges over the set of all monotone extensions of γ1 (simply define a partial map α from Y to the
one-element poset with domain {u : y ≤ u ≤ y′} and use the construction of section 6.1).

Let p be an even integer and l = 2p. Let Cl denote the crown on l elements, that is, the poset on the
set {0, 1, . . . , l − 1} where i < j if and only if i is even and |i − j| = 1 (sum modulo l). Consider also

the graph Cp
·∪ Cp, the disjoint union of two crowns on p elements. We shall assume that the underlying

set of vertices of this poset is the same as that of Cl, where {0, . . . , p − 1} will be one copy of Cp and
{p, . . . , 2p− 1} the other (see Figure 2).

0

0 8

8

Figure 2: The posets C16 and C8
·∪ C8.

We now view the above as coloured posets, i.e. structures with one binary relation (their ordering) and
two constants, namely 0 and p. We claim that these structures are m-isomorphic.

Lemma 6.4 Letm ≥ 1, l = 4 ·3m+3, and p = 2 ·3m+3. Then the posets Cl and Cp
·∪ Cp arem-isomorphic

via a sequence (Ij)j≤m such that f(0) = 0 and f(p) = p for all f ∈ Ij and all j.

Proof. The proof is almost identical to that of Lemma 5.2 above. The only difference is that l and p are
doubled here, since the size of a crown is always an even number.

We shall now construct posets S and T starting from the above posets. We glue copies of Y (at y0) to
every element of the crown and the union of crowns. More precisely, let U be the disjoint union of l copies
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of Y, say Y × {z} for z ∈ {0, . . . , l − 1}. Let μ (resp. ν) be the partial map from U to Cl (respectively to

Cp
·∪ Cp) that sends (y0, z) to z; then S is the poset Uμ, and T is the poset Uν .

0

Y

Figure 3: A coloured poset Y, and a partial view of the poset S. Darkened vertices in the copies of Y are in
the domain of ψ.

Define partial maps φ and ψ from S and T , respectively, to Q, as follows:

φ(t) = ψ(t) =

⎧⎨
⎩

γ(y), if t = (y, z) for some y ∈ Y ′,
x, if t = (y0, 0),
x′, if t = (y0, p).

Fact 6.5 The maps φ and ψ are monotone.

Proof. We prove the result for φ. Let t1 ≤ t2 be in the domain of φ. Suppose first that these elements are
in the same copy of Y , i.e. t1 = (y1, z) and t2 = (y2, z) where y1 ≤ y2. If neither is equal to y0 then
φ(t1) = γ(y1) ≤ γ(y2) = φ(t2). Otherwise suppose without loss of generality that y1 = y0 and that z = 0;
we must show that x ≤ γ(y2). But, since x ∈ X , there exists an monotone extension γ of γ such that
γ(y0) = x so we are done.

Now suppose that t1 and t2 are in different copies of Y . Then we have that t1 = (y1, z1) and t2 =
(y2, z2) where y1 ≤ y0 ≤ y2 and z1 ≤ z2. By definition of φ at most one of y1, y2 is equal to y0 and hence
the preceding argument applies here as well.

Fact 6.6 (i) The map ψ admits a monotone extension to T; (ii) The map φ admits no monotone extension to
S.

Proof. (i) Since x, x′ ∈ X , there exist extensions γx and γx′ of γ from Y to Q that map y0 to x and x′

respectively. Define an extension β of ψ by

β(t) =
{
γx(y), if t = (y, z) with z < p,
γx′(y), if t = (y, z) with z ≥ p.

It is easy to verify that this is a monotone extension of ψ.
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(ii) Since x and x′ are in distinct components of X and Cl is connected, clearly our claim will follow if
we can prove that any extension of φ must map every (y0, z) to X . And indeed, if β is an extension of φ
then its restriction to Y × {z} is an extension of γ, so we are done.

Corollary 6.7 The poset Tψ retracts onto Q; the poset Sφ does not retract onto Q.

Proof. Follows from Facts 6.3, 6.5 and 6.6.

We require one last auxiliary result before prove the posets Sφ and Tψ are m-isomorphic. We show that
the blocks of the equivalence relation involved in the construction of the posets Sφ and Tψ have a simple
structure: the only blocks with more than one element are those that contain an element in the domain of φ
(ψ).

Lemma 6.8 Any element B of Sφ (respectively Tψ) is of the following form: (i) B = {(y, z)} for some y
which is not in the domain of γ and z �∈ {0, p}, or (ii) B = {(y, z)} where z ∈ {0, p} and y �= y0 or (iii)
B = {(y1, z1), . . . , (yn, zn), q} where {(y1, z1), . . . , (yn, zn)} = φ−1(q) (respectively ψ−1(q)).

Proof. We consider only the case Sφ, the other is identical. Recall that the elements of Sφ are the blocks
of the equivalence defined by u ∼ v if u = v or φ′(u) = φ′(v). Suppose that φ′(u) = φ′(v) where u is
in S; by definition of φ′ this means that there exist elements (y, z) ≤ u ≤ (y′, z′) and q ∈ Q such that
φ((y, z)) = φ((y′, z′)) = q. We have that y ≤ y0 ≤ y′ and z ≤ z′. It follows easily from our claim on the
triple (Y, y0, γ) that y = y′ and z = z′, and hence u is in the domain of φ. The claim follows easily from
this fact.

We are now in a position to prove that the posets Sφ and Tψ are m-isomorphic. Let (Ij)j≤m be the
sequence whose existence is guaranteed by Lemma 6.4: we proceed to construct a sequence (Ĩj)j≤m. Fix
0 ≤ j ≤ m. For any f ∈ Ij , define a partial map f̃ from Sφ to Tψ as follows: by Lemma 6.8, the elements
of Sφ are of two kinds: (a) if B contains no element in the domain of φ, then B = {(y, z)} and we put
f̃(B) = [(y, f(z))] provided z is in the domain of f , otherwise we leave f̃(B) undefined; (b) if B contains
an element in the domain of φ, then it contains a unique element q ∈ Q and we define f̃(B) = [q]. Finally,
define Ĩj = {f̃ : f ∈ Ij} for all 0 ≤ j ≤ m.

Lemma 6.9 The posets Sφ and Tψ are m-isomorphic via (Ĩj)j≤m; moreover every partial isomorphism in
every Ij of the sequence fixes every element of Q.

Proof. Fix some 0 ≤ j ≤ m and some f ∈ Ij . It is clear that the function f̃ is well-defined and that it
fixes all elements in Q, i.e. f̃([q]) = [q] for all q ∈ Q.

Claim 1. Let B ∈ Sφ. Then B ∩Q �= ∅ if and only if f̃(B) ∩Q �= ∅.
Proof of Claim 1. One direction is obvious by definition of f̃ . Now suppose that f̃(B) ∩Q �= ∅ and let

(y, z) ∈ B. By Lemma 6.8 (y, f(z)) is in the domain of ψ, i.e. either y is in the domain of γ, and hence
(y, z) is in the domain of φ, or else y = y0 and f(z) ∈ {0, p}; by the properties of f we get that z ∈ {0, p}
which again shows that (y, z) is in the domain of φ. In both cases, we conclude by definition of Sφ that
B ∩Q �= ∅.

Claim 2. The map f̃ is injective.
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Proof of Claim 2. Let f̃(B) = f̃(B′). By Lemma 6.8 there are two cases: (i) if f̃(B) = f̃(B′) intersects
Q then by the last claim both B and B′ intersect Q; if q ∈ B ∩Q and q′ ∈ B′ ∩Q then by definition of f̃
we have that [q] = f̃(B) = f̃(B′) = [q′] and hence q = q′ so B = B′. (ii) if f̃(B) = f̃(B′) do not intersect
Q then we have by Claim 1 that B = {(y, z)} and B′ = {(y′, z′)} for some y, y′ ∈ Y and z, z′ ∈ Cl. By
definition of f̃ and the last claim we get that (y, f(z)) = (y′, f(z′)) and, since f is injective, we conclude
that (y, z) = (y′, z′) so we are done.

Claim 3. The map f̃ is monotone.
Proof of Claim 3. Let B ≤ B′ in Sφ, i.e. let there be a sequence of blocks B = B1, . . . , Bn = B′ and

elements ui, vi ∈ Bi such that

u1 ≤ v2 ∼ u2 ≤ v3 · · · vn−1 ∼ un−1 ≤ vn.

Suppose that the blockBi is not in the domain of f̃ . This implies that it cannot meetQ and hence by Lemma
6.8 we have that

ui−1 ≤ vi = ui ≤ vi+1

so that block Bi may actually be removed from the sequence. Hence it will suffice to prove that if B and B′

are such that there exist u ∈ B and v ∈ B′ such that u ≤ v then f̃(B) ≤ f̃(B′) in Tψ.
The result is obvious if both B and B′ meet Q. Suppose now that neither meets Q: then B = {(y, z)}

and B′ = {(y′, z′)} where y ≤ y0 ≤ y′ and z ≤ z′; thus f(z) ≤ f(z′) and the result follows easily.
Suppose now that B = [q] and B′ = {(y′, z′)}. Then (y, z) ≤ (y′, z′) for some (y, z) in the domain of φ.
This means that y ≤ y0 ≤ y′ and z ≤ z′. If y is in the domain of γ, then (y, f(z′)) ≤ (y′, f(z′)) in Tφ, and
(y, f(z′)) is in the domain of ψ; by definition of φ and ψ we get that

ψ((y, f(z′)) = γ(y) = φ((y, z)) = q

hence
f̃(B) = [q] = [(y, f(z′))] ≤ [(y′, f(z′))] = f̃(B′).

Otherwise, we have that y = y0 and z ∈ {0, p}; we suppose that z = 0 the other case being identical. By
Lemma 6.4 we have that 0 = f(0) ≤ f(z′) so (y, z) ≤ (y′, f(z′)) and thus f̃(B) ≤ f̃(B′) in Tψ. The last
case, where B = {(y, z)} and B′ = [q], is quite similar.

Claim 4. The inverse of the map f̃ is monotone.
Proof of Claim 4. Suppose that f̃(B) ≤ f̃(B′) in Tψ, i.e. let there be a sequence of blocks f̃(B) =

B1, . . . , Bn = f̃(B′) and elements ui, vi ∈ Bi such that

u1 ≤ v2 ∼ u2 ≤ v3 · · · vn−1 ∼ un−1 ≤ vn.

As in Claim 3, it is easy to see that we may assume that every blockBi is in the image of f̃ ; and hence it will
suffice to prove the following assertion: if there exist elements u ∈ f̃(B) and v ∈ f̃(B′) such that u ≤ v then
B ≤ B′ in Sφ. Suppose first that both blocks meet Q, say q ∈ f̃(B) and q′ ∈ f̃(B′) where q, q′ ∈ Q. Then
of course q ≤ q′, and by Claim 1 and definition of f̃ we get thatB = [q] ≤ [q′] = B′. Secondly, suppose that
neither block meets Q. Then f̃(B) = {(y, f(z))} and f̃(B′) = {(y′, f(z′))} where (y, f(z)) ≤ (y′, f(z′))
in T. This means that y ≤ y0 ≤ y′ in Y and f(z) ≤ f(z′) in Cp

·∪ Cp. Since f ∈ Ij , we get that z ≤ z′

and the rest follows easily. Thirdly suppose that f̃(B) = [q] and f̃(B′) = {(y′, f(z′))}. Then there exists
some (y, w) in the domain of ψ such that ψ((y, w)) = q and (y, w) ≤ (y′, f(z′)) in T. This means that

y ≤ y0 ≤ y′ in Y and w ≤ f(z′) in Cp
·∪ Cp. Suppose first that γ(y) = q. But then (y, z′) ≤ (y′, z′) in S

and, since γ(y) = q, we obtain that

B = [q] = [(y, z′)] ≤ [(y′, z′)] = B′.
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If on the other hand y = y0 and w ∈ {0, p}, we get that (assuming once again without loss of generality that
w = 0) f(0) = 0 ≤ f(z′) and hence 0 ≤ z′; it follows that (y0, 0) ≤ (y′, z′) in S and thus

B = [q] = [(y0, 0)] ≤ [(y′, z′)] = B′.

The fourth case, where B̃ = {(y, z)} and B̃′ = [q] is similar.

We have now proved that the sets Ĩj consist only of partial isomorphisms. Finally, we prove:

Claim 5. The sequence (Ĩj)j≤m has the ‘back and forth’ property.
Proof of Claim 5. Let j < m and let f̃ ∈ Ij+1. Let B ∈ Sφ (the other case, B′ ∈ Tψ, is identical.) If

B intersects Q then it is in the domain of f̃ and we are done (we may certainly suppose that the sequence
(Ĩj)j≤m is decreasing.) So now assume that B does not meet Q, so B = {(y, z)} where (y, z) is not in the
domain of f̃ , which means that z is not in the domain of f . By the bach and forth property of the sequence
(Ij)j≤m we may find g ∈ Ij such that z is in its domain and g is an extension of f . But then it is clear that
(y, z) is in the domain of g̃ ∈ Ĩj and that g̃ is an extension of f̃ .

7 Conclusion

We have completely characterised posets and reflexive graphs for which poset retraction and graph retrac-
tion problems, respectively, are definable in first-order logic. We believe that this line of research can be
successfully continued by considering other logics and other classes of structures. The key to our results
is Theorem 2.1 relating finiteness of obstructions and certain connectedness properties, which in the case
of posets and reflexive graphs happens to be captured by NU polymorphisms. To make further progress in
looking for an algebraic desciption of homomorphism and retraction problems in FO, it seems necessary to
obtain more information about how the two above properties are linked for more general structures. Results
of [1, 29] may provide some insight into this.
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