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1. Background

Quantum information and computation is concerned
with the use of quantum-mechanical systems to carry out
computational and information-processing tasks [18]. In
the few short years that this approach has been studied, a
number of remarkable concepts and results have emerged,
most notably:

• A couple of spectacular algorithms — Shor’s
polynomial-time algorithm for prime factorization
[23] and Grover’s sub-linear search algorithm [14].

• A number of information protocols, exemplified by
quantum teleportation, which exploit quantum entan-
glement in an essential fashion. We give a thumbnail
sketch of teleportation here, since it may be less famil-
iar, and it will serve as a useful motivating example.
Teleportation uses just two classical bits to transport
an unknown qubitq from one site to another. Since a
qubit is specified by an arbitrary pair of complex num-
bers(α, β) satisfying|α|2 + |β|2 = 1, achieving this
information transfer with just two classical bits is no
mean feat! It is accomplished by using an entangled
pairqA, qB of qubits, one held at the source siteA and
one at the targetB, as a ‘quantum information chan-
nel’, and using a measurement performed onq andqA
atA to cause a ‘collapse’ inqB atB. The two classical
bits are used to tell the target siteB what the outcome
of the measurement performed atA was; a ‘correction’
operation can then be performed atB, after which the
state ofqB will be equal to the original state ofq. (Be-
cause of the measurement, the input qubit no longer
has this state — the information in the source has been
‘destroyed’ in transferring it to the target).

Teleportation is simply the most basic of a family of
quantum protocols, includinglogic-gate teleportation[13],
entanglement swapping[27], and quantum key exchange
[12], which form the basis for novel and potentially very
important applications to secure and fault-tolerant commu-
nication and computation [8, 13, 18, 19, 24].

The need for high-level methods

The current tools available for developing quantum algo-
rithms and protocols are deficient on two main levels.

• Firstly, they are toolow-level. Quantum algorithms
are currently mainly described using the ‘network
model’ corresponding to circuits in classical compu-
tation. One finds a plethora of ad hoc calculations with
‘bras’ and ‘kets’, normalizing constants, matrices etc.
The arguments for the benefits of a high-level, con-
ceptual approach to designing, programming and rea-
soning about quantum computational systems are just
as compelling as for classical computation. Moreover,
there is the whole issue of integrating quantum and
classical features, which would surely be mandatory
in any practicable system.

• At a more fundamental level, the standard mathemat-
ical framework for quantum mechanics (which is es-
sentially due to von Neumann [17]) is actuallyinsuffi-
ciently comprehensivefor informatic purposes. In de-
scribing a protocol such as teleportation, or any quan-
tum process in whichthe outcome of a measurement
is used to determine subsequent actions, the von Neu-
mann formalism does not capture the flow of informa-
tion from the classical or macroscopic level, where the
results of measurements of the quantum-mechanical
system are recorded, back to the quantum level. This
flow, and the accompanying use of ‘classical informa-
tion’, which plays a key role in protocols such as tele-
portation, must therefore be handled informally. As
quantum protocols and computations grow more elab-
orate and complex, this point is likely to prove of in-
creasing importance.

2. Recent Progress

In joint work with Bob Coecke, reported in this Confer-
ence Proceedings [3], we have recently made some striking
progress in addressing both these points. We have recast
the von Neumann formalism at a more abstract and concep-
tual level, using category theory. This enables a high-level
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but effective approach to modelling and reasoning about the
key features of quantum information processing, including
preparation and measurement of entangled states, unitary
operations and classical communication. The effectiveness
of these methods is shown by the detailed treatment given
in [3] of three of the main quantum protocols: teleporta-
tion, logic-gate teleportation (which is universal for quan-
tum computation), and entanglement swapping. Because of
the explicit treatment of ‘classical communication’ —i.e.
the use of measurement outcomes to determine subsequent
actions, possibly elsewhere in a compound system than the
site at which the measurement was performed — it can rea-
sonably be claimed that these are thefirst completely formal
descriptions and proofs of correctness of these protocols.
Moreover, the correctness proofs are themselves at a high
level, using (and re-using) key structural lemmas which are
valid in wide generality.

One of the main results in [3] is a complete formal
description—including the classical communication— of
the teleportation protocol within a purely categorical se-
mantics. This semantics is sufficiently strong to prove cor-
rectness of the protocol.

Consider the following diagram:

Q ============= Q

produce EPR-pair

Q⊗ (Q∗

A⊗QB)

(1⊗ η) ◦ ρ

❄

spatial relocation

(Q⊗Q∗

A)⊗QB

α

❄

measurement

(4 · I)⊗QB

〈xUiy〉
i=4

i=1
⊗1

❄

classical communication

4 ·QB

(

4 · λ−1
)

◦ υ

❄

unitary correction

4 ·QB

〈1〉i=4

i=1

❄

========= 4 ·QB

⊕i=4

i=1
U−1

i

❄

HereQ, QA andQB are all instances of a qubit object,I
is the tensor unit, andn · A is the biproduct ofn copies of
A. The natural isomorphisms areρ : Q ≃ Q ⊗ I, λ : Q ≃

I ⊗ Q, ‘associativity’α and ‘distributivity’ υ of tensor⊗
over biproduct⊕. The morphismη : I → Q∗ ⊗ Q is the
unit of compact closure, that is the ‘name’ of1Q : Q →
Q, and represents preparation of the EPR state [18], while
xUiy : Q ⊗Q∗ → I is the ‘coname’ ofUi, and the tupling
〈xUiy〉

i=4

i=1
represents a Bell-base measurement [18].

The right-hand-side of the diagram gives a complete de-
scription of the teleportation protocol, while the left-hand-
side expresses the intended behaviour (copying the qubit
from Q to QB). The proof of correctness, that is the com-
mutativity of the diagram, can be found in [3].

The abstract setting is that ofstrongly compact closed
categories with biproducts. Any such category allows us
define abstract counterparts to the basic ingredients of quan-
tum mechanics such as measurement and unitary data trans-
formation, and to add to that a description of classical com-
munication.

Conceptually:

• the tensor product⊗ of the monoidal structure allows
compound systems to be described;

• the compact closed structure (cf. ‘names’ and
‘conames’) allows preparations and measurements of
entangled states to be represented,and their key prop-
erties to be proved;

• the biproducts allows measurements, branching on
measurement outcomes, superpositions, and classi-
cal communication (using distributivity of tensor over
biproduct) to be captured.

Although these axioms are all structural, and seem purely
‘qualitative’, in fact they suffice to yield good notions of
‘scalars’, ‘probability amplitudes’, and theBorn rule—the
key quantitative feature of quantum mechanics.

Entanglement as information flow. A key part of our
work is the analysis of the information flow inherent in en-
tanglement, which exploits the compact closed structure. In
the above commutative diagram for teleportation, note that
the measurement is formed by tupling theconamesxUiy of
(the inverses of) the unitary correction operatorsU−1

i . This
makes visible the structure underlying the apparently ad hoc
juggling with Bell bases and unitary matrices in the standard
presentations. The flow along each ‘branch’ as we follow
the possible measurement outcomes can then be analyzed
using general algebraic properties of compact closed cate-
gories. See [3] for details, and also [9, 10] for an extended
account at a more concrete level, with many diagrams and
examples.



3. Some Further Developments

We survey some promising further developments we are
currently pursuing.

Categorical quantum logic. Although the work in [3]
is not presented in logical terms, the well-established
paradigm of categorical logic and proof theory is directly
applicable, and leads to another perspective, and some po-
tentially very useful syntactic methods. In particular, my
student Ross Duncan and I are currently studying a notion
of proof netsfor compact closed categories with biproducts.
This builds on the seminal study by Kelly and Laplaza of
coherence for compact closed categories [16], to yield an
amenable graphical proof theory corresponding to the cat-
egorical semantics in [3]. This offers the prospect that the
correctness proofs in [3] can be performed automatically by
cut-elimination. Duncan is building an experimental imple-
mentation of proof nets, and we intend to use it to perform
some of these computations.

Since the quantitative features of quantum mechanics
(scalars, the Born rule etc.) are also captured in the cate-
gorical semantics in [3], it seems that one can obtain an in-
teresting and applicable diagrammatic tool for automatinga
class of ‘structural calculations’ in quantum informatics.

Transformations for parallelism and fault-tolerance.
In [9, 10], Coecke uses the Logic of Entanglement set-
ting, which is now subsumed by the more general categor-
ical semantics in [3], to give a ‘compilation scheme’ for
quantum networks into a special, highly parallel form. (A
similar compilation is carried out by Duncan in [11], using
the proof-net formalism.) This parallel form, which avoids
reuse of outputs from quantum gates, is particularly attrac-
tive because of itsfault-tolerance properties; these have
been emphasized in the influential work of Shor [24] and
Preskill [19]. We aim to pursue these ideas, and more gen-
erally to see how our powerful algebraic methods can be
applied to yield useful program transformations for quan-
tum circuits and other computational systems. The situation
is quite analogous to that in standard program transforma-
tion and hardware design and verification, where categor-
ical methods have been applied with considerable success
[7, 15].

The One-Way Quantum Computation Model. The
‘one-way’ or ‘measurement-based’ model [20, 21] has been
proposed recently as an alternative to the standard ‘network
model’ of quantum circuits. In the one-way model, the com-
putation starts from an initially prepared entangled state(a
‘cluster state’), which consists of entangled qubits laid out
on a 2-D grid, or more generally a graph. Computation pro-

ceeds by performing measurements on these qubits. In gen-
eral, these have to be combined with unitary corrections.
Thus the arrangement generalizes that of teleportation. This
model is seen as promising because of its good properties as
regards modularity and fault-tolerance.

The full expressive power of the model has yet to be ex-
plored; it may well offer new possibilities going beyond the
standard network model (which it has been shown can be
represented within it).

The categorical semantics in [3] seems well adapted to
study the one-way model. In fact, the key modularity prop-
erty of the one-way model appears to fall out as a conse-
quence of one of our general algebraic results — which in
turn corresponds to the soundness of Cut-elimination in the
categorical logic approach described above. Our aim here
will be to explore how our methods can be used to give an
analytical description of the one-way model, and how this
relates to current methods based on the stabiliser formalism
[18]. We believe that our algebraic approach will lead to
simpler and more tractable descriptions of this model, and
more insight into its expressive power.

Multipartite entanglement. The methods and results in
[3] give a comprehensive semantic and logical analysis of
bipartite entanglement. The situation with multipartite en-
tanglement — several qubits or other quantum systems mu-
tually entangled — is less clear. It seems that some of the
relevant structure will be addressed by our categorical logic
and semantics, since we can represent compound quantum
systems of any degree, arbitrary (linear) functional depen-
dencies, etc. Whether this suffices to address all significant
forms of multipartite entanglement remains to be investi-
gated. This is an area which is generally agreed to be both
important and very poorly understood currently, so if logical
methods do gain some traction this would have considerable
impact.

Foundational issues. There are numerous important and
promising ideas which arise in seeking to extend and
strengthen the categorical foundations established in [3].
Firstly, the discussion in [3] is limited toFinitary Quan-
tum Mechanics, in which only finite-dimensional ‘spaces’
(concrete or abstract), corresponding to observables withfi-
nite spectra, are considered. A first step towards the general
case has already been taken in the previous work by Abram-
sky, Blute and Panangaden on Nuclear ideals [1], which
shows how to lift the compact closed arguments to the gen-
eral case. However, a proper treatment of observables with
continuous spectra is challenging. We have started collab-
orative work with Rick Blute and Prakash Panangaden on
this topic.

Another important issue is to see how far our general
and axiomatic approach can be exploited to yield insights



into the degrees of freedom in quantum mechanics, and to
what extent the structure isforcedby various information-
theoretic principles. We have already shown in [3] how
a kind of ‘reverse mathematics’ applies, in which one can
show what requirements are placed on the ambient category
in order for protocols such as teleportation to be expressed.
We will also look at possible weakenings of the axioms, and
how much quantum information processing can still be car-
ried out in weaker settings.
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