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Abstract as the bisimulation invariant fragment of the monadic

second order logic of labelled transition systems.

An interesting phenomenon in automata theory is
that most (but not all) key results hold for word and
tree automata alike, and that many can even be for-
mulated and proved for automata that operate on yet
other objects such as trees of unbounded branching
degree, or labelled transition systems. This applies
for instance to various closure properties of the class
of recognizable languages, and to the fact that alter-
nating automata can be transformed into equivalent
non-deterministic ones. These observations naturally
raise the question, whether these results can perhaps
be formulated at a more general level of abstraction.
Of course, such a universal approach towards au-

one of the classical subdisciplines of computer sci- fion of an abstract notion that generalizes structures
ence, concerns the study of finite automata as de-like words, trees and transition systems. Fortunately,
vices for classifying infinite, or possibly infinite, ob- SUch an abstract notion already exists in the form of

jects. This perspective on finite automata has found coalgebra

important applications in areas of computer science  The theory of universal coalgebra (see [11] for an
where one investigates the ongoing behavior of non- overview) seeks to provide a general framework for
terminating programs such as operating systems. Asthe study of notions related to (possibly infinite) be-
an example we mention the automata-based verifica-havior, such as invariance and observational indistin-
tion method ofmodel checking4]. This research  guishability (bisimilarity, in most cases). Intuitively,
also has a long and strong theoretical tradition, in coalgebras (as objects) are simple but fundamental
which an extensive body of knowledge has been de- mathematical structures that capture the essence of
veloped, with a number of landmark results. Many dynamics. In this paper we will restrict our atten-
of these link the field to neighboring areas such as tion tosystems; these are state-based coalgebras con-
logic and game theory, see [6] for an overview. The sisting of a setS and a mapS — FS, whereF is
outstanding example here is of course Rabin’s decid- some set functor determining thegnature of the
ability theorem [10] for the monadic second order coalgebra. The general theory of coalgebra has al-
logic of trees; to mention a more recent result, Janin ready developed some general tools for the specifica-
& Walukiewicz [7] identified the modal:-calculus tion of properties of coalgebras. In particular, start-

We generalize some of the central results in au-
tomata theory to the abstraction level of coalgebras.

In particular, we show that for any standard, weak
pullback preserving functdf, the class of recogniz-
able languages df-coalgebras is closed under tak-
ing unions, intersections and projections. Our main
technical result concerns a construction which trans-
forms a given alternatin§-automaton into an equiv-
alent non-deterministic one.

1. Introduction



ing with Moss’ coalgebraic logic [8], several log- concrete results that we prove concern the relation
ical languages have been proposed, usually with abetween alternating and non-deterministic automata,
strong modal flavor. Most of these languages are notand some of the closure properties that one may as-
designed for talking aboubngoing behaviour, but  sociate with automata. For a proper formulation, we
in [13], the second author introduced a coalgebraic need to develop some terminology.

fixed point logic that does enable specifications of A class of pointedr-coalgebras will be referred
this kind. to as anF-language. Such a language is recog-

The same paper also introduces, for coalgebrasnized by an F-automaton A if a pointedF-coalgebra
over a standard set functér that preserves weak Pelongs toL if and only if it is accepted by, and
pullbacks, the notion of aR-automaton— we will (non-deterministically) recognizable if it is recog-
recall the definition in section 2. These automata Nized by some (non-deterministigjautomaton. Our
provide a common generalization of the familiar au- Main technical result can now be formulated as fol-
tomata that operate on specific coalgebras such adows.

words, trees or graphs. They also come in various Theorem 1 Let F be some standard set func-
shapes and kinds, the most important distinction be- tor that preserves weak pullbacks. Then every
ing between alternating, non-deterministic, and de- F-automaton has a non-deterministic equivalent.
terministic ones, respectively. Hence, anF-language is recognizable iff it is non-
Basically, F-automata are meant to either accept deterministically recognizable.

or reject pointed coalgebras (that is, pdBss) con-
sisting. of anF—cangebraS together with a selected some operation ofi-languages, then we say that a
;tates in the gamerS of S), and th'usexpress PIOPEr-  ¢lass of languages is closed und@rif we obtain
tiesof states inF-coalgebras. This makes them very a language from this class whenever we apgplyo

s_imilar_ to formulas,_and_ explair_ls the (_:Iose connec- 5 family of languages from the class. For example,
.t|on with coalgebraic (fixed p0|_nt) logic. Another one may easily prove that recognizaBianguages
important aspect of-automata involves game the- ;.o o100 d under taking intersection and union; with
ory: the criterion unQer which aR-automaton ac- ¢, more effort we will show that the class of non-
cepts or rejgct's.a pointed coalge'bra IS formqlated N deterministically recognizable-languages is closed
j[erms_of an infinite two-p_layer parity game which en- e, projection. Theorem 1 allows us to strengthen
Joys history-free determinacy. the above list of closure properties as follows.

The aim of developing this coalgebraic frame-
work is not so much to introduce new ideas in au-
tomata theory, as to provide a common generaliza-
tion for existing notions that are well known from
the theory of more specific automata. Apart from
its general mathematical interest, this abstract ap- Conspicuously absent in this list is closure under
proach may be motivated from various sources. To complementation — we will come back to this in
start with, the abstract perspective may be of help to section 5.
find the right notion of automaton for other kinds of Finally, our proofs for these results are of course
coalgebras, besides the well known kinds like words built on generalizations, to the coalgebraic level, of
and trees. It may also be used to prove interesting (well) known ideas from the theory of specific au-
results on coalgebraic logics — we will briefly come tomata. This applies in particular to results on graph
back to this in section 5. automata [7] and the abstract universal algebraic ap-

It is the aim of the present paper to provide fur- Proach of [2].
ther motivation for taking a coalgebraic perspective
on automata, by showing that some of the key results 2. Preliminaries
in automata theory can in fact be lifted to this more
abstract level. In particular, this allows faniform We presuppose familiarity with the basic concepts
proofs of these results, which in its turn may lead to a of universal coalgebra [11] and automata theory [6].
better understanding of automata theory as such. TheHere we fix some notation and terminology.

In order to discuss closure properties, @tbe

Theorem 2 LetF be some standard set functor that
preserves weak pullbacks. Then the class of recog-
nizableF-languages is closed under union, projec-
tions and intersection.



2.1.Set-functors

We let Set denote the category of sets and func-
tions andRel the category of sets and binary rela-
tions. Arelator, that is, a functoQ : Rel — Rel,
extends a functorF : Set — Set if QS = FS for
any object (setp andQ(Gr(f)) = Gr(Ff) for any
arrow (function)f; hereGr(f) denotes the graph of
f. As shown by Trnko& [12], functors that preserve

weak pullbacks can always be extended to a relator.

A second restriction on our functéris standardness,
i.e., F is assumed to preserve inclusionsAif C A
thenFA’ C FA. For proofs of the following facts we
refer to [3] and references therein.

Fact2.1 LetF : Set — Set be a standard, weak
pullback preserving functor. Thelh has a unique
extensionF : Rel — Rel; this relator satisfies, in
addition:

(1) F(R") = (FR)" ((-)” denotes converse),

(2) F is monotone: ifR C S thenF(R) C F(9),

BYIfAC A, BC B andR C A’ x B, then
F(RIaxB) = F(R)lfaxFs-

Example 2.2 The power set functdP is weak pull-
back preserving and standard. The filter functgr
mapping a sefb to the set of all filters ovef and a
function £ to the function(f~!)~!, preserves weak
pullbacks but it is not standard. The functor, map-
ping a setS to the set of all upward closed subsets of
(PS,C) and a function tq f~1) 1, is neither weak
pullback preserving nor standard.

From now on all functors appearing in the paper
will be standard and preserve weak pullbacks.

2.2. Coalgebra automata

Let F : Set — Set be a standard weak pullback
preserving functor. We will briefly recall the defini-
tion of anF-automaton as introduced in [13].

Definition 2.3 An (alternating) F-automatonis a
quadrupleA = (A,ar, A, Q) with A some finite
set of objects calledtates a; € A theinitial state,
A : A — PPFA the transition functionand Q) :
A — w a parity map. ArF-automaton is calledon-
deterministidf all members of each\ (a) are single-
ton sets. <

F-automata are designed to accept or reject
pointed F-coalgebras. The acceptance condition is
formulated in terms of a parity game [6].

Definiton 2.4 Let A = (4,a;,A,Q) be anF-

automaton, and le® = (S,0) be anF-coalgebra.
Theacceptance gamg(A, S) associated witth and
S is the parity graph gam@Bs, By, E, Q) with

Sx A U SxFA
SxPFA U P(SxA),

Bg =
BV —
while £ and Q are given in Table 1. The set of
winning positions for3 in this game is denoted as
Wina(G(A,S)), or Winz if no confusion is likely.
A acceptghe pointedr-coalgebrds, s) if (s,ar) €
Wins. <

Remark 2.5 It is clear from the definition of2 that
only thebasic positions of a match, i.e., positions of
the form(s,a) € S x A, are relevant to determine
the winner of the match. Accordingly, in the sequel
we will frequently represent a match of the game
with the sequence of basic positions visited during
the match.

Parity games are known to enjoy a strong form
of determinacy: in any position of the game board
either 3 or V has a history-free winning strategy.
Therefore we can focus ai's history-free strategies.

Definition 2.6 Given anF-coalgebra(S,c) and an
F-automator astrategyof 3 is a pair of functions

(®:SxA—PFA, Z:5xFA— P(Sx A)).

Such a strategy iegitimate at a position if it maps
the position to an admissible next position. A partial
strategy of the kindb : S x A — PFA will often be
represented as a mdp: S — (PFA)4; values of
this map wil be denoted as,, etc. <

In the paper we will also need a slight variation
of an F-automaton. For any sét, a C-coloring of
a coalgebrs& is a mapy : S — C; the C-colored
F-coalgebr& @~ := (S, ~, o) can be identified with
theC x F-coalgebra S, (v, o).

Definition 2.7 Let C be a finite set. AC-chromatic
F-automatonis a quintupleA = (A,ar,C,A,Q)
such thatA : A x C — PPFA (and 4, a;, and
Q) are as before). Given such an automaton and a



Position:b P(b) | Admissible movesE|[b] Q(b)
(s,a) e Sx A 3 {(5,2) € SxP(FA) | ® € Aa)} | Qa)
(s,®) € S x P(FA) v {(s,p) € SxFA|ped} 0
(s,p) € SxFA 3 {ZeP(SxA)|(s(s),p) €FZ} 0
Z e P(S x A) v |z 0

Table 1. Acceptance game for an

C x F-coalgebra§ = (S, ~, o), the acceptance game
Ge(A,S) is defined as the acceptance gameHRer
automata with the only difference thahas to move
from a position(s, a) to a position(s, ®) such that
O € Aa,v(s)). <

Example 2.8 The well-known word, tree and graph
automata are instantiations of this notion. Infi-
nite words over an alphabé&t can be seen a§'-
colored coalgebras over the identity functdr so
parity automata for infinite”'-words correspond to
C-chromaticld-automata. Likewise('-chromatic

Id x Id-automata correspond to automata on infi-

nite binary trees, and’-chromaticP-automata cor-

F-automaton

spectively, the union and the intersection of the lan-
guages associated with the original automata.

Definition 3.1 LetA; = (A;,a}, Ay, Q) andA, =
(A, a%, Ay, Q) be twoF-automata. We will define
their sum A, andproduct An.

Both of these automata will have thdisjoint
union Ay := {x} W A; W A, as their collection of
states. Also, the parity functioil will be the same
for both automata:

Ha) = { %i(a)

The only difference between the automata lies in the

if a ==,
if a € A;.

respond to amorphous tree or graph automata, withtransition functions, which are defined as follows:

C'in all cases denoting thedphabet
For each functoF mentioned above, our notion

may also take care of the automata operating on

the correspondingjnite objects. For instance, finite
words overC' may be taken a§'-colored coalgebras
for the functor{| } + Id, with | denoting termination.

We need the following fact from [13].

Fact 2.9 With any C x F-automatonA we may
associate aC-chromatic F-automatonA., the C-
chromaticF-companionof A, such thatA and A¢
accept the samé' x F-coalgebras.

3. Closure properties

In this section we show that the class of non-
deterministically recognizable languages is closed

f Ay(a})UAy(a?) ifa=x
Aula) = { Ay(a) it a € A,
L {(I)l U P, ‘ P, € Al(a})} if a =%
An(a) := { As(a) it ac A,
Finally, we putA, := (412,a5,Ay,$) and
Am = (A12,G/I7AQ,Q). <

Proposition 3.2 Let A; and A, be twoF-automata.
Then for any pointed-coalgebra(S, s) we have:

1. Ay acceptss, s) iff A; or A, acceptss, s),

2. An accepts(S, s) iff both A; and A, accept
(S, 5).

3. Ay is non-deterministic if\; and A, are so.

under taking union and projection, whereas the class Proof. First suppose that the automatap accepts
of recognizable languages is shown to be closed un-(S; s). Hence by definitions has a winning strategy

der union and intersection. Combined with Theo-

rem 1, this suffices to prove Theorem 2.

3.1. Closure under union and intersection

finthe game&g := G(Ay,S) starting from position
(s,*). Leti be such thaif (, s) € A(a}). Itis then
straightforward to verify thaf, restricted tad’s po-
sitions inG(A;,S), is a winning strategy fos from
position(s, a%). From this it is immediate that; ac-

In this subsection we define the sum and product Cepts(S, s). The other statements of the proof admit

of two F-automata, and prove that they recognize, re- similarly straightforward proofs.

QED



3.2. Closure under projection

In this subsection alF-automata are assumed to
be non-deterministic. To facilitate the presentation
we will think of the transition functiom as a map
A — PFA and the first componeri of a strategy
(®,Y) for 3 in an acceptance gantg A, S) will be
regarded as a function of typé x S — FA (that
is, we identify singleton sets with their unique ele-
ments).

Definition 3.3 Let C be a setA = (A,a;,A,Q)
be a (C x F)-coalgebra automaton andc
(A, a5,C, Ac, Q) its C-chromaticF-companion, see
Fact 2.9. Then we define th@-projectiontcA =
(A ar, Ar, Q) whereA,(a) := .cc Ac(c,a). <

Lemma 3.4 If A accepts the(C x F)-coalgebra
(S,s) := (S,7,0,s) thenwcA accepts(S™, s) :=
(S,0,s).

Proof. The proof is easy. One has to realize that all
the moves of in the game foi\ ¢ are still legitimate
moves ofd in therc A acceptance game.  QED

The converse of this lemma however fails in general.
Let A be someC x F-automaton and letS,o,r)
be a pointedr-coalgebra that is accepted by A.
Then we know thal has a winning strateg{®, )
in G(mcA,S) from position(r, ar). We would like
to ensure thaf®,Y") is also a winning strategy in
G(A¢,S) by defining a coloringy : S — C as fol-
lows: v(s) := c if there is a match ofi(7wcA,S),
starting from positior(r, a;) and conformd’s strat-
egy, in which a positior(s,a) occurs and®, , €
Ac(c,a). In general, however, there may 8stinct
positions (s,a;) and (s,as) thatV may force the

match to pass through, and it may not be possible to StructureS

find a singlec € C such that botld, ,, € A(c,a1)
and®; ,, € A(c,az). To avoid this problem we in-
troduce now the notion aftrongacceptance.

Definition 3.5 Let A be anF-automaton andS, r) a
pointedF-coalgebra. A history free strate@p, Y)
for 3 in the gameG(A,S) initialized at (r,ay) is
calledscattered if the relation

{(r,an} UU{Yep €8x A (s,0) € Wins}

is the graph of some possibly partial function. Fur-
thermore we say that strongly acceptshe pointed
coalgebrgs, r) if 3 has a scattered winning strategy
in the game&g (A, S) initialized at positionr, ay). <

Lemma 3.6 Let A be aC x F-automaton, and let
(S,r) be a pointedF-coalgebra that is strongly ac-
cepted byrA. Then there is &'-colouring~y : S —
C of S such thatA acceptsS,~, o, 7).

Proof. Let (®,Y) be a scattered winning strategy
for 3 in G(7A,S). According to the definition of
scatteredness we can assign to every S a state
as € Asuch thai, = a7, andif(s,a) € Y, for
some winning positiofs, ¢), thena = a,. Then we
define a functiony : S — C as follows. If there is
ac € C such thatdb, ,, € Ac(c,a), then we pick
such ac and puty(s) := ¢; if there is no sucl, then
we definey(s) := d for some arbitraryl € C. It fol-
lows from these definitions th&®, Y) is a strategy
for 3in G(A¢,S @ v) that guarantees her winning
every match starting frortr, a;). From this it is im-
mediate that\ acceptgsS,~, o,r). QED

The next lemma shows that if a pointed coalgebra
is accepted by some automaton, but not strongly so,
then we can always find a bisimilar pointed coalgebra
that is strongly accepted.

Lemma 3.7 Let A be an F-automaton, and let
(S,r) = (S,0,r) be a pointedF-coalgebra that is
accepted byA. Then there is a pointeB-coalgebra
(S, ,7) such that(S, r) is bisimilar to (S, &, 7) and
A strongly accept$S, o, 7).

Proof. The coalgebr8& will be based on the s& :=
Sx A, and as the selected statef S we take the pair
(r,ar). For the definition of the coalgebra structure
&, we need some auxiliary definitions.

First, it is not hard to see that we may endow
the setS with a coalgebra mag which turns the
S (S,5) into the A-fold coproduct
[l,c4 S, in such a way that the first projection map
ms : Sx A — Sisacoalgebra homomorphism from
StoS. Second, given a relatioR C S x A, define
the relationk? C S x A by putting

R:= {((s,a),a) | (s,a) € R}.

Then clearly we have thak = Gr(rs) o R, and
hence, 3 o
FR = Gr(Frs) o FR. 1)

Now, for the definition of : S — FS, con-
sider an arbitrary elemeft, a) € S, and distinguish
cases. If(s,a) is awinning position in the game
G(A,S), then using (1), it follows fron{o(s), ) €



FY, that we may defin&(s,a) to be some object
in FS satisfying (o(s),5(s,a)) € Gr(Frs)” and
(5(s,a),p) € FY. If, on the other hand(s, a) ¢
Winz, then we simply put (s, a) := (s, a).

It is completely straightforward to check that the
map g is in fact anF-coalgebraic homomorphism
from S ontoS. From this, the first statement of the
proposition follows immediately.

(@, Y)with® : Sx A — AandY : S x FA —
P(S x A) as follows:

((s,a),b)
((s,0), ¢)

q)sb

—
—

=

N7

Since all relations chosen by are of the formg,
and all elements of such relations are of the form
((s,a),b) with a = b, it is obvious that the set
{((s,ar),ar)} UU{Ys,p | (5,9) € Wins} is func-
tional. In other words, the strategy is scattered.

Thus it is left to prove that®,Y’) guarantees
to win any match ofG(A,S) starting from(7, az).

For the second statement, define the Strategybitrary) F-automaton —

4. From alternating automata to non-
deterministic ones

In this section we prove the main technical result
of the paper, Theorem 1. That is, we will construct,
for an arbitrary, alternatingr-automaton an equiv-
alent non-deterministic F-automaton. Throughout
this section we will be working with a fixed (but ar-
<A, ar, A, Q>

Before going into the technical details of the con-
struction, let us first provide some of the intuitions
behind our approach. These intuitions ultimately
go back to ideas of Muller and Schupp, see for in-
stance [9], but in particular, our proof generalizes
work by Janin and Walukiewicz [7], using the ap-
proach of Arnold and Niwiski [2]. (In fact, with
some effort, it would be possible to prove our result
here as aorollary of the work mentioned, but that
would be to miss our point that a uniformpalge-
braic proof is possible.)

The main idea is to bring the players’ interaction
patterndv3V in one round of the acceptance games

To see why this is the case, consider an arbitrary for 4, into the ‘strategic form3v (or more precisely:

position ((s,a),a) with (s,a) € Wing(G(A,S)),
and abbreviatep := ®,,. Then by definition,
i)((&a)’a) = ¢ and Y((s,a),(p) = Y‘?#’
{((t,b),b) | (t,b) € Y,,}. From this obser-
vation it is easy to derive that for ang(A,S)
match (f,a;)((sl,al),al)((SQ,ag),ag)... that is
conform the strategy(®,Y), the corresponding
G(A,S) match(r,ar)(s1,a1)(s2,a2) ... is conform
(®,Y). And since this strategy was supposed to be
winning for3 from (r, ar), it follows that theG (A, S)
match is, indeed, a win fat. This proves the second
statement of the proposition. QED

Proposition 3.8 Let A be soméC' x F)-automaton.
Then the following are equivalent, for every pointed
F-coalgebra(s, s):

1. mA acceptss, s),

2. A accepts a(C x F)-coalgebra(S’,~,0',s')
such that(S’, o', s") and (S, s) are bisimilar.

Proof. The implication { = 2) is immediate by
the Lemmas 3.7 and 3.6. The other implication
follows from Lemma 3.4 and the observation [13]
that F-automata do not distinguish between bisimi-
lar pointedF-coalgebras. QED

33V). Concretely, consider a basic positibna) €

S x A in the acceptance gantHA, S) for someF-
coalgebraS. From this position, play proceeds as
follows:

e Jpicks® € A(a), moving to positior(s, ®);
e V picksp € ®, moving to positions, ¢);

e JpicksY, C S x A with (o(s),p) € FY, —
thisY,, is the new position;

e Y picks(t,b) € Y, as the next basic position.

Now the crucial point is thai maygatherher family

Y, € S x A | ¢ € @} into one singlerelation

Ys C S x PA, and that we may modify the game in
such a way that this is an appropriate answer=or
This approach would suggest to take (representations
of) subsets ofd as the states of the new automaton
A,

However, as is well-known from the literature,
such a straightforward subset construction may work
for automata that operate on finite objects, in the
case of automata for (possibly) infinite objects this
approach fails to make some subtle but crucial dis-
tinctions. The remedy, which brings us to the sec-
ond fundamental idea underlying our construction,

—_~



is to usebinary relations onA, rather than subsets That is, the automaton will have a special staig

of A, to bring the acceptance game into some kind signalling that3 has been trapped. In order to for-
of ‘layered-strategic’ form. Then, using the notion mulate the proposition we need some notation: given
of atracethrough a sequence of such relations, we a deterministic automato® = (D,d;,%,d, Qp)
have an established tool at our disposal for bringing with alphabet} and transition functior, we let
the interaction pattern of the acceptance game intod : D x ©* — D denote theiterated transition
the required format. Our contribution here is to show function, inductively defined by (d,¢) = d and
that all of this can be done in the abstract context of §(d, aa) = 6(6(d, @), a).

coalgebras for an arbitrary standard, weak pullback

preserving functor. Proposition 4.2 There is a deterministic word au-
Now we are ready for the technical details of the tomatonM, = (M, m;, Rel(A), no, Q0o), Operating

construction. on Rel(A)-words, and containing a special statey,

Definition 4.1 Given afiniteworch = R1 Ry ... R, such that:

over the setRel(A) of binary relations overd, a 1. po(my, R) = my for all R € Rel(A),

trace throughp is anA-worda = agajas . . . ag with

k < n such thaty = ay is the initial statez; of the 2. for any finiteRel(A)-word p: fi(p) = my iff p

automaton, and;R;1a;4+1 for all ¢ < k. Similar contains a trap for,

definitions apply to (finite or infinite) traces on infi- o

nite Rel(A)-words. 3. for any infiniteRel(A)-word p: M, acceptsp

A traceq is atrap for 3 if A(a;) = @ for some iff p contains no bad traces.

statea; on «; a tracex is badif it is a trap for3 or,
in casex is infinite, if max{Q(a;) | i € 2} is odd.
<

In the remainder of this section wix the au-
tomatonMy = (M, my, Rel(A), no, Qo) and state
my as given in Proposition 4.2. We leave the proof

As we will see, traces may be associated with of Proposition 4.2 as an exercise for the reader, and
matches of the acceptance game fgrbad traces  move on to the main construction of the proof. Below
with the ones that are lost 3/ Let us look at thisin  we define a non-deterministic automaftehy which
a bit more detail. As a consequence of the great gen-operates or{PF A)4-colored F-coalgebrasS & @,
erality that we aim for, there are two differentwaysin that is,F-coalgebra$ = (S, o) that are colored by
which3 may loose a match. She may either get stuck the mapd : S — (PFA)“. Such a ma@ represents
at some finite stage of the match (either at a basic po-a (potential)strategyof 3 in the gameg (A, S) that
sition or at a position of the forrfs, o) € S x FA), is partial in the sense of dealing with basic positions
or survive for infinitely many rounds but fail to es- only. More precisely, for any positio, a) € Sx 4,
tablish the winning condition. Now the traces that we let the value®;, € PFA encode the move
are traps fo3 will correspond to matches in which (s, ®, ,) € S x PFA. Our aim with the automaton
she gets stuck in basicposition, whereas the other M) is that it will recognize precisely those pointed
kind of badness will turn out to be an encodingDf  (PFA)4-coloredF-coalgebrags, o, ®, s) of which
failing to win an infinite match. For finite matches & forms the basic part of a winning strategy in the
that3 looses because of getting stuck in a non-basic gameg(A,S). Towards the end of this section we
position, we do not need a corresponding notion for will see that this suffices to prove Theorem 1.
traces. For the definition ofM; we need some prelimi-

The first proposition that we need is a variation on nary definitions.
well-known results. It concerns the existence of a de-
terministicword automaton that accepts those words Definition 4.3 An object= € FP(A) is called arf-
over Rel(A) which contain no bad traces. Since redistribution of a subse® C FAif (¢, =) € F(€4)
there are two kinds of bad traces, this automaton for all ¢ € ®.
needs to perform a double task: it needs to recognize An object II € FRel(A) is called anF-
traps for3, and it needs to take proper care of the infi- redistributive relational representation of an element
nite words. It will be convenient to have the automa- ® € (PFA)4, or shortly: anF-relation for ®, if
ton perform these two jobs more or less separately. (Fev,)(II) is a redistribution ofb(a) for all « € A.



Hereev, : Rel(A) — P(A) is the map given by
ev, : R — R[a]. The collection offF-relations for
® € (PFA)“ is denoted aRr(P). <

The intuitions on these notions are as follows.
Concerning redistributions, the point is that for any
F-coalgebra = (S, o), any points € S and any set
® € PFA, there is a 1-1 correspondence between:

o families{Y, C S x A | ¢ € @} of relations
such thato(s), ¢) € FY,, forall ¢ € ®, and

e pairs(Ys, =) consisting of a relatiolys C S x
PA, and anF-redistribution= € FPA of &,
such thafo(s),Z) € FYs.

In brief, redistributions enable us to gather the infor-

mation of a family{Y,, C Sx A | ¢ € ®} of relation

moves ofd into one single relatiolys C S x PA.
However, this regrouping of information ofis

strategy in terms of redistributions has one shortcom-

ing: it is based orsubsetof A whereas we already
pointed out that such an encoding will not suffice
to encode the full flow of information when trans-
forming alternating automata into non-deterministic
ones. This is where the notion of &arelation for

® comes in. The important observation is that any
elementII of the setFRel(A) has the right shape
to represent a familf®, € PFA | a € A}: the
point is that we may use, for every € A, the
map Fev, : FRel(A) — FPA to provide an el-
ement(Fev,)(II) in the right setFPA of (poten-
tial) F-redistributions of®. Thus, the definition of
all € FRel(A) being anF-redistributive relational
representation ob € (PFA)“ forms, at least poten-
tially, an adequate formalization of the requirement
thatIT and ® ‘fit well together’. As we will see be-
low, it also forms the key to lead the flow of infor-

Remark 4.5 Let M be as above, arfi= (S, o, D)
some (PFA)“4-colored F-coalgebra. Note that the
acceptance gamg M, S) is summarized in Table 2.

Given the definition of., it is not hard to see that,
from a position(s,m) € S x M, with subsequent
moves of3, say, (s, {K}) € S x PFM andY C
S x M, we may associate an eleméhte FRel(A)
and a relationZ C S x Rel(A) such thatll is an
F-relation for®, (Fu,,)(II) = K and(o(s),II) €
FZ.

To start with, it is obvious from the defini-
tions that there is som&8l € Rg(®P,), such that
(Fum)(II) = K. Now define the relatior?
{(t,R) € S X Rel(A) | (t,um(R)) € Y}. Clearly,
this relation is the composition df with the con-
verse relationGr(u,,)” of the graph of the func-
tion su,,,. From this it follows thatFZ = FY o
F(Gr(pm)’). Also, rewriting (Fu,,,)(II) = K,
we obtain that(Il, K) € Gr(Fu,) = FGr(um),
so that(K,II) € (FGr(um))” F(Gr(pm)).
Hence, from(a(s), K) € FY it is immediate that
(0(s),I) € FZ.

Proposition 4.6 For any pointed F-coalgebra
(S, roots) and any (PFA)“-coloring ® of S, the
following are equivalent:

1. @ is part of a winning strategy fofl in G(A,S)
initialized atroots;

2. M acceptsS @ @, roots).

Proof. Recall that every infinite game may be repre-
sented as a tree, and that strategies of either player,
limiting the possible course of actions, can be rep-
resented asubtreesof this game tree. Thus, both
with a ®-extending strategy of in G = G(A,S),

and with a strategy ofl in the acceptance game

mation in acceptance games for alternating automatag’ — G(M,,S @ ®), we may associate such sub-

into a non-deterministic channel.

Definition 4.4 Let M; be the non-
deterministic (PFA)“4-chromatic F-automaton
(M,my, (PFA)A, 1u,Q0), where pu M x
(PFA)A — PPFM is the map defined by

u(m, ) :=

{

Here ui,, : Rel(A) — M is given byu.,,(R) :
to(m, R).

{{Fun) (M} | e Re(@)} it m # my,

o] if m=my.

<

trees of the game trees Gfandg’, respectively. As
it turns out, these two trees turn out to be rather sim-
ilar, and in fact, may be coded up into one and the
same structure. This observation forms the basis of
our proof of the proposition.

More specifically, we will show the equivalence
of both (1) and (2) to the statement (3) below.

3. There is a labelled tree
X = <X7 TOOtXa 57 u, H» Q>7

whererootx € X and¢ : X — P(X) denote,
respectively, the root and the successor function



Position:b | Type P(b) | Admissible movesE|[b] Qo (b)

(s,m) S x M I | {(s,{K}) € SXPFM | K € u(m,®(s))} | Qo(m)

(s,{K}) S x PFM Voo {(s,K)} 0

(s,K) S xFM 3 [ {ZeP(SxM)|(o(s),K) € FZ} 0

Z PSxM)| ¥V |Z 0

Table 2. Acceptance game for M,

ofthe tree,and : X — S,I1: X — FRel(A), It is easy to check that\? is indeed non-
and@ : X — Rel(A) are labellings. deterministic, so clearly, the following proposition,

which is a straightforward corollary of the Proposi-

This tree is supposed to satisfy the conditions ', .
bp o tions 3.8 and 4.6, suffices to prove Theorem 1.

3a—-3d below. Here, and in the sequel, we abbre-
viate®,, as®,, and defindV,, := {(uy, Qy) |

y € &(x)}. Branches of the tree start at the root,
and thus induce (finite or infinite) words over
Rel(A).

Proposition 4.8 The automata\ and A? accept ex-
actly the same pointelé-coalgebras.

Remark 4.9 Although we do not go into the algo-

rithmic details of our construction, we want to stress

(8) troot = roots ANAQroot; = {(ar, ar)}, here that complexity theoretically, our results match

(b) forallz € X, II, is anF-relation for®,, known results in automata theory. If we define the

() forallz € X, (0(uy),I1,) € FW,. size of an automaton as its number of states, the main

) observation is that the size af is equal to the size

(d) X'has nobad traces (thatis, no branclof ot and, in particular, does not depend on the func-
induces aftel(A)-word containing a bad o £ | fact, combining well known results about
trace). word automata, one may show that basically, the size

i o ) ) of M is exponential in the size d.
As hinted at above, our intuition aboXtis that it

represents a winning strategy fétboth inG and in . .
G’ (in the case ofj, of course, a strategy completing 5. Conclusions & Questions
the partial strateg¥). Counterstrategies of in G’

correspond tdranchesof X, while his strategies in There is along list of issues that need some further
G appear asraceson X. Further details of the proof ~ discussion, but for reasons of space limitations we
are left for the full version of this paper. QED confine ourselves to a very brief discussion of the

following four items.

In the final step of the construction we have to To start with, we believe that this paper pro-
transformM; into a non-deterministi€-automaton  vides evidence for the claim that universal coalge-
A? that is equivalent ta\. This last transforma-  bra forms an appropriatbstraction levefor study-
tion is in fact easy — relatively that is: we need an ing automata theory. Our results show that important
application of the closure under projection of non- automata-theoretic phenomena have a natural exis-
deterministically recognizable languages. tence at the coalgebraic level of abstraction.

Second, although we have hardly mentioned logic
Definition 4.7 Let A? be the F-automaton at all, the results in the paper have in fact signifi-
(M, mp,u4,Q0) where M, m; and Qo are as cant logical corollaries. For instance, generalizing

in Definition 4.4, while results in [5], we can show that the coalgebraic fixed
point logics of [13] all haveuniform interpolation
pd(m) = U w(m,e) We hope to report on this in future work.
e€(PFA)A Probably the most importantissue to be addressed
concerns the closure of the class of recognizable lan-
defines the transition map! : M — P(FM). < guages undecomplementationFor our coalgebraic



automata it is not so easy to prove a complementa- [2] A. Arnold and D. Niwinski.

tion lemma, even for alternating or deterministic au-
tomata. The reason for this is that the acceptance
game for coalgebraic automata has some craciat
symmetrianteraction between the two players, with

3 choosing relations and picking elements of such
relations. The fact that for many well-known func-
tors (including the ones that yield simple coalgebras
such as trees and transition systems), this game can
be brought into a symmetric form, simply reveals the
existence of an interestingropertythat some func-
tors have, and others may not. We have to leave this
matter as an intriguing area for further research, how-
ever. Should there be a strong need for closure of
recognizable languages under complementation, one
may always consider to move to a different notion of
coalgebra automaton that is tailored towards a more
symmetric acceptance game. This is also a matter
that we leave for future investigations.

In any case, closure under complementation may
be a less important property than it appears to be at
first sight. Explained in logical terms, the point is
that coalgebraic logics (with or without fixed points)
without negatioralready have considerable expres-
sive power. For instance, A. Baltag (private commu-
nication) has shown that any state ifirdite coalge-
bra can be completely characterized (modulo bisimi-
larity) by a negation free coalgebraic fixed point for-
mula.

Finally, we are quite interested to see whether
the conditions on the functor are really needed. It
seems that the condition of standardness can be lifted
without too much difficulty — note also that every
set functor is ‘almost’ standard [1, Theorem 111.4.5].
However, we believe that our main result crucially
depends on the fact the functor preserves weak pull-
backs. This is in line with results by Trnka\1]
indicating that for a related class of functorial au-
tomata, nondeterministic and deterministic recogniz-
ability coincide ifand only if the functor preserves

weak pullbacks. The precise connection with these [12]

results clearly needs to be investigated.
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