
Generalizing Parametricity Using Information-flow

Geoffrey Washburn Stephanie Weirich
Department of Computer and Information Science

University of Pennsylvania
{geoffw, sweirich }@cis.upenn.edu

Abstract

Run-time type analysis allows programmers to eas-
ily and concisely define operations based upon type
structure, such as serialization, iterators, and structural
equality. However, when types can be inspected at run
time, nothing is secret. A module writer cannot use
type abstraction to hide implementation details from
clients: clients can determine the structure of these sup-
posedly “abstract” data types. Furthermore, access con-
trol mechanisms do not help isolate the implementation
of abstract datatypes from their clients. Buggy or mali-
cious authorized modules may leak type information to
unauthorized clients, so module implementors cannot re-
liably tell which parts of a program rely on their type
definitions.

Currently, module implementors rely on parametric
polymorphism to provide integrity and confidentiality
guarantees about their abstract datatypes. However,
standard parametricity does not hold for languages with
run-time type analysis; this paper shows how to general-
ize parametricity so that it does. The key is to augment
the type system with annotations about information-flow.
Implementors can then easily see which parts of a pro-
gram depend on the chosen implementation by tracking
the flow of dynamic type information.

1 Introduction

Type analysis is an important programming idiom.
Traditional applications for type analysis include serial-
ization, structural equality, cloning and iteration. Many
systems use type analysis for more sophisticated pur-
poses such as generating user interfaces, testing code,
implementing debuggers and XML support. For this rea-
son, it is important to support type analysis in modern
programming languages.

A canonical example of run-time type analysis is the
generic structural equality function.

fun eq[’a] = typecase ’a of
bool => fn (x:bool, y:bool) =>

if x then y else false
| ’b * ’c => fn (x:’b*’c, y:’b*’c) =>

eq [’b] (fst x, fst y) &&
eq [’c] (snd x, snd y)

| ...

The eq function analyzes its type argument’a and re-
turns an equality function for that type.

Authors of abstract datatypes can use such generic
operations to quickly build implementations. For exam-
ple, because equality for the followingEmployee.t
datatype is structural, one may implement it via generic
equality.

module Employee = struct
(* name, SSN, address and salary *)
type t = string * int * string * int
(* An equality for this type. *)
fun empEq (x : t) (y : t) =

Generic.eq [t] (x,y)
end :> sig

type t
val empEq : t -> t -> bool

end

Although type analysis is very useful, it can also be
dangerous. When types are analyzable, software devel-
opers cannot be sure that abstraction boundaries will
be respected and that code will operate in a composi-
tional fashion. Consequently, type analysis may destroy
properties ofintegrityandconfidentialitythat the author
of the Employee module expects. Using type analy-
sis, anyone may create a value of typeEmployee.t .
Although the type will be correct, other invariants not
captured in the type system may be broken. For exam-
ple, malicious code can create employees with negative
salaries.

1

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

Furthermore, even if the author of theEmployee
module tries to keep aspects of the employee representa-
tion hidden, another module can simply use generic oper-
ations to discover them. For example, if no accessor was
provided to the salary component of anEmployee.t ,
malicious code could still extract it.

One answer to these problems is to simply prohibit
run-time type analysis. However, we believe the bene-
fits of type analysis are too compelling to abandon al-
together. Therefore, we propose a basis for a language
that permits type analysis, yet allows module writers to
define integrity and confidentiality policies for abstract
datatypes. In particular, we want authors to know: How
does changing the implementation of datatype affect the
rest of a program? How does code she writes depend on
the other abstract types they use?

In languages without type analysis, these questions
are easy to answer. Authors rely onparametric polymor-
phismto provide guarantees. The author knows the rest
of the program must treat her abstract datatypes as black
boxes that may only be “pushed around”, not inspected,
modified or created. Dually, authors are restricted in the
same fashion when using other abstract datatypes. In the
presence of type analysis, the programmer cannot know
what code may depend on the definition of an abstract
datatype. Any part of the program can dynamically dis-
cover the underlying type and introduce dependencies
on its definition.

In the past it has been suggested that type analysis
could be tamed by distinguishing between analyz-
able and unanalyzable types [6]. Unfortunately, just
controlling which parts of the program may analyze
a type does not allow programmers to answer our
questions. Imagine an extension, not unlike “friends” in
C++, where an author can specify which modules may
analyze a type. In the following code, modulesA andB
may analyze the typeA.t , and modulesB andC may
analyze the typeB.u .

module A = struct
type t = int
val x = 3

end :> sig
type t permit A, B
val x : t

end

module B = struct
type u = A.t
val y = A.x

end :> sig
type u permit B, C
val y : u

end

module C = struct
val z = case (Generic.cast [B.u] [int])

of SOME f => "It is an int"
| NONE => "It is not an int"

end :> sig
val z : string

end

ModuleC is not parametric with respect toA.t , even
though moduleC is not allowed to analyzeA.t : If the
implementation ofA.t changes, so does the value of
C.z . Despite restricting analysis ofA.t to A andB, the
implementation of the type has been leaked to a third-
party. Furthermore, because the typeB.u is abstract, the
author ofA cannot know of the dependency. Access con-
trol places undue trust in a client not to provide others
with the capabilities and information it has been granted.
Consequently, we must look beyond access-control for
a method of answering the desired questions.

We propose that tracking the flow of type information
through a program withinformation-flow labelsallows
a programmer to easily determine how their type defini-
tions influence the rest of the program. Information-flow
extends a standard type system with elements of a lattice
that describes the information content for each computa-
tion. For example, we could use a simple lattice contain-
ing two pointsL (low-security) andH (high-security).
A type bool H then means the expression it describes
could use “high-security” information to produce the re-
sulting boolean, while an expression of typebool L re-
quires only “low-security” information to produce its re-
sult. The novelty of our approach compared to previous
information-flow type systems is that we also label kinds
to track the information content of types.

To reason about abstract types in the presence of type
analysis, we label types with an information content that
can be tracked. Computations depending on those types
must also have that label.

module A = struct
type t = int
val x = 3

end :> sig
type t H

val x : t L

end

module B = struct
type u = A.t
val y = A.x

end :> sig
type u H

val y : u L

end

module C = struct
val z = case (Generic.cast [B.u] [int])

of SOME f => "It is an int"
| NONE => "It is not an int"

end :> sig
val z : string H

end

In the revised example, sealing moduleA with the sig-
naturesig type t H val x : t L end indicates
that the type definitiont depends upon high-security in-
formation and the valuex on only low-security infor-
mation. The typeB.u and valueC.z must both be
labeled as high security because they depend upon the
high-security information inA.t . The presence of a la-
belH alerts the author ofA to a dependency.

2

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

Furthermore, only moduleA can create values of type
A.t that are labeled withL. Using type analysis to cre-
ate values of typeA.t would taint the result withH.
Therefore, if moduleA requires its inputs be of type
A.t L, then it is impossible to use its functions with
forged values. The author now has a guarantee that mod-
ule invariants will be maintained and the integrity of her
abstraction will not be violated.

Information flow avoids the problems of access con-
trol because information must be propagated even when
no access occurs. For example, the identity function can
be assigned both the typeA.t L →L A.t L and the
type A.t H →L A.t H witnessing that it propagates
the information content of the argument unchanged.
Here the function type→ is itself labeled to indicate the
information content of creating the function—creating
the identity function does not require any information.

In the next section, we describe a core calculus for
combining information-flow and run-time type analysis.
We then follow with our key contribution: By tracking
the flow of type information, it is possible to generalize
the standard parametricity theorem for languages with
run-time type analysis. This generalized theorem can be
used in the same manner as parametricity to establish
integrity and confidentiality properties.

2 TheλSECi language

λSECi is a core calculus combining information flow
and type analysis. We designedλSECi to be as simple as
possible while still retaining the flavor of the problem. It
is derived from the type-analyzing languageλML

i devel-
oped by Harper and Morrisett [6] and the information-
flow security languageλSEC of Zdancewic [21].

2.1 Run-time type analysis

The grammar forλSECi appears in Figure 1. The
complete semantics forλSECi can be found in the ex-
tended version of this paper [19]. It is a predicative, call-
by-value polymorphicλ-calculus with booleans, func-
tions and recursion. Fix-points are separate from func-
tions to make nontermination aspects of proofs modular.

As in λML
i , type constructors,τ, which can be ana-

lyzed at run-time, are separated from types,σ, which
describe terms. We conjecture our results extend to
languages with impredicative and higher-order polymor-
phism, but for simplicity, we do not examine the prob-
lem in this paper.

The language of type constructors consists of the
simply-typedλ-calculus and two primitive constructors
that correspond to types:bool andτ1 → τ2.

kinds

κ ::= ?` | κ1
`→ κ2 types & operators

type constructors
τ ::= α | λα:κ.τ | τ1τ2 λ-calculus

| bool | τ1 → τ2 booleans & functions
| Typerec τ τbool τ→ analysis

types
σ ::= (τ)` injection

| σ1
`→ σ2 functions

| ∀`1α:?`2 .σ polymorphism

terms
e ::= true | false booleans

| x | λx:σ.e | e1e2 λ-calculus
| Λα:?`.e | e[τ] polymorphism
| fix x:σ.e fix-point
| if e1 then e2 elsee3 conditional
| typecase[γ.σ] τ ebool e→ analysis

values
v ::= true | false | λx:σ.e | Λα:?`.e

term substitutions γ ::= · | γ, [e/x]
type substitutions δ ::= · | δ, [τ/α]
term variable contexts Γ ::= · | Γ, x:σ
type variable contexts ∆ ::= · | ∆, α:κ

Figure 1. The λSECi language

The term formtypecasecan be used to define oper-
ations that depend on run-time type information. This
term takes a constructor to scrutinize,τ, as well as two
branches:ebool ande→). During evaluation the construc-
tor argument is reduced to its head form so that the ap-
propriate branch can be chosen.

τ ;
∗ bool

typecase[γ.σ] τ ebool e→ ; eint

τ ;
∗

τ1 → τ2

typecase[γ.σ] τ ebool e→ ; e→[τ1][τ2]

We writee ; e ′ to mean that terme reduces in a single
step toe ′ andτ ; τ ′ to mean that constructorτ makes
a weak-head reduction step toτ ′.

λSECi also includes a constructor,Typerec, allowing
types to depend upon type information. WithoutType-
rec, it is impossible to assign a type to some useful terms
that perform type analysis [6].Typerec implements a
paramorphism(a type of fold) over the structure of the

3

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

L(?`) , ` L(κ1
`→ κ2) , `

L((τ)`) , ` L(σ1
`→ σ2) , `

L(σ1 ×` σ2) , ` L(∀`1α:?`2 .σ) , `1

Figure 2. Kind and type label operators

argument constructor. As in the following reduction
rules, when the head of the argument is one of the two
primitive constructors,Typerec will apply the appropri-
ate branch to the constituent types and the recursive in-
vocation ofTyperec on the constituents.

Typerec (bool) τbool τ→ ; τbool

Typerec (τ1 → τ2) τbool τ→ ;

τ→ τ1 τ2 (Typerec τ1 τbool τ→)

(Typerec τ2 τbool τ→)

2.2 The information content of constructors

Information-flow type systems track the flow of infor-
mation by annotating types with labels that specify the
information content of the terms they describe. Because
our type constructors influence the evaluation of terms
in λSECi, we also label kinds.

Labels,`, are drawn from an unspecified join semi-
lattice, with a least element (⊥), joins (t) for finite sub-
sets of elements in the lattice, and a partial order (v).
The actual lattice used by the type system is determined
by the desired confidentiality and integrity policies of
the program. Intuitively, the higher a label is in the lat-
tice, the more restricted the information content of a con-
structor or term should be. For most examples in this pa-
per, we use a simple two point lattice (⊥ for low security,
> for high security) that tracks the dynamic discovery of
a single type definition. In practice, any lattice with the
specified structure could be used. An example of a prac-
tical lattice with richer internal structure is the Decentral-
ized Label Model (DLM) of Myers and Liskov [10].

The labels on kinds describe the information content
of type constructors. The kind of a constructor (and
therefore its information content) is described using the
judgment∆ ` τ : κ, read as “constructorτ is well-
formed having kindκ with respect to the type variable
context∆.” The operatorL(κ), defined in Figure 2, ex-
tracts the label of a kind.

Our calculus is conservative: If the label ofκ is `,
then the information content of a constructor of kindκ is
at most̀ . The information level of a constructor can be
raised via subsumption. As kinds are labeled, the order-
ingv on labels induces a sub-kinding relation,κ1 ≤ κ2.

A kind ?`1 is a sub-kind of?`2 if `1 v `2. Sub-kinding
for function kinds is standard. The relation is reflexive
and transitive by definition.

The label of a constructorτ of kind ?`, also describes
the information gained when the constructor is analyzed.
Type variables (such asEmployee.t) may be given
a high security level so that their information content
may be traced throughout the program. For example, the
kind of aTyperec constructor must be labeled at least as
high as the analyzed constructorτ. This requirement
accounts for information gained by inspectingτ.

∆ ` τ : ?`
` v `

′
∆ ` τbool : κ

∆ ` τ→ : ?` ` ′→ ?` ` ′→ κ
` ′→ κ

` ′→ κ where`
′ = L(κ)

∆ ` Typerec τ τbool τ→ : κ

By default the label on thebool constructor is set to⊥.
The label of the kind for function constructors must be
at least as high as the join of its two constituent construc-
tors. This is because the label must reflect the informa-
tion content of the entire constructor.

The kinds of type functions,κ1
`→ κ2, have a label

` that represents the information propagated by invok-
ing the function. As shown below, the information,`, is
propagated into the result of application asκ2 t `. This
is shorthand for relabelingκ2 with L(κ2) t `.

∆ ` τ1 : κ1
`→ κ2 ∆ ` τ2 : κ1

∆ ` τ1τ2 : κ2 t `

2.3 Tracking information flow in terms

The labels on types describe the information content
of terms. We use the judgment∆? | Γ ` e : σ to mean
that “terme is well-formed with typeσ with respect to
the term contextΓ and the type context∆?.” We use∆?

to denote type variable contexts restricted to variables of
kind ?` for any label̀ . As we did for kinds, we define
(in Figure 2) the operatorL(σ) to extract the label of
a type. Like constructors, the information content speci-
fied by labels for terms is conservative. The lattice order-
ing induces a subtyping judgment∆? ` σ1 ≤ σ2, and
subsumption can raise the information level of a term.

The types ofλSECi include the standard ones for func-

tions σ1
`→ σ2 and quantified types∀`1α:?`2 .σ, plus

those that are computed by type constructors(τ)`. Note
that in the well-formedness rule for types formed from
type constructors, shown below, there is no need for a
connection between the label` on the kind and the label
on the type.

∆
? ` τ : ?`

∆
? ` (τ)⊥

4

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

That is becausè describes the information content of
τ, while the label̀ ′ on (τ)` ′

describes the information
content of a term with type(τ)` ′

. It is sound to discard̀
because once a constructor has been coerced to a type it
may only be used statically to describe terms and cannot
be analyzed.

Information flow is tracked at the term level analo-
gously to the type level. Term abstractions,σ1

`→ σ2,
like type functions propagate some information` when
the are applied. Similarly, type abstractions,∀`1α:?`2 .σ,
propagate some informatioǹ1 when they are applied.
The label̀ 2 is part of the kind ofα.

Like Typerec, typecaseexamines the structure of the
scrutinee and learns the information it carries, so the la-
bel ` ′ on the type of the term must be at least as high in
the lattice as the label` on the scrutinee.

∆
? ` τ : ?`

∆
?
, γ:?` ` σ ` v `

′
∆

?
| Γ ` ebool : σ[bool/γ]

∆
?

| Γ ` e→ : ∀` ′
α:?`

.∀` ′
β:?`

.σ[α → β/γ]

where`
′ = L(σ[τ/γ])

∆
?

| Γ ` typecase[γ.σ] τ ebool e→ : σ[τ/γ]

Because the type of atypecaseterm can depend upon
the scrutinized constructorτ, an annotation,[γ.σ], is re-
quired for type checking.

2.4 Soundness

λSECi has the basic property expected from a typed
language, that well-typed programs will not go wrong.

Theorem 2.1 (Type Safety).If ` e : σ thene either
evaluates to a value or diverges.

The theorem is proven syntactically using the stan-
dard progress and preservation lemmas [20]. Details
can be found in the extended version of this paper [19].

3 Generalizing parametricity

Reynold’s parametricity theorem has long been used
to reason about programs in languages with parametric
polymorphism [13]. For example, the theorem can be
used to show that different implementations of an ab-
stract datatype do not influence the behavior of the pro-
gram or to show that external modules cannot forge val-
ues of abstract types. These are only a few of the corol-
laries of the parametricity theorem. This sections starts
with an overview of the standard parametricity theorem,
and then examine how it can be generalized forλSECi.
Proofs for the lemmas and theorems that follow be can
found in the extended version of this paper [19].

α 7→ R ∈ η v1Rv2

η ` v1 ∼ v2 : α
lr:var

η ` v ∼ v : bool
lr:bool

∀(η ` e1 ≈ e2 : σ1).η ` v1e1 ≈ v2e2 : σ2

η ` v1 ∼ v2 : σ1 → σ2

lr:arr

∀τ1, τ2.∀R ∈ τ1 ↔ τ2.

η, α 7→ R ` v1[τ1] ≈ v2[τ2] : σ

η ` v1 ∼ v2 : ∀α:?.σ
lr:all

e1 ;
∗

v1 e2 ;
∗

v2 η ` v1 ∼ v2 : σ

η ` e1 ≈ e2 : σ
lr:term

e1 ↑ e2 ↑
η ` e1 ≈ e2 : σ

lr:divr

Figure 3. Logically related terms

3.1 Parametricity

For pedagogical purposes, this section and and the fol-
lowing section considers only the core ofλSECi without
type constructors, security labels, or type analysis. That
is, a simple predicative polymorphicλ-calculus. None
of the results presented in these sections are new. Infor-
mally, the parametricity theorem states that well-typed
expressions, after applying related substitutions for their
free type and term variables, are related to themselves.
The power of the theorem comes from the fact that terms
typed by universally quantified type variables can be re-
lated by any relation. Section 3.2 considers some impor-
tant corollaries of this theorem for reasoning about data
abstraction in programs.

The logical relation used by the parametricity theo-
rem is defined in Figure 3. Terms are related with the
judgmentη ` e1 ≈ e2 : σ, read as “termse1 and
e2 are related at typeσ with respect to the relations in
η.” The relation between values is similarly defined as
η ` v1 ∼ v2 : σ. Because these relations are defined in-
ductively over types which potentially contain free type
variables, the relations are parameterized by a map,η,
between type variables and binary relations on values.
This map is used whenσ is a type variable (see rule
lr:var).

If σ is bool, the relation is identity. Typical for logi-
cal relations, values of function type are related only if
when applied to related arguments, they produce related
results. Terms are related if they evaluate to related val-
ues or both diverge. We writee ↑ to denote divergence.

5

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

∀α:? ∈ ∆
?
.(η(α) ∈ δ1(α) ↔ δ2(α))

η ` δ1 ≈ δ2 : ∆
? tslr:base

∀x:σ ∈ Γ.(η ` γ1(x) ≈ γ2(x) : σ)

η ` γ1 ≈ γ2 : Γ
slr:base

Figure 4. Substitutions for parametricity

The most important rule defines the relationship be-
tween values of type∀α:?.σ. Polymorphic values are
related if their instantiations withany pair of types are
related. Furthermore, we can useanyrelationR between
values of those types as the relation onα. We use the no-
tationR ∈ τ1 ↔ τ2 to mean thatR is a binary relation on
values of typeτ1 and of typeτ2. If quantification over
types of higher kind were allowed,R must be a function
on relations. This extension is orthogonal to our result,
so we restrict ourselves to polymorphism over kind?.

To state the parametricity theorem, we must define
the notion of related substitutions for types and related
terms. In Figure 4, the ruletslr:base states that a relation
mappingη is well-formed with respect to two type sub-
stitutionsδ1 andδ2 for the variables in the type context
∆?. There are no restrictions on the range of the type
substitutions. On the other hand,slr:base requires that a
pair of term substitutions for the variables inΓ must map
to related terms. Even thoughλSECi has call-by-value
semantics, term substitutions must map to terms, not val-
ues. Otherwise, it would it be impossible to prove the
case for fix-points which requires a term substitution.

With these definitions it is possible to state the para-
metricity theorem for our restricted language:

Theorem 3.1 (Parametricity). If ∆? | Γ ` e : σ and
η ` δ1 ≈ δ2 : ∆? and η ` γ1 ≈ γ2 : Γ thenη `
δ1(γ1(e)) ≈ δ2(γ2(e)) : σ.

The proof is by induction on the typing judgment.
One significant complication in the proof is circular-

ity in relating fix-points. To escape this problem we ap-
ply a syntactic technique from Pitts [11]. We define a re-
stricted fix-point that can only be unfolded a finite num-
ber of times before diverging. The termfixn+1 x:σ.e

unwinds toe[(fixn x:σ.e)/x]. By definitionfix0 x:σ.e al-
ways diverges. It is then straightforward to show that for
anyn, fixn x:σ.e is related to itself. Then the following
continuity lemma can be used to prove that unbounded
fix-points are related to themselves.

Lemma 3.2 (Continuity). If η ` δ1 ≈ δ2 : ∆? and
for all n, η ` fixn x:σ1.e1 ≈ fixn x:σ2.e2 : σ where
δ1(σ) = σ1,δ2(σ) = σ2 then η ` fix x:σ1.e1 ≈
fix x:σ2.e2 : σ.

3.2 Applications of the parametricity theorem

The parametricity theorem has been used for many
purposes, most famously for derivingfree theorems
about functions in the polymorphicλ-calculus, just by
looking at their types [18]. Our purpose is more simi-
lar to that of Reynolds: reasoning about the properties
of programs in the presence of type abstraction. While
Reynolds separated parametric polymorphism from ad-
hoc polymorphism, we show how to generalize his work
to both sorts of polymorphism.

Corollaries of Theorem 3.1 provide important results
for reasoning about abstract types in programs. Many
specific properties can be proven as a consequence of
parametricity, but we believe the following two are rep-
resentative of what a programmer desires.

Corollary 3.3 (Confidentiality). If α:? | x:α ` e : bool
and` v1 : τ1 and` v2 : τ2 thene[τ1/α][v1/x] ;∗ v

iff e[τ2/α][v2/x] ;∗ v.

This first corollary says that a programmer is free to
change the implementation of an abstract type without
affecting the behavior of a program. It is the essence
behind parametric polymorphism—type information is
not allowed to influence program execution and values
of abstract type must be treated parametrically.

Corollary 3.4 (Integrity). If α:? | · ` e : α thene must
diverge.

This second corollary states that there is no way for
a program to invent values of an abstract type, violating
the integrity of the abstraction.

3.3 Parametricity and type analysis

Consider the followingλSECi term (eliding labels):

typecase[γ.bool] α true (Λα:?.Λβ:?.false)

This term violates Corollary 3.3, because we can sub-
stitute bool and bool → bool for α and it will produce
different values:true versusfalse.

Still, we would like to state properties similar to
Corollaries 3.3 and 3.4 forλSECi. It is not possible to
directly extend the inductive proof fortypecase. The
proof would require that the two terms would produce re-
lated results, even when they may analyze different con-
structors. Furthermore,λSECi presents another complica-
tion: The weak-head normal forms of types include (for
example)Typerec with its scrutinee a variable. There-
fore, the logical relation must be extended to include
these sorts of types.

6

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

`1 6v `0

ν1 ∼`0 ν2 : ?`1
tslr:type-opaq

`1 v `0

bool ∼`0 bool : ?`1
tslr:type-bool

`1 t `2 v `3 `3 v `0

τ1 ≈`0 τ3 : ?`1 τ2 ≈`0 τ4 : ?`2

τ1 → τ2 ∼`0 τ3 → τ4 : ?`3
tslr:type-arr

∀(τ1 ≈`0 τ2 : κ1).ν1τ1 ≈`0 ν2τ2 : κ2 t `1

ν1 ∼`0 ν2 : κ1
`1→ κ2

tslr:arr

τ1 ;
∗

ν1 τ2 ;
∗

ν2 ν1 ∼`0 ν2 : κ

τ1 ≈`0 τ2 : κ
tsclr:base

Figure 5. Logically related constructors

To solve the problem withtypecase, we require that
the constructors used to instantiate polymorphic types
be related to each other, as defined in the next subsection.
Labeling kinds is the key to making this change practical,
because it means the relation need not be the identity re-
lation when types are used parametrically. The need for
extra rules to handle additional weak-head normal form
types is solved by generalizing the trick of quantifying
over all relations between values of given types, to quan-
tifying over families of relations on values of the correct
types.

3.4 Related constructors

The first step towards a generalized parametricity the-
orem is formalizing what it means for type constructors
to be related. We writeτ1 ≈` τ2 : κ to mean closed
constructorsτ1 andτ2 are related at kindκ with respect
to an observer at level` in the label lattice. Similarly, the
judgmentν1 ∼` ν2 : κ indicates that closed weak-head
normal constructorsν1 andν2 are related at kindκ with
respect to an observer at level`. The grammar of weak-
head normal constructors and relations on constructors
is defined in Figures 6 and 5, respectively.

The rule for type functions,tslr:arr, is standard for
logical relations. There are three rules for kind?. The
first rule, tslr:type-opaq, codifies that if the label of the
constructors is higher than the observer, then the con-
structors are indistinguishable. The remaining two rules
state that if the label of a primitive constructor is less
than the observer, their components must appear related
to the observer. Constructors not in normal form are re-

constructor contexts
ρ ::= • | Typerec ρ τbool τ→ | ρ τ

weak-head normal-form constructors
ν ::= bool | τ1 → τ2 | λα:κ.τ

weak-head normal-form types

ζ ::= (bool)` | (ρ{α})` | σ1
`→ σ2 | ∀`1α:?`2 .σ

Figure 6. Additional syntactic forms

τ ; τ
′

(τ)`
; (τ ′)` (τ1 → τ2)`

; (τ1)` `→ (τ2)`

Figure 7. Type reduction

lated bytsclr:base if and only if their weak-head normal
forms are related.

As suggested bytslr:type-opaq, if two constructors
carry information more restrictive than the level of the
observer, the observer shouldn’t be able to tell them
apart. For example,bool : ?> andbool → bool : ?>,
which carry “high-security” information>, will be indis-
tinguishable to an observer at a “low-security” level⊥.
This is formalized in the following lemma.

Lemma 3.5 (Obliviousness for constructors). If `
τ1, τ2 : κ andL(κ) 6v `0 thenτ1 ≈`0

τ2 : κ.

Finally, we can state a substitution theorem for con-
structors that is a simpler version of parametricity:

Lemma 3.6 (Substitution for constructors). If ∆ ` τ :
κ andδ1 ≈`0

δ2 : ∆ thenδ1(τ) ≈`0
δ2(τ) : κ.

In this lemma, related type substitutions map type
variables to related constructors, as defined in the fol-
lowing rule

∀α:κ ∈ ∆.(δ1(α) ≈`0 δ2(α) : κ)

δ1 ≈`0 δ2 : ∆

3.5 Related terms

As with constructors, we parameterize the logical re-
lation on terms by an observer`. We writeη ` e1 ≈`

e2 : σ to indicate that termse1 ande2 are related to
an observer at level̀ at typeσ, with the relation map-
ping η. As with constructors we distinguish between
related terms and related normal forms, writing the judg-
mentη ` v1 ∼` v2 : ζ to indicate that valuesv1 and
v2 are related to an observer at level` at the weak-head
normal typeζ, with the relation mappingη. These rela-
tions, as defined in Figure 8, are similar to the ones in

7

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

α 7→ R ∈ η `1 v `0 =⇒ v1R
`1
ρ v2

η ` v1 ∼`0 v2 : (ρ{α})`1
slr:var

`1 v `0 =⇒ v1 = v2

η ` v1 ∼`0 v2 : (bool)`1
slr:bool

∀(η ` e1 ≈`0 e2 : σ1).

η ` v1e1 ≈`0 v2e2 : σ2 t `1

η ` v1 ∼`0 v2 : σ1
`1→ σ2

slr:arr

∀(τ1 ≈`0 τ2 : ?`2).

∀(R`2
ρ ∈ δ1((ρ{τ1})`2) ↔ δ2((ρ{τ2})`2)).

η, α 7→ R ` v1[τ1] ≈`0 v2[τ2] : σ t `1

R consistent

η ` v1 ∼`0 v2 : ∀`1α:?`2 .σ
slr:all

e1 ;
∗

v1

e2 ;
∗

v2 σ ;
∗

ζ η ` v1 ∼`0 v2 : ζ

η ` e1 ≈`0 e2 : σ
sclr:term

(e1 ↑) ∨ (e2 ↑)

η ` e1 ≈`0 e2 : σ
sclr:divr

Figure 8. Logically related terms

Figure 3. One difference is that we relate only values at
weak-head normal typesζ, defined in Figure 6. Restrict-
ing the value relation to weak-head normal types makes
the logical relation much easier to state and understand.

Like constructors, the relation over terms is defined
so that terms typed at a level greater than the observer
will be indistinguishable. This is enforced by the pre-
condition`1 v `0 found inslr:var andslr:bool. The an-
tecedent relations inslr:arr and slr:all have their types
joined with `1; this accounts for information gained by
destructing the value. The following lemma verifies our
intuition about indistinguishability:

Lemma 3.7 (Obliviousness for terms). If ∆? | · `
e1, e2 : σ and δ1 ≈`0

δ2 : ∆? and L(σ) 6v `0 then
η ` δ1(e1) ≈`0

δ2(e2) : σ.

There are two other significant differences between
Figures 3 and 8: additional preconditions inslr:all and
generalizinglr:var to slr:var. The ruleslr:var solves the
problem withTyperec appearing in the weak-head nor-
mal form of types. It generalizeslr:var to terms related at
a constructor that cannot be normalized further because
of an undetermined type variable. We characterize these
constructors with constructor contexts,ρ, defined in Fig-
ure 6. Contexts are holes•, Typerecs of a context, or
a context applied to an arbitrary constructor. We write

ρ{τ} for filling a context’s hole withτ.
Previously, values were related at a type variable

only if they were in the relation mapped to that vari-
able byη. Hereη maps to families of relations. We
write R`

ρ for the application ofR to a label̀ and a con-
text ρ, yielding a relation. Therefore, when we write
R`

ρ ∈ δ1((ρ{τ1})`) ↔ δ2((ρ{τ2})`) we mean thatR is
a dependent function of̀ andρ yielding a relation on
values of typeδ1((ρ{τ1})`) andδ2((ρ{τ2})`).

Quantification overR is required to be consistent. In
this context, that means ifv1R`1

ρ v2 and `1 v `2 then
v1R`2

ρ v2. This is adequate for call-by-value because
quantification is over families of value relations. There-
fore requiring thatR yield relations that are strict or pre-
serve least-upper bounds is unnecessary, as values are al-
ways terminating. It is important that the logical relation
itself is consistent, that is, closed under subsumption.

Lemma 3.8 (Term relation consistent). If δ1 ≈`0
δ2 :

∆? andη ` ∆? and∆? ` σ1 ≤ σ2 andη ` e1 ≈`0
e2 :

σ1 thenη ` e1 ≈`0
e2 : σ2.

We writeη ` ∆? to mean that the mappingη is well-
formed with respect to a pair of type substitutions,δ1

andδ2, as defined in the rule:

η(α) consistent
∀α:?`1 ∈ ∆

?
.(η(α)`1

ρ ∈ δ1((ρ{α})`1) ↔ δ2((ρ{α})`1))

η ` ∆
?

The last significant difference in Figure 3 is inslr:divr.
Terms are related if either diverges, as opposed to our ear-
lier definition where divergent terms were related only
to other divergent terms. This is a significant theoreti-
cal weakening. In particular, the logical relation is no
longer transitive. However, this definition is standard
for information-flow logical relations proofs with recur-
sion [1, 21]. Furthermore, we believe that this weaken-
ing is acceptable in practice. We discuss in more detail
in Section 3.6 how this requirement is merely an artifact
of call-by-value information-flow.

3.6 Generalized parametricity

Before stating the generalized parametricity theorem,
we must define a notation of related term substitutions.
Given related type substitutions,δ1 ≈`0

δ2 : ∆?, and
a well-formed mapping,η ` ∆?, term substitutions are
related if they map variables to related terms.

∀x:σ ∈ Γ.(η ` γ1(x) ≈`0 γ2(x) : σ)

η ` γ1 ≈`0 γ2 : Γ

The only change fromslr:base is the additional of a label
`0 for the observer.

8

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

Theorem 3.9 (Generalized parametricity). If ∆? | Γ `
e : σ andδ1 ≈`0

δ2 : ∆? andη ` ∆? andη ` γ1 ≈`0

γ2 : Γ thenη ` δ1(γ1(e)) ≈`0
δ2(γ2(e)) : σ.

As with standard parametricity, the proof is by induc-
tion over∆? | Γ ` e : σ. In addition to the lemmas
mentioned in Sections 3.4 and 3.5, Lemma 3.2 must be
extended in the straightforward manner.

We call Theorem 3.9 generalized parametricity be-
cause Theorem 3.1 can be (almost) recovered by a series
of restrictions:

• Use a two element lattice,⊥ and>, where⊥ v >.

• For everyκ in ∆?, Γ , e, andσ requireL(κ) = >.

• For everyσ ′ in Γ , e, andσ requireL(σ ′) = ⊥.

• Require that the observer be⊥.

Even with these restrictions, because of the difference
in sclr:divr, Theorem 3.9 makes a weaker claim about the
termination behavior of related terms than Theorem 3.1.
Consider the generalized version of Corollary 3.3.

Corollary 3.10 (Confidentiality). If α:?> | x:α ` e :
(bool)⊥ then for any` v1 : τ1 and ` v2 : τ2 if
e[τ1/α][v2/x] and e[τ2/α][v2/x] both terminate, they
will produce the same value.

This corollary states that what we substitute forα and
x will not affect the value computed bye. However, it
is possible that our choice ofα andx could causee to
diverge.

Unlike standard parametricity, Theorem 3.9 has an
explicit observer. Standard parametricity has an implicit
observer that can observe all computation. What makes
information-flow techniques work is that some compu-
tations are opaque to the observer. Furthermore, the re-
sults of these computations are also inaccessible to the
observer, making them effectively dead code. However,
because the operational semantics is call-by-value, dead
code must be executed even though the result is never
used. Therefore, we conjecture that using a call-by-need
operational semantics an exact correspondence could be
recovered; the only part of the proof that would need to
change is obliviousness for terms, Lemma 3.7.

3.7 Applications of generalized parametricity

A typical corollary of Theorem 3.9 is normally called
noninterference; that it is possible to substitute values in-
distinguishable to the observer and get indistinguishable
results.

Corollary 3.11 (Noninterference). If ·, x:σ1 ` e : σ2

whereL(σ1) 6v L(σ2) then for any` v1 : σ1 and`
v2 : σ1 it is the case that if bothe[v1/x] and e[v2/x]
terminate, they will both produce the same value

More importantly, it is also possible to restate the
corollaries of standard parametricity. The previous sub-
section stated the revised corollary for confidentiality.
The same can be done for integrity:

Corollary 3.12 (Integrity). If α:?> | · ` e : (α)⊥ then
e must diverge.

Furthermore, it is also possible to make much richer
and refined claims because the label lattice expands
upon the implicit two level lattice used by parametricity.

4 Related work

λSECi draws heavily upon previous work on type anal-
ysis, parametricity, and information flow.

Most information flow systems use a lattice model
originating from work by Bell and LaPadula [3] and
Denning [4]. Volpano et al. [16] showed that Denning’s
work could be formulated as type system and proved its
soundness with respect to noninterference. Heintze and
Riecke’s formalized information-flow and integrity in a
typedλ-calculus with references, the SLam calculus [7],
and proved a number of soundness and noninterference
results. Pottier and Simonet have developed an exten-
sion to ML, called FlowCaml, and have shown noninter-
ference using an alternative syntactic technique [12].

Prior to our research, FlowCaml was the only lan-
guage with polymorphism and a noninterference proof.
FlowCaml does not consider run-time type analysis and
can rely on standard parametricity for types. The nonin-
terference result forλSECi directly builds upon the meth-
ods of Zdancewic [21] and Pitts [11].

Other researchers have noticed the connection be-
tween parametricity and noninterference. The work of
Tse and Zdancewic [15] compliments our research by
showing how parametricity can be used to prove nonin-
terference. Tse and Zdancewic do so by encoding Abadi,
et al.’s [1] dependency core calculus into SystemF.

The fact that run-time type analysis (and other forms
of ad-hoc polymorphism) breaks parametricity has been
long understood, but little has been done to reconcile the
two. Leifer et al. [8] design a system that preserves type
abstraction in the presence of (un)marshalling. This is
a weaker result because marshalling is merely a single
instance of an operation using run-time type analysis.
Rossberg [14] and Vytiniotis et al. [17] use generative

9

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

types to hide type information in the presence of run-
time analysis, relying on colored-brackets [5] to provide
easy access. However, none of this work has formalized
the abstraction properties that their systems provide.

5 Conclusion

With λSECi, we address the conflict between run-time
type analysis and enforceable data abstractions. By la-
beling their type abstractions, software developers can
easily observe dependencies.

However, this refinement comes at with the penalty
of having to write many annotations for a program to
type check. We have not investigated how pervasive the
necessary annotations will prove in practice. Existing
large scale languages, such as Jif [9] and FlowCaml [12],
implement some form of information-flow inference, but
they can be difficult to use. Languages based onλSECi

have the advantage that if the only goal is to secure type
abstractions and no type analysis is performed, then no
information-flow annotations are necessary. Regardless,
it will be imperative to study the cost of maintaining the
necessary annotations in practical languages based upon
λSECi.

Acknowledgements

This paper benefitted greatly from conversations with
Steve Zdancewic and Stephen Tse. We also appreciate
the insightful comments by anonymous reviewers on ear-
lier revisions of this work. This work was supported by
NSF grant 0347289, CAREER: Type-Directed Program-
ming in Object-Oriented Languages.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core
calculus of dependency. InProc. 26th ACM Symp. on
Principles of Programming Languages, pages 147–160,
San Antonio, TX, Jan. 1999.

[2] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dy-
namic typing in a statically-typed language.Transactions
on Programming Languages and Systems, 13(2):237–
268, April 1991.

[3] D. E. Bell and L. J. LaPadula. Secure computer system:
Unified exposition and Multics interpretation. Techni-
cal Report ESD-TR-75-306, MITRE Corp. MTR-2997,
Bedford, MA, 1975.

[4] D. E. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5):236–243, May
1976.

[5] D. Grossman, G. Morrisett, and S. Zdancewic. Syntac-
tic type abstraction.Transactions on Programming Lan-
guages and Systems, 22(6):1037–1080, Nov. 2000.

[6] R. Harper and G. Morrisett. Compiling polymorphism
using intensional type analysis. In22nd ACM Symp. on
Principles of Programming Languages, pages 130–141,
San Francisco, Jan. 1995.

[7] N. Heintze and J. G. Riecke. The SLam calculus: Pro-
gramming with secrecy and integrity. InProc. 25th ACM
Symp. on Principles of Programming Languages, San
Diego, CA, 1998.

[8] J. J. Leifer, G. Peskine, P. Sewell, and K. Wansbrough.
Global abstraction-safe marshalling with hash types. In
Proc. 8th ICFP, pages 87–98, Uppsala, Sweden, 2003.

[9] A. C. Myers, S. Chong, N. Nystrom, L. Zheng, and
S. Zdancewic. Jif: Java information flow. Software re-
lease. Located at http://www.cs.cornell.edu/jif.

[10] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model.Transactions on Software En-
gineering and Methodology, 9(4):410–442, 2000.

[11] A. M. Pitts. Parametric polymorphism and operational
equivalence.Mathematical Structures in Computer Sci-
ence, 10:1–39, 2000.

[12] F. Pottier and V. Simonet. Information flow inference for
ML. In Proc. 29th ACM Symp. on Principles of Program-
ming Languages, Portland, OR, Jan. 2002.

[13] J. C. Reynolds. Types, abstraction, and parametric poly-
morphism. In R. E. A. Mason, editor,Information Pro-
cessing 83, pages 513–523, Amsterdam, 1983. Elsevier
Science Publishers B. V.

[14] A. Rossberg. Generativity and dynamic opacity for ab-
stract types. InProc. of the 5th International ACM Con-
ference on Principles and Practice of Declarative Pro-
gramming, Uppsala, Sweden, Aug. 2003.

[15] S. Tse and S. Zdancewic. Translating dependency
into parametricity. InProc. of the 9th ACM Interna-
tional Conference on Functional Programming, Snow-
bird, Utah, September 2004.

[16] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis.Journal of Computer Secu-
rity, 4(3):167–187, 1996.

[17] D. Vytiniotis, G. Washburn, and S. Weirich. An open
and shut typecase. InProc. of the 2nd ACM Workshop on
Types in Language Design and Implementation, Long-
beach, California, January 2005.

[18] P. Wadler. Theorems for free! InFPCA89: Conference
on Functional Programming Languages and Computer
Architecture, London, Sept. 1989.

[19] G. Washburn and S. Weirich. Generalizing parametric-
ity using information flow (extended version). Techni-
cal Report MS-CIS-05-04, University of Pennsylvania,
Philadelphia, PA, to appear 2005.

[20] A. K. Wright and M. Felleisen. A syntactic approach to
type soundness.Information and Computation, 115:38–
94, 1994.

[21] S. Zdancewic.Programming Languages for Information
Security. PhD thesis, Cornell University, 2002.

$Id: seckinds.tex 226 2005-04-12 17:30:17Z geoffw $

10

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05)
0-7695-2266-1/05 $ 20.00 IEEE

