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Abstract ing of higher-order paths, so it should facilitate proofs of
adequacy and full abstraction for new-HOPLA along the
A path-based domain theory for higher-order processes lines of those for HOPLA in [9]. It should also lead the
is extended to allow name generation. The original domain way to understanding those linear function spaces that exist
theory is built around the monoidal-closed categdrin for presheaf models with name generation, extending early
consisting of path orders with join-preserving functions be- work on fully-abstract presheaf semantics of pi-Calculus to
tween their domains of path sets. Name generation is ad-higher-order [1] .
joined by forming the functor categof, Lin|, whereZ
consists of finite sets of names and injections. The functor
category|[Z, Lin] is no longer monoidal-closed w.r.t. the
tensor inherited pointwise frorhin. However, conditions  Wwe give a quick review of the domain theory for processes
are given under which function spaces exist. The conditionshased on path sets [9]. The objects of the catefidry path
are preserved by a rich discipline of linear types, includ- orders are preorder$ consisting of computation paths
ing those of new-HOPLA, a recent powerful language for with the preordep < p’ expressing how a paghextends to
higher-order processes with name generation. a pathp’. A path ordefP determines a domaiR, that of its
path setsdown-closed sets w.r.£p, ordered by inclusion.
Such a domain is prime-algebraic complete lattid@], in
1. Introduction which the (completeprimesare precisely those path s¢is
generated by individual paths The arrows ofLin, linear
The intricate models of distributed computation argue for maps, fromP to Q are join-preserving functions frot to
a new domain theory for concurrency based on computationQ. The categonLin is monoidal-closed with a tensor given
paths, in which processes denote generalised characterighe product x Q of path orders and a corresponding func-
tic functions [9]. This approach encompasses both the viewtion space by°? x Q. Lin has enough structure to form a
of processes as path sets (by taking truth values 0, 1) andnodel of Girard’s classical Iinegr logic [5]. The exponential
the much richer view of processes as presheaves (by takingl” consists of finite elements &f under inclusion— can
truth values to be sets). The ensuing categories of ‘domains’de thought of as consisting of compound paths associated
are also models of linear logic, which exposes the centralwith several runs. Its coKleisli category consists of path or-
role of linearity in distributed computation, where by their ders with Scott-continuous functions between the domains
very nature processes can often be run only once [2, 9]. of path sets. The idea is that a process denotes a path set, its
A standard way to adjoin name generation (as in the pi- Possible paths within its type, denoted by a path order.
Calculus) to a category of domains is to move to a func-
tor category, so both processes and their types are indexeg;main theory for name generation
by the current set of names. But then, for path-based mod-
els, not all linear function spaces need exist. For a while To cope with name generation we move to a functor cate-
now [6, 1] there’s been the question of what restrictions are gory in which domains of path sets are indexed functorially
needed both syntactically and mathematically on types andby the current set of names [3, 10]. The categbiyonsists
their functor denotations to permit the formation of func- of finite sets of names related by injections. The functor cat-
tion spaces. Here a solution is given for the domain the- egory [Z, Lin] has as objects functo® : Z — Lin, so
ory based on path sets. Sufficient conditions are given forpath orderd(s) indexed by finite sets of namesstanding
linear function spaces to exist, and their need illustrated for the computation paths possible with that current set of
through an example. The conditions are liberal enough names; its arrows are natural transformations with compo-
to allow a rich syntax of types, including those of new- nents inLin. One important object iff, Lin] is the object
HOPLA [11]. The solution gives a concrete understand- of namesN providing the current set of names, Bgs) is
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the discrete orderat name set. There is a tensor got point-  only tell us the form of the domain, and not the path order
wise from the tensor diin. GivenP andQ in [Z, Lin] we (P — Q)so from which the domain is derived. Obtaining
defineP ® Q in [Z, Lin] so thatats € 7 the path order requires insight, or can be impossible, as the

following examples show.
P& Q(s) = B(s) x Q(s) . 9 &Xamp

The comonadion Lin lifts to a comonad offZ, Lin] whose

coKleisli category consists of the same objects but where

the natural transformations have continuous components.
To support higher-order processes we need function

Example 2.1 InstantiatingP to the type of namel we ob-
tain (N — Q)so = [Z, Lin](so + -, Q(so + -)) consisting
of natural transformations

S0 so+1 so+s
space® — Q such that l l l
[Iv Lin] (Rv P— Q) = [Za Lin] (R ®P, Q) Q(s0) — Q(s0+1) — Q(so+s)

natural inR andQ. But there is no reason to expect such prom their naturality, such natural transformations are de-
function spaces to exist in general—the obstacle is there Nokermined by the initial square, so in bijection with path
necessarily being a path ord@ — Q)s at each name set  gets oversy x Q(sg) + Q(so + 1)—over the first compo-

s. This paper provides general conditions which ensure thepent the path set determines how namesgimre mapped
existence of linear function spaces, and moreover which aregng over the second component how a generic ‘new’ name

preserved by linear function space. The conditions imply | js mapped. We can realig®l — Q)s, as the path order
that function spaces of the form s0 X Q(so) + Q(so + 1).

P, ® - ®IP, —o
N@---oNoiPy @ 0lFy — Q Example 2.2 In general[Z, Lin](P, Q) need not be dis-

will exist and satisfy the conditions; in particular, all the tributive, so definitely not representable by a path order

types of new-HOPLA meet the conditions [11]. (P — Q)0. For instance, supposg is constantlyl, the
path order with one point. SuppoB8 is the ordelg < aq
2. Towards the linear function space andPs is the discrete order with two elemerits b,, for

s # 0. LetP(@ — s) : ax — {b1,b2};a0 — O
and give the identity elsewhere. Then naturality constrains
[Z,Lin](P,Q) ordered pointwise to have Hasse diagram
. - ) AIN

[Z, Lin](R, P — Q) = [, Lin]R® P, Q) . |~'\1, which is not distributive.
Using the Yoneda lemma, we can make an educated guess, .7
that for a name sej

We are interested in linear function spades-~ Q, for
which there is an isomorphism

As Example 2.1 makes clear, it can be a matter of some

(P :@)SO =~ [Z, Lin](Z(s0, —),P — Q) thought to determine the path ord@ — Q)so. Especially
~ (7, Lin](Z(s0, —) ® P, Q) so as the existence of this path order requires extra condi-
i 0 ' tions on the type functdP—Example 2.2. In future we will
= [Z, Lin](P(so + -), Q(s0 + -)) use the characterisation
where the order is to be pointwise. Given a namessée (P o Q)so [T, Lin](Z(s0, —) @ P, Q)

hom-functorZ (sq, —) yields the sef (sq, s) which we iden-

tify with a discrete path order. The last isomorphism comes as this exposes the functorial actiorfof- Q most clearly.
about by observing that natural transformations with com- The first step is to exhibit a path ordéP — Q)so with
ponentsy, : Z(sg,s) ® Ps — Qs are in bijection with nat-  domain of path sets isomorphic to the pointwise order on

ural transformations with components : P(so + ') — natural transformationg(sg, —) ® P = Q. This will be
Q(so + s') such that3y (p) = as,+s (ino, p), Whereing : under the conditions tha@ andQ aretype functorswhere
so — so + &' is the obvious injection. P in additionrespects primeg| presently have no example
The implied isomorphism to show that the latter additional restriction is necessary,
— conceivablyP — Q exists for all type functor® andQ.)

(P — Q)so = [Z, Lin](P(s0 + -), Q(s0 + -))

provides an intuitive reading of the domain of the linear 3. Type functors

function space. It consists of natural transformations be-

tween the functors denoting types updated with the cur- Definition 3.1 SayQ : Z — Lin is atype functorwhen
rent set of names,. But of course such isomorphisms it respects finites, nonempty meets, and pullbacks, in the



sense of the following definitions:

Respects finitesthe functlon@f @s — Qs sends finite
elements of the doma@s to finite elements on’ for all
f : s — s inZ; being an arrow irLin, the functionQ f
preserves joins, so it is sufficient th@tf sends all primes
to finite elements.

Respects nonempty meetéie functionQf : Qs — Qs’
preserves nonempty meets for All s — s’ in Z; the empty
meet, the maximum path set consisting of @ need not
be sent to the maximum path set consisting ofJal.

SupposingQ respects nhonempty meets, and letting
@ , we define

min(Qf, y) ﬂ{IEQS‘yCQf( )}

provided there exists such thaty C Qf(z), and to be un-
defined otherwise. If definedpin(Qf, y) is the minimum
input toQ f which yieldsy. We havemin(Qf, UjeJ y;) =
U;es min(Qf,y;), one side being defined iff the other is.
If y is prime, then if definednin(Qf,y) is necessarily
also prime—this follows becaug@f is join preserving. If
min(Qf, |¢’) is defined forg’ € Qs’, then

min(Qf, l¢') = lq

for someg € Qs. We often identify a patly with its associ-
ated prime| ¢, ande.g.write the above amin(Qf,¢') = q.
The partial functionmin respects composition.

Respects pullbackset

hi ' o
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be a pullback irZ. If 2, € @5\1 Ty € @\52 andxs € @\53
where

xo = min(Qge, r3) andzs = Qg1 (1) ,
then there exists, € @;) such that
T = min(@hl,xl) andxz = @hg(xo) .

Observe that ifc; is a join then the pullback condition holds
for x, iff it holds for every component of the join. Conse-
quently, in verifying the pullback condition it is sufficient
to assume that; is prime—thenz, will also have to be
prime. When verifying the pullback condition it is helpful
to note that under its assumptions it requires:

(1) the existence ofy = min(Qhq, z1)—this already en-
sures thatQhs(zg) 2O 22 asQg2(Qha(zp)) includes
a3 and so must dominat@in(Qgs, x3);

(2) thatzo = Qha(xo), for which it is now seen to be
sufficient to verify thatQhs(x¢) C z».

We will sometimes need to strengthen the conditions on
afunctorQ : Z — Lin and say it

Respects primesThe functionQf : @e — @? sends
primes of the domaif@s to primes ofQs’ forall f : s — s’
inZ.

Proposition 3.2 Suppose a functd® : Z — Lin respects
pullbacks. Then,

(i) min(Qf,Qf(x)) = « for all arrows f :
andz € @s;

s —sinZ

(i) for all arrows f : s — s’ inZ andq € Qs there exists
¢’ € Qs such thatmin(Qf, l¢') = lg;

(i) Qf is an order monic for all arrowsf : s — s’ inZ,
i.e.ifQf(z) CQf(y), thenz C yforall z,y € Qs;

(iv) Q preserves pullbacks.

Proposition 3.3 Let sq be a name set. The Yoneda functor
Z(s0, —) is a type functor which respects primesRifand

Q are type functors, so is the funct® @ Q; if further R
and Q respect primes, then so doRs® Q. If Q is a type
functor, then so i$Q; moreover,Q respects primes.

From Proposition 3.3 (sg, —) ® P is a prime-respecting
type functor if P is. For this reason finding a path order
for the linear function space at a name sgwill involve
us with the path-order representation of natural transforma-
tions from a prime-respecting type functor to a type functor.

4. Natural transformations as path sets

Throughout this section |e€P and Q be type functors
where in additioriP is assumed to respect primes. We first
concentrate on showing thif, Lin](P, Q), natural trans-
formations fromP to Q ordered pointwise, can be repre-
sented as the domain of path sets of a path dfles Q).

Definition 4.1 Let P andQ be type functors. An 10-tuple
for P, Q compriseqs, p, ¢) wheres is a name sefy € Ps,
andq € Qs. We shall often write such a tuple agq.

Definition 4.2 Let spg be an IO-tuple fot?, Q. Sayspq is
feasiblefor P, Qiffforall f:s' — sinZ,p’ € Ps’

p<Pf(p)=3¢ €Qs.qcQf(¢) .

Let spg ands’p’q’ be 10-tuples foiP, Q.



Definespq LF s'p'q'iff f:s— s inZand
Ip'=Pf(p) & qd € Qf(q) .

Defines’p’q’ <p spq iff there existsf : s — s’ such that
I 7

f
Spq —r SPQ.
Defines’p’q’ LB spq

Pf(p') = lp& l¢' = min(Qf, q) .

Defines’p’q’ <p

iff f:s"— sinZand

spq iff there existsf : s’ — s such that
1o 7

f
$PqQ —B SpPg.
Defines’p’'q’ <y spqiff s=s"& q=¢q & p < p'inPs.
Define< to be the least preorder includitg-, <z and<,,.

L., spg then automatically
13! A7

s'p'q LF spq; so the relatior< ; is included in2 z, the
converse of the relatiog .. Note thatF'-arrows compose,
as doB-arrows.

Observe that ifs’p’q’

Proposition 4.3 Let spq and s'p’q’ be 10-tuples for?, Q

at so. If spq is feasible ands'p’q’ < spq, thens'p’q is

feasible.

Proof. It suffices to show the required property f8r, <z
and<,,. For<; and<,, the proof is obvious, while fof .
we make use of the fact thRtrespects pullbacks. O

Definition 4.4 Define (P = Q) to be the path order con-
sisting of feasible 10-tuples fd?, Q under<.

Theorem 4.5
(i) Leta: P = Q. Thenits graph

G(a) = {spq|q € as(p)}
is a S-down-closed subset GP = Q).

(i) Let U be a<-down-closed subset ¢P = Q). Then
o(U) comprising a familyy (U)s : Ps — Qs such that

o(U)s(p) ={q|spq € U}
for s € Z, is a natural transformatiow (U) : P = Q.

(i) The functionsg and ¢ are mutual inverses determin-
ing an order isomorphism between natural transfor-
mations|Z, Lin|(IP, Q), ordered pointwise, and the do-

main(IPg\Q), ordered by inclusion.

Proof.

() Let oo : P = Q. First notice thatj(a)) must consist of
feasible tuples; otherwise we would violate the naturality
of a.. We checkg(a) is <-down-closed. For this it suffices

to show tha(«) is down-closed w.r.t<,, < and<,,.

(<p) Let f : s — s. It is associated with the naturality
square

Qg
Ps' —— Qs

| o

Pgiﬂ@s.

Supposespg € G(a), i.e.q € as(p), andPf(p’) = |p
and |¢’ min(Qf,q). Thenqg € (as o Pf)(p).
Hence by naturality,q € (Qf)(as(p')). But then
lg" = min(Qf,q) € ay (p'). Hences'p'q’ € G(a).

(Sp)Letf:s— s'.Againitis associated with a naturality
square

Ps —— Qs
fJ JQJC
Ps’ SN Qs .

Supposespg € G(a) with |p" = Pf(p) andq’ € Qf(q).
This time,q’ € (Qf) o as(p). So by naturality,

q € ay(p').
Hences'p'q’ € G(a).

(<) Closure under this condition follows directly from
the monotonicity of each componemnj.

(i) Let U be a<-down-closed subset of feasible tuples. By
<.-downclosure each componentl), is monotonic and

so (corresponds to) a linear map. We need naturality. Let
f:s— s inZ.Werequire that

o(U)s
Ps —— Qs

Pfl J{Qf
o)y ¥,
Ps —— Qs .

commutes. Supposge € Ps. Then, proceeding both ways
round the square,

o(U)s(Pf(p)) ={d" | (s",Pf(p),¢') € U}, and
Qf(e(U)s(p)) = | J{Qf (@) | spg € U}

Hence, if¢’ € o(U)s (Pf(p)), then(s’, Pf(p),q') € U
and is therefore a feasible tuple. Thus- min(Qf, ¢') ex-
ists. Consequently,

spq Se (s, Pf(p),q') €U .

Thusspg € U. It follows thatg’ € Qf(a(U)s(p)).



Conversely, iff’ € Qf(a(U)s(p)), theng’ € Qf(¢) and
spq € U, for someg € Qs. But now,

(s",Pf(p),qd") SrspaeU,

where (s’,Pf(p),q’) is necessarily feasible by Proposi-
tion 4.3. It follows thaty’ € o(U)s (Pf(p)).

Hence the required naturality square commutes and we

have established tha{U) : P = Q.
(i) Directly from the definitions ofG ando:

a(G(a))s(p) {a|spq € G(a)}
= {qlqecasp)}
= a4(p), and
G(a(U)) {spglqea(U)s(p)}

= {spql|spqgeU}
= U.

Hence the functiong ando are mutual inverses.
Suppose for down-closed set§]; C U,. Then
a(U1)s(p) C o(Usz)s(p) forall s € 7 andp € Ps, ensuring
o(Uy) E o(Us) in the pointwise order.
Suppose! C o2 pointwise,.e.forall s € T andp € Ps
we havenl (p) C o2(p). Then clearlyG(al) C G(a?).
Hence the pai, o forms an order isomorphism. O

Corollary 4.6
(i) An 10-tuplespq for P, Q is feasible iff there is a natural
transformationn : P = Q for whichq € a(p).
(i) Let spq and s'p’q’ be 10-tuples forP, Q. Let spq be
feasible. Then,
s'p'q < spq

iff for all natural transformationsy : P = Q

g€ asp)=q €ayp).
4.1. Properties of<

The main result of this section is a standard form for

Proposition 4.8 If t; <,, t andt] LB t1, then there ex-

<.t andt' L., t:

~

ists a unique’ such that}

f
/. A
¢ J\fBI‘f
<m <m
r T |
t7 ——
1 B

Proof. Supposespiq <. spg and s'piq LB sp1q.
Thenp < p; = Pf(p}) andq¢’ = min(Qf,q). Hence
p’ = min(Pf, p) is defined, so that'p| ¢’ <. s'p'¢’ and
s'p'q’ LMB spq. The minimality constraints on tuplg
for which#’ LMB spq ensures the uniqueness«p’q’. O

Proposition 4.8 gives the sense in whiBamoves con-
tributing to the order< are bounded by canonical/B-
moves.

h1 S1 g1
e .
Lemma4.9 Let s s3 be a pullback inZ. Assume
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thatslplql € (P = Q) and

g1 g2
$1p1q1 —r S3p3q3 and sapaga —— s S3P343 -

Then, thereis spg e (P= Q) suchthat

h1 h2 .
5pq —p 51p1q1 ANA spg —= yp S2P2qo

S1P14q1
5

hi up 91

spq 53P343
e B MB
hy . g2
2 i

S2D2G2

in Lemma 4.11. It plays an important role later in showing proof. The assumptions yield
that the linear function space respects finites and pullbacks.

Definition 4.7 Let spq ands’p’q’ be 10-tuples foi?, Q.
Defines'p’q’ LMB spqiff f:s — sinZ and

p' =min(Pf,p) & ¢ = min(Qf,q) .

Defines’p'q’ Sus spq iff s'p'q LMB spq for somef :
s' — s.

MB-arrows compose, and the relatigh,; is a pre-
order included in<. An arrow ' LMB t factors as
# Lty <. t, for somety; as the following proposi-

~

tion makes preciséy is <,,-maximum from which such a
B-arrow is possible.

Pgi(p1) = ps andpz = min(Pgs, p3) .
As P respects pullbacks, therejiss Ps such that
Phy(p) = po andp = min(Phq,p1) .

Now the tuples; p; ¢, is feasible. Hence there exigtE Qs
such that
q = min(Qh1,q1) .

It follows that spq LMB sipiqi. In addition, g =

min(Qgs, g3) while g3 € (Qg1h1)(q) = Qg2(Qh2(q)),

which implies thatg, € Qha(q). ThUSSpg ~2 5 S2p2ge.
[l



Proposition 4.10If ¢, <,, ¢ and{; ——,

~

t}, then there
exists a uniquée’ such that, <,, ¢’ andt -, ¢

f
t ot
|
S,J\l SM
| f
tq ﬁt/l

Proof. Supposep;q <,; spq andspiq LF s'piq’. Then
p < prandp; = Pf(p:)andg’ € Qf(q). Takep’ =Bf(p).
By the monotonicity ofPf, we obtains'pi ¢’ <. s'p'¢,

'q’. These two relations determin®’q’
O

while spg LF s'p
uniquely.

The next lemma gives an important standard form in
which the order< can be obtained.

Lemma 4.11 Assume tuples ¢’ € (P = Q). Then;t’ <t
in (P = Q) iff there are arrowsg, f in Z with a com-
mon source and tuples;,to € (P = @) such that

tl i>MB t & tl L>F t2 & t/ ,SM t2:

tq

f——ts

g Swm

N |

MB e t/

~

Proof. We show the property illustrated above by induction
along the length of the chain ¢f ., <; and<,, links estab-
lishing#’ < t. The addition of a link” <,, ' clearly main-
tains the property. The addition of a link <,. ¢ maintains
the property by Proposition 4.10. If the additional link is

t" <p t', sot” M, # for someh, we first use Proposi-
tion 4.8 to obtain

h
MB

ty f

N

g

N

MB -

t3
|

w2

\
~M

\ |

g

whereupon we can use Lemma 4.9 w.tlt.LF t, and

t5 — 15 to to Obtain the desired property fof. O

Definition 4.12 LetU C (P = Q). SayU,; C (P = Q)

FM-generate$/ iff
U={t'e(P=Q)|3teUyt" ¢ Syt Srt}.

Corollary 4.13 Lett € (P = Q). There is a finite subset
of (P = Q) which FM-generateg t.
For a name set’, thecontribution oft at s/,

Contrib(t,s') =4er {(p',q") | s'p'q’ St}

is a finite element of the doma@]ﬂ’s’)fp\x Qs'.

Proof. Suppose = spq. By Lemma 4.11, ifs'p'q’ < t,
then

$1P1G1 f——5'pago

AN |

g 5 M

Ak |

tZS/plq/

for suitable tuples and maps : s; — s, g :
s in Z with a common source. For eash with 0 <

n < |s|, choosenn a name set of size. For each name
set sy, with |s;| < |s|, fix a choice of isomorphism
|s1] & s1. In the diagram above, the/B-F'-span of arrows

S1 —

s1p1q1 Lo t @Nds1p1g1 —— 1 s'p2go can be replaced

by a spamip1di s ¢ andipiqs =, s'page Which
relocates the source gf f to a chosen name sgtvia the
choice of isomorphism = s;:

np1qa J—.5'page
\
\!7 5‘1\4
Wy g

Define
Uo = {ﬁpl(h | 0<n< |5| &nprqi Sus t} .

This is a finite set which clearly’M/ -generategz.
Because/t is < .- and < ,,-down-closedContrib(t, s')
is a down-closed subset @s’)°P x Qs’. Itis generated by

the set

P _ f
{(p2,q2) | 3f, np1qr € Up. np1gh ——» $'p2q2} -

EachQf(q,) is a finite element o@? This, together with
Uy being finite, ensures th&ontrib(t, s') is a finite ele-
ment. |

5. Linear function space

Let P and Q be type functors wher@® also respects
primes. Letsy be a name set. By Proposition 3350, —)®
P is a type functor which respects primes. Hence we can de-
fine the path order

(]P—o Q)SO = (I(S()v_) QP = Q) )

and inherit many of its properties from the previous sec-
tions.

This section is devoted to the functorial action of the
function space, to the definition and properties of

(P—Q)g: (P —Q)so— (P—Q)sy



an arrow inLin, for g : so — s; an arrow inZ. Recall that

—

(P — Q)(s0) = [Z, Lin](Z(s0, —) x P, Q)

which determines the functorial action. Regarded as a ma
on natural transformation§P — Q)g takes

al ZI(S(),—) xP=Q

to
o' i I(s1,—) xP=Q

with components at € 7 given by the commuting triangle

al
Z(s1,8) x Ps ——Qs.

(—og)xidJ( %

Z(s0,5) x Ps

()

It is a routine matter to show that the map — o' pre-
serves joins, but to complete the proof tifat- Q is itself

case wheres(i1g)pg is not feasible atsy. This has two
immediate consequences. The first titato Q respects
nonempty meets is essential for being a type functor. The
second is a useful characterisation of thm-partial func-

Ption for maps(P — Q)g.

Proposition 5.1 For g an arrrow in Z, the function(P —
Q)g preserves non-empty meets.

Proof. From the general fact that inverse image of a partial
function preserves nonempty intersections. |

Proposition 5.2 Let g be an arrrow inZ. If min((P —
Q)g, si1pq) is defined, then

min((P — Q)g, si1pq) = |s(i1g)pq -

Proof. Clear from the definition of P — Q)g. O
Given an arrowg :
whetheritbe<,, Sr, S

~BY ~F) ~oM

so — s1 in Z, an order relation,
or <, in (P — Q)s; projects un-

a type functor we require a more careful analysis of its func- der Fg to the corresponding order relation [ — Q)so.

torial action.

The functorial action oP — Q described above on nat-
ural transformations fixes the action @ — Q)g on path
sets. Recall the isomorphist between natural transfor-

The order< in (P — Q)sg is generally more refined than
the image of that il — Q)s;.

6. Function space is a type functor

mations and path sets of Theorem 4.5. From the commuting

triangle(}) we observe that
si1pg € G(at) iff siopg € G(a®) &ig =i10g,
which is simply a rephrasing of the fact that
q € ay(ir,p) iff ¢ € al(io,p) &io =ir10g.
So forg : s — s an arrow inZ, we define

(P — Q)g(U) = {si1pq | i1 : s1 — s & s(irg)pg € U},
for any U € (P — Q)so. Note that if s(i1g)pg € (P —o
Q)so, thensiypg € (P — Q)s;. This is because the feasi-
bility of si;pq at s, follows from the feasibility ofs(i1 g)pg
at s;. This is seen by considering the commuting trian-
gle () above defining the action ¢ — Q)¢ on natu-
ral transformations, taking a natural transformatidhto a
natural transformation!. Clearly if ¢ € «l(i1g, p), then
q € a%(i1,p).

We can understand the effect(@ — Q)g on a path set

U as an inverse image with respect to a partial functign

(P — Q)g(U) = (Fg)~'U
where
Fg:(P—Q)s; — (P—Q)so

is the partial function takingsiipg to s(i1g)pg provided
s(i19)pq € (P — Q)so, and undefined otherwise—in the

Let P andQ be type functors wher® respects primes.
The main result of this section is:

Theorem 6.1 The functof® — Q is a type functor.

We have already seen th& — Q respects meets
(Proposition 5.1), so to prove this theorem it remains to
show that finites and pullbacks are respected.

6.1. Function space respects finites

In ‘bounding’ the images of finite elements we’ll make
use of Leifer and Milner’s relative pushouts [7]:

Proposition 6.2 A relative pushout (rpofor arrows g1, go
relative to fi, fo, where f; o g1 = fo o g2, cOomprises
arrows hi, ho, h such thath; o gy = hs o go and f;
hohi andf2 = hohsy

with the universal property that for any arrows , k%, h’
such thath] o g1 = hogoandfy = h' o b andfy =



K’ o hi, there is a unique arrow: such thath = h’ o« and Forming the rpo we obtain the diagram
hi =wohy andhl, = wo hs.

Above, hy, ho,id is itself an rpo for the commuting S0 —2 s ! s
square g1, go relative to hy, ho called anidem pushout q
(ipo). gl 01

Any commuting square ih has an rpo. Any pair of ar- 51 /*> s
rows g1, go in Z with a common source have only finitely "
many ipos to within isomorphism. in which all subdiagrams commute.

We write p” = P¢’(p) and ¢’ = min(Qf’, ¢')—the

Proof. The basic facts about rpos can be found in [7]. In latter is defined as/ € Qf(¢) and f'¢’ = f. Then
particular, by universality, an rpo is determined to within p’ = Pf/(p”), again asf’g’ = f. So we get
isomorphism. The existence of rposirfor ¢q, g» relative ,
to f1, f2, as in the diagram above, follows leyg. taking siopq =1 " (i19)p"¢" In (P — Q)sg ,

s” to be the union of the images 6f ands, in s’, and
h to be the inclusion map. Clearly, there are only finitely
many ways in which images af andss, can overlap when TN,
: . in (P —o
varying f1, f». It follows that there are only finitely many s"iap"q" e s'ip'q’in ( Qs
ipos for gy, g2, to within isomorphism. O using:} = f'iy andq’ € Qf'(¢"). m]

usingg’ip = 71 and the minimality property af’, and

Lemma 6.3 Letg : sy — 1. Assume Corollary 6.4 The functorl? — Q respects finites.

Proof. Letg : sg — s; in Z. Given a prime element

siopg —Lop s s'(fio)p'qd" in (P — Q)so and in the domain(P — Q)so, Lemma 6.3 allows us to pro-
TRV 17 Nl ] duce a finite set which generates the prime’s image under
s'iyp'q’ € (P — Q)g(s'(fio)p'q’) - =
! (P — Q)g. Let |t be a prime in(P — Q)s,. By Corol-
Asi|g = fiy, there are arrowsy’ : s — s”, iy : 51 — 5" lary 4.13, there is a finite supséft) of (P — Q)SO. which
and f’ : s” — s’ forming an rpo ofig, g relative to f, i, in FM-generatest. The tuples iy have the formsipg and
Z. Thenmin(Q/’, ¢') is defined, and writing” = P¢’(p) involve only finitely many name sets so bounded by a
andq” = min(Qf’, ¢), maximum sizeN. For each such name seto within iso-
morphism there are finitely many ipo’s
siopg ~—r " (i1g)p"q" in (P — Q)so and sg—0 g
s"i1p"q L sip'd in (P — Q)sy : gl ng
) f ) $1—— ¢,
siopq 28 (fio)p'd' "
o o e (P—Q)g In such an ipo the name sétcan have size at mo3t+|s |.
"'; o - Letn be a choice of name set for eaeh< N + |sq].
s"(irg)p"q" s'ip'q Recall from Corollary 4.13, thatontrib(t,s”) is a fi-
(P—oQ)g £ Tr nite element of(Z(sp, s”) x Ps”)°” x Qs”. So there is a
‘ o finite subsetContriby(t,s”) generatingContrib(t, s")—
s p//q// i.e.of which the downclosure ifiZ(sg, s”) x Ps”)" x Qs"

is Contrib(t, s"). Define

Proof. The initial assumption of the lemma entails that the

. . B G — n"_1 // ", // C t b t
following diagram inZ commutes en U {(ad""q"|i"p"q" € Contribo(t, )} ,

n<NH|s1]

which is clearly a finite set.
By Lemma 6.3, the imagéP — Q)g(t) is FM-
_{ g generated by the séf'g) ! Gen. Recall the partial func-
“ tion Fg such that(P — Q)g = (Fg)~'; when defined
(Fg)(s"i1p"q") = s"(i1g)p"¢"—see Section 5. Conse-
as well as thap € Ps, g € Qs, p/ € P, ¢ € Qs with quently((Fg)~! Gen is finite and geneﬁl_tg§D — Q)g(t),
p =Pf(p) andq € Qf(q). which is therefore a finite element @ — Q)s;. O

() f ,
S0 —— S S

S1



6.2. Function space respects pullbacks

Lemma 6.5 The functor® — Q respects pullbacks.

Proof. Assume a pullback square

in Z. Suppose’iipg € (P — Q)sy, S04y : 81 — s;InZ,
has the following property: letting; = |si1pq, a prime
element of(P :@)sl, andzs = (P — Q)g1)(x1) there
is 25 = min((P —o Q)go,z3) € (P —o Q)s2. We shall
show thatry = |s/(i1h1)pq is an element of P :@)50

which meets the requirements for the function space to re-

spect pullbacksyiz.

(1) zo = min((P — Q)hy, 1)

(1) The existence of:y, presupposes that (i1hi)pg €
(P — Q)so. So we must check that, (i1h)pq is feasi-
ble. Onces’, (i1 h1)pq is known to be feasible, it will follow
directly from Proposition 5.2 that, is the minimum input
yielding z.

In order to show that/ (i1 h1)pgq is feasible, suppose that
arrowsig : sop — sy andhf : sy — s§ inZ andp’ € Psj
satisfy

and

We need to exhibigy € Qs such thay € (Qh])qo.

The arrows introduced so far form a diagraniZincon-
sisting of the solid arrows below, in which the two solid
squares commute:

Taking advantage of the special natureZofve have com-

pleted the diagram (the dotted arrows) to one in which all commute and,,

squares commute ang, k', h} is a pullback.
Letg; be an arbitrary path in the imad@®y; (¢). Letps =

(Pg1)(p). As

s3(i391)p3qs = s5(9191)p3qs Sr 810104

the image ofz; under(P — Q)g; containssiszpsqs. Thus
shispsqs € x3. By assumptionmin((P — Q)gs, x3) €x-
ists. Hencemin((P — Q)g2, shispsgs) exists, and has to
be the prime generated by (isg2)p3qs € (P — Q)sa.
Now we use the feasibility of the tuplé€ (isg2)psqs: let-
ting po = (PR%)(p’) in Ps, and observing thatyis = i39-,
there must exisiz = min(Qg5, ¢3).

But g3 was an arbitrary path in the imag@g(q),
so min(Qg5, Qg;(q)) exists. Now asQ respects pull-
backs, there must exisfy such that in particulagy, =
min(Qhj, q). A fortiori ¢ € (Qh])qo.

(2) It suffices to show that(P — Q)hs)(x0) C za.

We first characterise certain tuplegiopaqa € (P —o
Q)hs2)(zo) sufficient to generatg P — Q)hs)(xo).

Recall thatro = |s}(i1h1)pg. By Lemma 4.11, any tu-
ple inzg is <,,-below somes,, (hhig)p2g2 such that

. n) .
S6i0Pogo —  Sh(hhio)p2g2 and
. h' . .
S6i0P0go — ms 1 (11ha)pgin (P — Q)sg

for suitable tuples and arrows : s, — si, b} : s{ — sh
in Z. Consequently images of such tupkgghlio)p2ge un-
der (P — Q)hy generate((P — Q)hso)(xo). If iz :
se — sh is an arrow inZ for which iche = hig, then
syiapaqz € ((P —o Q)h2)(s3(hhio)p2g2). The image
((P — Q)h2)(z0) is generated by tuplesisp.go obtained
in such a way. Without loss of generality we can assume
thatg, is maximal in the finite elemer@h’ (qo).

Thus it is suffices to show that every such tuglépsgo,
obtained as above with, maximal inQh%(qo), is inz;.

It is helpful to summarise the name sets and maps as the
solid arrows in the following diagram i#:

S1 \> 81
’
/ K
T
S0 \> 60 ey s’
13 = 3
h' g2 g
ha 2
X 92
82— )
2

We have filled out the diagram to one where all squares
1, h% is a pullback.

Definep’ = Ph/(po), sop < p/, andps = Pg/(p'), so
p3 = Pgj(p2).

We first show the existence @f € Qg (¢) such that

g2 = min(Qg3, g3) .



As Q respects pullbacks,

Qh5(g0) = min(Qg3, Qg} (q)) -

It follows that there existgs € Qg (q) such that

g2 < min(Qgs3, q3) .

But ¢» is maximal inQh%(qo). So the converse order also
holds, yielding the required equality = min(Qg4, ¢3).
Now observe that

s5(i3g1)p3as = s5(9191)pags Sr s1010'q € 21 -
Thus
8313P3q3 € T3 ,
the image ofz; under(P — Q)g; .
By assumptionmin((P — Q)ga,x3) z3. SO

min((P — Q)go, s5izpsgs) must be defined and equal to
Sé(igggz)pgqg. Thereforesg(iggg)pgqg € xo. But

Sqiapaqe Sp S5(ghi2)p3qs = s(i3g2)psqs

from which we obtains}ispage € x4, @s required.
6.3. The defining adjunction

To conclude it only remains to check the required ad-
junction for the linear function space:

Theorem 6.6 Let P be a type functor which respects
primes. Then,

[Z,Lin](R,P —- Q) ¢ [Z,Lin](R® P,Q) ,
natural in type functor® andQ.

Proof. We can now identify path sets i(IP:TQ)s with
natural transformations frortZ (s, —) ® P to Q. The iso-
morphismd takesa : R = (P - Q)tofa: RQP = Q
such thatfa)s(r, p) = (asr)s(ids, p), for all » € Rs and
p € Ps. Its inverseyp, taking : R P = Q to ¢p :
R = (P — Q), is defined to satisfy(¢5)s,7)s(f, )
Bs((Rf)r) ® p), for all r € Rsg, f : so — sinZ and

p € Ps. These can now be checked to give an isomorphism
natural in type functor® andQ. O

Concluding remarks

The explicit description of paths of the function space
paves the way for proofs of adequacy and full abstraction
for higher-order process languages like new-HOPLA, par-
alleling the proofs for HOPLA [9]. The construction of

the path orders for function space should guide us towards

analogous constructions for analoguesLéfi such as the

bicategory of profunctors, or the biequivalent 2-category
Cont, which has colimit-preserving functors between pre-
sheaf categories as arrows [2]—this would solve the lim-
itation acknowledged in [1]. While it is not likely to help
proofs of adequacy and full abstraction, one could hope for
a more conceptually satisfying method to adjoin name gen-
eration to a domain theorg.g. by defining the category
of domains internally within some topos like nominal sets
which copes with name generation in a global fashion [4].
The ‘obvious’ approach of defininbjin internally in nomi-

nal sets only yields prime respecting type functors however,
ande.g.N — Q from Example 2.1 does not respect primes.
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Appendix

Proof of Proposition 3.2:
(i) For f : s — s"in Z, consider the pullback square

. s
1d/~1 N
s ’

2

The fact thatmin(Qf, Qf(x)) z now follows as a
special case of the pullback respecting property (with
set tozx).

(i) This follows as the special case of (i), when= |q as
min preserves joins in its second argument.

(iii) Let f : s — s’ in Z. SupposeQf(z) C Qf(y), for
TR @ . Then

z =min(Qf, Qf(x)) C min(Qf, Qf(y)) =

showingf is an order monic.

(iv) To show type functors preserve pullbacks we first

hy 51

show that with respect to a pullback square

g1
S3

ha “gy" 92

in Z, that assumin@gl(xl) QQQ(JJQ) for .561 S Qsl,
Ty € Qsz, there then exists a unique, € Qso such
that xr1 = th (.%‘0) and X9 th(l‘o) Write xrs3 for
Qg1(z1) = Qga2(z2). Thenze = min(Qgs, x3). AsQre-
spects pullbacks, we deduce the existence)af Qsg such
thatzg = min(@hhxl) andxo, = th(l‘o) Slmllarly, as
x1 = min(Qgi, z3), we deduce the existence f € @s\o
such thatz min(Qhq, z2) andz; = Qhq(z]). But
by the minimality propertiesg C z; andxf C zg, SO
xo = . Hencex; = Qhy(zo) andzy = Qha(xzg), as
required.

Assume arrowd; : P — Qs; andiy; : P — Qss
in Lin for which (Qg;) o l; = (Qg2) o ls. Letp € P.
Then clearlyQg; (I1(p)) = Qg=2(l2(p)). Thus there exists
a uniquez, € Qs such thatly(p) = Qhi(xo) and
l2(p) = Qha(zo). Thus to eactp € P we can associate
anxy € @%. Moreover, it is easy to check that this
association is monotonic ip. Letting p < p’, analo-
gously we obtainz{, such thatl;(p’) = Qh;(z;) and
la(p") = Qha(z)). Asli(p) < l1(p'), this in particular
yields Qhq(zg) < Qhq(x(), whencezy C xf, asQh, is

Proof of Proposition 3.3:

For f an arrow inZ, the functorial actiof (s, f) = fo_
is an injection from primes to primes, so preserves primes
and nonempty meets. The remaining property required for
Z(s0, -) to be a type functoriz.Z (s, -) respects pullbacks,
follows straightforwardly from the properties of pullbacks.

It is easily checked thak preserves the properties of
type functors, and results in a prime-respecting functor if
both components respect primes.

Because the finite elements @s become the primes
of '/Q\s we see thaf) being a type functor, so respecting
finites, ensures thdQ respects p prlmes Fof : s — &
an arrow inZ, the functionQf : Qs — Qs is injective (by
Proposition 3.2 (iii)), sdQ f preserves nonempty meets. By
the earlier remarks, it sufficient to check the condition that
1Q respects pullbacks for; a prime, but then that) re-
spects pullbacks reduces@respecting pullbacks. O

an order monic. Thus we have determined a unique arrow

h : P — Qsp in Lin for which l; = (Qhy) o h and
Iy = (Qhs) o h. O



