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Abstract

Automata on infinite objects are extensively used in sys-
tem specification, verification, and synthesis. While some
applications of the automata-theoretic approach have been
well accepted by the industry, some have not yet been re-
duced to practice. Applications that involve determiniza-
tion of automata on infinite words have been doomed to
belong to the second category. This has to do with the in-
tricacy of Safra’s optimal determinization construction, the
fact that the state space that results from determinization is
awfully complex and is not amenable to optimizations and a
symbolic implementation, and the fact that determinization
requires the introduction of acceptance conditions that are
more complex than the Büchi acceptance condition. Exam-
ples of applications that involve determinization and belong
to the unfortunate second category include model checking
of ω-regular properties, decidability of branching temporal
logics, and synthesis and control of open systems.

We offer an alternative to the standard automata-
theoretic approach. The crux of our approach is avoid-
ing determinization. Our approach goes instead via uni-
versal co-B̈uchi automata. Like nondeterministic automata,
universal automata may have several runs on every input.
Here, however, an input is accepted if all of the runs are
accepting. We show how the use of universal automata sim-
plifies significantly known complementation constructions
for automata on infinite words, known decision procedures
for branching temporal logics, known synthesis algorithms,
and other applications that are now based on determiniza-
tion. Our algorithms are less difficult to implement and have
practical advantages like being amenable to optimizations
and a symbolic implementation.
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1 Introduction

Finite automata on infinite objects were first introduced
in the 60’s. Motivated by decision problems in mathemat-
ics and logic, B̈uchi, McNaughton, and Rabin developed a
framework for reasoning about infinite words and infinite
trees [4, 28, 36]. The framework has proved to be very
powerful. Automata, and their tight relation to second-order
monadic logics were the key to the solution of several fun-
damental decision problems in mathematics and logic [47].
Today, automata on infinite objects are used for specifica-
tion and verification of nonterminating systems [49, 27, 51].
The automata-theoretic approach separates the logical and
the combinatorial aspects of reasoning about systems. The
translation of specifications to automata handles the logic
and shifts all the combinatorial difficulties to automata-
theoretic problems.

While some applications of the automata-theoretic ap-
proach have been well accepted by the industry, some have
not yet been reduced to practice. As we detail below, appli-
cations that involve determinization is of automata on infi-
nite words have been doomed to belong to the second cate-
gory. This has to do with the intricacy of Safra’s optimal de-
terminization construction, the fact that the state space that
results from determinization is awfully complex and is not
amenable to optimizations and a symbolic implementation,
and the fact that determinization requires the introduction of
acceptance conditions that are more complex than the Büchi
acceptance condition.

Let us examine some examples, and let us start with
perhaps the most successful and influential application of
automata theory in formal verification : linear time model
checking [51]. In the automata-theoretic approach to model
checking, we check the correctness of a system with respect
to a specification by checking containment of the language
of the system in the language of an automaton that accepts
exactly all computations that satisfy the specification. In
order to check the latter, we check that the intersection of
the system with an automaton that accepts exactly all the
computations that violate the specification is empty. For in-
stance, LTL model checking usually proceeds by translating
the negation of an LTL formula into a B̈uchi automaton.
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Difficulties start when properties are specified byω-
regular automata. Then, one needs to complement the
property automaton. Efforts for developing complemen-
tation constructions for nondeterministic Büchi automata
started early in the 60s. B̈uchi suggested a complementa-
tion construction that involved a doubly-exponential blow-
up in the state space. Thus, complementing an automaton
with n states resulted in an automaton with22O(n)

states
[4]. Büchi’s motivation was decidability of S1S. In the
mid 80s, when complementation became of practical in-
terest in formal verification, and complexity-theoretic con-
siderations started to play a greater role, the problem was
re-examined and a construction with2O(n2) states was sug-
gested in [42].

Only in [40], however, Safra introduced an optimal de-
terminization construction, which also enabled a2O(n logn)

complementation construction, matching the known lower
bound [30]. Safra’s determinization construction is beau-
tiful. In order to obtain the optimal bound, Safra defined
each state of the deterministic automaton to be a tree of
subset constructions that cleverly maintains the essential in-
formation about all possible runs (unlike automata on finite
words, the set of states reachable in all possible runs does
not provide sufficient information, as we also need infor-
mation about the set of states that have been visited along
each run). While being the heart of many complexity re-
sults in verification, the construction in [40] is complicated
and difficult to implement. Efforts to implement it [46, 2]
have to cope with the awfully complex state space of the de-
terministic automaton, which is amenable to optimizations
and a symbolic representation. Almost 20 years have passed
since the introduction of Safra’s construction, and no imple-
mentation that can handle automata with more than 8 states
exists.

Due to the lack of a simple complementation construc-
tion, users are typically required to specify the property by
deterministic B̈uchi automata (it is easy to complement a
deterministic automaton [26]), or to supply the automaton
for the negation of the property [16]. Similarly, specifica-
tion formalisms like ETL [53], which have automata within
the logic, involve complementation of automata, and the
difficulty of complementing B̈uchi automata is an obstacle
to practical use [3]. In fact, even when the properties are
specified in LTL, complementation is useful: the translators
from LTL into automata have reached a remarkable level of
sophistication (cf. [43, 11]). Even though complementation
of the automata is not explicitly required, the translations
are so involved that it is useful to checks their correctness,
which involves complementation1. Complementation is in-
teresting in practice also because it enables refinement and

1For an LTL formulaψ, one typically checks that both the intersection
of Aψ with A¬ψ and the intersection of their complementary automata
are empty.

optimization techniques that are based on language contain-
ment rather than simulation. Thus, an effective algorithm
for the complementation of B̈uchi automata is of significant
practical value.

Let us move on to another important application — de-
cidability of branching temporal logics. Using automata on
infinite trees, Rabin was able to prove the decidability of
SnS, the monadic theory of infinite trees. In fact, SnS de-
cidability was the motivation for extending the automata-
theoretic framework to infinite trees [36]. The complex-
ity of SnS decidability is known to be nonelementary [29].
Thus, while decidability of many logics has been estab-
lished by demonstrating an effective reduction to SnS, this
approach was no longer appealing when decidability be-
came of practical interest in areas such as formal verifica-
tion and AI [12, 19]. This is when the original automata-
theoretic idea was revived: by going from various logics to
automata directly, decision procedures of elementary com-
plexity were obtained for many logics, e.g., [44, 45, 50].

By the mid 1980s, the focus was on using automata to
obtain tighter upper bounds. Safra’s optimal determiniza-
tion construction has led to a breakthrough progress also
in the branching setting. Indeed, the translation of branch-
ing temporal logic formulas to automata on infinite trees
typically involves determinization of automata on infinite
words that are associated with linear requirements in the for-
mula. More progress was attained by improved algorithms
for the nonemptiness problem of nondeterministic tree au-
tomata [8, 35]. The introduction of alternating automata on
infinite trees [9, 31] simplified this approach further. In the
now standard approach for checking whether a formulaψ
is satisfiable, one constructs an alternating parity tree au-
tomatonAψ that accepts all (or enough) tree models ofψ
(the translation from formulas to alternating parity tree au-
tomata is simple and well known, c.f., [9, 25]), and then
checks that the language ofAψ is nonempty.

While the above approach yielded significantly improved
upper bounds (in some cases reducing the upper time
bound from octuply exponential [45] to singly exponen-
tial [48]), it proved to be not too amenable to implemen-
tation. First, checking the nonemptiness of alternating par-
ity tree automata requires their translation to nondetermin-
istic parity tree automata. Such removal of alternation in-
volves determinization of word automata, and thus involves
Safra’s construction2. Second, the best-known algorithms
for nonemptiness of nondeterministic parity tree automata
are exponential [17]. Implementing them on top of the
messy state space that results from Safra’s determinization
is practically impossible.

As a final example, consider the synthesis problem for

2An alternative construction for removal of alternation is described in
[33]. Like Safra’s construction, however, this construction is very compli-
cated and we know of no implementation of it.



linear specifications. When a system is reactive, it interacts
with the environment, and a correct system should satisfy
the specification with respect to all environments. As ar-
gued in [1, 6, 35], the right way to approach synthesis of
reactive systems is to consider the situation as a (possibly
infinite) game between the environment and the system. A
correct system can be then viewed as a winning strategy in
this game. The traditional algorithm for finding a winning
strategy for the system transforms the specification into a
parity automaton over trees that embody all the possible in-
puts to the system. The system is realizable precisely when
this tree automaton is not empty [35]. A finite generator of
an infinite tree accepted by this automaton can be viewed
as a finite-state system realizing the specification. This is
closely related to the approach taken, e.g., in [38], to solve
Church’s solvability problem [5].

In spite of the rich theory developed for system synthe-
sis, little of this theory has been reduced to practice. Some
people argue that this is because the realizability problem
for LTL specifications is 2EXPTIME-complete [35, 39], but
this argument is not compelling. First, experience with ver-
ification shows that even nonelementary algorithms can be
practical, since the worst-case complexity does not arise of-
ten (c.f., the model-checking tool MONA [7]). Furthermore,
in some sense, synthesis is not harder than verification. In-
deed, realizable specifications for which the solution of the
synthesis problem is doubly exponential, require systems of
doubly exponential size for their realization [39]. While the
verification of such systems is linear in the size of the sys-
tem, is doubly exponential in the specification. We believe
that, as with satisfiability, the main reason for the lack of
practical impact of synthesis theory is the fact the genera-
tion of the tree automaton uses Safra’s determinization con-
struction, and the check for its emptiness requires an execu-
tion of a parity-tree-automata emptiness algorithm on top of
its messy state space. The lack of a simple implementation
is not due to a lack of need: implementations of realizability
algorithms exist, but they have to either restrict the specifi-
cation to one that generates “easy to determinize” automata
[41, 52] or give up completeness [15].

In this work we offer an alternative to the standard
automata-theoretic approach. The crux of our approach is
avoiding the use of Safra’s construction. Instead, we use
universal automata. Like nondeterministic automata, uni-
versal automata may have several runs on every input. Here,
however, an input is accepted if all of the runs are accept-
ing. Universal automata are sufficiently strong to play the
role that deterministic automata play in the current algo-
rithms. Complementing a nondeterministic automaton can
be done by dualizing its acceptance condition and view-
ing it as a universal automaton. In addition, universal au-
tomata have the desired property, enjoyed by deterministic
automata but not by nondeterministic automata, of having

the ability to run over all branches of an input tree – this is
required for both satisfiability and synthesis. Using univer-
sal automata, we can also avoid the parity acceptance condi-
tion. For complementation, dualizing the Büchi acceptance
condition, one gets the co-Büchi condition. This observa-
tion is helpful also in the context of synthesis, as a universal
co-Büchi automaton for a required behaviorψ can be ob-
tained by dualizing a nondeterministic Büchi automaton for
¬ψ. For satisfiability, we show that an alternating parity
tree automaton can be reduced3 to a universal co-B̈uchi tree
automaton.

By analyzing runs of universal co-Büchi word automata,
we are able to translate them to nondeterministic Büchi au-
tomata. Such a translation completes a complementation
construction for nondeterministic Büchi word automata. An
analysis of runs of universal co-Büchi tree automata is
more sophisticated, and it enables us to reduce universal
co-Büchi tree automata to nondeterministic Büchi tree au-
tomata. Such a reduction completes a solution for the decid-
ability and synthesis problems. Our translations and reduc-
tions are significantly simpler than the standard approach,
making them less difficult to implement, both explicitly and
symbolically. These advantages are obtained with no in-
crease in the complexity (in fact, in some cases, the com-
plexity is improved). In addition, they give rise to several
significant optimizations and heuristics.

The idea of avoiding determinization was first suggested
in the context of complementation in [18], which described
a 2O(n logn) Safraless complementation construction. The
analysis of runs of universal co-Büchi automata that we do
here is similar to the progress-measures introduced there.
Unfortunately, the complementation construction in [18] is
complicated and we know of no implementation of it. We
believe that the simplicity of our approach follows from the
fact we explicitly use universal co-B̈uchi automata as an in-
termediate step (in fact, as described in [21], it is possible
to decompose our construction further and use alternating
weak automata as another intermediate step). A more recent
effort to avoid determinization in the context of synthesis is
described in [14]. There, the challenge is to cope with the
fact that when objectives in two-player games areω-regular,
current solutions construct the product of the game with a
deterministic automaton for the objective. Instead, Hen-
zinger and Piterman suggest to leave the objective automa-
ton nondeterministic, but to restructure its state space and
transitions so that taking its product with the system does
solve the original game. The construction of “good-for-
games automata” involves an inevitable exponential blow
up, but is much simpler than Safra’s determinization.

3We use “reduceA1 toA2”, rather than “translateA1 toA2” to indi-
cate thatA1 need not be equivalent toA2, yet the language ofA1 is empty
iff the language ofA2 is empty.



2 Safraless Complementation

Given an alphabetΣ, an infinite word overΣ is an infi-
nite sequencew = σ0 ·σ1 ·σ2 · · · of letters inΣ. We denote
by wl the suffixσl · σl+1 · σl+2 · · · of w. An automaton
on infinite wordsis A = 〈Σ, Q,Qin, ρ, α〉, whereΣ is the
input alphabet,Q is a finite set of states,ρ : Q × Σ → 2Q

is a transition function,Qin ⊆ Q is a set of initial states,
andα is an acceptance condition (a condition that defines
a subset ofQω). Intuitively, ρ(q, σ) is the set of states that
A can move into when it is in stateq and it reads the let-
terσ. Since the transition function ofA may specify many
possible transitions for each state and letter,A is notdeter-
ministic. If ρ is such that for everyq ∈ Q andσ ∈ Σ, we
have that|ρ(q, σ)| = 1, thenA is a deterministic automaton.

A run of A on w is a functionr : IN → Q where
r(0) ∈ Qin (i.e., the run starts in an initial state) and for ev-
ery l ≥ 0, we haver(l+1) ∈ ρ(r(l), σl) (i.e., the run obeys
the transition function). Acceptance is defined according
to the setInf (r) of states thatr visits infinitely often, i.e.,
Inf (r) = {q ∈ Q : r(l) = qfor infinitely manyl ∈ IN}.
As Q is finite, it is guaranteed thatInf (r) 6= ∅. The way
we refer toInf (r) depends on the acceptance condition of
A. In Büchi automata, α ⊆ Q, and r is accepting iff
Inf (r) ∩ α 6= ∅. Dually, in co-Büchi automata, α ⊆ Q,
andr is accepting iffInf (r) ∩ α = ∅.

SinceA is not deterministic, it may have many runs on
w. In contrast, a deterministic automaton has a single run
on w. There are two dual ways in which we can refer to
the many runs. WhenA is a nondeterministicautomaton,
it accepts an input wordw iff there exists an accepting run
of A onw. WhenA is auniversalautomaton, it accepts an
input wordw iff all the runs ofA onw are accepting.

We denote each of the different types of automata (some
will be defined only in the sequel) by three letter acronyms
in {D,N,U,A} × {B,C, P,R, S} × {W,T}, where the
first letter describes the branching mode of the automaton
(deterministic, nondeterministic, universal, or alternating),
the second letter describes the acceptance condition (Büchi,
co-Büchi, parity, Rabin, or Streett), and the third letter de-
scribes the object over which the automaton runs (words or
trees). For example, APT stands for an alternating parity
tree automaton and UCW stands for a universal co-Büchi
word automaton.

Our Safraless complementation construction proceeds as
follows. In order to complement an NBW, first dualize the
transition function and the acceptance condition, and then
translate the resulting UCW automaton back to an NBW.
By [32], the dual automaton accepts the complementary
language, and therefore, so does the nondeterministic au-
tomaton we end up with. Thus, rather than determinization,
complementation is based on a translation of universal au-
tomata to nondeterministic ones. We now give the technical

details of the construction.
Consider a UCWA = 〈Σ, Q,Qin, δ, α〉. The runs ofA

on a wordw = σ0 ·σ1 · · · can be arranged in an infiniteDAG

(directed acyclic graph)G = 〈V,E〉, where

• V ⊆ Q × IN is such that〈q, l〉 ∈ V iff some run of
A onw hasql = q. For example, the first level ofG
contains the verticesQin × {0}.

• E ⊆
⋃
l≥0(Q × {l}) × (Q × {l + 1}) is such that

E(〈q, l〉, 〈q′, l + 1〉) iff 〈q, l〉 ∈ V andq′ ∈ δ(q, σl).

Thus,G embodies exactly all the runs ofA onw. We call
G therun DAG of A onw, and we say thatG is acceptingif
all its paths satisfy the acceptance conditionα. Note thatA
acceptsw iff G is accepting. We say that a vertex〈q′, l′〉 is a
successorof a vertex〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that
〈q′, l′〉 is reachablefrom 〈q, l〉 iff there exists a sequence
〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such that
〈q, l〉 = 〈q0, l0〉, and there existsi ≥ 0 such that〈q′, l′〉 =
〈qi, li〉. For a setS ⊆ Q, we say that a vertex〈q, l〉 of G is
anS-vertexif q ∈ S.

Consider a (possibly finite)DAG G′ ⊆ G. We say that a
vertex〈q, l〉 is finite in G′ if only finitely many vertices in
G′ are reachable from〈q, l〉. For a setS ⊆ Q, we say that
a vertex〈q, l〉 is S-free in G′ if all the vertices inG′ that
are reachable from〈q, l〉 are notS-vertices. Note that, in
particular, anS-free vertex is not anS-vertex. We say that
a levell of G′ is of widthd ≥ 0 if there ared vertices of the
form 〈q, l〉 in G′. Finally, thewidth of G′ is the maximal
d ≥ 0 such that there are infinitely many levelsl of width
d. The α-lesswidth of a level ofG is defined similarly,
restricted to vertices〈q, l〉 for which q 6∈ α. Note that the
width of G is at mostn and theα-less width ofGr is at
mostn− |α|.

Runs of UCW were studied in [21]. Forx ∈ IN, let [x]
denote the set{0, 1, . . . , x}, and let[x]odd and[x]even de-
note the set of odd and even members of[x], respectively. A
co-Büchi-rankingfor G (C-ranking, for short) is a function
f : V → [2n] that satisfies the following two conditions:

1. For all vertices〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then
q 6∈ α.

2. For all edges〈〈q, l〉, 〈q′, l+1〉〉 ∈ E, we havef(〈q′, l+
1〉) ≤ f(〈q, l〉).

Thus, a C-ranking associates with each vertex inG a rank
in [2n] so that the ranks along paths do not increase, and
α-vertices get only even ranks. We say that a vertex〈q, l〉
is anodd vertexif f(〈q, l〉) is odd. Note that each path in
G eventually gets trapped in some rank. We say that the
C-rankingf is anodd C-rankingif all the paths ofG even-
tually get trapped in an odd rank. Formally,f is odd iff
for all paths〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there isl ≥ 0



such thatf(〈ql, l〉) is odd, and for alll′ ≥ l, we have
f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently,f is odd
if every path ofG has infinitely many odd vertices.

Lemma 2.1 [21] The following are equivalent.

1. All the paths ofG have only finitely manyα-vertices.

2. There is an odd C-ranking forG.

Proof: Assume first that there is an odd C-ranking forG.
Then, every path inG eventually gets trapped in an odd
rank. Hence, asα-vertices get only even ranks, all the paths
of G visit α only finitely often, and we are done.

For the other direction, given an accepting runDAG G,
we define an infinite sequenceG0 ⊇ G1 ⊇ G2 ⊇ . . . of
DAGs inductively as follows.

• G0 = G.

• G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite inG2i}.

• G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free inG2i+1}.

It is shown in [21] that for everyi ≥ 0, the transition
from G2i+1 to G2i+2 involves the removal of an infinite
path fromG2i+1. Since the width ofG0 is bounded byn, it
follows that the width ofG2i is at mostn − i. Hence,G2n

is finite, andG2n+1 is empty. In fact, as argued in [13],
theα-less width ofG2i is at mostn − (|α| + i), implying
thatG2(n−|α|)+1 is already empty. Since|α| ≥ 1, we can
therefore assume thatG2n−1 is empty.

Each vertex〈q, l〉 inG has a unique indexi ≥ 1 such that
〈q, l〉 is either finite inG2i or α-free inG2i+1. Thus, the
sequence ofDAGs induces a functionrank : V → [2n− 2],
defined as follows.

rank(q, l) =
[

2i If 〈q, l〉 is finite inG2i.
2i+ 1 If 〈q, l〉 is α-free inG2i+1.

It is shown in [21] that the functionrank is an odd C-
ranking.

We now use C-ranking in order to translate UCWs to
NBWs.

Theorem 2.2 [21] LetA be aUCW with n states. There
is an NBW A′ with 2O(n logn) states such thatL(A′) =
L(A).

Proof: LetA = 〈Σ, Q,Qin, δ, α〉. WhenA′ reads a word
w, it guesses an odd C-ranking for the runDAG G of A on
w. At a given point of a run ofA′, it keeps in its memory a
whole level ofG and a guess for the rank of the vertices at
this level. In order to make sure that all the paths ofG visit
infinitely many odd vertices,A′ remembers the set of states
that owe a visit to an odd vertex.

Before we defineA′, we need some notations. Alevel
ranking for A is a functiong : Q → [2n − 2], such that
if g(q) is odd, thenq 6∈ α. Let R be the set of all level
rankings. For a subsetS of Q and a letterσ, let δ(S, σ) =⋃
s∈S δ(s, σ). Note that if levell in G, for l ≥ 0, contains

the states inS, and the(l + 1)-th letter inw is σ, then level
l + 1 of G contains the states inδ(S, σ).

For two level rankingsg andg′ in R and a letterσ, we
say thatg′ covers〈g, σ〉 if for all q and q′ in Q, if q′ ∈
δ(q, σ), theng′(q′) ≤ g(q). Thus, ifg describes the ranks
of the vertices of levell, and the(l + 1)-th letter inw is σ,
theng′ is a possible level ranking for levell + 1. Finally,
for g ∈ R, let odd(g) = {q : g(q) ∈ [2n− 2]odd}. Thus, a
state ofQ is in odd(g) if has an odd rank.

Now,A′ = 〈Σ, Q′, Q′
in, δ

′, α′〉, where

• Q′ = 2Q × 2Q × R, where a state〈S,O, g〉 ∈ Q′

indicates that the current level of theDAG contains the
states inS, the setO ⊆ S contains states along paths
that have not visited an odd vertex since the last time
O has been empty, andg is the guessed level ranking
for the current level.

• Q′
in = {Qin} × {∅} ×R.

• δ′ is defined, for all〈S,O, g〉 ∈ Q′ andσ ∈ Σ, as
follows.

– If O 6= ∅, then δ′(〈S,O, g〉, σ) =
{〈δ(S, σ), δ(O, σ) \ odd(g′), g′〉 :
g′ covers〈g, σ〉}.

– If O = ∅, then δ′(〈S,O, g〉, σ) =
{〈δ(S, σ), δ(S, σ) \ odd(g′), g′〉 :
g′ covers〈g, σ〉}.

• α′ = 2Q × {∅} ×R.

Consider a state〈S,O, g〉 ∈ Q′. SinceO ⊆ S, there are
at most3n pairsS andO that can be members of the same
state. In addition, since there are at most(2n − 1)n level
rankings, the number of states inA′ is at most3n ·(2n−1)n,
which is2O(n logn)

Corollary 2.3 LetA be an NBW withn states. There is an
NBWÃwith2O(n logn) states such thatL(Ã) = Σω\L(A).

2.1 Remarks

2.1.1 A tighter construction Both Safra’s construction
and our construction results iñA with 2O(n logn) states,
matching Michel’s lower bound. A careful analysis, how-
ever, of the exact blow-up in Safra’s and Michel’s bounds
reveals an exponential gap in the constants hiding in the
O() notations: while the upper bound on the number of
states in Safra’s complementary automaton isn2n, Michel’s



lower bound involves only ann! blow up, which is roughly
(n/e)n. The construction above does better: since(1 +
x
n )n = ex, the3n · (2n−1)n bound in Theorem 2.2 is equal
to (6n)n/

√
e. This is still far from Michel’s lower bound.

In [10] we improved the construction further and de-
scribed a construction that results in an NBW with at most
(0.96n)n states. The idea is as follows. Letk be the maxi-
mal odd rank that some vertex inG has. There is a levell in
G such that all the odd ranks belowk appear in all the levels
abovel. Intuitively, it follows from the fact that odd ranks
correspond to vertices that areα-free, and there is a levell
that has anα-free vertex in all the intermediateDAGsGi,
for each oddi belowk. This observation suggests that the
NBWA′ can guess the levell and restrict the level rankings
g that are guessed for the levels above it to level rankings in
which all odd ranks belowk appear. In addition, in a state
〈S,O, g〉, the level rankingg need not refer to states not
in S. The above considerations significantly reduce the the
number of potential level rankings, and lead to the(0.96n)n

bound.

We note that the lower bound for NBW complementa-
tion was recently tightened too: a new technique by Yan
implies a(0.76n)n ∗ poly(n) lower bound [54]. Thus, there
is still a gap between the upper and lower bounds, but it is
less significant than the gap between Safra’s and Michel’s
bound.

2.1.2 Finding the minimal rank required A drawback
of our construction in Theorem 2.2 is that it never per-
forms better than its worst-case complexity. Indeed, the
3n · (2n−1)n blow-up is introduced regardless of the struc-
ture ofA and would occur even if, say,A is a determinis-
tic automaton. In order to circumvent such an unnecessary
blow up, we suggest to first calculate theminimal rank re-
quired forA (formally defined below), and then to construct
A′ with respect to this rank.

For everyj ∈ [n], we define the NBWA′
j as a restric-

tion of A′ from Theorem 2.2 to states〈S,O, g〉 in which
g : Q → [2j − 2]. Thus,A′

j restricts the runs ofA′ to
guess only ranks smaller than2j − 2. It is easy to see that
for everyj, the language ofA′

j is contained in the language
of A′. On the other hand, the language ofA′

j contains only
these words inL(A′) for whichG2j+1 is empty. The min-
imal rank required forA is the minimalj ∈ [n] for which
L(A) ⊆ L(A′

j).

As demonstrated in the experimental results in [13], this
minimal rank is often significantly smaller thann. Also,
the size ofA′

j is only 3n(2j − 1)n. As discussed in [21],
the problem of finding the minimal rank required forA is
PSPACE-complete.

2.1.3 An incremental approach As stated above, the
problem of finding the minimal rank required forA requires
space that is polynomial inA. Nevertheless, the automaton
A is typically small, and the bottle-neck of the computation
is usually the application ofA′ (e.g., taking its product with
a system with a large state space). Thus, finding the mini-
mal rankj required forA and usingA′

j instead ofA′ may
be of great practical importance.

Moreover, for the language-containment application, one
need not calculate the minimal required rank and can check
the containment ofS in A by checking the emptiness of
S ∩A′

j for increasingj’s. In Section 4.1.2, we describe the
incremental approach in more detail. There, we also note
that it is possible to take advantage of the work done during
the emptiness test ofS ∩ A′

j , when testing emptiness of
S ∩ A′

j′ , for j′ > j.

2.1.4 More heuristics In [13], we used the fact that the
state space ofA′ is simple and suggested an arsenal of opti-
mization techniques that can be applied to it. The optimiza-
tions make use of the fact that the construction ofA′ from
Amay use an intermediate alternating week automaton, and
are applied on both the intermediate automaton and the fi-
nal NBW. The optimizations involve techniques of rank re-
duction (described above), height reductions (repeatedly re-
moving a minimal strongly connected component, as long
as such a removal does not change the language of the in-
termediate automaton), as well as direct and fair simulation.
As detailed in [13], the construction and the optimizations
have been implemented and they significantly reduce the
size of the state space ofA′.

2.1.5 Safraless complementation of nondeterministic
Rabin and Streett automata In [23], we extended the
ranking technique to Rabin and Streett automata, and use
the analysis in order to describe simple complementation
constructions for NRW and NSW. Thus, also in these
classes, it is possible to avoid determinization and comple-
ment automata by dualizing them to universal automata.

3 Safraless Decision Procedures

The key idea in [21] is that when all the paths of aDAG

have only finitely manyα-vertices, and finite vertices are
removed, the removal ofα-free vertices results in aDAG

with a strictly smaller width. Consequently, when the width
of the DAG is bounded by somek ≥ 1 (and in the case of
a runDAG of a UCW withn states we know thatk ≤ n),
iterative removal of finite andα-free vertices results in an
empty DAG after at mostk iterations. This is why every
vertex can be associated with a finite rank bounded by2k,
and the translation of UCWs to NBWs proceeds by letting
the NBW guess the ranks.



In order to solve the satisfiability problem for branching
temporal logics, we reduce the satisfiability problem to the
emptiness problem of UCTs. We then solve the emptiness
problem for UCTs by reducing them to NBTs. Runs of a
UCT can also be arranged in a runDAG, and as in the linear
case, when all the paths of theDAG have only finitely many
α-vertices, and finite vertices are removed, the removal of
α-free vertices results in aDAG with a strictly smaller width.
In the case of tree automata, however, one crucial factor is
missing: we do not have a bound on the width of the run
DAG. Indeed, since the UCT runs on trees whose width is
not bounded, the width of the runDAG is not bounded either.

The way we solve this problem is as follows. Recall that
our motivation is the satisfiability problem. Therefore, we
do not have to construct an NBTA′ that is equivalent to
the UCTA, and we only need an NBT that is emptiness-
equivalent to the UCT (that is,L(A′) 6= ∅ iff L(A) 6= ∅).
Accordingly, the NBTs we construct are parameterized by
a parameterk and the NBTA′

k accepts only trees whose
accepting run graph (graph, rather than aDAG, as we have
to refer to its size and not to its width) has at mostk ver-
tices. By a bounded model property for UCTs, we know
thatL(A) 6= ∅ iff L(A′

k) 6= ∅ for k = n2n+3. The bounded
model property relies on Safra’s determinization construc-
tion (k above depends on the number of states in a DSW
equivalent to an NBW induced byA), but it is only the cor-
rectness of the our construction that relies on Safra’s con-
struction: once we havek, the construction is independent
of the intricacy of Safra’s construction.

Below we describe the construction briefly. The full de-
tails, as well as the definitions of trees, alternating tree au-
tomata, and run graphs, can be found in [24]. The input
to the satisfiability problem is aµ-calculus formulaψ [19].
The formulaψ can be translated to an APT with no blow
up [9]. Such translations exist for several other branching
temporal logics [25]. Thus, the problem we need to solve
is APT emptiness, and we start with a reduction of APT
emptiness to UCT emptiness.

UCTs are a special case of APTs and are strictly less ex-
pressive than APTs. The emptiness problem for APTs can
be still easily reduced to the emptiness problem for UCTs.
The idea is to enrich the alphabet of the APT by a “strategy
component” — information on how nondeterminizm is go-
ing to be resolved in the current transition. Then, guesses
of the alternating automaton are reduced to guesses about
the input letter, and the automaton becomes universal, over
a richer alphabet. In addition, by changing the state space
of the automaton, the parity condition is replaced by a co-
Büchi condition. Formally, we have the following.

Theorem 3.1 [24] Let A be an APT withn states, tran-
sition function of sizem, and indexh. There is a UCT
A′ withO(nh) states and alphabet of size2O(m) such that

L(A) 6= ∅ iff L(A′) 6= ∅.

As explained above, in order to reduce the UCT to an
NBT, we first need a bounded-model property for UCTs,
which also implies a bound on the size of an accepting run
graph. Letdet(n) = n2n+2.

Theorem 3.2 [24] A UCTAwithn states is not empty iffA
has an accepting run graph with at mostn ·det(n) vertices.

By translating the UCT to an NBT that accepts exactly
all trees whose accepting run graph has at mostn · det(n)
vertices, we finally get the following.

Theorem 3.3 [24] LetA be a UCT withn states. There is
an NBTA′ over the same alphabet such thatL(A′) 6= ∅ iff
L(A) 6= ∅, and the number of states inA′ is 2O(n2 logn).

Combining Theorems 3.1 and 3.3, we get the desired
reduction from the nonemptiness problem for APT to the
nonemptiness problem for NBT:

Theorem 3.4 [24] LetA be an APT withn states, transi-
tion function of sizem, and indexh. There is an NBTA′

with 2O(n2h2 lognh) states and alphabet of size2O(m) such
thatL(A) 6= ∅ iff L(A′) 6= ∅.

The complexity of the nonemptiness algorithm for APT
that follows coincides with the known one. The main ad-
vantage of our approach is the fact it avoids Safra’s deter-
minization and the need to solve parity games on top of it,
and the fact it enables an incremental and symbolic imple-
mentation. We will get back to this point in Section 4.

We note that an improvement of the upper bound of
NBW determinization would lead to an improvement in the
complexity of our decision procedure. Indeed,det(n) is
the blow up that determinization involves, and it affects the
range of ranks that the NBT has to guess. In fact, the bound
described here is better than the one in [24], and the im-
provement is due to Piterman’s recent determinization con-
struction [34].

4 Safraless LTL Realizability and Synthesis

Given an LTL formulaψ over the setsI andO of in-
put and output signals, therealizability problemfor ψ is
to decide whether there is astrategyf : (2I)∗ → 2O,
generated by a transducer4 such that all the computations
of the system generated byf satisfy ψ [35]. Formally,
a computationρ ∈ (2I∪O)ω is generated byf if ρ =
(i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all j ≥ 1, we
haveoj = f(i0 · i1 · · · ij−1).

4It is known that if some transducer that generatesf exists, then there
is also a finite-state transducer.



The traditional algorithm for solving the realizability
problem translates the LTL formula into an NBW, applies
Safra’s construction in order to get a DPWAψ for it, ex-
pandsAψ to a DPTA∀ψ that accepts all the trees all of
whose branches satisfyψ, and then checks the nonempti-
ness ofA∀ψ with respect toI-exhaustive2I∪O-labeled2I -
trees, namely2I∪O-labeled2I -trees that contain, for each
wordw ∈ (2I)ω, at least one path whose projection on2I is
w [35]. Thus, the algorithm applies Safra’s determinization
construction, and has to solve the nonemptiness problem for
DPT. Forψ of lengthn, the DPWAψ has22O(n log n)

states
and index2O(n). This is also the size of the DPTA∀ψ,
making the overall complexity doubly-exponential, which
matches the lower bound in [39]. We now show how UCW
can be used instead of DPW. Intuitively, universal automata
have the desired property, enjoyed also by deterministic au-
tomata but not by nondeterministic automata, of having the
ability to run over all branches of an input tree. In addition,
since complementation of LTL is trivial, the known trans-
lations of LTL into NBW can be used in order to translate
LTL into UCW. Formally, we have the following.

Theorem 4.1 [24] The realizability problem for an LTL
formula can be reduced to the nonemptiness problem for
a UCT with exponentially many states.

Proof: A strategyf : (2I)∗ → 2O can be viewed as a2O-
labeled2I -tree. We define a UCTSψ such thatSψ accepts
a2O-labeled2I -tree〈T, τ〉 iff τ is a good strategy forψ.

Let A¬ψ = 〈2I∪O, Q, qin, δ, α〉 be an NBW for¬ψ
[51]. Thus,A¬ψ accepts exactly all the words in(2I∪O)ω

that do not satisfyψ. Then,Sψ = 〈2O, 2I , Q, qin, δ′, α〉,
where for everyq ∈ Q ando ∈ 2O, we haveδ′(q, o) =∧
i∈2I

∧
q′∈δ(q,i∪o)(i, q

′). Thus, from stateq, reading the

output assignmento ∈ 2O, the automatonSψ branches to
each directioni ∈ 2I , with all the statesq′ to which δ
branches when it readsi ∪ o in stateq. It is not hard to
see thatSψ accepts a2O-labeled2I -tree〈T, τ〉 iff for all the
paths{ε, i0, i0 · i1, i0 · i1 · i2, . . .} of T , the infinite word
(i0 ∪ τ(ε)), (i1 ∪ τ(i0)), (i2 ∪ τ(i0 · i1)), . . . is not accepted
byA¬ψ; thus all the computations generated byτ satisfyψ.
Since the size ofA¬ψ is exponential in the length ofψ, so
is Sψ, and we are done.

For an LTL formula of lengthn, the size of the automa-
ton Sψ is 2O(n), making the overall complexity doubly-
exponential, matching the complexity of the traditional al-
gorithm , as well as the lower bound [39].

Thesynthesis problemfor an LTL formulaψ is to find a
a transducer that generates a strategy realizingψ. Known
algorithms for the nonemptiness problem can be easily
extended to return a transducer [37]. The algorithm we
present here also enjoys this property, thus it can be used

to solved not only the realizability problem but also the
synthesis problem (as well as related richer problems, like
supervisory-control and synthesis with incomplete infor-
mation). While our Safraless approach simplifies the al-
gorithms and improves the complexity of the decidability
problems, the fact it uses a simplified class of automata (that
is, co-B̈uchi rather than parity) causes the constructions to
have more states than these constructed by the traditional
algorithm. We believe, however, that this drawback is com-
pensated by the practical advantages, discussed below, of
our approach.

4.1 Remarks

4.1.1 A symbolic implementation Safra’s determiniza-
tion construction involves complicated data structures: each
state in the deterministic automaton is associated with a
labeled ordered tree. Consequently, there is no symbolic
implementation of decision procedures that are based on
Safra’s determinization and NPT. Our construction, on the
other hand, can be implemented symbolically. Indeed, the
state space of the NBT constructed in Theorem 3.3 con-
sists of sets of states and a ranking function, it can be en-
coded by Boolean variables, and the NBT’s transitions can
be encoded by relations on these variables and a primed ver-
sion of them. The fixpoint solution for the nonemptiness
problem of NBT (c.f., [50]) then yields a symbolic solu-
tion to the original UCT nonemptiness problem. Moreover,
when applied for the solution of the realizability problem,
the BDDs that are generated by the symbolic decision pro-
cedure can be used to generate a symbolic witness strategy.
In [15], the authors suggest a symbolic solution for the LTL
synthesis problem. However, the need to circumvent Safra’s
determinization causes the algorithm in [15] to be complete
only for a subset of LTL. Our approach circumvents Safra’s
determinization without giving up completeness.

4.1.2 An incremental approach Our construction is
based on the fact we can bound the maximal rank that a
vertex ofG can get byk = n · det(n) — the bound on the
size of the run graphs ofA. Often, the bound on the max-
imal rank much smaller. Accordingly, as in the linear case,
we suggest to regardk as a parameter in the construction,
start with a small parameter, and increase it if necessary. Let
us describe the incremental algorithm that follows in more
detail.

Consider the construction described in Theorem 3.3.
Starting with a UCTA with state spaceQ, we constructed
an NBTA′ with state space2Q × 2Q ×R, whereR is the
set of functionsf : Q → [k] in which f(q) is even for
all q ∈ α. For l ≤ k, let R[l] be the restriction ofR to
functions with range[l], and letA′[l] be the NBTA′ with
k being replaced byl. Recall that the NBTA′[l] is empty



iff all the run graphs ofA of size at mostl are not accept-
ing. Thus, coming to check the emptiness ofA, a possi-
ble heuristic would be to proceed as follows: start with a
small l and check the nonemptiness ofA′[l]. If A′[l] is not
empty, thenA is not empty, and we can terminate with a
“nonempty” output. Otherwise, increasel, and repeat the
procedure. Whenl = k andA′[l] is still empty, we can
terminate with an “empty” output.

It is important to note that it is possible to take advan-
tage of the work done during the emptiness test ofA′[l1],
when testing emptiness ofA′[l2], for l2 > l1. To see
this, note that the state space ofA′[l2] consists of the
union of2Q × 2Q × R[l1] (the state space ofA′[l1]) with
2Q×2Q×(R[l2]\R[l1]) (states whosef ∈ R[l2] has a state
that is mapped to a rank greater thanl1). Also, since ranks
can only decrease, once the NBTA′[l2] reaches a state of
A′[l1], it stays in such states forever. So, if we have already
checked the nonemptiness ofA′[l1] and have recorded the
classification of its states to empty and nonempty, the addi-
tional work needed in the nonemptiness test ofA′[l2] con-
cerns only states in2Q × 2Q × (R[l2] \ R[l1]).

The incremental approach circumvents the fact that the
blow-up that is introduced in the translation of a UCT to an
NBT occurs for all UCT. With the incremental algorithm,
the blow occurs only in the worst case. As shown in [13],
experimental results show that in the case of word automata
the construction typically ends up with a smallk.

4.1.3 Ranks for generalized universal co-B̈uchi au-
tomata In [22, 20], we extended the ranking analysis
to universalgeneralized co-B̈uchi word and tree automata.
Consequently, we can handles LTL formulas by translating
them to nondeterministic generalized Büchi automata. This
leads to an exponential improvement in the complexity of
the algorithm. Since our Safraless approach uses a “Safra-
ful” bound on the size of run graph, the extension to gen-
eralized co-B̈uchi automata required, on top of the above
analysis of runs, also an extension of Safra’s determiniza-
tion construction to nondeterministic generalized Büchi au-
tomata. The extension leads to an exponential improvement
(with respect to an approach that first translates the gener-
alized B̈uchi automaton to a B̈uchi automaton) in that con-
struction.

4.1.4 Compositional Synthesis A drawback of current
theory of system synthesis is that it assumes that one gets a
comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic ap-
proach would be to assume anevolving formal specifica-
tion: temporal assertions can be added, deleted, or modified.
Accordingly, there is a need to develop compositional syn-
thesis algorithms. Such algorithms can, for example, refine

designs when provided with additional temporal properties.
In [20], we describe such an algorithm. Given a specifi-

cationψ, we first check its realizability. Suppose now that
we get an additional specificationψ′. We can, of course,
simply check the realizability ofψ ∧ ψ′ from scratch. In-
stead, we suggest to first check also the realizability ofψ′.
We then show how, thanks to the simple structure of the
NBT obtained in the Safraless approach, much of the work
used in checking the realizability ofψ andψ′ in isolation
can be reused in checking the realizability ofψ ∧ ψ′.
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