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Abstract 1 Introduction

Automata on infinite objects are extensively used in sys- Finite automata on infinite objects were first introduced
tem specification, verification, and synthesis. While some'" the d6(|) S Mg'vﬁteﬂ ?\Bll de<r:]|t5|on prnglzerE_s '3 malthen;at-
applications of the automata-theoretic approach have been IcS and logic, wichi, VicNaughton, and Rabin developed a
well accepted by the industry, some have not yet been re-

framework for reasoning about infinite words and infinite
duced to practice. Applications that involve determiniza- trees [4, 28, 36]. The framework has proved to be very
tion of automata on infinite words have been doomed to

powerful. Automata, and their tight relation to second-order
belong to the second category. This has to do with the in-

monadic logics were the key to the solution of several fun-
tricacy of Safra’s optimal determinization construction, the damental decision problems in mathematics and logic [47].
fact that the state space that results from determinization is

Today, automata on infinite objects are used for specifica-
awfully complex and is not amenable to optimizations and a tion and verification of nonterminating systems [49, 27, 51].
symbolic implementation, and the fact that determinization

The automata-theoretic approach separates the logical and
requires the introduction of acceptance conditions that are the combinatorial aspects of reasoning about systems. The
more complex than thetBhi acceptance condition. Exam-

translation of specifications to automata handles the logic
ples of applications that involve determinization and belong ?hnd srt1.|fts altl)lthe combinatorial difficulties to automata-
to the unfortunate second category include model checking"'€°r€ti¢ Proviems. - .

of w-regular properties, decidability of branching temporal While some applications of the automata-theoretic ap-
logics, and synthesis and control of open systems. proach have been well accepted by the industry, some have

not yet been reduced to practice. As we detail below, appli-

We offer an alternative to the standard automata- cations that involve determinization is of automata on infi-
theoretic approach. The crux of our approach is avoid- nite words have been doomed to belong to the second cate-
ing determinization. Our approach goes instead via uni- gory. This has to do with the intricacy of Safra’s optimal de-
versal co-Bichi automata. Like nondeterministic automata, terminization construction, the fact that the state space that
universal automata may have several runs on every input. results from determinization is awfully complex and is not
Here, however, an input is accepted if all of the runs are amenable to optimizations and a symbolic implementation,
accepting. We show how the use of universal automata sim-and the fact that determinization requires the introduction of
plifies significantly known complementation constructions acceptance conditions that are more complex than itthB
for automata on infinite words, known decision procedures acceptance condition.
for branching temporal logics, known synthesis algorithms, | et ys examine some examples, and let us start with
and other applications that are now based on determiniza- perhaps the most successful and influential application of
tion. Our algorithms are less difficult to implement and have zytomata theory in formal verification : linear time model
practical advantages like being amenable to optimizations checking [51]. In the automata-theoretic approach to model
and a symbolic implementation. checking, we check the correctness of a system with respect
to a specification by checking containment of the language
of the system in the language of an automaton that accepts
exactly all computations that satisfy the specification. In
order to check the latter, we check that the intersection of
*The Safraless plot described in this paper is based on joint work with the system with an automaton that accepts exactly all the
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Difficulties start when properties are specified by optimization techniques that are based on language contain-
regular automata. Then, one needs to complement thement rather than simulation. Thus, an effective algorithm
property automaton. Efforts for developing complemen- for the complementation of Bhi automata is of significant
tation constructions for nondeterministidiéhi automata  practical value.
started early in the 60s. i(Bhi suggested a complementa- Let us move on to another important application — de-
tion construction that involved a doubly-exponential blow- cidability of branching temporal logics. Using automata on
up in the state space. Thus, complementing an automatorinfinite trees, Rabin was able to prove the decidability of
with n states resulted in an automaton with " states  SnS, the monadic theory of infinite trees. In fact, SnS de-
[4]. Biichi's motivation was decidability of S1S. In the cidability was the motivation for extending the automata-
mid 80s, when complementation became of practical in- theoretic framework to infinite trees [36]. The complex-
terest in formal verification, and complexity-theoretic con- ity of SnS decidability is known to be nonelementary [29].
siderations started to play a greater role, the problem wasThus, while decidability of many logics has been estab-

re-examined and a construction with(®*) states was sug- lished by demonstrating an effective reduction to SnS, this

gested in [42]. approach was no longer appealing when decidability be-
Only in [40], however, Safra introduced an optimal de- came of practical interest in areas such as formal verifica-

terminization construction, which also enable24" s ™) tion and Al [12, 19]. This is when the original automata-

complementation construction, matching the known lower theoretic idea was revived: by going from various logics to
bound [30]. Safra’s determinization construction is beau- automata directly, decision procedures of elementary com-
tiful. In order to obtain the optimal bound, Safra defined Plexity were obtained for many logics, e.g., [44, 45, 50].
each state of the deterministic automaton to be a tree of By the mid 1980s, the focus was on using automata to
subset constructions that cleverly maintains the essential in-obtain tighter upper bounds. Safra’s optimal determiniza-
formation about all possible runs (unlike automata on finite tion construction has led to a breakthrough progress also
words, the set of states reachable in all possible runs doedn the branching setting. Indeed, the translation of branch-
not provide sufficient information, as we also need infor- ing temporal logic formulas to automata on infinite trees
mation about the set of states that have been visited alongtypically involves determinization of automata on infinite
each run). While being the heart of many complexity re- Words that are associated with linear requirements in the for-
sults in verification, the construction in [40] is complicated mula. More progress was attained by improved algorithms
and difficult to implement. Efforts to implement it [46, 2] for the nonemptiness problem of nondeterministic tree au-
have to cope with the awfully complex state space of the de- tomata [8, 35]. The introduction of alternating automata on
terministic automaton, which is amenable to optimizations infinite trees [9, 31] simplified this approach further. In the
and a symbolic representation. Almost 20 years have passediow standard approach for checking whether a formula
since the introduction of Safra’s construction, and no imple- is satisfiable, one constructs an alternating parity tree au-
mentation that can handle automata with more than 8 stategomaton.A,, that accepts all (or enough) tree models/of
exists. (the translation from formulas to alternating parity tree au-
Due to the lack of a simple complementation construc- tomata is simple and well known, c.f., [9, 25]), and then
tion, users are typically required to specify the property by checks that the language 4f, is nonempty.
deterministic Bichi automata (it is easy to complement a ~ While the above approach yielded significantly improved
deterministic automaton [26]), or to supply the automaton upper bounds (in some cases reducing the upper time
for the negation of the property [16]. Similarly, specifica- bound from octuply exponential [45] to singly exponen-
tion formalisms like ETL [53], which have automata within  tial [48]), it proved to be not too amenable to implemen-
the logic, involve complementation of automata, and the tation. First, checking the nonemptiness of alternating par-
difficulty of complementing Bchi automata is an obstacle ity tree automata requires their translation to nondetermin-
to practical use [3]. In fact, even when the properties are istic parity tree automata. Such removal of alternation in-
specified in LTL, complementation is useful: the translators Volves determinization of word automata, and thus involves
from LTL into automata have reached a remarkable level of Safra’s constructich Second, the best-known algorithms
sophistication (cf. [43, 11]). Even though complementation for nonemptiness of nondeterministic parity tree automata
of the automata is not explicitly required, the translations are exponential [17]. Implementing them on top of the
are so involved that it is useful to checks their correctness, messy state space that results from Safra’s determinization
which involves complementatibnComplementation is in- IS practically impossible.
teresting in practice also because it enables refinement and As a final example, consider the synthesis problem for

1For an LTL formulay, one typically checks that both the intersection 2An alternative construction for removal of alternation is described in
of A, with A, and the intersection of their complementary automata [33]. Like Safra’s construction, however, this construction is very compli-
are empty. cated and we know of no implementation of it.



linear specifications. When a system is reactive, it interacts the ability to run over all branches of an input tree — this is
with the environment, and a correct system should satisfy required for both satisfiability and synthesis. Using univer-
the specification with respect to all environments. As ar- sal automata, we can also avoid the parity acceptance condi-
gued in [1, 6, 35], the right way to approach synthesis of tion. For complementation, dualizing th&i&hi acceptance
reactive systems is to consider the situation as a (possiblycondition, one gets the cotighi condition. This observa-
infinite) game between the environment and the system. Ation is helpful also in the context of synthesis, as a universal
correct system can be then viewed as a winning strategy inco-Biichi automaton for a required behavigrcan be ob-
this game. The traditional algorithm for finding a winning tained by dualizing a nondeterministié¢i&hi automaton for
strategy for the system transforms the specification into a —¢. For satisfiability, we show that an alternating parity
parity automaton over trees that embody all the possible in- tree automaton can be reduééd a universal co-Bchi tree
puts to the system. The system is realizable precisely whenautomaton.
this tree automaton is not empty [35]. A finite generator of By analyzing runs of universal coiBhi word automata,
an infinite tree accepted by this automaton can be viewed e gre able to translate them to nondeterministicts au-
as a finite-state system realizing the specification. This is tomata. Such a translation completes a complementation
closely related to the approach taken, e.g., in [38], to solve construction for nondeterministicBhi word automata. An
Church’s solvability problem [3]. analysis of runs of universal coiBhi tree automata is
In spite of the rich theory developed for system synthe- more sophisticated, and it enables us to reduce universal
sis, little of this theory has been reduced to practice. Some co-Blichi tree automata to nondeterministicidhi tree au-
people argue that this is because the realizability problemtomata. Such a reduction completes a solution for the decid-
for LTL specifications is 2EXPTIME-complete [35, 39], but  ability and synthesis problems. Our translations and reduc-
this argument is not compelling. First, experience with ver- tions are significantly simpler than the standard approach,
ification shows that even nonelementary algorithms can be making them less difficult to implement, both explicitly and
practical, since the worst-case complexity does not arise of-symbolically. These advantages are obtained with no in-
ten (c.f., the model-checking tool A [7]). Furthermore, crease in the complexity (in fact, in some cases, the com-
in some sense, synthesis is not harder than verification. In-plexity is improved). In addition, they give rise to several
deed, realizable specifications for which the solution of the significant optimizations and heuristics.
synthesis problem is doubly exponential, require systems of  The jdea of avoiding determinization was first suggested
doubly exponential size for their realization [39]. While the j, the context of complementation in [18], which described
verification of such systems is linear in the size of the sys- 4 90(nlogn) Safraless complementation construction. The
tem, is doubly exponential in the specification. We believe anaysis of runs of universal coiBhi automata that we do
that, as with satisfiability, the main reason for the lack of here is similar to the progress-measures introduced there.
practical impact of synthesis theory is the fact the genera- ynfortunately, the complementation construction in [18] is
tion of the tree automaton uses Safra’s determinization con-complicated and we know of no implementation of it. We
struction, and the check for its emptiness requires an execU+g|ieve that the simplicity of our approach follows from the
tion of a parity-tree-automata emptiness algorithm on top of fact we explicitly use universal coiBhi automata as an in-
its messy state space. The lack of a simple implementationtermediate step (in fact, as described in [21], it is possible
is not due to a lack of need: implementations of realizability {5 gecompose our construction further and use alternating
algorithms exist, but they have to either restrict the specifi- \yeak automata as another intermediate step). A more recent
cation to one that generates “easy to determinize” automataeffort to avoid determinization in the context of synthesis is
[41, 52] or give up completeness [15]. described in [14]. There, the challenge is to cope with the
In this work we offer an alternative to the standard fact that when objectives in two-player gamesanegular,
automata-theoretic approach. The crux of our approach iscurrent solutions construct the product of the game with a
avoiding the use of Safra’s construction. Instead, we use deterministic automaton for the objective. Instead, Hen-
universal automata. Like nondeterministic automata, uni- zinger and Piterman suggest to leave the objective automa-
versal automata may have several runs on every input. Hereton nondeterministic, but to restructure its state space and
however, an input is accepted if all of the runs are accept- transitions so that taking its product with the system does
ing. Universal automata are sufficiently strong to play the solve the original game. The construction of “good-for-
role that deterministic automata play in the current algo- games automata” involves an inevitable exponential blow
rithms. Complementing a nondeterministic automaton can up, but is much simpler than Safra’s determinization.
be done by dualizing its acceptance condition and view-
ing it as a universal automaton. In addition, universal au- — reducel; 1o A", rather than “translatel, to As” to indi-

tomata have the desired propert_y,_ enjoyed by determini_StiC cate thatd; need not be equivalent td,, yet the language ofl; is empty
automata but not by nondeterministic automata, of having iff the language of4 is empty.




2 Safraless Complementation

Given an alphabeX, aninfinite word overX is an infi-
nite sequence = oy - o1 - 05 - - - Of letters inX. We denote
by w' the suffixo; - o141 - 0142 --- of w. An automaton
on infinite wordss A = (2, Q, Qin, p, ), WhereX is the
input alphabet() is a finite set of stateg, : Q x ¥ — 29
is a transition function);,, C Q is a set of initial states,
anda is an acceptance condition (a condition that defines
a subset of)*). Intuitively, p(q, o) is the set of states that
A can move into when it is in statgand it reads the let-
ter o. Since the transition function od may specify many
possible transitions for each state and letters notdeter-
ministic If p is such that for every € @@ ando € X, we
have thatp(q, 0)| = 1, thenAis a deterministic automaton.

A run of 4 onw is a functionr : N — @ where

r(0) € Qi (i.e., the run starts in an initial state) and for ev-
eryl > 0, we haver(1+1) € p(r(l), ;) (i.e., the run obeys
the transition function). Acceptance is defined according
to the setlnf(r) of states that visits infinitely often i.e.,
Inf(r) = {qg € Q : r(l) = gforinfinitely manyl € N}.
As Q is finite, it is guaranteed thdtf(r) # (. The way
we refer toInf(r) depends on the acceptance condition of
A. In Buchi automataa C @, andr is accepting iff
Inf(r) N a # @. Dually, in co-Bichi automataa C Q,
andr is accepting iffInf (r) N a = 0.

SinceA is not deterministic, it may have many runs on

details of the construction.

Consider a UCWA = (X, Q, Qin, J, ). The runs ofd
onawordw = o¢-07 - - - can be arranged in an infinitaG
(directed acyclic graph)y = (V, E), where

e V C @ x Nis such that(¢q,!) € V iff some run of
A onw hasq, = q. For example, the first level a¥
contains the vertice®;,, x {0}.

e B C U;5o(@ x {1}) x (Q x {l + 1}) is such that
E({q,1),{¢',1 + 1)) iff (g,1) € V andq’ € 6(q, 0y).

Thus,G embodies exactly all the runs gf onw. We call

G therun DAG of A onw, and we say tha® is acceptingf

all its paths satisfy the acceptance conditiorNote that4
acceptav iff G is accepting. We say that a vertex, ') is a
successoof a vertex(q, ) iff E({(q,1),{(¢’,1')). We say that
(¢’,1") is reachablefrom (g, 1) iff there exists a sequence
(go,10), {q1,11), {g2,12), . .. Oof successive vertices such that
(¢,1) = {(qo, o), and there exists > 0 such that(¢’,!’) =
(g, ;). ForasetS C (), we say that a vertefy, [) of G is
anS-vertexif ¢ € S.

Consider a (possibly finite)ac G’ C G. We say that a
vertex (g, 1) is finite in G’ if only finitely many vertices in
G’ are reachable fronly, ). For a setS C @, we say that
a vertex(q, 1) is S-freein G’ if all the vertices inG’ that
are reachable fronfg,!) are notS-vertices. Note that, in
particular, anS-free vertex is not aiy-vertex. We say that

w. In contrast, a deterministic automaton has a single run a levell of G’ is of widthd > 0 if there ared vertices of the

onw. There are two dual ways in which we can refer to
the many runs. Whenl is a nondeterministi@automaton,

it accepts an input word iff there exists an accepting run
of A onw. WhenA is auniversalautomaton, it accepts an
input wordw iff all the runs of A onw are accepting.

form (q,1) in G’. Finally, thewidth of G’ is the maximal
d > 0 such that there are infinitely many levélsf width

d. The a-lesswidth of a level ofG is defined similarly,
restricted to verticesg, I) for which ¢ ¢ «. Note that the
width of G is at mostn and thea-less width ofG,. is at

We denote each of the different types of automata (somemostn — |a/.

will be defined only in the sequel) by three letter acronyms
in {D,N,U, A} x {B,C,P,R,S} x {W, T}, where the

Runs of UCW were studied in [21]. Far € N, let [z]
denote the sef0, 1,...,z}, and let[z]°¢¢ and[z]®*" de-

first letter describes the branching mode of the automatonnote the set of odd and even membergfrespectively. A

(deterministic, nondeterministic, universal, or alternating),
the second letter describes the acceptance conditidgchiB
co-Bichi, parity, Rabin, or Streett), and the third letter de-

scribes the object over which the automaton runs (words or

trees). For example, APT stands for an alternating parity
tree automaton and UCW stands for a universal totB
word automaton.

co-Buchi-rankingfor G (C-ranking for short) is a function
f:V — [2n] that satisfies the following two conditions:

1. For all vertices(q,l) € V, if f({g,1)) is odd, then
q & a.

2. Foralledges(q, 1), (¢',I1+1)) € E, we havef ({(¢, I+
1)) < f({g; 1))

Our Safraless complementation construction proceeds as

follows. In order to complement an NBW, first dualize the Thus, a C-ranking associates with each verte&ia rank
transition function and the acceptance condition, and thenin [2n] so that the ranks along paths do not increase, and
translate the resulting UCW automaton back to an NBW. a-vertices get only even ranks. We say that a vefigx)

By [32], the dual automaton accepts the complementary is anodd vertexif f({q,l)) is odd. Note that each path in
language, and therefore, so does the nondeterministic au<G eventually gets trapped in some rank. We say that the
tomaton we end up with. Thus, rather than determinization, C-rankingf is anodd C-rankingf all the paths ofG even-
complementation is based on a translation of universal au-tually get trapped in an odd rank. Formallg,is odd iff
tomata to nondeterministic ones. We now give the technical for all paths{(qy, 0), (g1, 1), {(g2,2), ... In G, there isl > 0



such thatf({¢;,!)) is odd, and for all’ > I, we have
flqr, 1)) = f({q,1)). Note that, equivalentlyf is odd
if every path ofG has infinitely many odd vertices.

Lemma 2.1 [21] The following are equivalent.
1. All the paths of5 have only finitely mang-vertices.

2. There is an odd C-ranking far.

Proof: Assume first that there is an odd C-ranking €or
Then, every path inG eventually gets trapped in an odd
rank. Hence, as-vertices get only even ranks, all the paths
of G visit « only finitely often, and we are done.

For the other direction, given an accepting mwc G,
we define an infinite sequencey 2 G; O G, D ... of
DAGS inductively as follows.

o GO =G.
o G2i+1 = Goy \ {(q, l> ‘ <q, l> is finite in GQl}
° G2i+2 = G2i+1 \ {(q, l> ‘ <q, l> is a-free inGQH_l}.

It is shown in [21] that for every > 0, the transition
from Go;11 t0 G2 involves the removal of an infinite
path fromG4;+1. Since the width o7, is bounded by, it
follows that the width ofG; is at mostn — . Hence,Ga,,
is finite, andGa, 11 is empty. In fact, as argued in [13],
the a-less width ofGo; is at mostn — (Ja| + 4), implying
that Go(n—|a|)+1 is already empty. Sincgy| > 1, we can
therefore assume théty,, | is empty.

Each vertexgq, ) in G has a unique index> 1 such that
(q,1) is either finite inG2; or a-free in Gy;41. Thus, the
sequence 0bAGs induces a functiorank : V — [2n — 2],
defined as follows.

21
2t +1

If {q,1) is finite in G5;.
If {q,1) is a-free iING2;41.

rank(q,1)

It is shown in [21] that the functiomank is an odd C-
ranking. Ll

We now use C-ranking in order to translate UCWs to
NBWs.

Theorem 2.2 [21] Let A be aUCW with n states. There
is an NBW A’ with 20("1°e) states such thaL(A') =
L(A).

Proof: LetA = (X,Q,Qin, 0, ). WhenA’ reads a word
w, it guesses an odd C-ranking for the minG G of A on

w. At a given point of a run ofd’, it keeps in its memory a
whole level of G and a guess for the rank of the vertices at
this level. In order to make sure that all the pathgofisit
infinitely many odd verticesd’ remembers the set of states
that owe a visit to an odd vertex.

Before we defined’, we need some notations. l&vel
ranking for A is a functiong : @ — [2n — 2], such that
if g(q) is odd, theng ¢ a. LetR be the set of all level
rankings. For a subsét of @ and a lettew, let §(S, o)
Uses0(s,0). Note that if levell in G, for I > 0, contains
the states irb, and the(l + 1)-th letter inw is o, then level
! + 1 of G contains the states (.5, o).

For two level rankingg andg’ in R and a letterr, we
say thatg’ covers(g, o) if for all ¢ and¢’ in Q, if ¢ €
d(q,0), theng’(¢’) < g(q). Thus, ifg describes the ranks
of the vertices of level, and the(l + 1)-th letter inw is o,
theng’ is a possible level ranking for levéh- 1. Finally,
forg € R, letodd(g) = {q : g(q) € [2n — 2]°¢4}. Thus, a
state of@ is in odd(g) if has an odd rank.

Now, A" = (2, Q’, " o'y, where

e Q' = 29 x 29 x R, where a statéS, 0,g) € Q'
indicates that the current level of tbaG contains the
states inS, the setO C S contains states along paths
that have not visited an odd vertex since the last time
O has been empty, anglis the guessed level ranking
for the current level.

i ;n = {Qm} X {@} X R.

n?

e ¢ is defined, for all(S,0,9) € Q" ando € %, as
follows.
—-If O # 0, then ¢((S,0,9),0) =
{(6(S,0),6(0,0) \  odd(g'),q")
g’ covers(g,o)}.
—-If O = 0, then ¢((S,0,g9),0) =
{(6(5,0),6(S,0) \  odd(g'),g')

g’ covers(g,o)}.
o o =29 x {B} x R.

Consider a statéS, 0, g) € Q'. SinceO C S, there are
at most3™ pairs.S andO that can be members of the same
state. In addition, since there are at m@st — 1)” level
rankings, the number of statesiti is at mosB”™- (2n—1)",
which ig20(nlegn) O

Corollary 2.3 Let.A be an NBW with: states. There is an
NBW.A with 20(21og ) states such thal(A) = £\ L(A).

2.1 Remarks

2.1.1 Atighter construction Both Safra’s construction
and our construction results id with 20("1ogn) states,
matching Michel's lower bound. A careful analysis, how-
ever, of the exact blow-up in Safra’s and Michel’'s bounds
reveals an exponential gap in the constants hiding in the
O() notations: while the upper bound on the number of
states in Safra’s complementary automaton?is, Michel's



lower bound involves only an! blow up, which is roughly
(n/e)™. The construction above does better: sirite+
)" = e”, the3"™ - (2n—1)" bound in Theorem 2.2 is equal
to (6n)™/+/e. This is still far from Michel’'s lower bound.

In [10] we improved the construction further and de-
scribed a construction that results in an NBW with at most
(0.96n)" states. The idea is as follows. Liebe the maxi-
mal odd rank that some vertex@has. There is a levélin
G such that all the odd ranks beldwappear in all the levels
abovel. Intuitively, it follows from the fact that odd ranks
correspond to vertices that asiefree, and there is a levél
that has ar-free vertex in all the intermediateacs G,
for each odd below k. This observation suggests that the
NBW A’ can guess the levélnd restrict the level rankings
g that are guessed for the levels above it to level rankings in
which all odd ranks belovk appear. In addition, in a state
(S,0,g), the level rankingg need not refer to states not
in S. The above considerations significantly reduce the the
number of potential level rankings, and lead to th&6n)™
bound.

We note that the lower bound for NBW complementa-
tion was recently tightened too: a new technique by Yan
implies a(0.76n)™ x poly(n) lower bound [54]. Thus, there
is still a gap between the upper and lower bounds, but it is
less significant than the gap between Safra’s and Michel’s
bound.

2.1.2 Finding the minimal rank required A drawback

of our construction in Theorem 2.2 is that it never per-
forms better than its worst-case complexity. Indeed, the
3™ -(2n —1)™ blow-up is introduced regardless of the struc-
ture of A and would occur even if, sayl is a determinis-

tic automaton. In order to circumvent such an unnecessary
blow up, we suggest to first calculate thénimal rank re-
quired for A (formally defined below), and then to construct
A’ with respect to this rank.

For every;j € [n], we define the NBWA’, as a restric-
tion of A’ from Theorem 2.2 to statesS, O, g) in which
g+ Q — [2j — 2]. Thus, A restricts the runs ofd’ to
guess only ranks smaller than — 2. It is easy to see that
for everyj, the language af!’; is contained in the language
of A’. On the other hand, the languageAf contains only
these words irL(.A’) for which G344 is empty. The min-
imal rank required fotd is the minimalj € [n] for which
L(A) C L(A)).

As demonstrated in the experimental results in [13], this
minimal rank is often significantly smaller than Also,
the size of A’ is only 3"(2j — 1)". As discussed in [21],
the problem of finding the minimal rank required fdris
PSPACE-complete.

2.1.3 An incremental approach As stated above, the
problem of finding the minimal rank required farrequires
space that is polynomial id. Nevertheless, the automaton
A is typically small, and the bottle-neck of the computation
is usually the application ofl’ (e.g., taking its product with

a system with a large state space). Thus, finding the mini-
mal rank; required for.A and usingA’; instead ofA” may

be of great practical importance.

Moreover, for the language-containment application, one
need not calculate the minimal required rank and can check
the containment o5 in A by checking the emptiness of
SN A forincreasingj’s. In Section 4.1.2, we describe the
incremental approach in more detail. There, we also note
that it is possible to take advantage of the work done during
the emptiness test df N A’, when testing emptiness of
Sn A, forj" > j.

2.1.4 More heuristics In [13], we used the fact that the
state space ofl’ is simple and suggested an arsenal of opti-
mization techniques that can be applied to it. The optimiza-
tions make use of the fact that the constructionddfrom

A may use an intermediate alternating week automaton, and
are applied on both the intermediate automaton and the fi-
nal NBW. The optimizations involve techniques of rank re-
duction (described above), height reductions (repeatedly re-
moving a minimal strongly connected component, as long
as such a removal does not change the language of the in-
termediate automaton), as well as direct and fair simulation.
As detailed in [13], the construction and the optimizations
have been implemented and they significantly reduce the
size of the state space 4.

2.1.5 Safraless complementation of nondeterministic
Rabin and Streett automata In [23], we extended the
ranking technigue to Rabin and Streett automata, and use
the analysis in order to describe simple complementation
constructions for NRW and NSW. Thus, also in these
classes, it is possible to avoid determinization and comple-
ment automata by dualizing them to universal automata.

3 Safraless Decision Procedures

The key idea in [21] is that when all the paths obac
have only finitely manyx-vertices, and finite vertices are
removed, the removal ak-free vertices results in BAG
with a strictly smaller width. Consequently, when the width
of the DAG is bounded by somg > 1 (and in the case of
a runbAG of a UCW with n states we know that < n),
iterative removal of finite and.-free vertices results in an
empty DAG after at mostk iterations. This is why every
vertex can be associated with a finite rank bounde@iy
and the translation of UCWs to NBWs proceeds by letting
the NBW guess the ranks.



In order to solve the satisfiability problem for branching L(.A) # 0 iff L(A’) # 0.
temporal logics, we reduce the satisfiability problem to the
emptiness problem of UCTs. We then solve the emptiness As explained above, in order to reduce the UCT to an
problem for UCTs by reducing them to NBTs. Runs of a NBT, we first need a bounded-model property for UCTs,
UCT can also be arranged in a ronG, and as in the linear ~ which also implies a bound on the size of an accepting run
case, when all the paths of tbaG have only finitely many ~ graph. Letdet(n) = n®"*2.
a-vertices, and finite vertices are removed, the removal of
a-free vertices results in@aG with a strictly smaller width. ~ Theorem 3.2 [24] AUCT A with n states is not empty i
In the case of tree automata, however, one crucial factor ishas an accepting run graph with at mostdet(n) vertices.
missing: we do not have a bound on the width of the run
DAG. Indeed, since the UCT runs on trees whose width is
not bounded, the width of the rné is not bounded either.
The way we solve this problem is as follows. Recall that

our motivation is the satisfiability problem. Therefore, we . .
do not have to construct an NBI that is equivalent to Theorem 3.3 [24] Let A be a UCT withn states. There is

1 ’ .
the UCT A, and we only need an NBT that is emptiness- an NBT.A" over the same alphabet such thatA’) 0 iff

equivalent to the UCT (that ig,(A") # 0 iff L(A) # 0). L(A) # (), and the number of states i/ is 207 losn),
Accordingly, the NBTs we construct are parameterized by
a parametek and the NBT.A) accepts only trees whose
accepting run graph (graph, rather thansas, as we have

to refer to its size and not to its width) has at méster-

tices. By a bounded model property for UCTs, we know Theorem 3.4 [24] Let A be an APT with: states, transi-

thatL(A) # 0 iff L(A}) # 0 for k = n"+2. The bounded  tjon function of sizen, and indexh. There is an NBTA'
model property relies on Safra’s determinization construc- yyjth 20(n*h” lognh) states and alphabet of si2€ (™) such

tion (k above depends on the number of states in a DSW that L(.A) # 0 iff L(A") # 0.
equivalent to an NBW induced hy), but it is only the cor-
rectness of the our construction that relies on Safra’s con- The complexity of the nonemptiness algorithm for APT
struction: once we havi, the construction is independent that follows coincides with the known one. The main ad-
of the intricacy of Safra’s construction. vantage of our approach is the fact it avoids Safra’s deter-
Below we describe the construction briefly. The full de- minization and the need to solve parity games on top of it,
tails, as well as the definitions of trees, alternating tree au- and the fact it enables an incremental and symbolic imple-
tomata, and run graphs, can be found in [24]. The input mentation. We will get back to this point in Section 4.
to the satisfiability problem is a-calculus formulayp [19]. We note that an improvement of the upper bound of
The formulay can be translated to an APT with no blow NBW determinization would lead to an improvement in the
up [9]. Such translations exist for several other branching complexity of our decision procedure. Indeetkt(n) is
temporal logics [25]. Thus, the problem we need to solve the blow up that determinization involves, and it affects the
is APT emptiness, and we start with a reduction of APT range of ranks that the NBT has to guess. In fact, the bound
emptiness to UCT emptiness. described here is better than the one in [24], and the im-
UCTs are a special case of APTs and are strictly less ex-provement is due to Piterman’s recent determinization con-
pressive than APTs. The emptiness problem for APTs can struction [34].
be still easily reduced to the emptiness problem for UCTSs. ) . .
The idea is to enrich the alphabet of the APT by a “strategy 4 ~ Safraless LTL Realizability and Synthesis
component” — information on how nondeterminizm is go- . .
ing to be resolved in the current transition. Then, guesses Civen an LTL formulay over the setd and O of in-
of the alternating automaton are reduced to guesses abouPUt and output signals, thesalizability problemfor v is
the input letter, and the automaton becomes universal, overt© decide whether there is sirategy f : (27)* — 29,
a richer alphabet. In addition, by changing the state spacedenerated by a transduéesuch that all the computations
of the automaton, the parity condition is replaced by a co- Of the system generated by satisfy ¢ [35]. Formally,
Biichi condition. Formally, we have the following. a computationp € (2V“)* is generated byf if p =
(io ] 00), (il U 01), (ig U 02), ... and for a”j > 1, we
Theorem 3.1 [24] Let A be an APT withn states, tran- haveo; = f(io i1 -+ ij-1).
sition function of sizen, and indexh. There is a UCT 41t is known that if some transducer that generatexists, then there
A’ with O(nh) states and alphabet of si2€ (™) such that is also a finite-state transducer.

By translating the UCT to an NBT that accepts exactly
all trees whose accepting run graph has at mostlet(n)
vertices, we finally get the following.

Combining Theorems 3.1 and 3.3, we get the desired
reduction from the nonemptiness problem for APT to the
nonemptiness problem for NBT:




The traditional algorithm for solving the realizability

problem translates the LTL formula into an NBW, applies

Safra’s construction in order to get a DPW, for it, ex-
pandsA, to a DPT Ay, that accepts all the trees all of

whose branches satisfy, and then checks the nonempti-

ness ofAy,, with respect ta/-exhaustive“C-labeled2’-
trees, namel2/““-labeled2’-trees that contain, for each
wordw € (27)%, at least one path whose projectionris

to solved not only the realizability problem but also the
synthesis problem (as well as related richer problems, like
supervisory-control and synthesis with incomplete infor-
mation). While our Safraless approach simplifies the al-
gorithms and improves the complexity of the decidability
problems, the fact it uses a simplified class of automata (that
is, co-Bichi rather than parity) causes the constructions to
have more states than these constructed by the traditional

w [35]. Thus, the algorithm applies Safra’s determinization algorithm. We believe, however, that this drawback is com-
construction, and has to solve the nonemptiness problem forpensated by the practical advantages, discussed below, of
DPT. Fory of lengthn, the DPWA,;, has22”"'**" states ~ our approach.

and index2°(™). This is also the size of the DPAy,,

making the overall complexity doubly-exponential, which 4.1 Remarks

matches the lower bound in [39]. We now show how UCW

can be used instead of DPW. Intuitively, universal automata 4-1.1 A symbolic implementation Safra’s determiniza-
have the desired property, enjoyed also by deterministic au-tion construction involves complicated data structures: each
tomata but not by nondeterministic automata, of having the state in the deterministic automaton is associated with a
ability to run over all branches of an input tree. In addition, labeled ordered tree. Consequently, there is no symbolic

since complementation of LTL is trivial, the known trans- implementation of decision procedures that are based on
lations of LTL into NBW can be used in order to translate Safra’s determinization and NPT. Our COﬂStrUCtion, on the

LTL into UCW. Formally, we have the following.

Theorem 4.1 [24] The realizability problem for an LTL

other hand, can be implemented symbolically. Indeed, the
state space of the NBT constructed in Theorem 3.3 con-
sists of sets of states and a ranking function, it can be en-

formula can be reduced to the nonemptiness problem for coded by Boolean variables, and the NBT'’s transitions can

a UCT with exponentially many states.

Proof: A strategyf : (2/)* — 2° can be viewed as 2(-
labeled2’-tree. We define a UCE,, such thatS,, accepts
a2@-labeled2’-tree (T, ) iff T is a good strategy fop.

Let Ay = (2199 Q, ¢in,d,a) be an NBW for—
[51]. Thus,A-, accepts exactly all the words {2/V°)~
that do not satisfyy. Then,S, = (29,21, Q, gin, ¢, ),
where for every; € Q ando € 29, we haves’(q,0) =
Niear Nyesq,ivo) (i) Thus, from state;, reading the
output assignment € 29, the automatois,, branches to
each directioni € 27, with all the states;’ to which &
branches when it readsU o in stateq. It is not hard to
see thatS,, accepts @°-labeled2! -tree(T, 7) iff for all the
paths{e, ig, o - 91,40 - i1 - 92,...} Of T, the infinite word
(igUT(e)), (i1 UT(dp)), (i2UT(ip -41)), - . - is not accepted
by A-; thus all the computations generatedrbgatisfyq).
Since the size ofd-, is exponential in the length af, so
is Sy, and we are done. |

For an LTL formula of lengtm, the size of the automa-
ton Sy is 20", making the overall complexity doubly-

exponential, matching the complexity of the traditional al-

gorithm , as well as the lower bound [39].
Thesynthesis problerfor an LTL formulas is to find a
a transducer that generates a strategy realizingknown

be encoded by relations on these variables and a primed ver-
sion of them. The fixpoint solution for the nonemptiness
problem of NBT (c.f., [50]) then yields a symbolic solu-
tion to the original UCT nonemptiness problem. Moreover,
when applied for the solution of the realizability problem,
the BDDs that are generated by the symbolic decision pro-
cedure can be used to generate a symbolic witness strategy.
In [15], the authors suggest a symbolic solution for the LTL
synthesis problem. However, the need to circumvent Safra’s
determinization causes the algorithm in [15] to be complete
only for a subset of LTL. Our approach circumvents Safra’s
determinization without giving up completeness.

4.1.2 An incremental approach Our construction is
based on the fact we can bound the maximal rank that a
vertex of G can get byk = n - det(n) — the bound on the
size of the run graphs ofl. Often, the bound on the max-
imal rank much smaller. Accordingly, as in the linear case,
we suggest to regarkl as a parameter in the construction,
start with a small parameter, and increase it if necessary. Let
us describe the incremental algorithm that follows in more
detail.

Consider the construction described in Theorem 3.3.
Starting with a UCTA with state spacé), we constructed
an NBT A’ with state space® x 2¢ x R, whereR is the
set of functionsf : @ — [k] in which f(q) is even for

algorithms for the nonemptiness problem can be easily all ¢ € «. Forl < k, let R[l] be the restriction ofR to
extended to return a transducer [37]. The algorithm we functions with rangei], and letA’[l] be the NBT.A’ with
present here also enjoys this property, thus it can be usedk being replaced by. Recall that the NBTA'[I] is empty



iff all the run graphs of4 of size at most are not accept-
ing. Thus, coming to check the emptinessAfa possi-

ble heuristic would be to proceed as follows: start with a

small! and check the nonemptiness.4f]l]. If A’[{] is not

empty, thenA is not empty, and we can terminate with a

“nonempty” output. Otherwise, increaseand repeat the
procedure. Wher = k and.A’[l] is still empty, we can
terminate with an “empty” output.

It is important to note that it is possible to take advan-

tage of the work done during the emptiness testf, ],
when testing emptiness od’[ly], for I > [;. To see
this, note that the state space df[ly] consists of the
union of 29 x 29 x R[l;] (the state space of’[l;]) with
20 x 29 x (R[l2]\R[l1]) (states whos¢ € R][l»] has a state
that is mapped to a rank greater tHaph Also, since ranks

can only decrease, once the NBX[l;] reaches a state of
A'[l4], it stays in such states forever. So, if we have already
checked the nonemptiness 4df[l;] and have recorded the
classification of its states to empty and nonempty, the addi-

tional work needed in the nonemptiness tesidfiz] con-
cerns only states in? x 2% x (R[l2] \ R[l1]).

The incremental approach circumvents the fact that the
blow-up that is introduced in the translation of a UCT to an
NBT occurs for all UCT. With the incremental algorithm,
the blow occurs only in the worst case. As shown in [13],

designs when provided with additional temporal properties.

In [20], we describe such an algorithm. Given a specifi-
cation), we first check its realizability. Suppose now that
we get an additional specificatiaff. We can, of course,
simply check the realizability of) A ¢’ from scratch. In-
stead, we suggest to first check also the realizability/of
We then show how, thanks to the simple structure of the
NBT obtained in the Safraless approach, much of the work
used in checking the realizability @f and+’ in isolation
can be reused in checking the realizability/of\ v'.
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