On Typability for Rank-2 Intersection Types with Polymorphic Recursion *

Tachio Terauchi
EECS Department
University of California, Berkeley

Abstract

We show that typability for a natural form of polymor-
phic recursive typing for rank-2 intersection types is unde-
cidable. Our proof involves characterizing typability as a
context free language (CFL) graph problem, which may be
of independent interest, and reduction from the bounded-
ness problem for Turing machines. We also show a property
of the type system which, in conjunction with the undecid-
ability result, disproves a misconception about the Milner-
Mycroft type system. We also show undecidability of a re-
lated program analysis problem.

1 Introduction

Among the interesting aspects of intersection types is the
decidability of type inference for any finite rank for the pure
A-calculus (i.e., without recursive definitions) [8, 6], prin-
cipal typing [5, 17, 8], the rank-2 fragment [9, 4], which
is closely related to ML-types, and connections with poly-
variant flow analysis [12]. Recursive definitions such as
fix x.e are important in practice. Indeed, it is difficult
to find a real-world programming language without some
form of recursive definitions. If x appears more than once
in the body of e of the recursive definition, it may be de-
sirable to give an polymorphic type to x, which leads to
polymorphic recursive typing. Jim [4] proposed a natural
way to use intersection types for this purpose in the rank-2
fragment. He named the type system I +REC-INT, where
I, refers to rank-2 intersection types and REC-INT is the
name of the rule used to type recursive definitions. While it
is known that type inference without polymorphic recursion
is decidable for any finite rank intersection types [8, 6], the
decidability question has been open for Iy + REC-INT.

I + REC-INT is not the most powerful polymorphic re-
cursive type system, but it appears to be capable of typing

*This research was supported in part by NSF Grant No. CCR-0326577.
The information presented here does not necessarily reflect the position
or the policy of the Government and no official endorsement should be
inferred.

Alex Aiken
Computer Science Department
Stanford University

many programming situations requiring polymorphic recur-
sion (for example, see [2] which studies a similar system).
To the best of our knowledge, there is no known polymor-
phic recursive type system with decidable typability that is
both sound and more powerful than I + REC-INT. This
paper shows that typability for even Iy + REC-INT is un-
decidable.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 gives an overview of
I + REC-INT. Section 4 gives a novel reduction of a
context free language (CFL) graph problem to typability for
I, +REC-INT. Section 5 reduces the boundedness problem
to the CFL graph problem to complete the proof of unde-
cidability of typability of I + REC-INT. The last two sec-
tions show related results that follow from the proof of un-
decidability. Section 6 shows a property of Iy + REC-INT
that disproves a misconception about the Milner-Mycroft
type system. Section 7 proves undecidability of a related
program analysis problem. The companion technical re-
port contains the proofs omitted from the conference ver-
sion [16].

2 Related Work

While being careful to leave the question open, Jim in his
original paper [4] considered the possibility of undecidabil-
ity of Io+REC-INT typability citing the resemblance to the
Milner-Mycroft type system [10] whose typability was al-
ready known to be undecidable [7, 3]. More recently, Dami-
ani [1] noted that there seems to be no “obvious way” to
find a bound on the size of |I| (see the type rule REC-INT
in Section 3). Our result confirms these suspicions.

Our proof reduces typability to the boundedness problem
of Turing machines. The boundedness problem was also
used in the undecidability proof of semi-unification [7].

A step in our proof shows an equivalence between unifi-
cation type constraints and a CFL graph problem that may
be of independent interest to researchers interested in re-
lating type-based program analysis to CFL-based program
analysis. While it is suspected that many CFL-based pro-
gram analyses correspond closely to type-based ones, there

e == z|ee|Alre|fixume
T = a|T—oT
o == 1| (Niermi)—0

Figure 1. Terms and types language.

I(z) = /\ieITi jel
Fkz:7j

VAR

Loz mibe:o

FUN
I'EAze: (N\epmi)—0

Fke:(Nigym)—o Viel(l'ke:)

7 APP
I'kFee:o

Vie l.(Ia:\jeymibern) kel
I'-fixax.e: 7,

REC-INT

Figure 2. I, + REC-INT.

have been few formal results [14, 13]. One benefit of such
correspondences is for proving the soundness of a CFL-
based program analysis, which is almost never done, by
proving the soundness of an equivalent type-based one,
which is, in contrast, a common practice.

Our work seems to be the second time CFL graphs have
been used to prove an undecidability result in program
analysis. Reps proved undecidability of context-sensitive
data-dependence analysis via undecidability of a CFL graph
reachability problem [15]. However, the proof strategy used
in this paper is different from his.

3 I, + REC-INT

Terms and types are defined in Figure 1. Function ap-
plication e €’ is left associative, i.e., e1 e3 e3 = (e €2) es.
Binding of variables extends as far to the right as possi-
ble. Types consist of rank-0 types 7 and rank-2 types o.
(Rank-1 types are of the form A\,_; 7;.) I is a finite non-
empty set of indices. Function types are right associative,
ie., T —T—T3 = 11— (T2 —T3).

The rank-2 intersection type system with recursive def-
initions, I + REC-INT, is defined in Figure 2. I +
REC-INT is similar to the Milner-Mycroft type system,
though not exactly equivalent. For example fix z.x x
is typable in the Milner-Mycroft type system but not in
I, + REC-INT.

I + REC-INT with a monomorphism restriction for
REC-INT, i.e.,

Tx:rhke:r

: REC-INT’
I'Ffixze: T

Ax.x

(id (Az.e')) e

where x ¢ fvars(e’)

id Az.xe;xe)

where © ¢ fvars(e) U fvars(e’)
id (A\z.same(z, e);e)

where x ¢ fvars(e) U fvars(e’)

x
1/l

o)
)
3
()
—
©
o
—
MMl

)
X
o
Il

Figure 3. Encoding of ¢;¢/, ¢ x ¢, and
same(e, e’).

is closely related to ML-types and the type inference is de-
cidable, in fact, it is DEXP-time complete [4].

The main result of this paper is the undecidability of I, +
REC-INT typability. Formally, the typability problem of
I, + REC-INT is defined as follows: Given a closed term e,
is e typable, i.e., is there a type derivation I' |- e : 7 for some
7 and I'? Note that it is safe to restrict dom(I") = fvars(e).
(Here, fvars(e) denotes the set of free variables of e.) Our
proof shows that even when e is restricted to closed terms
(i.e., fvars(e) =), the typability problem is undecidable.

3.1 Example

One might naively think that, at each REC-INT, |/
should at most be the number of occurrences of x in e (see
Figure 2). Such a bound on |I| would make type infer-
ence easy. However, because any computable bound on |I|
would imply decidability, the result in this paper shows that
there is no computable way to obtain a bound in general.

We define some syntactic shortcuts to show an exam-
ple where |I| is greater than the number of variable occur-
rences. Let e; ¢/ be a sequential composition, e x ¢’ be a pair,
and let same(e, €’) force the types of e and €’ to be equal.
Sequential composition associates to the left and has the
weakest precedence, e.g., e1 e2;e3;e4 = ((€1 e2);e3);eq.
These expressions are encoded as shown in Figure 3. The
reason for the use of id in the encodings is to force types
to be of rank 0. For example, if we want to ensure that e
can be typed rank-0, we apply id to e to force existence of a
sub-derivation where e has a rank-0 type. (See the APP rule
in Figure 2.) Note that in this encoding, a pair 7 x 7’ has a
function type 7—7’. While the encoded pair does not have
the expected semantics, it has the expected types. Both pair
terms and pair types are right associative.

Let e be the following term:

Az Ay Az, (Auw v w.same(f uvw,z X y));
(Auw v w.same(f uvw, (x X) X y));

Y Xz

T@) =N, Jel

VAR
| R
Iz:thkge: 7 FUN
I'FoMze:7—1
I'rtope:7—7" Thoe:T
APP

I'Foee : 7/

VieI.(l",x:/\jej
'k fixz.e: 7y

TiFoe:n) kel
REC-INT

Figure 4.1+ REC-INT.

We show that £ix f.e is typable. Let

71 = a—a—a—(a X Q)

Ty = a—a—(a x a)—(a x (o x a))

3 = a—(a X a)—a—((a X a) X a)

Ty = a—(a x a)—(a x a)—((ax a) x (a x a))

Note that f: 7y A 73 F e : 7 by assigning 77 to the first
occurrence of f and 73 to the second occurrence of f. Sim-
ilarly,

fimATsFe:m

fima ATyl e: T3

fima ATyl e:my
Therefore,

Viel(f:N\je mibe:m) kel
OF fix fe: 1y

where I = {1,2,3,4}.

On the other hand, there is no derivation that can type
this term with |I| < 4. It is immediately obvious from z X
y and (x X) X y that f w v w must be given the types
Ty X Ty and (7, X 7,) X T, for some 7., 7,. But due to
y X z, this implies that y must have the types 7, and 7, X 7.
Therefore, we actually need two kinds of 7,’s, i.e., 7, and
Tz X Tz, Which implies that there must be at least four types
for fuvw.

4 Typability as a CFL Graph Problem

For this proof, we introduce the simpler type system
I + REC-INT shown in Figure 4. In general, typabil-
ity in I + REC-INT does not coincide with typability in
I, + REC-INT (e.g., Az.x). However, we prove that
even when restricted to the set of terms that are typable in
I, + REC-INT iff typable in I + REC-INT, the typability
problem is undecidable. More generally, let us define the
subset of terms B as follows:

B = z|id(Ax.B)|BB]|fixz.B

[Az.e]lr = (8,C U{B = a—7}, X U{a, 5})
where « € Base \ (X Uran(T"))

B € Base \ (X Uran(T") U {a})

(7—7 C, X) = He]]r,fﬂzoz

le1 ex]r = (8,0, X1 U X2 U{a, B})
where « € Base \ (X1 U X5 Uran(T))
B € Base \ (X1 U Xy Uran(T') U {a})
X1 N X2 = @
(TlaclaXl) = [[61]]F
(7—27027X2) = [[62]]F
cC=0 UCQU{Tl :Oé_)677—2 = a}

[2]r = (I'(x), 0, ?)

where x € dom(

[fix z.e]r = (1,C, X')

where ¥ = {a | 2% € fvars(e)}
X' =XU{a,|aeX}
Va € Y., € Base \ (ran(T') U X'\ {aa})
(r,C", X) = [ellroy, .y (e}
C" =Upestr* =7"| 7 € ran(T)} U {7% = a4}
C=U,ex-(C'UC")®

Figure 5. Constraint generation.

Lemma 4.1 For all closed B, g B : o iffl - B : 0.

Closed B terms do not include all of the terms whose
typability in Iy + REC-INT coincides with typability in
I + REC-INT but are sufficient for our purpose. In the rest
of the paper, typable means typable in o and type means
rank-0 type unless stated otherwise.

4.1 Type Constraints

As in conventional type inference algorithms, we formu-
late the typability problem as a constraint satisfaction prob-
lem. However, the purpose here is not to solve the con-
straints but to show its undecidability.

We warn that the phrase “constraint generation” is some-
what misleading because there is no terminating algorithm
to generate the constraints. (The set of constraints may be
infinite.) When we say that the set of constraints is gener-
ated, we mean that the set exists (in standard set theory).
Existence is sufficient for our purpose of proving undecid-
ability.

The generated constraint set may contain infinitely many
type variables. To this end, we annotate type variables with
superscripts. Let Base be the set of type variables without
superscripts, or equivalently, with an empty string as the

superscript. Let meta variables «, 3, etc. range over type
variables with a (possibly empty) superscript. For a type
variable « and a string s, a® is a type variable whose super-
script is a concatenation of the superscript of o followed by
s. For example, ((°1)%2 = (35152, For a type 7 and a string
s, 7° is a type obtained by replacing each type variable «
in 7 by o®. For example, (a1 —(3%1)%2 = 15235152,
For a set of type equality constraints C', C* = {(75 = 73) |
(7’ 1= T 2) S C}

We annotate term variables with superscripts so that each
occurrence of a fix-bound variable is annotated with a
distinct number, e.g., fix z.fix y.2° Az.x! y? z. These
numbers form the alphabet of the strings annotating the type
variables. We use meta variables z, y, etc. to range over
variables with a (possibly empty) superscript.

Constraint generation is shown in Figure 5. A mapping
I" from variables to types is a type environment. Intuitively,
[e]r returns a triple (7, C, X) such that 7 is the type of e, X
is the set of base type variables introduced while analyzing
e, and C is the set of constraints generated while analyzing
e. The use of set X is a standard technique for avoiding
unnecessary introduction of the same type variable in two
different contexts. The first three rules are self-explanatory,
and coincide with a typical constraint-based type inference
algorithm for simply typed A-calculus.

The fourth rule handles fix x.e. The goal is to build
a constraint set representing the infinite unrolling of the re-
cursive body e. Recall that occurrences of £ ix-bound vari-
ables are annotated with distinct numbers. In the rule, X
is the set of numbers annotating x. Each a € X has the
associated base type variable «,. The line Va € ¥.a, €
Base \ (ran(T') U X' \ {«,}) ensures that these variables
are distinct. Thus (7, C”’, X) is the result of analyzing the
body of the recursive definition e by assigning a distinct
type variable to each z*. Intuitively, C” is the template con-
straint that should be repeated indefinitely, and C' contains
infinitely many copies of C” distinguished by superscripts.
Therefore, C'*® represents the constraint of the body e un-
rolled at x* appearing in the body e that itself was unrolled
from the root according to s. C' also contains copies of C”,
which is used to connect the copies of C’ (note that C’$! and
C'2 share no type variables when s; # s3). C” consists of
two parts. The first part, |J,.{7'* = 7' | 7" € ran(T')},
ensures that free variables in e get the same types in the un-
rolling." The second part, | J,c{7" = ao}, equates the
type of % (i.e., o) with the type of the body e unrolled at
z? (i.e., 7).

We connect typability to constraint satisfaction as fol-
lows. An assignment S is a mapping from type variables to
types. For 7, S(7) is the type obtained by replacing each

!Technically, this part is inessential as all fix x.e used in the rest of
the paper are closed. However, it is included here for completeness and to
make the proof of Lemma 4.2 succinct.

type variable « in 7 by S(«). An assignment S is a so-
lution of C, written S = C, if for each 7 = 7/ € C,
S(r) = S(7'). We say that S is a finite-range solution if
the range of S, ran(\S), is a finite set. We write S =54, C
if S is finite-range and S |= C. We write |= C if C is sat-
isfiable, i.e., if there exists S such that S = C. We write
):ﬁn C'if C is finitary-satisfiable, i.e., if there exists .S such
that S =4, C. A term e is typable iff the constraints gener-
ated for e are finitary-satisfiable, i.e.,

Lemma 4.2 Let e be a closed term. Let ¢’ be e such that
each occurrence of a £1ix-bound variable is annotated with
a distinct number. Then e is typable in 1 + REC-INT iff
Efin C where (1,C, X) = [€']|g for some T and X.

Example Consider the term fix z.2° 2!, Then,

= U tr=epr=0a,8" =708 =xy

s€{0,1}*

For any S such that S = C, it must be the case that S |= C’
where C' = {3% = pl*—p* | s € {0,1}*}. But ¢’
clearly has no finite range solution. Therefore, C' has no
finite range solution, and fix z.z x is not typable. (Note
that there is an infinite-range solution for C’. However, it is
not always the case that an untypable term has an infinite-
range solution.)

4.2 Constraints as a CFL Graph

The next step of the proof is to represent constraints as
a context free language (CFL) graph. We treat constraints
symmetrically, i.e, 7 = 7’ is equivalent to 7/ = 7. Let
C be a constraint generated from a closed term e, i.e.,
(1,C,X) = [e]ly for some 7 and X. Note that all of the
constraints in C' are of the form o = § or « = f—. We
use the notation ftvars(7) to denote the set of types variables
in 7. Let fvars(C) = U, —, ec(fivars(t) U fivars(r')).
The CFL graph of C, written graph(C'), is the graph (V, E)
where

V = fivars(C)
E = {a58|(a=p)ecC)

U{aiw,ﬁ—[wl(a—ﬁzv)ec}
Ufy 2 a,v 5 B (amB =) € €}

For example, let C' = {3y = a1 —81, 1 = aa— 2,0 =

/61 N
/N
/(/) \[\\
Q2

2

Figure 6. Example.

proj(T,€) = T
proj(t—1',)s) = proj(t,s)
proj(t—7',]s) = proj(t’,s)

Figure 7. Path projection.

B4, B4 = ag—P3}. Then graph(C) is as shown in Figure 6.

Given a path p in the graph, let s(p) be the string ob-
tained by concatenating in order the labels of edges in p.
Let € denote an empty string. Let L(A) be the set of strings
generated by the following grammar:

Auw=ec|AA|(A)|[A]
A match elimination —,, is defined as follows:

t1 () ta —m tite
t1 [] t2 —m tat2

For a path p, the match-eliminated string of p, written
sm(p), is a —,-normalized s(p), i.e., a string ¢ such that
s(p) —%, t where no substring of ¢ is in L(A). We write

b 3 to denote a path p from « to S such that sm(p) = ¢.

For example, there is a path (35 4 (s in Figure 6.

We call p a matched path if sm(p) is an empty string. For
convenience, we say that every variable has a (self) matched
path to itself, i.e., o« ~> . We say that a string ¢ is positive
if t consists only of *)’ and ’]’. We call p a positive path if it
is a matched path or if sm(p) is a positive string. The depth
of a positive path p, depth(p), is the length of sm(p).

We want to show that |=4, C iff the depth of positive
paths in graph(C) is bounded. To this end, we relate types
to paths as follows. For a positive string ¢ and a type T,
the t-projection of 7, proj(7,t) is defined as shown in Fig-
ure 7. Note that proj(r,t) may be undefined. For example,
proj(a—a—(3,))) is undefined. The following lemma says
that positive paths imply type-structural constraints.

Lemma 4.3 Let p be a path from o to 3 in graph(C) such
that sm(p) is a positive string. Suppose S |= C. Then there
exists T such that proj(t, sm(p)) = [and S(a)) = S(7).

We say 7 is smaller than 7’ if size(7) < size(7’) where

size is defined

For a set X of positive strings and a type variable o, we
define pathsType(X, o) to be the smallest type T containing
only « such that for each t € X, proj(r,t) is defined (so
proj(t,t) = «). For example,

pathsType({)]), 1] }, @) = (a—(a—a))—a—a

Note that for X finite, pathsType(X,«) is always de-
fined. Given a type variable o in a CFL graph G, let
posPaths(a, G) be the set of all positive paths from o.. We
are now ready to prove the main result of this section.

Lemma 4.4 =, C iff there exists a positive integer n such
that for any positive path p in graph(C), depth(p) < n.

Proof:

Let n be a positive integer such that for any positive path
p in graph(C) = G = (V, E), depth(p) < n. Fix a type
variable 0. Let F' be a mapping from type variables to sets of
positive strings such that for each « € V, F(«) = {sm(p) |
p € posPaths(a, G)}. Define S as follows

S = {a > pathsType(F(«),d) | a € V'}

Because depths of positive paths are bounded, F'(«) must
be finite for every a. Hence each pathsType(F(c),9) is
defined, and so S is defined. Furthermore, ran(.S) is finite,
in particular, [ran(S)| < 2"*1. Hence it suffices to show
that S = C.

Pick (o = 3) € C. By construction, a = 3and 3 > a.
Hence F'(a) = F(3). Therefore S(a) = S(3) as required.

Pick (o« = f—~) € C. Suppose t € F(3). then there

. t . .
exists a path 3 ~ k for some . By construction, there is

an edge «), (. Hence there is a path «), I} 4k, and
so there is a path p’ from « such that sm(p’) =)t. Thus,
)t € F(a). Conversely, suppose)t € F(a). Let p be a
path from « such that sm(p) =)t. Let 3’ be a node such

that p is « '\)» o4 L, k where £ is the end vertex of p. By
construction, there is an edge 3 L «. Therefore, there is a

path 3 A% o 2, Ic4 ANA ~, and so there is a path p’ from 3
such that sm(p’) = t. Thus, t € F(3).

Hence ¢ € F(3) iff)t € F(«). By a similar argument,
t € F(y) iff]t € F(«). Therefore S(a) = S(8)—S(7) as
required, and S = C.

Suppose there exists no 7 such that for any positive path p in
graph(C), depth(p) < n. For the sake of obtaining a con-
tradiction, suppose there exists S such that S |=4, C. Let

m be a number such that for any 7 € ran(S), size(1) < m.
Pick a path p in graph(C) such that depth(p) > m. Let «
be the starting vertex and (3 be the ending vertex of p. Then
by Lemma 4.3, there exists 7 such that proj(r, sm(p)) =
and S(a) = S(7). But |sm(p)| > m implies size(S()) =
size(S(7)) > m, a contradiction.

|

5 Reduction from the Boundedness Problem

We reduce the boundedness problem to the problem of
finding a bound on the depth of positive paths in graph(C).
The boundedness problem is known to be undecidable [7],
and hence this reduction shall show that the problem of find-
ing a bound on the depth of positive paths in graph(C) is
undecidable, which in turn implies the undecidability of ty-
pability. Here, we present the boundedness problem as it is
defined in [7].

An Intercell Turing Machine (symmetric ITM) is a triple
of the form Y = (Q, A, T'), where

e () is a finite set of states,
e A is a finite tape alphabet, and
o T CQx{-1,+1}x Ax AxQ is atransition relation.

An instantaneous description (ID) of Y takes the form
(w1, a, m, wa) Where wyws is the tape content with all but
finitely many blank symbols and the head is positioned be-
tween the (m — 1)-th and the m-th cells, which is between
wy and wo. 2 The next move relation Fy on ID’s of Y is
defined as follows:

for (o, —1,a,b,8) € T

(wra, a,m,we) Fy (wy, B,m — 1, bws)
for (o, +1,a,b,8) € T

(w1, a,m,aws) Fy (w1b, B, m + 1, ws)

An ITM Y is bounded if there exists a positive integer n
such that if M is an arbitrary ID of Y, then the number of
different ID’s reachable by Y from M is at most n.

Let Y = (Q, A, T) be an ITM. The symmetric closure
of YisYs = (Q, A, Ts) where

TS :TU{<OC,—.’I,',G;,b,ﬁ> | <B,$,b,a,a> € T}

The boundedness problem for symmetrically-closed ITTMs
is the problem of deciding for a given deterministic ITM
Y =(Q,{0,1},T) with 0 as the blank symbol, whether Yg
is bounded.

Theorem 5.1 ([7]) The boundedness
symmetrically-closed ITMs is undecidable.

problem for

2Strictly speaking, m is redundant since w and wso precisely deter-
mine the location of the head. But m makes the proof more readable.

We now reduce the boundedness problem of
symmetrically-closed ITMs to the problem of finding
a bound on the depth of positive paths. Our goal is to
construct a closed term ey for an ITM Y such that Yg
is bounded iff the depth of positive paths in graph(C') is
bounded where (7,C, X) = [ey]y for some X and 7. The
idea is that C' would look like an infinite binary tree in
which each left move of Yy is represented by a down move
in the tree (from a parent to a child), and each right move
of Y is represented by an up move in the tree (from a child
to the parent). The tape content to the right of the head
records which branch was taken at each down move. This
ensures that up moves use the edges actually belonging to
the tree. The tape content to the left of the head records
whether a (edge or a [edge is followed at each up move
so that a down move must use a) edge to match a (up
move and a]| edge to match a [up move. Symmetry
of ITM is needed in part because our CFL graphs are

bi-directional, i.e., (a % §) € Eiff (3 5 a) € E, and
similarly for], [, and € edges. However, it turns out that the
CFL graphs must be bi-directional anyway to simulate a
symmetric-or-asymmetric ITM with our proof technique.

Instead of introducing ey at this point, it is more helpful
to describe the constraint Cy- such that graph(Cy) simu-
lates Y in the way described above. We then construct the
term ey that generates Cy. LetY = (Q, {0,1},T) be a de-
terministic ITM. Let { My, ..., M, } C Ts be the set of all
left transitions of Y. For each M, € T, let , be a distinct
type variable. For each M, = (o, —1, b, a, 3), define types
Ta,e and Kq ¢ as follows:

Bxy ifb=0
Ta, = .
v x B ifb=1

Ryt = O

Note that we have intentionally picked type variable names
that correspond to the state names in Y. Cy is defined as
follows:

Cy = |J f{rae=7lrlacf0,1},0e{l,... ,p}}*

s€{0,1}*

As an example, consider Y = {{ay, a2, 3},{0,1}, T}
where

T = {<O[1, _17]-7 Oa Ck3>, <043, _]-a O; 1,0l2>}

Figure 8 shows the subgraph of graph(Cy) for the vari-
ables with superscripts s, 0s, and 1s. The entire graph(Cly)
is infinite. In particular, graph(Cy-) can be obtained by re-
peating the structure in the diagram. That is, there are edges
between a® and o, edges between a* and 7Y%, edges
between a§® and «}°%, and so on. Pictorially, graph(Cy)

is an infinite binary tree such that for any s, variables with

Qg

Figure 8. Example.

the superscript s collectively form a node (s-node) with the
0s-node being the left child and the 1s-node being the right
child. Note that any edge may only connect a variable in a
parent node with a variable in its child node.

We now construct the term ey. We use the vector no-
tation 7 to denote a sequence of variables. We write
A7 .etomean id(\zy.id (A\xs. . . . id (\1,.€))) where 2
T1,...,T,. We write ¢/ T to mean the sequence of function
applications ¢’ x1 x5 ... x,, where T = T1yeeey T

For each o € @, let x,, be a distinct variable. For each
¢, let yp be a distinct program variable. For each M, =
(v, —1,b,a,3), define terms e, ¢ and v, ¢ as follows:

T X Ye
ngl‘@

Lo

ifb=0
€a,l .
’ ifb=1

Va,t

Foreacha € {0,1},lete, = €41 X €q2 X ... X €4, and
Vg = Vq,1 X Vg2 X ... X Ugp. Recall that e x ¢’ is defined
in Figure 3. Let X = fvars(eg) U fvars(e1) U frars(vg) U
fvars(vy). Let dg and d; be distinct variables not in X. Let
7 be a sequence of variables from X U {do,d; }. Let 2 be
distinct variables not in 2’ such that | 2’| = |2'|. Let

ey = fix f/\?>
(A7 .same(f° 2, v x dp));
(A\Z.same(f! Z',d; x v1));
(eg X €1)

Recall that e;e’ and same(e,e’) are defined in Figure 3.
Let (7,C,X) = [ey]y. C is not exactly Cy-, but simple
algebraic manipulation shows that (=4, C iff =4, Cy-.

We now show that Y is bounded iff positive paths in
graph(Cy) have a bounded depth. For a positive string ¢, let
r(t) be reverse of ¢ with) replaced by 0 and] replaced by 1.
For an infinitely long sequence w, let w|,, be the string con-
sisting of the first n symbols of w. For a string s € {0, 1}*,
let s0°° be an infinitely long sequence w such that w5 = s
and the ith symbol of w is 0 for all 4 > |s|. For clarity, we
sometimes write s;@s4 to mean the concatenation s;so. We
show that if Y is bounded then positive paths in graph(Cy)
have a bounded depth.

Lemma5.2 Let p be a path from «o°* to [(°2 in
graph(Cy) such that sm(p) is a positive string. Then

(wQr(sm(p)), a,m, $10°°) and (w, B, m — |sm(p)|, $20°°)
are reachable from each other in Yg.

We now prove the other direction, i.e., if positive paths
in graph(Cy) have a bounded depth then Yy is bounded.

Lemma 5.3 Suppose (wQr(ty), o, m, $10°°) and
(wQr(te), B,m — |t1] + |ta],$20°°) are reachable
from each other in Yg without moving the head below the
position m — |t1| and without moving the head above the
position m + |s1|. Further suppose |t1] + |s1| = [t2| + |s2].

to

t1 5 .
~> 7% in

Suppose ot ~>» %3 in graph(Cy). Then (3°2
graph(Cy).

Lemma 5.4 Suppose there is an ID of Yg from which the
head can be moved n positions left or right. Then there
exists a positive path of depth n in graph(Ys).

Proof: Suppose (wi,a,m,w}) and (ws, B, m + n,wh)
are reachable from each other. Consider a series of tran-
sitions from (w1, o, m,w}) to (we, S, m + n,wh). Let
(ws, 7y, m, wh) be an intermediate ID in this series such that
following transitions in the series do not move the head be-
low the position m. Note that such an ID must always exist.
Let m’ be the highest position reached during the series of
transitions. Let s3 = w3|m/—m and s3 = Wy |m/— (mn)-
Let ¢ be the string such that wst = ws,. Note that |t| = n.
We thus have (ws, v, m, $30°°) and (wst, 3, m — |t], $20°°)
reachable from each other without moving the head below
the position m and without moving the head above the posi-
tionm’ = m+|s3|. Also, |s3] = m' —m = [t|+|s2|. Triv-
ially, v°¢ ~5 %8, Therefore, by Lemma 5.3, 3% Ly,
a

From Lemma 5.2 and Lemma 5.4, it follows that,

Lemma 5.5 Yg is bounded iff there exists a positive in-
teger m such that for any positive path p in graph(Cly),
depth(p) < n.

Finally, by Lemma 4.1, Lemma 4.2, Lemma 4.4,

Lemma 5.5 and Theorem 5.1,

Theorem 5.6 Typability of I, + REC-INT is undecidable.

6 Insufficiency of Unification Tests

One way to cope with the undecidability result is to re-
ject some typable terms for the sake of an incomplete but
terminating typability algorithm. Mycroft [10] proposed the
following test as a rejection method for the Milner-Mycroft
type system. For each £ix x.e and each occurrence of in
e, unify the type of the body e with the type of the occur-
rence of x and check that the constraints are satisfiable. The
test rejects the term if any of the constraints are unsatisfi-
able, and otherwise runs the actual type inference algorithm
hoping to have rejected any “bad” term that would make
the algorithm diverge. For example, this method rejects the
term fix z.x x (which is typable in the Milner-Mycroft
type system) because unifying the type of the first occur-
rence of x with the type of the body = x results in a con-
straint of the form a— 3 = (3, which is unsatisfiable. Here,
we show that not only is this test insufficient for designing
a terminating typability algorithm for I + REC-INT, but
it is actually not sufficient even for the Milner-Mycroft type
system.

We claim the following.

Lemma 6.1 Suppose [fixxz.elly = (7,C,X) and C is
finitary satisfiable. Then for any s € {a | x® € fvars(e)}*,
C U {7® = 7} is still finitary satisfiable.

Let [fix z.e]y = (7,C, X). Suppose e contains no oc-
currence of fix. Then, applying the unification test in
Lemma 6.1 for each string of length 1 (i.e., single charac-
ters) is more conservative than Mycroft’s unification test.
That is, if C U {7 = 7} is satisfiable for each a in the al-
phabet {a | 2 € fvars(e)}, then £ix x.e passes Mycroft’s
unification test. However, Lemma 4.2 and Lemma 6.1 im-
ply that these tests do not reject any typable term of the form
fix x.e. Recall ey from Section 5 is of the form fix x.e
such that e contains no occurrence of £ix. Because the
proof of Theorem 5.6 shows that even typability of ey terms
is undecidable for I, + REC-INT, it follows that Mycroft’s
unification test is insufficient for designing an incomplete
but terminating typability algorithm for I, + REC-INT.

Furthermore, it can be shown from the proof of undecid-
ability of the Milner-Mycroft type system [7, 3] that a term
of the form ey is typable in the Milner-Mycroft type system
iff Y is bounded. Therefore, somewhat surprisingly, ey is
typable in the Milner-Mycroft type system iff it is typable in
I, + REC-INT. Thus, Mycroft’s unification test is insuffi-
cient for an incomplete but terminating typability algorithm
even for the Milner-Mycroft type system.

In fact, Lemma 6.1 implies an even stronger result. An
algorithm that tests 7 = 7° for all strings s (not just single
characters), regardless of whether such an algorithm exists
or not, would be insufficient. More precisely,

a iff<a
aup -
0 otherwise
al(r—1) = 1771
(r—mUa = 77

(m—=m)U(r{—m) = (mUT)—=(UT)

Figure 9. S; LI Ss.

Corollary 6.2 Let

A = {fixuze||[fixz.e]y=(r,C, X)
NVs € {a |z € fvars(e)}*.

Fp CU {7 =7})

The following problem is undecidable. Let e be a closed
term such that there exists €' € A such that €' is e with each
occurrence of a fix-bound variable annotated with a dis-
tinct number. Decide whether e is typable in Io+REC-INT.

Corollary 6.2 follows from the fact that untypability of I +
REC-INT is not recursively enumerable (since typability is
recursively enumerable). An analogous result holds for the
Milner-Mycroft type system.

We now prove Lemma 6.1. Let < be some total ordering
over the type variables. Figure 9 defines the operation LI
over the types. Note that L! is associative and commutative.
We extend U to constraint assignments as follows:

S1USy = {a— S1(a)USsy (@) | a € dom(S1)Ndom(S2)}

Clearly, if S; and S5 are both finite range then so is Sy L
So. Furthermore, if .S7 and So both satisfy C, then so does
S1 U Sg, i.e.,

Lemma 6.3 Suppose S1 = C and Sy |= C. Then S; U
Sy E C.

The following lemma says that we may “shift up” solutions

for a constraint set of the form |J, .y, C*.

Lemma 6.4 Let C be a set of constraints and X2 be an al-
phabet. Let C" = |, y,. C°. Suppose S |= C'. Then for
any s € ¥, {a— S(a®)} E C.

We are now ready to prove Lemma 6.1, restated here.

Lemma 6.1 Suppose [fixx.e]y = (7,C,X) and C is
finitary satisfiable. Then for any s € {a | z® € fvars(e)}*,
C U {r® = 7} is still finitary satisfiable.

Proof: By inspection of the constraint generation rules
(Figure 5), it must be the case that 7 is a base type variable,
say T = . Let S =5 C. We use the notation ¢ to mean
a string ¢ concatenated ¢ times. Since ran(.S) is finite, there

n

must be m and n such that m < n and S(a*™) = S(a*").

Foreachi > 0, let S; = {8+ S(B°") | B € dom(S)}.
By Lemma 6.4, it must be the case that S; = C for each S;.
Furthermore, since ran(S;) C ran(S), each S; is a finite
range solution. Note that for each ¢ > 0 and a type variable
B, Si(B) = Si_1(B%). Also, S(a®™) = S(a*") implies
that S,, () = Sy, () = S,,—1(®). Therefore,

(Umgig(n—n Si)(e)
=Sn(@)USnt1(a)U...US,—1(a)
= Sp—1(a®) U S, (a®)U...USy_a(a®)
= (Umgig(nﬂ) Si)(a”)

But by Lemma 6.3, (Umgig(nq) S;) E C. Since
each S; is finite range, so is Umgig(nq) S;. Therefore,

(leﬁiﬁ(nfl) Sz) |:ﬁn cu {a = as} O

7 Undecidability of REC-REACH

The constraint generation in Section 4 motivates the fol-
lowing program analysis problem. We extend the language
with two constants, red and blue, and extend the con-
straint generation as follows:

[red]r = (red, (), D)
[olue]r = (blue,(,0)

Here, red and blue are base type variables distinct from all
other type variables. The problem is to check that there ex-
ists no path of the form red®* ~5 blue®*. Let us call this
program analysis REC-REACH. This kind of reachabil-
ity query is commonly seen in CFL-based program analy-
ses [14] with applications in control flow analysis, points-
to analysis, and other safety analyses. REC-REACH is a
straightforward polymorphic recursive extension of a sim-
ple monomorphic unification-based flow analysis.

We use the framework developed in this paper to prove
that REC-REACH is undecidable. In fact, it is not even
recursively enumerable, which implies that there exists no
type system equivalent to REC-REACH (in the sense of
[11, 12]). While REC-REACH looks similar to the prob-
lem studied by Reps [15], our CFL graphs are more con-
strained, and we do not know whether his proof approach
can be adopted.

Let Y = (Q, A, T) be an ITM such that red, blue € Q.
We build ey and obtain Cy as in Section 5. Obviously, both
Lemma 5.2 and Lemma 5.3 still hold. Furthermore, it is
apparent from its proof that Lemma 5.2 can be strengthened
to the following:

Lemma 7.1 Let p be a path from o' to [(3°2 in
graph(Cy) such that sm(p) is a positive string. Then
(war(sm(p)), @, m, 510%) and (w, B, m — |sm(p)], 520°)
are reachable from each other in Yg without moving the
head below the position m — |sm(p)|.

Combining Lemma 7.1 and Lemma 5.3, we have the fol-
lowing:

Lemma 7.2 The following are equivalent:

(1) There exists s1 and so such that there exists a path
red®* ~5 blue®® in graph(Cy).

(2) There exists wy and wy such that (w, red, m,w) and
(w, blue, m,ws) are reachable from each other in Yg
without moving the head below the position m.

(3) There exists wi, wg, and an ID W such that
(w,red,m,w1) reaches W in Y without moving
the head below the position m and (w,blue, m,ws)
reaches W in'Y without moving the head below the
position m.

Problem (3) can be proved to be undecidable via the reduc-
tion from the halting problem. Therefore, problem (1) is
undecidable. It is easy to see that problem (1) is recursively
enumerable. Since REC-REACH is the dual of problem
(1), it follows that

Theorem 7.3 REC-REACH is not recursively enumer-
able.

8 Conclusions

This paper shows that typability of I + REC-INT is un-
decidable by means of characterizing typability as a CFL
graph problem and reducing from the boundedness prob-
lem of Turing machines. We found reducing to an infinite
graph problem leads to a more understandable proof than
reasoning directly on infinite type constraints. We suspect
that a similar proof can be used to show that the problem
remains undecidable for extensions to any higher rank (e.g.,
the system investigated in [2]).

As a corollary of the undecidability result, we showed
that the unification test is insufficient to build an incomplete
but terminating typability algorithm for I + REC-INT or
the Milner-Mycroft type system. We also proved undecid-
ability of the related program analysis REC-REACH by
using the same CFL graph framework.

One open question is whether the following problem is
decidable. Given a closed e, is there S such that S = C
where [e]p = (7,C, X) for some 7 and X? Note that if
we strengthened the requirement to S =4, C then the prob-
lem becomes the typability problem for I + REC-INT and
therefore becomes undecidable. There is a larger open ques-
tion: where the boundary between decidability and undecid-
ability is when it comes to polymorphic recursion (and how
to state this question in a formal way).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

F. Damiani. Rank-2 intersection and polymorphic re-
cursion. In Typed Lambda Calculi and Applications:
7th International Conference (TLCA 2005), volume
3461 of LNCS, pages 146-161. Springer, Apr. 2005.

J. J. Hallett and A. J. Kfoury. Programming examples
needing polymorphic recursion. In In Proceedings 3rd
International Workshop Intersection Types and Re-
lated Systems (ITRS 2004), pages 57-102, 2004.

F. Henglein. Type inference with polymorphic recur-
sion. ACM Transactions on Programming Languages
and Systems, 15(2):253-289, Apr. 1993.

T. Jim. Rank 2 type systems and recursive defi-
nitions. Technical Report MIT/LCS/TM-531, Cam-
bridge, MA, USA, 1995.

T. Jim. What are principal typings and what are they
good for? In Proceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 42-53, St. Petersburg
Beach, Florida, Jan. 1996.

A. J. Kfoury, H. G. Mairson, F. A. Turbak, and J. B.
Wells. Relating typability and expressiveness in finite-
rank intersection type systems (extended abstract). In
Proceedings of the fourth ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages
90-101, Paris, France, Sept. 1999.

A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecid-
ability of the semi-unification problem. Information
and Computation, 102(1):83-101, 1993.

A. J. Kfoury and J. B. Wells. Principality and type
inference for intersection types using expansion vari-
ables. Theoretical Computer Science, 311:1-70, 2004.

D. Leivant. Polymorphic type inference. In Proceed-
ings of the 10th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 88-98, Austin, Texas, 1983.

A. Mycroft. Polymorphic type schemes and recursive
definitions. In Proceedings of the 6th International
Conference on Programming, number 167 in LNCS,
1984.

J. Palsberg and P. O’Keefe. A type system equivalent
to flow analysis. In Proceedings of the 22nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 367-378, San Fran-
cisco, California, Jan. 1995.

10

[12]

[13]

[14]

[15]

[16]

J. Palsberg and C. Pavlopoulou. From polyvari-
ant flow information to intersection and union types.
In Proceedings of the 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 197-208, San Diego, California,
Jan. 1998.

J. Rehof and M. Fihndrich. Type-based flow analy-
sis: From polymorphic subtyping to cfl-reachability.
In Proceedings of the 28th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 54-66, London, United Kingdom,
Jan. 2001.

T. Reps. Program analysis via graph reachability. In-
formation and Software Technology, 40(11/12):701—
726, November/December 1998.

T. Reps. Undecidability of context-sensitive data-
dependence analysis. ACM Transactions on Program-
ming Languages and Systems, 22(1):162-186, 2000.

T. Terauchi and A. Aiken. On typability for rank-2
intersection types with polymorphic recursion. Tech-
nical Report UCB/EECS-2006-66, University of Cali-
fornia, Berkeley, May 2006.

J. B. Wells. The essence of principal typings. In
Proc. 29th Int’l Coll. Automata, Languages, and Pro-
gramming, volume 2380 of LNCS, pages 913-925.
Springer-Verlag, 2002.

