
Stochastic Games with Branching-Time Winning Objectives
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Abstract

We consider stochastic turn-based games where the winning
objectives are given by formulae of the branching-time logic
PCTL. These games are generally not determined and win-
ning strategies may require memory and/or randomization.
Our main results concern history-dependent strategies. In
particular, we show that the problem whether there exists
a history-dependent winning strategy in1 1

2 -player games
is highly undecidable, even for objectives formulated in the
L(F=5/8, F=1, F>0,G=1) fragment of PCTL. On the other
hand, we show that the problem becomes decidable (and in
fact EXPTIME-complete) for theL(F=1, F>0,G=1) frag-
ment of PCTL, where winning strategies require only finite
memory. This result is tight in the sense that winning strate-
gies forL(F=1, F>0,G=1,G>0) objectives may already re-
quire infinite memory.

1. Introduction

In this paper we consider stochastic turn-based games
where the winning objectives are given by formu-
lae of the branching-time logic PCTL. Formally, a
2 1

2 -player gameG is a finite directed graph where the ver-
tices are partitioned into three subsetsV�, V♦, V©. A play
is initiated by putting a token on some vertex. The to-
ken is then moved from vertex to vertex by two players,�

and♦, who are responsible for selecting outgoing transi-
tions in the vertices ofV� andV♦, respectively. In the ver-
tices ofV©, outgoing transitions are chosen randomly ac-
cording to a fixed probability distribution. Astrategyspeci-
fies how a player should play. In general, a strategy may or
may not depend on the history of a play (we say that a strat-
egy is history-dependent (H)or memoryless (M)), and
the transitions may be chosen deterministically or ran-
domly (deterministic (D)andrandomized (R)strategies). In
the case of randomized strategies, a player chooses a prob-
ability distribution on the set of outgoing transitions. Note

that deterministic strategies can be seen as restricted ran-
domized strategies, where one of the outgoing transitions
has probability1. Each pair of strategies(σ, π) for play-
ers � and ♦ determines a unique Markov chainG(σ, π)
where the states are finite paths inG, andwu → wuu′

with probability x iff (u, u′) is a transition in the game
andx is the probability chosen by player� or ♦ (when
u ∈ V� or u ∈ V♦, respectively), or the fixed probabil-
ity of the transition(u, u′) whenu ∈ V©. A winning ob-
jectivefor player� is some property of Markov chains that
is to be achieved. Awinning strategyfor player� is a strat-
egy σ such that for every strategyπ of player ♦ the
Markov chain G(σ, π) has the desired property. Usu-
ally, the aim of player♦ is to falsify this property, which
means that his winning objective is dual. A winning strat-
egy for player♦ is a strategyπ such thatG(σ, π) doesnot
have the property for any strategyσ of player�. A game is
determinedif one of the two players has a winning strat-
egy in every vertex.1 1

2 -player games are “restricted”
2 1

2 -player games whereV♦ = ∅. All of the above intro-
duced notions (except for determinacy) are applicable also
to 1 1

2 -player games.

Infinite games have been studied in various fields
of mathematics and computer science (recently written
overviews are, e.g., [15, 5]). For example, model-checking
problems for certain temporal logics (such as the modal
µ-calculus) can be naturally reformulated as the ques-
tions to determine the winner in parity games, and a
lot of research effort has been invested into this prob-
lem. Our work is mainly motivated by applications of
games in system design, where systems are modeled as
games, player� corresponds to a “controller” which de-
termines the system behaviour in a subset of controllable
states, player♦ models the environment, and the win-
ning objectives for player� correspond to the desired prop-
erty of the system. The task is to find a controller (a strategy
σ for player�) such that the desired property holds no mat-
ter what the environment does (i.e., the strategyσ is win-
ning). As for stochastic games, the majority of existing



results concern games withlinear time winning objec-
tives which are specified by some property of runs in
Markov chains. Examples include quantitative reachabil-
ity objectives (the probability of all runs that hit a “good”
state is at least̺), qualitative Büchi objectives (the prob-
ability of all runs along which a “good” vertex appears
infinitely often is 1), qualitative/quantitative parity objec-
tives [6, 7], Rabin and Street objectives [4], etc. In this
paper we studybranching-timeobjectives that are formal-
ized as formulae of the branching-time probabilistic logic
PCTL.

Previous and related work.In [1], it is shown that winning
strategies for PCTL objectives may require memory and/or
randomization in general. Hence, the MD, MR, HD, and HR
strategies (see above) need to be considered separately. Itis
also proven that the problem whether there exists a winning
MD strategy in a given1 1

2 -player game for a given PCTL
objective isNP-complete. MR strategies were considered in
[13], where it is shown that the existence of a winning MR
strategy in a given2 1

2 -player game for a given PCTL objec-
tive is inEXPTIME . The construction also yieldsPSPACE
upper bound for1 1

2 -player games.

To prevent misunderstanding, we should say that the
logic PCTL can also be interpreted directly on games (or
Markov decision processes). The decidability of the model-
checking problem for stochastic games and PCTL was es-
tablished in [9] as a simple consequence of the results about
quantitativeω-regular games. However, this is a different
problem which is not directly related to the subject of this
paper (as we shall, the results about stochastic games with
branching-time winning objectives are quite different from
the results about model-checking).

Main results. We start by observing that stochastic games
with branching-time objectives are not determined, even if
the objectives are formulae of theL(F=1, F>0) fragment of
PCTL (in general,L(Y1, · · · , Yn) denotes the fragment of
PCTL containing the connectivesY1, · · · , Yn, conjunction,
and disjunction (negation can be applied only to atomic
propositions)). As a warm-up, we present some simple re-
sults about memoryless strategies in Section 3.1. We show
that the problem whether player� has a winning MD strat-
egy in a given2 1

2 -player game for a given PCTL objec-
tive is Σ2 = NPNP complete. TheΣ2 lower bound holds
even for theL(F=1, F>0) fragment of PCTL. Since the
existence of a winning MD strategy for player� in 1 1

2 -
player games with PCTL objectives isNP-complete [1], we
yield a full complexity classification for MD strategies. The
lower complexity bounds carry over to MR strategies and
hold even forqualitative PCTL objectives for which we
give the matching upper bounds—we show that the exis-
tence of a winning MR strategy for player� in 1 1

2 -player
(or 2 1

2 -player) games withqualitativePCTL objectives is

NP-complete (orΣ2 = NPNP complete, resp.). Let us note
that randomized strategies are strictly more powerful than
deterministic ones even for qualitative objectives (a sim-
ple example is given in Section 3.1). The existence of a
winning MR strategy for player� in 1 1

2 -player and2 1
2 -

player games with general PCTL objectives is known to
be in PSPACE andEXPTIME , respectively [13]. We did
not manage to lift theNP and Σ2 lower bounds, and we
also failed to improve the mentioned upper bounds. On
the other hand, there is some indication that lowering the
bounds belowPSPACEwould be quite difficult. We use the
same argument as Etessami & Yannakakis in [11], where
it is shown that the SQUARE-ROOT-SUM problem is effi-
ciently reducible to the quantitative reachability problem for
one-exit recursive Markov chains. An instance of SQUARE-
ROOT-SUM is a tuple(a1, · · · , an, b) of integers. The ques-
tion is whether

∑n
i=1

√
ai ≤ b. This problem is known to

be inPSPACE, but its exact complexity is a long-standing
open problem in computational geometry. Hence, an effi-
cient reduction of SQUARE-ROOT-SUM to another problem
P ∈ PSPACE can be seen as an indication that the com-
plexity of P is hard to improve. We show that SQUARE-
ROOT-SUM is efficiently reducible to the problem whether
player� has a winning MR strategy in1 1

2 -player games
with PCTL objectives. Let us note that the technique used
in the proof is different from the one of [11].

The main results of this paper concern history-dependent
strategies. First, we answer the open question formulated
in [1] by showing that the existence of a winning HD (or
HR) strategy in1 1

2 -player games ishighly undecidableeven

for objectives of theL(F=5/8, F=1, F>0,G=1) fragment of
PCTL. More precisely, we show that the above problem is
complete for theΣ1

1 level of the analytical hierarchy. This
is already a deep result relying on specific tricks which
were developed to encode and simulate a computation of
a given nondeterministic Minsky machine. A slight mod-
ification of the proof reveals that the existence of a win-
ning HD (or HR) strategy withfinite memoryin 1 1

2 -player
games withL(F=5/8, F=1, F>0,G=1) objectives is also un-
decidable (and complete for theΣ1 level of the arithmeti-
cal hierarchy). The role of the quantitative F=5/8 opera-
tor is very important in these undecidability results. In gen-
eral, qualitative questions tend to be easier than quantita-
tive ones (this also holds for PCTL and certain classes of
infinite-state Markov chains [10, 3, 2]; note that the plays
determined by history-dependent strategies are infinite-state
Markov chains). Hence, we turn out attention toqualitative
PCTL objectives. We start by examining the fragments with
qualitative forms of reachability and safety connectives,i.e.,
F⋊⋉̺ and G⋊⋉̺, where⋊⋉ ∈ {=, >,<} and̺ ∈ {0, 1}. Even
in this simplified setting, the results are not uniform and
different combinations of connectives lead to quite differ-
ent results. First, we show that the role of F=5/8 operator
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in the aforementioned undecidability proof isprovablycru-
cial in the sense that the existence of a winning HD strat-
egy in1 1

2 -player games withL(F=1, F>0,G=1) objectives
is EXPTIME complete. Let us note that

• the EXPTIME upper bound is proven in two phases.
First, we show that the existence of a winning HD strat-
egy in 1 1

2 -player games withL(F=1, F>0,G=1) objec-
tives is effectively reducible to the existence of a win-
ning HD strategy in1 1

2 -player games withmixed linear-
timeobjectives, which are essentially conjunctions of one
qualitative-B̈uchi and onesure-B̈uchi objective. This re-
duction is exponential. Then, we show that the existence
of a winning HD strategy in1 1

2 -player games with mixed
linear-time objectives is inP. Note that if we had a con-
junction of two qualitative-Büchi or two sure-Büchi ob-
jectives, we could simply apply known results. To the best
of our knowledge, the games where the winning objec-
tives are “mixtures” of stochastic and non-stochastic re-
quirements have not yet been explicitly considered (per-
haps due to the lack of motivation). The solution we pro-
vide is not trivial.

• The EXPTIME lower bound holds even for
L(F=1,G=1) objectives and for both HD and HR
strategies.

Our construction also reveals that a winning strat-
egy in1 1

2 -player games withL(F=1, F>0,G=1) objectives
needs only a finite memory whose size is exponen-
tial in the size of a given objective. This result doesnot
hold for L(F=1, F>0,G=1,G>0) objectives—we show
that evenL(F>0,G>0) objectives require infinite mem-
ory in general. In this sense, the previous result is tight.

Many interesting questions remain open. For example, it
is not clear whether the existence of a winning strategy in
1 1

2 -player games with qualitative PCTL objectives is decid-
able or not (all we know is that these strategies may require
infinite memory). Another question is whether some of our
positive results can be extended to2 1

2 -player games and/or
to concurrentstochastic games with branching-time win-
ning objectives. Our knowledge about randomized strate-
gies is also quite limited, we have not addressed the issue
of fairness, and so on. These problems are left for future
research. Due to space constrains, some proofs had to be
shifted into Appendix A.

2. Basic Definitions

We start by recalling basic notions of probability theory. Let
A be a finite set. Aprobability distributiononA is a func-
tion f : A → [0, 1] such that

∑
a∈A f(a) = 1. A distribu-

tion f is rational if f(a) ∈ Q for everya ∈ A, andDirac if
f(a) = 1 for somea ∈ A. The set of all distributions onA
is denotedD(A).

A σ-field over a setX is a setF ⊆ 2X that includes
X and is closed under complement and countable union.
A measurable spaceis a pair (X,F) whereX is a set
called sample spaceandF is a σ-field overX . A prob-
ability measureover measurable space(X,F) is a func-
tion P : F → R≥0 such that, for each countable collection
{Xi}i∈I of pairwise disjoint elements ofF ,P(

⋃
i∈I Xi) =∑

i∈I P(Xi), and moreoverP(X) = 1. A probabilistic
spaceis a triple(X,F ,P) where(X,F) is a measurable
space andP is a probability measure over(X,F).

Markov chains. A Markov chain is a triple
T = (S,→,Prob) whereS is a finite or countably infi-
nite set ofstates, → ⊆ S × S is a transition relation, and
Prob is a function which to each transitions → t of T as-
signs its probabilityProb(s → t) ∈ (0, 1] so that for every
s ∈ S we have

∑
s→t Prob(s→ t) = 1.

In the rest of this paper we also writes
x→ t instead of

Prob(s → t) = x. A path in T is a finite or infinite se-
quencew = s0, s1, · · · of states such thatsi → si+1 for ev-
ery i. We also usew(i) to denote the statesi of w (by writ-
ing w(i) = s we implicitly impose the condition that the
length ofw is at leasti+ 1). The prefixs0, s1, . . . , si of w
is denoted bywi. A run is an infinite path. The sets of all fi-
nite paths and all runs ofT are denotedFPath andRun, re-
spectively. Similarly, the sets of all finite paths and runs that
start in a givens ∈ S are denotedFPath(s) andRun(s),
respectively.

Eachw ∈ FPath determines abasic cylinderRun(w)
which consists of all runs that start withw. To everys ∈ S
we associate the probabilistic space(Run(s),F ,P) where
F is theσ-field generated by all basic cylindersRun(w)
wherew starts withs, andP : F → [0, 1] is the unique
probability function such thatP(Run(w)) = Πm−1

i=0 xi

wherew = s0, · · · , sm andsi
xi→ si+1 for every0 ≤ i < m

(if m = 0, we putP(Run(w)) = 1).

The logic PCTL. The logic PCTL, the probabilistic exten-
sion of CTL, was introduced by Hansson & Jonsson in [12].
Let Ap = {p, q, . . . } be a countably infinite set ofatomic
propositions. The syntax of PCTL formulae is given by the
following abstract syntax equations:

Φ ::= p | ¬p | Φ1∨Φ2 | Φ1∧Φ2 | X⋊⋉̺ Φ | Φ1U⋊⋉̺ Φ2

Herep ∈ Ap, ̺ ∈ [0, 1], and⋊⋉ ∈ {≤, <,≥, >,=, 6=}.
Let T = (S,→,Prob) be a Markov chain, and letν :

Ap → 2S be avaluation. The semantics of PCTL is defined
below.

s |=ν p iff s ∈ ν(p)
s |=ν ¬p iff s 6∈ ν(p)
s |=ν Φ1 ∨ Φ2 iff s |=ν Φ1 or s |=ν Φ2

s |=ν Φ1 ∧ Φ2 iff s |=ν Φ1 ands |=ν Φ2

s |=ν X⋊⋉̺Φ iff P({w ∈ Run(s) | w(1) |=ν Φ}) ⋊⋉ ̺

s |=ν Φ1U⋊⋉̺ Φ2 iff P({w ∈ Run(s) | ∃j ≥ 0 : w(j) |=ν Φ2

andw(i) |=ν Φ1 for all 0 ≤ i < j}) ⋊⋉ ̺
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Note that in our version of PCTL syntax, the negation can
be applied only to atomic propositions. This is no restriction
because the syntax is closed under dual connectives and re-
lations: For every⋊⋉ ∈ {≤, <,≥, >,=, 6=}, let ⋊⋉ be the
complement of⋊⋉ (for example, if⋊⋉ is ≤, then⋊⋉ is >).
The negation ofX⋊⋉̺Φ andΦ1U⋊⋉̺ Φ2 then corresponds to
X⋊⋉̺Φ andΦ1U⋊⋉̺ Φ2, respectively. The F⋊⋉̺ and G⋊⋉̺ op-
erators are defined in the standard way: F⋊⋉̺Φ stands for
ttU⋊⋉̺ Φ, and G⋊⋉̺Φ stands forttUb⋊⋉1−̺ ¬Φ, where⋊̂⋉ is
<,>, ≤, ≥, =, or 6=, depending on whether⋊⋉ is>, <, ≥,
≤, =, or 6=, respectively.

Various natural fragments of PCTL can be obtained by
restricting the PCTL syntax to certain modal connectives
and/or certain operator/number combinations. For example,
the qualitative fragment of PCTL is obtained by restrict-
ing the allowed operator/number combinations to ‘⋊⋉ 0’ and
‘⋊⋉ 1’. Hence,aU<1b ∨ F>0c is a qualitative PCTL for-
mula. In this paper we also consider fragments with unary
reachability and safety connectives. Formally, for each tu-
pleY1, · · · , Yn, where eachYi is of the form X⋊⋉̺, F⋊⋉̺, or
G⋊⋉̺, we define theL(Y1, · · · , Yn) fragment of PCTL:

Φ ::= p | ¬p | Φ1∨Φ2 | Φ1∧Φ2 | Y1Φ | · · · | YnΦ

For example, F>0(b ∨ G≥0.43(¬c ∧ F<0.5d)) is a formula
of L(F>0,G≥0.43, F<0.5). Sometimes we also use formu-
lae of the formp⇒ Φ which stand for¬p ∨ Φ.

Games, strategies, and objectives.A 2 1
2 -player gameis

a tupleG = (V,E, (V�, V♦, V©),Prob) whereV is a fi-
nite set ofvertices, E ⊆ V × V is the set oftransitions,
(V�, V♦, V©) is a partition ofV , andProb is aprobability
assignmentwhich to eachv ∈ V© assigns a rational proba-
bility distribution on the set of its outgoing transitions.For
technical convenience, we assume that each vertex has at
least one outgoing transition. The game is played by two
players,� and ♦, who move a single token from vertex
to vertex along the transitions ofE. Player� selects the
moves in theV� vertices, and player♦ selects the moves in
theV♦ vertices. Transitions in theV© vertices are chosen
randomly according to the corresponding probability distri-
bution. Game graphs are drawn in the standard way; ver-
tices ofV�, V♦, andV© are depicted as squares, diamonds,
and circles, respectively. Probability distributions areusu-
ally uniform, which is indicated by arcs connecting the out-
going transitions ofV© vertices. Astrategyfor player� is
a functionσ which to eachwv ∈ V ∗V� assigns a probabil-
ity distribution on the set of outgoing transitions ofv. We
say that a strategyσ is memoryless (M)if σ(wv) depends
just on the last vertexv, and deterministic (D)if σ(wv)
is a Dirac distribution for eachwv ∈ V ∗V�. Consistently
with [1, 13], strategies that are not necessarily memoryless
are calledhistory-dependent (H), and strategies that are not
necessarily deterministic are calledrandomized (R). A spe-
cial type of history-dependent strategies are strategies with

finite memory, which are formally defined as pairs(A, f)
whereA = (Q, V, δ, q0) is a deterministic finite-state au-
tomaton over the alphabetV of vertices andf is a func-
tion which to each pair(q, v) ∈ Q × V� assigns a prob-
ability distribution on the set of outgoing transitions ofv.
The pair(A, f) determines a unique strategyσ(A, f) such
that σ(A, f)(wv) = f(q, v), whereq = δ(q0, wv). Intu-
itively, the states ofA represent a finite memory of size|Q|
where selected properties of the history of a play are stored.
Hence, we can define the following four classes of strate-
gies: MD, MR, HD, and HR, where MD⊆ HD ⊆ HR
and MD⊆ MR ⊆ HR, but MR and HD are incomparable.
Strategies for player♦ are defined analogously. Each pair
(σ, π) of strategies for player� and♦ determines a unique
playof the gameG, which is a Markov chainG(σ, π) where
V + is the set of states, andwu

x→ wuu′ iff (u, u′) ∈ E and
one of the following conditions holds:

• u ∈ V© andProb(u, u′) = x;
• u ∈ V� andσ(wu) assignsx to (u, u′);
• u ∈ V♦ andπ(wu) assignsx to (u, u′).

An objectiveis a pair(ν, ϕ), whereν : Ap → 2V is a
valuation andϕ a PCTL formula. Note that each valuation
ν : Ap → 2V determines a valuationν : Ap → 2V +

de-
fined by ν(a) = {wu ∈ V + | u ∈ ν(a)}. For a given
objective(ν, ϕ), each state ofG(σ, π) either does or does
not satisfyϕ. A (ν, ϕ)-winning strategyfor player� in a
vertexv ∈ V is a strategyσ such that for every strategy
π of player♦ we have thatv |=ν ϕ. Similarly, a (ν, ϕ)-
winning strategy for player♦ in a vertexv ∈ V is a strat-
egyπ such that for every strategyσ of player� we have
thatv 6|=ν ϕ. The gameG is (ν, ϕ)-determinedif there is
a (ν, ϕ)-winning strategy for one of the two players in ev-
ery vertexv of G.

1 1
2 -player gamesare 2 1

2 -player games where the set
V♦ is empty. Formally, a1 1

2 -player game is a tupleG =
(V,E, (V�, V©),Prob) where all elements have the ex-
pected meaning.

3. The Results

We start by observing that stochastic games with branching-
time objectives are not determined, even if these objectives
are taken from theL(F=1, F>0) fragment of PCTL. Con-
sider the following game:

s

b c da

Let ν be a valuation which defines the validity of the propo-
sitions a, b, c, d as indicated in the above figure, and let
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ϕ ≡ F=1(a ∨ c) ∨ F=1(b ∨ d) ∨
(
F>0c ∧ F>0d

)
. Now

it is easy to check that none of the two players has a(ν, ϕ)-
winning strategy in the vertexs, regardless whether we con-
sider MD, MR, HD, or HR strategies.

3.1. Memoryless Strategies

In [1], it is shown that the problem whether there exists
a winning MD strategy in a given1 1

2 -player game for a
given PCTL objective isNP-complete. In fact, theNP lower
bound holds even for theL(F=1) fragment of PCTL. The
following theorem gives a complexity classification for2 1

2 -
player games.

Theorem 3.1. The existence of a winning MD strategy
for player � in 2 1

2 -player games with PCTL objectives is
Σ2 = NPNP complete. TheΣ2 lower bound holds even for
L(F=1, F>0) objectives and for both MD and MR strate-
gies.

Proof. A Σ2 formula is a formula of the form

∃x1, · · · , xn ∀y1, · · · , ymB

wheren,m ∈ N andB is a∧,∨-expression over the (pos-
sibly negated) variablesx1, · · · , xn, y1, · · · , ym. The prob-
lem whether a givenΣ2 formula is valid isΣ2-complete
[14].

Let ψ ≡ ∃x1, · · · , xn ∀y1, · · · , ymB. We construct a
2 1

2 -player gameG(ψ), a valuationν, and a formulaϕ ∈
L(F=1, F>0) such that player� has a(ν, ϕ)-winning MD
(or MR) strategy in a distinguished vertexv of G(ψ) iff ψ
is valid. Let us fix two setP = {pi, p̂i | 1 ≤ i ≤ n}
andQ = {qj, q̂j | 1 ≤ j ≤ m} of fresh atomic proposi-
tions, and letPi = Pr{pi}, P̂i = Pr{p̂i},Qj = P∪{qj},
Q̂j = P∪{q̂j} for all 1 ≤ i ≤ n and1 ≤ j ≤ m. The struc-
ture ofG(ψ) together with the valuationν are shown in the
following figure:

v

Q1
bQmbQ1 Qm

bPnPn
bP1P1

Let

ϕ ≡
( m∨

j=1

(F>0qj ∧F>0q̂j)

)
∨

(
B̂∧

n∧

i=1

(F=1pi∨F=1p̂i)

)

where B̂ is the formula obtained fromB by substitut-
ing each occurrence ofxi, ¬xi, yj , and¬yj with F=1pi,
F=1p̂i, F>0qj , and F>0q̂j , respectively. Intuitively, player�
chooses an assignment for the variablesx1, · · · , xn (xi is

set to true or false by selecting the transition to a vertex sat-
isfying pi or p̂i, resp.). Note that player� cannot use ran-
domized moves because then the formula F=1pi ∨ F=1p̂i

would not hold. Similarly, player♦ chooses an assign-
ment for y1, · · · , ym. Observe that player♦ cannot use
randomized moves either because this would make some
F>0qj ∧ F>0q̂j true. Now it is easy to check thatψ is valid
iff player � has a(ν, ϕ)-winning MD (or MR) strategy in
the vertexv. This establishes theΣ2 lower bound.

TheΣ2 upper bound holds for all PCTL objectives. First,
let us note that the model-checking problem for PCTL for-
mulae and Markov chains is inP [12]. Hence, it suffices to
“guess” a winning strategyσ for player�, and then ask the
NP oracle whether there is a strategyπ of player♦ such
thatG(σ, π) doesnot satisfy a given objective. The answer
of the oracle is then simply negated.

The complexity classification for MD strategies is thus es-
tablished. As for MR strategies, theNP and Σ2 lower
bounds still hold. However, we managed to provide the
matching upper bounds only for the subclass ofqualita-
tive PCTL objectives. Note that randomized strategies are
more powerful than deterministic ones even for qualita-
tive objectives—consider the formula X>0pu ∧ X>0pv and
a simple gameG with three verticest, u, v ∈ V� where
t→ u, t → v, u → u, andv → v. The propositionspu and
pv hold only in u andv, respectively. Obviously, there is
no winning(ν, ϕ)-winning MD strategy, but there are many
(ν, ϕ)-winning MR strategies.

Theorem 3.2. The existence of a winning MR strategy for
player � in 1 1

2 -player (or 2 1
2 -player) games withqualita-

tive PCTL objectives isNP-complete (orΣ2 = NPNP com-
plete, resp.).

Proof. A straightforward induction on the structure of a
qualitative PCTL formulaϕ shows that the (in)validity
of ϕ does not depend on the exact values of transition
probabilities. It only matters which of the transition have
zero/positive probability. Hence, in the case of1 1

2 -player
games, it suffices to “guess” the subset of outgoing transi-
tions in each vertex ofV� which should have positive prob-
ability, and then verify that the guess was correct by a (poly-
nomial time) PCTL model-checking algorithm [12]. The
Σ2 upper bound for2 1

2 -player games is established anal-
ogously (see the proof of Theorem 3.1).

The existence of a winning MR strategy for player� in
1 1

2 -player and2 1
2 -player games with general PCTL objec-

tives is known to be inPSPACE andEXPTIME , respec-
tively [13]. We did not manage to lift theNP andΣ2 lower
bounds, and we also failed to improve the mentioned up-
per bounds. At least, we provide some evidence that lower-
ing these bounds belowPSPACEis difficult (see the discus-
sion in Section 1). As a byproduct of this construction, we
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obtain an example of a1 1
2 -player game (whereV© = ∅)

and an objective(ν, ϕ) whereϕ ∈ L(X>0,U=1/2) such
that the only(ν, ϕ)-winning MR strategy assigns irrational
probabilities to transitions.

Theorem 3.3. The SQUARE-ROOT-SUM problem is effi-
ciently reducible to the problem whether player� has a
winning MR strategy in1 1

2 -player games with PCTL objec-
tives.

3.2. History-Dependent Strategies

The results presented in this section constitute the main con-
tribution of our paper. We start with the negative ones.

Theorem 3.4.The existence of a winning HD (or HR) strat-
egy in1 1

2 games withL(F=5/8, F=1, F>0,G=1) objectives
is undecidable (andΣ1

1-hard).

Proof. The result is obtained by reduction of the prob-
lem whether a given nondeterministic Minsky machine with
two counters initialized to zero has an infinite computa-
tion such that the initial instruction is executed infinitely
often (this problem is known to beΣ1

1-complete). For-
mally, a nondeterministic Minsky machine with two coun-
tersc1, c2 is a finite sequenceM of numbered instructions
1:ins1, · · · , n:insn, where eachinsi is of one of the fol-
lowing forms (wherej ∈ {1, 2}):

• cj := cj+1; goto k
• if cj=0 then goto k else cj := cj−1; goto m
• goto {k or m}
Here the indexesk,m range over{1, · · · , n}. We can safely
assume that

• insi 6= insj for i 6= j (in the rest of this proof we do not
strictly distinguish between instructions and their corre-
sponding indexes);

• insi does not contain thegoto i statement;
• ins1 ≡ c1 := c1+1; goto 2.

A configurationof M is a triple [insi, v1, v2], whereinsi

is the instruction to be executed, andv1, v2 ∈ N0 are the
current values ofc1, c2. A computational step֒→ between
configurations is defined in the expected way. Arecurrent
computationof M is an infinite computation initiated in
[ins1, 0, 0] along whichins1 is executed infinitely often. As
we already mentioned, the problem whether a givenM has
a recurrent computation isΣ1

1-complete.
Let M ≡ 1:ins1, · · · , n:insn be a nondetermin-

istic Minsky machine. We construct a1 1
2 game

G(M) = (V,E, (V�, V©),Prob) and a formula
ϕ ∈ L(F=5/8, F>0, F=1,G=1) such that player� has
a winning HD or HR strategy in a vertex(q0, 1, res1) ∈ V
iff M has a recurrent computation.

We define the gameG(M) incrementally (the sets
V and E are initially empty). For the sake of sim-
plicity, we also introduce redundant vertices that are
not reachable from the initial vertex(q0, 1, res1). Let
S = {inc1, inc2, dec1, dec2, res1, res2,nil}.

• For all 0 ≤ i ≤ n, j ∈ {1, 2}, ands ∈ S we add a
vertex (qi, j, s) to V©, and vertices(ti, j, s), (ri, s) to
V�. We also fix fresh atomic propositionsa(i, j), b(i, j)
which will be used later.

• The outgoing transitions of the(ri, s) vertices are shown
in Figure 1 (bottom left).

• For each(qi, j, s) vertex we add four new vertices toV©.
The vertices are connected by transitions as shown in Fig-
ure 1 (left). Some of the newly added vertices satisfy the
propositionsa(i, j), b(i, j) as indicated in the figure. Note
that the structure fori = 0 is slightly different.

• For each(ti, j, s) vertex we add either7 or 9 new ver-
tices (depending onj ands) to V© and connect them as
indicated in Figure 1 (right). The validity of the proposi-
tionsa(i, j), b(i, j) in these new vertices is also shown in
the figure.

For all i ∈ {0, · · · , n} andj ∈ {1, 2} we fix a fresh atomic
propositionc(i, j) whose validity is defined as follows:

• all vertices which satisfyb(i, j) satisfy alsoc(i, j);
• if insi contains thegoto k statement, then all vertices

which satisfya(k, j) also satisfyc(i, j). Moreover, for
all s ∈ S the vertex(qk, 2, s) satisfiesc(i, 1), and the ver-
tex (rk, s) satisfiesc(i, 2).

• no other vertices satisfyc(i, j).

Finally, we assume that for each vertexv there is a fresh
propositionpv which is valid only inv (we writev instead
of pv in our formulae).

Our aim is to construct the formulaϕ so that each play
ofG(M) which satisfiesϕ corresponds to a recurrent com-
putation ofM. From this point on we restrict our attention
to HD strategies (at the end of this proof we show that the
use of randomized moves can easily be prohibited byϕ, and
hence the presented result also applies to HR strategies).

The structure of a typical play is shown in Figure 2 (to
simplify the figure, the loops on vertices are not drawn).
First, let us realize thateveryplay ofG(M) can be identi-
fied with an infinite sequence

[ins1, 0, 0], · · · , [insi, V1, V2], [insk, U1, U2], · · ·

of extendedconfigurations ofM, where the counters can
also take theω (i.e., “infinite”) value. Of course, this se-
quence does not necessarily correspond to a valid compu-
tation ofM. The way how a given play determines its as-
sociated sequence is indicated in Figure 2. Each extended
configuration in the sequence corresponds to a block of ver-
tices in the play. For example, a configuration[insi, V1, V2],
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(ti, j, resj)

(ti, j, incj)
a(i, j)

(ti, j, decj)
a(i, j)

a(i, j)
(ti, j, w)

(q0, 2, s)

(q0, 1, s)

b(0, 1) b(0, 1)

(t0, 1, res1)

(t0, 2, res2)

Herew ranges over{inc1, dec1, res1, nil} if j = 2,
and over{inc2, dec2, res2, nil} if j = 1.

b(0, 2) b(0, 2)(q2, 1, inc1) (r0, s)

(qℓ, 2, s) (tℓ, 2, s)

(qℓ, 1, s)

b(ℓ, 1)
a(ℓ,1)

b(ℓ, 1)
a(ℓ, 1)

(tℓ, 1, s)

b(ℓ, 2)
a(ℓ, 2) a(ℓ, 2)

b(ℓ, 2)

if insℓ ≡ if cj=0 then goto k; else cj := cj−1; goto m

(qm, 1, decj)

(rℓ, s)

(qk, 1, resj)

(qm, 1, nil) (qk, 1, nil)

(rℓ, s)

if insℓ ≡ goto {k or m}

(qk, 1, incj)

(rℓ, s)

(rℓ, s)

if insℓ ≡ cj := cj+1; goto k

b(i, j)

b(i, j)

b(i, j)

b(i, j)a(i, j) a(i, j)

a(i, j)

a(i, j)

In the whole figure:
• ℓ ranges over{1, · · · , n},
• i ranges over{0, · · · , n},

• s ranges overS
• j ranges over{1, 2}

Figure 1. The structure of G(M)

where insi ≡ c1 := c1+1; goto k, is represented by a
block of vertices that starts in a(qi, 1, s) vertex (wheres
corresponds to the instruction of the configuration which
immediately precedes[insi, V1, V2] in the sequence). The
counters are encoded as follows: First, observe that when a
(ti, j, s) vertex of the play is visited, player� can choose
between transitions leading to a “gray” or “white” vertex
(see Figure 1). If he chooses a gray vertex, then with prob-
ability 1/2 he will make another choice in two transitions.
Thus, player� may decide to visit a gray vertexCj-times,
whereCj ranges from0 to infinity. ThisCj represents the
value of counterj. In the play of Figure 2, player� has cho-
sen a gray vertex from a(ti, 1, dec2) vertexV1-times, and
hence the value of the first counter isV1.

The initial configuration[ins1, 0, 0] requires a special
treatment, because the counters are initially zero but can be-
come positive whenins1 is revisited. This is the reason why
we introduced the family of zero-indexed vertices such as
(q0, j, s), (r0, s), etc.

It is easy to see that the sequence

[ins1, 0, 0], · · · , [insi, V1, V2], [insk, U1, U2], · · ·

doescorrespond to a recurrent computation ofM iff the fol-
lowing conditions are satisfied:

(a) Counter values in all extended configurations of the se-
quence are finite.

(b) The sequence contains infinitely many configurations
of the form[ins1, · · · ].

(c) For each pair [insi, V1, V2], [insk, U1, U2]
of successive configurations we have that
[insi, V1, V2] →֒ [insk, U1, U2].

We show how to express these conditions in
L(F=5/8, F>0, F=1,G=1). Condition (a) is easy—it suf-
fices to say that whenever a(ti, j, s) vertex is hit, there
must be a finite path to a vertex satisfyingb(i, j). This pre-
vents player� from “looping” at gray vertices forever
(see Figure 1). Formally, this is encoded by the for-
mula

Fin ≡
^

0≤i≤n,j∈{1,2},s∈S

G=1`

(ti, j, s) ⇒ F>0
b(i, j)

´

Condition (b) can be expressed by the formula

Rec ≡ G=1

„

`

_

0≤i≤n,s∈S

(qi, 1, s)
´

⇒
`

F>0
_

s′∈S

(q1, 1, s
′)

´

«
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[ins1, 0, 0] of M
The initial configuration

b(0, 1)b(0, 1)

(q0, 1, res1)

(q0, 2, res1)

b(0, 2)b(0, 2)
(r0, res1)

b(i, 1)b(i, 1)

(qi, 1, dec2)

(qi, 2, dec2)

b(i, 2)b(i, 2) a(i, 2) a(i, 2)

chosenV2 times

a(i, 1) a(i, 1)

chosenV1 times

b(k, 1)b(k, 1)

(qk, 1, inc1)

(qk, 2, inc1)

b(k, 2)b(k, 2) a(k, 2) a(k, 2)

chosenU2 times

a(k, 1) a(k, 1)

chosenU1 times

a(i, 1)a(i, 1)

a(i, 2)a(i, 2)

a(k, 2)a(k, 2)

a(k, 1)a(k, 1)

(rk, inc1)

insi ≡ c1 := c1+1; goto k
A configuration[insi, V1, V2] where

b(k, 2)

b(k, 1)

b(i, 1)

b(i, 2)

b(i, 1)

b(i, 2)

(ri, dec2)

a(i, 1)

a(i, 2)a(i, 2)

a(k, 2)

A configuration[insk, U1, U2]

Figure 2. A play of G(M) (the loops on vertices are not drawn).

Condition (c) requires more care, and this is where we
need the F=5/8 operator. Let[insi, V1, V2], [insk, U1, U2]
be successive configurations in our sequence, and let us first
consider the case wheninsi ≡ c1:=c1+1; goto k′ (note
that this case is visualized in Figure 2). The definition of
G(M) guarantees thatk′ = k (see the outgoing transi-
tions of (ri, s) vertices in Figure 1). The(qk, 1, s) vertex
in the block which corresponds to[insk, U1, U2] must be
of the form (qk, 1, inc1). So, all we need to check is that
U1 = V1 + 1 andU2 = V2. We claim that

• U1 = V1 + 1 iff the (qi, 1, s) vertex which corresponds
to the configuration[insi, V1, V2] satisfies the formula
F=5/8c(i, 1).

• U2 = V2 iff the (qi, 2, s) vertex which corresponds
to the configuration[insi, V1, V2] satisfies the formula
F=5/8c(i, 2).

Let us first verify the second claim. By definition,c(i, 2)
is valid in the(rk, s) vertices and in all vertices that sat-
isfy b(i, 2) or a(k, 2). All runs initiated in the(qi, 2, s) ver-
tex which leave the two blocks of vertices corresponding
to [insi, V1, V2] and [insk, U1, U2] inevitably go through
(rk, s), and the total probability of all these runs is1/8
(here we need our assumption thatinsi does not contain
thegoto i statement; without this assumption, it could hap-
pen thatk = i and hence the considered probability could

be 1/4). So, the considered(qi, 2, s) vertex satisfies the
formula F=5/8c(i, 2) iff the probability of hitting a ver-
tex which satisfiesb(i, 2) or a(k, 2) and lieswithin the
two blocks of vertices corresponding to[insi, V1, V2] and
[insk, U1, U2] is exactly1/2. A closer look reveals that this
probability is equal to the following sum of two binary num-
bers:

0.011 0 · · ·0︸ ︷︷ ︸
V2

001 + 0.00011 1 · · ·1︸ ︷︷ ︸
U2

1

Obviously, this sum is equal to1/2 iff U2 = V2, and we are
done.

The first claim is verified similarly. In this case, we ob-
tain that the(qi, 1, s) vertex satisfiesF=5/8c(i, 1) iff

0.011 0 · · ·0︸ ︷︷ ︸
V1

001 + 0.00011 1 · · ·1︸ ︷︷ ︸
U1

is equal to1/2, which happens iffU1 = V1 + 1.
If insi ≡ if c1=0 then goto k′; else cj :=cj−1; goto m′

thenk = k′ or k = m′ (again, this follows from the defini-
tion ofG(M)). The block of vertices which corresponds to
[insk, U1, U2] then contains a vertex of the form(qk, 1, s),
wheres is eitherres1 or dec1. We need to check the follow-
ing conditions:

(1) U2 = V2.
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(2) If s = res1, thenU1 = V1 = 0.

(3) If s = dec1, thenU1 = V1 − 1.

Similarly as above, one can verify that Condition (1) holds
iff the (qi, 2, s) vertex in the block of vertices correspond-
ing to [insi, V1, V2] satisfies the formulaF=5/8c(i, 2). We
claim that Conditions (2) and (3) hold iff the(qi, 1, s) ver-
tex in the same block satisfies the formulaF=5/8c(i, 1).
Let us first consider Condition (2). The definition ofG(M)
guarantees thatU1 = 0 (see the outgoing transitions of
(ti, 1, res1) in Figure 1). Hence, it actually suffices to check
thatU1 = V1, which is done by the formulaF=5/8c(i, 1).
Condition (3) is handled similarly.

If insi operates over the second counter, the arguments
are the same as above (there is no need to change the formu-
lae or the vertices in which they are supposed to hold). Fi-
nally, if insi ≡ goto {k′ or m′}, thenk = k′ or k = m′.
We need to check thatU1 = V1 andU2 = V2, which
is again implemented by the formulaeF=5/8c(i, 1) and
F=5/8c(i, 2).

So, Condition (c) can be encoded by the formula

Succ ≡
^

0≤i≤n,j∈{1,2},s∈S

G=1
`

(qi, j, s) ⇒ F=5/8
c(i, j)

´

Now we define the formula

ϕ ≡ Fin ∧ Rec ∧ Succ ∧ NoRnd

where the subformulaNoRnd says that player� cannot use
randomized moves (the formula says that whenever a vertex
v ∈ V� is hit, there is an immediate successor ofv which
is visited with probability1). This can be expressed using
G=1 and F=1 operators. Hence, our proof applies both to
HD and HR strategies.

On the other hand, the existence of a winning HD strategy
in 1 1

2 games with general PCTL objectives can be encoded
by aΣ1

1 formula in a straightforward way. Hence, the prob-
lem isΣ1

1-complete.
A slight modification of the construction presented

in Theorem 3.4 reveals the following:

Theorem 3.5. The existence of a winning HD (or
HR) strategy with finite memory in1 1

2 games with

L(F=5/8, F=1, F>0,G=1) objectives is undecidable.

Proof. First, let us realize that the problem is semidecidable
(i.e., belongs to theΣ1 level of the arithmetical hierarchy).
Obviously, one can effectively enumerate all(A, f) and for
each such(A, f) decide whetherσ(A, f) is winning, be-
cause the corresponding play has only finitely many states
(more precisely, the play is obtained as unfolding of an ef-
fectively constructible finite-state Markov chain). The unde-
cidability result is obtained by a slight modification of the

construction presented in Theorem 3.4. In this case, we re-
duce the halting problem for “ordinary” deterministic Min-
sky machines (i.e., there is nogoto {k or m} instruction,
and the last instruction ishalt ). The subformulaRec is re-
placed with a formulaHalt ≡ F>0 ∨

s∈S(qn, 1, s), which
says that a “halting state” is reachable with positive prob-
ability. Note that if a given Minsky machine halts, then it
halts after finitely many steps and the corresponding win-
ning strategy needs only finite memory (of course, there is
no bound on its size). If the machine does not halt, there is
no winning strategy at all.

Now we show that the previous undecidability results are
tight in the sense that the existence of a winning HD strat-
egy in1 1

2 -player games withL(F=1, F>0,G=1) objectives
is decidable, and in factEXPTIME -complete.

LetG be a1 1
2 -player game whereV is the set of vertices.

A mixedobjective is a pair(P,Q) whereP,Q ⊆ V . A strat-
egyσ for player� is (P,Q)-winning in a vertexv ∈ V iff
all runs inG(σ) initiated inv visit some state ofP infinitely
often, and the probability of all runs which visit some state
of Q infinitely often is1. Hence, a mixed objective is es-
sentially a conjunction of asure-B̈uchi objective specified
byP and aqualitative-B̈uchiobjective specified byQ. The
first step towards the promisedEXPTIME upper bound is
the following:

Lemma 3.6. LetG be a1 1
2 -player game,sin a vertex of

G, and(ν, ψ) an objective whereψ ∈ L(F=1, F>0,G=1).
Then there effectively exists a1 1

2 -player gameG′, a ver-
tex s′in of G′, and a mixed objective(P,Q) such that
player� has a(ν, ψ)-winning HD strategy in the vertexsin
iff player � has a(P,Q)-winning HD strategy in the ver-
texs′in . Moreover, theG′, s′in , and(P,Q) are computable
in time which is linear in the size ofG and exponential in
the size ofψ.

Hence, the problem of our interest is reducible to another
game-theoretic problem, whose complexity is analyzed in
our next lemma.

Lemma 3.7. The existence of a winning strategy in1 1
2 -

player games with mixed objectives is decidable in poly-
nomial time.

A direct consequence of Lemma 3.6 and Lemma 3.7 is that
the existence of a winning HD strategy in1 1

2 -player games
with L(F=1, F>0,G=1) objectives is inEXPTIME . It re-
mains to establish the matching lower bound.

Lemma 3.8. The existence of a winning HD (or HR) strat-
egy in 1 1

2 -player games withL(F=1,G=1) objectives is
EXPTIME-hard.

A simple corrolary of Lemma 3.6, Lemma 3.7, and
Lemma 3.8 is the following:
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Theorem 3.9. The existence of a winning HD strategy
in 1 1

2 -player games withL(F=1, F>0,G=1) objectives is
EXPTIME-complete. TheEXPTIME lower bound holds
even forL(F=1,G=1) objectives.

It follows from the proofs of Lemma 3.6 and Lemma 3.7
that a winning HD strategy in1 1

2 -player games with
L(F=1, F>0,G=1) objectives actually requires onlyfi-
nite memorywhose size is linear in the size of a given
game and exponential in the size of a given objec-
tive. A natural question is whether Theorem 3.9 can be
generalized to a larger class of qualitative PCTL objec-
tives. One natural possibility is to add the G>0 operator,
which yields theL(F=1, F>0,G=1,G>0) fragment. How-
ever, there is a strong evidence that the method of
Lemma 3.6 cannot be generalized to this class of objec-
tives. This is because these objectives may already require
infinite memory, which is demonstrated in our last theo-
rem:

Theorem 3.10. A winning HD strategy in1 1
2 games with

L(F>0,G>0) objectives may require infinite memory.

Proof. Let ϕ ≡ G>0
(
¬stop ∧ F>0stop

)
and letG be the

following game (the valuationν for atomic propositions
stop, left , andright is also indicated in the figure):

s

left

rightright

stop

v1 v2

3/4 3/4

1/41/4

First we show that there is a(ν, ϕ)-winning HD strat-
egy σ for player� in the vertexv1. We defineσ(ws) to
be the Dirac distribution which assigns1 to the transition
leading tov1 or v2, depending on whether#right (w) −
#left(w) ≤ 0 or #right (w) − #left (w) > 0, respec-
tively. Here#right (w) denotes the number of occurrences
of a state satisfying the propositionright in w. We claim
that the statev1 in the playG(σ) satisfies the formula
G=2/3

(
¬stop∧F>0stop

)
and hence also the formulaϕ. To

see this, realize that the playG(σ) corresponds to the un-
folding of the following infinite Markov chain:

3/4 3/4

1/4 1/4 1/4

1 11

1 1 1

3/4

1
v1

stop

1/4

A standard calculation reveals that the probability of hitting
the stop state fromv1 is equal to1/3. Hence, the proba-
bility of all runs initiated inv1 which donot hit the stop

state is2/3. All states in all these runs can reach thestop

state with positive probability. Hence,v1 satisfies the for-
mula G=2/3

(
¬stop ∧ F>0stop

)
.

Now we show that there is no(ν, ϕ)-winning HD strat-
egy with finite memory. Suppose the converse. Let(A, f)

be such a strategy where the automatonA = (Q, V, δ, q0)
hasn states. We show that the statev1 in the corresponding
play satisfies the formula G=0

(
¬stop ∧ F>0stop

)
, which

means thatv1 does not satisfyϕ. We say that a statew in
the playG(σ(A, f)) is live if there is a stateww′s such that
w →∗ ww′s andf(δ(q0, ww

′s), s) assigns1 to the tran-
sition leading tov1. A state which is not live isdead. We
claim that there is a fixedε > 0 such that the probability of
hitting astop state from a given live statew is at leastε. To
see this, it suffices to observe that wheneverw is a live state,
then there is a path fromw to astop state of length at most
3n+1. Note that a statew is dead iffw is astop state orw
cannot reach astop state at all. By applying standard argu-
ments of Markov chain theory, we can now conclude that
the probability of hitting a dead state fromv1 is equal to
one. Since a dead state does not satisfy¬stop ∧ F>0stop,
we obtain thatv1 satisfies G=0

(
¬stop ∧ F>0stop

)
and we

are done.
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A. Appendix

A.1. A Proof of Theorem 3.3

Let a1, · · · , an, b be an instance of SQUARE-ROOT-SUM

(see Section 1). LetG be a game where

• the setV = V� contains the verticesv, u, s, c(i), d(i),
e(i), f(i), g(i), andh(i) for all 1 ≤ i ≤ n;

• the set of transitions containsv → u, u → u, s → u,
v → c(i), c(i) → d(i) → f(i), c(i) → e(i) → f(i),
f(i) → g(i) → s, andf(i) → h(i) → s for all 1≤i≤n.

The structure ofG is shown in the following figure:

c(1)

c(n)

d(1)

d(n)

e(n)

e(1)

f(1)

f(n)

g(1)

g(n)

h(n)

h(1)

s
v

u

We assume that for each vertext ∈ V there is an atomic
propositionpt which is valid only int (thus we obtain our
valuationν). Slightly abusing notation, we writet instead
of pt in our formulae.

Every strategyσ for player� assigns (some) probabili-
tiesp(ci), p(ei), andp(hi) to transitionsv → c(i), c(i) →
e(i), andf(i) → h(i), respectively, where1 ≤ i ≤ n. Let
q = b +

∑n
i=1 ai. We construct a PCTL formulaϕ such

that every(ν, ϕ)-winning MR strategy inv has to assign
p(ci) = p(ei) = p(hi) =

√
ai/q for every1 ≤ i ≤ n. Then

the probability ofv → umust be1−∑n
i=1

√
ai/q. The for-

mulaϕ contains the clause X≥1−b/qu. Hence, player� has
a (ν, ϕ)-winning MR strategy inv iff 1 − ∑n

i=1

√
ai/q ≥

1 − b/q, i.e., iff
∑n

i=1

√
ai ≤ b.

Now we describe the formulaϕ in greater detail. For ev-
ery 1 ≤ i ≤ n, let Φi ≡ (v ∨ c(i)) Uai/q2

e(i). Note that
v |=ν Φi iff p(ci) · p(ei) = ai/q

2. Similarly, we construct
the formulaeΨi andΞi such thatv |=ν Ψi andv |=ν Ξi

iff p(ei) · p(hi) = ai/q
2 andp(hi) · p(ci) = ai/q

2, respec-
tively:

Ψi ≡ X>0
(
c(i) ∨ (e(i) ∨ f(i)) Uai/q2

h(i)
)

Ξi ≡ X>0X>0X>0
(
(f(i) ∨ h(i) ∨ s ∨ v) Uai/q2

c(i)
)

Observe that ifp(ci)·p(ei) = p(ei)·p(hi) = p(hi)·p(ci) =
a1/q

2, then necessarilyp(ci) = p(ei) = p(hi) =
√
ai/q.

We putϕ ≡ X≥1−b/qu ∧ ∧n
i=1(Φi ∧ Ψi ∧ Ξi).

Let us consider the game obtained forn = 1, a1 = 2,
andb = 0. ThenΦ1 ∧ Ψ1 ∧ Ξ1 ∈ L(X>0,U=1/2) and the
only (ν,Φ1∧Ψ1∧Ξ1)-winning MR strategy inv assigns ir-
rational probabilities to certain transitions. Thus, we obtain
the example promised above.

A.2. A Proof of Lemma 3.6

For the rest of this proof, let us fix a1 1
2 -player game

G = (V,E, (V�, V©),Prob), a vertexsin ∈ V , and an
objective(ν, ψ) whereψ ∈ L(F=1, F>0,G=1). For techni-
cal convenience, we assume that all subformulae ofψ are
pairwise distinct (this can be achieved by replacing atomic
propositions inϕwith fresh propositions so that each propo-
sition has a unique occurrence inψ; the valuationν is ex-
tended accordingly). Our aim is to define another1 1

2 -player
gameG′, a vertexs′in of G′, and a mixed objective(P,Q)
such that player� has a(ν, ψ)-winning HD strategy insin
iff player � has a(P,Q)-winning HD strategy ins′in .

Let L be the set of allliterals, i.e., atomic propositions
and their negations. LetS be the set of all subformulae ofψ,
where negation is not considered as a connective (for exam-
ple, ifψ ≡ F=1¬q, thenS = {¬q, F=1¬q}). For each con-
nectiveα ∈ {F=1, F>0,G=1,∨,∧}, we useSα to denote
the subset ofS consisting of all formulae where the topmost
connective isα. We also useSAp ,SF,STemp ,SBool , andSF̄
to denote the setsS ∩L, SF=1 ∪SF>0 , SF=1 ∪SF>0 ∪SG=1 ,
S∨ ∪ S∧, and{F̄⋊⋉̺

ϕ | F⋊⋉̺ϕ ∈ SF}, respectively. The pur-
pose of “barred” formulae ofSF̄ becomes clear later.

In the following, we assume thatS = {ϕ1, . . . , ϕn}
where i < j implies thatϕi is not a subformula ofϕj .
The first step towards the definition ofG′ is the function
Θ : 2S → 22S∪SF̄ which decomposes subformulae ofψ into
“subgoals”. LetA ⊆ S. If A ⊆ SAp , thenΘ(A) = {A}.
Otherwise, leti be the least index such thatϕi ∈ ArSAp .
We distinguish among the following possibilities:

• If ϕi ≡ ϕk ∨ ϕℓ, then

Θ(A) = Θ((Ar{ϕi}) ∪ {ϕk}) ∪ Θ((Ar{ϕi}) ∪ {ϕℓ})

• If ϕi ≡ ϕk ∧ϕℓ, thenΘ(A) = Θ((Ar{ϕi})∪{ϕk, ϕℓ})
• If ϕi ≡ G=1ϕj , then

Θ(A) = {D ∪ {G=1(ϕj)} | D ∈ Θ((Ar{ϕi}) ∪ {ϕj})}

• ϕi ≡ F⋊⋉̺ϕj ; then

Θ(A) = {D ∪ {F⋊⋉̺(ϕj)} | D ∈ Θ(Ar{ϕi})}

∪ {D ∪ {F̄⋊⋉̺
(ϕj)} | D ∈ Θ((Ar{ϕi}) ∪ {ϕj})}

The intuition behind the functionΘ is the following: to
find out whether there is a(ν, ψ)-winning HD strategy in
sin , we extend each vertex ofG (and hence each state of
an arbitrary play ofG) with a setA of subformulae ofψ
that should be valid when the play is in the state. Some
of these formulae represent temporal “goals” which can be
achieved either in the current state or in its successors. The
functionΘ “offers” all admissible possibilities how to dis-
tribute the goals among the current state and its successors
so that all formulae inA are valid. Selecting the right al-
ternative becomes the responsibility of player�. For exam-
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ple,Θ({F=1p}) = {{F=1p}, {F̄
=1
p, p}}, because the “cur-

rent” state satisfies F=1p iff either all of its successors sat-
isfy F=1p (the goal is “postponed”), or the propositionp
is satisfied in the current state (the goal is “achieved”). In
the latter case, the functionΘ also “marks” the current state
with F̄=1

(p), which means that the goal F=1(p) has been
achieved. The exact purpose of these marks will be clari-
fied later.

Before defining the gameG′, we formulate several prop-
erties ofΘ that are useful in proofs. The next two lemmas
are proven by a straightforward induction on the total num-
ber of connectives in the formulae ofA.

Lemma A.1. Let s be a state of some play ofG, and let
A ⊆ S. Thens satisfies all formulae ofA iff there isD ∈
Θ(A) such thats satisfies all formulae ofD ∩ S.

Lemma A.2. For all non-emptydisjoint setsA,B ⊆ S we
have thatΘ(A ∪B) = {X ∪ Y | X ∈ Θ(A), Y ∈ Θ(B)}.

Corollary A.3. LetA ⊆ S be a non-empty set.

• If G=1ξ ∈ A, thenΘ(A) is equal to

{{G=1
ξ} ∪X ∪ Y | X ∈ Θ(Ar{G=1(ξ)}), Y ∈ Θ({ξ})}

• If F⋊⋉xξ ∈ A, thenΘ(A) is equal to

{{F⋊⋉̺
ξ} ∪X | X ∈ Θ(Ar{F⋊⋉̺

ξ})}

∪ {{F̄⋊⋉̺
ξ} ∪X ∪ Y | X ∈ Θ(Ar{F⋊⋉̺

ξ}), Y ∈ Θ({ξ})}

The gameG′ = (V ′, E′, (V ′
�, V

′
©),Prob ′) is defined as fol-

lows. The set of verticesV ′ consists of vertices of the fol-
lowing two forms (f -vertices andg-vertices):

• f -vertices are of the form(s,A,B,C)f wheres ∈ V ,
A ⊆ S, B ⊆ SF=1 ∪ {•}, andC ⊆ SF>0 . Intuitively, the
setA consists of formulas that should be satisfied in the
current state (see the intuitive description ofΘ above).
The setsB andC assure that all subgoals of the form
F=1ϕ andF>0ϕ are eventually fullfiled (see the mixed
winning objective defined below).

• g-vertices are of the form(s,A,B,C, ~D)g wheres ∈ V ,
A ⊆ S ∪ SF̄, B ⊆ SF=1 ∪ {•}, C ⊆ SF>0 , and
~D ∈ ∏

t∈V 2SF>0 . The purpose ofB andC is similar
as in the case off -vertices. The setA consists of sub-
goals that should be satisfied in successors of the current
state. The vector~D is used to distribute the subgoals of
the form F>0ϕ to the successors of the current state.

The setV ′
�

consists of allf -vertices and of allg-vertices of
the form(s,A,B,C, ~D)g wheres ∈ V�. The setV ′

© con-

sists of allg-vertices of the form(s,A,B,C, ~D)g where
s ∈ V©. The setE′ of transitions ofG′ is defined as fol-
lows:

1. (s,A,B,C)f → (s,A′, B′, C′, ~D)g iff the following
conditions are satisfied:

• A′ ∈ Θ(A)
• B′ is equal to

− {•}, if A′ ∩ Ap 6⊆ ν(s) or there is¬p ∈ A′ such
thatp ∈ ν(s);

−A′ ∩ SF=1 , if B = ∅;
−B r {F=1ξ | F̄=1

ξ ∈ A′} otherwise.

• if C = ∅, thenC′ = A′ ∩ SF>0 ; otherwiseC′ =

C r {F>0ξ | F̄>0
ξ ∈ A′}.

• ⋃
(s,t)∈E

~Dt = A′ ∩ SF>0

• if s ∈ V� then for eacht ∈ V such that(s, t) ∈ E
we have thatDt = A′ ∩ SF>0 .

Intuitively, the f -vertices are controlled by player�
who chooses a set of subgoalsA′ ∈ Θ(A). The atomic
propositions inA′ are immediately verified (if there
is some inconsistency then• is put intoB′) while the
other formulae inA′ are passed to successors. The sets
B′ andC′ are updated depending on which subgoals
(subformulae) are chosen by player� as “achieved”
in the current state (cf. the intuitive description ofΘ
above). Note that the vertexs is not changed in the
successors off -vertices. The transitions ofG are sim-
ulated ing-vertices (see below).

2. (s,A,B,C, ~D)g → (t, A′, B′, C′)f if (s, t) ∈ E,
A′ = (A r (SF>0 ∪ SF̄ ∪ SAp)) ∪ ~Dt, B′ = B, and
C′ = C ∩ ~Dt

3. There are no other transitions inE′ than those given
by the rules 1. and 2.

Prob ′ is defined as follows: For alls ∈ V©, the probabil-
ity of (s,A,B,C, ~D)g → (t, A′, B′, C′)f is the same as the
probability ofs → t in G. We puts′in = (sin, {ψ}, ∅, ∅)f .
Finally, we define the mixed(P,Q) objective as follows:

• the set P consists of all vertices of the form
(s,A,B, ∅, ~D)g;

• the set Q consists of all vertices of the form
(s,A, ∅, C, ~D)g.

It remains to show that player� has a(ν, ψ)-winning HD
strategy insin iff player � has a(P,Q)-winning HD strat-
egy ins′in . We demonstrate both implications separately in
subsequent subsections. First, we fix some notation which
is used in both parts of our proof.

For a given af -vertex(s,A,B,C)f , thei-th component
of the tuple(s,A,B,C) is denotedρi((s,A,B,C)f ). For
example,ρ2((s,A,B,C)f ) = A. An analogous notation is
used also forg-vertices. The last symbol of a given non-
empty wordw is denotedlast(w).

A.2.1. Transfering winning strategies fromG′ toG. Let
σ′ be a(P,Q)-winning HD strategy ins′in . The states in
G′(σ′) of the formu · (s,A,B,C)f are calledf -states, and
states of the formu · (s,A,B,C, ~D)g are calledg-states.
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Let R be the set of allg-states ofG′(σ′) that are reach-
able froms′in. We define a functionΛ : R → V ∗ induc-
tively as follows:

• Λ(s′in · σ′(s′in)) = sin

• Λ(v · (s,A,B,C)f (s,A′, B′, C′, ~D)g) = Λ(v) · s
A routine check confirms the following:

Lemma A.4. Λ is injective.

We define a strategyσ : V ∗V� → V as follows: For a
givenv ∈ Λ(R) such thatσ′(Λ−1(v)) = (t, A,B,C)f we
putσ(v) = t. Forv ∈ (V ∗V�) r Λ(R) we putσ(v) to an
arbitrary value (as we show these strings are not states of
G(σ)).

Lemma A.5. Λ(R) is precisely the set of states that are
reachable fromsin in G(σ), and for all v, v′ ∈ Λ(R) we
haveP(v →∗ v′) = P(Λ−1(v) →∗ Λ−1(v′)).

Proof. Let v ∈ Λ(R). We show thatv
x→ v′ iff v′ ∈ Λ(R)

andΛ−1(v)
x→ u

1→ Λ−1(v′), whereu is the unique prede-
cessor ofΛ−1(v′) in G′(σ′).

Assume that last(v) = s and last(Λ−1(v)) =

(s,A,B,C, ~D)g. There are two possibilities:

• If s ∈ V©, then we have thatv
x→ v′ iff v′ = v · t for

somet ∈ V such thats
x→ t iff Λ−1(v)

x→ Λ−1(v) ·
(t, A′, B′, C′)f 1→ Λ−1(v′)

• If s ∈ V�, then we have thatv
1→ v′ iff v′ = v · t for t =

σ(v) andσ′(Λ−1(v)) = (t, A′, B′, C′)f iff Λ−1(v)
1→

Λ−1(v) · (t, A′, B′, C′)f 1→ Λ−1(v′)

It follows that there is a (unique) pathv =
v0, . . . , vn = v′ from v to v′ iff there is a
(unique) path π from Λ−1(v) to Λ−1(v′). More-
over, π = Λ−1(v0), u1,Λ

−1(v1), u2, . . . ,Λ
−1(vn)

and hence by applying the above arguments we ob-
tain that P(v →∗ v′) = P(Run(v0, . . . , vn)) =
P(Run(Λ−1(v0), u1,Λ

−1(v1), u2, . . . ,Λ
−1(vn))) =

P(Λ−1(v) →∗ Λ−1(v′)).

The last technical step is the following lemma:

Lemma A.6. LetA ⊆ S be a non-empty set, and letD ∈
Θ(A) be a set such thatG=1ξ ∈ D or F̄

⋊⋉̺
ξ ∈ D. Then

there isY ∈ Θ({ξ}) such thatY ⊆ D.

Proof. Let us first consider the case when G=1ξ ∈ D. Let
us assume that G=1ξ ≡ ϕi, and letϕj ∈ A be the formula
with the least index inA. Note thatj ≤ i because G=1ξ is a
subformula of some formula inA. We proceed by induction
in i− j.

If i = j, then by Corollary A.3 we have that

Θ(A) = {{G=1
ξ}∪X ∪Y | X ∈ Θ(Ar {G=1

ξ}), Y ∈ Θ(ξ)}

from which the claim follows. The induction step forj < i
is completed simply by considering all possible forms ofϕj

and applying the definition ofΘ.

The case when̄F⋊⋉̺
(ξ) ∈ D is handled similarly.

Now we show the main result of this subsection:

Lemma A.7. sin |=ν ψ

Proof. By induction on the structure ofψ we show that for
all ϕ ∈ S and for all states ofR of the form v = v′ ·
(s,A,B,C)f (s,A′, B′, C′, ~D)g we have thatΛ(v) |=ν ϕ
wheneverϕ ∈ A′ ∩ S. Together with Lemma A.1, this
implies that sin |=ν ψ because there is a state of the
form (sin , {ψ}, ∅, ∅)f(sin , A

′′, B′′, C′′, ~D′)g in R where
A′′ ∈ Θ({ψ}).

Since(s,A,B,C)f → (s,A′, B′, C′, ~D)g, we have that
A′ ∈ Θ(A). First, observe that ifϕ is a Boolean combina-
tion of some formulae, thenϕ 6∈ A′ ∈ Θ(A) and we are
done. The other cases are analyzed below.

• If ϕ ∈ SAp , thenΛ(v) |=ν ϕ because otherwiseB′ =
{•} by definition ofG′. Note that ifB′ = {•} thenσ′ is
not winning strategy forG′ because• is never removed
and hence the(P,Q)-winning objective is not achieved.

• Let ϕ ≡ G=1ξ. First we show that ifG=1ξ ∈ A′ then
Λ(v) |=ν ξ. By Lemma A.6 we have that if G=1ξ ∈ A′

then there isD ∈ Θ({ξ}) such thatD ⊆ A′. Then,Λ(v)
satisfies all formulae ofD ∩ S by induction hypothesis
(note that all formulae ofD∩S are subformulae ofξ) and
henceΛ(v) |=ν ξ by applying Lemma A.1. Now observe
that for everyu reachable fromv we have that G=1ξ ∈
ρ2(last(u)) which implies thatΛ(u) |= ξ. The rest now
follows from Lemma A.5.

• Letϕ ≡ F=1ξ. Similarly as for G=1ξ we show that when-
ever F̄=1

ξ ∈ A′, thenΛ(v) |=ν ξ. We prove that al-
most every run ofRun(v) contains ag-stateu such that
F̄=1

ξ ∈ ρ2(last(u)). Let ω be a run initiated inv that
does not contain such a state. Observe that for alli ≥ 0
we have F=1ξ ∈ ρ2(last(ω(i))). However, this means
that eitherρ3(last(ω(i))) 6= ∅ for all i ≥ 0, or there is
j ≥ 0 such thatρ3(last(ω(j))) = ∅ and for allk > j
we haveF=1ξ ∈ ρ3(last(ω(k))). In both cases, the run
ω does not satisfy the qualitative Büchi objective speci-
fied by the setQ in the mixed winning objective(P,Q),
and we know that the probability of all such runs is0.
It follows that almost every run initiated inv reaches a
stateu ∈ R such thatΛ(u) |=ν ξ. Hence,Λ(v) |=ν F=1ξ
due to Lemma A.5.

• Letϕ ≡ F>0ξ. Similarly as in the previous cases we show
that whenever̄F>0

ξ ∈ A′ thenΛ(v) |=ν ξ. We prove
that there is a stateu reachable fromv such that̄F>0

ξ ∈
ρ2(last(u)). By definition ofG′ we have that there is a
run ω ∈ Run(v) such that either̄F>0

ξ ∈ ρ2(ω(j)) for
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somej ≥ 0, or F>0ξ ∈ ρ2(ω(j)) for all j ≥ 0. We
show that the latter case contradicts the sure-Büchi objec-
tive specified by the setP in the mixed winning objective
(P,Q). There are two possibilities: eitherρ4(ω(i)) 6= ∅
for all i ≥ 0, or there isj ≥ 0 such thatρ4(ω(j)) = ∅ and
for all k > j we have F>0ξ ∈ ρ4(ω(j)). In both cases,
the runω visits the states ofP only finitely many times.
The rest follows from Lemma A.5.

Transfering winning strategies from G to G′. Let
σ : V ∗V� → V be a strategy such thatsin |=ν ψ. LetR be
the set of states ofG(σ) that are reachable fromsin .

Lemma A.8. For all v ∈ R andA ⊆ S such thatv satisfies
all formulae ofA there isD ∈ Θ(A) such that

• v satisfies all formulae ofD ∩ S;
• if F⋊⋉̺ξ ∈ D thenv 6|=ν ξ.

Proof. For eachX ∈ Θ(A) we put F(v,X) = {F⋊⋉̺ξ ∈
X | v |=ν ξ}, and we denoterank(X) = min{i |
ϕi ∈ F(v,X)} (we putrank(X) = ∞ if F(v,X) = ∅).
By Lemma A.1, we know that there isA′ ∈ Θ(A) such
thatv satisfies all formulae ofA′ ∩ S. Let us assume that
F(v,A′) 6= ∅ (otherwise we putD = A′ and we are done).
We show that there isA′′ ∈ Θ(A) such thatv satisfies all
formulae ofA′′ ∩ S andrank(A′′) > rank(A′).

Let 1 ≤ i ≤ n be the least index such thatϕi = F⋊⋉̺ξ ∈
F(v,A′), and letϕj ∈ A be the formula with the least index
in A. Clearly j ≤ i. We show by induction onj − i that
there isA′′ ∈ Θ(A) such thatrank(A′′) > rank(A′).

If i = j then by Corollary A.3 we have thatA′ =
X ∪ {F⋊⋉̺ξ} whereX ∈ Θ(Ar {F⋊⋉̺ξ}). Note thatv sat-
isfies all formulae ofX ∩S. However, by Corollary A.3 we
have thatX ∪ {F̄⋊⋉̺

ξ} ∪ Y ∈ Θ(A) for everyY ∈ Θ({ξ}).
Sincev |= ξ, by applying Lemma A.1 we obtain that there
is Y ∈ Θ({ξ}) such thatv satisfies all formulae ofY ∩ S,
and hence all formulae of(X ∪ Y ) ∩ S. Hence, we put
A′′ = X ∪ {F̄⋊⋉̺

ξ} ∪ Y . Observe, that an index of ar-
bitrary formula ofX ∪ Y is greater thani. In particular,
rank(A′′) > rank(A′).

The induction step forj < i is completed by considering
all possible forms ofϕj and applying the definition ofΘ.

Definition A.9. Given a formulaξ ∈ S and a statev of
G(σ), we denoteDist(v, ξ) the length of the shortest path
from v to a state which satisfiesξ (we putDist(v, ξ) = ∞
if there is no such state).

Lemma A.10. Let vs ∈ R wheres ∈ V andvs 6|= ξ. Then
the following holds:

• If s ∈ V� andvs |=ν F⋊⋉̺ξ, thenvsσ(s) |=ν F⋊⋉̺ξ.
• If s ∈ V© andvs |=ν F=1ξ, then for allt ∈ V such that
s→ t we havevst |=ν F=1ξ.

• If s ∈ V© andvs |=ν F>0ξ, then there ist ∈ V such that
s→ t, vst |=ν F>0ξ andDist(vst, ξ) < Dist(vs, ξ).

We define a functionΓ : R → (V ′)∗ and a strategy
σ′ : (V ′)∗(V ′

�) → V ′ inductively as follows:Γ(sin) =
(sin, {ψ}, ∅, ∅)f . For a givenv ∈ R such thatlast(Γ(v)) =
(s,A,B,C)f wherev satisfies all formulae inA we define
σ′(Γ(v)) to be one of the vertices (chosen arbitrarily) of the
form (s,A′, B′, C′, ~D)g where

• A′ ∈ Θ(A), v satisfies all formulae inA′ ∩ S, and if
F⋊⋉̺ξ ∈ A′ thenv 6|=ν ξ.

• The setsB′ andC′ are determined byA′, B, andC (see
the definition ofG′)

• ~D is compatible with the definition ofG′, and if s ∈
V© then F>0ξ ∈ ~Dt implies that vt |= F>0ξ and
Dist(vt, ξ) < Dist(v, ξ).

Due to Lemma A.8 and Lemma A.10, there must be at
least one vertex of the form(s,A′, B′, C′, ~D)g satisfying
the three properties above. Furthermore,

• if s ∈ V�, we put σ′(Γ(v) · (s,A′, B′, C′, ~D)g) =
(t, A′′, B′′, C′′)f whereσ(v) = t;

• if s ∈ V©, then for allt ∈ V such thats → t we put
Γ(vt) = Γ(v)(s,A′, B′, C′, ~D)g(t, A′′, B′′, C′′)f );

• if s ∈ V� and t = σ(v), we put Γ(vt) =

Γ(v)(s,A′, B′, C′, ~D)g(t, A′′, B′′, C′′)f

In all these cases, the setsA′′, B′′, C′′ are uniquely deter-
mined (see the definition ofG′). Note that the invariant “v
satisfies all formulae inA” is maintained throughout the in-
ductive definition. For other strings of(V ′)∗(V ′

�) we define
σ′ arbitrarily.

Lemma A.11. Γ(R) is precisely the set of allf -states
of G′(σ′) that are reachable froms′in . Moreover, for all
v, v′ ∈ R we have thatP(v →∗ v′) = P(Γ(v) →∗ Γ(v′)).

Proof. It is easy to show that for a givenv ∈ R we have

v
x→ v′ iff Γ(v)

x→ u
1→ Γ(v′), whereu is the unique pre-

decessor ofΓ(v′) inG′(σ′). The proof can be completed us-
ing the same arguments as in the proof of Lemma A.5.

Lemma A.12. Let Γ(v) ∈ Γ(R). Then almost all runs of
Run(Γ(v)) contain a stateu such thatρ3(last(u)) = ∅.

Proof. Let us suppose thatσ′(Γ(v)) = (s,A,B,C, ~D)g

and let F=1ξ ∈ B ⊆ A. Let v′ be a state reachable from
v such thatv′ |= ξ. It follows from the definition ofσ′

that σ′(Γ(v′)) = (s,A′, B′, C′, ~D)g where F=1ξ 6∈ B′.
Moreover,P(Γ(v) →∗ Γ(v′)) = P(v →∗ v′) due to
Lemma A.11. It follows that for every F=1ξ ∈ B and for
almost all runs ofRun(Γ(v)) there is i ≥ 0 such that
F=1ξ 6∈ ρ3(last(ω(i))). From this we can deduce that al-
most allω ∈ Run(Γ(v)) satisfy the following condition:
for every formula F=1ξ ∈ B there isi ≥ 0 such that
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F=1ξ 6∈ ρ3(last(ω(i))) (it follows from the fact that the in-
tersetion of finitely many sets which have probability1 has
also probability1). However, this property together with
the definition ofG′ implies that there isj ≥ 0 such that
ρ3(last(ω(j))) = ∅.

Lemma A.13. Let Γ(v) ∈ Γ(R). Then every run of
Run(Γ(v)) contains a stateu such thatρ4(last(u)) = ∅.

Proof. Let us suppose thatσ′(Γ(v)) = (s,A,B,C, ~D)g

and let F>0ξ ∈ C ⊆ A. Let ω ∈ Run(Γ(v))
be a run such that for alli ≥ 0 we have that
last(ω(2i)) = (ti, g, Ai, Bi, Ci, ~Di) where F>0ξ ∈ Ci.
Since v |= F>0ξ, we have thatDist(v, ξ) < ∞.
However, by the definition of σ′ we have that
Dist(vt1 · · · ti+1, ξ) < Dist(vt1 · · · ti, ξ) which con-
tradicts the fact thatDist is a non-negative function.
From this we obtain that for everyω ∈ Run(Γ(v))
and every formula F>0ξ ∈ C there is i ≥ 0 such
that F>0ξ 6∈ ρ4(last(ω(i))). The definition ofG′ im-
plies that there isj ≥ 0 such thatρ4(last(ω(i))) = ∅.

Corollary A.14. The strategyσ′ is a (P,Q)-winning strat-
egy ins′in .

A.3. A Proof of Lemma 3.7

In order to prove Lemma 3.7, we need some technical tools
that allow us to do modify Markov chains induced by strate-
gies. Since these Markov chains are trees we start by intro-
ducing an auxiliary notion ofprobabilistic tree.

Probabilistic trees. Let us fix a finite setV . A probabilis-
tic tree is a pairT = (X,P ) whereX ⊆ V + is a nonempty
prefix-closed set containing exactly ones ∈ V (the root
of T ) andP : (V + × V +) → (0, 1] is a function with do-
main{(w,ws) | w,ws ∈ X, s ∈ V } (i.e.,P is defined ex-
actly on edges ofT ) such that for eachw ∈ X we have∑

ws∈T P (w,ws) = 1. Note thatP is formally a subset
of (V + × V +) × (0, 1], and hence we can apply set opera-
tions onP . Elements ofX are callednodesof T , a node
ws wheres ∈ V is a successorof w, and nodes with-
out any successors are calledleaves. Infinite probabilistic
treesare probabilistic trees without leaves. Note that infi-
nite probabilistic trees can be seen as Markov chains. In
what follows we do not distinguish between infinite prob-
abilistic trees and their corresponding Markov chains.

Given a nodews ∈ X wheres ∈ V , we define asub-
tree of T in ws as a tupleTws = (Xws, Pws) where
Xws = {sv | wsv ∈ T } andPws is induced byP in the ob-
vious way. Given a subtreeTw of T , we denote byT r Tw

the tree obtained fromT by cutting off the subtreeTw,
where only the nodew is left. Formally,TrTw = (X ′, P ′)
whereX ′ = X r ({w} · V +) andP ′ is the induced restric-
tion ofP .

Given two treesT1 and T2, we define theconcate-
nation of T1 and T2, denotedT1 ⊙ T2, to be the tree
(X1 ⊙X2, P1 ⊙ P2) where

X1 ⊙X2 = X1 ∪ {wsv | ws is a leaf ofT1, sv ∈ X2}

andP1 ⊙ P2 is induced byP1 andP2 in the obvious way.
Finally, given an infinite treeT = (X,P ) and two nodes

v, w ∈ X such thatlast(v) = last(w), we denoteTw→v =
(T r T v) ⊙ Tw the tree obtained fromT by cutting offT v

and pastingTw to its place.

The proof. Let us fix a 1 1
2 -player game G =

(V,E, (V�, V©),Prob) and a mixed objective(P,Q). In
what follows we say that a strategy is(P,Q)-winning in a
vertexs without explicitly mentioning the player who is al-
ways player�. We denoteV P = {ws | w ∈ V ∗, s ∈ P}
andV Q = {ws | w ∈ V ∗, s ∈ Q}.

Given a strategyσ and a vertexs ∈ V we denoteT [s, σ]
the part ofG(σ) that is reachable froms. By a run inT [s, σ]
we mean a run from the roots of the treeT [s, σ] unless ex-
plicitly stated otherwise. Observe thatT [s, σ] is an infinite
probabilistic tree.

We show that the existence of a(P,Q)-winning strategy
in s ∈ V it is decidable in polynomial time. We start with
the following simple observation:

Lemma A.15. Given a (P,Q)-winning strategyσ and
statesw, v ∈ T [s, σ] such thatlast(w) = last(v), there
is a (P,Q)-winning strategyσ′ such thatT [s, σ]w→v =
T [s, σ′].

Lemma A.16. If there is a(P,Q)-winning strategy ins ∈
V , then there is a(P,Q)-winning strategyσ′ in s such that
there is a run inT [s, σ′] that reaches the setV Q in at most
2|V | steps and any run inT [s, σ′] reachesV P in at most
|V | steps.

Proof. Let σ be a(P,Q)-winning strategy ins. First, ob-
serve that there isk ≥ 1 such that an arbitrary run froms in
T [s, σ] reaches a state ofV P in less thank steps. Indeed, if
this was not true, then we could inductively define an infi-
nite run inT [s, σ] which does not contain any state ofV P ,
which contradicts the assumption thatσ is (P,Q)-winning.

Let us assume that there is a vertext ∈ V and a run in
T [s, σ] which contains states of the formwt andwtvt be-
fore the first occurrence of a state ofV P . Then we can ap-
ply Lemma A.15 and obtain a(P,Q)-winning strategyσ′

such thatT [s, σ′] = T [s, σ]wtvt→wt. Repeating the proce-
dure finitely many times, we obtain a(P,Q)-winning strat-
egyσ′′ such that no run inT [s, σ′′] contains a duplicated
vertex before the first occurrence of a state ofV P . Hence,
the distance of states ofV P from the root ofT [s, σ′′] is at
most|V |.

Becauseσ′′ is (P,Q)-winning in s, there is a pathω
in T [s, σ′′] from s to a statev ∈ V Q. If there are no

15



states ofV P beforev in the pathω then we are done. Oth-
erwise, let us assume thatω(i) is the first occurrence of
a state ofV P in ω and let us consider the suffixω′ =
ω(i), ω(i+1), . . . , ω(|ω|−1). Duplicate states inω′ can be
eliminated using the above “copying” procedure, which
yields a strategyσ′′′ which satisfies the desired proper-
ties.

Lemma A.17. If there is a (P,Q)-winning strategy in
s ∈ V , then there is a strategyσ′ in s such thatT [s, σ′] sat-
isfies the following conditions:

1. Along every run initiated in anarbitrary state of
T [s, σ′], a state ofV P is reached within at most2|V |
steps.

2. There isε > 0 such that the probability of reaching
V Q from any state ofT [s, σ′] is at leastε.

Proof. Let us denotēV = {t | wt ∈ X} the set of vertices
ofG that occur in the play induced byσ. For a givent ∈ V̄ ,
we fix a nodewt of T [s, σ] such thatlast(wt) = t. Observe
that for eacht ∈ V̄ the strategyσ induces a(P,Q)-winning
strategy int which yields the treeTwt . By Lemma A.16 we
obtain that there is a(P,Q)-winning strategyσt in t which
satisfies the conclusion of Lemma A.16.

We denoteTt = (Xt, Pt) a (finite) probabilistic tree ob-
tained fromT [t, σt] by cutting off all nodes whose distance
from t is greater than2|V |. Now, we gradually construct a
new infinite treeT ′ as follows: we start withTs and then in
every stage we concatenate all treesTt to the current tree.
Formally, we define sequences of treesK0,K1,K2, . . . and
Kt

1 = (Xt
1, P

t
1),Kt

2 = (Xt
2, P

t
2), . . . whereK0 = Ts and

for all i ≥ 0 and allt ∈ V̄ we have

•Kt
i+1 = Ki ⊙ Tt

•Ki+1 = (
⋃

t∈V̄ X
t
i+1,

⋃
t∈V̄ P

t
i+1)

Note that
⋃

t∈V̄ P
t
i+1 is a function for everyi ≥ 0, because

for a fixedi the functionsP t
i+1 agree on edges inTi.

We claim that there is a strategyσ′ such thatT [s, σ′] =
(
⋃∞

i=1Xi,
⋃∞

i=1 Pi). Indeed, the strategyσ′ behaves likeσs

until it reaches a leafwt of Ts (i.e., during the first2|V |
steps), then it starts to behave like the strategyσt for the
next2|V | steps, and so on.

Finally, we putε = min{pt | t ∈ V̄ } where eachpt

equals the probability of reaching a state ofV Q in T [t, σt]
in at most2|V | steps. Now, it is easy to see thatσ′ satis-
fies the conditions 1. and 2.

Corollary A.18. If there is a(P,Q)-winning strategy in
s ∈ V , then there is a(P,Q)-winning strategyσ′ such that
along any run from an arbitrary state ofT [s, σ′] a state of
V P is reached within at most2|V | steps.

Proof. It follows from Lemma A.17 using standard tools of
probability theory.

Theorem A.19. Let G be a 1 1
2 -player game,s a vertex

of G, and (P,Q) a mixed objective. If there is a(P,Q)-
winning HD strategy ins, then there is a(P,Q)-winning
HD strategy with finite memory(A, f) whose size is poly-
nomial in the size ofG. Moreover, the existence of such a
strategy is decidable inP.

Proof. We construct a new gameG′, its vertexs′, and a
subsetP ′ of vertices ofG′ such that player� has a(P,Q)-
winning HD strategy ins iff player� has a(P ′, ∅)-winning
strategy ins′. Thus, we “reduce”(P,Q)-winning objectives
to qualitative Büchi objectives for which a polynomial-time
algorithm exists.

Corollary A.18 implies that in order to ensure that ver-
tices ofP are entered infinitely often along a play, it suffices
to count the number of vertices between two successive oc-
currences of vertices ofP , and to give up the whole play
whenever this number exceeds2|V |.

Let us define a new gameG′ = (V ′, E′, (V ′
�
, V ′

©),Prob ′)
(which extends the gameG with a counter) where
V ′ = V ×{1, . . . , 2|V |,⊥}, V ′

� = V� ×{1, . . . , 2|V |,⊥},
V ′
© = V ′ r V ′

�
, E′ is the least set (w.r.t.⊆) such that for

each(u, v) ∈ E we have

• ((u, i), (v, 1)) ∈ E′ if u ∈ V P andi ≤ 2|V |
• ((u, i), (v, i+1)) ∈ E′ if u ∈ VrP andi < 2|V |
• ((u, 2|V |), (v,⊥)) ∈ E′ if u ∈ VrP
• (u,⊥), (v,⊥)) ∈ E′

The functionProb ′ is defined for each((u, α), (v, β)) ∈ E′

asProb ′((u, α), (v, β)) = Prob(u, v).

Observe that the gameG′ faithfully simulates the game
G in the first component of states, and in the second com-
ponent it merely counts the actual number of steps after the
last occurrence of a vertex ofP . Hence, for every strategy
σ′ in G′ there is a corresponding strategy inG which “for-
gets” the second component of vertices (and vice versa). If
the number of steps outside ofP exceeds2|V | then the sec-
ond component of a state changes to⊥, which remains there
forever. Hence, a state containing⊥ is reachable (with pos-
itive probability) inT [(s, 1), σ′] iff there is a path of length
greater than2|V | in T [(s, 1), σ′] which does not contain
states ofV B. Let P ′ = Q × {1, . . . , 2|V |}. Now it is easy
to check that there is a(P,Q)-winning strategy ins iff there
is a(P ′, ∅)-winning strategy ins′ = (s, 1).

The existence of a(P ′, ∅)-winning strategy ins′ is decid-
able in polynomial time [8, 6]. Moreover, if there issome
winning strategy, then there is also a memoryless and de-
terministic winning strategyσ′. Hence, we can construct a
(P,Q)-winning HD strategy with finite memory fors from
the strategyσ′. Since the only information that is kept in
memory is the actual value of the counter, we obtain a poly-
nomial upper bound on the size of the memory.
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A.4. A Proof of Lemma 3.8

We reduce the acceptance problem for alternating LBA
(which is known to beEXPTIME -complete [14]). Anal-
ternating LBA is a tupleM = (Q,A,Γ, q0,⊢,⊣, δ, P )
whereQ is a finite set ofcontrol states, A is a finite in-
put alphabet, Γ ⊇ A is a finite tape alphabet, q0 ∈ Q
is the initial control state,⊢,⊣ ∈ Γ are the left-end and
the right-end markers,δ : Q×Γ → 2Q×Γ×{L,R} is a tran-
sition function, andP = (Q∀, Q∃, Qacc, Qrej ) is a parti-
tion ofQ intouniversal, existential, accepting, andrejecting
states, respectively. We can safely assume thatQ ∩ Γ = ∅,
q0 ∈ Q∃, δ(q, A) = ∅ for all q ∈ Qacc ∪Qrej , andδ(q, A)
has exactly two elements(q1, A1, D1), (q2, A2, D2), where
q1 6= q2, for all q ∈ Q∀ ∪Q∃. A computational treefor M
on a wordu ∈ A∗ is a treeT satisfying the following: the
root ofT is (labeled by) the initial configuration foru, and
if N is a node ofT labeled by a configuration with a con-
trol stateq, then the following holds:

• if q is accepting or rejecting, thenN is a leaf;
• if q is existential, thenN has one successor labeled by

a configuration reachable from the configuration ofN in
one step.

• if q is universal, then the successors ofN are the two con-
figurations reachable from the configuration ofN in one
step.

M acceptsu iff there is a finite computational treeT such
that all leafs ofT are accepting configurations. We can
safely assume thatall computational trees forM are finite.

LetM = (Q,A,Γ, q0,⊢,⊣, δ, P ) be an alternating LBA
and u ∈ A∗ an input word. We construct (in polyno-
mial time) a1 1

2 gameG(M, u) = (V,E, (V�, V©),Prob)

and an objective(ν, ϕ) whereϕ ∈ L(F=1,G=1) such
that player� has a(ν, ϕ)-winning HD (or HR) strategy
in a distinguished vertexg(1, 1) ∈ V iff M acceptsu.
Configurations ofM are written as words over the al-
phabetΞ = Q ∪ Γ in the standard way; for example, the
initial configuration foru is written asq0⊢u⊣. Another
standard result is that one can efficiently compute the set
Comp(M) ⊆ Ξ6 of all compatible 6-tuplessuch that
for each configurationc (written as a word overΞ) we
have thatc′ ∈ Ξ∗ is a one-step successor ofc iff c′ has
the same length asc and for all 1 ≤ i ≤ |c|−2 we
have that(c(i), c(i+1), c(i+2), c′(i), c′(i+1), c′(i+2)) ∈
Comp(M).

Let n = |u| + 3. The structure ofG(M, u) is shown in
Figure 3. The setV consists of the following vertices:

• g(j, i), wherej ∈ {1, 2} and1 ≤ i ≤ n+1;
• c(j, i, Y ), wherej ∈ {1, 2}, 1 ≤ i ≤ n+1, andY ∈ Ξ;
• s(j, [q, A]), wherej ∈ {1, 2}, q ∈ Q, andA ∈ Γ;
• x(j, q), wherej ∈ {1, 2} andq ∈ Q;
• ℓ(1), ℓ(2), a(1), a(2).

The setE contains the following transitions:

• g(j, i) → c(j, i, Y ) andc(j, i, Y ) → g(j, i+1) for all j ∈
{1, 2}, i ∈ {1, · · · , n}, andY ∈ Ξ;

• g(j, n+1) → s(j, [q, A]) for all j ∈ {1, 2}, q ∈ Q, and
A ∈ Γ;

• s(j, [q, A]) → s(j, [q, A]) for all j ∈ {1, 2}, A ∈ Γ, and
q ∈ Q whereq is accepting or rejecting;

• s(j, [q, A]) → x(j, q′) for all j ∈ {1, 2}, A ∈ Γ, and
q, q′ ∈ Q whereq is existential or universal andδ(q, A)
contains a triple of the form(q′, B,D);

• x(j, q) → ℓ(j) for all j ∈ {1, 2} andq ∈ Q;
• ℓ(1)→g(2, 1), ℓ(1)→a(1), ℓ(2)→g(1, 1), ℓ(2)→a(2);
• a(1) → a(1), a(2) → a(2).

The setV© consists ofℓ(1), ℓ(2) and alls(j, [q, A]) where
q ∈ Q∀. The other vertices belong toV�. The functionProb

always assigns the uniform probability distribution over the
set of outgoing transitions.

A play starts ing(1, 1). The intended scenario is the
following: Player� successively “guesses” the configura-
tions ofM by choosing appropriate moves in the vertices
g(1, 1), · · · , g(1, n) andg(2, 1), · · · , g(2, n). In the states
g(1, n+1) andg(2, n+1), player� chooses the successor
s(1, [q, A]) ands(2, [q, A]) whereq is the control state and
A the scanned tape symbol in the configuration just guessed.
If q is accepting or rejecting, there is a loop on the corre-
sponding vertex (we call these vertices accepting/rejecting).
If q is existential, in the next move player� chooses one
of the two control states which can be entered byM after
performing one computational step in the configuration just
guessed. Ifq is universal, this choice is random. In the next
guessing phase, player� will use the chosen control state
and hence he “guesses” the configuration chosen in the pre-
vious round. This goes on until a loop is reached, which can
happen either in a accepting/rejecting vertex, or in the ver-
ticesa(1), a(2). The formulaϕ constructed below ensures
that player� cannot violate this scenario, cannot use ran-
domized moves, and has to entera(1), a(2), or an accept-
ing vertex with probability one. It turns out thatM accepts
w if player� has a HD (or HR) strategy such thatϕ is sat-
isfied ing(1, 1).

Now we describe the formulaϕ in detail. For eachv ∈
V we fix a fresh atomic propositionpv which is valid only
in v. Slightly abusing notation, we writev instead ofpv. We
put

ϕ ≡ Init ∧ Succ ∧ Ctrl ∧ Choice ∧ Accept ∧ NoRnd

The subformulaInit says that the initial configurationw =
q0⊢u⊣ is guessed fromg(1, 1) at the beginning of a play.
Hence,Init ≡ ∧n

i=1 F=1c(1, i, w(i)). Note that if player�
selects, e.g.,c(1, 1,⊢) instead ofc(1, 1, q0), the formula
F=1c(1, 1, q0) is not satisfied ing(1, 1); this is because
the vertexc(1, 1, q0) can then be visited only after pass-
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c(2, 1, Ym)

c(2, 1, Y1)

g(2, 3)g(2, 2)g(2, 1) g(2, n+1)

c(2, 2, Ym)

c(2, 2, Y1)

s(2, [r, B])

s(2, [q, A]) x(2, r)

x(2, p)

c(1, 1, Ym)

c(1, 1, Y1)

g(1, 3)g(1, 2) g(1, n+1)

c(1, 2, Ym)

c(1, 2, Y1)

s(1, [r, B])

s(1, [q, A]) x(1, r)

x(1, p)

ℓ(1) a(1)

ℓ(2) a(2)

g(1, 1)

Figure 3. The structure of G(M, w)

ing through the vertexℓ(1), which enters thea(1)-loop with
probability1/2.

The subformulaSucc is of the formSucc1 ∧ Succ2.
Succ1 says that whenever the vertexg(1, 1) is entered, one
of the following conditions holds:

• the control state of the configuration which is to be
guessed fromg(1, 1) is accepting;

• for every1 ≤ i ≤ n−2, the symbols chosen ing(1, i),
g(1, i+1), g(1, i+2) and ing(2, i), g(2, i+1), g(2, i+2)
form a compatible 6-tuple.

For all X1, X2, X3 ∈ Ξ, let C(X1, X2, X3) be the set of
all triples Y1, Y2, Y3 such that(X1, X2, X3, Y1, Y2, Y3) ∈
Comp(M). The formulaSucc1 looks as follows:

G=1

„

g(1, 1) ⇒
`

Acc ∨
n−2̂

i=1

_

~X∈Ξ3

Pos(1, i, ~X)
´

«

where Acc ≡ ∨
q∈QAcc,A∈Γ

F=1s(1, [q, A]) and

Pos(1, i, ~X) stands for

F=1
c(1, i, ~X1)∧ F=1

c(1, i+1, ~X2)∧ F=1
c(1, i+2, ~X3)∧ F=1

ψ

whereψ is the formula

a(1)∨
_

~Y ∈C( ~X)

c(2, i, ~Y1)∧F=1`

c(2, i+1, ~Y2)∧F=1
c(2, i+2, ~Y3)

´

The formulaSucc2 says analogous conditions about the ver-
texg(2, 1) and is implemented similarly asSucc1.

The subformulaCtrl is of the formCtrl1 ∧Ctrl2. Ctrl1
says that the vertex chosen fromg(1, n+1) corresponds to
the control state and the scanned tape symbol in the config-
uration just guessed. This can be written as follows:

^

1≤i<n
q∈Q

G=1

„

c(1, i, q) ⇒
_

A∈Γ

`

F=1
c(1, i+1, A)∧F=1

s(1, [q, A])
´

«

Ctrl2 encodes an analogous property for the vertex chosen
from g(2, n+1).

The subformulaChoice ≡ Choice1 ∧Choice2 says that
whenever a vertex of the formx(1, q) (orx(2, q)) is visited,
then the configuration guessed next will haveq as its con-
trol state. We write justChoice1 (Choice2 is constructed
analogously):

^

q∈Q

G=1

„

x(1, q) ⇒ F=1`

a(1) ∨
_

A∈Γ

s(2, [q,A])
´

«

The subformulaAccept says that the probability of vis-
iting a(1), a(2), or one of the accepting vertices, is equal to
one:

F=1

„

a(1) ∨ a(2) ∨
_

j∈{1,2},q∈Qacc,A∈Γ

s(j, [q,A])

«

Note that due to the assumption that every computational
tree ofM is finite, the previous formulae already guarantee
that player� surely(i.e., in thenon-probabilisticsense) en-
tersa(1), a(2), or an accepting/rejecting vertex after finitely
many rounds. Hence, there is no infinite path in the com-
putational tree constructed by the play, and the subformula
Accept guarantees that all leafs in this tree are accepting.

Finally, the subformulaNoRnd says that player� does
not use randomized moves. This subformula is actually
needed only if player� uses a HR strategy (NoRnd is re-
dundant for HD strategies). This is implemented simply by
saying that whenever a vertex ofV� with more than one
successor is visited, then one of its successors is visited with
probability one in the next move. For example, forg(1, 1)
the formula looks as follows:

G
=1

„

g(1, 1) ⇒
_

α∈Ξ

F=1
c(1, 2, α)

«

The formulae for the other vertices ofV� look similarly.
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