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Abstract that deterministic strategies can be seen as restricted ran
domized strategies, where one of the outgoing transitions

We consider stochastic turn-based games where the winnindias probabilityl. Each pair of strategie§s, w) for play-
objectives are given by formulae of the branching-timedogi ers ] and ¢ determines a unique Markov chad(o, )
PCTL. These games are generally not determined and win-where the states are finite paths@h andwu — wuu’
ning strategies may require memory and/or randomization. with probability = iff (u,u’) is a transition in the game
Our main results concern history-dependent strategies. Inand z is the probability chosen by playér or ¢ (when
particular, we show that the problem whether there exists v € Vg or u € V;, respectively), or the fixed probabil-
a history-dependent winning strategy ig-player games ity of the transition(u, u’) whenu € V. A winning ob-
is highly undecidableeven for objectives formulated in the jectivefor player(] is some property of Markov chains that
L(F=%/8 F=1 F>% G=1) fragment of PCTL. On the other is to be achieved. Avinning strategyor player(lis a strat-
hand, we show that the problem becomes decidable (and iregy ¢ such that for every strategy of player ¢ the
fact EXPTIME-complete) for theC(F~1, F~°, G=') frag- Markov chain G(o,m) has the desired property. Usu-
ment of PCTL, where winning strategies require only finite ally, the aim of player) is to falsify this property, which
memory. This result is tight in the sense that winning strate means that his winning objective is dual. A winning strat-
gies for(F=!, F7% G=!, G") objectives may already re- ~ egy for player( is a strategyr such thatz (o, 7) doesnot
quire infinite memory. have the property for any strategyof player]. A game is
determinedf one of the two players has a winning strat-
egy in every vertex.l%—player games are “restricted”
2%—player games wher&, = (. All of the above intro-
duced notions (except for determinacy) are applicable also
. . . to 13-player games.
In this paper we consider stochastic turn-based games
where the winning objectives are given by formu- Infinite games have been studied in various fields
lae of the branching-time logic PCTL. Formally, a of mathematics and computer science (recently written
2%-player gamé? is a finite directed graph where the ver- overviews are, e.g., [15, 5]). For example, model-checking
tices are partitioned into three subsgts, Vo, V. A play problems for certain temporal logics (such as the modal
is initiated by putting a token on some vertex. The to- p-calculus) can be naturally reformulated as the ques-
ken is then moved from vertex to vertex by two playéns, tions to determine the winner in parity games, and a
and ¢, who are responsible for selecting outgoing transi- lot of research effort has been invested into this prob-
tions in the vertices oV andV,, respectively. In the ver-  lem. Our work is mainly motivated by applications of
tices of V», outgoing transitions are chosen randomly ac- games in system design, where systems are modeled as
cording to a fixed probability distribution. strategyspeci- games, playef] corresponds to a “controller” which de-
fies how a player should play. In general, a strategy may ortermines the system behaviour in a subset of controllable
may not depend on the history of a play (we say that a strat-states, playek) models the environment, and the win-
egy is history-dependent (Hpr memoryless (M) and ning objectives for playdr] correspond to the desired prop-
the transitions may be chosen deterministically or ran- erty of the system. The task is to find a controller (a strategy
domly (deterministic (Dandrandomized (R}trategies). In ¢ for playerd) such that the desired property holds no mat-
the case of randomized strategies, a player chooses a prolier what the environment does (i.e., the strategg win-
ability distribution on the set of outgoing transitions.tdo  ning). As for stochastic games, the majority of existing
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results concern games witlinear time winning objec-
tives which are specified by some property of runs in
Markov chains. Examples include quantitative reachabil-
ity objectives (the probability of all runs that hit a “good”
state is at leasp), qualitative Blichi objectives (the prob-
ability of all runs along which a “good” vertex appears
infinitely often is 1), qualitative/quantitative parity objec-
tives [6, 7], Rabin and Street objectives [4], etc. In this
paper we studypranching-timeobjectives that are formal-
ized as formulae of the branching-time probabilistic logic
PCTL.

Previous and related work.In [1], it is shown that winning
strategies for PCTL objectives may require memory and/or
randomization in general. Hence, the MD, MR, HD, and HR
strategies (see above) need to be considered separaily. It

also proven that the problem whether there exists a winning

MD strategy in a giveri%—player game for a given PCTL
objective isSNP-complete. MR strategies were considered in
[13], where it is shown that the existence of a winning MR
strategy in a give@%-player game for a given PCTL objec-
tive is iInEXPTIME . The construction also yield3SPACE
upper bound fon%—player games.

NP-complete (o2, = NPNP complete, resp.). Let us note
that randomized strategies are strictly more powerful than
deterministic ones even for qualitative objectives (a sim-
ple example is given in Section 3.1). The existence of a
winning MR strategy for playef] in 1%-player and2%-
player games with general PCTL objectives is known to
be in PSPACE andEXPTIME , respectively [13]. We did
not manage to lift theNP and X, lower bounds, and we
also failed to improve the mentioned upper bounds. On
the other hand, there is some indication that lowering the
bounds belowwp SPACEwould be quite difficult. We use the
same argument as Etessami & Yannakakis in [11], where
it is shown that the S8UARE-ROOT-SUM problem is effi-
ciently reducible to the quantitative reachability prabor
one-exit recursive Markov chains. An instance o3 RE-
RooT-Sum is atuple(ay, - - - , a,, b) Of integers. The ques-
tion is whethery_!" | \/a; < b. This problem is known to
be inPSPACE, but its exact complexity is a long-standing
open problem in computational geometry. Hence, an effi-
cient reduction of SUARE-ROOT-SuM to another problem

P € PSPACE can be seen as an indication that the com-
plexity of P is hard to improve. We show thatQBARE-
RooT-SuMm is efficiently reducible to the problem whether

To prevent misunderstanding, we should say that theplayer] has a winning MR strategy in3-player games

logic PCTL can also be interpreted directly on games (or
Markov decision processes). The decidability of the model-

checking problem for stochastic games and PCTL was es-
tablished in [9] as a simple consequence of the results abougtr

guantitativew-regular games. However, this is a different
problem which is not directly related to the subject of this
paper (as we shall, the results about stochastic games wit
branching-time winning objectives are quite differentfro
the results about model-checking).

Main results. We start by observing that stochastic games
with branching-time objectives are not determined, even if
the objectives are formulae of tt#F=", F>°) fragment of
PCTL (in general£(Y1,---,Y,,) denotes the fragment of
PCTL containing the connectivés, - - - ,Y,,, conjunction,
and disjunction (negation can be applied only to atomic

propositions)). As a warm-up, we present some simple re-

with PCTL objectives. Let us note that the technique used
in the proof is different from the one of [11].

The main results of this paper concern history-dependent
ategies. First, we answer the open question formulated
in [1] by showing that the existence of a winning HD (or
HR) strategy inl ;-player games ikighly undecidableven

l?or objectives of theC(F=*/8, F=! F>°, G=1) fragment of

PCTL. More precisely, we show that the above problem is
complete for thex! level of the analytical hierarchy. This

is already a deep result relying on specific tricks which
were developed to encode and simulate a computation of
a given nondeterministic Minsky machine. A slight mod-
ification of the proof reveals that the existence of a win-
ning HD (or HR) strategy witHinite memonyin 1%—p|ayer
games withC(F=5/% F=1 F>° G=!) objectives is also un-
decidable (and complete for the level of the arithmeti-

sults about memoryless strategies in Section 3.1. We showcal hierarchy). The role of the quantitativeF® opera-

that the problem whether playéerhas a winning MD strat-
egy in a given2%—player game for a given PCTL objec-
tive is ¥5 = NP"P complete. TheZ, lower bound holds
even for the£(F=! F~%) fragment of PCTL. Since the
existence of a winning MD strategy for player in 1%-
player games with PCTL objectivesid?-complete [1], we
yield a full complexity classification for MD strategies.&h
lower complexity bounds carry over to MR strategies and
hold even forqualitative PCTL objectives for which we

give the matching upper bounds—we show that the exis-

tence of a winning MR strategy for playet in 1%—p|ayer
(or 2%—player) games witlgualitative PCTL objectives is

tor is very important in these undecidability results. Imge
eral, qualitative questions tend to be easier than quantita
tive ones (this also holds for PCTL and certain classes of
infinite-state Markov chains [10, 3, 2]; note that the plays
determined by history-dependent strategies are infiméess
Markov chains). Hence, we turn out attentiorgumalitative
PCTL objectives. We start by examining the fragments with
qualitative forms of reachability and safety connectives,
F*¢and G*¢, wherex € {=,>,<} andp € {0,1}. Even

in this simplified setting, the results are not uniform and
different combinations of connectives lead to quite differ
ent results. First, we show that the role 6fF® operator



in the aforementioned undecidability proofasvablycru- A o-field over a setX is a setF C 2% that includes
cial in the sense that the existence of a winning HD strat- X and is closed under complement and countable union.
egy in11-player games withC (F=", F>0,G™') objectives A measurable spaces a pair (X, F) where X is a set
is EXPTIME complete. Let us note that called sample spacand F is a o-field over X. A prob-
ability measureover measurable spad¢e&, F) is a func-

the EXPTIME upper bound is proven in two phases.
¢ PP P P tion P : F — R=9 such that, for each countable collection

First, we show that the existence of a winning HD strat- . S
egy in 11-player games witle(F=L, F>%, G=1) objec- {Xi}ier of pairwise disjoint elements of, P (|, ; Xz) =
tives is effectively reducible to the existence of a win- 4~i€rl P(Xi)j and moreovef(X) = 1. .A probabilistic
ning HD strategy inl 1-player games witmixed linear- ~ SPac€is a triple (X, ', P) where (X, F) is a measurable
timeobjectives, which are essentially conjunctions of one SPac€ an@ is a probability measure ovex’, 7).
qualitative-Bichi and onesure-Bichi objective. Thisre-  Markov chains. A Markov chain is a triple
duction is exponential. Then, we show that the existence7 = (S, —, Prob) where S is a finite or countably infi-
of a winning HD strategy iﬂ%-player games with mixed  nite set ofstates — C S x S is atransition relation and
linear-time objectives is if. Note that if we had a con-  Prob is a function which to each transition— ¢ of 7 as-
junction of two qualitative-Blichi or two sure-Buchi ob-  signs its probabilityProb(s — t) € (0, 1] so that for every
jectives, we could simply apply known results. Tothe best s € S we haved", , Prob(s — t) = 1.
of our knowledge, the games where the winning objec- |y the rest of this paper we also write™ ¢ instead of
tives are “mixtures” of stochastic apq non-stgchastlc '€ prob(s — t) = x. A pathin 7 is a finite or infinite se-
quirements have not yet bgen _epr|C|tIy cons_ldered (per'quencau = s0, 51, Of states such that — ;1 for ev-
h.aps. due to .the lack of motivation). The solution we pro- eryi. We also uses(i) to denote the state, of w (by writ-
vide is not trivial. ing w(i) = s we implicitly impose the condition that the
° The_lEXE;I'IME. lower bound holds even for |ength ofw is at least + 1). The prefixsg, s1, . .., s; of w
L(F~",G™") objectives and for both HD and HR g genoted bys'. A runis an infinite path. The sets of all fi-
strategies. nite paths and all runs af are denoted'Path and Run, re-
Our construction also reveals that a winning strat- Spectively. Similarly, the sets of all finite paths and rurett
egy in 1%-player games witlC(F~!, F>°, G=1) objectives  startin a givens € S are denoted’Path(s) and Run(s),
needs only a finite memory whose size is exponen-respectively.
tial in the size of a given objective. This result daest Eachw € FPath determines dasic cylinderRun(w)
hold for £(F7', F?° G= G>°) objectives—we show  Which consists of all runs that start with To everys € S
that evenL(F~>°, G>°) objectives require infinite mem- we associate the probabilistic spadeun (s), F, P) where
ory in general. In this sense, the previous result is tight. 7 is theo-field generated by all basic cylindeftun(w)
Many interesting questions remain open. For example, it Wherew starts withs, and? : 7 — [0, 1] is the unique
is not clear whether the existence of a winning strategy in Probability function such thaP(Run(w)) = II*'x;
1%—player games with qualitative PCTL objectives is decid- wherew = sg, - - - , s,, ands; 4 554 forevery0 < i <m
able or not (all we know is that these strategies may require(if m = 0, we putP(Run(w)) = 1).

infir!i'Fe memory). Another question is whether some of our e logic PCTL. The logic PCTL, the probabilistic exten-
positive results can be extended2t-player games and/or  sjon of CTL, was introduced by Hansson & Jonsson in [12].
to concurrentstochastic games with branching-time win- et Ap = {p,q,...} be a countably infinite set aftomic

ning objectives. Our knowledge about randomized strate-propositions The syntax of PCTL formulae is given by the
gies is also quite limited, we have not addressed the issugollowing abstract syntax equations:

of fairness, and so on. These problems are left for future ;. _ p | =p | BIVDs | BiADs | XTCD | DU Dy
research. Due to space constrains, some proofs had to be
shifted into Appendix A. Herep € Ap, 0 € [0,1], andx € {<, <, >, >, =, #}.

Let 7 = (S,—, Prob) be a Markov chain, and let :

g . ) ; .
2 Basic Definitions Ap — 2° be avaluation The semantics of PCTL is defined

below.
. . . - sE"p iff sev(p)
We start by recalling basic notions of probability theorgt L s p itt s v(p)

A be afinite set. Aprobability distributionon A is a func- | LY By vy ff s =¥ Dy ors =Y Bs

tion f: A — [0,1] such thaty_ _, f(a) = 1. A distribu- sSEY ® ADy iff s =Y & ands = Oy

tion f isrationalif f(a) € Q for everya € A, andDirac if sEYX*d  iff P({w e Run(s) | w(l) B ®}) x o
f(a) = 1forsomea € A. The set of all distributions oA s =Y ®1UMe dy iff P{w € Run(s) |35 >0: w(j) =¥ &2
is denotedD(A). andw(i) =¥ @1 forall0 <i < j}) ™o



Note that in our version of PCTL syntax, the negation can finite memorywhich are formally defined as paifs, f)

be applied only to atomic propositions. Thisis norestigti  where A = (Q,V, 0, qo) is a deterministic finite-state au-

because the syntax is closed under dual connectives and re&omaton over the alphabét of vertices andf is a func-

lations: For everyx € {<,<,> > = #}, let x be the tion which to each paifq,v) € Q x Vg assigns a prob-

complement ofx (for example, ifx is <, thenx is >). ability distribution on the set of outgoing transitions af

The negation ofX ¥¢® and®, U™? &, then correspondsto  The pair(A4, f) determines a unique strategy.A, /) such

X™ed and®, U2 &,, respectively. The ¢ and G*¢ op- thato(A, f)(wv) = f(q,v), whereq = 6(qo, wv). Intu-

erators are defined in the standard way'?# stands for itively, the states of4 represent a finite memory of siz@|

£t U2 &, and G°d stands fort UX!—¢ ~&, wherex is where selected properties of the history of a play are stored

<, >, <, >, =, or, depending on whethex is >, <, >, Hence, we can define the following four classes of strate-

<, =, or #, respectively. gies: MD, MR, HD, and HR, where MDC HD C HR
Various natural fragments of PCTL can be obtained by @d MDC MR C HR, but MR and HD are incomparable.

restricting the PCTL syntax to certain modal connectives Strategies for playe¢ are defined analogously. Each pair

and/or certain operator/number combinations. For example (o, 7) of strategies for player] and¢$ determines a unique

the qualitative fragment of PCTL is obtained by restrict- playof the gameZ, which is a Markov chaiid(o, ) where

ing the allowed operator/number combinationssto(’ and V* is the set of states, andy, — wu’ iff (u,u') € FE and

‘x 1" Hence,aU<'b v F~% is a qualitative PCTL for-  gne of the following conditions holds:

mula. In this paper we also consider fragments with unary

reachability and safety connectives. Formally, for each tu ® v € Vo andProb(u,v') = x;

pleYy,---,Y,, where each; is of the form X*¢, F*¢, or e u € Vg ando(wu) assigns to (u, u');
G™¢, we define the(Y7, - - -, Y,,) fragment of PCTL: o u € Vi, andr(wu) assignse to (u, u’).
O = p|op | BIVDs | BiADs | Vid | oo | Yad An objectiveis a pair (v, ¢), wherev : Ap — 2V is a

valuation andp a PCTL formula. Note that each valuation
For example, BO(b v G=043(—¢ A F<O3q)) is a formula ¥ : Ap — 2V determines a valuation : Ap — 2V de-

of L(F>?, G=043 F<0%) Sometimes we also use formu- fined by7(a) = {wu € V* | u € v(a)}. For a given
lae of the formp = ® which stand forp Vv . objective(v, ¢), each state of+(o, 7) either does or does
, L L ) not satisfyp. A (v, p)-winning strategyfor player(] in a
Games, strategies, and objectives.A 25-player games  yeriexy ¢ V is a strategys such that for every strategy
a'tupIeG = (V, E, (Vo, Vo, VO)a_Pmb) whereV’ IS a fi- 7 of player ) we have that =" . Similarly, a (v, ¢)-
nite set ofvertices £ C V' x V'is the set oftransitions winning strategy for playe¢ in a vertexv € V is a strat-
(Vo, Vo, Vo) is a partition ofl/, and Prob is aprobability egy m such that for every strategy of player] we have
assignmentvhich to eachy € V; assigns a rational proba- 15t £ . The games is (v, p)-determinedf there is

bility distribution on the set of its outgoing transitiorisor a (v, ¢)-winning strategy for one of the two players in ev-
technical convenience, we assume that each vertex has aéry vertexv of .

least one outgoing transition. The game is played by two
players,[] and ), who move a single token from vertex
to vertex along the transitions df. Player(] selects the
moves in thé/; vertices, and playep selects the moves in
the V,, vertices. Transitions in th&, vertices are chosen
randomly according to the corresponding probability distr
bution. Game graphs are drawn in the standard way; ver-3. The Results

tices ofV, Vi, andVy are depicted as squares, diamonds,

and circles, respectively. Probability distributions asei-  We start by observing that stochastic games with branching-
ally uniform, which is indicated by arcs connecting the out- time objectives are not determined, even if these objestive
going transitions ol vertices. Astrategyfor player is are taken from theQ(le, |:>0) fragment of PCTL. Con-

a functiono which to eachvv € V* Vg assigns a probabil-  sider the following game:

ity distribution on the set of outgoing transitions @f We
say that a strategy is memoryless (Mjf o(wv) depends

just on the last vertex, and deterministic (D)if o(wv) ( Wv
is a Dirac distribution for eachvv € V*V. Consistently % ] % (9 & (9
a b c d

1%—player gamesare 2:-player games where the set
Vi, is empty. Formally, a 5-player game is a tuplé =
(V. E,(Va, Vo), Prob) where all elements have the ex-
pected meaning.

S

with [1, 13], strategies that are not necessarily memosyles

are calledchistory-dependent (Hand strategies that are not

necessarily deterministic are callehdomized (R)A spe- Let v be a valuation which defines the validity of the propo-
cial type of history-dependent strategies are strategits w = sitions a, b, ¢, d as indicated in the above figure, and let



o =F'(ave)VF'(bVvd) Vv (F % AF°d). Now

it is easy to check that none of the two players héas &)-
winning strategy in the vertex regardless whether we con-
sider MD, MR, HD, or HR strategies.

3.1. Memoryless Strategies

In [1], it is shown that the problem whether there exists

a winning MD strategy in a given%-player game for a
given PCTL objective iNNP-complete. In fact, th&lP lower
bound holds even for th€(F=!) fragment of PCTL. The
following theorem gives a complexity classification Rg
player games.

Theorem 3.1. The existence of a winning MD strategy

for playerd in 2%—player games with PCTL objectives is
3, = NPYP complete. Th&, lower bound holds even for
L(F~1, F~%) objectives and for both MD and MR strate-
gies.

Proof. A ¥, formulais a formula of the form

Efﬂl,"' 7$nV?Jla"' 7ymB

wheren, m € N andB is aA, vV-expression over the (pos-
sibly negated) variables,, - - - , z,,y1, -, ym. The prob-
lem whether a givert, formula is valid isX,-complete
[14].

Lety = dzq,--- , 2, VY1, ,ym B. We construct a
23-player gameG(), a valuationv, and a formulay
L(F=!, F>% such that playef] has a(v, ¢)-winning MD
(or MR) strategy in a distinguished vertexof G() iff i
is valid. Let us fix two setP = {p;,p; | 1 < i < n}
and@ = {¢;,q; | 1 < j < m} of fresh atomic proposi-
tions, and lef?; = P\{pi}, ]32‘ = P\{]/Q\Z‘}, Q]‘ = PU{(]]‘},
Q; = PU{g;}forall1 < i <nandl < j < m.The struc-
ture of G(v) together with the valuation are shown in the

following figure:

YYYY Y

Qm  Qm

Let
o= < \/ (F%; /\F>0§j)> v (EA /\(F_lpi\/F_lﬁi))
j=1 i=1

where B is the formula obtained fron3 by substitut-
ing each occurrence af;, —x;, y;, and—y; with F=1p;,
F='p;, F~%g;, and F°g;, respectively. Intuitively, playér]
chooses an assignment for the variables - - , 2, (x; is

set to true or false by selecting the transition to a vertéx sa
isfying p; or p;, resp.). Note that playér cannot use ran-
domized moves because then the formufd# v F=1p;
would not hold. Similarly, player) chooses an assign-
ment foryy, -+, y.,. Observe that playef) cannot use
randomized moves either because this would make some
F~9%; A F~Yg; true. Now it is easy to check thatis valid

iff player O has a(v, ¢)-winning MD (or MR) strategy in

the vertexv. This establishes theg, lower bound.

TheX; upper bound holds for all PCTL objectives. First,
let us note that the model-checking problem for PCTL for-
mulae and Markov chains is R[12]. Hence, it suffices to
“guess” a winning strategy for player], and then ask the
NP oracle whether there is a strategyof player{ such
thatG(co, ) doesnot satisfy a given objective. The answer
of the oracle is then simply negated. O

The complexity classification for MD strategies is thus es-
tablished. As for MR strategies, thdP and X, lower
bounds still hold. However, we managed to provide the
matching upper bounds only for the subclassgotlita-
tive PCTL objectives. Note that randomized strategies are
more powerful than deterministic ones even for qualita-
tive objectives—consider the formulaXp,, A X~ %p,, and

a simple game with three verticeg, u,v € Vg where

t — u,t — v,u — u,andv — v. The propositiong,, and

p, hold only inu andw, respectively. Obviously, there is
no winning(v, ¢)-winning MD strategy, but there are many
(v, p)-winning MR strategies.

Theorem 3.2. The existence of a winning MR strategy for
player in 13-player (or 21-player) games witjualita-
tive PCTL objectives iNP-complete (o2, = NPNP com-
plete, resp.).

Proof. A straightforward induction on the structure of a
qualitative PCTL formulay shows that the (in)validity
of ¢ does not depend on the exact values of transition
probabilities. It only matters which of the transition have
zero/positive probability. Hence, in the casel@f—player
games, it suffices to “guess” the subset of outgoing transi-
tions in each vertex dfi; which should have positive prob-
ability, and then verify that the guess was correct by a (poly
nomial time) PCTL model-checking algorithm [12]. The
Yo upper bound foQ%-pIayer games is established anal-
ogously (see the proof of Theorem 3.1). O

The existence of a winning MR strategy for playérin
11-player and21-player games with general PCTL objec-
tives is known to be ilrPSPACE andEXPTIME , respec-
tively [13]. We did not manage to lift thElP and>; lower
bounds, and we also failed to improve the mentioned up-
per bounds. At least, we provide some evidence that lower-
ing these bounds beloRSPACE:is difficult (see the discus-
sion in Section 1). As a byproduct of this construction, we



obtain an example of a%—player game (wher&- = 0)
and an objectivér, ¢) wherep € £(X>° U='/2) such
that the only(v, ¢)-winning MR strategy assigns irrational
probabilities to transitions.

Theorem 3.3. The SQUARE-ROOT-SUM problem is effi-
ciently reducible to the problem whether playerhas a
winning MR strategy irl%—player games with PCTL objec-
tives.

3.2. History-Dependent Strategies

The results presented in this section constitute the main co
tribution of our paper. We start with the negative ones.

Theorem 3.4. The existence of a winning HD (or HR) strat-
egy in11 games withc(F=*/8, F=! F>% G=') objectives
is undecidable (an&}-hard).

Proof. The result is obtained by reduction of the prob-
lem whether a given nondeterministic Minsky machine with
two counters initialized to zero has an infinite computa-
tion such that the initial instruction is executed infinjtel
often (this problem is known to b&?!-complete). For-
mally, a nondeterministic Minsky machine with two coun-
terscy, co is a finite sequencé of numbered instructions
1:insq, - - -, nuins,, where eachns; is of one of the fol-
lowing forms (wherej € {1,2}):

e c; = c;+1; goto k
o if ¢;=0 then goto k else cj := cj—1; gotom
e goto {k or m}

Here the indexek, m range ovef 1, - - - , n}. We can safely
assume that

e ins; # ins; for ¢ # j (in the rest of this proof we do not
strictly distinguish between instructions and their cerre
sponding indexes);

e ins; does not contain theoto i statement;

e insy = c1 := c1+1; goto 2.

A configurationof M is a triple [ins;, v1, v2], Whereins;
is the instruction to be executed, and v, € Ny are the
current values ofy, co. A computational step— between
configurations is defined in the expected wayregurrent
computationof M is an infinite computation initiated in
[ins1, 0, 0] along whichins; is executed infinitely often. As
we already mentioned, the problem whether a gixdrhas
a recurrent computation }-complete.

Let M 1:insy, -+ ,n:ins, be a nondetermin-
istic  Minsky machine. We construct al; game
G(M) (V,E,(Vg, Vo), Prob) and a formula
¢ € L(F™/8 F>° F=1 G=!) such that playef] has
a winning HD or HR strategy in a vertéxo, 1, res;) € V
iff M has a recurrent computation.

We define the game=(M) incrementally (the sets
V and E are initially empty). For the sake of sim-
plicity, we also introduce redundant vertices that are
not reachable from the initial verteXq,1, res;). Let
S = {incy, inca, decy, deca, resy, resa, nil}.

eForall0 < i <mn,je {1,2},ands € S we add a
vertex (g;, 7, s) to Vo, and verticest;, j, s), (ri,s) to
V. We also fix fresh atomic propositionsi, j), b(i, 7)
which will be used later.

e The outgoing transitions of the;, s) vertices are shown
in Figure 1 (bottom left).

e For each(¢;, j, s) vertex we add four new vertices 1@-.
The vertices are connected by transitions as shown in Fig-
ure 1 (left). Some of the newly added vertices satisfy the
propositions:(i, j), b(i, 7) as indicated in the figure. Note
that the structure for = 0 is slightly different.

e For each(t;, j, s) vertex we add eithef or 9 new ver-
tices (depending op ands) to Vi~ and connect them as
indicated in Figure 1 (right). The validity of the proposi-
tionsa(i, ), b(7, j) in these new vertices is also shown in
the figure.

Foralli € {0,--- ,n} andj € {1,2} we fix a fresh atomic
propositionc(i, ) whose validity is defined as follows:

e all vertices which satisfy(i, j) satisfy alsa:(i, j);

e if ins; contains thegoto k statement, then all vertices
which satisfya(k, j) also satisfyc(i, 7). Moreover, for
all s € Sthe vertex(qy, 2, s) satisfies:(i, 1), and the ver-
tex (ry, s) satisfies:(i, 2).

e no other vertices satisfy(i, 7).

Finally, we assume that for each vertexthere is a fresh
propositionp,, which is valid only inv (we write v instead
of p,, in our formulae).

Our aim is to construct the formula so that each play
of G(M) which satisfies» corresponds to a recurrent com-
putation of M. From this point on we restrict our attention
to HD strategies (at the end of this proof we show that the
use of randomized moves can easily be prohibitegjsnd
hence the presented result also applies to HR strategies).

The structure of a typical play is shown in Figure 2 (to
simplify the figure, the loops on vertices are not drawn).
First, let us realize thagveryplay of G(M) can be identi-
fied with an infinite sequence

[Z'nSl,0,0], Ty [insiv‘/lv‘/Q]v [Z'nSk, U17 U2]7 e

of extendecconfigurations ofM, where the counters can
also take thev (i.e., “infinite”) value. Of course, this se-
guence does not necessarily correspond to a valid compu-
tation of M. The way how a given play determines its as-
sociated sequence is indicated in Figure 2. Each extended
configuration in the sequence corresponds to a block of ver-
tices in the play. For example, a configuratjams;, V7, V5],
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O (ap, 1, incy)

if inspy = c; := c;41; goto k .
e = 6j i eI g0t In the whole figure:

(e, ) e /ranges ove{l,--- ,n},
(gm, 1, dec;) OO (g, 1, res;) e i ranges ovef0, - - - ,n},
if insy = if c;=0 then goto k; else c; := c; —1; gotom ° ,] ranges ove|{1’ 2}

e s ranges ovels
(res 5) 9

(am., 1, nil) O+ (ax, 1, nil)

if insy = goto {k or m}

Figure 1. The structure of G(M)

whereins; = c¢; := c1+1;goto k, is represented by a doescorrespond to a recurrent computation\dfiff the fol-
block of vertices that starts in @;, 1, s) vertex (wheres lowing conditions are satisfied:

corresponds to the instruction of the configuration which
immediately precedelns;, V1, V] in the sequence). The
counters are encoded as follows: First, observe that when a
(i, 7, s) vertex of the play is visited, playél can choose (b) The sequence contains infinitely many configurations

(a) Countervaluesin all extended configurations of the se-
guence are finite.

between transitions leading to a “gray” or “white” vertex of the form[insy, - - -].

(see Figure 1). If he chooses a gray vertex, then with prob- (c) For each pair  [ins;, Vi, Val, [insg, Uz, Us]
ability 1/2 he will make another choice in two transitions. of successive configurations we have that
Thus, playefd may decide to visit a gray verteX;-times, [ins;, Vi, Va| < [insy, U1, Us].

whereC; ranges fron to infinity. This C; represents the

value of countey. In the play of Figure 2, playér has cho- We show how to express these —conditions in

; L(F=%/8 F>% F=1 G=1). Condition (a) is easy—it suf-
sen a gray vertex from.(':ti, L, decy) vertexvy-times, and fic(es to say that When)ever @,7,s) E/e)rtex is ?\lit, there
hence the value of the first counter. must be a finite path to a vertex satisfyil@, ;). This pre-

The initial configuration[insi,0,0] requires a special ~vents playerl] from “looping” at gray vertices forever
treatment, because the counters are initially zero butean b (see Figure 1). Formally, this is encoded by the for-
come positive wheis; is revisited. This is the reasonwhy Mula

we introduced the family of zero-indexed vertices such as g, = /\ G ((ti, 4, s) = F°b(4, 5))
(904, 8), (10, 5), €tc. 0<i<n,je{l,2},s€8
Itis easy to see that the sequence Condition (b) can be expressed by the formula
) ] ) Rec = G:1< (gi,1,8) = (F7° (q1,1,5") )
[ins1,0,0],-- -, [ins;, V1, Val, [insg, U, Us], - - - (ogig\/n,ses )= 5’\6/5 )
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O O o O O
|
|
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_____ 910297

_____ ﬁm???o

The initial configuration
[insy, 0, 0] of M

Aconflguratlon[maI V1 Vg}cwhere
ins; = c1 = cCc1 ; goto

A configurationfinsy,, U1, Us]

O

M) (the loops on vertices are not drawn).

Condition (c) requires more care, and this is where we be 1/4). So, the considerefy;, 2, s) vertex satisfies the

need the F*/® operator. Let[ins;, Vi, V3], [insy, Uy, Us]

formula F=5/3¢(i,2) iff the probability of hitting a ver-

be successive configurations in our sequence, and let us firstex which satisfied(i,2) or a(k,2) and lieswithin the

consider the case wheims; = ci:=c1+1; goto k' (note

two blocks of vertices corresponding fns;, V1, V5] and

that this case is visualized in Figure 2). The definition of [insy, U1, Us] is exactlyl/2. A closer look reveals that this

G(M) guarantees that’ = k (see the outgoing transi-
tions of (r;, s) vertices in Figure 1). Thégy, 1, s) vertex
in the block which corresponds fensy, U, Us] must be
of the form (g, 1, inc1). So, all we need to check is that
U, =V, +1andU; = V5. We claim that

e Uy = Vi + 1iff the (¢, 1, s) vertex which corresponds
to the configurationins,, V1, V2] satisfies the formula
F=5/8¢(i, 1).

e Uy = V, iff the (gi,2,s) vertex which corresponds
to the configurationjins;, V1, V5] satisfies the formula
F=5/3¢(i,2).

Let us first verify the second claim. By definition(i, 2)
is valid in the (r, s) vertices and in all vertices that sat-
isfy b(i,2) ora(k,2). All runs initiated in the(g;, 2, s) ver-

tex which leave the two blocks of vertices corresponding tion of G(M

to [ins;, Vi, Va] and [insy, Uy, Us] inevitably go through
(r, s), and the total probability of all these runs ig8
(here we need our assumption that; does not contain

the goto i statement; without this assumption, it could hap-

probability is equal to the following sum of two binary num-
bers:
0.0110---0001 4 0.000111---11
——" ——

V2 U,

Obviously, this sum is equal t/2 iff Uy = V,, and we are
done.
The first claim is verified similarly. In this case, we ob-

tain that the(¢;, 1, s) vertex satisfied"=5/8¢(i, 1) iff

0.0110---0001 +0.000111---1
—— —

Vi Uy

is equal tol /2, which happens ift/; = V; + 1.

If ins; = if c1=0 then goto k'; else c;:=c;—1; goto m’
thenk = k&’ or k = m’ (again, this follows from the defini-
)). The block of vertices which corresponds to
[insy, Uy, Us] then contains a vertex of the for(yy, 1, s),
wheres is eitherres; or dec;. We need to check the follow-
ing conditions:

pen thatt = ¢ and hence the considered probability could (1) U, = V5.



2) Ifs
3) If s

rest, thenU; = Vi = 0.
decy, thenU; = V; — 1.

Similarly as above, one can verify that Condition (1) holds
iff the (¢;, 2, s) vertex in the block of vertices correspond-
ing to [ins;, Vi, V»] satisfies the formuld=5/8¢(i, 2). We
claim that Conditions (2) and (3) hold iff the;, 1, s) ver-
tex in the same block satisfies the formua®/3¢(i, 1).
Let us first consider Condition (2). The definition@f.M)
guarantees thal/; = 0 (see the outgoing transitions of
(t;, 1, res1) in Figure 1). Hence, it actually suffices to check
thatlU; = V;, which is done by the formul&=5/8¢(i, 1).
Condition (3) is handled similarly.

construction presented in Theorem 3.4. In this case, we re-
duce the halting problem for “ordinary” deterministic Min-
sky machines (i.e., there is nto {k or m} instruction,
and the last instruction isalt). The subformulakec is re-
placed with a formulaalt = F7°\/,_4(gn, 1, s), which
says that a “halting state” is reachable with positive prob-
ability. Note that if a given Minsky machine halts, then it
halts after finitely many steps and the corresponding win-
ning strategy needs only finite memory (of course, there is
no bound on its size). If the machine does not halt, there is
no winning strategy at all. O

Now we show that the previous undecidability results are

If ins; operates over the second counter, the argumentdight in the sense that the existence of a winning HD strat-
are the same as above (there is no need to change the form(@0y in 15-player games withC(F~", F~", G™") objectives
lae or the vertices in which they are supposed to hold). Fi- i decidable, and in fa@XPTIME -complete.

nally, if ins; = goto {k’ or m'}, thenk = k' ork = m/.
We need to check thdl; = V7 andUs; = Va, which
is again implemented by the formulde=>/%¢(i,1) and
F=5/3¢(i,2).

So, Condition (c) can be encoded by the formula

A

0<i<n,je{1,2},s€S

Suce G (g5, 4, 8) = F=*/%c(i, j))

Now we define the formula

Fin N\ Rec N\ Succ A NoRnd

¥

where the subformul&oRnd says that player] cannot use

randomized moves (the formula says that whenever a vertex

v € Vg is hit, there is an immediate successowafhich

is visited with probabilityl). This can be expressed using
G=! and F! operators. Hence, our proof applies both to
HD and HR strategies.

LetG be al %—player game wher¥ is the set of vertices.
A mixedobjective is a paif P, Q) whereP, () C V. A strat-
egyo for playerd is (P, Q)-winningin a vertexv € V' iff
all runs inG(o) initiated inv visit some state o infinitely
often, and the probability of all runs which visit some state
of @ infinitely often is1. Hence, a mixed objective is es-
sentially a conjunction of aure-Bichi objective specified
by P and aqualitative-Bichiobjective specified by). The
first step towards the promis&XPTIME upper bound is
the following:

Lemma 3.6. Let G be alé—player games;, a vertex of
G, and (v, ¢) an objective where) € £L(F~!, F>°, G™!).
Then there effectively existsl%—player gameG’, a ver-
tex s, of G’, and a mixed objectivéP, Q) such that
playerd has a(v, v»)-winning HD strategy in the vertex,,
iff player O has a(P, Q)-winning HD strategy in the ver-
tex s, . Moreover, the’, s/, , and (P, (Q) are computable

in time which is linear in the size @F and exponential in

On the other hand, the existence of a winning HD strategythe size of).
. 1 . . .
in 15 games with general PCTL objectives can be encodedgnce the problem of our interest is reducible to another

by a¥} formulain a straightforward way. Hence, the prob-
lem is¥1-complete.

A slight modification of the construction presented
in Theorem 3.4 reveals the following:

Theorem 3.5. The existence of a winning HD (or
HR) strategy with finite memory irl% games with
L(F=2/8 F=1 F>° G™!) objectives is undecidable.

game-theoretic problem, whose complexity is analyzed in
our next lemma.

Lemma 3.7. The existence of a winning strategy Ir%-
player games with mixed objectives is decidable in poly-
nomial time.

A direct consequence of Lemma 3.6 and Lemma 3.7 is that
the existence of a winning HD strategy]ié-player games

Proof. First, let us realize that the problem is semidecidable with £(F=",F>°, G=") objectives is inEXPTIME . It re-

(i.e., belongs to th&; level of the arithmetical hierarchy).
Obviously, one can effectively enumerate(@, /) and for
each sucH A, f) decide whetheb (A, f) is winning, be-

mains to establish the matching lower bound.

Lemma 3.8. The existence of a winning HD (or HR) strat-
egy in 1%—p|ayer games withC(F=!, G™') objectives is

cause the corresponding play has only finitely many statesgy b1 ME-hard.

(more precisely, the play is obtained as unfolding of an ef-

fectively constructible finite-state Markov chain). Thalen
cidability result is obtained by a slight modification of the

A simple corrolary of Lemma 3.6, Lemma 3.7, and
Lemma 3.8 is the following:



Theorem 3.9. The existence of a winning HD strategy
in 1%-player games withC(F=", F~%, G=') objectives is
EXPTIME-complete. Th&eXPTIME lower bound holds
even forC(F~!, G=!) objectives.

It follows from the proofs of Lemma 3.6 and Lemma 3.7
that a winning HD strategy inl%-player games with
L(F71,F7% G=') objectives actually requires onlfi-
nite memorywhose size is linear in the size of a given
game and exponential in the size of a given objec-
tive. A natural question is whether Theorem 3.9 can be
generalized to a larger class of qualitative PCTL objec-
tives. One natural possibility is to add the”&operator,
which yields the£(F=!, F>°, G=!, G>") fragment. How-
ever, there is a strong evidence that the method of

Lemma 3.6 cannot be generalized to this class of objec-
tives. This is because these objectives may already requirgNe obtain thab, satisfies G°

infinite memory which is demonstrated in our last theo-
rem:

Theorem 3.10. A winning HD strategy inl% games with
L(F>° G>°) objectives may require infinite memory.

Proof. Let p = G”° (—\stop A F>Ost0p) and letG be the
following game (the valuation for atomic propositions
stop, left, andright is also indicated in the figure):

stop % /() left
-~

1/4 1/4
v1 vg

3/4(/ %3/4
right right
First we show that there is &, ¢)-winning HD strat-
egy o for playerd in the vertexv,. We defines(ws) to
be the Dirac distribution which assignsto the transition
leading towv; or vo, depending on whethe# ;. (w) —
FHiepp(w) < 0 OF Hpighe(w) — Fiepe(w) > 0, respec-
tively. Here# 41 (w) denotes the number of occurrences
of a state satisfying the propositiotight in w. We claim
that the statev; in the play G(o) satisfies the formula
G=2/3(=stop ANF> stop) and hence also the formuja To
see this, realize that the play(o) corresponds to the un-
folding of the following infinite Markov chain:

1/4
‘1\D1/4‘1\D1/4 ‘TDAD ’

v
1 1/4

A standard calculation reveals that the probability ofifgt
the stop state fromw; is equal tol/3. Hence, the proba-
bility of all runs initiated inv; which donot hit the stop
state is2/3. All states in all these runs can reach tep
state with positive probability. Hence; satisfies the for-
mula G=2/3 (ﬂstop A F>Ost0p).

Now we show that there is n@, ¢)-winning HD strat-
egy with finite memory. Suppose the converse. (4t f)

10

be such a strategy where the automatbe= (Q,V, 9, q0)
hasn states. We show that the statein the corresponding
play satisfies the formula @ (=stop A F>“stop), which
means that;, does not satisfyp. We say that a state in
the playG (o (A, f)) isliveif there is a statevw’s such that
w —* ww's and f(d(qo, ww's), s) assignsl to the tran-
sition leading tov;. A state which is not live islead We
claim that there is a fixed > 0 such that the probability of
hitting a stop state from a given live state is at least. To
see this, it suffices to observe that whenevés a live state,
then there is a path froma to astop state of length at most
3n+1. Note that a state is dead iffw is a stop state orw
cannot reach atop state at all. By applying standard argu-
ments of Markov chain theory, we can now conclude that
the probability of hitting a dead state from is equal to
one. Since a dead state does not satisfiop A F~%stop,
(ﬂstop A F>Ost0p) and we

are done. O
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A. Appendix
A.1. A Proof of Theorem 3.3

Let ay,- - ,ay,,b be an instance of @IARE-ROOT-SUM
(see Section 1). Let be a game where

e the setl” = Vi contains the vertices, u, s, ¢(4), d(7),
e(i), f(i), g(i), andh(i) forall 1 <i < n;
e the set of transitions contains — u, u — u, s — u,

v — (i), e(i) — d(@) — [(i), (i) — e(i) = fi),
fl@) — g(i) — s, andf (i) — h(i) — s forall 1<i<n.

The structure of7 is shown in the following figure:

e 1 h(l)
g0

(1) f(1) 9(1)

: eﬁ\ h(n)

c(n) d(") f(n) 9(")

We assume that for each vertexe V there is an atomic
propositionp; which is valid only int (thus we obtain our
valuationv). Slightly abusing notation, we writeinstead
of p; in our formulae.

Every strategy for playerdJ assigns (some) probabili-
tiesp(c;), p(e;), andp(h;) to transitionsy — ¢(i), ¢(i) —
e(i), andf(i) — h(i), respectively, whereé < i < n. Let
g = b+ >, a;. We construct a PCTL formula such
that every(v, ¢)-winning MR strategy inv has to assign
p(ci) = ples) = p(hi) = y/ai/qfor everyl <i <n.Then
the probability ofv — « mustbel — 3", \/a;/q. The for-
mulay contains the clause X% %u. Hence, playef] has

a (v, p)-winning MR strategy inv iff 1 — Y"1 | \/a;/q >
1—b/q,|e iff >0, /ai <b.

Now we describe the formulain greater detail. For ev-
eryl < i <n,letd;, = (vVec()) yai/a’ e(7). Note that
v Y @, iff p(e;) - p(e;) = a;/q?. Similarly, we construct
the formulae¥; andZ; such thaty =¥ ¥; andv =¥ Z;

iff p(es) - p(hi) = ai/q* andp(h;) - p(ci) = ai/q?, respec-
tively:
U, = X70(e(d) V(ei) v f(i)) U%/T h(i))

—

=P XZOXZOXZO((f(i) V h(i) V s V v) US/% (i)

Observe that if(c;)-p(e;) = ples)-p(hi) = p(h:)-ple;) =
a1/q?, then necessarily(c;) =

(e:)) = p(hi) = /ai/q.
We puty = X172y A AP (& AT AE).
Let us consider the game obtained for= 1, a; = 2,

andb = 0. Then®; A Uy A Z; € £(X>°,U~Y/2) and the
only (v, 1 AW AZ;)-winning MR strategy inv assigns ir-
rational probabilities to certain transitions. Thus, wéait
the example promised above.
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A.2. A Proof of Lemma 3.6

For the rest of this proof, let us fix a%-player game
G = (V,E,(Vo,Vp), Prob), a vertexs;, € V, and an
objective(r, 1)) wherey € £L(F~* F>° G=!). For techni-
cal convenience, we assume that all subformulag afe
pairwise distinct (this can be achieved by replacing atomic
propositions inp with fresh propositions so that each propo-
sition has a unique occurrencesn the valuatiornv is ex-
tended accordingly). Our aim is to define anott1§rplayer
gameG’, a vertexs;, of G’, and a mixed objectiveP, Q)
such that playel] has a(v, v)-winning HD strategy ins;,,

iff player O has a( P, Q)-winning HD strategy irs/,, .

Let L be the set of alliterals, i.e., atomic propositions
and their negations. L& be the set of all subformulae ¢f,
where negation is not considered as a connective (for exam-
ple, ify = F=1=q, thenS = {—~q, F~1-¢}). For each con-
nectivea € {F~!,F>% G=! v, A}, we useS, to denote
the subset of consisting of all formulae where the topmost
connective isv. We also Us& 4, Sk, STemp, SBoot, ANASE
to denote the setSN L, Sg=1 USg>0, Sp=1 USg>0 USg=1,

Sy USn, and{F*?y | F*2y e S¢}, respectively. The pur-
pose of “barred” formulae a$gz becomes clear later.

In the following, we assume tha = {¢1,..., 00}
wherei < j implies thaty; is not a subformula ofip;.
The first step towards the definition 6f is the function
0 : 25 — 22°7°F which decomposes subformulaeinto
“subgoals”. Letd C S.If A C S4,, then©(4) = {A}.
Otherwise, let be the least index such that € A\Sy,.
We distinguish among the following possibilities:

vk V o, then
O((A{pi}) U{pr}) UO((AN{wi}) U{pe})
O((A{wi}) U{wk; pe})

olf o, =
e(4) =

o If p; = ¢1 Aipy, thenO(A) =
o lf o, = G='p;, then

O(4) = {DU{G ' (¢))} | D € ©((Ax{pi}) U{p; D)}

e, = F"¢p;; then

0(4) = {DU{F*(¢

U {DU{F*¢y

i)} D eO(AN{pi})}
)} 1D eO((A{pi}) U{p;i D}

The intuition behind the functio® is the following: to
find out whether there is &, v)-winning HD strategy in
sin, We extend each vertex @ (and hence each state of
an arbitrary play ofG) with a setA of subformulae ofy)

that should be valid when the play is in the state. Some
of these formulae represent temporal “goals” which can be
achieved either in the current state or in its successols. Th
function © “offers” all admissible possibilities how to dis-
tribute the goals among the current state and its successors
so that all formulae in4 are valid. Selecting the right al-
ternative becomes the responsibility of plajerf~or exam-



ple,O({F=1p}) = {{F='p}, {F'p,p}}, because the “cur-
rent” state satisfies ¥ p iff either all of its successors sat-
isfy F=1p (the goal is “postponed”), or the propositign

is satisfied in the current state (the goal is “achieved”). In
the latter case, the functigh also “marks” the current state
with F~"(p), which means that the goaF#(p) has been
achieved. The exact purpose of these marks will be clari-
fied later.

Before defining the gam@’, we formulate several prop-
erties of© that are useful in proofs. The next two lemmas
are proven by a straightforward induction on the total num-
ber of connectives in the formulae df

Lemma A.1l. Let s be a state of some play 6f, and let
A C S. Thens satisfies all formulae ofl iff there isD €
©(A) such thats satisfies all formulae oD N S.

Lemma A.2. For all non-emptydisjointsets4, B C S we
havetha®(AUB) ={XUY | X € ©(4),Y € ©(B)}.

Corollary A.3. Let A C S be a non-empty set.
o If G='¢ € A, then©(A) is equal to

{GTUXUY [ X €0(AN{GTH(9)}),Y € 0({e})}
o If F**¢ € A, then©(A) is equal to

{F*e UX | X € O(AN{F 9¢})}
U{{F™* UX UY | X € 0(AN{F™¢}), Y € ©({¢})}

The games’ = (V' E', (V3, V45, Prob’) is defined as fol-
lows. The set of vertice®” consists of vertices of the fol-

lowing two forms (f-vertices angj-vertices):

e f-vertices are of the fornis, A, B, C)f wheres ¢ V,
ACS, B C Se=: U{e},andC C Sgso. Intuitively, the
set A consists of formulas that should be satisfied in the
current state (see the intuitive description@fabove).
The setsB and C' assure that all subgoals of the form
F=1y and F>%p are eventually fullfiled (see the mixed
winning objective defined below).

e g-vertices are of the forngs, A, B, C, 5)9 wheres € V,

A C SU S,E, B C Sg=1 U {.}, C C Sg»o, and
D e [T;cy 257>°. The purpose of3 and C' is similar
as in the case of-vertices. The setl consists of sub-

o A € O(A)
e B’isequalto
—{eo},if AN Ap Z v(s) or thereis—p € A’ such
thatp € v(s);
— A NSg=1,if B=10;
— B~ {F7'¢| F~'¢ € A’} otherwise.

oif C = 0, thenC’ = A’ N Sg>o; otherwiseC’ =
C~{F% | F % e A

° U(s,t)eE' D, = A" NSgso

e if s € Vg then for eacht € V such that(s,t) € E
we have thaD; = A’ N Sg>o.

Intuitively, the f-vertices are controlled by playés
who chooses a set of subgoalsc ©(A). The atomic
propositions inA’ are immediately verified (if there
is some inconsistency thenis put into B’) while the
other formulae ind’ are passed to successors. The sets
B’ andC’ are updated depending on which subgoals
(subformulae) are chosen by playéras “achieved”

in the current state (cf. the intuitive description ®f
above). Note that the vertexis not changed in the
successors of-vertices. The transitions @ are sim-
ulated ing-vertices (see below).

. (s,A,B,C,D)9 — (t,A',B',C")] if (s,t) € E,
A" = (AN (Sg=0 US: US4,)) U Dy, B = B, and
C'=CnD,

. There are no other transitions if than those given
by the rules 1. and 2.

Prob’ is defined as follows: For ali € V-, the probabil-
ity of (s, A, B,C, D)9 — (t, A’, B',C")/ is the same as the
probability of s — ¢ in G. We puts},, = (sin, {1}, 0,0)/.

Finally, we define the mixe@P, Q)) objective as follows:

ethe set P consists of all vertices of the form
(s,A,B,0,D)9;
ethe set ) consists of all vertices of the form

(Sa A7 Q)a Ov l_j)g

It remains to show that playéd has a(v, ¢)-winning HD
strategy ins,, iff player O has a(P, Q)-winning HD strat-
egy ins,,,. We demonstrate both implications separately in

goals that should be satisfied in successors of the currenfubsequent subsections. First, we fix some notation which

state. The vectoD is used to distribute the subgoals of

the form F’¢ to the successors of the current state.
The setl; consists of allf-vertices and of alj-vertices of
the form(s, A, B, C, D) wheres € V. The set/; con-

sists of allg-vertices of the form(s, A, B, C, ﬁ)g where
s € V. The setE’ of transitions ofG’ is defined as fol-
lows:

1. (s,A,B,C) — (s, A’,B',C", D)’ iff the following
conditions are satisfied:
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is used in both parts of our proof.

For a given af-vertex(s, A, B, C)/, thei-th component
of the tuple(s, A, B, C) is denotedp;((s, A, B, C)f). For
examplepy((s, A, B,C)7) = A. An analogous notation is
used also fom-vertices. The last symbol of a given non-
empty wordw is denotedast (w).

A.2.1. Transfering winning strategies fromG’to G. Let

o’ be a(P,Q)-winning HD strategy ins/, . The states in
G'(o") of the formu - (s, A, B, C)/ are calledf-statesand
states of the forma - (s, A, B, C, 5)9 are calledy-states



Let R be the set of aly-states oiG’(¢”) that are reach-
able froms,, . We define a functiom\ : R — V* induc-

wmn-*

tively as follows:
o A(s], - 0"(},)) = Sin
eA(v-(s,A,B,C)f (s, A", B',C", D)%)

A routine check confirms the following:

A(v) - s

Lemma A.4. A is injective.

We define a strategy : V*Vg — V as follows: For a
givenv € A(R) such thav’(A~1(v)) = (t, 4, B,C)! we
puto(v) = t. Forv € (V*Vg) ~ A(R) we puto(v) to an

from which the claim follows. The induction step fpr< i
is completed simply by considering all possible formsef
and applying the definition ad.

The case wheR™*“(¢) € D is handled similarly. O

Now we show the main result of this subsection:
LemmaA.7. sy, EY ¢

Proof. By induction on the structure af we show that for
all ¢ € S and for all states of? of the formv = o’ -
(s,A,B,C)f (s, A, B',C', D)’ we have thatA(v) =" ¢
wheneverp € A’ N S. Together with Lemma A.1, this

arbitrary value (as we show these strings are not states Ofmplies thats;,, = ¢ because there is a state of the

G(0)).

Lemma A.5. A(R) is precisely the set of states that are
reachable froms;, in G(o), and for allv,v" € A(R) we
haveP (v —* v') = P(A~t(v) =" A~L(v")).

Proof. Letv € A(R). We show thav 5 v’ iff v/ € A(R)
andA—1(v) 5 u 5 A—1(+'), whereu is the unique prede-
cessor oA~ (v') in G'(¢”).

Assume thatlast(v) s and last(A~t(v))
(s, A, B,C, 13)9. There are two possibilities:

elf s € Vo, then we have that % o' iff v/ = v - ¢ for
somet € V such thats 5 ¢ iff A='(v) 5 A~1(v) -
(t,A', B',C")T 5 A=1(v')

e If s € V, then we have that 5 o' iff v/ = v - ¢ for ¢

1
—

o(v) ando’(A~1(v)) = (¢, A", B',C")/ iff A=1(v)

A (w) - (4, A, B O L AL

It follows that there is a (unique) pathv =
vo,...,v, = v from v to o iff there is a
(unique) path = from A='(v) to A~1(v'). More-
over, 7 = A Y(vo),us, A" (v1),u2, ..., A" (vy)

and hence by applying the above arguments we ob-
tain that P(v —* /) P(Run(vo,...,v,))
P(Run(A= (vo), ur, A= (v1), uz, ..., A7 (vy,)))
PA™H(v) =" A7)

The last technical step is the following lemma:

Lemma A.6. Let A C S be a non-empty set, and &t €
O(A) be a set such thaB='¢ € D or F*%¢ ¢ D. Then
there isY € ©({¢}) suchthaty” C D.

Proof. Let us first consider the case whefm{g € D. Let
us assume that G ¢ = ¢;, and lety; € A be the formula
with the least index imd. Note thatj < i because G'¢is a
subformula of some formula iA. We proceed by induction
ini—j.

If i = j, then by Corollary A.3 we have that

O(A) = {{GT'EIUXUY | X e (A~ {GT'¢}),Y € ©(6)}
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form (sin, {1}, 0,0)f (sin, A", B",C",D')9 in R where
A" e O({p}).

Since(s, A, B,C)/ — (s, A, B',C’, D)?, we have that
A" € ©(A). First, observe that ip is a Boolean combina-
tion of some formulae, thep ¢ A’ € ©(A) and we are
done. The other cases are analyzed below.

olf ¢ € Syu,, thenA(v) =¥ ¢ because otherwisB’ =
{e} by definition of G’. Note that if B’ = {e} theno’ is
not winning strategy folz’ because is never removed
and hence théP, Q)-winning objective is not achieved.

e Let o = G™'¢. First we show that ilG='¢ € A’ then
A(v) =¥ €. By Lemma A.6 we have that if G'¢ € A/
then there isD € ©({¢}) such thatD C A’. Then,A(v)
satisfies all formulae oD N S by induction hypothesis
(note that all formulae 0D NS are subformulae f) and
henceA(v) ¥ ¢ by applying Lemma A.1. Now observe
that for everyu reachable from we have that G'¢ ¢
p2(last(w)) which implies thatA(u) = £. The rest now
follows from Lemma A.5.

e Letyp = F~1¢. Similarly as for G'¢ we show that when-
everF—'¢ € A/, thenA(v) ¥ ¢ We prove that al-
most every run ofRun(v) contains a-stateu such that
F='¢ € pa(last(u)). Letw be a run initiated inv that
does not contain such a state. Observe that for all0
we have F'¢ € py(last(w(i))). However, this means
that eitherps(last(w(i))) # 0 for all i > 0, or there is
J > 0 such thatps(last(w(j))) = 0 and for allk > j
we haveF=1¢ € ps(last(w(k))). In both cases, the run
w does not satisfy the qualitative Blichi objective speci-
fied by the set) in the mixed winning objectivéP, Q),
and we know that the probability of all such rundis
It follows that almost every run initiated in reaches a
stateu € R such that\ (u) =¥ £. Hence A(v) =¥ F=¢
due to Lemma A.5.

e Lety = F~0¢. Similarly as in the previous cases we show
that wheneveF~’¢ € A’ thenA(v) =¥ £ We prove
that there is a state reachable fromy such thatl?of €
p2(last(u)). By definition of G’ we have that there is a
runw € Run(v) such that eitheF~’¢ € p,(w(j)) for



somej > 0, or ¢ € py(w(y)) for all j > 0. We o If s € Vo andus =2 F~Y, then there ig € V such that

show that the latter case contradicts the sure-Biuichiebjec s — t, vst =¥ F~¢ and Dist(vst, £) < Dist(vs, ).

tive specified by the st in the mixed winning objective ) . . e

(P, Q). There are two possibilities: eithgg(w(i)) # 0 V\,/e. d?;',n*e 3, funcu?/r/i“. d Rt' _] (v 2( "and _1‘31 s‘trate_gy

foralli > 0, orthereisj > 0 suchthap,(w(j)) =0and 7 ° (V')"( D; — V7 inductively as followsT'(s;) =

for all k > j we have F°¢ € p4(w(4)). In both cases, (sin, w}’@’fm ) Forag".’ef" € [t such tha?aSt(F(v)).:

the runw visits the states of only finitely many times. (S,’ A, B, C)7 wherev satisfies all formulae iod we define
o’'(T(v)) to be one of the vertices (chosen arbitrarily) of the

The rest follows from Lemma A.5. O >
form (s, A’, B’,C’, D)9 where

Transfering winning strategies from G to G’. Let e A" € O(A), v satisfies all formulae i’ N S, and if
o : V*Vg — V be astrategy such thag, =" ¢. Let R be Fee¢ € A’ thenw £ €.
the set of states a¥(c) that are reachable from,. e The setsB’ andC’ are determined by’, B, andC (see
LemmaA.8. Forallv € RandA C S such thaw satisfies the definition ofG') o / _
all formulae ofA there isD € ©(A) such that e D is compatible with the Qeflnltlon of, andolf s €

- _ Vo then F% < D, implies thatvt = F~°¢ and
e v satisfies all formulae ab N S; Dist(vt,€) < Dist(v,£).

o if F*¢¢ € D thenv ¥ €.
Due to Lemma A.8 and Lemma A.10, there must be at
Proof. For eachX € ©(A) we put Fv, X) = {F*%¢ € least one vertex of the forrfs, A’, B, C’, D)¢ satisfying
X | v B &}, and we denoteank(X) = min{i | the three properties above. Furthermore,
i € F(v,X)} (we putrank(X) = oo if F(v,X) = 0). : / ' ! opr o Byey
By Lemma A.1, we know that there id’ € ©(A) such ¢ I(ft ZI/EBI‘//DC,'/Y;IJ?V\?#;I%U(E}(;)— t_(S’A BLCL DY) =
thatv satisfies alll for_mulae oft’ N S. Let us assume that if ’S e’ VO” then for allt ¢ ‘; s’uch thats — ¢ we put
F(v, A") # () (otherwise we puD = A’ and we are done). C(ot) = T A B.C DYt A" B O -
We show that there isl” € ©(A) such thaw satisfies all [(vt) = T(v)(s, A", B', C7, D)9 (8, A", B, C")7);
formulae ofA” NS andrank(A”) > rank(A’). oif s € , VD/ a/nd_.tg - ”U(Q/}/)’ \/I/Vi put T(vt) =
Let1 < i < n be the least index such that = F*%¢ € L()(s, A, B',C", D) (8, A7, B”, C7)
F(v, A"), and letp; € A be the formula with the leastindex In all these cases, the setd, B, C” are uniquely deter-
in A. Clearlyj < i. We show by induction orj — i that mined (see the definition @#’). Note that the invariant:*
there isA” € ©(A) such thatank(A”) > rank(A"). satisfies all formulae i” is maintained throughout the in-
If i = j then by Corollary A.3 we have that’ = ductive definition. For other strings 6V”)* (1;) we define
X U{F"?¢} whereX € ©(A ~ {F*2¢}). Note thatv sat- o’ arbitrarily.
isfies all formulae ofX NS. However, by Corollary A.3 we Lemma A.11. T(R) is precisely the set of alf-states

have thatX U {F"“¢} UY € ©(4) foreveryY € ©({¢}).  of ¢/(o") that are reachable froms’,,. Moreover, for all
Sincev = &, by applying Lemma A.1 we obtain that there v, € Rwe have thaP(v —* v') = P(D(v) —* T(v/)).
isY € ©({¢}) such thaw satisfies all formulae o N S,

and hence all formulae ofX U Y) N S. Hence, we put  Proof. It is easy to show that for a givem € R we have
A" = X U {T:""gf} UY. Observe, that an index of ar- 4 % o/ iff T'(v) 5 u N I'(v'), whereu is the unique pre-
bitrary formula of X U Y is greater than. In particular, decessor of (v') in G'(¢"). The proof can be completed us-
rank(A") > rank(A4’). ing the same arguments as in the proof of Lemma A Bl
The induction step fof < i is completed by considering
all possible forms ofp; and applying the definition a.
O

Lemma A.12. LetI'(v) € I'(R). Then almost all runs of
Run(T(v)) contain a state: such thatps (last(u)) = 0.

Definition A.9. Given a formula¢ € S and a statev of ~ Proof. Let us suppose that'(I'(v)) = (s,4,B,C, D)?
G(o), we denoteDist(v, €) the length of the shortest path and let F-¢ € B C A. Let’ be a state reachable from
from v to a state which satisfies(we putDist(v,£) = oo v such that’ = ¢&. It follows frﬁom the definition ofc’

if there is no such state). thato'(T(v')) = (s,A’, B',C’, D) where F'¢ ¢ B'.
Moreover,P(I'(v) —* I'(v")) = P(v —* ¢') due to
Lemma A.11. It follows that for every F¢ € B and for
almost all runs ofRun(T'(v)) there isi > 0 such that

Lemma A.10. Letvs € R wheres € V andws [~ €. Then
the following holds:

o If s € Vg andws =¥ F*2¢, thenvsa(s) ¥ FX@€. F='¢ ¢ ps(last(w(i))). From this we can deduce that al-
elf s € Vo andus =¥ F=I¢, thenforallt € V suchthat  most allw € Run(I'(v)) satisfy the following condition:
s — t we havevst =" F71¢, for every formula F'¢ € B there isi > 0 such that
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F=1¢ ¢ ps(last(w(4))) (it follows from the fact that the in-
tersetion of finitely many sets which have probabilitiias
also probabilityl). However, this property together with
the definition of G’ implies that there ig > 0 such that

ps(last(w(f))) = 0. O

Lemma A.13. Let I'(v) € T'(R). Then every run of
Run(T'(v)) contains a states such thatps(last(u)) = 0.

Proof. Let us suppose that'(I'(v)) = (s, A, B,C, D)?
and let F% ¢ C C A Letw € Run(l'(v))
be a run such that for ali > 0 we have that
lasf(w(2z)) = (tl,g,Al,Bl,Ol,ﬁl) where I?Og c C;.
Sincev = F?%, we have thatDist(v,£) < oo.
However, by the definition of ¢’ we have that
Dz’st(vtl---tiﬂ,f) < Dist(vtl---ti,f) which con-
tradicts the fact thatDist is a non-negative function.
From this we obtain that for every € Run(I'(v))
and every formula F'¢ ¢ C there isi > 0 such
that F%¢ ¢ py(last(w(i))). The definition of G’ im-
plies that there ig > 0 such thaip4(last(w(i))) = 0. O

Corollary A.14. The strategy’ is a (P, @)-winning strat-
egyins’,.

A.3. A Proofof Lemma 3.7

In order to prove Lemma 3.7, we need some technical tools

that allow us to do modify Markov chains induced by strate-

gies. Since these Markov chains are trees we start by |ntro T[ o).

ducing an auxiliary notion gbrobabilistic tree

Probabilistic trees. Let us fix a finite set’. A probabilis-

tic treeis a pairT’ = (X, P) whereX C V* is a nonempty
prefix-closed set containing exactly orec V (the root

of T)andP : (V' x V*) — (0,1] is a function with do-
main{(w,ws) | w,ws € X,s € V} (i.e., P is defined ex-
actly on edges of") such that for eachw € X we have

Y wser P(w,ws) = 1. Note thatP is formally a subset
of (V* x V1) x (0, 1], and hence we can apply set opera-
tions onP. Elements ofX are callednodesof 7', a node
ws wheres € V is a successonf w, and nodes with-
out any successors are calledves Infinite probabilistic
treesare probabilistic trees without leaves. Note that infi-

Given two treesT; and Ty, we define theconcate-
nation of 7 and 7,, denoted7}; © 15, to be the tree
(Xl ® XQ,Pl ® PQ) where

X106 Xy =X U{wsv | wsisaleaf ofTy, sv € X5}

andP; @ P, isinduced byP; andP; in the obvious way.

Finally, given an infinite tre§” = (X, P) and two nodes
v, w € X such thatast(v) = last(w), we denotel™ " =
(T'\T?) ®T" the tree obtained frorii’ by cutting offT"”
and pasting™ to its place.

The proof. Let us fix a 1i-player game G
(V. E,(Va, Vo), Prob) and a mixed objectivg¢P, Q). In
what follows we say that a strategy (i®, ?)-winning in a
vertexs without explicitly mentioning the player who is al-
ways playefd. We denote/* = {ws | w € V* s € P}
andV® = {ws | w € V* s € Q}.

Given a strategy and a vertex € V' we denoteT s, o]
the part ofG (o) that is reachable from By a runin7 [s, o]
we mean a run from the roetof the tree7 [s, o] unless ex-
plicitly stated otherwise. Observe thafs, o] is an infinite
probabilistic tree.

We show that the existence of &, )-winning strategy
in s € V itis decidable in polynomial time. We start with
the following simple observation:

Lemma A.15. Given a (P, Q)-winning strategyoc and
stateSw v € Tls,o] such thatlast(w) = last(v), there
a(p, Q) winning strategys’ such thatT'[s, o]“ " =

Lemma A.16. If there is a(P, Q)-winning strategy ins €
V, then there is 4 P, Q)-winning strategy’ in s such that
there is a run in7 [s, '] that reaches the séf“ in at most
2|V| steps and any run iff [s,o’] reachesV' ¥ in at most
|V| steps.

Proof. Let o be a(P, Q)-winning strategy ins. First, ob-

serve that there i > 1 such that an arbitrary run fromin

T s, o] reaches a state &fF in less thark steps. Indeed, if

this was not true, then we could inductively define an infi-

nite run in7 [s, o] which does not contain any state16f’,

which contradicts the assumption thais (P, Q)-winning.
Let us assume that there is a vertex V" and a run in

nite probabilistic trees can be seen as Markov chains. In7 [s, o] which contains states of the fora¥ andwtuvt be-

what follows we do not distinguish between infinite prob-
abilistic trees and their corresponding Markov chains.

Given a nodevs € X wheres € V, we define asub-
tree of 7' in ws as a tupleT™* = (XY P¥s) where
X" = {sv | wsv € T}andP"* isinduced byP in the ob-
vious way. Given a subtréé” of 7', we denote byi" . T'*
the tree obtained fronT" by cutting off the subtreg™,
where only the node is left. Formally, T~ T" = (X', P’)
whereX’ = X \ ({w} - V) and P’ is the induced restric-
tion of P.
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fore the first occurrence of a state 6f’. Then we can ap-
ply Lemma A.15 and obtain &P, Q)-winning strategys’
such thatZ [s, 0] = T s, o]*t* vt Repeating the proce-
dure finitely many times, we obtain(&, Q)-winning strat-
egy o’ such that no run iff [s, ¢”] contains a duplicated
vertex before the first occurrence of a staté/df. Hence,
the distance of states &f” from the root of7 [s, o] is at
most|V|.

Becausesr” is (P, Q)-winning in s, there is a pathv
in 7[s,0”] from s to a statev € V. If there are no



states ofi’ " beforev in the pathw then we are done. Oth-
erwise, let us assume that) is the first occurrence of
a state ofV” in w and let us consider the suffix’ =
w(i),w(i+1),...,w(lw|—1). Duplicate states in’ can be

eliminated using the above “copying” procedure, which
yields a strategy’” which satisfies the desired proper-

ties. O

Lemma A.17. If there is a (P, Q)-winning strategy in
s € V, thenthere is a strategy in s such that7 [s, o'] sat-
isfies the following conditions:

1. Along every run initiated in ararbitrary state of
T[s,0'], a state of'F is reached within at mo<t| V|
steps.

2. There iss > 0 such that the probability of reaching
V@ from any state of [s, ] is at leastz.

Proof. Let us denoté/ = {t | wt € X} the set of vertices
of G that occur in the play induced lay For a givent € V,
we fix a nodew, of 7 [s, o] such thatast(w;) = t. Observe
that for eacht € V the strategy induces & P, Q)-winning
strategy irt which yields the tre@™. By Lemma A.16 we
obtain that there is &P, Q)-winning strategy; in ¢ which
satisfies the conclusion of Lemma A.16.

We denotel; = (X, P;) a (finite) probabilistic tree ob-
tained from7 [¢, o] by cutting off all nodes whose distance
from ¢ is greater thar2|V'|. Now, we gradually construct a
new infinite treel” as follows: we start witlf'; and then in
every stage we concatenate all trdégo the current tree.
Formally, we define sequences of trédeg K, K», ... and
Kt = (X}, P}, K} = (X4, PY),... whereK, = T, and
foralli > 0 and allt € V we have
oK! =K, 0T,

e K11 = (UteV Xit—&-lv UteV Pit+1)
Note that J,., P}, , is a function for every > 0, because
for a fixedi the functionsP/, , agree on edges if;.

We claim that there is a strategy such thatZ [s, '] =
(U2, Xi,Us2, P,). Indeed, the strategy behaves liker
until it reaches a leafvt of Ty (i.e., during the firs2|V|
steps), then it starts to behave like the strategyor the
next2|V| steps, and so on.

Finally, we pute = min{p; | t € V} where eachp,
equals the probability of reaching a stateldf in 7 [t, o4
in at most2|V| steps. Now, it is easy to see thalt satis-
fies the conditions 1. and 2. O

Corollary A.18. If there is a(P, Q)-winning strategy in
s € V, then there is & P, Q)-winning strategys’ such that
along any run from an arbitrary state &f[s, '] a state of
V¥ is reached within at most|V'| steps.

Proof. It follows from Lemma A.17 using standard tools of
probability theory. O

16

Theorem A.19. Let G be alé—player game,s a vertex
of G, and (P, Q) a mixed objective. If there is &P, Q)-
winning HD strategy ins, then there is & P, Q))-winning
HD strategy with finite memoryA, f) whose size is poly-
nomial in the size ofy. Moreover, the existence of such a
strategy is decidable iR.

Proof. We construct a new gam@’, its vertexs’, and a
subsetP’ of vertices ofG’ such that player] has a( P, Q)-
winning HD strategy i iff player (0 has & P/, ))-winning
strategy ins’. Thus, we “reducel P, Q)-winning objectives
to qualitative Biichi objectives for which a polynomiatri
algorithm exists.

Corollary A.18 implies that in order to ensure that ver-
tices of P are entered infinitely often along a play, it suffices
to count the number of vertices between two successive oc-
currences of vertices aP, and to give up the whole play
whenever this number excee?|$|.

Letus define anew gant® = (V', E', (V}, V), Prob’)
(which extends the game;y with a counter) where
V=V x{l,....2IV|,L}, V4 =Va x{1,...,2|V], L},

VG = VI NV, E' s the least set (w.r.t) such that for
each(u,v) € E we have

o ((u,i),(v,1)) € E'if u e VP andi < 2|V|

o ((u,7), (v,i+1)) € E'if u € VNP andi < 2|V|
o (u,2|V]), (v, L)) € E'if ue VNP

o (u,1),(v,1))eFr

The functionProb’ is defined for eack(u, o), (v, 3)) € E’
asProb’((u, a), (v, 8)) = Prob(u,v).

Observe that the gam@ faithfully simulates the game
G in the first component of states, and in the second com-
ponent it merely counts the actual number of steps after the
last occurrence of a vertex @f. Hence, for every strategy
o’ in G’ there is a corresponding strategyGrwhich “for-
gets” the second component of vertices (and vice versa). If
the number of steps outside Bfexceed2|V | then the sec-
ond component of a state changes tavhich remains there
forever. Hence, a state containings reachable (with pos-
itive probability) in7 [(s, 1), o'] iff there is a path of length
greater thar2|V|] in 7[(s,1),¢’] which does not contain
states o . Let P/ = Q x {1,...,2|V|}. Now it is easy
to check that there is@, Q)-winning strategy irs iff there
is a(P’,0)-winning strategy ins’ = (s, 1).

The existence of &', ())-winning strategy irs’ is decid-
able in polynomial time [8, 6]. Moreover, if there sdme
winning strategy, then there is also a memoryless and de-
terministic winning strategy’. Hence, we can construct a
(P, Q)-winning HD strategy with finite memory for from
the strategy’. Since the only information that is kept in
memory is the actual value of the counter, we obtain a poly-
nomial upper bound on the size of the memory. O



A.4. A Proof of Lemma 3.8

We reduce the acceptance problem for alternating LBA
(which is known to beeEXPTIME -complete [14]). Anal-
ternating LBAis a tupleM = (Q,A,T,qo,FH,,9, P)
where( is a finite set ofcontrol states A is a finitein-
put alphabetT" O A is a finite tape alphabetqy € Q

is theinitial control state}-,- € I' are the left-end and
the right-end markers, : QxI' — 2@*I'*{L.1} js atran-
sition function andP = (Qv, Q3, Qacc, Qrej) IS a parti-
tion of @ into universal existential acceptingandrejecting
states, respectively. We can safely assumedhatl’ = §),

q € Q3,0(q, A) = Dforallg € Qaec U Qrejy andd(q, A)
has exactly two elements;, A1, D1), (¢2, A2, D2), where
q1 # qo, forall ¢ € Qv U Q3. A computational tredor M
on awordu € A* is a treeT” satisfying the following: the
root of I" is (labeled by) the initial configuration far, and

if NV is a node ofl" labeled by a configuration with a con-
trol stateq, then the following holds:

o if ¢ is accepting or rejecting, thew is a leaf;

e if ¢ is existential, thenV has one successor labeled by
a configuration reachable from the configuratiomofn
one step.

o if ¢ is universal, then the successors\oare the two con-
figurations reachable from the configuration/éfin one
step.

M acceptsu iff there is a finite computational treE such
that all leafs of " are accepting configurations. We can
safely assume thatl computational trees fok1 are finite.
Let M =(Q, A, T, qo,t,,d, P) be an alternating LBA
andu € A* an input word. We construct (in polyno-
mial time) al1 gameG (M, u) = (V, E, (V, V), Prob)
and an objectivgv, ) wherep € L(F7',G™') such
that playerd has a(v, p)-winning HD (or HR) strategy
in a distinguished vertey(1,1) € V iff M acceptsu.
Configurations of M are written as words over the al-
phabet= = Q UT in the standard way; for example, the
initial configuration forw is written asgotu-. Another

The setE contains the following transitions:

e g(j,i) — c(4,4,Y)ande(4,4,Y) — g(j,i+1) forall j €
{1,2},i € {1,--- ,n},andY € E;

e g(j,n+1) — s(4,[q, A]) forall j € {1,2},¢ € @, and
AeT,

o s(j,[q, A]) — s(4,[q,A]) forallj € {1,2}, A €T, and
q € @ whereq is accepting or rejecting;

e s(j,lq,A]) — «(j,¢) forall j € {1,2}, A € T, and
q,q" € Q wheregq is existential or universal anilq, A)
contains a triple of the forrty’, B, D);

e x(j,q) — L(j) forall j € {1,2} andq € Q;

e ((1)—g(2,1),£(1)—a(1),£(2)—g(1,1),£(2)—a(2);

ea(l) — a(l),a(2) — a(2).

The setV, consists off(1),¢(2) and alls(j, [¢, A]) where
q € Qv. The other vertices belong i¢;. The functionProb
always assigns the uniform probability distribution owes t
set of outgoing transitions.

A play starts ing(1,1). The intended scenario is the
following: Player(] successively “guesses” the configura-
tions of M by choosing appropriate moves in the vertices
g(1,1),--- ,¢9(1,n) andg(2,1),--- ,¢(2,n). In the states
g(1,n+1) andg(2,n+1), playerd chooses the successor
s(1,]g, A]) ands(2, [¢, A]) wheregq is the control state and
A the scanned tape symbolin the configuration just guessed.
If ¢ is accepting or rejecting, there is a loop on the corre-
sponding vertex (we call these vertices accepting/rejgiti
If ¢ is existential, in the next move playet chooses one
of the two control states which can be enteredMyafter
performing one computational step in the configuration just
guessed. I is universal, this choice is random. In the next
guessing phase, player will use the chosen control state
and hence he “guesses” the configuration chosen in the pre-
vious round. This goes on until a loop is reached, which can
happen either in a accepting/rejecting vertex, or in the ver
ticesa(1),a(2). The formulay constructed below ensures
that player] cannot violate this scenario, cannot use ran-
domized moves, and has to enti ), a(2), or an accept-
ing vertex with probability one. It turns out thatl accepts

standard result is that one can efficiently compute the setw if playerJ has a HD (or HR) strategy such thais sat-

Comp(M) C =5 of all compatible 6-tuplesuch that
for each configuratior: (written as a word oveE) we
have thate’ € Z* is a one-step successor ofiff ¢’ has
the same length as and for all1 < i < [¢|]-2 we
have that(c(i), c(i4+1), c(i+2), (i), (i+1), (i+2)) €
Comp(M).

Letn = |u| + 3. The structure of7(M, u) is shown in
Figure 3. The seV consists of the following vertices:

e g(j,4), wherej € {1,2} andl <i < n+1;
ec(4,4,Y), wherej € {1,2},1 <i <n+1,andY € Z;
e 5(j,[q, A]), wherej € {1,2},¢ € Q,andA €T

e 2(j,q), wherej € {1,2} andq € Q;

0 ((1),£(2), a(1), a(2).
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isfied ing(1,1).

Now we describe the formula in detail. For each €
V we fix a fresh atomic proposition, which is valid only
in v. Slightly abusing notation, we writeinstead ofp,,. We
put

® Init A Succ A Ctrl \ Choice N Accept N NoRnd

The subformuldnit says that the initial configuratian =
qoFu is guessed frong(1, 1) at the beginning of a play.
Hence,Init = A\, F~'¢(1,i,w(i)). Note that if playef]
selects, e.g.¢(1,1,+) instead ofc(1, 1, qo), the formula
F=l¢(1,1,q0) is not satisfied ing(1,1); this is because
the vertexc(1, 1, qp) can then be visited only after pass-



c(1,1,Y7) c(1,2,Y7) s(1, z(1,7)

[q, A])

(1, 1) D\ D\ K:D\e(l) a(1)
D ........ DD
Ij/g((lﬂ) Ij/'g(lﬁ) o(1,n41)

c(1,1,Ym) c(1,2,Ym)
s(L[nB])D 2(1,p)

c(2,1,Y1) (2,2, Y1) 2, [q, A]) z(2,7)

0 D-’(D—ﬂ]o
92, 1) Ij/g'@,m Ij/'g@,a) g2\ : ‘@ (2

c(2,1,Ym) c(2,2,Ym)

s(2, [r, B z(2, p)

Figure 3. The structure of G(M, w)

ing through the vertex(1), which enters the(1)-loop with Ctrly encodes an analogous property for the vertex chosen
probability1/2. fromg(2,n+1).

The subformulaSucc is of the form Suce; A Succs. The subformulaChoice = Choice; A Choices says that
Suce, says that whenever the vertgil, 1) is entered, one ~ Whenever a vertex of the formt(1, ¢) (or (2, ¢)) is visited,
of the following conditions holds: then the configuration guessed next will havas its con-

) . o trol state. We write jusiChoice; (Choicey is constructed
e the control state of the configuration which is to be znalogously):

guessed fromg(1, 1) is accepting;
e for everyl < i < n—2, the symbols chosen ig(1,1), N\ G ( (L,g) = F ' (a() v \/ s(2, [q7A]))>
g(1,i+1), g(1,i+2) and ing(2, 1), g(2,i+1), g(2,i+2) 7€Q Aer

form a compatible 6-tuple. The subformuladccept says that the probability of vis-
For all X1, X», X3 € Z, let C(X;, Xo, X3) be the set of iting a(1), a(2), or one of the accepting vertices, is equal to
all triples Y7, Ya, Y3 such that( Xy, Xo, X3,Y7,Y5,Y3) € one:
Comp(M). The formulaSucc, looks as follows:

Gzl(g(l,l):>(z4cc v /\ \/ Pos(l,i,)?))>

i=1 gcms Note that due to the assumption that every computational
B _ tree of M is finite, the previous formulae already guarantee
where Acc = Vieg,.ar B os(L1a:A]) and ot player surely(i.e., in thenon-probabilisticsense) en-
Pos(1,i, X) stands for tersa(1), a(2), or an accepting/rejecting vertex after finitely
F=le(1,4, K1) AF=te(1, i1, Xa) A F=te(1, 42, Xa) A F=10) many rounds. Hence, there is no infinite path in the com-
putational tree constructed by the play, and the subformula

Famvey Vs a))

7€{1,2},9€Qucc, AET

wherey is the formula Accept guarantees that all leafs in this tree are accepting.
Y 2,1, V) AE=1 (c(2, i+1, o) AF="e(2, i+2, Y. Finally, the supformuIaVoRnd says that playeE_ does
a(l) YE\C/(;)( b1 (2,3 2) o2 ») not use randomized moves. This subformula is actually

needed only if playel] uses a HR strategyMoRnd is re-

The formulaSucc, says analogous conditions about the ver- dundant for HD strategies). This is implemented simply by

texg(2,1) and is implemented similarly aucc; . saying that whenever a vertex &5 with more than one
The subformulaCtri is of the formCirly A Ctrls. Ctrly successor is visited, then one of its successors is visied w

says that the vertex chosen frasfil, n+1) corresponds to  probability one in the next move. For example, fat, 1)

the control state and the scanned tape symbol in the configthe formula looks as follows:

uration just guessed. This can be written as follows:
G~ = \/ Fle(1,2,0)
NG~ ( (1,i,q) = \/(F'e(1,i+1, A)AF's(1, [q7A]))) aes
1<i<n Aer The formulae for the other vertices & look similarly.

q€Q
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