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Abstract

We consider the monadic boundedness problem for least
fixed points over FO formulae as a decision problem: Given
a formula (X, x), positive in X, decide whether there is a
uniform finite bound on the least fixed point recursion based
on ¢. Few fragments of FO are known to have a decidable
boundedness problem; boundedness is known to be unde-
cidable for many fragments. We here show that monadic
boundedness is decidable for purely universal FO formulae
without equality in which each non-recursive predicate oc-
curs in just one polarity (e.g., only negatively). The restric-
tions are shown to be essential: waving either the polarity
constraint or allowing positive occurrences of equality, the
monadic boundedness problem for universal formulae be-
comes undecidable. The main result is based on a model
theoretic analysis involving ideas from modal and guarded
logics and a reduction to the monadic second-order theory
of trees.

1 Introduction

Consider a formula ¢(X,z) € FO that is positive in
the monadic second-order variable X and with a single free
first-order variable x. Over corresponding structures 2 such
 defines an operation on subsets,

F:j‘: PA) — P(A4)
P +— {a€A: AL ¢[P,a]}.

Due to positivity in X, this operation is monotone w.r.t. C,

and hence has a least fixed point (ux)®, which is also

attained as the limit of the monotone sequence of its stages

X [2] generated by iteration of F* on .

When is this recursion uniformly finitely bounded, and
hence the least fixed point uniformly definable by a finite
iteration of ? We say that ¢ (X, z) is bounded iff there is
n € N such that X" [2] = X"[2A](= (ux¢)?) for all 2L.
We consider the boundedness problem as a decision prob-

lem Bdd(F), for formulae ¢ from a fixed syntactic frag-
ment F C FO.

Bdd(F) given p = p(X,x) € F,

decide if ¢ is bounded

This decision problem has originally been considered in
particular for the query language Datalog with a view to
query optimisation [1, 13, 9, 11, 12]. However, the over-
whelmingly negative picture w.r.t. decidability there has
largely defeated initial hopes that bounded (i.e., spurious)
recursion could be systematically detected and eliminated.

But similar concerns arise also for instance in connection
with temporal fixed point logics like the p-calculus, cf. The-
orem 2 below, or other fixed point formalisms. Because of
the model theoretic link between boundedness and FO de-
finability of the least fixed point, there is also a connection
with circumscription, which is of interest in artificial intel-
ligence [17, 16]. By the Barwise-Moschovakis theorem [5]
(cf. Theorem 6 below), ¢ is bounded if, and only if, px is
FO definable. So, for circumscriptions based on FO formu-
lae that are positive in the target predicate, FO definability
of this target predicate is the same as boundedness.

Overall however, very few fragments of FO are known to
have a decidable boundedness problem. Quite to the con-
trary, boundedness is known to be undecidable for many
fragments. Among the scarce decidability results, the fol-
lowing result of Cosmadakis, Gaifman, Kanellakis, Vardi
[9] stands out.

Theorem 1. Boundedness is decidable for monadic Data-
log. Le., Bdd is decidable for positive existential FO formu-
lae in monadic recursion variables X, as well as for systems
of such.

Another decidability result that is important for our con-
siderations is the following from [19] (cf. the modal variant
of Theorem 6 below).

Theorem 2. BAd(ML), the boundedness problem for the
modal fragment of FO is decidable. More generally, one



can decide for formulae of the p-calculus whether they are
equivalent to plain modal formulae.

Undecidability results for Bdd abound; we mention
some. See [12] for (i), [11] for (ii), and [14] for (iii). For
(iv) and (v) compare section 3.2 below.

Theorem 3. Bdd(F) is undecidable for the following frag-
ments F of FO:

(1) F: positive existential formulae in a binary recursive
predicate X.

(i) F: existential formulae in a monadic recursive predi-
cate if negation (or even just inequality) is allowed.

(i) F: formulae in a monadic recursive predicate using
Jjust two distinct first-order variables.

(iv) F: universal formulae in a monadic recursive pred-
icate, negative in all non-recursive predicates but al-
lowing positive occurrences of equality.

(v) F: universal FO formulae in a monadic recursive
predicate, if some of the non-recursive relations can
occur both positively and negatively.

In a way, therefore, few natural fragments remain that
would be candidates for a decidable boundedness problem.
Among the most obvious are: the guarded fragment (still
open) and the universal fragment of FO (settled here). The
present investigation shows that monadic boundedness is
decidable for purely universal FO formulae without (pos-
itive occurrences of) equality in which each non-recursive
predicate occurs in just one polarity. As the boundedness
issue is obviously invariant under swapping relations for
their complements in the underlying relational structures,
we may w.l.o.g. restrict attention to the case where all non-
recursive predicates (and equality) only appear negatively,
denoted by F(V, —) in the following.

Main Theorem Bdd(F(V,—)) is decidable. I.e., bound-
edness is decidable for monadic recursion over purely uni-
versal FO formulae that are purely negative in all non-
recursive predicates and equality (or, by extension, univer-
sal formulae in which each predicate letter occurs in just
one polarity).

The restrictions expressed in the theorem are essential.
The decidability result obtained provides a counterpart to
the one expressed in Theorem 1. Note, however, that the
logical “dual” of the decidability result in Theorem 1 would
concern boundedness for greatest fixed points of universal
formulae, rather than least fixed points. Conversely, our
main theorem proves, by duality, decidability of the bound-
edness problem for greatest fixed points of purely positive,
purely existential formulae.

Organisation. In the following section, we review the ba-
sic definitions and discuss the model theoretic connection

between boundedness and definability of the fixed point
(Barwise—Moschovakis theorem). Section 3 focuses on
boundedness for the universal fragment of FO and intro-
duces a normal form for universal fixed points; we also con-
trast our decidability result with undecidability proofs for
less restricted classes of universal formulae. In section 4 we
prepare the reduction argument underlying our main result
by collecting the relevant facts about decidability of bound-
edness for systems in the modal fragment; we also give a
new model theoretic argument for decidability there. The
main technical contribution in section 5 provides the reduc-
tion from the restricted universal case to the modal case
(based on an intuitive intermediate stage that is motivated
by a formalisation in the guarded fragment). We conclude
with some remarks on ramifications and open problems in
section 6.

2 Preliminaries
2.1 Boundedness

Consider fixed point recursion in systems for simultane-
ous least fixed points. (Even when we are ultimately inter-
ested in boundedness for single formulae rather than sys-
tems, the reductions applied take us to systems.)

An admissible system is given by a tuple of FO formulae
@ = (p1,...,pk) in arelational vocabulary 7 and monadic
second-order variables X = (X1,..., X},), where each ¢;
is of the form

¢i(X, ) € FO, positive in each X .

Over any 7-structure 2 associate with this system the
monotone operator on (P(A))*

P = (Picise — ({a € 4: A @ilPral}) g

The simultaneous least fixed point of this operator is de-
noted >°[2]; its components (¢>°[2A]);. The least fixed
point ¢ is also the limit X >° of the monotone sequence of
stages X[ = X = (X{,..., X{) inductively defined
over the given 2 according to

X0 = ¢
Xt {a € A: A= [P, d]}
X} = Uycy X for limit A.

The closure ordinal ¥[p, 2] of ¢ in 2 is the least o such
that X *[2A] = g>[2].

Observation 4. Over w-saturated A, the closure ordinal
for any first-order least fixed point is bounded by w.

Note that all finite stages X, for n € N, are uniformly
FO definable. We write ¢" for the formula that defines the
n-th stage of ¢, which is obtained inductively by substitut-
ing "~ ! for X in o(X, x).



Definition 5. The admissible system @ = (p1,...,¢k) is
bounded if for some n € N, v[@, ] < n for all 2. This no-
tion naturally relativise to restricted classes C of structures
2A; we speak of boundedness of ¢ over C in this sense.

Unboundedness as generalised satisfiability. 1t is useful to
think of unboundedness as a satisfiability issue in the fol-
lowing sense. ¢(X, x) is unbounded iff "1 (z) A =" ()
is satisfiable for all n € N. Itis not hard to see that, for frag-
ments satisfying some mild closure properties, SAT(F) is
reducible to Bdd(F).

Boundedness in finite model theory. For many natural frag-
ments of FO, boundedness (over all structures) coincides
with boundedness over the class of all finite structures. This
is easily seen for fragments that are closed under positive
substitution, negation and conjunction and that have the fi-
nite model property. Closure under positive substitution im-
plies that the finite stages X" in the fixed point generation
are themselves definable by formulae ™ in the given frag-
ment F; closure under conjunction and negation provide
the formulae "1 A =™ within F. For such fragments
unboundedness (in infinite structures) implies unbounded-
ness over finite structures, by an appeal to the finite model
property. This applies in particular to the modal, guarded
and two-variable fragments.

For the existential and universal fragments, one can ar-
gue similarly, but invoking the finite model property for the
3*V* fragment of FO (the Bernays—Schonfinkel class of the
classical decision problem, see [8]) for 1 A =™,

2.2 The BarwiseMoschovakis Theorem

The following is an adaptation of a well-known classical
theorem [5], which links boundedness to FO definability of
the fixed point. The non-obvious part, (iii) = (i), is based
on a compactness argument using w-saturated structures 2,
applying Observation 4.

Theorem 6 (Barwise-Moschovakis). For admissible @,
the following are equivalent:

(1) @ is bounded.
(ii) (@) is uniformly FO definable over all 2.
(iil) (@>°[]) is FO definable for each .

The statement of the theorem relativises to elementary
classes. It also relativises to fragments & C FO with the
property that the finite stages of admissible systems over
F are themselves F-definable. Natural fragments of this
kind are, for instance, the universal or the existential frag-
ments of FO, the k-variable fragments FO’“, the guarded
fragment GF and modal logic ML. For the latter, for in-
stance, we have that an admissible system ¢ of modal for-
mulae is bounded if, and only if, its least fixed point is defin-
able in modal logic (over each individual Kripke structure).

Status in finite model theory. As discussed in the previ-
ous section, the boundedness problem coincides with its fi-
nite model theory version for several ‘good’ fragments, in-
cluding the universal fragment. For the finite model theory
(fmt) version of the Barwise—Moschovakis theorem, how-
ever, one also needs to link definability of the fixed point
over all finite structures to boundedness over all finite struc-
tures, and hence (for a ‘good’ fragment) to boundedness and
therefore definability of the fixed point over all structures.
For the existential positive fragment, a strong form of the fi-
nite model theory version of the Barwise-Moschovakis the-
orem was proved by Ajtai and Gurevich: a Datalog query is
FO definable if, and only if, the program is bounded. This
result has recently been put in a new context, by major new
results on the fmt version of the classical preservation theo-
rem that links preservation under homomorphisms to posi-
tive existential definability, by Rossmann [21] and Atserias,
Dawar and Kolaitis [4]. These fmt versions show that FO
definability of the fixed point of a positive existential re-
cursion implies its positive existential definability, due to
preservation of the fixed point under homomorphisms in fi-
nite structures. By duality, Rossmann’s theorem similarly
implies that FO definability for a universal equality-free re-
cursion that is negative in all non-recursive predicates im-
plies its universal FO definability, in all finite structures.

For the existential fragment, one can show directly that
existential FO definability of the fixed point over all fi-
nite structures implies its definability (by the same existen-
tial formula) over all structures, again by use of the finite
model property of the 3*V* fragment. It is unclear, though,
whether also for the universal fragment, universal definabil-
ity of the fixed point in all finite structures implies its defin-
ability over all structures.

3 Universal FO

The formulae of the universal fragment of FO are gener-
ated from atomic and negated atomic formulae by conjunc-
tion, disjunction and universal quantification.

3.1 Moschovakis normal form

The following normal form for universal formulae
(X, x) that are positive in the second-order variable X is
an adaptation of the normal form of [18], Chapter 4B.

Proposition 7 (Moschovakis).
Let p(X, x) positive in X and purely universal. Then there
is a formula $(X, x) of the form

¢(X,z) =Vy(0(z,y) — 6(X,y)),

where 0 is quantifier free and does not contain X, and
where § is a disjunction of atoms Xy; for some y; €y



such that
“VrXz Vo (e(X,z) < ¢(X,z)).

If  is purely negative in all non-recursive predicates and
in =, then 0 can be chosen purely positive (in all predicates
and in =).

Proof. We sketch the key steps in the inductive proof.
For p = Xz, let ¢ :=Vy(y = z — Xy).

For ¢ = Rz, let ¢ :=Vy (ﬂRz — X y) Here equivalence
with ¢ relies on the existence of elements outside X .

The universal quantification step is trivial. The interesting
inductive steps are for A and V:
Consider ¢ = 1(X,2) * p2(X,2z), where x € {A,V}.
Assume that ¢; = Vy® (0;(x,y") — 6;(X,y™)) is as
desired for ¢;, w.l.o.g. with disjoint y”. Let  be the fol-
lowing, where * is the dual of x*:

Yy Dy @ ((01(z,y™) * 02(2,y*))

— (61(X,yD) V 62(X, y®))
In both cases (x = A or * = V) it is clear that ¢(X,z) =
P(X, z). It remains to establish, that, whenever X is not the
full universe, then ¢ implies .

Consider first the case of * = V. We look at a model
of 1, and suppose for instance that Vy [Gl(y“)) —
61(X,y®)] does not hold true. We therefore find an
interpretation for y™ such that 6; A —d;; fixing any
such interpretation for y™, 1 becomes equivalent to
Vy® [02(y®) — 62(X,y®)], as it should.

Consider now the case of * = A. Again, we look at a
model of ¢, in which there are elements outside X. We
need to show that, for instance, this implies that 6, (y®) —
91(X,y®). Instantiate the universally quantified y® in v
by a tuple consisting of components not in X; this makes
Jdo false. Then ¢ implies that 6, (y™®) — 01(X,y™), as
desired. O

The normal form given in [18] goes further in also elimi-
nating the disjunctions in § in favour of existential quantifi-
cation in the prefix; this is not desirable here.

3.2 Limits for decidability

The following is in marked contrast with our main de-
cidability result.

Theorem 8. Bdd is undecidable for monadic recursion
w.r.t. purely universal formulae in which all non-recursive
predicates occur only negatively, but equality may occur
positively.

The proof follows a general pattern established in [14]
and in [15] for several other undecidable cases of the
monadic boundedness problem, via reduction of the tiling
problem [7]. A domino system is a finite structure ® =
(D, Ry, Ry) consisting of tile types d € D with two adja-
cency relations Ry and Ry that specify when two tile types
fit in horizontally or vertically adjacent positions in tiling.

Formally a ©-tiling of n X n is a homomorphism from
the n x n grid structure &,, to ©. Here

&, = ({0,....n—1}2 HV)
with H = {((4,7),(¢+1,7)):t+1,j <n},
Vo= {((t,4),,j+1):4,5+1<n}

Intuitively, a ©-tiling of n X n corresponds to a place-
ment of tile types on the nodes of the n x n grid such that
horizontally and vertically adjacent tiles respect the adja-
cency constraints given by Ry and Ry, respectively. We
also refer to a corresponding expansion of &,, by colours
(Py)aep as a D-tiling of n X n.

Theorem 9 (Berger). The following problem is undecid-
able: Given a tiling system ®, decide whether © admits
tilings of size n for arbitrarily large n € N.

We now want to associate with a given ® a formula
v = (X, ), positive in X, purely universal and with
only negative occurrences of the relations H, V' (binary) and
P, (unary) for d € D, such that ¢4 is unbounded iff © ad-
mits arbitrarily large tilings. Consider firstly an auxiliary
sentence  which is the conjunction of the following:

VY Nazear ~(Pay A Pary)

Yy1Vy2= (Hyry2 AV g,y ry (Payr A Parys))
Y32~ (Vyryz AV qaygr, (Payr A Paryz))
Yyyrye (Hyyr A Hyys) — y1 = ya)

Yyyye (Vyyr AVyyz) — yi = 42)

Hyyy ANVyrz1 ANVyyzs A Hyzz)
— 21 = Z2

VyVy, Vya V21 V2o (

aopi aii
A H Vl
\%4 \%
a H aio

© = g will be of the form (X, x) = po A v1(X, z)
with static part ¢q as given above. Clearly ¢ is unbounded
iff 1 is unbounded in models of ¢o. Models of g are
H-V-graphs in which H and V are the graphs of partial



functions that commute where defined, and in which each
node carries at most one colour P, in such a way that the
colours of adjacent nodes respect the tiling constraints.

(1 1S set up so as to ensure that (in models of ¢g) the
recursion on 1 (X, x) has closure ordinal n on ®-tilings
of &,,, and that any structure on which ¢; has a non-trivial
(n + 1)-st stage, embeds &,, and hence establishes the ex-
istence of a ®-tiling of n x n.

The formalisation of ¢ uses the following abbreviations
(corresponding to positive quantifier-free definitions):

H = {(,9): Hey ANV gep Pay},
Vo= {(2,9): Vay AVyep Pay}-
Put ¢1(X,z):= Vy(Hzy — Xy)

vV Vy(Vazy — Xy)
Vv Vsz((ny ANVyz) — Xz)
vV VyVz((Vay A Hyz) — Xz).

Obviously vp := @ A1 (X, z) is purely negative in H, V'
and the P, but uses equality positively (in ().

It is obvious that y[po,2A] = n for a D-tiling A =
(&, (Py)) of n x n. It remains to show that conversely,
unboundedness of g implies that ® has tilings of arbitrar-
ily large n x n grids.

Lemma 10. Let A = o, X'[2A] the stages of po on 2.
Let A be A with H and V replaced by Hand V, respec-
tively. Let a ¢ X™[]. Then there is a homomorphism
h: &1 — A with h(0,0) = a. It follows that there is a
D-tiling of &, if y[po,2A] > n.

Proof. The main claim is proved by induction. Note that
a ¢ X"[2] implies that a has H-, V- and (V o H)- and
(H o V)-successors a9, aop1, a1y and aj; that are not
in X" 1[]. o forces a;; = a};. By the inductive
hypothesis there are homomorphisms %;: &,, — 2 with
hl(0,0) = ai0, hQ(0,0) = agp1 and h3(0,0> = ajy.

o now also forces hq(0,1) (the V-successor of ajp)
to be the same as ho(1,0) (the H-successor of ag;) and
h3(0,0). Similarly, hqi(,j + 1) = ho(i + 1,7) = hs(i,7)
for all i, 7 where defined. But this implies that these three
homomorphisms can be combined consistently to obtain
the desired homomorphism A by putting ~(0,0) := a,
Wi + 1,5) = hi(i,§), h(i,j + 1) = hy(i,j) and
h(i + 1,5 4+ 1) := hs(i, ) (whichever righthand sides are
defined). O

Instead of equality one can introduce an extra binary re-
lation ~ which, by purely universal axioms, can be forced
to be a congruence w.r.t. H, V and the P;. However, these
axioms will necessarily involve ~ and the predicates H, V,
P, in both polarities. In other words, we may trade the re-
striction on polarities for avoidance of equality.

Theorem 11. Bdd is undecidable for monadic recursion
w.r.t. purely universal formulae without equality.

4 Boundedness in modal logic

We regard modal logic as a fragment ML, C FO in the
usual way. In a vocabulary o consisting of binary rela-
tions F; and unary predicates P;, the formulae of ML[o]
are generated as the closure of the atomic formulae P; un-
der booleans and modal quantification (E;) and [E;]. In
FO terms, ((E;)¢)(z) is y(Eizy A ¢(y)), and dually
([BJ¢)(@) is Yy (Bizy — ¢(y).

We consider admissible systems in a tuple of monadic
recursive predicates X . The modal version of the Barwise—
Moschovakis theorem provides the means to decide bound-
edness, ultimately via reduction to the MSO theory of the
w-branching tree, which is decidable by Rabin’s well known
theorem. We outline the chain of model theoretic arguments
underlying this reduction.

Due to bisimulation invariance and the Lowenheim-—
Skolem theorem, it suffices to consider the behaviour of
systems in ML over countable tree structures.

Let o be a relational type consisting of binary predicates
E; (for labelled edges) and unary predicates P; (for colour-
ing or labelling vertices). A tree structure of type o is a
rooted directed tree w.r.t. E := |J F; with disjoint F; (no
multiple edge labels).

For a tree structure 2, A with root A and ¢ > 1 we let
ATl C A denote the initial segment consisting of all nodes
up to depth £. Some related terminology:

(a) A’ C Ais called initial in 2L, X if it contains the root A
and is connected.

(b) A’ C Ais called bounded if A’ C A{ for some ¢ € N.

(c) A’ C A is called path-finite if it contains no infinite
paths.

Note that, while properties (a) and (c) are MSO definable,
property (b) is not.

Definition 12. Call a formula ¢(x) € MSO tree-local if
there is some ¢ € N such that for all countable tree struc-
tures 2l and for all initial subsets A’ D AJ¢:

UAEY < WA N1

The following is a straightforward consequence of the
combination of the modal variant of Theorem 6 and the
expressive completeness of ML for bisimulation invariant
properties that are ¢-local for some ¢ [6, 20].

Lemma 13. The following are equivalent for admissible
systems ¢ € ML:

(1) @ bounded.
(1) @ tree-local.
(iii) ¢ ML-definable.

Theorem 14. Bdd(ML) is decidable via reduction to the
MSO theory of the w-branching tree %,. Similarly for



boundedness of modal systems over MSO definable classes
of trees.

The proof of correctness for the intended reduction in-
volves a regular version of Konig’s lemma that allows us to
“apply Konig’s lemma” in the context of the w-branching
tree, its infinite branching notwithstanding.

A regular expansion of T, is one that realises only
finitely many isomorphism types of subtrees.

Lemma 15. The following are equivalent for initial subsets
D in regular expansions (%, D):

(1) D is path-finite.

(i) D is bounded.

Proof. For (i) = (ii) one shows that one can inductively
choose an infinite path within an unbounded D. Starting
from the root, select a successor node in D such that D is
unbounded in restriction to the subtree rooted in that node.
This is always possible, as there are only finitely many iso-
morphism types of subtrees rooted in the available succes-
sor nodes. So D cannot be bounded in each of those without
being bounded in the father node. O

Let
W(Z) =VI(o(I) = N\ < o(112)7°))

(2

be an MSO formula that says (of an initial subset Z of <)
that for all interpretations of countable tree structures of
type suitable for ¢, the evaluation of the fixed point pro-
duces the same outcome at the root whether ¢ is evaluated
in the whole structure or in the initial substructure induced
on Z. Here vo(I) collects the obvious FO conditions on
unary predicates I to encode an interpretation of a count-
able tree structure of the appropriate type within %, in the
natural way. The intended interpretations are such that all
nodes at depth ¢ in the interpreted tree are represented by
depth ¢ nodes in T,,. This compatibility with depth is cru-
cial for the reduction; it is for this reason that we work with
the w-branching tree rather than the binary tree.

Lemma 16. The following are equivalent:
(1) ¢ bounded.
(i) for some £ € N and for D = T,,[¢: T, X = ¢[D].
(i) Tw, A = 3Z(Z initial and path-finite N (Z)).
(iv) there is some regular expansion (%,,, D) of T, with an
initial, path-finite D, such that %,,, A\ = ¢[D)].

Note that (iii) is decidable, as part of the MSO theory of
%, thus proving the theorem.

Proof. (i) = (ii)) = (iii) are clear. (iii) = (iv) is a
well known fact about MSO: any MSO formula satisfiable
in some tree model has a regular tree model. (iv) = (i)
follows with Lemma 15. O

5 From modal to universal boundedness

Consider boundedness for an equality-free universal for-
mula (X, z), positive in X, and with all other predicates of
one polarity only. W.l.o.g. assume that ¢ is in Moschovakis
normal form (see Proposition 7) and purely negative in all
predicates other than X.

p(X,0) = vy((Vibilzy) = 6(X.y))

= AL Wy (0i(z,y)) = 8(X.y)),

the 6; conjunctions of relational atoms (and not involving
X)), § adisjunction over X -atoms in variables y.

Intuitively we treat the 0; as if they were relational
guards (in the sense of the guarded fragment, [3]). To this
end, we use new relation symbols R;, whose intended in-
terpretations are the relations defined by 6;. We may also
assume w.l.0.g. that all these R; have the same arity m + 1
where m is the arity of y. Let 7 be the original vocabulary
of o, 79 its extension by these R;.

With 7-structures 2 we associate corresponding expan-
sions to 7%-structures A? := (A, R) by R; defined by 6;
according to

RQ[ = {a = (ao,al, Ce.

) € AL A = Gifal).
Over these expansions

p(X,2) = NiLy Yy (Rizy — (X, y)).
5.1 Unfoldings and tree representations

The following technique of switching between tree rep-
resentations and relational structures is similar to the one
used in [10].

Let the vocabulary of ¢ be 7, and 77 its extension by the
R; as introduced above. For tree representations of 77 struc-
tures we use a vocabulary [7?] consisting of the following
unary and binary predicates:

— for each 77-structure B of size up to m + 1 and an

enumeration of these elements as b = (by,...,bn),
a unary predicate Pg associated with the isomorphism
type 5 of (B, b) (or, equivalently, the quantifier-free
type of b in B);

— foreach p C {0,...,m}x{0,...,m} thatis the graph
of a partial function, a binary relation F,. We include
p=0.

With 2% and a suitable tuple a € A™*! we associate

e atransition system K (21?) of type o[r],

with distinguished node \ = a,

e the tree unfolding T'(2%, a) of K (A7),
which is a o'[7?] tree structure with root A = a.



Conversely, we associate with every o[7?] tree structure
T satisfying some weak FO definable consistency condi-
tions outlined below:

e atree-like 70-structure B(T),
of which T is a tree decomposition.

In particular, the tree unfolding of 2? from a:
o (A :=B(T(A?,a)).

The transition system: The nodes of K (2?) are those
(m + 1)-tuples of A? that are in one of the relations R;
(i.e., that satisfy one of the 6;), plus all (m -+ 1)-tuples of
the form (a, . .., a) representing single elements. A node a
is in Pg, if 3 is the quantifier-free type of a in 29, Tran-
sitions are labelled with labels p to indicate identities be-
tween components of different tuples. (a,a’) € E, for
p = {(i,j): a; = a}j}. Note that p = () is admitted, and
applies to any two nodes corresponding to disjoint tuples;
between any two nodes of K (?) there is a transition.

The trees: T(AY a) is the usual bisimilar unfolding of
K (%) into a tree structure, rooted in node a.

Let C* = {T'(2A% a): 2 a T-structure } be the class of
all o[7?] trees obtained in this manner.

All T € C* satisty some local and FO definable con-
sistency criteria Cons related to the node labels and tran-
sition labels. These enforce, for (u,u') € E,, u € Pg,
u’ € Py, the obvious local compatibility conditions be-
tween the quantifier-free types 3 and 3’ w.r.t. the identifica-
tion encoded in p. For instance, for p such thatiq,..., 9, €
dom(p), the following is in Cons:

VinVyz (Epmnye — \/ (w1, 12)),

where ® is the set of all formulae Pgy; A Pgryo for pairs
B, for which p: B/{i1, ..., ix} = B H{p(i1),. .., p(i)}

The class C*, however, is not even MSO definable. A
crucial property of 7' € C* is their homogeneity which
stems from the fact that in K (%) every node is reachable
from every other one. For the tree unfolding this implies
that the sibling subtrees at any two nodes are set-wise iso-
morphic.

Relational structures from trees: ~ With every tree T =
Cons associate a relational structure B (7") as follows. Each
node u € Py of T gives rise to a relational structure 8,
of size up to (m + 1) according to the isomorphism type
encoded in 8. B(T) is obtained from the disjoint union
of the B, for v € T, with identifications according to p
between B, and B, for (u,u') € E,. More formally,
let (u,7) € T x {0,...,m} be the element of the disjoint
union of the B, that corresponds to the i-th element of B,,.
Let then ~ be the symmetric and transitive closure of the
binary relation consisting of the pairs ((u,?), (u’,4")) for
(u,u’) € E, and (i,4") € p. The universe of B(T') is the

quotient of the disjoint union of the ‘B, w.r.t. =. Cons is
such that = is compatible with the relational information in
the individual ®B,,.

It is important to note that the interpretation of the rela-
tions R; over B(T) is not in general the one that would be
defined by the 6; over the T-reduct of B(T"). In general one
only has that

(x) B(T) | Va(Riz — 0i(2)),

due to positivity of the ¢; and the construction of B(T').

Remark: T provides a tree decomposition of width m of
B(T'); the patches of this tree decomposition are guarded
in the extended vocabulary 79.

For a tree unfolding (A%)* := B(T(A? a)) let
7: (A9)* — A9 be the natural projection.

We denote as A* the 7-reduct of (A%)*.

Lemma 17. 7m: (A%)* — A’ preserves the stages of the
fixed point generation for ¢ in the sense that for all o:
Xo¥] = ﬁfl(Xa[Ql]).

Proof. The claim is clear for « = 0; also limit stages are
trivial. So consider a successor step. Let 7w(c*) = ¢. We
show that

A" = p[ XA, 7] R = o[ X[, ],
assuming that X*[A*] = 7~ (X *[2]).

Let A* = ¢[X*,c¢*] and let A = 6;]c, c]. By construc-
tion of 2A* there is ¢* € m~*(c) such that A* = 6;[c*, c*].
So A* |= 0[X“,c*] and hence 2 = §[X, c]. It follows
that A = p[X %, ].

Conversely, let 2 = o[ X%, c] and A* = 0;[c*, c*]. Then
A = 0;[c, c] for ¢ := 7(c*), as 7 is a homomorphism. It
follows that 2 = 6[X“, ¢] and thus A* = 6[ X, ¢*] by the
inductive hypothesis. So 2* = ¢[X?, ¢*]. O

5.2 A translation into modal logic

We want to capture the generation of the least fixed point
of ¢ over A* in terms of the associated tree T(A%, a). A
modal system @(X) for X = (Xo,...,X,,) can serve
this purpose. A system rather than recursion in a sin-
gle predicate variable X is necessary, as each node in the
tree stands for an (m + 1)-tuple. The intended meaning
of w € X% will be that the j-th component of this tu-
ple is in X®. Correspondingly, @ is of the form @(X) =
(90(X). s pm(X)).

Recall that (X, x) is the conjunction of the following,
forl <i<k:
) ym,)) .

vyl vym(el(xaylvaym) - §(X7y1a"'



;(X) has, for each 1 < ¢ < k and each quantifier-free
7¥-type 3 = B(zo, ..., 2,,) such that 3 = 6; the conjunct

/\ [E,] (PB - 5()_())

p()=0

where 6(X) is the disjunction of those X for which Xy,
is a disjunct in §( X, y).

The following correspondence between ¢ and ¢ is based
on a correspondence between the individual stages, using
Lemma 17.

Recall that C* is the class of tree structures 7'(A%, a) that
represent unfoldings 2* of 7-structures 2(. With a node u of
T(A%, a) we associate the tuple b = 7(u) € A™*1: this is
the tuple b which, as an element of K (Qle), gives rise to u
in the tree unfolding, or the last node in the path u. We also
denote the j-th component b; of this tuple b by 7, (), thus
regarding 7; as amap 7;: T(A%, a) — A for j < m.

Lemma 18. Consider the stages (X5')j<m of the fixed
point generation for system @ over T'(°, a) and the stages
X in the generation of the fixed point for o over . Then,
for all o, the (X§') represent X

Xy ={ue T, a): m;(u) € X}
It follows that ¢ is bounded iff ¢ is bounded over C*.

Proof. As @ is modal, and since T'(21%,a) = T(K (%), a)
is bisimilar to K (%), we may prove the correspondence
between ¢ on 2 and @ on K (%), where is becomes:

X§={beK®%:b; e X}

We write K for K = K (%) for the rest of this proof.

The claim for the stages (X3);<m of ¢ over K and the
stages X of ¢ over 2 is proved by induction on a.. Con-
sider the successor step from « to o + 1 and assume the
claim for a.

Letb € X", ie, K,b | ¢;[X?]. To show that
b € X a+l in A, we need to establish that, for all b’ =
(bj, by, ...,b,) such that A = 0;[b’] also 2, b’ |= §[X].
2 E 6,;[b’] implies that b’ is a node of K, contained in
some P3 for which § = 6;, and (b, b’) € E, for some p
with p(j) = 0. For these 3 and p, therefore, ; has the
conjunct [E,)(Ps — §(X)), and K,b = ¢;[X*] implies
that K, b’ |= §[ X ]. Tt follows that 2, b’ |= §[X“].

Conversely, let b € K and b; € X*™!. Then & |=
©[X*,b;] implies that b € X;““l as follows. Consider
a conjunct [E,](P3 — (X)) in ¢;, where 8 |= 6;. Then
(b,b’) € E, implies that b; = b, and b’ € Pg implies that
2 = 0;[b’]. Therefore, 2A = ¢[X*,b;] implies, as A |=
0;[b’], that 2 = 6[X“, b']. Therefore K,b’ |= §[X“]. We
thus get K,b |= ¢,;[X*] and b € X]‘-IH. O

This reduction, however, does not yield decidability di-
rectly as the class C* of relevant tree structures is not MSO
definable. We must therefore extend the class C* of actual
tree representations to a wider class C 2 C* that is MSO de-
finable and still supports a correspondence as in the lemma.
The lemma implies

@unbounded = @ unbounded over C

for any C O C*. Crucial for the choice of C is that it is tight
enough to make the converse true as well.

5.3 Monotonicity and admissible trees

Consider an arbitrary tree T = Cons and the associ-
ated 7-structure B (T") represented by T'. It is clear from the
construction of B(7T') that there is a translation from MSO
over B(T') into MSO over T'. Essentially this amounts to a
translation 1) — 1) such that B(T) =1 < T k= 1. Some
care has to be taken w.r.t. first- and second-order free vari-
ables, though. Consider for instance a formula ¢)( X, z). An
instantiation by P C B(T) is represented in T by a tuple
P = (Py,...,P,) of subsets of T', where

Pj:{UETZUjEP}gT,

u; the j-th component of the tuple represented in 25,,. Simi-
larly, w.r.t. its first-order variable x, ¢ translates into a tuple
of formulae ’l,/A}j such that zl;j expresses of u € T whether ¢
is true of u;.

So in this case (with just one free variable of each type),
¢ is of the form (1;(X, y))ogjgm and such that for all j:

B(T) = y[Pug] i T =[P, ul.

The availability of MSO quantification in this transla-
tion is essential even for the translation of FO formulae 1,
since the set of nodes of 7" in which a given element of
B(T') is represented can only be defined in MSO. This is
because the same element can be carried along (E,)-paths
of arbitrary lengths. For instance, in order to check whether
Y(x) = JyRaxy is true of some x, which is represented as
the i-th component of u € T, z[}z needs to involve checking
all nodes v’ reachable from w on paths labelled p; ... pg
such that ¢ € dom(pg 0 --- 0 p1).

Lemma 19. There is an effective translation of ¢(X, )
into (¢;(X,x))ogj<m such that for all P C B(T'), rep-
resented by P over T, and for 0 < j < m:

B(T) FelPuy] iff T ¢lP,ul.
Similarly, for the fixed points:

B(T) F ¢l i T ()5 [u]-



Due to (negative) monotonicity of  in the non-recursive
predicates, the evaluation of the fixed point w.r.t. ¢ in T" will
in general result in an overestimate for the fixed point of ¢
over B(T). More generally, for any P C 9B(T) and its
representation P over T', by (%) in section 5.1,

() T | Vz(g;(X,2) — (9);(X,2)).

Definition 20. Call a tree 1" admissible for ¢ if T is con-
sistent (cf. local FO conditions Cons) and ¢7° = ¢5° on
T for j = 0,...,m. Let C, be the class of trees that are
admissible for ¢.

Observation 21. C,, is MSO definable.
Lemma 22. ¢ is bounded iff ¢ is bounded over C,,.

Proof. C, O C* follows from Lemma 18. The tree struc-
ture 7(A%, a) underlying 2* provides a faithful representa-
tion of the fixed point generation of ¢ (over 2 or 21*, see
Lemma 17) in terms of . It follows that ¢ is unbounded
over C,, if ¢ is unbounded.

Consider ¢ that is bounded by n € N. By the definition
of C,, the results of the fixed points w.r.t. ¢ and the faithful
translation ¢ of ¢ on T' € C,, are the same. By monotonic-
ity (x%), @ can only overestimate individual stages, which
means that y[@, T < v[@,T] = e, B(T)] < n. So @ is
bounded over C,. O

This finishes the proof of the main theorem, since bound-
edness of the modal system ¢ over the MSO definable class
C, is decidable by Theorem 14.

6 Summary

Decidability of Bdd(F(V, —)) has been shown by model
theoretic methods, involving a reduction to the boundedness
problem for modal systems over some suitable MSO defin-
able class of trees. Both the modal system and the class
over which its boundedness is checked depend on the input
formula (X, z) € F(V,—), and the ultimate target in the
reduction is a satisfiability issue in the MSO theory of the
w-branching tree.

As a result of this approach we cannot expect to extract
good complexity bounds. The complexity of Bdd(F(V, —))
remains to be determined.

Applicability of the reduction seems to depend, in a
rather subtle way, on the very special monotonicity prop-
erties involved in universal quantifications in which the
only role that the (exclusively negative) occurrences of non-
recursive predicates play is that of restricting the scope of
the universal quantifiers, as in universal guarded quantifica-
tion.

Among the obvious ramifications, therefore, that can be
treated in an analogous fashion are systems of F (¥, —) for-
mulae in monadic recursive predicates, and universal for-
mulae of the guarded fragment in arbitrary arities.

It remains open whether binary purely universal recur-
sion — with otherwise the same constraints on polarities and
equality — has a decidable boundedness problem.

The present investigation covers recursion in monadic re-
cursive predicates (or higher arity but then guarded univer-
sal rather than arbitrary universal quantification would seem
to be essential).

In the wider picture, major open issues concern the
boundedness problem for the full guarded fragment, as well
as the monadic boundedness problem for larger fragments
or all of FO on the class of structures of tree-width k, for
fixed k. In both cases, suitable reductions to the MSO the-
ory of trees could possibly provide a route to decidability
proofs.
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