Categorical Combinatorics for Innocent Strategies

Russ Harmer
Equipe PPS, Université Paris 7
2, place Jussieu, Case 7014
75251 Paris Cedex 05, France
russ @pps.jussieu.fr

Martin Hyland

DPMMS, University of Cambridge,

CMS, Wilberforce Road,
Cambridge CB1 2BX, UK
m.hyland @dpmms.cam.ac.uk

Paul-André Melli¢s
Equipe PPS, Université Paris 7
2, place Jussieu, Case 7014
75251 Paris Cedex 05, France
mellies @pps.jussieu.fr

Abstract

We show how to construct the category of games and in-
nocent strategies from a more primitive category of games.
On that category we define a comonad and monad with the
former distributing over the latter. Innocent strategies are
the maps in the induced two-sided Kleisli category. Thus
the problematic composition of innocent strategies reflects
the use of the distributive law. The composition of sim-
ple strategies, and the combinatorics of pointers used to
give the comonad and monad are themselves described in
categorical terms. The notions of view and of legal play
arise naturally in the explanation of the distributivity. The
category-theoretic perspective provides a clear discipline
for the necessary combinatorics.

1 Introduction

The notion of innocent strategy introduced in [16] and
independently in [30] supports a notion of game with point-
ers with widespread applications. The first application
of this form of game semantics to PCF was quickly fol-
lowed by others: to recursive types [24], to store at ground
type [3], to general store [4], to control [20], to non-
determinism [13] and to polymorphism [14]. Since then the
range of applications has broadened further. There has been
much work and some spectacular success in model check-
ing and verification [2, 29, 31, 32]. The special topic of
type isomorphism is treated in [21], while [1] gives a model
of a A-calculus with names. There have also been theoreti-
cal developments. For a recent close analysis of aspects of

pointers which we do not cover here see [12].

The fact that innocent strategies compose is naturally es-
sential to the many applications, but this fact is not at all
trivial. In the main authors tacitly rely on the original proof
in [16] or else on its reworking in [25]. Some writers pur-
port to avoid the issue by appeal to a full abstraction result;
but such a reliance on the compositionality of a correspond-
ing syntax dilutes the interest of their semantic analysis. In
this paper we revisit the definition of innocent strategy from
a new point of view. We use categorical ideas both in the
large to construct the category ZNAN of games and inno-
cent strategies, and in the small to control the combinatorics
justifying this construction.

Our aim is to derive the original notion of innocent strat-
egy together with its basic properties from structure on a
primitive category G of games. We do not consider linear
notions of innocence. One such is the basis for Ludics [11]
(see [10] for an explanation in more standard game theo-
retic terms). Linear innocence is independently the subject
of ongoing research. There is an abstract treatment of it in
terms of homotopies [26], but we do not make any connec-
tion with that here.

The idea of innocence does not appear in our initial cat-
egory G, and the definition and the elementary properties
of that category are familiar and intuitive. We give a fresh
treatment in Section 3 for completeness and also to stress
the combinatorial content of the category. The novelties are
largely a matter of style and presentation.

Our construction of the category ZN N of games and
innocent strategies involves more sophisticated categorical
structure in particular a distributive law. For experts we note
that the maps of ZA N appear essentially as view functions.

It is the distributive law which carries out the painful task
of defining directly the composition of view functions. We
maintain that one gets a good understanding of the neces-
sary combinatorics of pointers if one sees it as justifying
the relevant structure on G. We sketch the combinatorial
details in Section 4. We start however by explaining the
construction of ZNV'N in the abstract.

2 Categorical Analysis
2.1 Distributive laws

The notion of a distributive law A\ : ST — TS of a
monad S over a monad T is due to Jon Beck [6]. Though
it did not feature in Mac Lane’s classic text [23] it is by
now well established. An accessible concrete account in
the general context of monad theory is given in [5]. An
early abstract perspective is contained in [34].

In this paper we need the perhaps less familiar notion of
a distributive law A : GT — TG of a comonad G over a
monad 7', both on the same category C.

Definition 1 A distributive law of a comonad (G, €, §) over
amonad (T, n, 1) on a category is a natural transformation
A : GT — TG satisfing the coherence conditions

TedA=eT and T6.\=\NG.GAIT
for the counit and comultipication of the comonad and
AGn=nG and A.Gu=puGTANT

for the unit and multiplication of the monad.

So, the four diagrams below are required to commute, for
every object A of the category:

TGA
A Té§
GTA(\/\/:TGGA

GGTA—22 -~ gTGA

GTA
0/7 \
/TGA
"

GITA "
\E“GTA s TTGA
TG4 o OTA
GTA/E—\:TA GA/1—77\:TGA

Theorem 2.1 A distributive law of a comonad G over a
monad T' provides both an extension CA?Aof G to the Kleisli
category KI(T) for T and an extension T of T to the Kleisli
category KI(GQ) for G. Moreover the Kleisli categories

A A

KI(G) and KI(T') are isomorphic.

This theorem is an evident modification of Beck’s ideas,
but is not easy to find in the literature. We refer the
reader to [33] which gives a detailed analysis of distribu-
tive laws relating monads and comonads, and treats higher-
dimensional aspects of the theory. [33] also gives an in-
dication of the range of applications in computer science.
Here we need only the category KI(G) = KI((T'), which
we denote K1()), and which has the following concrete and
symmetric description.

e The objects are those of the original category C.
e Maps from A to B are maps GA — T B in C.
e The identity on Aisng.64 : GA —» TA.

e The composition f : GA - TBandg : GB - TC
is given by the composite pc.7'9g.A\g.Gf.d4.

One should understand the construction of KI(\) as fol-
lows. At firstsight maps f : GA - TBandg: GB - TC
have no right to compose. The natural transformation A ne-
gotiates that difficulty. But even then the definition of com-
position does not look associative, and it is exactly the co-
herence conditions which are used to establish associativity
and the unit laws for composition.

2.2 The cartesian closed category

We are now in a position to outline our account of inno-
cent strategies. We start with a symmetric monoidal closed
category (see [23] for this notion) G of games. This is the
simple category of the expository article [15]. G has prod-
ucts, and we equip it with a linear exponential comonad
(,e,0) making it a model of Intuitionistic Linear Logic
(ILL). (For category theoretic background in this area see
[7, 8, 27].) The comonad we need is not the simple one
of [15], but another manifest possibility. (However we are
perhaps sketching the details at this level for the first time.)

Next we give an evident monad (7,7, 1) related to the
comonad. Then the nub of our analysis is that we shall con-
struct a distributive law X of ! over 7, and we define the
category of games and innocent strategies in terms of it.

Definition 2 The Kleisli category KI()) is the category
INN of games and innocent strategies.

ZINN has a lot of structure but here we simply indicate
what we need by way of structure on G, to show that ZNVN
itself is cartesian closed.

First we note the special feature that the monad ? com-
mutes with products in our category G. Thus we have iso-
morphisms

711 ?(Ax B) =?Ax?B

with the coherence conditions to the effect thatn x n = n
and o X p = p. As aresult we have the following.

Theorem 2.2 The category ZN' N has products.

Proof. By the easy isomorphisms

INN(A,BxC) G(A,?7(B x C))
G(I4, 2Bx7C)
G(ILA. 2B) x G(1A,7C)

INN(A,B) x INN(A,C).

R

For the function space in ZN N we make use of a fur-
ther piece of structure. As ZNA is a model for ILL,
we have the familiar coherent isomorphisms !1 = T and
(A x B) =1AQ!B. But also for games A and B we have
a game A—H B, which should be regarded as an additive
implication, and so is further additive structure. (We shall
see that it corresponds to the construction of the function
space arena in the standard presentation of innocence [16].)
As a functor A—HH B is covariant in B, and contravariant in
A. The basic structure is then that we have a coherent nat-
ural isomorphism ?(A—8 B) =!A —?B which parallels
(A x B) 2!AQ!B.

Theorem 2.3 The category IN'N is cartesian closed.

Proof. Given the previous result this follows readily by the
isomorphisms

INN (A x B,C) G(I(A x B),?C)
G(1A®!B,C)
G(IA, 1B —7C)
G(IA,2(B—BC))
INN(A,B—HC)

1R 1R I

Our task for the rest of this paper is to justify these simple
arguments by showing that our category G has the necessary
structure.

3 Games
3.1 Simple Games

Our games, played between P (Player) and O (Oppo-
nent), are essentially as in the literature, for example in [15].

Definition 3 A game A is given by a diagram

A(l) «+"— AQ) «— AB) «——— - (D

of sets and functions. The elements of the A(n) are moves
or positions of the game. If w(ant1) = an, then ay is the
move preceeding a,41, while any;1 is a successor of ay.
Thus the moves in A(1) are the initial moves. For n odd,
the moves A(n) are O-moves played by O, or O-positions,
where O has just played, and for n even they are P-moves,
or P-positions.

Thus informally a game is given by a forest of rooted trees,
the roots being the initial moves played by O, and with the
players, P and O, thereafter alternating moves. (As a result
of the alternation, parity is a basic feature of the combi-
natorial bookkeeping which follows.) There are good rea-
sons, which we do not go into here, why we do not bother
to distinguish positions and moves in this context. Note
in any case that the move a € A(n) determines the se-
quence a = (7" 1(a),7"%(a),---,a) of moves or po-
sitions which is its history. We call such a sequence a play
in A. Occasionally we restrict sequences: a[m is the result
of restricting a to its first m members. The restriction of a

play is a play.
3.2 Strategies

We need a notion of strategy for Player, a P-strategy, in
a game A. We only consider deterministic strategies and
we use the description of them in terms of the collection of
P-positions reached by the strategy. (This description gives
the forgetful functor from the category G to the category Rel
of sets and relations see for example [17].)

Definition 4 A P-strategy o in a game A consists of a col-
lection o of positions, being the union of o(2n) C A(2n)
satisfying

o ifx € 0(2n + 2) then %(z) € o(2n);
o ifz,y € o(2n) with w(x) = w(y), thenz = y.

Intuitively, given an O-position a' reached while playing o,
the unique P-position a in o with w(a) = a’, if it exists, is
the response according to o. Condition (i) in the definition
simply means that any P-move in ¢ can be reached when
the game is played in accord with o. Condition (ii) is the
determinacy of strategies.

3.3 The category of schedules

Maps from A to B in the category G will be given by
P-strategies in the linear function space A — B, which
we define in the next section. Our presentation uses some
combinatorial category theory, so first we give some com-
binatorial motivation.

A play in A — B is a merge of plays in A and in B:
the games are played in parallel but with the parity of A re-
versed (O plays the P-moves and vice-versa). Alternatively

the cogame A~ is played in parallel with B. This tradi-
tional point of view is described in [15]. By parity a play in
A — B must begin with an initial move in B, and when-
ever O plays he can do so (if at all) in the game in which P
has just played, but not in the other. Thus if we let O indi-
cate a play in A and 1 a play in B, then the pattern of a play
of length n in A — B is given by a —o-scheduling func-
tion or schedule e : {1,---,n} — {0,1}, that is a function
satisfying e(1) = 1 and e(2k + 1) = e(2k).

Schedules e : {1,---,n} — {0,1} are sequences of Os
and 1s. We write |e| for the length n of e. Let |e|o be the
number of 0s and |e|; the number if 1s in the sequence: so
le] = n = |e|o + |e|1. Note that if e is a schedule and n is
odd then we must have |e|g even and |e|; odd. Also if eisa
schedule so is any restriction e[m.

We now give the definition of a category in which sched-
ules are maps. In the course of the definition we introduce
further notation.

Definition 5 The category Y of schedules is as follows.

o The objects of Y are the natural numbers. We think
of an object p as representing the totally ordered set
(p) = {1,---,p}. Write (p)* for the set of even ele-
ments and (p)~ for the set of odd elements of (p).

o The maps in Y (p,q) are the schedules e with |e|o = p
and |e|ly = q. A schedule e : p — q corresponds to
obvious order preserving (collectively surjective) em-
beddingsl : (p) = (p+q) andr : (¢) = (p+ q) and
thus to order relations l(x) < r(y) from (p)* 10 (¢)*
and r(y) < l(z) from (q)~ to (p)~.

o The identity in Y (p,p) is the copy-cat function ¢ of
length 2p, the schedule with ¢(2k + 1) # ¢(2k + 2).
The induced orders are < on (p)* and on (p)~.

o Lete:p—qand f:q— r bemapsinX. Then their
composite f.e : p — r is defined by taking the corre-
sponding order relations, composing them as relations
and reconstructing the function.

We have defined the composition in Y as the the compo-
sition of merges sketched in the Appendix to [18]. This
makes it evident that composition is associative with the
copy-cat functions c as identities. (Concretely c is of form
(1,0,0,1,1,0,0,1,1,0,---). This is the shape of so-called
copy-cat interactions in game semantics. We shall see that
all basic structure maps are given by this form of interac-
tion.) There are other approaches. In particular, Y is related
to the category theorists A, that is the augmented category
of all finite ordinals (including 0). There is a concrete dis-
cussion of this A as a strict monoidal category in [23]: in
fact it is the free strict monoidal category generated by a
monoid. There is a (free) functor F' : A — AT from A
to AT the category of ordinals with a top element T, and

with maps preserving T. This situation is already consid-
ered in [22]. Then Y is one of the total categories associated
with F'. (With our preferred conventions it is the lax colimit
(see [19]) of the profunctor F* : AT — A.) Thus the
category of schedules Y is one of the range of small combi-
natorial categories of fundamental interest in mathematics.

3.4 The category of games

We give a simple description of the linear function space
A — B.

Definition 6 Ler (A — B)(n) consist of the (e, a, b) where
e:p— qisaschedule,n =p+q, a € A(p) andb € B(q).
The predecessor function 7 is defined by

_ [(el(n —1),7(a),b)
n(e,a,b) = { (zr(z — 1),a,?r(b))

The strategies in A — B are the maps A — B in our
category G. We give the formal definition.

ife(n) =0,
ife(n) = 1.

Definition 7 The category G of games is given as follows.
e The objects of G are games.
e The maps in G(A, B) are strategies in A — B.

e The identity g : A — A is given by the positions in
A —o A of the form (c, a, a) with ¢ copy-cat.

e The compositionof 0 : A — BandT : B = C is
7.0 : A — C given by the positions (f.e,a,c) such
that there exist (e, a,b) € o and (f,b,¢) € T.

As an immediate consequence of the fact that Y is a cate-
gory one has the following.

Proposition 3.1 Games and strategies form a category G.

It is worth noting at once that while the collection of maps
in G is complicated and hard to analyse, the collection of
isomorphisms is much less so. As one might hope, an iso-
morphism in G between A and B is determined by an iso-
morphism at the level of their defining diagrams as given in
(1) above.

3.5 Symmetric monoidal closed structure

We start by exhibiting our category G of simple games
as a symmetric monoidal closed category. We already have
seen the beginnings of data for a closed structure (for this
notion see [9]) on G, but with G we are lucky. We can define
a good tensor product A ® B in G by playing A and B in
parallel with no change of parity. If again we let 0 indicate
a play in A and 1 a play in B, then the pattern of a play
of length n in A ® B is given by a ®-scheduling function
e : {1,---,n} — {0,1}, that is, a function e satisfying
e(2k +1) = e(2k + 2).

Definition 8 Let (A ® B)(n) consist of the (e, a,b) where
e is a ®-scheduling function, le| = n, a € A(|e|o) and
b € B(|e|1). The predecessor 7 is defined by

_ [(el(n —1),7(a),b)
n(e,a,b) = { (zr(z - 1),a,;1r(b))

The empty game I is evidently a unit for this tensor prod-
uct, and it is very simple combinatorics to check directly
that AQ B — C =2 A — (B — (). Also it is straight-
forward to define a symmetry for the tensor. This gives the
following.

ife(n) =0,
ife(n) =1

Theorem 3.2 With structure as described above, G is a
symmetric monoidal closed category.

Thus G models multiplicative Intuionistic Linear Logic.
3.6 The standard decomposition

The additive structure on G is straightforward. Given
games (4;);er the levelwise sum or coproduct

A1) B P, Ai(2) 5 4(3) -
of the defining diagrams provides a product in G. Thus the
category G has products. Of course the empty product 1 is
also the empty game: 1 = [and G is an affine model of
multiplicative-additive Intuitionistic Linear Logic.

We can use a little fine structure. Every game A is ev-
idently isomorphic to the product over its initial moves of
games with just one initial move; and it is useful to have
this decomposition in a standard form. So we note a special
case of the construction A — B. There is a game .S with
just one opening move for Opponent and no further moves.
For any game B the game B — S must open with the
unique move in S and after that the play is in B but with the
obvious change of parity: the roles of the players reversed
as the even (Player) moves of B —o S are the odd (Oppo-
nent) moves in B. Clearly any game C' with just one open-
ing move (i.e. with C(1) a singleton) is isomorphic to one
of form B — S. It follows that up to isomorphism every
game Aisaproduct A =[], A, — S of games of the form
A, — S, the product being taken over the set A(1) of the
opening moves of A. We shall refer to A = [(4, — 5)
as the standard decomposition of A.

4 The exponentials
4.1 Pointers and heaps
The exponential in G which we are going to introduce

requires what is effectively some combinatorics of trees.
We start with some general considerations. For any n,

pointers on a sequence of length n are given by a function
¢ :{1,---,n} — {0,---,n — 1} such that ¢(i) < ¢ for
all 1 < ¢ < n. (The value 0 is a dummy: one could in-
stead deal with partial functions. In what follows if a value
appears undefined it should be taken to be 0.)

For each n the collection of functions giving pointers as
above is in obvious bijective correspondence with (order-
reversed) heaps on the set {0,---,n}. (Recall that a heap
is a tree-based data structure in which elements appear in
order down any branch.) To obtain the heap hp(¢) cor-
responding to a pointer function ¢, one places 0 at the
root and attaches the is with ¢(i) = 0; then the js with
@(j) = i are attached to 4, and so on. We introduce termi-
nology for this tree structure. For any ¢ there is a ¢-branch
(0,---,¢%(i), ¢(i),4) from the root 0 to i; if we delete the
root, which is dummy and does not index a move, we get
the ¢-thread of ¢ which is best thought of backwards as
(i, ¢(i), #2 (@), - -). Later the nodes from {1, - - -, n} will be
decorated with moves from some game, and we shall then
talk of the thread of such moves with the obvious meaning.

For ¢, 1 functions giving pointers on n we write ¢ >
just when for all k, (k) lies in the ¢-thread of k: intuitively
this means that ¢ goes faster than ¢.. Then ¢ > 1) just when
the 1-thread of any k lies in the ¢-thread of k. The point
then is that in the obvious sense ¥ restricts to (what is up to
renumbering) a pointer function on any ¢-thread. In terms
of heaps, ¢ > v holds if and only if there is an order pre-
serving bijection hp(¢) — hp(¢). Evidently then > is a
partial order. The predecessor function 7 is the maximal el-
ement and the constant O function the minimal element with
respect to this order. (Our overloading of 7w and predecessor
should cause no confusion.)

4.2 Parity pointer functions

We shall only be concerned with functions giving point-
ers which change parity: that is for which ¢ takes even num-
bers to odd and vice versa. (The obvious example is the
predecessor 7.) The heap perspective is so important to us
that we shall refer to our most important pointer functions
as heaps.

Definition 9 A (parity) pointer function ¢ on n is a parity-
reversing function ¢ : {1,---,n} — {0,---,n — 1} with
¢(i) < iforalll < i < n. ¢ is an O-heap just when we
always have ¢(2k) = 2k — 1. Dually ¢ is a P-heap just
when we always have ¢(2k + 1) = 2k.

If ¢ is an O-heap and v a P-heap, we write (¢, 4) for the
pointer function (¢, 1) (k) = ¢(k) if k odd, else ¥ (k). Ob-
viously any pointer function is uniquely of the form (¢,)
where ¢ is an O-heap and ¢ a P-heap. ¢ is an O-heap if
and only if ¢ = (¢,), so all the information is at the O-
positions; and dually for P-heap. Only 7 is both an O-heap
and a P-heap.

For n € Y, let Ohp(n) be the partially ordered set of
O-heaps and Php(n) that of P-heaps. We are going to show
inter alia that Ohp(n) is a contravariant functor and Php(n)
a covariant functor in n.

It seems best (and will be useful later) to consider at once
a quite general situation. Suppose that e : p — ¢ is a sched-
ule, ¢ an O-heap on g and ¢ a P-heap on p. Recall that e
gives injections I : (p) = (p+q), 7 : (@) = (p+ q). We
define the O-heap (¢, e, 1)) on p + ¢ by setting

r(¢(§)) if k =r(j) is odd,
(¢,e,9)(k) = {l(w(i)) if k= I(i) is odd,

k-1 otherwise.

Now for a schedule e : p — ¢ in T and O-heap ¢ on
q, we define the O-heap e*¢ on p, using the threads of the
O-heap (¢,e,m) on p + q. We set e*¢(k) = j just when
j is maximal with j < k and () in the (@, e, 7)-thread of
I(k), if there is such, 0 otherwise. It is evident that (with
the obvious disambiguation) (7, e, 7) is 7 so that e*m =
m. Also if ¢ > ¢', then then (¢,e,7) = (¢',e,m) and
it follows that e*¢ = e*¢’'. Thus e* is a map of posets
preserving the top element. Similarly given e : p — ¢ and
1 a P-heap on p, we define e, using (m, e,). We set
ex®(k) = j just when j is maximal with j < k and r(j)
in the (m, e, 1)-thread of r(k), if there is such, O otherwise.
Again we have a map of posets preserving the top element.
We write Pos for the usual category of posets and order
preserving maps.

Proposition 4.1 With the structure indicated above, both
Ohp : (Y)°P — Pos and Php : (T) — Pos are functorial:
for copycatc : p = pin'Y, c*¢ = ¢ and c.ip = 1, for
e:p—>qgand f:q—>rinY e f*¢ = (fe)*¢ and
frexp = (f.€)x1).

We also need some information concerning threads of
O-heaps of the form (¢, e,). Schedules e : p — ¢ and
f : @ — r give identifications of (¢) in (p + ¢) and in
(¢ + r) with parity preserved in the first case and reversed
in the second. Given subsequences (threads) in (p + ¢) and
(¢ + r), which agree on the image of (¢) we can extend
the notion of composition of schedules to give a composed
subsequence in (p + r).

Proposition 4.2 Supposee : p — qand f : ¢ — 1 are
schedules, ¢ an O-heap on r and ¥ a P-heap on p. Then
threads for (¢, f.e,1p) on p + r are composites of unique

threads for (¢, f,e.)) on q+r and for (f*¢,e,) onp+q.

4.3 The exponential functor

In effect ! 4 is a game in which O can perform backtrack-
ing with repetitions. The definition is as follows.

Definition 10 Given a game A, the game A is determined
as follows. The positions of | A are of the form (¢, a) where

e ¢ is an O-heap onn and a is a sequence of moves from
the game A of length n;

e for any thread of ¢, the moves in a corresponding to
the thread form a play in A.

The predecessor is w(¢,a) = (¢l(n — 1),a[(n — 1)).

The first non-trivial issue is to show that ! extends to a
functor: given o : A — B we have to define lo :!A —!B.
The rough intuition is that in playing !A —o!B according to
lo, there is a current thread in A — B determined by the
fact that O can backtrack in B, and P responds according
to ¢ in this thread. As a result P backtracks in A simply in
response to O’s doing so in B.

Definition 11 Let o be a strategy in A — B. A position
(e, (d,a), (¥,b)) of 1A —o!B is in lo just when ¢ = e*1p
and the moves in any thread of (¢, e,) are moves played
in accord with o.

On can understand this definition as follows. I is a coal-
gebra for the comonad !, and so we can promote o to give
a strategy ol in (A — B). (That is where the O-heap
(¢, e,) lives.) Now it follows from the isomorphisms (2)
that ! is a monoidal functor in the lax sense. This gives us
amap !(A — B) —!A —o!B, and composing that with o'f
gives lo.

The main result relying on the composition of threads is
the functoriality in the following.

Theorem 4.3 If o is a P-strategy in A — B, then o is a
P-strategy in !A —!B. Further ! is functorial: tq4 = 14
and /(1.0) =!Ir.lo.

Proof: The functoriality follows from Proposition 4.2 and
the fact that e*m = 7.

4.4 The linear exponential comonad

We claim that ! is the functor part of a linear exponential
comonad (in the terminology of [17]). The main issue is the
comonad structure as the tight form of Seely’s conditions
(see [8]) are easy to check. To understand the situation, we
need a concrete understanding of plays in games like !l A
and even !!!A. Clearly in !!A there must be two pointers
corresponding to the two !s; and in fact that together with
a sequence from A is all the data needed. The issue is the
relation between the pointers.

Now we give a representation of the plays in ! A. They
are given by (¢,1,a) where

e ¢ and ¢ are O-heaps and ¢ > 1;

e the moves along the v-threads are plays from A.

(It is then automatic that the restriction of 1 makes each ¢-
thread a !A-play.) In terms of this representation we need
a description for 0 : A — B of llo :I!A —!!B. With the
above conventions, the strategy !!o consists of the

(e, (60, 2),(¢',¥", b))
with e*¢’' = ¢, e*¢)' = 1) and each (¢, e, w)-thread a play
ino.
We now give the comonad structure.
e The P-strategy €4 in !A — A is given by positions of
the form (c, (7,a),a) with ¢ copy-cat, 7 as ever pre-
decessor and a the last move of the play a.

e The P-strategy d4 in A —o!lA4 is given by positions
of the form (¢, (1, a), (¢, 1, a)) again with ¢ copy-cat,
and with ¢ > 2.

Proposition 4.4 €4 and § 4 are natural in A.

Proof: We give some flavour of the arguments at this stage
of the theory.

First for ¢, take 0 : A — B. To get g.64 we compose
positions of form (¢, (7, a), a) with those of form (e, a, b)
from o: that gives positions (e, (7,a),b) where if a is
the last move in a, then (e,a,b) is in o. For eg.lo we
compose positions of the form (e, (¢,a), (v,b)) above
with (¢, (m,b),b). So we have to identify ¢ with 7. But
then e*7 = 7 so we get the same result as for 0.€ 4.

The argument for § is similar. Both !!o.§4 and dp.lo give
positions (e, (¢, a), (1, x, b)), where e*y = ¢ and each
(x, e, m)-thread gives a play in o.

The comonad equations are equally straightforward
checks.

One sees that le4 in 'A —o!!A consists of the
(c,(¢,a), (¢, p,a)), while clearly €14 consists of the
(¢, (¢,a), (7, p,a)) in each case with ¢ copycat. One im-
mediately deduces le 4.04 = 114 = €14.04.

Plays in !4 are given by (p, ¢, 1, a) satisfying the ob-
vious extension of the condition for !!4. Then again with
a little work 164 consists of the (¢, (¢,v,a), (p, 9,9, a))
while clearly ;4 consists of the (¢, (p, 1, a), (p, ¢, 1, a)).
Hence we have 104.64 = d14.04, both composites consist-

ing of (C; (¢; a)a (pa ¢; d}; a))

Finally the two coherent isomorphisms
1=7 and !(Ax B)=!AQ!B 2)
are easy. So we get the expected result.
Theorem 4.5 (!, £,0) is a linear exponential comonad.

At this point we have given G the structure of a model for
full Intuitionistic Linear Logic. So we stress that we are
not here concerned with the usual Kleisli category for this
situation.

4.5 The monad

The monad (?, 7, 1) arises by playing games but now al-
lowing P to backtrack. We shall need an account paralleling
that for ! and we sketch that at once.

Definition 12 Given a game A, the game ? A is determined
as follows. The positions of | A are the (¢, a) where

® ¢ is a P-heap onn and a is a sequence of moves from
A of length n;

e for any thread of ¢, the moves in a corresponding to
the thread form a play in A.

The predecessor is w(¢,a) = (#[(n — 1),al(n — 1)).

Experts will recognise at once that if they regard A as
an arena, then strategies in 7A are essentially view func-
tions. That is, they are representing functions for inno-
cent strategies over A in the old terminology of [16]. Since
?(A—H B) =!A —7?B, it is exactly these view functions
which give the maps in ZNVN.

Functoriality of ? needs attention. Again there are intu-
itions about threads, but now O forces the backtracking in
the (dual) version A* of A.

Definition 13 Let o be a strategy in A — B. A position
(e, (d,a), (1,b)) of TA —7B is in 0 just when 1 = ey)
and the moves in any thread of (w, e, 1) are moves played
in accord with o.

Again a little work is needed to establish the following.

Theorem 4.6 If o is a P-strategy in A — B, then 70 is
a P-strategy in TA —?B. Furthermore ? is functorial:
204 =174 and ?(1.0) =11.70.

We now give the monad structure.

e The P-strategy 74 in A —o? A is given by positions of
the form (¢, a, (7, a)) with ¢ copy-cat, a the last move
of the play a and 7 predecessor.

e The P-strategy pu4 in 77A —? A is given by positions
of the form (¢, (¢, 4, a), (1, a)) again with ¢ copy-cat,
and with ¢ > 1.

The arguments for naturality and the monad laws are
straightforward variants of earlier arguments

Theorem 4.7 (7,n, u) is a monad on G.

At this point we observe that there is a definition of 7 on
objects in terms of the standard decomposition. We have
2([1, Aa — S) = [],!As — S. In the same vein, up to
isomorphism,

NA = H €a, —0 S and py = H da, —S.
a€A(1) a€A(1)

From this we get a quick treatment of the further special
structure relating to 7.

From the internal definition of ? and the standard decom-
position we see that

?(A x B)

IR

2([1, Ao — 5 x [1, By — 5)
[[.(1Ag — S) x [, (!B, — .5)

([T, Aa — $)x(T1T, By — 5)
7Ax?B

R

as required: the isomorphisms Naxp = N4 X np and
BAxB = pa X pp are immediate.

We give an easy definition of A—H B using the standard
decomposition. We set A—H B = [[,(A x By, — S). (A
moment’s reflection shows that this is essentially the con-
struction of the function space arena from the original treat-
ment [16]. (Functoriality in B needs a moments thought,
but we do not really need it.) Now we can readily calculate

?(A—E B) 2([I,A x By — S
[1,!(A x By) — S
[1,!A®!B, — S
T1,!A — (1B, — S)
1A —o [,(!By — S)
14 —?B

RIR IR R

as required.
4.6 The distributive law

Now at last we come to an explanation of the distributive
law. We need first to understand plays in the games !7A
and 7! A, along the lines of the analysis of ! 4 above. Again
they will be given by positions (¢, x,a) where ¢ > x, but
with general mixed pointer functions we have to say exactly
what x is. Recall that any pointer function y is uniquely of
the form (¢, ¢)) with ¢ an O-heap and ¢ a P-heap.

The plays in !? A are given by (¢, x, a) where

e ¢ is an O-heap, x = (¢,) for some P-heap 1 and
= x:

e the moves along the x-threads are plays from A.
The plays in ?! A are given dually by (¢, x, a) where

e 1) is an P-heap, x = (¢, %) for some O-heap ¢ and
(CRap'e

e the moves along the x-threads are plays from A.

The correctness of this analysis depends on some abstract
results which we record here.

Proposition4.8 Lete : p — qin Y, let ¢ be an O-pointer
Sfunction on q, and v a P-pointer function on p. Then

o Ife*d = ("¢,) then ¢ = (¢, ex1)).

o Ifesth = (¢, ext)) thenp = ("¢, 9)).

We explain the connection with the language of [16]. In
the case of 17 A, the condition ¢ > (¢,) means that in the
game played with the pointers (¢, 1)), P plays innocently,
that is, his pointers are all in his view. This corresponds to
the fact that the restriction of x = (¢,%) makes each ¢-
thread a ? A-play. Dually for 7! A it is O who is constrained
to play innocently and then, the restriction of x = (¢,%)
makes each ¢-thread a ! A play.
Now we give our main definition.

Definition 14 The strategy A 4 in 17A —?' A consists of all

positions of the form (c, (¢, (¢, ¢),a), (¢, (¢,¢), a)).

In A4 we have x = (¢,%) with ¢ > x and ¥ > x. In the
standard terminology of [16], the plays with pointers from
the pointer function x are then exactly the ones in which
both players play innocently. Thus A4 identifies what are
called in [16] the legal plays in the two games !7A and ?!1A.

To establish naturality of A, we need descriptions in
terms of our representations of maps 7o :174 —!7B, and
o :7NA —7!B. Recall that for a schedulee : p — ¢, ¢ a
O-heap on ¢ and ¢ a P-heap on p, we defined the O-heap
(¢, e,1) on p+ g. Then using our conventions, the strategy
1?0 consists of

(e, (¢, (0, 9),2), (¢, (¢',¥),b))
with e*¢' = @, e, = 9" and each (¢, e, 1)) thread giving
a play in o. The strategy ?!o consists of

(e, (¥, (¢, ¥),a), (¢', (¢, ¢'), b))

with the same conditions.
We now give the final piece of combinatorial information
needed to justify the analysis of Section 2.

Theorem 4.9)4 gives a distributive law X :17 =71,

Proof: The arguments are similar to those given earlier. By
way of example we indicate why we have

?20.0 = ALIAGY.

We use presentations of the plays in complex games as fol-
lows.

e !1? 4 has as positions the (x, @, (¢, 1), a) with both x,
¢ O-heaps, 1) a P-heap and w1th X = ¢ = (6,9);

e 1714 has as positions the (x, (x, %), (¢, %), a) with x ,
¢ O-heaps, 1 a P-heap and x > (x, %) = (¢,v);

e 7?11 A has as positions the (¢, (x,), (¢, 1), a) with x ,
¢ O-heaps, 1 a P-heaps and ¢ > (x,v) > (¢,).

Then we confirm that both 76 4.A4 and Ai4.!\4.624 have
as positions all the

(¢, (¢, (8, 4),a), (¢, (x,¥), (¢, ¢),a)) -

5 Conclusions

We have sketched an approach to the most basic cate-
gory HON of pointer games, disciplined by some serious
category theory. While our approach is not shorter than the
original hands on approach, it is less ad hoc. In particular
what we do demystifies the nature of arenas. After all con-
cretely they are themselves games, albeit games which are
not that interesting in their own right. In particular we back-
wards engineer the function space arena as exactly what is
required to produce a function space in the Kleisli category.

We have demonstrated that the definition of composition
of innocent strategies and the proof that this composition is
associative have two components. There is some categorical
combinatorics to establish a distributive law A and there is
the categorical construction of the Kleisli category KI(\).
The distributive law is an entirely new feature, not part of
Linear Logic.

Establishing the distributive law demands a systematic
approach to the elementary combinatorics of pointers, and
we use categorical ideas also there. This treatment captures
computational ideas in a clean way. For example the con-
travariant transport of O-heaps by the functor e* has to do
with properties of independence. As such it is related to re-
cent work [28] of Mellies and his student Samuel Mimram
in his asynchronous setting.

Overall our approach is an interplay of categorical com-
binatorics. While we have only given the basic structure
of ZN'N, we believe that our treatment extends readily to
further structure and related categories of pointer games.

References

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L.
Ong and I. D. R. Stark. Nominal games and full ab-
straction for the nu-calculus. In: Proceedings of Nine-
teenth Annual Symposium in Logic in Computer Sci-
ence, IEEE Computer Society Press, 2004, 150-159.

[2] S. Abramsky, D. R. Ghica, A. S. Murawski and C.-H.
L. Ong. Applying Game Semantics to Compositional
Software Modeling and Verification. In Proceedings
of 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science 2988, Springer-
Verlag, 2004, 421-435.

[3] S. Abramsky and G. McCusker. Linearity, sharing
and state: a fully abstract game semantics for Ideal-
ized Algol with active expressions. In P. W. O’Hearn
and R. D. Tennent, eds., Algol-like languages Vol. 2.
Birkhaiiser, 1997, 297-330.

[4] S. Abramsky, K. Honda, and G. McCusker. A fully
abstract game semantics for general references. In
Proceedingsof Thirteenth Annual IEEE Symposium on
Logic in Computer Science, IEEE Computer Society
Press, 1998, 334-344.

[5] M. Barr and C. Wells. Toposes, Triples, and Theories.
Grundlehren der math. Wissenschaften 278, Springer-
Verlag, 1985.

[6] J. Beck. Distributive laws. In: B. Eckman ed., Semi-
nar on Triples and Categorical Homolgy Theory, Lec-
ture Notes in Mathematics, 80, Springer, Berlin, 1969,
119-140.

[7] N. Benton, G. Bierman, V. de Paiva, and M. Hyland.
Linear A-Calculus and Categorical Models Revisited.
In: Proceedings Computer Science Logic 1992, Lec-
ture Notes in Computer Science 702, Springer-Verlag,
1993, 61-84.

[8] G. Bierman. What is a categorical model of intuition-
istic linear logic? In: Proceedings of the Second
International Conference on Typed Lambda Calculus
and Applications, Lecture Notes in Computer Science,
902, Springer Verlag, 1995, 73-93.

[9] S. Eilenberg and G.M. Kelly. Closed Categories. In:
Proceedings of Conference on Categorical Algebra,
La Jolla 1965, 1966, 421-562.

[10] C. Faggian and M. Hyland. Designs, Disputes and
Strategies. In: J. Bradfield, ed., Computer Sci-
ence Logic, Lecture Notes in Computer Science 2471,
Springer-Verlag, 2002, 442-457.

[11] J.-Y. Girard. Locus Solum. Mathematical Structures
in Computer Science, 11,2001, 301-506.

[12] R. Harmer and O. Laurent. The anatomy of innocence
revisited. In: S. Arun-Kumar and N. Garg, eds., Foun-
dations of Software Technology and Theoretical Com-
puter Science (FSTTCS ’06), Lecture Notes in Com-
puter Science, 4337, Springer-Verlag, 2006, 224-235.

[13] R.Harmer and G. McCusker. A fully abstract game se-
mantics for finite nondeterminism. In: Proceedingsof
Fourteenth Annual IEEE Symposium on Logic in Com-
puter Science, IEEE Computer Society Press, 1999.

[14] D. Hughes. Hypergame Semantics: Full Complete-
ness for System F'. D. Phil. Dissertation, Oxford Uni-
versity, 2000.

[15]

[16]

[17]

[19]

[22]

[24]

[25]

[26]

[27]

M. Hyland. Game semantics. In: A. Pitts, P. Dybjer
eds., Semantics and Logics of Computation, Publica-
tions of the Newton Institute, Cambridge University
Press, Cambridge, 1997, 131-184.

M. Hyland and L. Ong. On full abstraction for PCF, I,
Il and III. Information and Computation, 163, 2000,
285-408.

M. Hyland and A. Schalk. Abstract Games for Linear
Logic. Extended Abstract. In Proceedings of Category
Theory and Computer Science 99, Electronic Notes in
Theoretical Computer Science, 29, 1999, 26 pp.

M. Hyland and A. Schalk. Games on Graphs and Se-
quentially Realizable Functionals. Extended Abstract.
In: Proceedingsof Seventeenth Annual IEEE Sympo-
sium on Logic in Computer Science, IEEE Computer
Society Press, 2002, 257-264.

G. M. Kelly. Elementary observations on 2-categorical
limits. Bulletin of the Australian Mathematical Soci-
ety, 39, 1989, 301-317.

J. Laird. Full abstraction for functional languages with
control. In: Proceedings of Twelth Annual Symposium
on Logic in Computer Science, IEEE Computer Soci-
ety Press, 1997, 58—67 .

O. Laurent. Classical isomorphisms of types. Math-
ematical Structures in Computer Science, 15, 2005,
969-1004.

F. W. Lawvere. Ordinal sums and equational doc-
trines. In: Seminar on Triples and Categorical Ho-
mology Theory, Lecture Notes in Mathematics 80,
Springer-Verlag, 1969, 141-155.

S. Mac Lane. Categories for the Working Mathe-
matician, Graduate Texts in Mathematics, 2nd ed.,
Springer Verlag, 1998.

G. McCusker. Games and definability for FPC. The
Bulletin of Symbolic Logic, 3, 1997, 347-362.

G. McCusker. Games for Recursive Types. BCS Dis-
tinguished Dissertation Series, Cambridge University
Press, Cambridge 1999.

P.-A. Mellies. Asynchronous games 2. The true con-
currency of innocence. Extended abstract in: Pro-
ceedings of the 15th International Conference on Con-
currency Theory, Lecture Notes in Computer Science
3170, Springer-Verlag 2004, 448-465.

P.-A. Mellies. Categorical models for linear logic re-
visited. To appear in Theoretical Computer Science.

10

(28]

[29]

[30]

[32]

[34]

P-A. Mellies and S. Mimram, Asynchronous games:
innocence without alternation. Submitted, April 2007.

A. S. Murawski, C.-H. L. Ong and I. Walukiewicz.
Idealized Algol with Ground Recursion, and DPDA
Equivalence. In Proceedings 32nd International Col-
loquium on Automata, Languages and Programming
(ICALP 2005), Lecture Notes in Computer Science,
3580, Springer-Verlag, 2005, 917-929.

H. Nickau. Hereditarily Sequential Functionals: A
Game-Theoretic Approach to Sequentiality. Ph.D.
Thesis, Universitit-Gesamthochschule-Siegen, 1996.

C.-H. L. Ong. On model-checking trees generated by
higher-order recursion schemes (extended abstract).
In: Proceedings of 21st Symposium on Logic in Com-
puter Science, IEEE Society Press, 2006, 81-90.

C.-H. L. Ong. Some results on a game-semantic ap-
proach to the verification of infinite structures. In: Z.
Esik, ed., Proceedings of 20th International Workshop
and 15th Annual Conference of the EACSL, Lecture
Notes in Computer Science, 4207, 2006, 31-40.

A.J. Power and H. Watanabe. Combining a Monad
and a Comonad. Theoretical Computer Science, 280,
2002, 137-162.

R. Street. The Formal Theory of Monads. Journal of
Pure and Applied Algebra, 2, 1972, 149—-168.

