
A Robust Class of Context-Sensitive Languages

Salvatore La Torre�
Universit̀a di Salerno, Italy

latorre@dia.unisa.it

P. Madhusudan
University of Illinois

Urbana-Champaign, USA
madhu@uiuc.edu

Gennaro Parlato
Universit̀a di Salerno, Italy

University of Illinois (UC), USA
parlato@uiuc.edu

Abstract

We define a new class of languages defined by multi-stack
automata that forms a robust subclass of context-sensitive
languages, with decidable emptiness and closure under
boolean operations. This class, called multi-stack visibly
pushdown languages (MVPLs), is defined using multi-stack
pushdown automata with two restrictions: (a) the push-
down automaton isvisible, i.e. the input letter determines
the operation on the stacks, and (b) any computation of the
machine can be split intok stages, where in each stage,
there is at most one stack that ispopped. MVPLs are an
extension of visibly pushdown languages that captures non-
context free behaviors, and has applications in analyzing
abstractions of multithreaded recursive programs, signifi-
cantly enlarging the search space that can be explored for
them. We show thatMVPLs are closed under boolean op-
erations, and problems such as emptiness and inclusion
are decidable. We characterizeMVPLs using monadic
second-order logic over appropriate structures, and exhibit
a Parikh theorem for them.

1. Introduction

Linear labeled structures play an important role in mod-
eling information in computer science. Explicit linear rep-
resentations of data (like a text document) and implicit
linear representations of behavior (like the linear-time be-
havior of a system) motivate the study of robust classes
of linear structures. Regular word languages have played
an important role in this regard, and have found appli-
cations in searching documents, defining logics for be-
haviors, and algorithms for model-checking systems (see
[8, 11, 19, 20, 22]).

In certain linear models, there is an implicit relation on
the positions in the model that can be inferred from its la-
bels. A standard example of these are XML/SGML docu-�The author was partially supported by MIUR grants ex-60% 2005 and
2006 of Universit̀a degli Studi di Salerno.

ments where open- and close-tag annotations form anesting
relation on the linear document, capturing thehierarchical
tree structureof the data it represents. When studying the
linear behaviors of a recursive sequential program, there is
again a nesting relation naturally present, which relates calls
to procedures with their corresponding returns. Viewing the
nesting structure asexplicitedges in the document led to the
recently studied theory of nested words ([1, 2]). The notion
of regularity for nested words captures a different class of
languages than regular word languages (i.e. regular nested
word languages can be context-free when the nesting edge
relation is ignored), but forms a robust class closed under
boolean operations and with decidable decision problems.

In this paper, we delve deeper into defining tractable
classes of word languages, where the tractability stems from
explicit relations between positions that simplifies the in-
ternal complexity of the word. The class of languages we
discover in this paper is a robust and tractable subclass of
context-sensitive languages, defined using a restricted class
of multiplenesting relations on words. The class is closed
under all boolean operations, and admits tractable decision
procedures for the problems of emptiness and inclusion.

From an automata-theoretic perspective, the regular class
of words with a single nesting relation is captured using
visibly pushdown automata(VPA) [1]. A VPA works on
words over an alphabet� that is partitioned into three
parts, called the call-alphabet, the return-alphabet, andthe
internal-alphabet. A word over such a partitioned alpha-
bet implicitly defines a nesting relation, formed by match-
ing the call-letters with the corresponding return-letters in a
nested fashion. A VPA working over such a word is con-
strained to push exactly one symbol onto its stack on call-
letters, to pop exactly one symbol on return-letters, and to
not touch the stack on internal-letters. The class of lan-
guages accepted by these automata are called visibly push-
down languages, and corresponds exactly to the class of reg-
ular languages over nested words ([1, 2]).

The class of languages we study in this paper is de-
fined using visibly pushdown automata working withmul-
tiple stacks. These automata read words and manipulate a

finite set of stacks (sayn of them), where the input alpha-
bet determines the operations allowed on the stack. More
precisely, the input alphabet is partitioned inton sets of call
alphabets (�i
) and return alphabets (�ir), and an internal al-
phabet (�int), and the automaton pushes or pops from thei’th stack only when it reads a call from�i
 or a return in�ir, respectively. The automaton hence retrieves, using one
stack for each nesting relation, the nesting edges present in
the word.

Multi-stack visibly pushdown automata can be seen as
encoding therunsof a multi-stack automaton, and it is easy
to see that the emptiness problem for them is undecidable
(since a Turing machine can be simulated using two stacks).
Consequently, any naturally-defined notion of regularity on
multiple nested words is bound to be intractable. We restrict
the class of words in the following way. We fix a uniform
boundk, and only consider words that can be decomposed
intok sub-words, where each sub-word has at most one kind
of return nodes. In other words, the automaton working over
such a word proceeds ink phases, where in each phase it
pops at most from one stack (but it can push onto all stacks).
We dub these automata and the languages they accept ask-
phase multi-stack visibly pushdown automata (languages).

The class ofk-phase MVPLs (k-MVPLs) is a subclass
of context-sensitive languages. It includes non-context-free
languages such asf(a1a2)n bn1 bn2 j n 2 N g, which can be
accepted using only two phases, ifa1 anda2 are calls cor-
responding to two different stacks, andb1 andb2 are the re-
turns from these stacks. The MVPA accepting this language
pushes thea1’s anda2’s onto the two stacks, and then when
readingb1’s, pops symbols from the first stack, and then in
the second phase, readingb2’s pops symbols from the sec-
ond stack.

The main theorem of the paper is that theemptinessprob-
lem for MVPAs is decidable. The proof lies in a fairly com-
plex encoding ofk-phase words into trees, and hence re-
ducing it to tree automata emptiness. As a consequence,
we also obtain the result that for normal (not visible) multi-
stack pushdown automata that use at mostk-phases on any
word, the emptiness problem is decidable.

We show thatk-phase MVPLs are effectively closed un-
der union, intersection, and complement (with respect tok-
phase words), and using decidability of emptiness, it fol-
lows that the inclusion and equivalence problems are decid-
able for MVPLs. While closure of MVPLs under union and
intersection are easy, closure under complement is more in-
volved as MVPLs arenotdeterminizable. The closure under
complement is shown by mapping any MVPL into a regular
language of trees, complementing the automaton with re-
spect to the class of all trees that representk-phase words,
and translating the resulting automaton back to an MVPA.

Delving further into the language theory of this class,
we show that it corresponds exactly to the class of monadic

second-order logic onn-nested words withk phases, where
the logic hasn binary relations corresponding to then nest-
ing relations on the word.

In order to understand which subclass of context-
sensitive languages MVPLs capture, we note that our map-
ping of k-phase words into trees essentially rearranges the
letters in the word so that the language becomes tree-
regular. We formalize this by proving a Parikh’s theorem
for MVPLs, namely that the commutative image of every
MVPL is the commutative image of a regular language. This
can be used to show that certain languages are not accepted
by multi-stack automata; for example, we can show thatfa2n j n 2 N g is not accepted byanymulti-stack automa-
ton with a bounded number of phases (over the non-visible
alphabetfag), although it is a context-sensitive language.

One application of multi-stack automata with bounded
phases is for themodel-checking of concurrent recursive
programs. When verifying concurrent programs, a common
paradigm is to abstract the program into a finite model (say
using predicate abstraction), and subject the model to algo-
rithmic verification. The model however preserves the con-
trol flow accurately, and hence preserves recursion, leading
to essentially a multi-stack pushdown automaton. Reach-
ability checking for this model is of course undecidable.
However, recent papers in verification make the observa-
tion that many errors are already found after a few num-
ber of context-switches(switches between stacks), and in
fact for anyk, checking if an error state is reached withink
context switches is decidable [16]. Context-bounded check-
ing of concurrent recursive programs has shown to discover
several errors in programs (see [5, 16, 17]). MVPLs gener-
alize this result by showing that checking whether an error
state is reached withink phases, where in each phaseall
processes can evolve, but only one of them is allowed to re-
turn from procedures, is decidable. Technically, our result
is more sophisticated as we can show that the set of config-
urations reached ink-phases isnot regular. Other results on
deciding reachability, including bounded-context switching
and nested locks, crucially rely on the fact that the reach-
able sets are regular ([3, 4, 12, 16]). (In [4] the forward
reachable sets are not regular, but backward reachable sets
are.) We believe that analyzingk-phase executions of a pro-
gram model explore a much larger space of configurations
thank-context switches do, and may lead to more thorough
model-checking algorithms.

The paper is structured as follows. Bounded phase multi-
stack visibly pushdown languages are defined in Section 2.
Section 3 is devoted to proving that the emptiness prob-
lem is decidable for MVPLs. Closure under boolean op-
erations and non-determinazability of MVPLs are shown in
Section 4, while decision problems are discussed in Sec-
tion 5. In Section 6, we present a logical characterization ofk-phase MVPLs and prove a Parikh theorem for them, and

2

conclude with a few remarks in Section 7.

2. Preliminaries

Multi-Stack Visibly Pushdown Languages.
Given two positive integersi andj, i � j, we denote with[i; j℄ the set of integersk with i � k � j, and denote by[j℄
the set[1; j℄. Letw be a word on some alphabet. We denote
with jwj the length ofw, and hence[jwj℄ denotes the set of
positions ofw. Given two positionsj0; j of w, j0 � j, we
denote withw[j℄ thej-th symbol ofw, and withw[j0; j℄ the
sub-word ofw formed from positionj0 to positionj, both
inclusive (whenj0 > j, w[j0; j℄ = �).

An n-stack call-return alphabet is a tuplee�n =hf(�i
;�ir)gi2[n℄;�inti of pairwise disjoint finite alphabets.
For anyi 2 [n℄, �i
 is a finite set ofcalls of the stacki, �ir
is a finite set ofreturns of stacki, and�int is a finite set
of internal actions. For any suche�n, let �
 = Sni=1�i
,�r = Sni=1 �ir, �i = �i
 [�ir, for every i 2 [n℄, and� = �
 [�r [�int.

A multi-stack visibly pushdown automaton over such an
alphabet must push on thei’th stack exactly one symbol
when it reads a call of thei’th alphabet, and pop exactly
one symbol from thei’th stack when it reads a return of thei’th alphabet. Also, it cannot touch any stack when reading
an internal letter.

Definition 1 (MULTI -STACK VISIBLY PUSHDOWN AU-
TOMATON) A multi-stack visibly pushdown automaton
(MVPA) over the n-stack call-return alphabete�n =hf(�i
;�ir)gi2[n℄;�inti, is a tupleM = (Q;QI ;�; Æ; QF)
whereQ is a finite set of states,QI � Q is the set of ini-
tial states,� is a finite stack alphabet that contains a spe-
cial bottom-of-stack symbol?, Æ � (Q � �
 � Q � (�nf?g))[(Q��r���Q)[(Q��int�Q), andQF � Q
is the set of final states.

Let us fix ann-stack alphabete�n for the rest of the paper.
A transition (q; a; q0;
), wherea 2 �i
 and
 6=?, is

a push-transition with the meaning that on readinga,
 is
pushed onto stacki and the control changes from stateq toq0. Similarly, (q; a;
; q0) with a 2 �ir is a pop-transition
where
 is read from the top of the stacki and popped (if
the top of stacki is?, then it is read and not popped), and
the control changes fromq to q0.

A stack is a nonempty finite sequence over� where
the bottom-of-stack symbol? appears always and only
in the end; let us denote the set of stacks asSt =(� n f?g)� � f?g. A configuration of an MVPA M
over e�n is a tuplehq; �1; : : : ; �ni with q 2 Q and each�i 2 St. For a wordw = a1 : : : am in ��, a run
of M on w is a sequence ofm + 1 configurations� =hq0; �01 ; : : : ; �0ni; : : : ; hqm; �m1 ; : : : ; �mn i, whereq0 2 QI ,

�0i =? for everyi 2 [n℄, and for everyj 2 [m℄ the follow-
ing holds:

[Push] If aj 2 �i
 (i.e aj is a call of stacki), then9
 2 �
such that(qj ; aj ; qj+1;
) 2 Æ, �j+1i =
 � �ji , and�j+1h = �jh for everyh 2 ([n℄ n fig).

[Pop] If aj 2 �ir (i.e. aj is a return of stacki), then9
 2 �
such that(qj ; aj ;
; qj+1) 2 Æ, �j+1h = �jh for everyh 2 ([n℄ n fig), and either
 6=? and�ji =
 � �j+1i ,
or �ji = �j+1i =?.

[Internal] If aj 2 �int is an internal action, then(qj ; aj ; qj+1) 2 Æ, and�j+1h = �jh for everyh 2 [n℄.
A run � = hq0; �01 ; : : : ; �0ni; : : : ; hqm; �m1 ; : : : ; �mn i is

accepting if the state in the last configuration is final, i.e.,
if qm 2 QF . A wordw 2 �� is accepted by an MVPA M
if there is an accepting run ofM onw. The language ofM ,
denotedL(M), is the set of all words accepted byM .

Given a wordw 2 ��, we denote withRet(w) the set of
all returns inw. A wordw is aphaseif Ret(w) � �ir, for
somei 2 [n℄, and we say thatw is aphase of stacki. Let
us now definek-phase words, which are words formed by
concatenating at mostk phases.

Definition 2 (PHASES) For any k, a k-phase word1 is a
word w 2 �+ such thatw can be factorized asw =w1w2 : : : wk0 wherek0 � k andwh is a phase, for everyh 2 [k0℄. Such a factorizationw1; w2; : : : wk0 is called ak-factorizationof w w.r.t. e�n. LetPhases(e�n; k) denote
the set of allk-phase words overe�n.

Definition 3 (MULTI -STACK V ISIBLY PUSHDOWN LAN-
GUAGES WITH PHASES) For anyk, a k-phase multi-stack
visibly pushdown automaton(k-MVPA) over e�n is a tupleA = (k;Q;QI ;�; Æ; QF) whereM = (Q;QI ;�; Æ; QF)
is an MVPA over e�n. The language accepted byA isL(A) = L(M)\Phases(e�n; k). A language accepted by ak-MVPA is called ak-phase multi-stack visibly pushdown
language(k-MVPL).

Example 1 Figure 1 gives a formal definition of a2-MVPAA overe�2 that accepts the languagef(a1a2)t bt1 bt2jt � 0g.
The automatonA checks whether the input word has the
form (a1a2)� b�1 b�2 using its control states. Fori = 1; 2:
whenA reads a callai, it pushes onto stackSi symbol$,
if it is the first occurrence ofai, and symbol#, otherwise;
then, reading the return symbolbi, A pops a symbol from
stackSi until symbol$ is popped; when$ is popped form
stackS2, it enters the accepting state.

Multi-stack pushdown automata.
A multi-stack pushdown automaton(MPA) over a normal

1We ignore the empty word� to simplify the presentation.

3

�1
 = fa1g;�1r = fb1g;�2
 = fa2g;�2r = fb2g;�int =;; A = (2; fqiji 2 [0; 6℄g; fq0g; f#; $g; Æ; fq0; q6g)Æ := f (q0; a1; q1; $); (q1; a2; q2; $); (q2; a1; q3;#);(q2; b1;#; q4); (q2; b1; $; q5); (q3; a2; q2;#);(q4; b1;#; q4); (q4; b1; $; q5); (q5; b2;#; q5);(q5; b2; $; q6)g:
Figure 1. A 2-MVPA for f(a1a2)t bt1 bt2jt � 0g.

(non-visible) alphabet� is simply ann-stack automaton,
with � moves, that can push and pop from any stack read-
ing any letter. Also, we define thek-phase version of these
(calledk-MPAs). A k-MPA is an MPA that uses at mostk-phases on any word (i.e. any run on any word can be de-
composed into at mostk phases, where in each phase the
MPA pops at most from one stack). For example, the lan-
guagefanbn
n j n 2 N g is accepted by a2-phase2-stack
MPA that pushes a symbol onto both stacks while readinga’s (using�-moves) and matches theb’s against one stack
and the
’s with the other. It is easy to see that the language
is not ak-MVPL for any partition of the lettersa, b and

into call-return alphabets over multiple stacks.

Trees and Monadic Second-Order Logic.
We briefly recall trees and some well known results on trees
and monadic second-order logic.

The trees we deal with are finite, binary, and labeled by
a finite alphabet�. An �-labeled treeis a structureT =(V; �), whereV � f0; 1g� is a finite prefix-closed set, and� : V ! � is a labeling function. The setV represents
the nodes ofT , where� is theroot of T , denotedroot(T).
The edge-relation ofT is implicit: edges are pairs(v; v:i),
wherev; v:i 2 V; i 2 f0; 1g. The nodev:0 (v:1) is called
the left-child (right-child) ofv. Let T� denote the set of all�-labeled trees.

We assume standard nondeterministic top-down au-
tomata on trees [6].

Definition 4 (REGULAR TREES) A set of�-labeled treesL
is regular if there is some tree automatonAwithL = L(A).

We will use the standard monadic-second order logic on
trees, which allows quantification over nodes and sets of
nodes of a tree, with interpreted relations for the left-child
and right-child, and boolean operators [20].

The following theorem relates the class of regular trees
and the class of trees definable by MSO.

Theorem 1 ([7, 18]) A tree language is regular iff it is
MSO definable.

3. The Emptiness Problem

Given ak-MVPA A over e�n, theemptiness problemforA is to decide whetherL(A) is empty. In this section, we
show that the emptiness problem fork-MVPLs is decidable
in double exponential time by reducing it to the emptiness
problem for finite tree automata.

We need some definitions. A wordw 2 �+ is i-well
matchedif it is generated by the context-free grammar:S ! S S j aS b j d j �
whereS is the only variable,a 2 �i
; b 2 �ir, andd 2�n�i. Letw 2 �+ andj; j0 be two positions ofw with j <j0. The pair(j; j0) is a matching pairof w iff there existsi 2 [n℄ such thatw[j℄ 2 �i
,w[j0℄ 2 �ir, andw[j+1; j0�1℄
is i-well matched.

A k-phase word can be factored in several ways; we fix
a unique factorization that will simplify the technical expo-
sition. We say that ak-factorizationw1; : : : ; wk0 of a wordw w.r.t. e�n is tight if: (1) the first symbol ofwh is a re-
turn, for everyh 2 [2; k0℄, (2) if k0 > 1 thenRet(w1) 6= ;,
and (3)wh andwh+1 are phases of different stacks, for ev-
ery h 2 [k0 � 1℄. It is easy to see that, for every wordw 2 Phases(e�n; k), there is a unique tightk-factorization
of w w.r.t. e�n.

Given a wordw 2 Phases(e�n; k), we define the mapphasew : [jwj℄ ! [k℄ as follows: phasew(j) = h iffw1; : : : ; wk0 is the tightk-factorization ofw w.r.t. e�n andj
is a position ofwh.

Our proof is structured as follows. We first define a rep-
resentation ofk-phase words using trees labeled over the
alphabet(��[k℄). The vertices in the tree correspond to po-
sitions in the word such that the returns in the word are the
right-children of the matching calls. While the call-return
matching relation of thek-phase word is immediately re-
coverable in the tree, the positions in the word get arranged
haphazardly in the tree, and retrieving thelinear ordering
of the word in the tree gets considerably complex. We ex-
hibit how to recover the linear order� of the word from
the tree using MSO on trees. The correctness of this re-
lation is not shown immediately. We first show that it de-
finessomelinear order on the vertices of any tree in which
the phase numbers are monotonically non-decreasing along
any path. Using this linear order, we characterize the set
of stack trees: intuitively, the characterization looks atthe
wordw formed using the linear order, and checks whether
the nesting relations defined by the right-child relation agree
with the call-return matching inw. We show that if a treeT
satisfies the characterizing conditions of the stack tree, then
the wordw obtained is indeed such that its stack tree isT .
This formally establishes the correctness of the linear order
(Lemma 2).

Along with the above proofs, we establish that the com-
plexity of checking the� relation (using tree automata)

4

is exponential, and the complexity of checking whether a
tree is a stack-tree is double exponential in the number of
phases. Finally, using the�-ordering, we show how to sim-
ulate an MVPA on the word obtained from the tree using a
tree automaton of size double exponential ink. The com-
plexity of checking emptiness of MVPA then follows from
emptiness checking for tree automata.

The embedding of words into trees and the recovery of
the linear relation forms the main technical crux of the pa-
per, and is the hardest part of our proofs. The linear order
is not recoverable unless thephase numberof each letter is
also encoded in the tree, and this is precisely why our em-
bedding does not work for unboundedly many phases (un-
derstandably so, since unbounded number of phases leads
to an undecidable emptiness problem).

Mapping nested structures into trees.
We define a function that maps every wordw 2Phases(e�n; k) into a(�� [k℄)-labeled tree that has a node
for each position ofw. The node corresponding to posi-
tion j of w encodes in its label the symbol and the phase
of positionj in w. The root corresponds to position1, and
for all positionsj, if (j0; j) is a matching pair ofw then
the node corresponding to positionj is the right-child of
the node corresponding to positionj0; otherwise, the node
corresponding to positionj is the left-child of the node cor-
responding to positionj�1. The formal definition below
simultaneously defines a 1-to-1 correspondencepos that re-
lates positions in the word with the nodes in the tree.

Definition 5 (TREE REPRESENTATION) For any wordw 2 Phases(e�n; k) with jwj = m, the word-to-tree map
of w, wt(w), which is a(� � [k℄)-labeled tree(V; �), and
the bijection mapposw : V ! [m℄ are inductively (onjwj)
defined as follows:� If m=1, thenV =f�g, �(�)=(w; 1), andposw(�)=1.� Otherwise, letw0 = w[1;m � 1℄ and wt(w0) =(V 0; �0). Then:

– V = V 0 [fvg with v 62 V 0.
– �(v) = (w[m℄; phasew(m));�(v0) = �0(v0), for everyv0 2 V 0.
– If there is somej 2 [m � 1℄ such that(j;m) is

a matching pair inw, thenv is the right-child ofpos�1w0 (j).
Otherwisev is the left-child ofpos�1w0 (m� 1).

– posw(v) = m and posw(v0) = posw0(v0), for
everyv0 2 V 0.

A tree T such thatT = wt(w) for some w 2Phases(e�n; k) is called ak-stack tree, and the set ofk-
stack trees is denoted bySTree(e�n; k).

Example 2 Consider �1
 = fag;�1r = f�ag;�2
 =f
g;�2r = f�
g and�int = feg, andw = ae
a�a�a�a
a�
e�
�a.
For w1 = ae
a�a�a�a
a; w2 = �
e�
, andw3 = �a, w1; w2; w3
is a tight3-factorization ofw w.r.t. e�2. Thus,phasew(j) =1 for everyj 2 [9℄, phasew(j) = 2 for everyj 2 [10; 12℄,
and phasew(13) = 3. The set of all matching pairs ofw w.r.t. e�2 is f(1; 6); (3; 12); (4; 5); (8; 10); (9; 13)g. Fig-
ure 2 shows the(�� [3℄)-labeled treewt(w). Observe that,pos(vi) = i, for everyi 2 [13℄. Note that the linear order-
ing on the word is very non-local on the tree. For example,v12 is the successor ofv11 and yet they are far away in the
tree. v1 (a; 1)v2(e; 1)

v3(
; 1)
v4(a; 1)

v5(�a; 1)
v12(�
; 2)

v6(�a; 1)
v8(
; 1)

v9 (a; 1) v10(�
; 2)v11 (e; 2)v13(�a; 3)

v7(�a; 1)

Figure 2. The tree wt(ae
a�a�a�a
a�
e�
�a).
Recovering the linear order�
In this section, we define a relation on nodes of(� � [k℄)-
labeled trees, denoted�, which (we will eventually show)
recovers the linear order inw from the stack treewt(w).

Let T = (V; �) be a(�� [k℄)-labeled tree. Givenx; y 2V , we say thatx <pre�x y iff x precedesy in the prefix
traversal ofT . We define two maps,sym : V ! � andphaseT : V ! [k℄ as:sym(x) = a andphaseT (x) = h iff�(x) = (a; h). For a nodex 2 V , we denote withTx the
largest subtree ofT containingx and such that all its nodes
are labeled with the same phase number.

Definition 6 Let T = (V; �) be a (� � [k℄)-labeled tree
with phaseT (x) � phaseT (parent(x)), for everyx 2 V nf�g. For everyh 2 [k℄, we inductively define the relations<h� V � V and<[h℄� V � V , as follows:� x <h y iff phaseT (x) = phaseT (y) = h and either

(1) Tx = Ty andx <pre�x y, or (2) Tx 6= Ty, h > 1
andparent(root(Ty)) <[h�1℄ parent(root(Tx)).� x <[h℄ y iff either (1)phaseT (x); phaseT (y) < h andx <[h�1℄ y, or (2) phaseT (x) = phaseT (y) = h andx <h y, or (3) phaseT (x) < h andphaseT (y) = h.

We define the relation� as<[k℄.
5

Consider the treeT from Figure 2. On this tree, relation<1, and thus<[1℄, simply corresponds to the ordering re-
sulting from a prefix traversal of the subtree of all nodes of
phase1, i.e. the sequencev1; v2; : : : ; v9. To determine rela-
tion<2, observe that there are two separate subtrees which
are formed by nodes of phase2. Within each subtree the
relation<2 is defined according to the prefix traversal. To
relate nodes of different subtrees we compare the parents
of the roots of the respective subtrees. For example, con-
sider nodesv11 and v12. We have thatv10 is the root ofv11’s subtree andv12 itself is the root of its subtree. Sinceparent(v12) <[1℄ parent(v10) (i.e., v3 <[1℄ v8), we can
conclude thatv11 <2 v12 (note that we have inverted the
direction of the inequality moving from two nodesx; y of
different subtrees toparent(root(Tx)); parent(root(Ty))).
Thus,<[2℄ is given by the orderingv1; v2; : : : ; v12. Since
we only have one node of phase3, the relation<[3℄, and
thus�, is given by the linear orderingv1; v2; : : : ; v13.

We now show that� is a regular relation on the tree,
i.e. expressible in MSO over the tree, using the inductive
definition of� given in Definition 6 above.

The MSO formula for the relation�, called �, is a for-
mula with two free variablesx andy, and holds precisely
whenx � y. We define it below using an inductive defini-
tion of formulasless [h℄less [h℄(x; y) := LessPhase(x; y)_(InSamePhaseSubTree(x; y) ^ lesspre�x (x; y))_(:LessPhase(x; y) ^ :InSamePhaseSubTree(x; y)^9z9z0(ParentRootInPhaseSubTree(z; x)^ParentRootInPhaseSubTree(z0; y)^less [h�1℄(z0; z))) �(x; y) = less [k℄(x; y)
with the understanding thatless0(x; y) is false.

In the above, the auxiliary subformulas are defined
as follows: LessPhase(x; y) holds iff the phase ofx (read from its label) is less than the phase ofy;InSamePhaseSubTree(x; y) holds if x and y are of the
same phase and belong to the same-phase subtree (i.e.Tx =Ty); lesspre�x (x; y) holds iffx occurs beforey in the prefix-
order of the tree;ParentRootInPhaseSubTree(z; x) holds
iff z is the parent of the root of the subtreeTx.

A brief note on complexity.The auxiliary sub-formulas
above can be written easily in MSO using only disjunc-
tions and existential quantifications, and a number of con-
junctions that is only polynomially many (ink, n, and�) atomic formulas. Consequently, they can be imple-
mented using nondeterministic tree automata with a poly-
nomial number of states. The nondeterministic tree automa-
ton finally obtained for � is however exponential, because
of the two conjunctions before the recursive application toless [h�1℄. These conjunctions contribute a series of2k con-

junctions, and causes the automaton to be exponential ink
(2O(k log k)).

Though we cannot establish the correctness of� yet,
we can show now that� always definessomelinear order
on a tree, provided phase numbers are monotonically non-
decreasing along any path in the tree. Intuitively,<pre�x
linearly orders all elements of a subtree that corresponds
to the same phase, elements of two different phases get or-
dered uniquely, and nodes of the same phase but in different
subtrees get ordered according to the reverse ordering of the
nodes where their subtrees hang.

Lemma 1 LetT = (V; �) be a(�� [k℄)-labeled tree withphaseT (x) � phaseT (parent(x)), for everyx 2 (V nf�g).
Then the relation� is a linear ordering onV .

Regularity of stack trees.
All trees obviously do not correspond to stack trees of
words. In this section, we establish the regularity of the set
of all stack trees. We give first a characterization of stack
trees, and then argue that it can be expressed in MSO. In-
tuitively, if a treeT is a stack tree, then we should be able
to recover the wordw corresponding to it using the� rela-
tion on the tree, and we expect that the right-child relation
in the tree captures the nesting edges between calls and re-
turns inw. Apart from other checks onw, we would need
to make sure thatw with the phase numbers inherited from
corresponding vertices inT gives a tight factorization. LetT -tight denote the (regular) set of words over(�� [k℄) that
correspond to a tightk-factorization.

Lemma 2 LetT = (V; �) be a(�� [k℄)-labeled tree. ThenT 2 STree(e�n; k) iff the following hold:

1. Phase numbers are monotonically non-
decreasing along any path, i.e. phaseT (x) �phaseT (parent(x)), for everyx 2 (V n f�g).

2. Right-children are always returns and their parent is
always a call: i.e. ify is a right-child ofx, theny is a
return andx is a call of the same stack asy.

3. Unmatched calls cannot be followed by unmatched re-
turns (from the same stack):
i.e. there is nox; y such thatx � y, �(x) is a call
of stacki, y is a return of stacki, x does not have a
right-child, andy is not a right-child of any node.

4. Nesting relations are proper: Lety be a right-child ofx andz be a node betweenx andy in the� order.� If z is a call of the same stack asx (andy), thenz
must have a right-child which is betweenz1 andy in the� order.� Analogously, ifz is a return of the same stack asx andy, thenz must be the right-child of a node
that is betweenx andz in the� order.

6

5. The word formed according to the� order isT -tight.

Furthermore, if a treeT satisfies the conditions above,
then the wordw obtained using the� order is such that the
stack-tree ofw is T .

Let tw denote the function that maps any stack treeT
to the wordw obtained using the� ordering. The above
lemma shows that iftw(T) = w, thenwt(w) = T , i.e. wt
andtw are inverses of each other. This establishes that� is
indeed the correct linear order on stack trees.

We can now show the regularity ofSTree(e�n; k).
Theorem 2 The setSTree(e�n; k) is MSO definable. More-
over, there is a tree automaton with a number of states dou-
ble exponential ink, that acceptsSTree(e�n; k).
Proof The proof proceeds by expressing the characterizing
properties of stack-trees in MSO. Properties (1),(2),(3) and
(5) are easy to express. The first property in (4) (the second
property is similar) can be expressed as:: 9x; y; z1; z2 : RightChild(x; y) ^ IsCall(z1)^ �(x; z1) ^ �(z1; y)^ [(: 9z3:RightChild(z1; z3)) _(RightChild(z1; z2) ^ (�(z2; z1) _ �(y; z2)))℄
Sincex � y takes an exponential-sized automaton to check,
the above checks can be effected by a tree automaton of size
double exponential ink. 2
Solving emptiness
We are now ready to prove that for any class of words ac-
cepted by ak-MVPA, the class of trees corresponding to
them forms a regular tree language.

Theorem 3 If L is ak-MVPL, thenwt(L) is regular. More-
over, if A is a k-MVPA acceptingL, then there is a tree
automaton that acceptswt(L) with number of states at
most exponential in the size ofA and double exponential in
the number of phasesk (more precisely,exp(jAj2O(klogk))
states).

Proof The MSO sentence' definingwt(L) consists of a
conjunction of two MSO sentences'1 and'2, where'1
enforces the treesT to belong toSTree(e�n; k) and'2 guar-
anties thattw(T) is a word ofL. By Theorem 2, we just
need to show'2.

For ak-MVPA A, '2 simply guesses the transitions thatA takes along an accepting run. LetÆ = fÆ1; : : : ; Ætg be the
set ofA transitions. Then,'2 is of the form9Y1 : : : 9Yt (unique ^ init ^ trans ^a

^nonempty):
We use the variableYi to guess all tree nodes where tran-
sition Æi is taken (along a run). Checking whether such
a guess corresponds to a valid run is along standard lines

(see [20] for similar proofs). The formulaunique checks
that each node is associated with exactly one transition,init
checks that the transition labeling the root starts from an ini-
tial state, anda

 ensures that the last state on the run is a
final state. The formulatrans is more interesting. It verifies
the validity of each transition in the run by checking that: (i)
at each node labeled by the symbola is associated a transi-
tion ona, (ii) when a symbol is pushed onto the stack then
at the corresponding return (if it occurs) the same symbol
is popped (this can be easily accomplished as the matching
return for a call is its right-child in any stack tree), and (iii)
for each pair of nodesx; y of wt(w) corresponding to two
consecutive symbols ofw, the target of the transition taken
atx is the source of the transition taken aty. This last prop-
erty can be stated as::9x9y �su

(x; y) ^ :W(i;j)2I(x 2 Yi ^ y 2 Yj)� ;
whereI is the set of all pairs(i; j) such that the target ofÆi coincides with the source ofÆj . Expressingsu

(x; y)
using � would lead to an extra exponential blow-up than
needed. However, we can show that there is a nondetermin-
istic automata of size double exponential ink that traverses
the tree according to the linear ordering and checks if all the
state transitions are correct.

The formula'2 can be translated to a corresponding tree
automaton of size double exponential ink and exponential
in the size ofA (see [20]), and hence also the automaton for'1 ^ '2. 2

We can now show the main result of this section, which
follows from the above theorem and the fact that tree au-
tomata emptiness is solvable in linear time [6].

Theorem 4 (EMPTINESS FORk-MVPLS) The emptiness
problem fork-MVPLs is decidable in double exponential
time.

We can generalize the emptiness result tok-phase multi-
stack automata over non-visible alphabets as well:

Theorem 5 (EMPTINESS OF k-MPAS) The emptiness
problem is decidable in double-exponential time fork-
MPAs.

Proof Consider the runs of the multi-stack automaton, by
taking each transition as a new letter, and associating with
it a type as to whether it is a call/return/internal depending
on what it does to the stack. The set of runs is accepted by
a multi-stack visibly pushdown automaton withk-phases,
and the original automaton accepts some word iff the latter
does. Hence emptiness can be decided using Theorem 4.2
4. Closure Properties

We now show closure properties ofk-MVPLs. We start
by defining a renaming operation.

7

A renaming ofe�n to e
n is a functionf : � !
 such
that f(�i
) �
i
, f(�ir) �
ir, for every i 2 [k℄, andf(�int) �
int. A renamingf is extended to words over� in the natural way:f(a1 : : : am) = f(a1) : : : f(am).
Theorem 6 (CLOSURE) Let L1 andL2 be twok-MVPLs
over e�n. Then,L1 [L2 andL1 \ L2 are k-MVPLs overe�n. Moreover, iff is a renaming ofe�n to e
n, thenf(L1)
is also ak-MVPL overe
n.

Proof LetA1; A2 be twok-MVPAs such thatL(A1) = L1
andL(A2) = L2.

Closure under union follows by taking the union of the
state and transitions ofA1 andA2 (assuming they are dis-
joint) and taking the new set of initial states (final states)to
be the union of the initial states (final states) ofA1 andA2.L1\L2 can be accepted by an MVPA A that has as its set
of states the product of the states ofA1 andA2, and as its
stack alphabet the product of the stack alphabets ofA1 andA2. When reading a call of stacki, if A1 pushes
1 andA2
pushes
2, respectively on theiri-th stack, thenA pushes(
1;
2) onto itsi-th stack. The set of initial (final) states is
the product of the initial (final) states ofA1 andA2.

GivenL1 accepted by thek-MVPA A and a renamingf , f(L1) is accepted by thek-MVPA obtained fromA by
transforming each transition ona to a transition onf(a). 2

An MVPA M = (Q;QI ;�; Æ; QF) is deterministic
if jQI j = 1, and jf(q; a; q0) 2 Æg [f(q; a; q0;
) 2Æg [f(q; a;
; q0) 2 Ægj = 1, for every q 2 Q anda 2 �. A k-MVPA A = (k;Q;QI ;�; Æ; QF) is de-
terministic if the MVPA (Q;QI ;�; Æ; QF) is determinis-
tic. MVPAs cannot be determinized. In fact we can
show that fore�2 = (�1
 ;�1r;�2
 ;�2r; ;), with �1
 = fag;�1r = f
; dg;�2
 = fbg;�2r = fx; yg, the languageL = f(ab)i
jdi�jxjyi�j ji 2 N ; j 2 [i℄g is accepted by
a non-deterministic2-MVPA but not by any deterministick-MVPA.

Theorem 7 (NON-DETERMINIZABILITY) The class ofk-
MVPLs is not closed under derterminization.

Let L be ak-MVPL over e�n; the complementof L is
defined with respect to allk-phase words:L = (�� n L) \Phases(e�n; k). We show that thoughk-MVPLs cannot be
determinized, they can be complemented. First we give a
technical result for translating any regular language of stack
trees to an MVPA that accepts the corresponding words.

Lemma 3 If L � STree(e�n; k) is regular, thentw(L) is
a k-MVPL. Moreover, ifL is accepted by an automaton of
sizes, then the correspondingk-MVPA is of size polynomial
in s.
We can now show complementation ofk-MVPAs:

Theorem 8 (COMPLEMENTABILITY) The class of k-
MVPLs is closed under complementation. That is, ifL is
a k-MVPL overe�n, thenL is also ak-MVPL overe�n.

Proof By Theorem 3, the tree setwt(L) is regular. Since
tree automata are closed under complementation,wt(L) is
also regular (see [19]), and by Theorem 1 there is an MSO
sentence' defining it. Now, if is an MSO formula defin-
ing STree(e�n; k) (the existence of is guaranteed by The-
orem 2), then it is simple to show that the MSO sentence'^ defines the set of treeswt(L). To conclude the proof,
observe that by Lemma 3tw(wt(L)) is ak-MVPL, and by
Lemma 2,tw(wt((L)) = L. 2

The following table summarizes and compares closure
properties for CSLs, CFLs, VPLs, MVPLs and regular lan-
guages (see [11]).

Closure properties[\ Complement Determ.

Regular Yes Yes Yes Yes
VPL Yes Yes Yes Yes
CFL Yes No No No
CSL Yes Yes Yes Not known
MVPL Yes Yes Yes No

5. Decision Problems

The membership problemfor k-MVPAs is to check, for
any fixedk-MVPA A over e�n, whether a given wordw 2�� is accepted byA.

Theorem 9 (MEMBERSHIP) The membership problem fork-MVPLs is NP-complete.

Proof Showing membership in NP is trivial. A nondeter-
ministic polynomial-time algorithm just need to guess a run
and simulate it on a given input word. To show NP-hardness
we reduce satisfiability of boolean formulae. Fix a for-
mula � over variablesfx1; : : : ; xkg. We define a2-stackk-MVPA A that accepts a particular word inPhases(e�2; k)
iff � holds. AutomatonA, starts in phase1 reading the for-
mula from the tape and storing it in stack1. Then, in phaseh, h � 1, A guesses a truth value for variablexh, pops
the content of the stack of the current phase and pushes it
onto the other stack rewriting each occurrence ofxh with
the guessed value. Finally, in phasek, while rewriting the
stack content,A also evaluates the obtained expression (all
variables have been substituted with a truth value) and thus
accepts iff it evaluates to true. We remark that theO(j�j:k)
operations concerning the stacks are driven by the input
word to the MVPA. 2

The universality problemfor k-MVPLs is to check
whether a givenk-MVPA accepts all the strings of

8

Phases(e�n; k). The inclusion problemis to find whether,
given twok-MVPAsA1 andA2 overe�n, L(A1) � L(A2).
Theorem 10 (UNIVERSALITY, INCLUSION) The univer-
sality and the inclusion problems are decidable.

Proof Using closure ofk-MVPAs under complement, it fol-
lows that universality and inclusion ofk-MVPAs reduce to
the emptiness problem, and thus are decidable. 2

We can show an EXPTIME lower bound for the emptiness
problem and a 2EXPTIME lower bound for the universality
and inclusion problems. We conjecture that emptiness is
complete for double exponential time.

The following table summarizes the results we have
shown on the complexity of the main decision problems
for MVPLs, and recalls known results for CSLs, CFLs,
VPLs and regular languages. In this table, NLOG stands for
NLOG-complete, and so on for the other complexity classes.

Decision Problems
Membership Emptiness Univ./ Equiv./Incl.

Reg. NLOG NLOG PSPACE

VPL PTIME PTIME EXPTIME

CFL PTIME PTIME Undecidable
CSL NL INSPACE Undecidable Undecidable
MVPL NP I N 2EXPTIME I N 3EXPTIME

EXPTIME -HARD 2EXPTIME -HARD

6. Language Theoretic Properties6.1. A Logi
al Chara
terization
In this section, we define a logic on words over ann-

stack call-return alphabete�n which has in its signature re-
lations that capture then nesting relations.

In this context, a wordw over� is a structure over the
universeU = f1; : : : ; jwjg, the set of positions inw. We
use unary predicatesPa(i), for a 2 �, which stand forw[i℄ = a. Also, we haven binary relations�j (j 2 [n℄)
overU , where�j corresponds to the matching relation of
calls and returns according to thej’th nesting relation. Let
us fix a countable infinite set of first-order variablesx; y; : : :
and a countable infinite set of monadic second-order (set)
variablesX;Y; : : :.

Themonadic second-order logic(MSO�) overe�n is de-
fined as:' := Pa(x)jx 2 Xjx � yj�j(x; y)j:'j' _ 'j9x'j9X'
wherej 2 [n℄, a 2 �, x; y are a first-order variables andX
is a set variable.

The models are words over�. The semantics is the natu-
ral semantics on the structure for words defined above. The
first order variables are interpreted over the positions ofw,
and the second-order variables range over sets of positions.
We recall that a sentence is a formula which has no free
variables. The set of all words ofPhases(e�n; k) that sat-
isfy a sentence' is denotedLk(') and we say' defines this

language. Using standard techniques to convert MSO to au-
tomata (given that the automata are closed under boolean
operations and projection), we get (see [20]):

Theorem 11 A languageL is a k-MVPL over e�n iff there
is an MSO� sentence' overe�n withLk(') = L.6.2. A Parikh Theorem

The Parikh mapping, introduced by Parikh [15], asso-
ciates a word with the vector of natural numbers that re-
flect the number of occurrences of the symbols in the word.
Formally, the Parikh image of a wordw, over the alpha-
bet fa1; : : : ; a`g, denoted by�(w), is the tuple�(w) =(#a1; : : : ;#a`) where#ai is the number of occurrences
of the symbolai in w. We extend the Parikh image to
languages in the natural way:�(L) = f�(w)jw 2 Lg.
Parikh’s theorem [15] states that for each context-free lan-
guageL over� there is a regular languageL0 over� such
that the Parikh image ofL andL0 coincide, that is,�(L) =�(L0). For example, the languageL = faibiji 2 N g has
the same Parikh image of the regular languageL0 = (ab)�,
i.e. �(L) = �(L0) = f(i; i)ji 2 N g. Moreover, given a
context-free languageL, it is effectiveto find a regular lan-
guageL0 such�(L) = �(L0); that is, there is an algorithm
that takes as inputL and gives as outputL0. The next theo-
rem shows that the same properties also hold fork-MVPLs.

Theorem 12 For everyk-MVPL L over e�n, there exists
a regular languageL0 over � such that�(L0) = �(L).
Moreover,L0 can be effectively computed.

Proof Recall that for any context-free grammarG, we can
construct a right-linear grammarG0 such that�(L(G)) =�(L(G0)) [15]. Thus, for anyk-MVPL L, we just need
to construct a context-free grammarG such that�(L) =�(L(G)). From Theorem 3, we can construct a tree au-
tomatonA acceptingwt(L). Viewing the transition rules of
a tree automaton as productions of a context free grammar,
we can construct starting fromA a context free grammar
that generates a languageL0 such that�(L) = �(L0). 2

The above result can be used to show that certain lan-
guages are not recognized byk-MVPAs or evenk-phase
MPAs. For instance, consider the language over the (non-
visible) alphabet� = fag, L = fa2n j n 2 N g. We can
show thatL is not accepted by anyk-phasen-stack MPA.
Assume by contradiction that it is accepted by ak-phasen-stacks MPA. Let us first change the MPA so that it does
stack moves only on�-transitions. Then, let’s augment the
alphabet with symbolsf(
; i); (r; i) j i � ng[fintg, and let
us transform the MPA by relabeling each� push-transition
onto stacki to (
; i), each� pop-transition from stacki to(r; i) and each� transition that doesn’t touch the stack toint. The resulting MPA is an MVPA whose language pro-
jected tofag results inL. But by the Parikh theorem above,

9

the Parikh image of the language accepted by the MVPA is
equivalent to the image of a regular languageR. ProjectingR to fag isL and must be regular, which is a contradiction.

7. Discussion

We have defined and studied a robust and tractable sub-
class of context-sensitive languages. There are various other
extensions of context-free languages that have been shown
to be tractable. Bounded context-switching reachability
of multistack automata [16] and concurrent pushdown au-
tomata interacting using nested locks [12] are known to ad-
mit decidable reachability problems, but crucially rely on
the fact that the set of reachable configurations of such au-
tomata areregular. MVPAs with bounded phases strictly
generalize both these classes of languages, and the reach-
ability algorithm is more sophisticated. The set of reach-
able configurations ofk-phase MVPAs are, for example, not
regular or even context-free. For instance, consider the de-
terministic 2-phase MVPA that reads(ab
)n:(�ba)n:(�
a)n,
pushes the symbolsa, b and
 onto three different stacks,
and then transfers theb’s and
’s back to the first stack read-
ing �ba and �
a repeatedly. The resulting set of configura-
tions hasanbn
n on the first stack with the other two stacks
empty, which is a non-context-free set of configurations.

Other extensions of context-free languages include the
class of languages accepted bystack automata[9] and those
accepted by higher-order pushdown automata [13]. While
these classes have a decidable emptiness problem, they are
not robust (for example, they are not closed under comple-
ment). We do not know whetherk-MVPLs are contained in
these classes, but we conjecture that they indeed are.

Several future directions are interesting. First, the class
of multiple nested word languages with a bounded num-
ber of phases is of bounded tree-width (this is the prop-
erty that allows us to embed them in trees). It would be
interesting to characterize naturally the exact class of mul-
tiple nested words that have bounded tree-width. Secondly,
we believe that our results have applications to other areas
in verification, for instance in checking parallel programs
that communicate with each other using unbounded FIFO
queues, as multiple stacks can be used to simulate queues.
Thirdly, propositional dynamic logic (PDL) has been shown
to be decidable when regular expressions in the logic are
replaced with particular classes of non-regular languages.
The non-regular but context-free language extensions that
were known to be decidable [10] were recently general-
ized in [14], where it was shown that PDL with visibly-
pushdown language modalities is decidable. Whether one
can obtain a generalization of the small number of decid-
able extensions of PDL with non-context-free languages,
using the class of automata presented in this paper, is an
interesting open problem.

References

[1] R. Alur and P. Madhusudan. Visibly pushdown languages.
In STOC, pages 202–211, 2004.

[2] R. Alur and P. Madhusudan. Adding nesting structure to
words. InDLT, LNCS 4036, pages 1–13, 2006.

[3] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek.
Reachability analysis of multithreaded software with asyn-
chronous communication. InFSTTCS, LNCS 3821, pages
348–359, 2005.

[4] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular sym-
bolic analysis of dynamic networks of pushdown systems.
In CONCUR, LNCS 3653, pages 473–487, 2005.

[5] S. Chaki, E. M. Clarke, N. Kidd, T. W. Reps, and T. Touili.
Verifying concurrent message-passing C programs with re-
cursive calls. InTACAS, LNCS 3920, pages 334–349, 2006.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata tech-
niques and applications, 1997.

[7] J. Doner. Tree acceptors and some of their applications.J.
Comput. Syst. Sci., 4(5):406–451, 1970.

[8] E. A. Emerson. Temporal and modal logic. In [21], pages
995–1072.

[9] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-way
stack automata.J. ACM, 14(2):389–418, 1967.

[10] D. Harel and D. Raz. Deciding properties of nonregular pro-
grams.SIAM J. Comput., 22(4):857–874, 1993.

[11] J. E. Hopcroft and J. D. Ullman.Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[12] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about
threads communicating via locks. InCAV, LNCS 3576,
pages 505–518, 2005.

[13] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order
pushdown trees are easy. InFoSSaCS, LNCS 2303, pages
205–222, 2002.

[14] C. Löding and O. Serre. Propositional dynamic logic with
recursive programs. InFoSSaCS, LNCS 3921, pages 292–
306, 2006.

[15] R. Parikh. On context-free languages.J. ACM, 13(4):570–
581, 1966.

[16] S. Qadeer and J. Rehof. Context-bounded model checking
of concurrent software. InTACAS, LNCS 3440, pages 93–
107, 2005.

[17] S. Qadeer and D. Wu. Kiss: keep it simple and sequential.
In PLDI, pages 14–24. ACM, 2004.

[18] J. W. Thatcher and J. B. Wright. Generalized finite automata
theory with an application to a decision problem of second-
order logic.Math. Sys. Theory, 2(1):57–81, 1968.

[19] W. Thomas. Automata on infinite objects. In [21], pages
133–192.

[20] W. Thomas. Languages, automata, and logic. InHandbook
of Formal Languages, Volume 3, pages 389–455. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

[21] J. van Leeuwen, editor.Handbook of Theoretical Computer
Science, Volume B. Elsevier and MIT Press, 1990.

[22] M. Y. Vardi and P. Wolper. Automata-theoretic tech-
niques for modal logics of programs.J. Comput. Syst. Sci.,
32(2):183–221, 1986.

10

