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Abstract ments where open- and close-tag annotations fonesting

relation on the linear document, capturing theerarchical

We define a new class of languages defined by multi-stackree structureof the data it represents. When studying the
automata that forms a robust subclass of context-sensitivelinear behaviors of a recursive sequential program, there i
languages, with decidable emptiness and closure underagain a nesting relation naturally present, which relaaés c
boolean operations. This class, called multi-stack visibl to procedures with their corresponding returns. Viewirg th
pushdown language®AVvPLs), is defined using multi-stack nesting structure axplicitedges in the document led to the
pushdown automata with two restrictions: (a) the push- recently studied theory of nested words ([1, 2]). The notion
down automaton igisible, i.e. the input letter determines of regularity for nested words captures a different class of
the operation on the stacks, and (b) any computation of thelanguages than regular word languages (i.e. regular nested
machine can be split int& stages, where in each stage, word languages can be context-free when the nesting edge
there is at most one stack thatg®pped MvpPLs are an relation is ignored), but forms a robust class closed under
extension of visibly pushdown languages that captures non-boolean operations and with decidable decision problems.

context free behaviors, and has applications in analyzing |n this paper, we delve deeper into defining tractable
abstractions of multithreaded recursive programs, signifi classes of word languages, where the tractability stems fro
cantly enlarging the search space that can be explored for explicit relations between positions that simplifies the in
them. We show thdlvpLs are closed under boolean op-  ternal complexity of the word. The class of languages we
erations, and problems such as emptiness and inclusiondiscover in this paper is a robust and tractable subclass of
are decidable. We characterizélvPLs using monadic  context-sensitive languages, defined using a restricss cl
second-order logic over appropriate structures, and exhib  of multiple nesting relations on words. The class is closed
a Parikh theorem for them. under all boolean operations, and admits tractable decisio
procedures for the problems of emptiness and inclusion.

From an automata-theoretic perspective, the regular class
1. Introduction of words with a single nesting relation is captured using
visibly pushdown automat@/PA) [1]. A VPA works on
Linear labeled structures play an important role in mod- words over an alphabet that is partitioned into three
eling information in computer science. Explicit linear¥ep parts, called the call-alphabet, the return-alphabet,thed
resentations of data (like a text document) and implicit jnternal-alphabet. A word over such a partitioned alpha-
linear representations of behavior (llke the linear-tinee b bet |mp||c|t|y defines a nesting relation, formed by match-
havior of a system) motivate the study of robust classesing the call-letters with the corresponding return-lestiera
of linear structures. Regular word languages have playednested fashion. A VPA working over such a word is con-
an important role in this regard, and have found appli- strained to push exactly one symbol onto its stack on call-
cations in searching documents, defining logics for be- |etters, to pop exactly one symbol on return-letters, and to
haviors, and algorithms for model-checking systems (seenot touch the stack on internal-letters. The class of lan-
[8,11, 19, 20, 22]). guages accepted by these automata are called visibly push-

In certain linear models, there is an |mpI|C|t relation on down |anguages' and Corresponds exacﬂy to the class of reg-
the positions in the model that can be inferred from its la- ylar languages over nested words ([1, 2]).

bels. A standard example of these are XML/SGML docu-  The class of languages we study in this paper is de-

*The author was partially supported by MIUR grants ex-60%5280d f!ned using visibly pushdown automata working ml-
2006 of Universia degli Studi di Salerno. tiple stacks. These automata read words and manipulate a




finite set of stacks (say of them), where the input alpha-

second-order logic on-nested words witlt phases, where

bet determines the operations allowed on the stack. Morethe logic has: binary relations corresponding to thenest-

precisely, the input alphabet is partitioned intsets of call
alphabetsX?) and return alphabet&(), and an internal al-

ing relations on the word.
In order to understand which subclass of context-

phabet E;,.;), and the automaton pushes or pops from the sensitive languages WpLs capture, we note that our map-

i'th stack only when it reads a call frol’ or a return in

ping of k-phase words into trees essentially rearranges the

%;., respectively. The automaton hence retrieves, using onetters in the word so that the language becomes tree-
stack for each nesting relation, the nesting edges present i regular. We formalize this by proving a Parikh’s theorem

the word.

for MvpLs, namely that the commutative image of every

Multi-stack visibly pushdown automata can be seen as MvpL is the commutative image of a regular language. This

encoding theunsof a multi-stack automaton, and it is easy

can be used to show that certain languages are not accepted

to see that the emptiness problem for them is undecidableby multi-stack automata; for example, we can show that
(since a Turing machine can be simulated using two stacks).{a?" | n € N} is not accepted bgny multi-stack automa-

Consequently, any naturally-defined notion of regularity o

ton with a bounded number of phases (over the non-visible

multiple nested words is bound to be intractable. We réstric alphabet{a}), although it is a context-sensitive language.

the class of words in the following way. We fix a uniform

One application of multi-stack automata with bounded

boundk, and only consider words that can be decomposedpnases is for thenodel-checking of concurrent recursive
into k& sub-words, where each sub-word has at most one k'ndprograms When verifying concurrent programs, a common
of return nodes. In other_ words, the automaton working OVer haradigm is to abstract the program into a finite model (say
such a word proceeds it phases, where in each phase it sing predicate abstraction), and subject the model to algo
pops at most from one stack (but it can push onto all stacks).rithmic verification. The model however preserves the con-
We dub these automata and the languages they accept as yrq| flow accurately, and hence preserves recursion, lgadin
phase multi-stack visibly pushdown automata (languages). 1o essentially a multi-stack pushdown automaton. Reach-

The class ofk-phase M/PLs (k-MVPLS) is a subclass
of context-sensitive languages. It includes non-confiesd-
languages such ggajaz)” b7 by | n € N}, which can be
accepted using only two phasesqif anda, are calls cor-
responding to two different stacks, atlydandb, are the re-
turns from these stacks. Thewda accepting this language
pushes the;’s andas’s onto the two stacks, and then when
readingb,’s, pops symbols from the first stack, and then in
the second phase, readibgs pops symbols from the sec-
ond stack.

The main theorem of the paper is that gmeptinesprob-
lem for MvPAs is decidable. The proof lies in a fairly com-

plex encoding oft-phase words into trees, and hence re-

ability checking for this model is of course undecidable.
However, recent papers in verification make the observa-
tion that many errors are already found after a few num-
ber of context-switchegswitches between stacks), and in
fact for anyk, checking if an error state is reached witfin
context switches is decidable [16]. Context-bounded check
ing of concurrent recursive programs has shown to discover
several errors in programs (see [5, 16, 17])vis gener-
alize this result by showing that checking whether an error
state is reached withik phaseswhere in each phasal
processes can evolve, but only one of them is allowed to re-
turn from procedures, is decidable. Technically, our itesul
is more sophisticated as we can show that the set of config-

ducing it to tree automata emptiness. As a consequenceurations reached ih-phases imotregular. Other results on

we also obtain the result that for normal (not visible) multi
stack pushdown automata that use at nkteghases on any
word, the emptiness problem is decidable.

We show thatk-phase M/pPLs are effectively closed un-
der union, intersection, and complement (with respeé&t to

deciding reachability, including bounded-context switich

and nested locks, crucially rely on the fact that the reach-
able sets are regular ([3, 4, 12, 16]). (In [4] the forward
reachable sets are not regular, but backward reachable sets
are.) We believe that analyzirkigphase executions of a pro-

phase words), and using decidability of emptiness, it fol- gram model explore a much larger space of configurations
lows that the inclusion and equivalence problems are decid-thank-context switches do, and may lead to more thorough

able for MvpLs. While closure of MPLs under union and

intersection are easy, closure under complement is more in-

volved as M/pLs arenotdeterminizable. The closure under
complement is shown by mapping anywWL into a regular

model-checking algorithms.

The paper is structured as follows. Bounded phase multi-
stack visibly pushdown languages are defined in Section 2.
Section 3 is devoted to proving that the emptiness prob-

language of trees, complementing the automaton with re-lem is decidable for MpPLs. Closure under boolean op-

spect to the class of all trees that repregephase words,
and translating the resulting automaton back to arpM

Delving further into the language theory of this class,

erations and non-determinazability ofMALs are shown in
Section 4, while decision problems are discussed in Sec-
tion 5. In Section 6, we present a logical characterization o

we show that it corresponds exactly to the class of monadick-phase M/PLs and prove a Parikh theorem for them, and



conclude with a few remarks in Section 7. o) =1 for everyi € [n], and for everyj € [m] the follow-

ing holds:
2. Preliminaries [Push] If a; € ¥ (i.e a; is a call of stack), then3y € T
4 Ny

Multi-Stack Visibly Pushdown Languages. SL]JE? ﬂ]at](qf]’a]’qﬁ;l’ 7 € 9, o v or, and
Given two positive integersandj, i < j, we denote with oy = oy, foreveryh & ([n]\ {}).

[i, 7] the set of integers with ¢ < k& < j, and denote byy] [Pop] If a; € ¥i (i.e. a; is areturn of stack), thendy € T
the set1, j]. Letw be a word on some alphabet. We denote such that(g;, aj,v,q;+1) € 6, 03" = o} for every
with |w| the length ofw, and hence¢w|] denotes the set of h € ([n] \ {i}), and eithery #1 ando? = v - o7,
positions ofw. Given two positiong’, j of w, 7' < j, we orod — g3t —

2 2

denote withw[j] the j-th symbol ofw, and withw|[j’, j] the ) ) _
sub-word ofw formed from position;j’ to positionj, both [Internal] If a; € Xn is an internal action, then
inclusive (whenj’ > j, w[j’, j] = ¢). (¢j,aj,qj+1) € 6, anda] " = ol for everyh € [n).

An n-stack call-return alphabet is a tuplﬁn =
({(Z%, 28 Yiern), Sine) Of pairwise disjoint finite alphabets.
For anyi € [n], ¥ is a finite set oftalls of the stack, X¢
is a finite set ofreturns of stack, and;,; is a finite set
of internal actions For any sucht,,, let £, = [J;_, X,

Yy = Ui ¥, X0 = 3 U X5, for everyi € [n], and Given a wordw € X*, we denote withRet(w) the set of
X= e UXy Uiy all returns inw. A word w is aphaseif Ret(w) C %, for
A multi-stack visibly pushdown automaton over such an gome; ¢ [n], and we say thaw is aphase of stack. Let

alphabet must push on théh stack exactly one symbol 5 now definet-phase words, which are words formed by
when it reads a call of théth alphabet, and pop exactly concatenating at mostphases.

one symbol from thé'th stack when it reads a return of the
i'th alphabet. Also, it cannot touch any stack when reading Definition 2 (PHASES) For any k, a k-phase word! is a

A run p = <q07o-?a"'50'91>""7<qm)0{n7"':o':zn> is
accepting if the state in the last configuration is final, i.e.
if ¢, € Qr. Awordw € X* is accepted by an MPA M
if there is an accepting run @ff onw. The language o#/,

denotedL (M), is the set of all words accepted By.

an internal letter. word w € ¥7F such thatw can be factorized asv =
wiws . .. w Wherek’ < k andwy, is a phase, for every

Definition 1 (MULTI-STACK VISIBLY PUSHDOWN AU- h € [K']. Such a factorizationvy, wa, ... wy is called a

TOMATON) A multi-stack visibly pushdown automaton k-factorizationof w w.r.t. X,,. Let Phases(X,, k) denote

(MvpA) over the n-stack call-return alphabet:, = the set of allc-phase words ovex,,.

<{(Z7c7 Z?r)}ze[n}a Eint>a is a tUpIeM = (Q, QIa Fa 61 QF)

whereQ is a finite set of state€); C Q@ is the set of ini- Definition 3 (MULTI-STACK VISIBLY PUSHDOWN LAN-

tial states,I" is a finite stack alphabet that contains a spe- GUAGES wITH PHASE$ For any k, a k-phase multi-stack
cial bottom-of-stack symbal, § C (@ x 3. x @ x (T\ visibly pushdown automatofk-MvPA) overs,, is a tuple
{J-}))U(QXET XFXQ)U(QXEint XQ)! andQF g Q A= (kaQthraéjQF) where M = (Q?Q[7F767QF)
is the set of final states. is an MVPA over ¥,. The language accepted by is
~ L(A) = L(M)N Phases(X,,, k). Alanguage accepted by a
Letus fix ane-stack alphabek,, for the rest of the paper.  -Mvpa is called ak-phase multi-stack visibly pushdown
A transition (¢, a, q’,v), wherea € X! andy #.1, is languagek-MvPL).
a push-transition with the meaning that on reading is
pushed onto stackand the control changes from statéo Example 1 Figure 1 gives a formal definition ofz2MvPA
q'. Similarly, (¢,a,v,q') with a € X is a pop-transition A overY, that accepts the languadéaiaz)’ b] bs|t > 0}.
where~ is read from the top of the stadkand popped (if ~ The automatond checks whether the input word has the
the top of stack is L, then it is read and not popped), and form (a;az)* b7 b5 using its control states. Foi = 1,2:
the control changes fromto ¢'. when A reads a calla;, it pushes onto stack; symbol$,
A stackis a nonempty finite sequence ovErwhere if it is the first occurrence of;, and symbol#, otherwise;
the bottom-of-stack symbal. appears always and only then, reading the return symba), A pops a symbol from

in the end; let us denote the set of stacks %s = stacksS; until symbol$ is popped; whei$ is popped form
(T \ {L})* - {L}. A configurationof an MvPA M stackSs, it enters the accepting state.
overY, is a tuple{(q,o1,...,0,) with ¢ € @ and each

Multi-stack pushdown automata.

o; € St. For awordw = aj...a, in X* arun .

: . 1 m, . A multi-stack pushdown automatgipA) over a normal
of M onw is a sequence ofr + 1 configurationsp =
(qo,09,...,0%), ... . {gm,0,...,0™), whereqy € Qr, 1We ignore the empty wordto simplify the presentation.



! = {a;}, 5 = {5}, 52 = {as}, 52 = {bs}, Dint = 3. The Emptiness Problem

Q;A = (25 {ql|z € [076]}7{q0}5{#7$}755 {QO:Q()’}) . ~ i
Given ak-MVPA A overy,,, theemptiness problerfor

d ={ (9,21,q1,9%),(q1,a2,q2,9), (q2,a1,q3,#), A is to decide whetheL(A) is empty. In this section, we
(g2,b1,#,q4), (g2, 61,8, 45), (a3, a2, g2, #), §h0w that the empti_nes_s problem f{}IM VPLS is decidab_le
(Ga, b1, %, 1), (04, b1, 8. 05 ), (g5, b, 4, 45) in double exponential time by reducing it to the emptiness
94,91,7,94): 144501, 9, 45 )5 195, 02, 35 45 problem for finite tree automata.
(45,02, d6)}- We need some definitions. A word € X1 is i-well
) matchedf it is generated by the context-free grammar:
Figure 1. A 2-MvPA for {(a;az)® bf bs|t > 0}. S—SS|aSb|d]e

where S is the only variableg € ¥i,b € ¢, andd €
¥\ ¥l Letw € ¥t andj, j' be two positions ofv with j <
j'. The pair(j, j') is amatching pairof w iff there exists
i € [n] suchthatw[j] € %%, w[j'] € %¢, andw[j+1, ;' —1]
is ¢-well matched.
A k-phase word can be factored in several ways; we fix

(non-visible) alphabek is simply ann-stack automaton,
with ¢ moves, that can push and pop from any stack read-
ing any letter. Also, we define thephase version of these
(called k-MPAs). A k-MPA is an MpA that uses at most

h-phases on any word (i.e. any run on any word can be de'a unique factorization that will simplify the technical exp

composed into at most phases, where in each phase the sition. We say that &-factorizationwy, . .., wy, of a word
MPA pops at most from one stack). For example, the lan- ", ' 5 “itiont if: (1) the first symbol ofuws, is a re-
guage{a™b"c" | n € N} is accepted by a-phase2-stack turn. for e\7eryh € [2,K], (2)if k' > 1 thenRet(w,) # 0
MPA that pushes a symbol onto both stacks while reading and,(S)w andw ’are’phases of different stacks for’ ov-
a’s (usinge-moves) and matches tlés against one stack h vt '

. . r T 1] It hat, for every wor
and thec’s with the other. It is easy to see that the language ery h & [k = - wis egsy 0 gee t .at ore .e y. ord
is not ak-MvPL for any partition of the letters, b andc we Phasef(z”’ k), there is a unique tight-factorization

into call-return alphabets over multiple stacks. of w yv.r.t. X ~ .
Given a wordw € Phases(X,, k), we define the map
Trees and Monadic Second-Order Logic. phase,, : [|lw|]] — [k] as follows: phase,(j) = h iff
We briefly recall trees and some well known results on treeswy, . . ., wy is the tightk-factorization ofw w.r.t. 3, andj
and monadic second-order logic. is a position ofwy,.
The trees we deal with are finite, binary, and labeled by  Our proof is structured as follows. We first define a rep-
a finite alphabefl. An T-labeled treeis a structurel’ = resentation ofc-phase words using trees labeled over the

(V, ), whereV C {0,1}* is a finite prefix-closed set, and alphabetX x [k]). The vertices in the tree correspond to po-
AV — T is a labeling function. The séf represents  sitions in the word such that the returns in the word are the
the nodes ofl’, wheree is theroot of T', denotedroot(T). right-children of the matching calls. While the call-retur
The edge-relation df" is implicit: edges are pair&, v.7), matching relation of thé&-phase word is immediately re-
wherev,v.i € V,i € {0,1}. The nodev.0 (v.1) is called coverable in the tree, the positions in the word get arranged
the left-child (right-child) ofv. Let 7y denote the set of all haphazardly in the tree, and retrieving fiveear ordering

T-labeled trees. of the word in the tree gets considerably complex. We ex-
We assume standard nondeterministic top-down au-hibit how to recover the linear ordex of the word from
tomata on trees [6]. the tree using MSO on trees. The correctness of this re-

lation is not shown immediately. We first show that it de-
finessomelinear order on the vertices of any tree in which
the phase numbers are monotonically non-decreasing along
any path. Using this linear order, we characterize the set
of stack trees: intuitively, the characterization lookgsheg
word w formed using the linear order, and checks whether
the nesting relations defined by the right-child relatioreag
with the call-return matching iw. We show that if a tre@’
satisfies the characterizing conditions of the stack thes t
the wordw obtained is indeed such that its stack tre&'is
This formally establishes the correctness of the lineageiord

Definition 4 (REGULAR TREE9 A set ofY-labeled tree
is regular if there is some tree automatdnwith £ = £(.A).

We will use the standard monadic-second order logic on
trees, which allows quantification over nodes and sets of
nodes of a tree, with interpreted relations for the leftethi
and right-child, and boolean operators [20].

The following theorem relates the class of regular trees
and the class of trees definable by MSO.

_ o (Lemma 2).
Theorem 1 ([7, 18]) A tree language is regular iff it is Along with the above proofs, we establish that the com-
MSO definable. plexity of checking the< relation (using tree automata)



is exponential, and the complexity of checking whether a Example 2 Consider ! = {a},%! = {a},¥? =
tree is a stack-tree is double exponential in the number of{c}, %2 = {¢} and%;,; = {e}, andw = aecaaaacaceca.
phases. Finally, using the-ordering, we show how to sim-  For w; = aecaaaaca,ws = cec, andws = @, wi, wa, w3
ulate an M/pA on the word obtained from the tree using a is a tight3-factorization ofw w.r.t. . Thus,phase,,(j) =

tree automaton of size double exponentiakinThe com- 1 for everyj € [9], phase,(j) = 2 for everyj € [10,12],
plexity of checking emptiness of WbA then follows from and phase,,(13) = 3. The set of all matching pairs of
emptiness checking for tree automata. w wW.rt. X is {(1,6),(3,12), (4,5), (8,10),(9,13)}. Fig-

The embedding of words into trees and the recovery of ure 2 shows théX: x [3])-labeled treewt (w). Observe that,
the linear relation forms the main technical crux of the pa- pos(v;) = i, for everyi € [13]. Note that the linear order-
per, and is the hardest part of our proofs. The linear ordering on the word is very non-local on the tree. For example,
is not recoverable unless tiphase numbeof each letteris v, is the successor af;; and yet they are far away in the
also encoded in the tree, and this is precisely why our em-tree.
bedding does not work for unboundedly many phases (un-
derstandably so, since unbounded number of phases leads
to an undecidable emptiness problem).

Mapping nested structures into trees.

We define a function that maps every womd ¢
Phases(X,,, k) into a(X x [k])-labeled tree that has a node

for each position ofw. The node corresponding to posi-

tion 5 of w encodes in its label the symbol and the phase (a;1)
of positionj in w. The root corresponds to positidnand
for all positionsj, if (5',7) is a matching pair ofv then
the node corresponding to positignis the right-child of
the node corresponding to positigh otherwise, the node
corresponding to positiopis the left-child of the node cor-
responding to positioi—1. The formal definition below
simultaneously defines a 1-to-1 correspondencethat re- (a,3)
lates positions in the word with the nodes in the tree.

Figure 2. The tree wt(aecaaaacaceca).
Definition 5 (TREE REPRESENTATION For any word Recovering the linear order <

w € Phases(Xn, k) with [w| = m, the word-to-tree map |, this section, we define a relation on nodegBfx [k])-

of w, wt(w), which is a(% x [k])-labeled tree(V, A), and  |apeled trees, denoted, which (we will eventually show)
the bijection mappos,, : V' — [m] are inductively (orjw|) recovers the linear order in from the stack treevt(w).
defined as follows: LetT = (V, ) be a(> x [k])-labeled tree. Givem, y €

o If m=1,thenV ={e}, A(¢) = (w, 1), andpos,, (¢) = 1. V, we say thatt <,.f; vy iff = precedeg in the prefix
traversal of7’. We define two mapssym : V. — ¥ and
phasep : V — [k] as:sym(z) = a andphase,(x) = h iff

. Otf)er)/vise, Ie.tw’ = wll,m — 1] and wi(w’) = A(z) = (a,h). For anoder € V, we denote withT, the
(V', X'). Then: largest subtree &f containingz and such that all its nodes
-V =V'U{v}withv ¢ V" are labeled with the same phase number.
- )\(U’) = (Uj[ffﬁ]apha“w(m)’)i ’ Definition 6 LetT = (V,\) be a(X x [k])-labeled tree
A(v') = N (v'), for everyu' € V', with phase,(x) > phaseq(parent(z)), for everyz € V' \

— If there is somg € [m — 1] such that(j, m) is {e}. For everyh € [k|, we inductively define the relations
a matching pair inw, thenv is the right-child of <pCV xVand<pCV xV,as follows:

pos,! (7).

o o 1 o r < y iff phaser(z) = phaser(y) = h and either
Otherwisev is the left-child ofpos,; (m — 1). ()T, = T, andz <ypois , O (2) To £ Ty, h > 1
— pos,,(v) = m and pos,,(v') = pos,, (v'), for and parent (root(T,)) <p,—1] parent(root(T,)).
everyv' € V'.
o x < y iff either (1) phase (), phase,(y) < h and
A tree T such thatT = wt(w) for somew € x <[p_1) Y, OF (2) phasey(x) = phaser(y) = h and
Phases(3,, k) is called ak-stack treg and the set ok- x <p y, or (3) phase(z) < h andphaser(y) = h.
stack trees is denoted WTree(3,, k). We define the relatior as <.



Consider the tre& from Figure 2. On this tree, relation junctions, and causes the automaton to be exponential in
<1, and thus<(;;, simply corresponds to the ordering re- (20(*lgk)),
sulting from a prefix traversal of the subtree of all nodes of  Though we cannot establish the correctness<ofet,
phasel, i.e. the sequencg , v, . .., vg. TO determine rela-  we can show now thak always definesomelinear order
tion <, observe that there are two separate subtrees whicton a tree, provided phase numbers are monotonically non-
are formed by nodes of phage Within each subtree the decreasing along any path in the tree. Intuitively, .,
relation <, is defined according to the prefix traversal. To linearly orders all elements of a subtree that corresponds
relate nodes of different subtrees we compare the parentdo the same phase, elements of two different phases get or-
of the roots of the respective subtrees. For example, con-dered uniquely, and nodes of the same phase but in different
sider nodes;; andwvy,. We have thaw, is the root of subtrees get ordered according to the reverse ordering of th
v11’S subtree and, itself is the root of its subtree. Since nodes where their subtrees hang.
parent(via) <p parent(vig) (i.€., vs <y vg), we can
conclude that;; < w2 (note that we have inverted the Lemmal LetT = (V,\) be a(X x [k])-labeled tree with
direction of the inequality moving from two nodesy of phaser(z) > phaseq(parent(x)), foreveryr € (V' \{e}).
different subtrees tparent(root(T.)), parent(root(T,))). Then the relation< is a linear ordering onl".

Thus, <[ is given by the ordering,, vs, ..., vi2. Since
we only have one node of pha8ethe relation<s, and Regularity of stack trees.
thus <, is given by the linear ordering,, vo, . . ., v13. All trees obviously do not correspond to stack trees of

~ We now show that< is a regular relation on the tree, \yords. In this section, we establish the regularity of the se
i.e. expressible in MSO over the tree, using the inductive f 4| stack trees. We give first a characterization of stack
definition of < given in Definition 6 above. _ trees, and then argue that it can be expressed in MSO. In-
The MSO formula for the relatior, calledy <, isafor-  yitively, if a tree 7" is a stack tree, then we should be able
mula with two free variables andy, and holds precisely 4 recover the words corresponding to it using the rela-
v_vhenm < y. We define it below using an inductive defini- 51 on the tree, and we expect that the right-child relation
tion of formulasless ) in the tree captures the nesting edges between calls and re-
turns inw. Apart from other checks ow, we would need
to make sure thab with the phase numbers inherited from
corresponding vertices it gives a tight factorization. Let
T-tight denote the (regular) set of words oy&r x [k]) that
correspond to a tight-factorization.

lessyp)(w,y) := LessPhase(z,y)
V(InSamePhaseSubTree(z,y) A lessprefiz (T, Y))
V(—LessPhase(x,y) A =InSamePhaseSubTree(x,y)
A3z3z' (ParentRootInPhaseSubTree(z, x)
!

AParentRootInPhaseSubTree(z',y)
Nessp,_1 (2, 2)) Lemma 2 LetT = (V, \) be a(X x [k])-labeled tree. Then

T € STree(,, k) iff the following hold:

Y<(z,y) = lessp (z,y)
with the understanding théss,(z, y) is false.

In the above, the auxiliary subformulas are defined
as follows: LessPhase(z,y) holds iff the phase of
x (read from its label) is less than the phase of
InSamePhaseSubTree(x,y) holds if x and y are of the
same phase and belong to the same-phase subtreE,(i-e.

1. Phase numbers  are monotonically  non-
decreasing along any path, i.e. phaser(z) >
phaser (parent(z)), for everyz € (V'\ {€}).

2. Right-children are always returns and their parent is
always a call: i.e. ify is a right-child ofz, theny is a
return andz is a call of the same stack as

Ty); lessprefic (z, y) holds iff z occurs beforg in the prefix-
order of the treeParentRootInPhaseSubTree(z, z) holds
iff z is the parent of the root of the subtrég.

A brief note on complexityThe auxiliary sub-formulas

. Unmatched calls cannot be followed by unmatched re-

turns (from the same stack):
i.e. there is nar,y such thatz < y, A(z) is a call
of stacki, y is a return of stacki,  does not have a

above can be written easily in MSO using only disjunc- right-child, andy is not a right-child of any node.
tions and existential quantifications, and a number of con- 4. Nesting relations are proper: Lgtbe a right-child of
junctions that is only polynomially many (i#, n, and x andz be a node betweenandy in the < order.

¥)) atomic formulas. Consequently, they can be imple- e If 2 is a call of the same stack agandy), thenz
mented using nondeterministic tree automata with a poly- must have a right-child which is betweenand
nomial number of states. The nondeterministic tree automa- y in the < order.

ton finally obtained for) . is however exponential, because e Analogously, i- is a return of the same stack as
of the two conjunctions before the recursive application to « andy, thenz must be the right-child of a node
less(p—1]. These conjunctions contribute a seriebton- that is betweem andz in the < order.



5. The word formed according to theorder isT-tight.

Furthermore, if a treel’ satisfies the conditions above,
then the wordw obtained using the order is such that the
stack-tree ofw is T'.

Let tw denote the function that maps any stack tiee
to the wordw obtained using the< ordering. The above
lemma shows that ifw(7T") = w, thenwt(w) = T, i.e. wt
andtw are inverses of each other. This establishes-thiat
indeed the correct linear order on stack trees.

We can now show the regularity 8fTree(%,,, k).

Theorem 2 The setSTree(3,,, k) is MSO definable. More-

(see [20] for similar proofs). The formulanique checks
that each node is associated with exactly one transitian,
checks that the transition labeling the root starts fromman i
tial state, andicc ensures that the last state on the run is a
final state. The formul&ans is more interesting. It verifies
the validity of each transition in the run by checking that: (
at each node labeled by the symhak associated a transi-
tion ona, (ii) when a symbol is pushed onto the stack then
at the corresponding return (if it occurs) the same symbol
is popped (this can be easily accomplished as the matching
return for a call is its right-child in any stack tree), anid (i
for each pair of nodes, y of w¢(w) corresponding to two
consecutive symbols af, the target of the transition taken

over, there is a tree automaton with a number of states dou-at® is the source of the transition takeryafThis last prop-

ble exponential irk, that acceptsS Tree(X,,, k).

Proof The proof proceeds by expressing the characterizing

properties of stack-trees in MSO. Properties (1),(2),(8) a
(5) are easy to express. The first property in (4) (the secon
property is similar) can be expressed as:

=z, y, 21, 20 : RightChild(z,y) A IsCall(z1)
A '(/)< (fl?, Zl) A ¢< (21: y)
A (= Fz3.RightChild(zy, z3) ) V
(RZghtChlld(Z1 ’ 22) A (¢< (Z27 Z]) \% 1/}< (y ZQ) ) )}

Sincezx < y takes an exponential-sized automaton to chec

the above checks can be effected by a tree automaton of siz&'! A pa.

double exponential it. O

Solving emptiness

erty can be stated as:

-3z Ty (succ(w,y) A= Viujper@eYihy € YJ)) ,
where! is the set of all pairg:, j) such that the target of
ddi coincides with the source df;. Expressingsucc(z, y)

usingy < would lead to an extra exponential blow-up than
needed. However, we can show that there is a nondetermin-
istic automata of size double exponentiakithat traverses
the tree according to the linear ordering and checks if all th
state transitions are correct.

The formulag, can be translated to a corresponding tree
automaton of size double exponentialkirand exponential

K inthe size of4 (see [20]), and hence also the automaton for

O

We can now show the main result of this section, which
follows from the above theorem and the fact that tree au-
tomata emptiness is solvable in linear time [6].

We are now ready to prove that for any class of words ac-

cepted by ak-MVPA, the class of trees corresponding to
them forms a regular tree language.

Theorem 3 If Lis ak-MvpL, thenwt(L) is regular. More-
over, if A is a k-MVPA acceptingL, then there is a tree
automaton that acceptait(L) with number of states at
most exponential in the size dfand double exponential in
the number of phasés(more preciselygzp (| A|20 (klogk))
states).

Proof The MSO sentence defining wt(L) consists of a
conjunction of two MSO sentences _and vz, Whereg,
enforces the tre€k to belong taSTree(%,,, k) andg, guar-
anties thattw(7T') is a word of L. By Theorem 2, we just
need to showp,.

For ak-MVPA A, o, simply guesses the transitions that
A takes along an accepting run. ldet {61,...,4;} be the
set of A transitions. Theny, is of the form

Y7 ... 3Y: (unique A init A trans A acc A nonempty).
We use the variabl&; to guess all tree nodes where tran-
sition §; is taken (along a run). Checking whether such

Theorem 4 (EMPTINESS FORk-MVPLS) The emptiness
problem fork-MvpLs is decidable in double exponential
time.

We can generalize the emptiness resul&tphase multi-
stack automata over non-visible alphabets as well;

Theorem 5 (EMPTINESS OF k-MPAS) The emptiness
problem is decidable in double-exponential time for
MPAs.

Proof Consider the runs of the multi-stack automaton, by
taking each transition as a new letter, and associating with
it a type as to whether it is a call/return/internal depegdin
on what it does to the stack. The set of runs is accepted by
a multi-stack visibly pushdown automaton withphases,
and the original automaton accepts some word iff the latter
does. Hence emptiness can be decided using Theorem 4.

4. Closure Properties

We now show closure properties BfMvpPLs. We start

a guess corresponds to a valid run is along standard linesy defining a renaming operation.



A renaming of%,, to 2, is a functionf : ¥ — Q such
that f(Xf) C Qi, f(=i) C QF, for everyi € [k], and
f(Zint) € Qine. Arenamingf is extended to words over
Y in the natural wayf (ay . ..am) = f(a1) ... f(am).

Theorem 6 (CLOSURE) Let L; and L, be twok-MVvPLs
over,. Then,L; U L, and Ly N L, are k-MVPLs over
X,.. Moreover, iff is a renaming of,, to €2,,, thenf(L;)
is also ak-MvPL overﬁn.

Proof Let A;, A> be twok-MvPAs such thafl(A4,) =
andL(AQ) = Lo.

Closure under union follows by taking the union of the
state and transitions of; and A, (assuming they are dis-
joint) and taking the new set of initial states (final states)
be the union of the initial states (final states)Qfand A,.

LiN Ly can be accepted by an\WA A that has as its set
of states the product of the statesAf and A;, and as its
stack alphabet the product of the stack alphabet$;cdind
A,. When reading a call of staakif A; pushesy; and A,
pushesys, respectively on theii-th stack, thend pushes
(71, 72) onto itsi-th stack. The set of initial (final) states is
the product of the initial (final) states aff; and A,.

Given L, accepted by thé&-MvpPA A and a renaming
f, f(L1) is accepted by thé-MvPA obtained fromA by
transforming each transition ento a transition ory (a). O

Ly

An MvPA M = (Q,Q;,T,4,QF) is deterministic
if Q7] = 1, and [{(g,a,q¢") € 6} U{(q,a,¢,v) €
0} U{(q,a,7v,¢') € 6} = 1, for everyq € @Q and

a € X. AkMvPA A = (k,Q,Q;,1,0,Qr) is de-
terministic if the MvPA (Q,Q;,T,d,QF) is determinis-
tic. MvpPAs cannot be determinized. In fact we can
show that fory, = (3!, %1, %2 522 (), with ! = {a},
= {c,d}, 22 = {b},22 = {z,y}, the language
L = {(ab)ic?d"Ixiy"I|i € N,j € [i]} is accepted by
a non-deterministiQ-MVPA but not by any deterministic
k-MvPA.

Theorem 7 (NON-DETERMINIZABILITY ) The class of-
MvPLs is not closed under derterminization.

Let L be ak-MvPL over,,; the complemenof L is
defined with respect to al-phase wordsL = ($* \ L) N
Phases(X,,, k). We show that though-MvPLs cannot be

Theorem 8 (COMPLEMENTABILITY) The class of k-
MvPLs is closed under complementation. That isL ifs
ak-MvpL overy,,, thenL is also ak-MvpPL overy,,.

Proof By Theorem 3, the tree sett(L) is regular. Since
tree automata are closed under complementatiof\.) is
also regular (see [19]), and by Theorem 1 there is an MSO
sentencep defining it. Now, ify is an MSO formula defin-
ing STree(X,,, k) (the existence o is guaranteed by The-
orem 2), then it is simple to show that the MSO sentence
¢ A defines the set of treest(L). To conclude the proof,
observe that by Lemma@u(wt(L)) is ak-MvPL, and by
Lemma 2,tw(wt((L)) = L. O

The following table summarizes and compares closure
properties for CSLs, CFLs, ®.s, MvPLs and regular lan-
guages (see [11]).

Closure properties
U [ n [ Complement] Determ.
Regular|| Yes | Yes Yes Yes
VPL Yes | Yes Yes Yes
CFL Yes | No No No
CSL Yes | Yes Yes Not known
MvPL Yes | Yes Yes No

5. Decision Problems

The membership problerfor £-MVPAs is to check, for
any fixedk-MvPA A over,,, whether a given woreh €
3* is accepted bwl.

Theorem 9 (MEMBERSHIP) The membership problem for
k-MvpPLs is NP-complete.

Proof Showing membership in NP is trivial. A nondeter-
ministic polynomial-time algorithm just need to guess a run
and simulate it on a given input word. To show NP-hardness
we reduce satisfiability of boolean formulae. Fix a for-
mula ¢ over variables{zy,...,z;}. We define &-stack
k-MVPA A that accepts a particular word Phases(Zs, k)

iff ¢ holds. Automatom, starts in phasé reading the for-
mula from the tape and storing it in statkThen, in phase

h, h > 1, A guesses a truth value for variahlg, pops

the content of the stack of the current phase and pushes it

determinized, they can be complemented. First we give a0nto the other stack rewriting each occurrencerpfwith

technical result for translating any regular language adlst
trees to an MPA that accepts the corresponding words.

Lemma 3 If £ C STree(3,, k) is regular, thentw (L) is

a k-MvPL. Moreover, ifL is accepted by an automaton of
sizes, then the correspondinigMVPA is of size polynomial
in s.

We can now show complementation/oM vPAS:

the guessed value. Finally, in phasewhile rewriting the
stack contentA also evaluates the obtained expression (all
variables have been substituted with a truth value) and thus
accepts iff it evaluates to true. We remark that@gg|.k)
operations concerning the stacks are driven by the input
word to the M/PA. |

The universality problemfor k-MvPLs is to check
whether a givenk-MvpPA accepts all the strings of



Phases(in, k). Theinclusion problenis to find whether,  language. Using standard techniques to convert MSO to au-

given twok-MvPAs A; and A, overin, L(A,) C L(Ay). tomata (given that the automata are closed under boolean
operations and projection), we get (see [20]):

Theorem 10 (UNIVERSALITY, INCLUSION) The univer- -

sality and the inclusion problems are decidable. Theorem 11 A languageL is ak-MvPpL over ¥,, iff there
is an MSQ, sentencep overy,, with L;(¢) = L.

Proof Using closure ok-MVvpPAs under complement, it fol-

lows that universality and inclusion @&FMvPAs reduce to  6.2. A Parikh Theorem

the emptiness problem, and thus are decidable. O The Parikh mapping, introduced by Parikh [15], asso-

ciates a word with the vector of natural numbers that re-
flect the number of occurrences of the symbols in the word.
Formally, the Parikh image of a word, over the alpha-

We can show an ¥ TIME lower bound for the emptiness
problem and a 2EPTIME lower bound for the universality
and inclusion problems. We conjecture that emptiness is :
complete for double exponential time. bet{a,...,as}, denoted byd(w), is the tuple®(w) =

The following table summarizes the results we have (#@1: -, #a¢) whereta; is the number of occurrences
shown on the complexity of the main decision problems Of the symbola; in w. We extend the Parikh image to
for MvpLs, and recalls known results for CSLs, CFLs, 'anguages in the natural wayb(L) = {®(w)/w € L}.
VpLs and regular languages. In this table.de stands for Parikh’s theorem [15] states that for each context-free lan

NLoG-complete, and so on for the other complexity classes. d4a9deL overX there is a regular language over such
that the Parikh image df andL’ coincide, that isp(L) =

, Decision Problems _ ®(L'). For example, the language = {a’b?|i € N} has

. Me{il"bersmp' En’:lp“”ess | Un""llj Equiv./incl the same Parikh image of the regular language- (ab)*,
eg. LOG LOG SPACE . _ N o PN .
VL PTIvE PTIME EXPTIME ie. (L) = (L) = {.(zzz)|z € N}. Moreover, given a
CFL PTIME PTIME Undecidable context-free languagg, it is effectiveto find a regular lan-
CSL || NLINSPACE Undecidable Undecidable guageL’ such®(L) = ®(L'); that is, there is an algorithm
MvpL NP IN 2EXPTIME IN 3EXPTIME that takes as input and gives as output’. The next theo-
EXPTIME -HARD | 2EXPTIME -HARD

rem shows that the same properties also hold:fdbfvPLs.

6. Language Theoretic Properties Theorem 12 For everyk-MvpL L over %, there exists
. .. a regular languageL’ over ¥ such that®(L') = ®(L).
6.1. A Logical Characterization Moreover,L’ can be effectively computed.

In this section, we define a logic on words overan
stack call-return alphabét,, which has in its signature re-
lations that capture the nesting relations.

In this context, a wordv over ¥ is a structure over the
universeU = {1,...,|w|}, the set of positions imw. We
use unary predicateB, (i), for « € X, which stand for
wli] = a. Also, we haven binary relationsy; (j € [n])
overU, wherey; corresponds to the matching relation of
calls and returns according to thigh nesting relation. Let
us fix a countable infinite set of first-order variabley, . . .
and a countable infinite set of monadic second-order (set) The above result can be used to show that certain lan-

Proof Recall that for any context-free gramm@y we can
construct a right-linear gramma&¥’ such that®(L(G)) =
®(L(G")) [15]. Thus, for anyk-MvpPL L, we just need

to construct a context-free gramm@rsuch that®(L) =
®(L(G)). From Theorem 3, we can construct a tree au-
tomatonA acceptingwt(L). Viewing the transition rules of

a tree automaton as productions of a context free grammar,
we can construct starting frord a context free grammar
that generates a languafiesuch thatb(L) = ®(L'). O

variablesX,Y,.. .. B guages are not recognized byMVPAS or evenk-phase
Themonadic second-order logi®¢1SO,,) overy,, is de- MpAs. For instance, consider the language over the (non-
fined as: visible) alphabet: = {a}, L = {a*" | n € N}. We can
v = Py(z)|z € X|z < ylu(z,y)|~¢le V o|Tze|TX ¢ show thatL is not accepted by ang-phasen-stack MpA.
wherej € [n], a € X, z, y are a first-order variables and Assume by contradiction that it is accepted by-phase
is a set variable. n-stacks MPA. Let us first change the RA so that it does

The models are words ov&r. The semantics is the natu- stack moves only oe-transitions. Then, let's augment the
ral semantics on the structure for words defined above. Thealphabet with symbol§(c, 1), (r, i) | i < n}U{int}, and let
first order variables are interpreted over the positions,0f  us transform the Ma by relabeling each push-transition
and the second-order variables range over sets of positionsonto stacki to (¢, ), eache pop-transition from stack to
We recall that a sentence is a formula which has no free(r,i) and eacthe transition that doesn’t touch the stack to
variables. The set of all words dthases(3,,, k) that sat- int. The resulting MrA is an MvPA whose language pro-
isfy a sentence is denoted. (¢) and we say definesthis  jected to{a} results inL. But by the Parikh theorem above,
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