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ABSTRACT

We investigate the (in)equational theory of impossible futures semantics over the process algebra BCCSP.

We prove that no finite, sound axiomatization for BCCSP modulo impossible futures equivalence is ground-

complete. By contrast, we present a finite, sound, ground-complete axiomatization for BCCSP modulo impossi-

ble futures preorder. If the alphabet of actions is infinite, then this axiomatization is shown to be ω-complete. If

the alphabet is finite, we prove that the inequational theory of BCCSP modulo impossible futures preorder lacks

such a finite basis. We also derive non-finite axiomatizability results for nested impossible futures semantics.
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1. Introduction

Labeled transition systems constitute a widely used model of concurrent computation. They model
processes by explicitly describing their states and their transitions from state to state, together with
the actions that produce these transitions. Several notions of behavioral semantics have been proposed,
with the aim to identify those states that afford the same observations. Van Glabbeek [6] presented
the linear time – branching time spectrum of behavioral semantics for finitely branching, concrete,
sequential processes. These semantics are based on simulation notions or on decorated traces. Fig. 1
depicts the linear time – branching time spectrum, where an arrow from one semantics to another
means that the source of the arrow is finer, i.e. more discriminating, than the target.

In this paper, we study impossible futures semantics [11, 12]. This semantics is missing in van
Glabbeek’s original spectrum, because it was only studied seriously from 2001 on, the year that [6]
appeared. An impossible future of a state s consists of (1) a trace s

a1···an→ s′, and (2) a set X of
traces such that s′ does not exhibit any of the traces in X. Impossible futures semantics is a natural
variant of possible futures semantics [10] (in which X is the set of traces from s′). In [8] it was shown
that weak impossible futures equivalence (which takes into account the hidden action τ) with an
additional root condition, is the coarsest congruence with respect to choice and parallel composition
operators containing weak bisimilarity with explicit divergence that respects deadlock/livelock traces
and assigns unique solutions to recursive equations. This equivalence is closely related to fair testing
semantics [9].

The process algebra BCCSP contains only the basic process algebraic operators from CCS and
CSP, but is sufficiently powerful to express all finite synchronization trees (without τ -transitions). Van
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Figure 1. Linear time-branching time spectrum

Glabbeek [6] associated with most behavioral equivalences in his spectrum a sound axiomatization,
to equate closed BCCSP terms that are behaviorally equivalent. These axiomatizations were shown
to be ground-complete, meaning that whenever two closed BCCSP terms are behaviorally equivalent,
then they can be equated.

An axiomatization is said to be ω-complete if it enjoys the property that whenever all closed
instances of an equation can be derived from it, then the equation itself can also be derived from
it. In universal algebra, such an axiomatization is referred to as a basis for the equational theory of
the algebra it axiomatizes. Groote [7] developed a technique of “inverted substitutions” to prove that
an axiomatization is ω-complete, and proved for some of the equivalences in the linear time – branching
time spectrum that their equational theory in BCCSP has a finite basis. In [3, 4], a categorization of the
equational theories for BCCSP modulo the semantics in the linear time – branching time spectrum
is given. For each preorder and equivalence it is studied whether a finite, sound, ground-complete
axiomatization exists. And if so, whether there exists a finite basis for the equational theory.

So all questions on these matters have been resolved? No, as for impossible futures semantics, the
(in)equational theory remained unexplored. Only the inequational theory of BCCSP modulo weak
impossible futures preorder was studied in [12]. In that paper, Voorhoeve and Mauw offer a finite,
sound, ground-complete axiomatization; their ground-completeness proof relies heavily on the presence
of τ . They also prove that their axiomatization is ω-complete (they do not refer to ω-completeness
explicitly, but they work on open terms, see [12, Thm. 5]). They implicitly assume an infinite alphabet
(at [12, p. 7] they require a different action for each variable).

In this paper, we focus on the axiomatizability of impossible futures preorder and equivalence over
BCCSP. In summary, we obtain the following results.

1. We prove that there exists a finite, sound, ground-complete axiomatization for BCCSP modulo
impossible futures preorder -IF

1. (By contrast, in [1] it was shown that such an axiomatization
does not exist modulo possible futures preorder.)

2. Next, we show that BCCSP modulo impossible futures equivalence 'IF does not have a finite,
sound, ground-complete axiomatization. This negative result is based on the following infinite

1In case of an infinite alphabet of actions, occurrences of action names in axioms should be interpreted as variables,
as else most of the axiomtizations would be infinite.
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family of equations from [1], for m ≥ 0:

a2m+10 + a(am0 + a2m0) ≈ a(am0 + a2m0)

Actually, since these equations are also sound modulo 2-nested simulation equivalence [6], this
negative result applies to all BCCSP-congruences that are at least as fine as 'IF and at least as
coarse as 2-nested simulation equivalence.

3. Next, we investigate ω-completeness for -IF.

First, we prove that if the alphabet of actions is infinite, then the ground-complete axiomati-
zation for BCCSP modulo -IF is ω-complete. To prove this result, we apply the technique of
inverted substitutions from [7]. Only, that technique was originally developed for equivalences.
Therefore, as an aside, we adapt this technique in such a way that it applies to preorders.

Second, we prove that in case of a finite alphabet of actions, the inequational theory of BCCSP
modulo -IF does not have a finite basis. In case of a singleton alphabet, this negative result is
based on the following infinite family of equations, for m ≥ 0:

amx 4 amx + x

And for finite alphabets with at least two actions, we use the family

a(amx) + a(amx + x) +
∑

b∈A

a(amx + amb0) 4 a(amx + x) +
∑

b∈A

a(amx + amb0)

4. n-Nested impossible futures semantics, for n ≥ 0, form a natural hierarchy (cf. [1]), which
coincides with the universal relation for n = 0, trace semantics for n = 1, and impossible futures
semantics for n = 2. Using a proof strategy from [1], we show that the negative result regarding
impossible futures equivalence extends to all n-nested impossible futures equivalences for n ≥ 2,
and to all n-nested impossible futures preorders for n ≥ 3. Apparently, (2-nested) impossible
futures preorder is the only positive exception.

To achieve the negative results, we mainly use what in [3, Sect. 2.3] is called the proof-theoretic
technique. On top of this, a saturation principle is introduced, to transform a single summand into a
large collection of (semi-)saturated summands.

Impossible futures semantics is the first example that affords a ground-complete axiomatization for
BCCSP modulo the preorder, while missing a ground-complete axiomatization for BCCSP modulo
the equivalence. This surprising fact suggests that if one wants to show p 'IF q, one has to resort to
deriving p -IF q and q -IF p separately, instead of proving it directly.

In [2, 5] an algorithm is presented which produces, from an axiomatization for BCCSP modulo a
preorder, an axiomatization for BCCSP modulo the corresponding equivalence. If the original axiom-
atization for the preorder is ground-complete or ω-complete, then so is the resulting axiomatization
for the equivalence. However, that algorithm only applies to semantics that are at least as coarse as
ready simulation semantics. Since impossible futures semantics is incomparable to ready simulation
semantics, it falls outside the scope of [2, 5]. Interestingly, our results yield that no such algorithm
exists for semantic incomparable with (or finer than) ready simulation.

This paper is set up as follows. Sect. 2 presents basic definitions regarding impossible futures se-
mantics, the process algebra BCCSP, and (in)equational logic. Sect. 3 provides some basic facts for
-IF. Sect. 4 provides a sound, finite, ground-complete axiomatization for -IF. Sect. 5 contains the
proof of the negative result for 'IF. Sect. 6 is devoted to the proofs of the negative and positive results
regarding ω-completeness for -IF. Sect. 7 contains the negative results regarding n-nested impossible
futures semantics.
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2. Preliminaries

A labeled transition system consists of a set of states S, with typical element s, and a transition
relation → ⊆ S × L× S, where L is a set of labels ranged over by a, b. We write s

a→ s′ if (s, a, s′) is
an element of →. The set I(s) consists of those labels a for which there exists an s′ such that s

a→ s′.
Let a1 · · · ak, with k ≥ 0, be a sequence of labels; we write s

a1···ak→ s′ if there are states s0, . . . , sk such
that s = s0

a1→ · · · ak→ sk = s′. A sequence a1 · · · ak is a trace of a state s if there is a state s′ such that
s

a1···ak→ s′. We write T (s) for the set of traces of state s, ranged over by α, β. We say a1 · · · ak is a
completed trace of s if moreover I(s′) = ∅, and write CT (s) for the set of completed traces of state s.
The empty sequence is denoted by ε. We write s1 -CT s2 if the completed traces of s1 are included
in those of s2.

Definition 1 Assume a labeled transition system. A pair (a1 · · · ak, X), with k ≥ 0 and X ⊆ L∗, is
an impossible future of a state s if s

a1···ak→ s′ for some state s′ with T (s′) ∩X = ∅.
We write s1 -IF s2 if the impossible futures of s1 are included in those of s2. We write s1 'IF s2

if both s1 -IF s2 and s2 -IF s1. The relation -IF is called impossible futures preorder, while 'IF is
called impossible futures equivalence.

A sequence a1s1 · · · aksk is a completed path of a state s0 if s0
a1→ s1 · · · ak→ sk with I(sk) = ∅. We

write CP(s) for the set of completed paths of state s, which is ranged over by π.

2.1 BCCSP

BCCSP(A) is a basic process algebra for expressing finite process behavior. Its signature consists
of the constant 0, the binary operator + , and unary prefix operators a , where a ranges over a
nonempty set A of actions, called the alphabet, with typical elements a, b. The term ant is obtained
from t by prefixing it n times with a, i.e., a0t = t and an+1t = a(ant). Intuitively, closed BCCSP(A)
terms, which are ranged over by p, q, r, represent finite process behaviors, where 0 does not exhibit
any behavior, p + q offers a choice between the behaviors of p and q, and ap executes action a to
transform into p. This intuition is captured by the transition rules below, in which a ranges over A.
They give rise to A-labeled transitions between closed BCCSP terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

We assume a countably infinite set V of variables; x, y, z denote elements of V . Open BCCSP
terms, denoted by t, u, v, w, may contain variables from V . The set of variables that occur in term t is
denoted by var (t). And if t

a1···ak→ x + t′, for some k ≥ 0, then x ∈ vark(t). It is technically convenient
to extend the operational semantics to open terms. We do not include additional rules for variables,
which effectively means that they do not exhibit any behavior.

The depth of a term t, denoted by depth(t), is the length of a longest trace of t. And the norm of a
term t, denoted by norm(t), is the length of a shortest completed trace of t.

A (closed) substitution, denoted by ρ, σ, maps variables in V to (closed) terms. For open terms t
and u, and a preorder - (or equivalence ') on closed terms, we define t - u (or t ' u) if ρ(t) - ρ(u)
(resp. ρ(t) ' ρ(u)) for all closed substitutions ρ. Clearly, t

a→ t′ implies that σ(t) a→ σ(t′) for all
substitutions σ.

The preorders - in the linear time – branching time spectrum are all precongruences for BCCSP,
meaning that p1 - q1 and p2 - q2 implies p1+p2 - q1+q2 and ap1 - aq1 for a ∈ A. (For (rooted weak)
impossible futures preorder, a proof of this fact can be found in [12, Thm. 3].) And the equivalences
in the spectrum are all congruences for BCCSP.

An axiomatization is a collection of equations t ≈ u or of inequations t 4 u. The (in)equations in an
axiomatization E are referred to as axioms. If E is an equational axiomatization, we write E ` t ≈ u
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if the equation t ≈ u is derivable from the axioms in E using the rules of equational logic (reflexivity,
symmetry, transitivity, substitution, and closure under BCCSP contexts). For the derivation of an
inequation t 4 u from an inequational axiomatization E, denoted by E ` t 4 u, the rule for symmetry
is omitted. We will also allow equations t ≈ u in inequational axiomatizations, as an abbreviation of
t 4 u and u 4 t.

An axiomatization E is sound modulo a preorder - (or equivalence ') if for any terms t, u, from
E ` t 4 u (or E ` t ≈ u) it follows that ρ(t) - ρ(u) (or ρ(t) ' ρ(u)) for all closed substitutions ρ.
E is ground-complete for - (or ') if for any closed terms p, q, p - q (or p ' q) implies E ` p 4 q
(or E ` p ≈ q). And E is ω-complete if for any terms t, u with E ` ρ(t) 4 ρ(u) (or E ` ρ(t) ≈ ρ(u))
for all closed substitutions ρ, we have E ` t 4 u (or E ` t ≈ u). The equational theory of BCCSP
modulo a preorder - (or equivalence ') is said to be finitely based if there exists a finite, ω-complete
axiomatization that is sound and ground-complete for BCCSP modulo - (or ').

The core axioms A1-4 for BCCSP below are sound modulo every semantics in the spectrum depicted
in Fig. 1. We assume that A1-4 are included in every axiomatization, and write t = u if A1-4 ` t ≈ u.

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

Summation
∑{t1, . . . , tn} or

∑
i∈{1,...,n} ti denotes t1 + · · ·+ tn, where summation over the empty

set denotes 0. As binding convention, + and summation bind weaker than a . For every term t there
exists a finite set {aiti | i ∈ I} of terms and a finite set Y of variables such that t =

∑
i∈I aiti+

∑
y∈Y y.

The aiti for i ∈ I and the y ∈ Y are called the summands of t (notation: aiti v t and y v t). It is
easy to see that t

a→ t′ iff at′ v t.

3. Properties of -IF

We present some basic facts for -IF.

Lemma 1 Suppose t -IF u. Then

1. T (t) = T (u); and

2. CT (t) ⊆ CT (u).

Proof: Consider the closed substitution ρ defined by ρ(x) = 0 for any x ∈ V . It is easy to see that
for any term v, trace α and closed term p:

(∗) if ρ(v) α→ p, then there is a term v′ such that v
α→ v′ and p = ρ(v′).

1. Let α ∈ T (t), i.e., t
α→ t′ for some t′. Then ρ(t) α→ ρ(t′), so (α, ∅) is an impossible future of ρ(t).

Since t -IF u, (α, ∅) is also an impossible future of ρ(u). So ρ(u) α→ q for some q. By (∗), u
α→ u′

for some u′, and thus α ∈ T (u). Hence T (t) ⊆ T (u).

Let β ∈ T (u), i.e., u
β→ u′ for some u′. Then ρ(u)

β→ ρ(u′), so (ε, {β}) is not an impossible

future of ρ(u). Since t -IF u, (ε, {β}) is not an impossible future of ρ(t) either. So ρ(t)
β→ p for

some p. By (∗), t
β→ t′ for some t′, and thus β ∈ T (t). Hence T (u) ⊆ T (t).

2. Let α ∈ CT (t), i.e., t
α→ ∑

x∈X x for some X ⊆ V . Then ρ(t) α→ 0, so (α, A) is an impossible
future of ρ(t). Since t -IF u, (α, A) is also an impossible future of ρ(u). So ρ(u) α→ 0. By (∗),
u

α→ u′ for some u′ with ρ(u′) = 0. So u′ =
∑

y∈Y y for some Y ⊆ V , and thus α ∈ CT (u).
Hence CT (t) ⊆ CT (u).
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Lemma 2 Suppose t -CT u. Then vark(t) ⊆ vark(u) for all k ≥ 0.

Proof: Let x ∈ vark(t), so that t
a1···ak→ x+t′. Fix a d > depth(u), and consider the closed substitution

ρ defined by ρ(x) = ad0 and ρ(y) = 0 for any y 6= x. Then ρ(t)
a1···ak+d→ 0 (with ak+1 · · · ak+d = ad).

Since ρ(t) -CT ρ(u), it follows that ρ(u)
a1···ak+d→ 0. Since d > depth(u), clearly u

a1···a`→ z + u′ where
ρ(z)

a`+1···ak+d→ 0. Since ` ≤ depth(u) < d, ρ(z) 6= 0, and hence z = x and ` = k. Concluding,
u

a1···ak→ x + u′, so x ∈ vark(u). 2

Lemma 3 Suppose t -IF u. Then for any summand at′ of t there is a summand au′ of u such that
var (u′) ⊆ var (t′).

Proof: Let at′ be a summand of t. Fix some m > depth(t), and consider the closed substitution
ρ defined by ρ(x) = 0 if x ∈ var (t′) and ρ(x) = am0 if x 6∈ var (t′). Since ρ(t) a→ ρ(t′) with
depth(ρ(t′)) = depth(t′) < m−1, and ρ(t) -IF ρ(u), clearly ρ(u) a→ q for some q with depth(q) < m−1.
From the definition of ρ it is then easy to see that u must have a summand au′ with var (u′) ⊆ var (t′).
2

Lemma 4 Let |A| > 1. Suppose t -IF u. Then for any summand at′ of t there is a summand au′ of
u such that vark(u′) ⊆ vark(t′) for all k ≥ 0.

Proof: Let at′ be a summand of t. Fix some m > depth(u), distinct actions a, b ∈ A, and an injection
p·q : V → Z>0 (which exists because V is countable). The closed substitution ρ is defined by ρ(z) =
apzq·mb0 for all z ∈ V . Since ρ(t) a→ ρ(t′) and ρ(t) -IF ρ(u), we have ρ(u) a→ q for some q with
T (q) ⊆ T (ρ(t′)).

u cannot have a variable summand x with σ(x) a→ q. Namely, if this were the case, q = apxq·m−1b0;
but since pxq·m−1 ≥ depth(t) > depth(t′), it follows from the definition of ρ that apxq·m−1b 6∈ T (ρ(t′)),
contradicting T (q) ⊆ T (ρ(t′)).

Hence, there must be a summand au′ of u with ρ(u′) = q. Let y ∈ vark(u′) for some k ≥ 0.
That is, u′ a1···ak→ y + u′′, so a1 · · · akapyq·mb ∈ T (ρ(u′)) ⊆ T (ρ(t′)). Since k ≤ depth(u′) < m, it
then follows from the definition of ρ that t′ a1···ak→ y + t′′ for some t′′. So y ∈ vark(t′). Concluding,
vark(u′) ⊆ vark(t′) for all k ≥ 0. 2

Remark: The condition |A| > 1 in Lem. 4 is necessary. Namely, if |A| = 1, then for instance aax -IF

a(ax + x).

4. Axiomatization for -IF

In this section, we provide a ground-complete axiomatization for impossible futures preorder. It con-
sists of the core axioms A1-4 together with two extra axioms:

IF1 a(x + y) 4 ax + ay
IF2 a(x + y) + ax + a(y + z) ≈ ax + a(y + z)

Recall that here, t ≈ u denotes that both t 4 u and u 4 t are present in the inequational axiomati-
zation. It is not hard to see that IF1,2 are sound modulo -IF. The rest of this section is devoted to
proving the following theorem.

Theorem 1 A1-4+IF1-2 is ground-complete for BCCSP(A) modulo -IF.

To give some intuition on the ground-completeness proof, we first present an example.



4. Axiomatization for -IF 7

Example 1 Let p = a(a0+ a20) + a40 and q = a(a0+ a30) + a30. It is not hard to see that p -IF q.
However, neither a(a0+a20) -IF a(a0+a30) nor a(a0+a20) -IF a30 holds. In order to derive p 4 q,
we therefore first derive with IF2 that q ≈ p + q. And p 4 p + q can be derived with IF1.

In general, to derive a sound closed inequation p 4 q, first we derive q ≈ S(q) (see Lem. 5), where
S(q) contains for every a ∈ I(q) a “saturated” a-summand (see Def. 2). (In Ex. 1, this saturated
a-summand would have the form a(a0 + a20 + a30 + a(a0 + a20)).) Then, in the proof of Thm. 1, we
derive Ψ + S(q) ≈ S(q) (equation (4.1)), p 4 Ψ (equation (4.2)) and p 4 p + q (equation (4.3)), where
the closed term Ψ is built from many “semi-saturated” summands (like, in Ex. 1, p). These results
together provide the desired proof (see the last line of the proof of Thm. 1).

Definition 2 For each closed term q, the closed term S(q) is defined recursively on the depth of q as
follows:

S(q) = q +
∑

a∈I(q)

a(S(
∑

aq′vq

q′))

Example 2 If q = a(b(c0+ d0)+ be0)+ af0, then S(q) = a(b(c0+ d0)+ be0)+ af0+ a(b(c0+ d0)+
be0 + f0 + b(c0 + d0 + e0)).

In the remainder of this section, E denotes the axiomatization A1-4+IF1-2.

Lemma 5 For each closed term q, E ` q ≈ S(q).

Proof: By induction on depth(q). For any a ∈ I(q),

E ` q ≈ q + a(
∑

aq′vq

q′) ≈ q + a(S(
∑

aq′vq

q′))

The first derivation step uses IF2, and the second induction. Hence, summing up over all a ∈ I(q),

E ` q ≈ q +
∑

a∈I(q)

a(S(
∑

aq′vq

q′)) = S(q)

2

For closed terms q and α ∈ T (q), the closed term qα is obtained by summing over all closed terms
q′ such that q

α→ q′, and then applying the saturation from Def. 2. The auxiliary terms qα will only
be used in the derivation of equation (4.1) within the proof of Thm. 1.

Definition 3 Given a closed term q, and a completed trace a1 · · · ad of q. For 0 ≤ ` ≤ d we define

Qa1···a`
= {q` | q a1→ q1 · · · a`→ q`}

and

qa1···a`
= S(

∑

q`∈Qa1···a`

q`)

Note that qε = S(q). We prove some basic properties for the terms qα.

Lemma 6 Given a closed term q, and a completed trace a1 · · · ad of q. Then, for 0 ≤ ` < d,

• qa1···a`

a`+1→ qa1···a`+1 ; and
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• qa1···a`

a`+1→ q`+1 for all q`+1 ∈ Qa1···a`+1 .

Proof: Clearly, q`+1 ∈ Qa1···a`+1 iff there exists some q` ∈ Qa1···a`
such that q`

a`+1→ q`+1. And since
a1 · · · a`+1 is a trace of q, a`+1 ∈ I(q`) for some q` ∈ Qa1···a`

. So by Def. 2,

qa1···a`
= S(

∑

q`∈Qa1···a`

q`)
a`+1→ S(

∑

q`+1∈Qa1···a`+1

q`+1) = qa1···a`+1

Moreover, for all q`+1 ∈ Qa1···a`+1 we have
∑

q`∈Qa1···a`
q`

a`+1→ q`+1. Hence, by Def. 2,

qa1···a`
= S(

∑

q`∈Qa1···a`

q`)
a`+1→ q`+1

2

We now embark on proving the promised ground-completeness result.

Proof: (of Thm. 1) Suppose p -IF q. We derive E ` p 4 q using induction on depth(p). If p = 0, then
clearly q = 0, and we are done. So assume p 6= 0, and consider any completed path π = a1p1 · · · adpd

of p (with d ≥ 1); that is, p
a1→ p1 · · · ad→ pd = 0. We recursively construct closed terms ψπ

` , for ` from
d down to 1. For the base case, ψπ

d = 0. Now let 1 ≤ ` < d. Since p
a1···a`→ p` and p -IF q, there exists

a sequence of transitions q
a1···a`→ q` such that T (q`) ⊆ T (p`). We define

ψπ
` = q` + a`+1ψ

π
`+1

We prove, by induction on d− `, that for 1 ≤ ` ≤ d,

T (ψπ
` ) ⊆ T (p`)

The base case is trivial, since T (ψπ
d ) = ∅. Now let 1 ≤ ` < d. By induction, T (ψπ

`+1) ⊆ T (p`+1).

Moreover, p`
a`+1→ p`+1, so T (a`+1ψ

π
`+1) ⊆ T (p`). Hence, T (ψπ

` ) = T (q` + a`+1ψ
π
`+1) = T (q`) ∪

T (a`+1ψ
π
`+1) ⊆ T (p`).

Next, we prove, by induction on d− `, that for 1 ≤ ` ≤ d,

E ` a`ψ
π
` + qa1···a`−1 ≈ qa1···a`−1

In the base case, since ψπ
d = 0 ∈ Qa1···ad

(see Def. 3), this is a direct consequence of the second item
in Lem. 6. Now let 1 ≤ ` < d.

E ` a`ψ
π
` + qa1···a`−1

= a`(q` + a`+1ψ
π
`+1) + qa1···a`−1

+ a`q` + a`qa1···a`
(Lem. 6)

≈ a`(q` + a`+1ψ
π
`+1) + qa1···a`−1

+ a`q` + a`(a`+1ψ
π
`+1 + qa1···a`

) (induction)

≈ qa1···a`−1 + a`q`

+ a`(qa1···a`
+ a`+1ψ

π
`+1) (IF2)

≈ qa1···a`−1 + a`q`

+ a`qa1···a`
(induction)

= qa1···a`−1 (Lem. 6)
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In the end, for ` = 1, we get E ` a1ψ
π
1 + qε ≈ qε. In other words,

E ` a1ψ
π
1 + S(q) ≈ S(q)

Since this holds for all completed paths π of p, it follows that

E `
∑

a∈I(p)

∑

ap′vp

∑

π∈CP(ap′)

aψπ
1 + S(q) ≈ S(q) (4.1)

where CP(ap′) denotes the set of completed paths of the summand ap′.
On the other hand, for every summand ap′ of p,

p′ -IF

∑

π∈CP(ap′)

ψπ
1

Namely, consider any path π0 = a1p1 · · · ahph of ap′. Extend π0 to some completed path π of ap′. By
the definition of the ψπ

` , clearly, ψπ
`

a`+1→ ψπ
`+1 for 1 ≤ ` < h. So ψπ

1
a2···ah→ ψπ

h . Moreover, we proved
that T (ψπ

h) ⊆ T (ph).
So by induction on depth, for every summand ap′ of p,

E ` p′ 4
∑

π∈CP(ap′)

ψπ
1

And thus, by IF1,

E ` ap′ 4 a(
∑

π∈CP(ap′)

ψπ
1 ) 4

∑

π∈CP(ap′)

aψπ
1

Hence, summing over all summands ap′ of p,

E ` p 4
∑

a∈I(p)

∑

ap′vp

∑

π∈CP(ap′)

aψπ
1 (4.2)

Finally, since p -IF q, clearly, for each a ∈ I(p),
∑

ap′vp

p′ -IF

∑

aq′vq

q′

So by induction on depth, for each a ∈ I(p),

E `
∑

ap′vp

p′ 4
∑

aq′vq

q′

So by IF2 and IF1, and since I(p) = I(q),

E ` p ≈ p +
∑

a∈I(p)

a(
∑

ap′vp

p′)

4 p +
∑

a∈I(q)

a(
∑

aq′vq

q′) 4 p +
∑

a∈I(q)

∑

aq′vq

aq′

That is,

E ` p 4 p + q (4.3)

Finally, inequations (4.3), (4.2) and (4.1), together with Lem. 5, yield

E ` p 4 p + q ≈ p + S(q) 4
∑

a∈I(p)

∑

ap′vp

∑

π∈CP(ap′)

aψπ
1 + S(q) ≈ S(q) ≈ q

2
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5. Non-finite Axiomatizability of 'IF

In this section, we prove that surprisingly, there does not exist any finite, sound, ground-complete
axiomatization for BCCSP(A) modulo 'IF. The cornerstone for this negative result is the following
infinite family of closed equations, for m ≥ 0:

a2m+10 + a(am0 + a2m0) ≈ a(am0 + a2m0)

It is not hard to see that they are sound modulo 'IF. We start with a key lemma.

Lemma 7 Assume that, for some terms t, u and closed substitution ρ:

1. t -IF u;
2. m > depth(u);
3. CT (ρ(u)) ⊆ {am+1, a2m+1}; and

4. there is a closed term p′ such that ρ(t) a→ p′ and CT (p′) = {a2m}.

Then there is a closed term q′ such that ρ(u) a→ q′ and CT (q′) = {a2m}.

Proof: According to proviso (4) of the lemma, we can distinguish two cases.

• t has a summand y ∈ V such that ρ(y) a→ p′ where CT (p′) = {a2m}. Since t -IF u, by Lem. 2,
y is also a summand of u. Hence ρ(u) a→ p′.

• t has a summand at′ with CT (ρ(t′)) = {a2m}. Since depth(t′) < m, clearly, either norm(ρ(x)) = 0
or norm(ρ(x)) > m for any x ∈ var (t′). Since t -IF u, by Lem. 3, u has a summand au′ with
var (u′) ⊆ var (t′). Hence, either norm(ρ(x)) = 0 or norm(ρ(x)) > m for any x ∈ var (u′). Since
depth(u′) < m, am /∈ CT (ρ(u′)). It follows from CT (ρ(u)) ⊆ {am+1, a2m+1} that CT (ρ(u′)) =
{a2m}.

2

Lemma 8 Let the finite axiomatization E be sound modulo 'IF. Assume that, for some closed terms
p, q:

1. E ` p ≈ q;
2. m > max{depth(u) | t ≈ u ∈ E};
3. CT (q) ⊆ {am+1, a2m+1}; and

4. there is a closed term p′ such that p
a→ p′ and CT (p′) = {a2m}.

Then there is a closed term q′ such that q
a→ q′ and CT (q′) = {a2m}.

Proof: By induction on the derivation of E ` p ≈ q.

• Case E ` p ≈ q because ρ(t) = p and ρ(u) = q for some t ≈ u ∈ E and closed substitution ρ.
The claim follows by Lem. 7.

• Case E ` p ≈ q because E ` p ≈ r and E ` r ≈ q for some r. By proviso (3) of the lemma and
Lem. 1(2), CT (r) ⊆ {am+1, a2m+1}. Since there is a p′ such that p

a→ p′ with CT (p′) = {a2m},
by induction, there is an r′ such that r

a→ r′ and CT (r′) = {a2m}. Hence, again by induction,
there is a q′ such that q

a→ q′, CT (q′) = {a2m}.
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• Case E ` p ≈ q because p = p1 + p2 and q = q1 + q2 with E ` p1 ≈ q1 and E ` p2 ≈ q2. Since
there is a p′ such that p

a→ p′ and CT (p′) = {a2m}, either p1
a→ p′ or p2

a→ p′. Assume, without
loss of generality, that p1

a→ p′. By induction, there is a q′ such that q1
a→ q′ and CT (q′) = {a2m}.

Since q1 6= 0, clearly CT (q1) ⊆ {am+1, a2m+1}. So q = q1 + q2
a→ q′.

• Case E ` p ≈ q because p = ap′ and q = aq′ with E ` p′ ≈ q′. By proviso (4), CT (p′) = {a2m}.
So by Lem. 1(2), CT (q′) = {a2m}.

2

Remark: Lem. 8 does not hold if its first requirement is changed into E ` p 4 q. Note that the proof
regarding the congruence rule for a. in Lem. 8 fails for -IF.

For example, consider the following closed inequations, for m ≥ 0:

a2m+10 4 a(a2m0 + am0)

They are sound modulo -IF, and satisfy the third and fourth requirement of Lem. 8. However, they
can all be derived by means of IF1:

a2m+10 = a(am(am + 0)) 4 a(am−1(am+10 + a0))

4 a(am−2(am+20 + a20)) 4 · · · 4 a(a2m0 + am0)

Theorem 2 There is no finite, sound, ground-complete axiomatization for BCCSP(A) modulo 'IF.

Proof: Let E be a finite axiomatization over BCCSP(A) that is sound modulo 'IF. Let m be greater
than the depth of any term in E. Clearly, a(am0 + a2m0) does not contain a summand r such that
r

a→ r′ and CT (r′) = {a2m}. So according to Lem. 8, a2m+10 + a(am0 + a2m0) ≈ a(am0 + a2m0)
cannot be derived from E. And this closed inequation is sound modulo 'IF. 2

Actually, since the equations a2m+10+a(am0+a2m0) ≈ a(am0+a2m0) are sound modulo 2-nested
simulation equivalence, this negative result applies to all BCCSP-congruences that are at least as fine
as impossible futures equivalence and at least as coarse as 2-nested simulation equivalence.

6. ω-Completeness for -IF

In this section, we turn to ω-completeness. In view of the negative result on impossible futures equiva-
lence in Sect. 5, we focus on impossible futures preorder. In case |A| = ∞, we prove that there exists a
finite basis for the equational theory of BCCSP(A) modulo -IF. The proof is based on an adaptation
of Groote’s inverted substitutions technique [7] to inequations. In case |A| < ∞, we prove that a finite
basis does not exist. We give two different proofs of this last fact, one for the case 1 < |A| < ∞ and
one for the case |A| = 1.

6.1 |A| = ∞
The axiomatization A1-4+IF1-2 is ω-complete, provided the alphabet is infinite. Our proof of this
fact, which is omitted here, is based on inverted substitutions [7]; actually, while Groote developed
this technique for equivalences, here we need it for preorders.

Let T(Σ) and T(Σ) denote the set of closed and open terms, respectively, over some signature Σ.
Consider an axiomatization E over Σ. For each inequation t 4 u of which all closed instances can be
derived from E, one must define a closed substitution ρ and a mapping R : T(Σ) → T(Σ) such that:

(1) E ` t 4 R(ρ(t)) and E ` R(ρ(u)) 4 u;
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(2) E ` R(σ(v)) 4 R(σ(w)) for each v 4 w ∈ E and closed substitution σ; and

(3) for each function symbol f (with arity n) in the signature, and for all closed terms p1, . . . , pn, q1, . . . , qn:

E ∪ {pi 4 qi, R(pi) 4 R(qi) | i = 1, . . . , n} `
R(f(p1, . . . , pn)) 4 R(f(q1, . . . , qn))

Then, as proved in Appendix I, E is ω-complete.

Theorem 3 For |A| = ∞, A1-4+IF1-2 is ω-complete.

Proof: Consider any pair of BCCSP(A) terms t, u. Define the closed substitution ρ by ρ(y) = ay0,
where ay is a unique action for y ∈ V that occurs in neither t nor u. Such actions exist because A is
infinite. We define the mapping R from closed to open BCCSP(A) terms as follows:





R(0) = 0
R(at) = y if a = ay for some y ∈ V
R(at) = aR(t) if a 6= ay for all y ∈ V
R(t + u) = R(t) + R(u)

We check the three aforementioned properties.

(1) Since t and u do not contain actions of the form ay, clearly R(ρ(t)) = t and R(ρ(u)) = u.

(2) For A1-4, the proof is trivial. We check the remaining cases IF1 and IF2. Let σ be a closed
substitution. We first consider IF1. We distinguish two cases.

– a = ay for some y ∈ V . Then R(ay(σ(x1)+σ(x2))) = y 4 y+y = R(ay(σ(x1))+ay(σ(x2))).

– a 6= ay for all y ∈ V . Then R(a(σ(x1) + σ(x2))) = a(R(σ(x1)) + R(σ(x2)))
4 aR(σ(x1)) + aR(σ(x2)) = R(aσ(x1) + aσ(x2)).

We now turn to IF2. We distinguish two cases as well.

– a = ay for some y ∈ V . Then R(ay(σ(x1) + σ(x2)) + ayσ(x1) + ay(σ(x2) + σ(x3))) =
y + y + y ≈ y + y = R(ayσ(x1) + ay(σ(x2) + σ(x3))).

– a 6= ay for all y ∈ V . Then R(a(σ(x1)+σ(x2))+aσ(x1)+a(σ(x2)+σ(x3))) = a(R(σ(x1))+
R(σ(x2))) + aR(σ(x1)) + a(R(σ(x2)) + R(σ(x3)))
≈ aR(σ(x1)) + a(R(σ(x2)) + R(σ(x3))) = R(aσ(x1) + a(σ(x2) + σ(x3))).

(3) Consider the operator + . From R(p1) 4 R(q1) and R(p2) 4 R(q2) we derive R(p1 + p2) =
R(p1) + R(p2) 4 R(q1) + R(q2) = R(q1 + q2).

Consider the prefix operator a . We distinguish two cases.

– a = ay for some y ∈ V . Then R(ayp1) = y = R(ayq1).

– a 6= ay for all y ∈ V . Then from R(p1) 4 R(q1) we derive R(ap1) = aR(p1) 4 aR(q1) =
R(aq1).

2
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6.2 1 < |A| < ∞
In this section, we prove that, if A is finite, the inequational theory of BCCSP(A) modulo -IF does
not have a finite basis. The cornerstone for this negative result is the following infinite family of
inequations, for m ≥ 0:

a(amx) + Φm 4 Φm

with

Φm = a(amx + x) +
∑

b∈A

a(amx + amb0)

It is not hard to see that these inequations are sound modulo -IF. Namely, given a closed substitution
ρ, I(ρ(a(amx))) = {a} = I(ρ(Φm)). And if ρ(a(amx)) a1···ak→ p with k ≥ 2, then owing to the summand
a(amx+x), we have ρ(Φm) a1···ak→ p. Finally, consider the transition ρ(a(amx)) a→ amρ(x). If ρ(x) = 0,
then clearly ρ(Φm) a→ am0. And if b ∈ I(ρ(x)) for some b ∈ A, then clearly ρ(Φm) a→ amρ(x) + amb0,
and T (amρ(x)+ amb0) = T (amρ(x)). Concluding, for any α, if ρ(a(amx)) α→ p, then ρ(Φm) α→ q with
T (q) = T (p).

We now establish some key lemmas.

Lemma 9 Let 1 < |A| < ∞. Assume that, for some terms t, u and substitution σ:

1. t -IF u;
2. m > depth(u);
3. σ(u) + Φm 'IF Φm; and
4. σ(t) has a summand 'IF a(amx).

Then σ(u) has a summand 'IF a(amx).

Proof: According to proviso (4) of the lemma, we can distinguish two cases.

• t has a summand y ∈ V such that σ(y) has a summand 'IF a(amx). Since t -IF u, by Lem. 2,
y is also a summand of u. Hence σ(u) has a summand 'IF a(amx).

• t has a summand at′ with σ(t′) 'IF amx. Since t -IF u and |A| > 1, by Lem. 4, there is
a summand au′ of u such that vark(u′) ⊆ vark(t′) for all k ≥ 0. Since σ(t′) 'IF amx, by
Lem. 1(1), depth(σ(t′)) = m, so for all k ≥ 0 and z ∈ vark(u′) ⊆ vark(t′), depth(σ(z)) ≤ m− k.
Moreover, proviso (2) implies depth(u′) < m, so it follows that depth(σ(u′)) ≤ m. On the other
hand, it follows from proviso (3) of the lemma together with Lem. 1(2) that norm(σ(u′)) ≥ m.

So all completed traces of σ(u′) are of the form σ(u′) am

→ u′′.

Since σ(t′) 'IF amx, by Lem. 2, varm(σ(t′)) = {x} and vark(σ(t′)) = ∅ for k 6= m. Since
vark(u′) ⊆ vark(t′) for all k ≥ 0, it follows that varm(σ(u′)) ⊆ {x} and vark(σ(u′)) = ∅
for k 6= m. Due to proviso (3) of the lemma, it is easy to see that for each completed trace

σ(u′) am

→ u′′, u′′ 6= 0; so varm(σ(u′)) ⊆ {x} yields u′′ = x. Concluding, σ(u′) 'IF amx.

2

Lemma 10 Let 1 < |A| < ∞. Assume that, for some terms t, u:

1. E ` t 4 u;
2. m > max{depth(w) | v 4 w ∈ E};
3. u + Φm 'IF Φm; and
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4. t has a summand 'IF a(amx).

Then u has a summand 'IF a(amx).

Proof: By induction on the derivation of E ` p 4 q.

• Case E ` t 4 u because σ(v) = t and σ(w) = u for some v 4 w ∈ E and substitution σ. The
claim follows by Lem. 9.

• Case E ` t 4 u because E ` t 4 v and E ` v 4 u for some v. Since v -IF u and u+Φm 'IF Φm,
clearly v+Φm 'IF Φm. By induction, v has a summand 'IF a(amx). Hence, again by induction,
u has a summand 'IF a(amx).

• Case E ` t 4 u because t = t1 + t2 and u = u1 + u2 with E ` t1 4 u1 and E ` t2 4 t2.
Since t has a summand 'IF a(amx). so does either t1 or t2. Assume, without loss of generality,
that t1 does. Since u + Φm 'IF Φm, clearly u1 + Φm 'IF Φm. By induction, u1 has a summand
'IF a(amx), so the same holds for u.

• Case E ` t 4 u because t = at′ and u = au′ with E ` t′ 4 u′. By proviso (4) of the lemma,
t′ 'IF amx. Hence amx -IF u′. So by Lem. 1(1), depth(u′) = m. On the other hand, it follows
from proviso (3) of the lemma together with Lem. 1(2) that norm(u′) ≥ m. So all completed

traces of u are of the form u′ am

→ u′′.

Since amx -IF u′ and m > 1 and |A| > 1, clearly, var0(u′) = ∅. And from proviso (3) of the
lemma together with Lem. 2 it follows that varm(u′) ⊆ {x} and vark(u′) = ∅ for k 6∈ {0,m}.
Due to proviso (3) of the lemma, it is easy to see that for each completed trace u′ am

→ u′′, u′′ 6= 0;
so varm(u′) ⊆ {x} yields u′′ = x. Concluding, u′ 'IF amx.

2

Theorem 4 For 1 < |A| < ∞, the inequational theory of BCCSP(A) modulo -IF does not have a
finite basis.

Proof: Let E be a finite axiomatization over BCCSP(A) that is sound modulo -IF. Let m be greater
than the depth of any term in E. Clearly, Φm does not contain a summand 'IF a(amx). So according
to Lem. 10, a(amx)+Φm 4 Φm cannot be derived from E. And this inequation is sound modulo -IF.
2

6.3 |A| = 1

In this section, we prove that the inequational theory of BCCSP(A) modulo -IF does not have a
finite basis in case of a singleton alphabet. The cornerstone for the negative result for |A| = 1 is the
following infinite family of inequations, for m ≥ 0:

amx 4 amx + x

If |A| = 1, then these inequations are clearly sound modulo -IF. Note that given a closed substitution
ρ, T (ρ(x)) ⊆ T (ρ(amx)).

Lemma 11 If t -IF amx + x, then t 'IF amx + x or t 'IF amx.

Proof: The case m = 0 is trivial; we focus on the case m > 0. Since t -IF amx + x, by Lem. 2,
var0(t) ⊆ {x}, varm(t) ⊆ {x}, and vark(t) = ∅ for k 6∈ {0,m}. Furthermore, by Lem. 1(2), CT (t) ⊆
{am}, and clearly t 6a

m

→ 0; so all completed traces of t are of the form t
am

→ x. Hence, either t 'IF amx+x
or t 'IF amx. 2
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Lemma 12 Assume that, for some terms t, u and substitution σ:

1. t -IF u;

2. m > depth(u);

3. σ(u) -IF amx + x; and

4. σ(t) 'IF amx.

Then σ(u) 'IF amx.

Proof: Since σ(u) -IF amx + x, by Lem. 11, either σ(u) 'IF amx + x or σ(u) 'IF amx.
Suppose, towards a contradiction, that x is a summand of σ(u). Then u has a variable summand

z such that x is a summand of σ(z). By proviso (1) of the lemma and Lem. 1(1), t 'T u, so clearly
z ∈ var (t). Since depth(t) < m, z ∈ vark(t) for some k < m, and so x ∈ vark(σ(t)). However, since
σ(t) 'IF amx, this is in contradiction with Lem. 2.

Concluding, x is not a summand of σ(u). So by Lem. 2, σ(u) 6'IF amx+x. Hence, σ(u) 'IF amx. 2

Lemma 13 Assume that, for some terms t, u:

1. E ` t 4 u;

2. m > max{depth(w) | v 4 w ∈ E};

3. u -IF amx + x; and

4. t 'IF amx.

Then u 'IF amx.

Proof: By induction on the derivation of E ` t 4 u.

• Case E ` t 4 u because σ(v) = t and σ(w) = u for some v 4 w ∈ E and substitution σ. The
claim follows by Lem. 12.

• Case E ` t 4 u because E ` t 4 v and E ` v 4 u for some v. By the soundness of E,
v -IF u -IF amx + x, so by induction, v 'IF amx. Hence, again by induction, u 'IF amx.

• Case E ` t 4 u because t = t′ + t′′ and u = u′ + u′′ with E ` t′ 4 u′ and E ` t′′ 4 u′′. Without
loss of generality we can assume that t′ 6= 0 and t′′ 6= 0. Since t 'IF amx, it is then not hard to
see that t′ 'IF amx and t′′ 'IF amx. And from u -IF amx+x and I(u′) = I(u′′) = {a} (because
t, t′ 6= 0) it follows that u′ -IF amx + x and u′′ -IF amx + x. So by induction, u′ 'IF amx and
u′′ 'IF amx. Hence u 'IF amx.

• Case E ` t 4 u because t = at′ and u = au′ with E ` t′ 4 u′. Then x is not a summand of u,
so by Lem. 2, u 6'IF amx + x. Hence, it follows from proviso (3) of the lemma and Lem. 11 that
u 'IF amx.

2

Theorem 5 For |A| = 1, the inequational theory of BCCSP(A) modulo -IF does not have a finite
basis.

Proof: Let E be a finite axiomatization over BCCSP(A) that is sound modulo -IF. Let m be greater
than the depth of any term in E. Since m > 1, clearly amx + x 6'IF amx. So according to Lem. 13,
amx 4 amx+x cannot be derived from E. And since |A| = 1, this inequation is sound modulo -IF. 2
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7. n-Nested Impossible Futures

Similar to the n-nested semantics and n-nested possible futures semantics (see, e.g., [1]), one can
define n-nested impossible futures semantics.

Definition 4 Assume a labeled transition system. For each n ≥ 0, the n-nested impossible futures
preorder -n on states is defined by:

• s1 -0 s2 for any states s1, s2;
• s1 -n+1 s2 if s1

a1···ak→ s′1 implies s2
a1···ak→ s′2 with s′2 -n s′1.

We write 'n for -n ∩ %n.

-n+1⊂'n⊂-n for n ≥ 1. Moreover, -1 coincides with trace preorder, while -2=-IF. It is not hard
to see that the intersection of -n (for any n ≥ 0) coincides with the intersection of 'n, which in
turn, coincides with bisimulation. We will argue that apart from -IF, no nested impossible futures
semantics allows a finite, ground-complete axiomatization.

In the proof of this result, which basically consists of a generalization of the proofs of Lem. 7, Lem. 8
and Thm. 2, we shall make use of formulas in the modal characterization of the n-nested impossible
futures preorders. A state s satisfies the modal formula 〈a〉ϕ if there exists a transition s

a→ s′ where
s′ satisfies the modal formula ϕ.

Definition 5 For n ≥ 0, we define a set Ln of modal formulas:

L0 contains only > and ⊥;

Ln+1 is given by the BNF

ϕ ::= 〈a1〉 · · · 〈ak〉¬ϕ′ (a1 · · · ak ∈ A∗, ϕ′ ∈ Ln).

Lemma 14 Let n ≥ 0. If s1 -n s2, then ∀ϕ ∈ Ln: s1 |= ϕ ⇒ s2 |= ϕ.

Proof: By induction on n. The base case is trivial. Suppose s1 -n+1 s2, and let s1 |= ϕ ∈ Ln+1,
where ϕ = 〈a1〉 · · · 〈ak〉¬ϕ with ϕ ∈ Ln. Then s1

a1···ak→ s′1 with s′1 6|= ϕ. Since s1 -n+1 s2, s2
a1···ak→ s′2

with s′2 -n s′1. By the induction hypothesis, s′2 6|= ϕ. Then s′2 |= ¬ϕ, and thus q |= ϕ. 2

The operator ;ma` adds a sequence of ` a-transitions to every state at depth m from which no
transition is available.

Definition 6 [1, Def. 31] For k, ` ≥ 0, define the operator ;ka` on closed terms recursively by

(
∑m

i=1 aipi);k+1a
` = Σm

i=1ai(pi;ka`)
(bp + q);0a` = bp + q

0;0a` = a`0

In the remainder of this section, we assume without loss of generality that A = {a}. This is justified
because in the coming proofs we will only consider inequations t 4 u and equations t ≈ u where no
actions b 6= a occur in t and u; and it is easy to see that any sound derivation of such an (in)equation
cannot contain an occurrence of an action b 6= a.

For n ≥ 1 and m ≥ 0, we define formulae ϕm
n :

ϕm
1 = 〈a〉m¬〈a〉>

ϕm
n+1 = 〈a〉¬ϕm

n

In other words, ϕm
n = (〈a〉¬)n−1〈a〉m¬〈a〉>. By induction on n, it is easy to see that ϕm

n ∈ Ln+1.
We now formulate a slight variation of [1, Lem. 36].



7. n-Nested Impossible Futures 17

Lemma 15 Let t be a term with depth(t) < m and depth(ρ(t)) < 2m + n, for some m,n ≥ 1. Let ρ
be a closed substitution with ρ(y) = 0 for each variable y that occurs at multiple depths in t. Let ρ′ be
a closed substitution with ρ′(x) = ρ(x);m+n−1−dx

am+10 if ρ(x) 6= 0 and x ∈ vardx
(t), and ρ′(x) = 0

if ρ(x) = 0. Then

ρ(t) |= ϕm
n ⇔ ρ′(t) |= (〈a〉¬)n−1〈a〉2m+1>

Proof: (Sketch) By induction on m, we can show

ρ′(t) = ρ(t);m+n−1 am+1

And by induction on m + n, we can show

ρ(t) |= ϕm
n ⇔ ρ(t);m+n−1 am+1 |= (〈a〉¬)n−1〈a〉2m+1>

(The latter proof uses that A = {a}.) 2

Lemma 16 Let n ≥ 1. Assume that, for some terms t, u and closed substitution ρ:

1. t -n u;
2. m > depth(u);
3. CT (ρ(u)) ⊆ {am+n−1, a2m+n−1}; and
4. ρ(t) |= ϕm

n .

Then ρ(u) |= ϕm
n .

Proof: From provisos (2) and (3), it is not hard to see that ρ(y) = 0 for each variable y that occurs
at multiple depths in u. So by Lem. 2, the same holds for t. Let ρ′ be defined as in Lem. 15. By proviso
(4), ρ(t) |= ϕm

n , so by Lem. 15, ρ′(t) |= (〈a〉¬)n−1〈a〉2m+1>. Note that (〈a〉¬)n−1〈a〉2m+1> ∈ Ln. By
proviso (1), ρ′(t) -n ρ′(u), so by Lem. 14, ρ′(u) |= (〈a〉¬)n−1〈a〉2m+1>. Hence, again by Lem. 15,
ρ(u) |= ϕm

n . 2

Lemma 17 Let n ≥ 2. Let the finite axiomatization E be sound modulo 'n. Assume that, for some
closed terms p, q:

1. E ` p ≈ q;
2. m > depth(q);
3. CT (q) ⊆ {am+n−1, a2m+n−1}; and
4. p |= ϕm

n .

Then q |= ϕm
n .

Proof: By induction on the derivation of E ` p ≈ q.
The case ρ(t) = p and ρ(u) = q for some t ≈ u ∈ E and closed substitution ρ, follows from Lem. 16.
The other three cases ((1) E ` p ≈ r and E ` r ≈ q; (2) p = p1+p2 and q = q1+q2 with E ` p1 ≈ q1

and E ` p2 ≈ q2; (3) p = ap′ and q = aq′ with E ` p′ ≈ q′) can be dealt with in the same way as in
the proof of Lem. 8. 2

Theorem 6 Let n ≥ 2. There is no finite, sound, ground-complete axiomatization for BCCSP(A)
modulo 'n.
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Proof: Let E be a finite axiomatization that is sound modulo 'n. Let m be greater than the depth
of any term in E.

For k ≥ 0, we define closed terms pm
k and qm

k :

pm
0 = a2m−10 qm

0 = am−10
pm

k+1 = apk + aqk qm
k+1 = apk

Clearly, qk -k+1 pk. This induces that pm
k 'k qm

k .
It is not hard to see that pm

k |= ϕm
k while qm

k 6|= ϕm
k (for k ≥ 1). So by Lem. 17, pm

n ≈ qm
n cannot be

derived from E. Hence, E is not ground-complete. 2

Likewise we can prove this non-finite axiomatizability result for -n in case n ≥ 3. The reason
that the proof can be shifted from equivalences to preorders without problem, is that the key result
Lem. 16 is formulated for -n. The reason that the proof does not extend to -2 is that -2 6⊆'CT, while
this inclusion is essential in the proof of Lem. 17 (see also the proof of Lem. 8). On the other hand,
-3⊆'CT does hold (see Lem. 1).

Theorem 7 Let n ≥ 3. There is no finite, sound, ground-complete axiomatization for BCCSP(A)
modulo -n.
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Appendix I

Inverted Substitutions

Groote [7] introduced the technique of inverted substitutions to prove that an equational axiomatiza-
tion is ω-complete. Here we adapt his technique to make it suitable for inequational axiomatizations.
Let T(Σ) and T(Σ) denote the sets of closed and open terms, respectively, over some signature Σ.

Theorem 8 Consider an inequational axiomatization E over Σ. Suppose that for each inequation
t 4 u of which all closed instances can be derived from E, there are a closed substitution ρ and a
mapping R : T(Σ) → T(Σ) such that:

(1) E ` t 4 R(ρ(t)) and E ` R(ρ(u)) 4 u;

(2) E ` R(σ(v)) 4 R(σ(w)) for each v 4 w ∈ E and closed substitution σ; and

(3) for each function symbol f (with arity n) in the signature, and all closed terms p1, . . . , pn, q1, . . . , qn:

E ∪ {pi 4 qi, R(pi) 4 R(qi) | i = 1, . . . , n} `
R(f(p1, . . . , pn)) 4 R(f(q1, . . . , qn))

Then E is ω-complete.

Proof: Let t, u be terms such that for each closed substitution σ,

E ` σ(t) 4 σ(u)

By assumption, there are a closed substitution ρ and a mapping R : T(Σ) → T(Σ) such that properties
(1,2,3) above are satisfied. We have to prove that E ` t 4 u. This is an immediate corollary of the
following claim, for all closed terms p, q:

E ` p 4 q =⇒ E ` R(p) 4 R(q)

Namely, by assumption, E ` ρ(t) 4 ρ(u), and then the claim above implies that E ` R(ρ(t)) 4
R(ρ(u)). So by property (1), E ` t 4 u.
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Proof of the claim. By induction on the proof of E ` p 4 q. We have to check the four kinds of
inference rules.

• p = q. Then R(p) = R(q).

• p 4 q is an instance of some v 4 w ∈ E and a closed substitution σ. By property (2), E `
R(p) 4 R(q).

• E ` p 4 q has been proved by E ` p 4 r and E ` r 4 q, for some r. By induction, E ` R(p) 4
R(r) and E ` R(r) 4 R(q). So E ` R(p) 4 R(q).

• p = f(p1, . . . , pn) and q = f(q1, . . . , qn), and E ` p 4 q has been proved by E ` pi 4 qi

fo i = 1, . . . , n. By induction, E ` R(pi) 4 R(qi) for i = 1, . . . , n. So by property (3), E `
R(f(p1, . . . , pn)) 4 R(f(q1, . . . , qn)).

2


