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Abstract

We revisit the correctness criterion for the multiplicative
additive fragment of linear logic. We prove that deciding
the correctness of corresponding proof structures is NL-
complete.

Introduction
The proof nets [5, 3] of Linear logic (LL) are a parallel syn-
tax for logical proofs without all the bureaucracy of sequent
calculus. They are a non-sequential graph-theoretic repre-
sentation of proofs, where the order in which some rules
are used in a sequent calculus derivation, when irrelevant,
is neglected. The unit-free multiplicative additive proof nets
are inductively defined from sequent calculus rules of unit-
free Multiplicative Additive Linear Logic (MALL1). The
MALL proof structures are freely built on the same syntax
as proof nets, without any reference to a sequent calculus
derivation. The same holds for MLL and MELL proof nets
and proof structures with respect to MLL and MELL se-
quent calculus.
In LL we are mainly interested in the following decision
problems: Deciding the provability of a given formula,
which gives the expressiveness of the logic; deciding if two
given proofs reduce to the same normal form, i.e. the cut-
elimination problem which corresponds to program equiv-
alence using the Curry-Howard isomorphism; and deciding
the correctness of a given proof structure, i.e. whether it
comes from a sequent calculus derivation. For this last deci-
sion problem, one uses a correctness criterion to distinguish
proof nets among proof structures. We recall the following
main results [13, 16, 15] and as for MLL and MELL [10],
we prove that the correctness decision problem for MALL is
NL-complete:

fragment decision problem
units provability cut-elimination

MLL no NP -complete P -complete
MELL yes open non-elementary
MALL no PSPACE-complete coNP -complete

One can observe that there is a long story of correctness
criteria for MLL: Long-trip [5] based on travels, Acyclic-

1As usual M, A and E denote respectively for Multiplicative, Additive
and Exponential fragments of LL

Connected [3] based on switchings i.e. the choice of one
premise for each O connective, Contractibility [2] based
on graph rewriting rules, Graph Parsing [14] a strategy for
Contractibility, etc. . . . A feature of these criteria is that they
successively lower the complexity of sequential, determin-
istic algorithms deciding correctness for MLL until linear
time [7].
For MALL the additives were initially treated with ”boxes”
and ”slices”. This allows to work with each additive com-
ponent (the slices) ignoring the superimposition notion un-
derliyng the connective N but it is not sufficient to ensure
the correctness of the whole proof structure (even without
cuts). Better solutions have been proposed in [6] without
”boxes” but with ”N-jumps” and ”boolean weights” allow-
ing to have a correctness criterion, also in [4] with ”multi-
boxes” that superimpose several N connectives to man-
age additive behaviours. Finally D. Hughes and R. van
Glabbeek [8] introduce a good representation of proof net
for cut-free MALL.
Switching from proof structures to paired graphs, that is
undirected graphs with a distinguished set of edges, we
give in [10] a new correctness criterion for MLL and we
use it here for revisiting the MALL correctness criterion
of [8]. This gives us a lower bound for the correctness deci-
sion problem for MALL (MALL-CORR). This lower bound
yields an exact characterization of the complexity of this
problem, and induces naturally efficient parallel algorithms
for it.
The paper is organized as follows: we recall preliminary
definitions and results in linear logic and complexity the-
ory in Section 1. Section 2 is devoted to the proof of the
NL-membership of MALL-CORR. This is obtained by the
exposition of a new equivalent set of properties that are de-
cidable in NL. The NL-completeness of MALL-CORR is
established in Theorem 2.25.

1 Background
1.1 MLL, MALL and Proof Nets

Roman capitals A,B stand for MALL formulae, which are
given by the following grammar, where the multiplicative
connectives� andO are duals for the negation ⊥, as well as
the additive connectives � and N, accordingly to De Mor-
gan laws:

F::=A | A⊥ | F � F | FOF | F � F | FNF



Greek capitals Γ,∆ stand for sequents, which are multiset
of formulae, so that exchange is implicit. The MLL sequent
calculus is given by the following rules:

` A,A⊥
(ax) ` Γ, C ` ∆, C⊥

` Γ,∆
(cut)

` Γ, A ` ∆, B
` Γ,∆, A�B

�
` Γ, A,B
` Γ, AOB

O

The MALL sequent calculus is MLL extended by the fol-
lowing rules:

` Γ, A
` Γ, A�B

�1
` Γ, B
` Γ, A�B

�2
` Γ, A ` Γ, B
` Γ, ANB

N

In the rest of this paper every definition on MALL applies
to MLL by restricting the connectives. We recall (and adapt
to our formalism) the notion of MALL proof structures and
proof nets defined in [8].

Definition 1.1. A MALL skeleton is a directed acyclic
graph (DAG) whose edges are labelled with MALL formu-
lae, and whose nodes are labelled, and defined with an arity
and co-arity as follows:

node label arity and edges coarity and edges
atom 0 ∅ 1 A
cut 2 A,A⊥ 0 ∅
� 2 A,B 1 A�B
O 2 A,B 1 AOB
� 2 A,B 1 A�B
N 2 A,B 1 ANB

We allow edges with a source but no target (i.e pending
or dandling edges), they are called the conclusions of the
skeleton. The set of conclusions of a MALL skeleton is
clearly a MALL sequent. We also denote as premises of a
node the edges incident to it, and conclusion of a node its
outgoing edge. For a given node x of arity 2, its left (re-
spectively right) parent is denoted xl (resp. xr).

Definition 1.2. Let S be a MALL skeleton. An additive
resolution of S is any result of deleting one argument sub-
tree of each additive (� or N) node in S. A N-resolution
of S is any result of deleting one argument subtree of each
N-node in S.
An axiom-link, or simply link on a MALL skeleton S is
a bidirected edge between complementary atoms in S, i.e.
atoms labeled with dual literals P and P⊥.
A linking on a MALL skeleton S is a set of distinct links on
S such that its set of vertices is the set of atoms of an addi-
tive resolution of S. Note that in the case where S contains
no additive node, a linking on S is simply a partitioning of
the atom nodes of S into links, i.e. a set of disjoint links

whose union contains every atom of S . The additive reso-
lution of S induced by a linking λ is denoted S�λ.
A MALL proof structure is (S,Θ), where S is a
MALL skeleton and Θ is a set of linkings on S. In the
case of MLL proof structure, Θ is simply a singleton, so we
often omit the set notation.

Remark 1.3. The set of conclusions of a MALL proof struc-
ture is a MALL sequent.
An additive resolution of S naturally induces a MLL skele-
ton, and, for any linking λ, (S�λ, λ) induces a MLL proof
structure.

Definition 1.4. A MALL proof net is a MALL proof struc-
ture inductively defined as follows:

(ax): (({A,A⊥}, ∅), {{(A,A⊥)}}) is a MALL proof net
with conclusions A,A⊥.

O: if (S,Θ) is a MALL proof net with conclusions Γ, A,B,
then (S ′,Θ), where S ′ is S extended with a O-node of
premises A and B is a MALL proof-net with conclu-
sions Γ, AOB.

�: if (S1,Θ1) with conclusions Γ, A and (S2,Θ2) with
conclusions ∆, B are disjoint MALL proof nets, (S,Θ)
where S is S1 ] S2 extended with a �-link of premises
A and B and Θ is {λ1 ] λ2, λ1 ∈ Θ1, λ2 ∈ Θ2}) is a
MALL proof net with conclusions Γ, A�B,∆.

(cut): if (S1,Θ1) with conclusions Γ, A and (S2,Θ2)
with conclusions ∆, A⊥ are disjoint MALL proof nets,
(S,Θ) where S is S1 ] S2 extended with a cut-link of
premises A and A⊥ and Θ is {λ1 ] λ2, λ1 ∈ Θ1, λ2 ∈
Θ2}) is a MALL proof net with conclusions Γ,∆.

N: if (S ] SA,ΘA), where S (respectively SA) has con-
clusions Γ (resp. A) and (S ] SB ,ΘB), where SB has
conclusion B are MALL proof nets, then (S ]S ′,ΘA]
ΘB), where S ′ is SA ] SB extended with a N-node of
premises A and B, is a MALL proof net with conclu-
sions Γ, ANB.

�: for any MALL formula B, if (S,Θ) is a MALL proof
net with conclusions Γ, A, then (S ′,Θ), where S ′ is
S extended with the syntactic tree of B and a � node
of premises A and B (respectively B and A) is a
MALL proof net with conclusions Γ, A � B (resp.
Γ, B �A).

The inductive definition of MALL proof nets corresponds
to a graph theoretic abstraction of the derivation rules of
MALL; any proof net is sequentializable, i.e. corresponds
to a MALL derivation: given a proof net P of conclusion Γ,
there exists a sequent calculus proof of ` Γ which infers P .

Definition 1.5. A paired graph is an undirected graph G =
(V,E) with a set of pairsC(G) ⊆ E×E which are pairwise
disjoint couples of edges with the same target, called a pair-
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Figure 1: Paired graph constructors associated to MLL proof nets:
axiom-link, O-node and � (cut)-node.

node, and two (possibly distinct) sources called the premise-
nodes.
A switching S of G is the choice of an edge for every pair
of C(G). With each switching S is associated a subgraph
S(G) of G: for every pair of C(G), erase the edges which
are not selected by S. When S selects the (abusively speak-
ing) left edge of each pair, S(G) is denoted as G[∀ 7→∵\ ].
Also, G[∀ 7→∵] stands for G \ {e, e′| (e, e′) ∈ C(G)}.

Remark 1.6. Without loss of generality we allow tuples of
edges, i.e. C(G) ⊆

⋃
n∈N E. A tuple of edges incident to

a node x can be seen as a binary tree rooted at x with all
ingoing edges being coupled.

Let S = (V,E) be a MLL skeleton. To S, we associate
the paired graph GS = (V,E), where C(GS) contains the
premises of each O-link of S. To a MLL proof structure
(S, λ), we associate the paired graph G(S,λ) = GS ] λ,
where C(G(S,λ)) = C(GS) (Figure 1).
For a pair of edges (v, x), (w, x), we adopt the representa-
tion of Figure 1, where the two edges of the pair are joined
by an arc.

Definition 1.7. Let (S,Θ) be a MALL proof structure.
Let W be a N-resolution of S and let λ ∈ Θ be a linking on
S. We note λ vW if and only if every vertex of every link
in λ is a leaf of W .
Let Λ ⊆ Θ be a set of linkings on S.
Λ is said to toggle a N node xN (respectively a � node x�)
of S if there exists λ1, λ2 ∈ Λ such that xlN ∈ S�λ1 and
xrN ∈ S�λ2 (resp. xl� ∈ S�λ1 and xr� ∈ S�λ2).
Let S�Λ =

⋃
λ∈Λ S�λ, and GS�Λ =

⋃
λ∈ΛG(S�λ,λ).2

Let xN be a N node in S and a be an atom of S. Let
{λ1, λ2} ⊆ Λ. A jump edge (xN, a) is admissible for
{λ1, λ2} if and only if

1. xN is the unique N node toggled by {λ1, λ2}, and,
2. there exists a link l = (a, b) ∈ λ1 \ λ2.

LetHS�Λ beGS�Λ extended with all admissible jump edges
for all {λ1, λ2} ⊆ Λ, and where C(HS�Λ) contains the
premise - and jump - edges incident to all O/N nodes of
S�Λ. (the pair edges are actually tuples as in Remark 1.6)

Definition 1.8. A MLL proof structure (S, λ) is DR-correct
if for all switching S of G(S,λ), the graph S(G(S,λ)) is

2GS�Θ can be defined similarly to the G(S,λ) of Figure 1

acyclic and connected. Let G be a paired graph. A switch-
ing cycle C in G is a cycle in S(G) for some switching S of
G.

Theorem 1.9 (MLL Correctness Criterion, [3]). A
MLL proof structure (S, λ) is a MLL proof net iff (S, λ)
is DR-correct.

Theorem 1.10 (MALL Correctness Criterion, [8]). A
MALL proof structure (S,Θ) is a MALL proof net iff:

(MLL): For every λ ∈ Θ, (S�λ, λ) is a MLL proof net,

(RES): For every N-resolution W of S, there exists a
unique λ ∈ Θ such that λ vW ,

(TOG): For every Λ ⊆ Θ of two or more linkings, Λ tog-
gles a N node xN such that xN does not belong to any
switching cycle of HS�Λ.

We define the following decision problem MALL-CORR:
GIVEN: A MALL proof structure (S,Θ)
PROBLEM: Is (S,Θ) a MALL proof net?

1.2 Complexity Classes and Related Problems

Let us mention several major complexity classes below P ,
some of which having natural complete problems that we
will use in this paper. Let us briefly recall some basic defi-
nitions and results:
• AC0 (respectively AC1) is the class of problems solv-

able by a uniform family of circuits of constant (resp.
logarithmic) depth and polynomial size, with NOT gates
and AND, OR gates of unbounded fan-in.

• L is the class of problems solvable by a deterministic
Turing machine which only uses a logarithmic working
space.

• NL (respectively coNL) is the class of problems solv-
able by a non-deterministic Turing machine which only
uses a logarithmic working space, such that: if the an-
swer is ”yes” then at least one (resp. all) computation
path accepts, else all (resp. at least one) computation
paths reject.

Theorem 1.11. [9, 18] NL = coNL.

The following inclusion results are also well known:

AC0 ⊆ L ⊆ NL ⊆ AC1 ⊆ P,

where it remains unknown whether any of these inclusions
is strict. It is important to note that our NL-completeness
result for MALL-CORR is under constant-depth (actually
AC0) reductions. From the inclusion above, it should be
clear to the reader that the reduction lies indeed in a class
small enough for being relevant. For a good exposition of
constant-depth reducibility, see [1].
In the sequel, we will often use the notion of a path in a
directed -or undirected- graph. A path is a sequence of ver-
tices such that there is an edge between any two consecutive
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vertices in the path. A path will be called elementary when
any node occurs at most once in the path. Let us now list
some graph-theoretic problems that will be used in this pa-
per.

SOURCE-TARGET CONNECTIVITY (STCONN): Given a
directed graphG = (V,E) and two vertices s and t, is there
a path from s to t in G ?
STCONN is NL-complete under constant-depth reduc-
tions [12].

UNIVERSAL SOURCE DAG (SDAG): Given a directed
graphG = (V,E), is it acyclic and does there exist a source
node s such that there is a path from s to each vertex ?

Theorem 1.12 ([10]). SDAG is NL-complete under
constant-depth reductions.

2 NL-completeness of MALL-CORR

For cut-free MLL, it is clear that the size of a proof struc-
ture is linear in the size of its skeleton i.e. in the size of
its sequent. MLL-CORR for cut-free MLL proof structures
is decidable in nondeterministic space logarithmic in the
size of its skeleton and its sequent ([10]). The situation for
MALL differs quite a lot from the situation for MLL in the
sense that the size of a sequent and of a corresponding proof
structure - or proof net - may be of different order: while
some cut-free MALL proof structures and proof nets have
size linear in the size of their skeleton (e.g. pure MLL proof
structures) and their sequent, others have size exponential
in the size of their skeleton. Define the following correct
sequents:

Γ1 = A⊥1 � . . .�A⊥n , A1N. . .NAn
Γ2 = A⊥ � . . .�A⊥, AN. . .NA
Σ1 = A⊥1 � . . .�A⊥n , A1NA1, . . . , AnNAn
Σ2 = A⊥ � . . .�A⊥, ANA, . . . , ANA.

For each of these sequents, the size of the corresponding
cut-free skeleton is linear in n. The following table shows,
for a cut-free MALL skeleton for each of these sequents, its
number of additive resolutions, N-resolutions and possible
links. The last two lines show the number of links in any
cut-free MALL proof net, and the number of different cut-
free MALL proof nets for each of these sequents.

sequent Γ1 Γ2 Σ1 Σ2

# add-resolutions n2 n2 2n 2n

# N-resolutions n n 2n 2n

# links n n2 2n n!2n

|Θ| n n 2n 2
# Θ 1 n2 1 n!

This table illustrates how some very simple MALL sequents
can yield very large MALL proof nets. These proof-nets
are exemplified in Figures 2, 3 and 4 below. Here, the

reader should keep in mind that the input to our MALL-
CORR problem is actually a MALL proof structure, of size
maybe much larger that the size of the corresponding se-
quent. Recall from Theorem 1.10 that a MALL proof struc-
ture is a positive input to MALL-CORR if and only if it
satisfies Conditions (MLL), (RES) and (TOG). The NL-
hardness of MALL-CORR follows directly from the NL-
hardness of MLL-CORR [10] (since MLL is a sub-system
of MALL). The NL-membership of Condition (MLL) fol-
lows directly from the NL-membership of MLL-CORR as
established in [10] and recalled here. Therefore, proving the
NL-membership of MALL-CORR requires to prove theNL-
membership of (RES) and (TOG). We exhibit in this section
algorithms for checking non-deterministically (RES) and
(TOG) in space logarithmic in the size of the proof struc-
ture, which, in some cases, is actually polynomial in the
size of the sequent.

Figure 2: The MALL proof-net on Γ1, and an example of proof-
net on Γ2, with n = 3.

Figure 3: The MALL proof-net (Σ1,Θ1) on Σ1, with Θ1 =S2n

i=1 λi.

2.1 Checking (MLL)

We recall here the definitions and the results which are
proved in [10]. For a given paired graph, the following no-
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Figure 4: An example of MALL proof-net (Σ2,Θn!) on Σ2, with
Θn! =

S2n

i=1 λi. Note that the set Θ1 of figure 3 yields another
proof-net (Σ2,Θ1) on Σ2, as well as the n! possible combination
of choices among the order in which the premises of the � node
are linked to the N nodes.

tion of dependency graph provides a partial order among its
pair-nodes This yields a new correctness criterion for MLL-
CORR given by Theorem 2.2.

Definition 2.1. Let G be a paired graph. The dependency
graphD(G) ofG is the directed graph (VG, EG) defined as
follows:
• VG = {v | v is a pair-node in G} ∪ {s}.
• Let x be a pair-node in G, with premise-nodes xl and
xr. The edge (s � x) is in EG if and only if:

1. There exists an elementary path px = xl, . . . , xr
in G[∀ 7→∵\ ],

2. x 6∈ px, and for all pair-node y in G, y 6∈ px.

• Let x be a pair-node in G, with premise-nodes xl and
xr, and let y 6= x be another pair-node in G. The edge
(y � x) is in EG if and only if:

1. There exists an elementary path px = xl, . . . , xr
in G[∀ 7→∵\ ],

2. x 6∈ px, and for every elementary path px =
xl, . . . , xr in G[∀ 7→∵\ ] with x 6∈ px, y ∈ px.

For examples of MLL proof structures, corresponding
paired graphs and their dependency graphs, see Figure 5.
Define a paired-graph G to be D-R-connected if and only
if, for any switching S of G, the switched graph S(G) is
connected.

Theorem 2.2 (Correctness Criterion, [10]). A MLL proof
structure (S, λ) is a MLL proof net if and only if:

1. D(G(S,λ)) satisfies SDAG, and
2. G(S,λ)[∀ 7→∵\ ] is a tree.

Theorems 1.9 and 2.2 imply the following lemma:

Figure 5: MLL proof structures, corresponding paired graph and
dependency graphs, for the sequents A⊥, A � B,B⊥ (correct),
A⊥, AOB,B⊥ (incorrect), A�B,A⊥OB⊥ (correct)

Lemma 2.3. A paired-graph G is D-R-connected if and
only if its dependency graph has a node s from which ev-
ery node is reachable.

Lemma 2.4 ([10]). The function which associates its de-
pendency graph to a paired graph, is in FL.

Theorem 2.5 ([10]). MLL-CORR is NL-Complete under
constant-depth reductions.

Note that the previous best algorithms [14, 7] are not likely
to be implemented in logarithmic space, since they require
on-line modification of the structure they manipulate. The
purpose of our criterion of Theorem 2.2 is precisely that it
allows a space-efficient implementation.

2.2 Checking (RES)

We recall Condition (RES) of Theorem 1.10: For every N-
resolution W of S, there exists a unique λ ∈ Θ such that
λ vW .
Let us illustrate the difficulty in checking (RES) on a sim-
ple example. Let us consider the proof-structure (Σ1,Θ),
where Σ1 is as aboveA⊥1 �. . .�A⊥n , A1NA1, . . . , AnNAn,
and Θ is a subset of Θ1 of Figure 3 containing ndlog(n)e

linkings. The size of (Σ1,Θ) is therefore O(ndlog(n)e).
We have seen that the number of N-resolutions of Σ1 is 2n.
Enumerating (and explicitly describing) all N-resolutions
requires at least Ω(n) space, and is not feasible in space
O(log(ndlog(n)e)) = O(log(n)2). Therefore a NL algo-
rithm for (RES) may not proceed by first plainly enumerat-
ing all N-resolutions.
The idea of our algorithm is to define a notion of distance of
edition on theN-resolutions such that one can pass from any
N-resolution to any other N-resolution with intermediate
steps of distance at most one (Condition L1). Lemma 2.11
shows that (RES) fails if there exists a N-resolutionW with
λ vW at distance 1 to a N-resolutionW ′ with no λ′ vW ′
(Condition L3). Note however that, as on (Σ1,Θ), the
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working space may not be large enough for describing ex-
plicitly the N-resolutions: instead, a N-resolution W with
λ vW is implicitly described by λ. The difficulty then is to
describe a N-resolution W ′ with no λ′ vW ′. We establish
in Lemma 2.14 that (RES) fails if there exists aN-resolution
W with λ v W at distance 1 to a N-resolution W ′ with no
λ′ v W ′, where moreover W ′ can be implicitly described
by λ and some N-node (Condition L4). Our algorithm enu-
merates (in logarithmic space) the λ’s and the N nodes in
search of such a configuration.

Definition 2.6 (L1). Let (S,Θ) be a MALL proof structure.
For any N-resolution W of S, let switchW : {xN :
N node of S} → {l, r} be the following function:

switchW (xN) =
{
l if xlN ∈W or xN 6∈W
r if xrN ∈W.

LetWS be the set of N-resolutions of S.
LetWΘ = {W ∈ WS : ∃λ ∈ Θ, λ vW}.
We define the following distance Dist onWS by

Dist(W,W ′) =|{xN N-node of S :
switchW (xN) 6= switchW ′(xN)}|.

LetW ⊆ WS . We say thatW satisfies Condition L1 if and
only if:

∀W0,Wk ∈ W ∃W1, . . . ,Wk−1 ∈ W s.t.
Dist(Wi,Wi+1)0≤i<k≤1.

Lemma 2.7. WS satisfies condition L1.

Proof. by induction on the skeleton S.

Definition 2.8 (L2). Let (S,Θ) be a MALL proof structure.
(S,Θ) is said to satisfy Condition L2 if and only if ∀y�
� node in S, ∀λ1, λ2 ∈ Θ that toggle y�, there exists a
N node xN also toggled by {λ1, λ2}.

Lemma 2.9. If (S,Θ) is a MALL proof net, then, it satisfies
Condition L2.

Proof: By induction on (S,Θ), along Definition 1.4. The
only critical case is that of a N rule:
if (S]SA,ΘA), where S (respectively SA) has conclusions
Γ (resp. A) and (S ]SB ,ΘB), where SB has conclusion B
are MALL proof nets, then (S ]S ′,ΘA ]ΘB), where S ′ is
SA ] SB extended with a N-node of premises A and B, is
a MALL proof net with conclusions Γ, ANB.
Two cases arise:
1. Assume there exist a� node y� ∈ S, λ ∈ ΘA, λ′ ∈ ΘA

such that λ, λ′ toggle y�. Then the induction hypothesis
on (S]SA,ΘA) ensures that there exists aN node xN ∈
S ] SA also toggled by λ, λ′. Similarly for λ ∈ ΘB ,
λ′ ∈ ΘB .

2. Assume there exist a� node y� ∈ S, λ ∈ ΘA, λ′ ∈ ΘB

such that λ, λ′ toggle y�. Then the N node of premises
A and B in S ′ is also toggled by λ, λ′.

Definition 2.10 (L3). Let (S,Θ) be a MALL proof struc-
ture.
Let λ ∈ Θ, and define S�Nλ = {W ∈ WS : λ vW}.
Let xN be a N node in S.
(λ, xN) are said to satisfy Condition L3 in (S,Θ) if and
only if:
∃Wλ

+ ∈ S�Nλ,Wλ
− ∈ WS \WΘ s.t.

Dist(Wλ
+,W

λ
−) = 1 and switchWλ

+
(xN) 6= switchWλ

−
(xN).

Lemma 2.11. Assume (S,Θ) is a MALL proof structure.
Then, (S,Θ) satisfies (RES) of Theorem 1.10 if and only if:

1. ∀λ, λ′ ∈ Θ, λ 6= λ′ ⇒ S�λ 6= S�λ′, and
2. ∀λ ∈ Θ, ∀xN N node in S, (λ, xN) does not satisfy

L3 in (S,Θ).

Proof:

1. Let W ∈ WΘ and λ ∈ Θ s.t. λ v W . By induc-
tion on W , if there exists λ′ 6= λ s.t. λ′ v W , then
S�λ = S�λ′. It follows that (1) above is equivalent to
the unicity, for any N-resolution W of S, of a λ ∈ Θ
such that λ vW .

2. Assume that there exists a N-resolution W of S s.t.
∀λ ∈ Θ, λ 6v W . Then, WΘ ( WS . Assume Θ 6= ∅,
then, WΘ 6= ∅. Therefore there exists W+ ∈ WΘ

and W− ∈ WS \ WΘ. By Lemma 2.9, there ex-
ists then W1, . . . ,Wk ∈ W s.t. Dist(W+,W1) ≤ 1,
Dist(Wi,Wi+1)0≤i<k ≤ 1, and Dist(Wk,W−) ≤ 1.
Since any of the Wi belongs either to WΘ or to WS \
WΘ, there exists W ′+,W

′
− ∈ {W+,W1, . . . ,Wk,W−}

such that Dist(W ′+,W
′
−) = 1, W ′+ ∈ WΘ and W ′− ∈

WS \ WΘ. Let λ ∈ Θ such that λ v W ′+, and xN be
the N node such that switchW ′+(xN) 6= switchW ′−(xN).
Clearly, (λ, xN) satisfy Condition L3.
Conversely, if there exists λ ∈ Θ and xN a N node in S
such that (λ, xN) satisfies L3 in (S,Θ), then there ex-
ists a N-resolution W of S s.t. ∀λ ∈ Θ, λ 6v W . It
follows that (2) above is equivalent to the existence, for
any N-resolution W of S , of a λ ∈ Θ such that λ vW .

Definition 2.12 (L4). Let (S,Θ) be a MALL proof
structure.
Let xN be a N node in S. Define:

W l
xN

={W ∈ WS s.t. ∀x′N s.t. there exists

a path x′N � ·· � xlN, switchW (x′N) = l}

Wr
xN

={W ∈ WS s.t. ∀x′N s.t. there exists

a path x′N � ·· � xrN, switchW (x′N) = l}
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Let λ ∈ Θ, and define Mirror(λ, xN), the set of W ∈ WS
such that

∃W ′ ∈ S�Nλ ∩W l
xN
∩Wr

xN
:

Dist(W,W ′) = 1 and switchW (xN) 6= switchW ′(xN).

(λ, xN) are said to satisfy Condition L4 in (S,Θ) if and
only if:

∀λ′ ∈ Θ,∀W ∈ Mirror(λ, xN), λ′ 6vW.

Lemma 2.13. Assume (S,Θ) is a MALL proof structure
satisfying Condition L2. Let λ ∈ Θ and xN be a N node in
S such that

1. (λ, xN) satisfies Condition L3 in (S,Θ), and
2. ∀y� � node in S�λ, ∀λ′ ∈ Θ such that λ, λ′ toggle
y�, xN is not toggled by λ, λ′.

Then, (λ, xN) satisfies Condition L4 in (S,Θ).

Proof. Let y� be a � node in S�λ. Without loss of gener-
ality, let assume that yl� ∈ S�λ and xlN ∈ S�λ. Assume
(λ, xN) satisfies Condition L3 in (S,Θ):

∃Wλ
+ ∈ S�Nλ,Wλ

− ∈ WS \WΘ such that

Dist(Wλ
+,W

λ
−) = 1 and switchWλ

+
(xN) 6= switchWλ

−
(xN).

Let θλ = {λi ∈ Θ : λi vWi ∈ Mirror(λ, xN)}.
Assume by contradiction that θλ 6= ∅.
Let us show by contradiction that for all λ′ ∈ θλ, yr� 6∈
S�λ′. Assume ∃λ′ ∈ θλ, yr� ∈ S�λ′. Then λ, λ′ toggle
y�. By Condition L2, there exists a N node x′N 6= xN also
toggled by λ, λ′. Assume without loss of generality that
x′N

l ∈ S�λ and x′N
r ∈ S�λ′.

Since x′N
l ∈ S�λ, for all W ∈ Mirror(λ, xN),

switchW (x′N) = l. Since x′N
r ∈ S�λ′, for any W ′ ∈

Mirror(λ, xN) s.t. λ′ v W ′, switchW ′(x′N) = r: contra-
diction.
Therefore, for all λ′ ∈ θλ, yr� 6∈ S�λ′.
Let λ′ ∈ θλ, and let x′N (respectively y′�) be any N node
(resp. � node) such that there exists no path x′N � ·· � xN
(resp. y′� � ·· � xN). Then, by induction on S ,

x′N ∈ S�λ⇒ x′N ∈ S�λ′, y′� ∈ S�λ⇒ y′� ∈ S�λ′,
x′N

l ∈ S�λ⇒ x′N
l ∈ S�λ′, y′�

l ∈ S�λ⇒ y′�
l ∈ S�λ′,

x′N
r ∈ S�λ⇒ x′N

r ∈ S�λ′, y′�
r ∈ S�λ⇒ y′�

r ∈ S�λ′.

It follows that λ′ vWλ
−: contradiction.

Lemma 2.14. Assume (S,Θ) is a MALL proof structure
satisfying L2. Let λ ∈ Θ and xN be a N node in S such that

1. (λ, xN) satisfy Condition L3 in (S,Θ), and
2. ∃y� � node in S�λ, and λ′ ∈ Θ such that λ, λ′ toggle

both y� and xN.

Then, there exists x′N N node in S such that (λ′, x′N) satis-
fies Condition L4 in (S,Θ).

Proof: By induction on the maximal number of N and
� nodes traversed along a path x � ·· � xN or x � ·· � y�
in S. Since S is acyclic, this number is well defined. As-
sume (λ, xN) satisfies Condition L3 in (S,Θ):

∃Wλ
+ ∈ S�Nλ,Wλ

− ∈ WS \WΘsuch that

Dist(Wλ
+,W

λ
−) = 1 and switchWλ

+
(xN) 6= switchWλ

−
(xN).

Without loss of generality, assume yl� ∈ S�λ and xlN ∈
S�λ.
Let θλ = {λi ∈ Θ : λi v Wi ∈ Mirror(λ, xN)}. If
there is no N or � node along any path x � ·· � xN or
x � ·· � y�, θλ = ∅. If θλ = ∅, (λ, xN) satisfies Condition
L4 in (S,Θ). Assume in the following that θλ 6= ∅.
1. Let y′� be a � node in S�λ such that there exists no

path y′� � ·· � y� and no path y′� � ·· � xN. Let us
show by contradiction that y′� is toggled by no (λ, λi),
λi ∈ θλ.
Assume y′� is toggled by (λ, λi), λi ∈ θλ, and, with-
out loss of generality, y′�

l ∈ S�λ, y′�
r ∈ S�λi. Then,

by Condition L2, there exists a N node x′N ∈ S�λ ∩
S�λi toggled by (λ, λi), and, without loss of general-
ity, x′N

l ∈ S�λ and x′N
r ∈ S�λi. Let W ′i be any N-

resolution such that λi v W ′i : ∀W ∈ S�Nλ ∩ W l
xN
∩

Wr
xN

xlN ∈ W , x′N
l ∈ W , xrN ∈ W ′i , x′N

r ∈ W ′i , and
Dist(W,W ′) ≥ 1. Therefore, W ′i cannot possibly be in
Mirror(λ, xN), which contradicts the hypothesis that y′�
is toggled by (λ, λi), λi ∈ θλ.

2. By Condition L3, ∀λi ∈ θλ, ∃(xi, yi) ∈ λi : xi 6∈ Wλ
−.

Let us show that ∀(xi, yi) ∈ λi ∈ θλ, xi 6∈ Wλ
−, there

exists a path xi � ·· � yr� or a path xi � ·· � xrN.
Assume there exists no such path. For any � node y′�
such that there exists a path xi � ·· � y′�, there exists
no path y′� � ·· � y� and no path y′� � ·· � xN. By
(1) above, y′� is toggled by no (λ, λi), λi ∈ θλ. More-
over, for any N node x′N such that there exists a path
xi � ·· � x′N, there exists no path x′N � ·· � xN.
By definition of θλ, x′N is then toggled by no (λ, λi),
λi ∈ θλ, and xi ∈ S�λ. Therefore, ∀W ′ ∈ S�Nλ,
xi ∈ W ′. By Condition L3, there exists Wλ

+ ∈
S�Nλ s.t. Dist(Wλ

+,W
λ
−) = 1 and switchWλ

+
(xN) 6=

switchWλ
−

(xN). Since xi ∈ Wλ
+ and since there ex-

ists no path xi � ·· � xN, it follows that xi ∈ Wλ
−:

contradiction.
3. By hypothesis, Wλ

+ ∈ S�Nλ, and switchWλ
+

(xN) = l.
Since Dist(Wλ

+,W
λ
−) = 1 and switchWλ

−
(xN) = r, it

follows that Wλ
+ ∈ W l

xN
∩ Wr

xN
, and therefore Wλ

− ∈
Mirror(λ, xN).
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4. It is clear that S�Nλ, W l
xN

and Wr
xN

satisfy condition
L1. Therefore, so does Mirror(λ, xN). Since Wλ

− ∈
Mirror(λ, xN) and θλ 6= ∅, there exist Wλi

+ ,Wλi
− ∈

Mirror(λ, xN), λi ∈ θλ such that λi v Wλi
+ , Wλi

− ∈
WS \ WΘ and Dist(Wλi

+ ,Wλi
− ) = 1. Let x′N be

the unique N node in S such that switch
W
λi
+

(x′N) 6=
switch

W
λi
−

(x′N). By (2) above, there exists a path x′N �
·· � y�. If there exists a � node y′� in S�λi and
λj ∈ θλ such that λi, λj toggle both x′N and y′�, by
(1) above, there exists a path y′� � ·· � y� or a path
y′� � ·· � xN. Therefore we can apply the induction
hypothesis to conclude that (λ′, x′N) satisfies Condition
L4 in (S,Θ).

Proposition 2.15. Assume (S,Θ) is a MALL proof struc-
ture. Then, (S,Θ) satisfies (RES) of Theorem 1.10 if and
only if:

1. ∀λ, λ′ ∈ Θ, λ 6= λ′ ⇔ S�λ 6= S�λ′,
2. (S,Θ) satisfies Condition L2, and
3. ∀λ ∈ Θ, ∀xN N node in S, (λ, xN) does not satisfy

L4 in (S,Θ).

Proof. Apply Lemmas 2.11, 2.13 and 2.14.

A consequence of proposition 2.15 is aNL algorithm decid-
ing whether a given MALL proof structure satisfies (RES).
Indeed (1), Conditions L2 and L4 can easily be checked in
NL by parsing the set of linkings and the skeleton.

2.3 Checking (TOG)

We recall Condition (TOG) of Theorem1.10:
For every Λ ⊆ Θ of two or more linkings, Λ toggles a
N node xN such that xN does not belong to any switching
cycle of HS�Λ.
Checking Condition (TOG) in non-deterministic logarith-
mic space involves two difficulties, which we address in this
section:
1. The number of sets Λ ⊆ Θ of two or more linkings is

exponential in the size of Θ, i.e. exponential in the size
of the input in the worst case. Consider for instance the
sequent Γ = AN. . .NA,A⊥ of figure 6 below: a proof-
net (Γ,Θ) contains n linkings, each linking containing
a single link. The number of sets Λ ⊆ Θ of two or more
linkings is then 2n−n−1. Clearly, there is no possibility
to enumerate all the sets Λ ⊆ Θ of two or more linkings
in logarithmic space3. Lemma 2.17 below shows that it
is actually enough to consider only a quadratic number
of well chosen such sets of linkings.

3It is mentioned in [8] that it suffices to check (TOG) merely for satu-
rated sets Λ of linkings only, namely, such that any strictly larger subset
of Θ toggles more N nodes than Λ. Note however that the saturated sets
of linkings are also exponentially many, and cannot be enumerated in log-
psace.

Figure 6: A proof-net (Γ,Θ), with Θ =
Sn
i=1 λi.

2. Given a set Λ ⊆ Θ of two or more linkings and aN node
xN toggled by Λ, it remains to be checked whether xN
belongs to a switching cycle ofHS�Λ. In the worst case,
the number of switched graphs of HS�Λ to be investi-
gated may be also exponential in the size of the input.
Moreover, it is unclear whether HS�Λ enjoys properties
such as D-R correctness that allow space-efficient algo-
rithms. Lemma 2.22 below shows that the switching
cycles of HS�Λ are actually the switching cycles of a
graph IS�Λ which, in turns, enjoys the property of being
D-R connected.

The two points above are necessary step-stones towards an
NL algorithm for condition (TOG) exhibited in Proposi-
tion 2.23.

Definition 2.16. Let {λ1, λ2} ⊆ Θ, we define Θλ1,λ2 =
{λ ∈ Θ : S�λ1 ∩ S�λ2 ⊆ S�λ}.

Lemma 2.17. Let (S,Θ) be a MALL proof structure satis-
fying (RES).
(S,Θ) satisfies (TOG) if and only if, for all {λ1, λ2} ⊆ Θ,
there exists a N node xN toggled by λ1, λ2 such that xN
does not belong to any switching cycle of HS�Θλ1,λ2

.

Proof. Only if direction is trivial. We prove the if direction.
In a first step, we show by induction on S \ (S�λ1 ∩ S�λ2)
that, for all Λ ⊆ Θλ1,λ2 with at least two linkings, Λ tog-
gles a N node x′N such that x′N does not belong to any
switching cycle of HS�Λ.
Let λ1, λ2 ∈ Θ, xN a N node toggled by {λ1, λ2} and
Λ ⊆ Θλ1,λ2 . Then, HS�Λ ⊆ HS�Θλ1,λ2

, and the switching
cycles of HS�Λ are switching cycles of HS�Θλ1,λ2

.
1. If Λ toggles xN, then xN belongs to no switching cycle

ofHS�Λ (otherwise it would belong to a switching cycle
of HS�Θλ1,λ2

)
2. Assume Λ does not toggle xN. Then, (S�λ1 ∩S�λ2) (⋂

λ∈Λ S�λ. Let W l
Λ be the N-resolution of S defined as

follows: ⋂
λ∈Λ

S�λ ⊆ W l
1, and ∀N node x′N ∈ S,

x′N 6∈
⋂
λ∈Λ

S�λ ⇒ x′
r
N is erased in W l

1,
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and W r
Λ as follows:⋂
λ∈Λ

S�λ ⊆ W r
1 , and ∀N node x′N ∈ S,

x′N 6∈
⋂
λ∈Λ

S�λ ⇒ x′
l
N is erased in W r

1 .

By Condition (RES), there exist λl, λr ∈ Θ s.t. λl v
W l

Λ and λr v W r
Λ. Then, clearly, Λ ⊆ Θλl,λr (

Θλ1,λ2 . Since |Θλl,λr | > 2, by Condition (RES),
Θλl,λr toggles a N node x′N 6= xN. By construction,
x′N is also toggled by Λ. The induction hypothesis on
Θλl,λr , and the arguments of (1) above yield that x′N
belongs to no switching cycle of HS�Λ.

The second step is to show that there exist λ1, λ2 ∈ Θ s.t.
Θ = Θλ1,λ2 . Consider Wl the N-resolution of S where
all right premises of N nodes are erased, and Wr the one
where all left premises of N nodes are erased. By Condition
(RES), there exists λ1, λ2 ∈ Θ such that λ1 vWl and λ2 v
Wr. It is clear that, for all λ ∈ Θ, S�λ1 ∩ S�λ2 ⊆ S�λ.
Therefore, Θ ⊆ Θλ1,λ2 .

Definition 2.18. Let (S,Θ) be a MALL proof structure.
Let xN be a N node in S. xN is said to be environment-free
if, for all λ ∈ Θ, for all link (a, b) ∈ λ, there exists a path
a � ·· � xN if and only if there exists a path b � ·· � xN.
If xN is not environment-free, it is said to be environment
linked.

Lemma 2.19. If (S,Θ) is a MALL proof net then, for all
N node xN, xN is environment-free if and only if, for any
sequentialization of (S,Θ), any N-rule applied on xN has
an empty environment Γ.

Proof. Straightforward proof by induction.

Definition 2.20. Let (S,Θ) be a MALL proof structure.
Let IS�Λ be GS�Λ extended with all admissible jump edges
for all {λ1, λ2} ⊆ Λ and where C(IS�Λ) contains the
premise - and jump - edges incident to all O nodes and
environment-linked N nodes of S�Λ, and the jump edges
only incident to all environment-free N nodes of S�Λ.

Lemma 2.21. If (S,Θ) is a MALL proof net then, for all
{λ1, λ2} ⊆ Θ, IS�Θλ1,λ2

, is D-R-connected.

Proof. We actually prove the lemma for the graph
IS�Θλ1,λ2

without jumps. An easy graph-theoretic proof
by induction shows that adding the jumps does not D-R-
Disconnect the paired graph.
The proof is by induction on (S,Θ), along Definition 1.4.
The only critical case is that of a N rule on Γ, ANB, where
the N node xN introduced by the rule is environment-linked
and is toggled by λ1, λ2. Assume without loss of generality
that xlN ∈ S�λ1 and xrN ∈ S�λ2.

By Definition 1.4, Θ = ΘA ]ΘB , and S is SΓ ] SA ] SB
(with respective conclusions Γ,A andB) extended with xN,
and (SΓ ] SA,ΘA), (SΓ ] SB ,ΘB) are both MALL proof
nets, and by Lemma 2.19, SΓ 6= ∅.
Let ΛA = {λ ∈ ΘA : SΓ�λ1 ∩ SΓ�λ2 ⊆ SΓ�λ} and
ΛB = {λ ∈ ΘB : SΓ�λ1∩SΓ�λ2 ⊆ SΓ�λ}. Then, clearly,
Θλ1,λ2 = ΛA ] ΛB , λ1 ∈ ΛA and λ2 ∈ ΛB .
Let W l

1 be the N-resolution of S defined as follows:

S�λ1 ∩ S�λ2 ⊆ W l
1, and ∀N node x′N ∈ S,

x′N 6∈ S�λ1 ∩ S�λ2 ⇒ x′
r
N is erased in W l

1, and

xrN is erased in W l
1,

and W r
1 as follows:

S�λ1 ∩ S�λ2 ⊆ W r
1 , and ∀N node x′N ∈ S,

x′N 6∈ S�λ1 ∩ S�λ2 ⇒ x′
l
N is erased in W r

1 , and
xrN is erased in W r

1 .

Then, by Condition (RES), there exists λl1, λ
r
1 ∈ Θ s.t. λl1 v

W l
1 and λr1 v W r

1 . Moreover, λl1 ∈ ΘA, λr1 ∈ ΘA and
S�λl1 ∩ S�λr1 = S�λ1 ∩ S�λ2. Therefore, ΛA = Θλl1,λ

r
1
.

Similarly, there exists λl2, λ
r
2 ∈ Θ s.t. ΛB = Θλl2,λ

r
2
.

By induction hypothesis, IS�Θλ1,λ2
= IS�Θ

λl1,λ
r
1
∪

IS�Θ
λl2,λ

r
2

where IS�Θ
λl1,λ

r
1

and IS�Θ
λl2,λ

r
2

are both D-R-
connected.
Moreover, by Condition (RES), neither IS�Θ

λl1,λ
r
1

nor
IS�Θ

λl2,λ
r
2

contains a unary couple of edges except for

xN. Therefore, for any switching S of IS�Θλ1,λ2
, xlN

is connected through S(IS�Θ
λl1,λ

r
1
) to some vertex y ∈

IS�Θ
λl1,λ

r
1
∩ IS�Θ

λl2,λ
r
2
6= ∅, and back to xrN through

S(IS�Θ
λl2,λ

r
2
).

Lemma 2.22. Let (S,Θ) be a MALL proof structure satis-
fying (RES) and let Λ ⊆ Θ with at least two linkings.
Λ toggle a N node xN such that xN belongs to a switching
cycle of IS�Λ if and only if it belongs to a switching cycle of
HS�Λ.

Proof. Condition (RES) implies that no premise edge of
any environment-free N node belongs to any switching cy-
cle of HS�Λ. Therefore, the switching cycles of HS�Λ are
switching cycles of IS�Λ, hence the “if” direction. The
“only if” direction proceeds from the fact that the switch-
ing cycles of IS�Λ are switching cycles of HS�Λ.

Lemmas 2.17 and 2.22 yield the following proposition:

Proposition 2.23. Let (S,Θ) be a MALL proof struc-
ture satisfying (RES). (S,Θ) satisfies (TOG) iff, for all
{λ1, λ2} ⊆ Θ, Θλ1,λ2 toggles a N node xN such that xN
does not belong to any switching cycle of IS�Θλ1,λ2

.
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Proposition 2.24. Let (S,Θ) be a MALL proof structure
satisfying (RES) and (MLL). The following algorithm de-
cides whether (S,Θ) satisfies (TOG) in non-deterministic
logarithmic space:

FOR ALL λ1, λ2 ∈ Θ
COMPUTE IS�Θλ1,λ2

,
COMPUTE D(IS�Θλ1,λ2

) the dependency graph of IS�Θλ1,λ2
,

IF ∀s ∈ D(IS�Θλ1,λ2
), ∃x ∈ D(IS�Θλ1,λ2

)

such that ¬STCONN(s, x) THEN REJECT
ELSE

LET tog= false
FOR ALL N node xN in S

LET IxN be IS�Θλ1,λ2
[∀ 7→∵\ ] whithout any premise

-or jump- edge to xN,
IF no premise-argument or jump-argument of xN is

connected to xN in IxN THEN tog=true
END FOR ALL

END IF
IF tog=false THEN REJECT

END FOR ALL
ACCEPT

Proof. By Proposition 2.24, (S,Θ) satisfies (TOG) if and
only if, for all {λ1, λ2} ⊆ Θ, Θλ1,λ2 toggles a N node
xN such that xN does not belong to any switching cycle
of IS�Θλ1,λ2

. By Lemma 2.21, if (S,Θ) satisfies (TOG),
then IS�Θλ1,λ2

is D-R-connected, and, by Lemma 2.3, its
dependency graph has a node s from which every node is
reachable. Now, if IS�Θλ1,λ2

is D-R-connected, a N node
xN belongs to a switching cycle of IS�Θλ1,λ2

if and only
if it belongs to a cycle of IS�Θλ1,λ2

[∀ 7→∵\ ], therefore the
algorithm above decides whether (S,Θ) satisfies (TOG).
It is clear that the enumeration of the λ1, λ2 ∈ Θ, and
the computation of IS�Θλ1,λ2

and D(IS�Θλ1,λ2
) can be per-

formed in logarithmic space. Since STCONN ∈ NL, the
whole algorithm works in NL.

Theorem 2.5 and propositions 2.15 and 2.24 yield the fol-
lowing result:

Theorem 2.25. MALL-CORR is NL-complete under
constant-depth reductions.

Since the size of a MALL proof structure is at most expo-
nential in the size of its skeleton andPSPACE=NPSPACE,
a consequence of Theorem 2.25 is that MALL-CORR can be
decided in (deterministic) polynomial space in the size of
the skeleton.
For other presentations of additive proof structures, as with
boxes [5], weights [6] or multiboxes [4], it seems reasonable
to expect the same result.
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