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Abstract 1.1. Judgments involving algebraic terms

Many semantical aspects of programming languages,
such as their operational semantics and their type assign- e gverview features of proof theory that support recur-
ment calculi, are specified by describing appropriate proof gjye definitions about first-order (algebraic) terms and, us
systems. Recent research has identified two proof-theoreti ing CCS as an example, we illustrate the judgments about

features that allow direct, logic-based reasoning aboetsu o nytations that can be encoded through such definitions.
descriptions: the treatment of atomic judgments as fixed

points (recursive definitions) and an encoding of binding (1) Logic programming, may behavior
constructs via generic judgments. However, the logics en-
compassing these two features have thus far treated the
orthogonally: that is, they do not provide the ability to de-
fine object-logic properties that themselves depend on an
intrinsic treatment of binding. We propose a new and sim-
ple integration of these features within an intuitionidtigic
enhanced with induction over natural numbers and we show
that the resulting logic is consistent. The pivotal benefit
of the integration is that it allows recursive definitions to
not just encode simple, traditional forms afomic judg-
mentsbut also to capture generic properties pertaining to
such judgments. The usefulness of this logic is illustrated
by showing how it can provide elegant treatments of object-
logic contexts that appear in proofs involving typing cdicu
and of arbitrarily cascading substitutions that play a rate
reducibility arguments.

Logic program-
ming languages allow for a natural specification and ani-
ation of operational semantics and typing judgments: this
observation goes back to at least the Centaur project and
its animation of Typol specifications using Prolag [5]. For
example, Horn clauses provide a simple and immediate en-
coding of CCS labeled transition systems and unification
and backtracking provide a means for exploring what is
reachablefrom a given process. Traditional logic program-
ming is, however, limited tanaybehavior judgments: us-
ing it, we cannot prove that a given CCS procéssannot
make a transition and, since this negative property is logi-
cally equivalent to proving tha® is bisimilar to0 (the null
process), such systems cannot capture bisimulation.

(2) Model checking, must behavior Proof theoretic
techniques formustbehaviors (such as bisimulation and
many model checking problems) have been developed in
the early 1990's[[8|_29] and further extended later] [15].
Since these techniques work by unfolding computations un-
til termination, they are applicable tecursive definitions
1. Introduction that arenoetherian As an example, bisimulation for finite
CCS can be given an immediate and declarative specifica-
An important approach to specifying and reasoning tion [17].
about computations involvgsoof theoryandproof search
We discuss below three kinds of judgments about computa-(3) Theorem proving, infinite behavior = Reasoning
tional systems that one might want to capture and the proofabout all members of a domain or about possibly infinite
theoretic techniques that have been used to capture themexecutions requires induction and coinduction. Incorpora
We divide this discussion into two parts: the first part deals ing induction in proof theory goes back to Gentzen. The
with judgments overlgebraic termsand the second with  work in [15,[23,[33] provides induction and coinduction
judgments oveterms-with-binders We then exploit this  rules associated with the above-mentioned recursive defi-
overview to describe the new features of the logic we are nitions. In such a setting, one can prove, for example, that
presenting in this paper. (strong) bisimulation in CCS is a congruence.

Keywords: generic judgments, higher-order abstract syn-
tax, proof search, reasoning about operational semantics
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1.2. Judgments involving bindings syntax analysis problems, binding constructs are treated b
building up a local context that attributes properties ® th

The proof theoretic treatment of binding in terms has Objects they bind. In reasoning about such analyses, itis of
echoed the three stages of development described abovd€n necessary to be able to associate relegyemericproper-

We switch from CCS to the-calculus to illustrate the dif-  ties with atomic judgments. For example, a typical type as-
ferent kinds of judgments that these support. signment calculus fok-terms treats abstractions by adding

assumptions about the type of the bound variables to the
context of the typing judgment. To model such a context,
we might use a predicatntxthat encodes the assignment
of types to abstracted variables. Thus, an atomic judgment
of the formentx [(z1,t1), ..., (xn, t,)] would denote the
assignment of types,, ..., t, to the variables, ..., z,

proach to higher-order abstract syntax|[26]. The logic pro- and can be used as a hypothesis n tl',]‘e cour_s? of dete_rmm-
ing the type of a term. Now, certain “generic” properties

gramming languagetProlog [24] and Twelfl[27] support hold implicitly of the contexts that are constructed: for ex

S.UCh syntax representatlons_ anq provide simple speuﬂca—ample, these assign types only to bound variables and have
tion of, for example, reachability in the-calculus.

at most one assignment for each of them. Such properties
(2) Model checking, V-quantification ~ While the no-  are not actually used in encoding the rules for type infer-
tions of universal quantification argeneric judgmenare  ence but they do have to be made explicit if we want to
often conflated, a satisfactory treatment of must behaeiorr  prove properties, such as the determinacy of type assign-
quires splitting apart these concepts. Wiguantifier [22]  ment, about the calculus that is encoded. Recursive defi-
was introduced to encode generic judgments directly. To il- nitions provide a means for formalizing properties that are
lustrate the issues here, consider the fornvata-(Az.z = needed in these kinds of reasoning tasks. Unfortunately,
Az.w). If we think of A\-terms as denoting abstracted syntax these definitions are not strong enough in their present form
(terms modulax-conversion), this formula should be prov-  to allow for the convenient statement of generic properties
able (variable capture is not allowed in logically sound-sub ranging over atomic judgments.

(1) Logic programming, A-tree syntax Higher-order
generalizations of logic programming, suchhégher-order
hereditary Harrop formula§21] and the dependently typed
LF [Q], adequately capture may behavior for terms contain-
ing bindings. In particular, the presence of hypothetical
and universal judgments supports thitree syntax [20] ap-

stitution). If we think of \-terms as describing functions, These issues surrounding the specification of contexts
then the equationy.t = Ay.s is equivalent tovy.t = s. are actually endemic to reasoning about many different
But then our example formula is equivalentto.—Vz.x = kinds of specifications that utiliza-tree syntax. We pro-

w, which should not be provable since it is not true in a vide an elegant treatment of it here by extending recursive
model with a single element domain. To think bterms  definitions to apply not only to atomic but also to generic

syntactically instead, we treaty.t = \y.s as equivalent  judgments. Using this device, we will, for instance, be able
to Vy.t = s. In this case, our example formula is equiva- to define a property of the form

lent toVw.—Vz.x = w, which is provable [22]. Using this

quantifier, ther-calculus procesg/z).[x = w].wx can be Vay - Va,. entx[(z1,t1), .., (Tn, tn)].

encoded such that it is provably bisimilarGo Bedwyr [3]

is a model checker that treats such generic judgments.  BY Stating the property in this way, we ensure thatxas-

) " , o signs types only to variables and at most one to each. Now,
(3) Theorem proving, LG  When there is only finite  his property can be used in an inductive proof, provided it
behavior, logics for recursive definitions do not need the .41 pe verified that the contexts that are built up during type

cut or initial rules, and, consequently, they do not need gnysis recursively satisfy the definition. We presergsul
to answer the question “When are two generic judgments;, 5 support this style of argument.

equal?” On the other hand, induction and coinduction do
need an answer to this questi@ng, when doing induction 1 4 Ap outline of the paper
over natural numbers, one must be able to recognize that the
case fori + 1 has been reduced to the caseiforhe LG¥

proof system[[34] provides a natural setting for answering te
this question. Using.G* encodings, one can prove that
(open) bisimulation is a-calculus congruence.

Section 2 describes the logig that allows for the ex-
nded form of definitions and Sectioh 3 establishes its con-
sistency. The extension has significant consequences for
writing and reasoning about logical specifications. We pro-
vide a hint of this through a few examples in Sectldn 4; as
1.3. Allowing definitions of generic judgments discussed later, many other applications such as solutions

to the POPLmark challenge problems [2], cut-elimination
In the developments discussed above, recursive definifor sequent calculi, and an encoding of Tait’s logical re-
tions are permitted only foatomic judgments. In many lations based proof of normalization for the simply typed



A-calculus[[32] have been successfully developed using the2.2. Generic judgments andv-quantification
Abella system that implemeng We conclude the paper
with a comparison to related work and an indication of fu- ~ Sequents in intuitionistic logic are usually written as

ture directions. Y:Bi,...,B, F By (n>0)

2. A logic with generalized definitions whereX: is the “global signature” for the sequent: in partic-
ular, it contains the eigenvariables of the sequent proef. W

shall think of X in this prefix position as being a binding
operator for each variable it contains. TROX*Y logic
[22] introduced “local signatures” for each formula in the
sequent: that is, sequents are written instead as

The logicg is obtained by extending an intuitionistic and
predicative subset of Church’s Simple Theory of Types with
fixed point definitions, natural number induction, and a new
guantifier for encoding generic judgments. Its main com-
ponents are elaborated in the subsections below. It is pos- Y:01>Bi,...,0,> B, F og> Bo,
sible to develop a classical variant @fas well: we do not
follow that path but just comment that moving from intu-
itionistic to classical logic can have interesting impamts
specifications. For example, the intuitionistic readinghef
specification of bisimulation for the-calculus yieldopen
bisimulationwhile the classical reading of the same speci- 4, ...z, 5B and Va;---Vz,.B (n>0)
fication yieldslate bisimulation36].

where eaclvy, ..., o, is a list of variables that are bound
locally in the formula adjacent to it. Such local signa-
tures within proofs reflect bindings in formulas using the
V-quantifier: in particular, the judgment and formula

have the same proof-theoretic force.
2.1. The basic syntax The FON2Y logic [22] (and its partial implementation
in the Bedwyr logic programming/model checking system
b- [3]) eschewed atomic formulas for explicit fixed point (re-

Following Church[[6], terms are constructed using a ; e o
g 6] g cursive) definitions, along with inference rules to unfold

straction and application from constants and (bound) vari-

ables. All terms are typed using a monomorphic typing then;). Inlz?‘U(_:h as(}/ste?,r?otﬂ_the (r:]ut-rule f_md tfhe initial rul_e
system; these types also constrain the set of well-formed®an P€ € iminated and checking the equality of two generic

expressions in the expected way. The provability relation Judgments_ IS not_necessary. AS.’ we have aIreaQy mer_mo_ned,
concerns well-formed terms of the distinguished tybat Whe_n ONe IS proving more amb|_t|ous theor(_ems involving in-
are also called formulas. Logic is introduced by including duction and coinduction, equality of generic judgments be-

special constants representing the propositional coivesct comes important.
T, L, A, Vv, D and, for every type that does not contain

the constant¥, and3; of type (7 — o) — o. The binary
propositional connectives are written as usual in infix form
and the expressions.z.B and3,z.B abbreviate the for-
mulasV,Az.B and3, \z.B, respectively. Type subscripts
will be omitted from quantified formulas when they can be
inferred from the context or are not important to the discus-
sion. We also use a shorthand for iterated quantification: if
Q is a quantifier, the expressi@zy, . . ., x,,. P will abbre-
viate Oz, ... Oz, .P.

The usual inference rules for the universal quantifier
can be seen as equating it to the conjunction of all of its
instances: that is, this quantifier is treated extensignall
There are a number of situations [22] where one wishes to
have a generic treatment of a statement likg#) holds for
all z”: in these situations, théorm of the argument is im-
portant and not the argument’s behavior on all its possible
instances. To encode such generic judgments, we use th
V-quantifier (nabla)[22]. Syntactically, this quantifietrco
responds to including a consta¥it- of type(r — o) — o
for each typer (not containing). As with the other quan-
tifiers, V.«. B abbreviated/, A\z. B and the type subscripts Jo1 ... 3z, /\ z; # ;).
are often suppressed for readability. 1<, j<n it

2.3.LG¥ and structural rules for V-quantification

There are two equations fov that we seem forced to
include when we consider proofs by induction. In a sense,
these equations play the role of structural rules for the lo-
cal, generic context. Written at the level of formulas, they
are theV-exchange rul&vxVy.F = VyVx.F and theV-
strengthening rul&/z. F* = F', providedz is not free inF'.

The LG proof system of Tiul[34] is essentialllfO\>Y
extended with these two structural rules Yor

The move from the weakdfO\2V to the strongefL.G¥
logic has at least two important additional consequences.

First, the strengthening rule implies that every type at
which one is willing to us&/-quantification is not only non-
empty but contains an unbounded number of members. For
example, the formulas,.z.T is always provable, even if
here are no closed terms of typébecause this formula is
equivalent tov..y3,x.T which is provable, as will be clear
from the proof system given in Figué 1. Similarly, for any
givenn > 1, the following formula is provable
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Figure 1. The core rules of G

Second, the validity of the strengthening and exchangestantiating the quantifier in the rule is a well-formed term
rules mean that all local contexts can be made equal. As aof type r constructed from the variables ¥ and the con-
result, the local binding can now be considered as an (im-stants inC U C. Notice that in contrast théR and3L rules
plicit) global binder. In such a setting, the collection of seem to allow for a dependency on only a restricted set of
globally V-bound variables can be replaced witbminal nominal constants. However, this asymmetry is not signifi-
constantsOf course, in light of the exchange rule, we must cant: the dependency expressed through raising in the latte
consider atomic judgments as being identical if they differ rules can be extended to any number of nominal constants
by only permutations of such constants. that are not in the relevant support set without affectirgg th

We shall follow theLG* approach to treatin§y. Thus, provability of sequents.
for every type we assume an infinite collection of nominal
constants. The collection of all nominal constants is de- 2 4. Recursive definitions
noted byC; these constants are to be distinguished from the
collection of usual, non-nominal constants that we denote
by K. We define thesupportof a term (or formula), writ-
tensupp(t), as the set of nominal constants appearing in it.

A permutation of nominal constants is a bijectiorfrom nitions that are permitted ihG“. In that setting, a defini-

C to C such that{z | w(z) # =} is finite andr preserves o4 clause has the foriz. H 2 B whereH is an atomic
types. Permutations will be extended to terms (and formu- ¢4 m1a all of whose free variables are contained:iand
las), written ¢, as follows: B is an arbitrary formula all of whose free variables must
ra=m(a), facC m.c=c, if c ¢ Cis atomic also be freg ind. In a clause of this sort] i; cf';lll.ed the
7.(Ax.M) = Az.(n.M) w.(M N)=(x.M) (x.N) heqdandB is called theb.odyand a (pq;sbly infinite) col-
lection of clauses constitutes a definition. Now, there are
The core fragment of] is presented in Figurlel 1. Se- two properties of such definitional clauses that should be
quents in this logic have the fordi : I' - C wherel' is a noted. First,H and B are restricted to not contain occur-
multiset and the signatuf@ contains all the free variables rences of nominal constants. Second, the interpretation of
of I"andC. IntheV L and VR rules,a denotes a nominal  such a clause permits the variableszino be instantiated
constant of an appropriate type. In th€ andvR rule we with terms containingnynominal constant; intuitively, the
use raising[[19] to encode the dependency of the quantifiedquantificational structure at the head of the definition has
variable on the support dB; the expressiofih ¢) used in a Vv form, with the (implicit) V quantification being over
these two rules denotes the (curried) applicatioh tj the arbitrary sequences of nominal constants. These two prop-
constants appearing in the sequeficéheV L and3R rules erties actually limit the power of definitions: (subpart3 of
make use of judgments of the fom IC,C ¢ : 7. These terms satisfying the relations they identify cannot be éorc
judgments enforce the requirement that the expresgsion to be nominal constants and, similarly, specific (sub)terms

The structure of definitions i is, in a sense, its distin-
guishing characteristic. To motivate their form and also to
understand their expressiveness, we consider first the defi-



cannot be stipulated to be independent of such constants.

These shortcomings are addressed by allowing defi- {30 : (w.B")0,1"0 - C'0} defr ¥ T'F (r.B)0
nitional clauses to take the forvx’.(Vz.H) £ B where all Y:ATHEC ¥:I'rHA
the free variables iVZ. H must appear i and all the free
variables inB must also be free iVz.H. The intended in-
terpretation of thé/ quantification ovefd is that particular
terms appearing in the relation being defined must be identi-
fied as nominal constants although specific names may stillrealized via raising. Given a clauses, . . ., z,.(VZ.H) £

not be assigned to these constants. Moreover, the locatiorg we define a version of it raised over the sequence of

of this quantifier changes the prefix over the head from anominal constantg and away from a signatute as
VYV form to the more generd’vVV form. Concretely, the

explicit V quantification ovef forces the instantiations for Vh.(VZHh @/x1,. .., he @/2n)) N
the externallyv quantified variable§ to be independent of Blhy @/ B @) 0]
the nominal constants used far 1a/&1,.-05Np Q) T,

~ One illustration of the definitions permitted éhis pro-  \yherep, ... b, are distinct variables of suitable type that
vided by the following clause: do not appear irE. Given the sequer : I' - C and a
sequence of nominal constartsione of which appear in
the support of” or C, let o be any substitution of the form
An atomic predicat@mameN would satisfy this clause pro-
vided that it can be matched with its head. For this to be
possible,N must be a nominal constant. Thummeis a

predicate that recognizes such constants. As another examrpan the sequerio : T'o - Co constitutes a version of
ple, consider the clause Y. T C raised oveFr.

VE.(Va.freshe E) 2 T. . The introduction rules based on definitiqns are pr.esented
in Figure2. Thedef’ rule has a set of premises that is gen-

In this case the atomic formulaesh N T will satisfy the erated by considering each definitional clause of the form
clause just in cas&’ is a nominal constant arifl is a term VZ.(VZ.H) £ B in the following fashion. Assuming that
that does not contain this constant (the impossibility sfva 2z = z1,...,2,, let¢ = ¢, ..., ¢, be a sequence of dis-
able capture ensures this constraint). Thus, this clause extinct nominal constants none of which appear in the support
presses the property of a name being “fresh”to agiventerm.of T, A or C and let>’ : A’ T’  C’ denote a version of
Further illustrations of the new form of definitions and thei the lower sequent raised ovér Further, letH’ and B’ be
use in reasoning tasks are considered in Settion 4. obtained by taking the head and body of a version of the

Definitions impact the logical system through introduc- clause being considered raised over a listingf the con-
tion rules for atomic judgments. Formalizing these rules stants in the support od and away from>’ and applying
involves the use of substitutions. substitutiond is a the substitutionic, /21, . . ., ¢,/ 2,) to them. Then the set of
type-preserving mapping (whose application is written in premises arising from this clause are obtained by consider-
postfix notation) from variables to terms, such that the seting all permutations of @¢ and all substitutiong8 such that
{z | z0 # z} is finite. Although a substitution is extended (7.H')§ = A’6, with the proviso that the range éfmay
to a mapping from terms to terms, formulas to formuéds, not contain any nominal constants.
when we refer to itslomainandrange we mean these sets The defR rule has exactly one premise that is obtained
for this most basic function. A substitution is extended to a by using any one definitional clause. The formukisand
function from terms to terms in the usual fashionI'lfs a H' are generated from this clause as in t&# case, but
multiset of formulas thefid is the multise{ J6 | J € T'}. If 7 is now taken to be any one permutationdsf and 6 is
Y is a signature theR# is the signature that results fromre- taken to be any one substitution such thatd’)d = A’,
moving fromX the variables in the domain éfand adding  again with the proviso that the range é®fnay not contain
the variables that are free in the rang&of any nominal constants.

To support the desired interpretation of a definitional  In summary, the definition rules are based on raising the
clause, when matching the head/at(Vz.H) £ B with an sequent over the nominal constants picked for¥heari-
atomic judgment, we must permit the instantiationsifoo ables from the definition, raising the definition over nomi-
contain the nominal constants appearing in that judgment.nal constants from the sequent, and then unifying the cho-
Likewise, we must consider instantiations for the eigelvar sen atomic judgment and the head of the definition under
ables appearing in the judgment that possibly contain thevarious permutations of the nominal constants. As it is
nominal constants chosen f&r Both possibilities can be  stated, the set of premises in thefZ rule arising from any

defR

Figure 2. Rules for definitions

(Vn.namen) £ T.

{W &/h | h € ¥ andh'is a variable of
suitable type that is not ik }.



lengths of computations. Specifically, we introduce thetyp

Iz z: LTzt I (s Y ILINFC nt and corresponding constructars nt ands : nt — nt.

Y:T,natN +C nat Use of induction is controlled by the distinguished predi-
catenat: nt — o. The rules for this predicate are presented
Y:T'F natN in Figure[3. The ruleat’ is actually a rule schema, pa-
¥ :TF natz nam ¥ :TF nat(s N) nam rameterized by the induction invariaht Providing induc-

tion over only natural numbers is mostly a matter of conve-
nience in studying the meta-theory @f Extending induc-
tion to other algebraic datatypées [23] 33] should haveelittl
impact on the meta-theory @f, although it would clearly

one definitional clause is potentially infinite because ef th D€ @ useful extension for any system implemengnguch
need to consider every unifying substitution. It is possibl @S Abellal7]).

to restrict these substitutions instead to the members of a

complete set of unifiers. In the situations where there is a3. Cut-elimination and consistency forg

single most general unifier, as is the case when we are deal-

ing with the higher-order pattern fragment[18], the number 1o consistency of is an immediate consequence of
of premises arising from each definition clause is boundedihe cut-elimination result for this logic. Cut-eliminatias
by the_ number of permutatio_ns. In practice, this number Canproved for LG* [35] by a generalization of the approach
be quite small as illustrated in Section 4. used forFOXAN [15] that is itself based on a technique in-
Two restrictions must be plaged on (_jeflr_1|t|onal clause_s troduced by Tait[[32] and refined by Martin-Léf [12]. The
to ensure consistency of th_e logic. The firstis t_hat NO NOMI- main aspect of this generalization is recognizing and uti-
nal constants may appear in such a clause; this requiremenizing the fact that certain transformations of sequenes pr
also enfprces an equivariance proper_ty for definitions. The ggpy e provability and also do not increase (minimum) proof
second is that such clauses musshatifiedso as to guar- - pejght, The particular transformations that are consitiere
antee the existence of fixed points. To do this we associat§, the case of.G* have to do with weakening of hypothe-
with each predicatp a natural numbelvl(p), thelevelof a5 permutations of nominal constants, and substitutions
p- The notion is generalized to formulas as follows. for eigenvariables. We can use this framework to show that

Definition 1. Given a formula B, its levék1(B) is defined ~ Cut can be eliminated frod by adding one more transfor-

Figure 3. Rules for natural number induction

as follows: mation to this collection. This transformation pertaingie
raising of sequents that is needed in the introduction rules
1. Wl(pt) = vi(p) based on the extended form of definitional clauses. We mo-

tivate this transformation by sketching the structure &f th

2. (L) =Wl(T)=0 .
argument as it concerns the use of such clauses below.

3. W(BAC) = II(BV C) = max(Ivl(B), W1(C)) The critical part of the cut-elimination argument is the
reduction of what are called the essential cases of the use

4. vI(B D C) = max(lvl(B) + 1, v1(C)) of the cutrule, i.e, the situations where the last rule in the
derivation is acutand the last rules in the derivations of its

5. Wl(Vz.B) = WI(Vz.B) = vl(3z.B) = Ivl(B) premises introduce the cut formula. Now, the only rules of

i w
For every definitional clauseéz.(Vz.H) £ B, we re- _Ql_r;[hat arer?lfferent fromdthosedng aredell anddeIfR. h

i < WI(H). This stratification condition en- us, we have to consider a diiterent argument only when
quire Ivl(B) < A X : these rules are the last ones used in the premise derivations
sures that a definition cannot depend negatively on itself.i, 41 essential case ofat In this case, the overall deriva-
More precise stratification conditions which allow such de- tjgn has the form

pendencyin a controlled fashion are possible, but we choose

this condition for simplicity. See [15, 34] for a descriptio e Hg”’/’B”
of why these properties lead to consistency. S T+ (1.B')0 o (n' . B"p,AptC"p

_ SRR S AAFC dei
2.5. Induction over natural numbers S T.AFC cut

The final component af is an encoding of natural num-  wherell; andﬂg’”/’BN represent derivations of the relevant
bers and rules for carrying out induction over these num- sequents. Let’ : IV A’ be the raised version af : " -
bers. This form of induction is useful in reasoning about A and letH’ andB’ be the head and body of the version of
specifications of computations because it allows us to in-the definitional clause raised overpp(A4) and away from
duct on the height of object-logic proof trees that encode th X’ used in thedefR rule. From the definition of this rule,



we know that is substitution such thdtr. H')0 = A’. Let
0’ be the restriction of to the free variables off’. Clearly
(m.H")0 = (m.H")#' and (x.B")0 = (n.B")¢’. Further,
since the free variables @f’ are distinct from the variables
in X/, ¢’ has no effect o', A’, C’, or A’. Thus, it must be
the case thafr. H')0’ = A’¢’. From this it follows that

H@',W,B'
2
S (r.BY A F O

memberB L £ 3n.natn A element B L
element B(B::L)2 T
element, xy B (C :: L) £ element; B L

Figure 4. List membership

Freshness In Section 2 we showed how the property of
freshness could be definedgnby the definitional clause

is included in the set of derivations above the lower sequent

of thedefL rule. We can therefore reduce tbetin question
to the following:

m g~
ST R (rB)Y Y (B, A FC
ST A

The proof of cut-elimination fol.G* is based on induction
over the height of the right premise incat, therefore this

VE.(Va.freshz E) £ T.

This clause ensures that the atomic judgmiémtsh X E)
holds if and only ifX is a nhominal constant which does not
appear anywhere in the terf. To see the simplicity and
directness of this definition, consider how we might define
freshness in a system likeG“ which allows for definitions
only of atomic judgments. In this situation, we will have to
verify that X is a nominal constant by ruling out the possi-
bility that it is a term of one of the other permitted forms.

cut can be further reduced and eliminated. The essential-l-hen, checking thak does not appear i will require an

properties we need to complete the proof at this point are

thaty : TV, A’ = ¢’ is provableifandonly i : ', A+ C

is provable, and that both proofs have the same heightin this

case. We formalize these in the lemma below.

Definition 2 (Proof height) The height of a derivatiofl,
denoted byit(I1), is 1 if IT has no premise derivations and
is the least upper bound dft(I1;) + 1}z if II has the
premise derivation$Il; };cz whereZ is some index set.

Lemma 3 (Raising) LetX : I' - C' be a sequent, letbe a
list of nominal constants not in the supportlobr C, and
let X : TV + C’ be a version o2 : T' - C raised over
¢. ThenX : I' - C has a proof of height if and only if
¥ : T+ C’ has a proof of height.

With this lemma in place, the following theorem and its
corollary follow.

Theorem 4. The cut rule can be eliminated froghwithout
affecting the provability relation.

Corollary 5. The logicg is consistent.e., it is not the case
that bothA and A O L are provable.

Cut-elimination is also useful in designing theorem
provers and its counterpart, cut-admissibility, allows oo

explicit walking over the structure af. In short, such a
definition would have to have the specific structure of terms
coded into it and would also use (a mild form of) negative
judgments.

To illustrate how the definition ig can be used in area-
soning task, consider proving the following lemma

Yz, e, .(freshx ¢ AN membere ¢) O freshz e

wheremembeis defined in Figurgl4. This lemma is useful

in constructing arguments such as type uniqueness where
one must know that a list does not contain a typing judgment
for a particular variable. The proof of this lemma proceeds
by induction on the natural numberuantified in the body

of memberThe base case and the inductive step eventually
require showing the following:

Vx,b, L. freshz (b :: £) D freshz b
Va,b, L. freshx (b :: £) D freshx ¢

We shall consider the proof of only the first statement; the
proof of the second has a similar structure.
The first statement follows if we can prove the sequent

x,b,¢ : freshx (b :: £) - freshz b.
Consider howdefZ acts on the hypothes{greshz (b :: £))

reason richly about the properties of such proof proceduresin this sequent. First the clause flseshis raised over the

4. Examples

We will often suppress the outermost universal quanti-
fiers in displayed definitions and will assume that capital
letters denote implicitly universally quantified variable

support of the hypothesis, but this is empty so raising has no
effect. Second, the sequentis raised over some new nominal
constant corresponding to th¥ in the head of the defini-
tion for fresh The last step is to consider all permutations
m of the set{¢} and all solution® of

(m.freshc e)0 = (fresh(x’ ¢) (b ¢) = (¢ ¢)))6.
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downplay its significance. The definition eéqgis presented
seq ny L (A) = 3b.prog A b A seqy L'b in Figure[B. The constructdp) is used to inject atomic for-
mulas into formulas; as such, it serves as a device for isolat
ing atomic formulas. The object level universal quantifier
is reflected into a meta level generie( V) quantifier in
the definition ofseq this treatment turns out to capture the
computational semantics of the universal quantifier rather
There is, in fact, a most general unifier here: precisely. Backchaining is realized by the last clauseegf
In giving meaning to this clause, we expect that the spec-
0 =[z" = (Az.z),0" — (Az.b"), ification of interest in a particular situationd., the logic
0 — Azl"),e — (b 0M)]. programthat we want to reason about) has been encoded

)
)
)2 seqy (A L) B Figure 6. Simple typing of \-terms
)
)

Figure 5. Second-order hereditary Harrop
logicin G

The resulting sequent is through the definition oprog In particular, a logic pro-
gram clause of the forvz.((G z) D (A z)) would result,
b, 0" . T I freshe b” in the reasoning context, in the addition of a definitional

clausevz.prog (A z) (G z) £ T that can be used by the

The next step in this proof is to apptlefR to the con-  seqpredicate. To simplify notation, we writg I~ P for
clusion. To do this we first raise the clause fogshover 3n.(natn A seq, L P). WhenL is nil we write justl- P.
the support of the conclusion which {g}. Then we raise An example of a specification that we may wish to rea-
the sequent over a new nominal constantorrespond-  son about is that of the typing rules for the simply typed
ing to the V in the head of the definition. Finally we )-calculus. These rules can be encoded using hereditary
need to find a permutation of {c, ¢’} and a solutiord to Harrop formulas as shown in Figure 6 that, in turn, would
(m.freshc’ (e’ ¢))0 = freshe (b ¢'). Here we find the  be reflected into definitional clauses forogas described
permutation which swapsandc’ and the solutio which above. In these formulasppand absare the usual con-
unifiese’ andb”. The resulting sequent is then structors for application and abstraction in the untyped
calculus. Note that no explicit context of typing assump-
tions is used in these rules: rather the hypothetical judg-
which is trivially provable. ment of hereditary Harrop formullas is used to.k.eep track of
such assumptions. This context is made explicit only when
reasoning about this specification via thegdefinition.

Consider demonstrating the type uniqueness property for
the simply typed\-calculus using theegencoding. We can
do this by showing that the formula

b0 TET

Typing contexts We now illustrate an approach to ani-
mating and reasoning about the static and dynamic seman
tics of programming languages. The first step in this ap-
proach is that of encoding these two kinds of semantics us-
ing the (second-order fragment of the) logic of hereditary vm, t,s.(IF (of m YA IF(of m s)) Dt = s,
Harrop formulas. Specifications provided through these
formulas have a natural executable interpretation based oris a theorem: here, the binary predicateis defined by
the logic programming paradigin [21]. The interesting part the single claus&z. = = = £ T. We can prove this for-
from the perspective of this paper is that we can encodemula using an induction on natural numbers but, to do this,
provability of this subset of hereditary Harrop formulas as We must generalize it to account for the fact that the rule
a definition inG. This definition, then, becomes the bridge for typing absthat allows us to descend under abstractions
for reasoning about the (executable) specifications. enhances the atomic formulas assumedéy A suitably

To develop these ideas in more detail, we encode prov-generalized form of the statement, then, is
ability in the second-order hereditary Harrop logic as a
three-place definitioniseqy, L G) where L denotes the
context of hypothetical (assumed) atomic formulas &hd
denotes the goal formula [16, 122]. The arguméhtor-
responds to the height of the proof tree and is used for in-
ductive arguments; we write this argument as a subscript to (of ey Ty ... Of e, Ty, i: mil),

Ve, m,t,s.(cntxf A LI-{of m t) ALIF{of m s)) Dt =s.

Now, this formula is provable only if the definition ohtx
ensures that i€ntx ¢ holds therv is of the form



cntxnil & T
cntx(of X A L) 2 (YM,N.X = appM N D L) A
(VM,B.X =absB M D> 1) A
(VB.membenof X B) L D L) A

cntx L

Figure 7. cntxin LG¥

cntxnil = T
(Va.cntx(ofz A :: L)) £ entx L

Figure 8. cntxin G

wherec; .. .c, are distinct nominal constants. The chal-
lenge then, is in providing a definition ehtxwhich accu-
rately describes this requirement. In particular, the defin
tion must ensure that the first argumentsotan the ele-

subst il TT2 T
(Va.subst, ny (2, V) = L) (T x) S) =
substy L(T'V) S

Figure 9. Arbitrary cascading substitutions

instantiations of the open terms. When reasoning With
open terms are denoted by terms with nominal constants
representing free variables. The general form of an open
termis thusM ¢; --- ¢,, and we want to consider all pos-
sible instantiations\/ V; --- V,, where theV; are closed
terms. This type of arbitrary cascading substitutionsfs di
ficult to realize in reasoning systems based\dénee syntax
sinceM would have an arbitrary number of abstractions.
We can define arbitrary cascading substitution§ ins-
ing the unique structure of definitions. In particular, we ca
define a predicate which holds on a list of p&ieg V;), a
term with the formM ¢; --- ¢, and a term of the form
M Vi --- V,. The idea is to iterate over the list of pairs

ments of this list are nominal constants and not some otherand for each paifc, V) useV in the head of a definition
piece of syntax, and it must also ensure that each such conto abstract out of the first term and then substitutebe-

stant is distinct from all others.
In LG“, cntxcan be defined by explicitly restricting each

fore continuing. This is the motivation f@ubstdefined in
Figure[9. Note that we have also added a natural number

element of the context as shown in Figlike 7. This definition argument to be used for inductive proofs.

checks that the first argument & is a nominal constant
by explicitly ruling out all other possibilities for it. Thg

Given the definition obubstone may then show that ar-
bitrary cascading substitutions have many of the same prop-

to ensure distinctness of arguments, the rest of the list iserties as normal higher-order substitutions. For instaince

traversed usingnember This definition is evidently com-

the domain of the untyped-calculus, we can show that

plex and the complexity carries over also into the process of substacts compositionally via the following lemmas.

reasoning based on it.
In G we can give a direct and concise definitionaoiftx

usingV quantification in the head of a definition as is done

in Figure[8. The occurrence of thé-bound variabler in
the first argument obf codifies the fact that type assign-

ments are only made for nominal constants. The uniqueness
of such nominal constants is enforced by the quantification

structure ofcntx the variablel cannot contain any occur-
rences ofr. With this definition ofcntx, the generalized
theorem of type uniqueness is provable. Usdeaff on the
hypothesis ottntx £ will allow only the possibility of type
assignments for nominal constants, while usel@fR will

verify that the contexts that are created in treating abstra
tions align with the requirements imposed by the definition

of cntx

Arbitrarily cascading substitutions Reducibility argu-

Vn, £, t,r, s.(natn A subst ¢ (appt r) s) D
Ju,v.s = appu v A subst £t u A subst £ rv

Vn, £,t,r.(natn A subst, ¢ (abst) r) D
Jds.r = abss A Vz.subst £ (t z) (s z)

Both of these lemmas have straightforward proofs: induct
onn, usedef’ on the assumption afubst apply the induc-
tive hypothesis and us#efR to complete the proof.

5. Related work

Mechanized reasoning about structural operational se-
mantic-style specifications of formal systems has received
the attention of other researchers. Recent impetus for this
kind of reasoning has been provided by a desire for com-

ments, such as Tait’s proof of normalization for the simply puter verified proofs in the realm of programming lan-
typed A-calculus[[32], are based on judgments over closed guage theory[[2]. One line of research focuses on de-
terms. During reasoning, however, one is often working veloping proofs within the framework provided by an ex-
with open terms. To compensate, the closed term judgmenisting and well-developed interactive theorem prover such
is extended to open terms by considering all possible closedas Coq [[4] and Isabelle/HOL _[25]. Many of the contexts



in which machine authenticated reasoning of this kind is allowing more declarative approaches to the specification o
needed deal with objects involving binding. Several pre- invariants for (object-level) contexts. As a result, maiy o
vious attempts have been characterized by the use of algethe theorems that have been provedi@ \*™ [16] can be
braic datatypes, enhanced perhaps by a de Bruijn-like rep-given much more understandable proofgjin

resentation of bound variables, in the encoding of binding et Pfenning and Schriimanin [31] also describe a two-
constructs. While some success hgs been achieve(_j usingsyel approach in which LF terms and types are used at the
this approach to object representation! [10,111, 38], it hasgpject-level and the logic\, is used at the meta-level.
also been noted that the real reasoning task is often overgepriimann’s PhD thesis [30] further extended that meta-
whelmed under such an approach by the proofs of mundangqgic to one calledMj. This framework is realized in
binding and substitution oriented lemmas. Twelf [27], which also provides a related style of meta-
The more natural and more promising approaches to theyeasoning based on mode, coverage, and termination check-
kind of reasoning of interest are the ones that provide SP€-ing over higher-order judgments in LF. Their approach also
cial logic based treatments of binding such as is manifestin hakes use of\-tree syntax at both the object and meta-
A-Free s;_/ntax. We discuss the main lines of research undelgyels and goes beyond our proposal here in that they handle
this rubric below. the complexities of dependent types and proof objécts [9].
Nominal logic based reasoning Nominal logic extends  On the other hand, the kinds of meta-level theorems they
first-order syntax with primitives for treating variablemes can prove are different from what is availablednFor ex-
in such a way that--equivalence classes are recognized ample, implication and negation are not presentj and
[28]. This considerably simplifies the treatment of bind- cannot be encoded in higher-order LF judgments: hence,
ing in specifications. In contrast to the approach undeglyin properties such as bisimulation for CCS or thealculus
our work, no separate meta-logic has as yet been developedre not provable.
for reasoning about nominal logic descriptions. Reasoning A key component inM3 and in the higher-order LF
about specifications written in this logic is instead resdiz  judgment approach to meta-reasoning is the ability to spec-
by axiomatizing the primitives of the logic in a rich system ify invariants related to the structure of meta-logical €on
such as Coq or Isabelle/HOLI[L,137]. This approach hastexts. These invariants are callesyular worldsand their
proved successful for many applications. analogue in our system is judgments suchcas< which
Aside from the absence of a meta-logic, the most promi- explicitly describe the structure of contexts. While the ap
nent difference between the nominal logic based approachproach to proving properties in Twelf is powerful and con-
and our work is that we us&-tree syntax and thus obtain venientfor many applications, one might prefer defining ex-
a comprehensive treatment of baetrequivalenceand sub- plicitinvariants, such asntx, over the use of regular worlds,
stitution within the logic. The nominal logic approach does since this allows describing more general judgments over
not provide any direct support for substitution, and indtea contexts, such as in the example of arbitrary cascading sub-
requires substitution to be defined on a case-by-case basistitutions where theubspredicate actively manipulates the
In reasoning, this means that various substitution lemmascontext of a term.
need to be proved for each syntactic class over which SUb'ImpIementation The first author has implemented a sig-
stitution is Qefined. Another difference worth noting isttha nificant portion ofG in a recently released system called
we can derive freshness as a consequence of the nesting ipe|ia [7]. This system provides an interactive tactics-
quantifiers in an explicit definition of théeshpredicate,  pased interface to proof construction. The primary focus
whereas nominal logic approaches either take freshness ag¢ apella is on reasoning about object-level specifications
primitive or define it in terms of set membership. written in hereditary Harrop formulas: provability in that
Two-levels of logic McDowell & Miller [13] 14}, [1€] ex- logic is provided by a definition similar to that cleqgin
plored using awo-level approacho reasoning about, for  Figure[%. Through this approach, Abella is able to take
example, the operational semantics and the typing of smalladvantage of meta-level properties of the logic of heredi-
programming languages. Both levels of logic shared the tary Harrop formulase.g, cut and instantiation properties)
same)-tree approach to the treatment of (object-level and while never having to reason outsidef
meta-level) binding: the object-logic was a simple second-  Abella has been used in many applications, including all
order intuitionistic logic and the meta-logic was called the examples mentioned in this paper. First-order resuits i
FOMNN, While FONAN contained inference rules for def-  clude reasoning on structures such as natural numbers and

initions, it lacked thév-quantifier. As a result, theegpred- lists. Taking advantage of-tree syntax, application do-

icate could not be specified in the same direct fashion as itmains such as the simply typedcalculus are directly ac-

is in Figureb. cessible. Particular results include equivalence of bég-s
As we illustrated briefly in Sectidd 4, replacifgO >N and small-step evaluation, preservation of typing for both

with G strengthens the expressiveness of the meta-logic byforms of evaluation, and determinacy for both forms of eval-
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uation. More advanced results which make use of generic cal Frameworks and Meta-Languages:Theory and Practice
judgments for describing contexts include type uniqueness (LFMTP), Seattle, WA, USA, Aug. 2006.

disjoint partitioning of\-terms into normal and non-normal ~ [2] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Fos-
form, and the Church-Rosser theorem. Larger applications ~ ter, B. C. Pierce, P. Sewell, D. Vytiniotis, G. Washburm,
include challenges 1a and 2a of the POPLmark challenge S+ Weirich, and S. Zdancewic. Mechanized metatheory for
[2], a task which involves reasoning about the contexts of the masses: The POPLmark challenge.Tieorem Prov-

o . ing in Higher Order Logics: 18th International Conference
subtyping judgments fof'c., a A-calculus with bounded number 3603 in LNCS, pages 50-65. Springer-Verlag, 2005.

subtype polymorphism. Finally, we have formalized a proof [3] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu.

of normalization for the simply-typed-calculus based on The Bedwyr system for model checking over syntactic ex-
Tait’s reducibility argument [32]. This last example uses pressions. In F. Pfenning, editd1th Conference on Au-
the formalization of arbitrarily cascading substitutiates tomated Deduction (CADEpumber 4603 in LNAI, pages
scribed Sectiohl4. 391-397. Springer, 2007.

[4] Y. Bertot and P. Castérarnteractive Theorem Proving and
Program Development. Coq'Art: The Calculus of Induc-
tive Constructions Texts in Theoretical Computer Science.
Springer Verlag, 2004.

6. Future work

We are presently investigating the extensiorgoWith [5] P.Borras, D. Clement, T. Despeyroux, J. Incerpi, G. ikah
a general treatment of induction over definitions as in the B. Lang, and V. Pascual. Centaur: the systemPiioceed-
closely related logic Lind [33]. This extension would sim- ings of SIGSOFT’88: Third Annual Symposium on Software
plify many inductive arguments by obviating explicit mea- Development Environments (SDEBJpston, 1988.

sures in induction; thus, natural numbers encoding compu- [6] A. Church. A formulation of the simple theory of type3.
tation lengths would not be needed in the definitions of the of Symbolic Logic5:56-68, 1940.
elemenand substpredicates considered in Sectfdn 4 if we 7] A Gacek. System description: Abella — A system for rea-
can induct directly on the unfolding of their definitions. An ZEQ%%&P ggggor;gg;a“ons' Available from http://arxiglo
other benefit of this app_roach_to |nduct|0_n is th_at it hf_;ls_ a [g] J.-Y. Girard. A fixpoint theorem in linear logic. An
naturally dual rule for coinduction over coinductive defini email posting to the mailing list linear@cs.stanford.edu,
tions. This rule has been found useful in Linc, for example, Feb. 1992.
in proving properties of systems such ashealculus. [9] R. Harper, F. Honsell, and G. Plotkin. A framework for
At a practical level, we are continuing to develop Abella defining logics.Journal of the ACM40(1):143-184, 1993.
as a theorem proving system and to explore its use in com-[10] D. Hirschkoff. A full formalization of pi-calculus thay in
plex reasoning tasks. We expect to use Abella to provide ~ the Calculus of Constructions. In E. Gunter and A. Felty,
more elegant proofs of the many meta-logical theorems edltors,Proceedlqgs .of the 10th Interna’qonal Conferfance
found in [16], which include cut-elimination theorems, ¢yp on Tgeorezm P.rovmgclg Higher Ord3er LG%Q'CS (TPHO.lﬁS o7)
preservation, and determinacy of typing and evaluation. Fi g;gesr:ugslg]glgl\] + pages 153-169, Murray Hill, New
nally, if the previously mentioned work on coinduction is 44 A |

. X. Leroy. A locally nameless solution to the POPLmark
completed, Abella can be used to explore the role of generic challenge. Research report 6098, INRIA, Jan. 2007.

definitions in a coinductive setting. [12] P. Martin-Lof. Hauptsatz for the intuitionistic thoof it-
erated inductive definitions. In J. E. Fenstad, ediBm-
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