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Abstract—Graded modal logic is the formal language ob-
tained from ordinary modal logic by endowing its modal oper-
ators with cardinality constraints. Under the familiar possible-
worlds semantics, these augmented modal operators receive
interpretations such as “It is true at no fewer than 15 accessible
worlds that . . . ”, or “It is true at no more than 2 accessible
worlds that . . . ”. We investigate the complexity of satisfiability
for this language over some familiar classes of frames. This
problem is more challenging than its ordinary modal logic
counterpart—especially in the case of transitive frames, where
graded modal logic lacks the tree-model property. We obtain
tight complexity bounds for the problem of determining the
satisfiability of a given graded modal logic formula over
the classes of frames characterized by any combination of
reflexivity, seriality, symmetry, transitivity and the Euc lidean
property.

Keywords-modal logic; graded modalities; computational
complexity

I. I NTRODUCTION

Graded modal logicis the formal language obtained by
decorating the✸-operator of ordinary modal logic with
subscripts expressing cardinality constraints. Specifically, for
C ≥ 0, the formula✸≤Cϕ may be glossed: “ϕ is true at
no more thanC accessible worlds,” and the formula✸≥Cϕ
may be glossed: “ϕ is true at no fewer thanC accessible
worlds.” The semantics for graded modal logic generalize
the relational semantics for ordinary modal logic in the
expected way. We employ the labels Rfl, Ser, Sym, Tr and
Eucl to denote, respectively, the classes of reflexive, serial,
symmetric, transitive and Euclidean frames. (Definitions of
these frame classes are given in Table I.) Using this notation,
⋂
{Rfl,Tr} denotes the class of reflexive, transitive frames,

⋂
{Ser,Tr,Eucl} denotes the class of serial, transitive, Eu-

clidean frames, and so on. As a limiting case,
⋂
∅ denotes

the class of all frames. In this paper, we investigate the
computational complexity of determining the satisfiability
of a given formula of graded modal logic over any frame
class of the form

⋂
F , whereF ⊆ {Rfl,Ser,Sym,Tr,Eucl}.

It is easy to see that ordinary modal logic is in effect a
sub-language of graded modal logic: any formula of the form
✸ϕ may be equivalently written✸≥1ϕ, and similarly, any
formula of the form✷ϕ may be equivalently written✸≤0¬ϕ.
And ordinary modal logic provides a good starting point for

our analysis, because its complexity-theoretic treatmentis
comparatively straightforward. The following two theorems
are well-known, and may be proved using techniques found
in any modern text on modal logic (e.g. [1]). We remind
the reader that symmetry and transitivity together imply the
Euclidean property.

Theorem 1. Let F ⊆ {Rfl,Ser,Sym,Tr,Eucl}, with Eucl∈
F or {Sym,Tr} ⊆ F . Then the satisfiability problem for
ordinary modal logic over

⋂
F is NP-complete.

Theorem 2. If F ⊆ {Rfl,Ser,Tr}, then the satisfiability
problem for ordinary modal logic over

⋂
F is PSpace-

complete[2]. Also, if F ⊆ {Rfl,Ser,Sym}, then the sat-
isfiability problem for ordinary modal logic over

⋂
F is

PSpace-complete.

The upper complexity bound in Theorem 1 follows from
the fact that ordinary modal logic has the polynomial-size
model property over the relevant frame classes: if a formula
ϕ of ordinary modal logic is satisfiable over a frame in

⋂
F ,

whereF satisfies the conditions of Theorem 1, then it is
satisfiable over a frame in

⋂
F whose size is bounded by

a polynomial function of the number of symbols inϕ. For
the frame classes of Theorem 2, ordinary modal logic lacks
the polynomial-size model property. However, it does have
the tree-modelproperty: if a formula is satisfiable over a
frame in any of the classes

⋂
F mentioned in Theorem 2,

then it is satisfiable over a frame in that class which forms
a (possibly infinite) tree [3]. Because the branches of this
tree can be assumed to be either short or periodic with small
period, and because these branches can be explored one-by-
one, thePSpace-upper complexity bound may be obtained
by exhibiting, for each relevant frame class

⋂
F , a suitable

semantic tableau algorithm.
Turning our attention to the language of graded modal

logic, our first question is whether the results of Theorems 1
and 2 carry over to the larger language. WhenF contains
neither of the classes Tr or Eucl, the answer is yes. We have:

Theorem 3. The satisfiability problem for graded modal
logic overF =

⋂
∅ is PSpace-complete[4]. In fact, if F ⊆

{Rfl,Ser,Sym}, then the satisfiability problem for graded
modal logic over

⋂
F is PSpace-complete.
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The reason—and indeed the reasoning—is essentially the
same as for Theorem 2: thePSpace upper complexity
bound in Theorem 3 depends on the fact that graded modal
logic enjoys the tree-model property over the relevant frame
classes. This can then be used to establish the correctness
of semantic tableau algorithms for graded modal logic over
these frame classes. The paper [4] actually considers only
the caseF = ∅ (i.e. the class of all frames); however, the
modifications required to take account of reflexivity, seriality
and symmetry are routine, because these restrictions do not
compromise the tree-model property. Note that the upper
complexity bound in Theorem 3 holds even when numerical
subscripts are coded in binary. (The much easier result for
unary coding can be found in [5].)

When F contains either Eucl or Tr, the complexity of
the satisfiability problem for graded modal logic over

⋂
F

is harder to determine. Consider first the analogue of Theo-
rem 1, where we have either Eucl∈ F or {Tr,Sym} ⊆ F ,
and let {ϕn}n≥0 be the sequence of formulas given by
ϕn = ✸≥2np. Assuming binary coding of numerical sub-
scripts, the number of symbols inϕn is bounded by a linear
function of n, and everyϕn is satisfiable over a Euclidean
frame; butϕn is certainly not satisfiable over any frame
with fewer than2n worlds! Thus, for graded modal logic,
the reasoning used to prove Theorem 1 fails. Nevertheless,
the corresponding complexity result still holds:

Theorem 4. Let F ⊆ {Rfl,Ser,Sym,Tr,Eucl}, with Eucl∈
F or {Sym,Tr} ⊆ F . Then the satisfiability problem for
graded modal logic over

⋂
F is NP-complete.

We prove Theorem 4 in Section III.
WhenF contains Tr, but neither Sym nor Eucl, we cannot

apply the reasoning of Theorem 2 at all, since graded modal
logic lacks the tree-model property over transitive frames.
For example, consider the formulaϕ given by

ϕ := q0 ∧✸≥2(¬q0 ∧ q1 ∧✸≥1(¬q0 ∧ ¬q1)) ∧✸≤1¬q1.

The formula ϕ is certainly satisfiable over transitive
frames; however, it is not satisfiable over tree-shaped tran-
sitive frames. For supposeϕ is true at a worldw0 in some
structure. The conjunct✸≥2(¬q0∧q1∧✸≥1(¬q0∧¬q1)) en-
sures the existence of distinct worldsw1 andw2, accessible
from (and distinct from)w0, and, fori = 1, 2, a worldw′

i

accessible fromwi and satisfying¬q1, with w′
i distinct from

w0, w1 andw2. But the conjunct✸≤1¬q1 ensures that, if
the accessibility relation is transitive,w′

1 = w′
2. Hence,ϕ is

not satisfiable over a tree. Indeed, we show below that, for
the relevant frame classes, graded modal logic and ordinary
modal logic exhibit different complexities:

Theorem 5. Let F ⊆ {Rfl,Ser,Tr}, with Tr ∈ F . Then the
satisfiability problem for graded modal logic over

⋂
F is

NExpTime-complete. It remainsNExpTime-hard, even when
all numerical subscripts in modal operators are at most1.

We prove Theorem 5 in Section IV. The final statement of
the theorem is significant, because it means that the result
does not depend upon the coding of numerical subscripts.

A moment’s thought shows that the conditions in Theo-
rems 3–5 are exhaustive: together, they establish the com-
plexity of the satisfiability problem for graded modal logic
over

⋂
F for everyF ⊆ {Rfl,Ser,Sym,Tr,Eucl}.

The decidability of the satisfiability problem for graded
modal logic over various frame classes

⋂
F is touched on

in [6], where it is stated (p. 520) that “standard techniquesor
modifications of them may be used to prove the decidability
of most of [these] logics”; however, the paper gives no
further details. Several such decidability results are claimed
in [7]; however, in the (difficult) case whereF = {Tr}, this
proof contains an error, as reported in [8]. The latter provides
a correct proof; however, the method employed there does
not establish any complexity bounds. It is conjectured in [9]
(Remark 4.12), that the satisfiability problem for graded
modal logic over the class of transitive, symmetric and
reflexive frames isPSpace-complete: Theorem 4 shows that
this conjecture, if true, would imply thatPSpace=NP. Earlier
accounts of graded modal logics focused primarily on the
problem of axiomatizing the set of valid formulas over
these frame classes. For instance, [6] provides (or reports)
such axiomatizations for

⋂
F , whereF is any of∅, {Rfl},

{Sym}, {Rfl,Sym}, {Rfl,Tr} and {Rfl,Tr,Sym}. Similar
results can be found in [10], [11], [12], [13]; see also [9]
for axiomatizations of some related logics.

Graded modal logics are closely related to terminological
languages and description logics (DLs) [14] featuring so-
called qualified number restrictions. These logics allow
concepts to be defined by specifying how many things (of
various kinds) instances of those concepts can be related to.
Logics featuring both qualified number restrictions and tran-
sitive relations are frequently undecidable [15], and many
DLs incorporate various syntactic restrictions to restore
decidability. It was recently shown in [8] that some of these
syntactic restrictions can be considerably relaxed.

This paper is an extended version of [16] containing the
omitted proofs.

II. PRELIMINARIES

Fix a countably infinite setΠ. The language ofgraded
modal logicis defined to be the smallest set of expressions,
GM, satisfying the following conditions:

1) Π ⊆ GM;
2) if ϕ andψ are inGM, then so are¬ϕ, ϕ∧ψ, ϕ∨ψ,

ϕ→ ψ andϕ↔ ψ;
3) if ϕ is in GM, then so are✸≤Cϕ and✸≥Cϕ, for any

bit-stringC.
We refer to expressions in this set asGM-formulas (or
simply formulas, if clear from context). Ifϕ is a GM-
formula, we take thesize ofϕ, denoted||ϕ||, to be the number
of symbols in ϕ. Throughout the paper, we equivocate



between bit-strings and the natural numbers they represent
in the usual way. Thus, we may informally think of the
subscripts in✸≤C and ✸≥C as natural numbers, it being
understood that the number of symbols in, for example,✸≤C

is approximatelylogC, rather thanC. That is: in giving
the size of a formula, we assumebinary, rather thanunary,
coding.

Let Σ be the relational signature with unary predicatesΠ
and single binary predicater, and letA be aΣ-structure with
domainW . We refer to the elements ofW as worlds. We
define thesatisfactionrelation forGM-formulas inductively
as follows:

1) A |=w p if and only if w ∈ pA;
2) A |=w ¬ϕ if and only if A 6|=w ϕ, and similarly for

∧, ∨, →, ↔;
3) A |=w ✸≥Cϕ if and only if there exist at leastC

worlds v ∈ W such that〈w, v〉 ∈ rA andA |=v ϕ;
4) A |=w ✸≤Cϕ if and only if there exist at mostC

worlds v ∈ W such that〈w, v〉 ∈ rA andA |=v ϕ.

The notion of satisfaction extends to sets ofGM-formulas
Φ as expected:A |=w Φ if A |=w ϕ for all ϕ ∈ Φ. If
A |=w ϕ, we sometimes say, informally, thatϕ is true at
w in A. We write ✷ϕ as an abbreviation for✸≤0¬ϕ, and
✸ϕ as an abbreviation for✸≥1ϕ, or, equivalently,¬✸≤0ϕ.
Thus, the language of ordinary modal logic may be regarded
as the subset ofGM in which all indices are restricted to 0.
Finally, we write⊡ϕ as an abbreviation forϕ ∧ ✷ϕ.

By a frame, we mean an{r}-structure—in other words, a
non-empty (possibly infinite) digraph. IfA is aΣ-structure,
then its{r}-reduct is a frameF: we say thatA is a structure
over F. Further, we call the mappingV : Π → P(W )
given by p 7→ pA the valuation of A (on W ). We write
A = (W,R, V ) to indicate thatA is a Σ-structure over the
frame(W,R) with valuationV . Obviously, this determines
A completely. Henceforth, the term “structure”, with no
signature qualification, will always mean “Σ-structure”. Let
ϕ be a GM-formula. We say thatϕ is satisfiable overa
frameF if there exists a structureA overF and a worldw
of A such thatA |=w ϕ. Further,ϕ is satisfiable overa class
of framesK if it is satisfiable over some frame inK. We
denote byGMK-Sat the problem of determining whether a
givenGM-formula is satisfiable overK.

Any first-order sentenceα over the signature{r} defines
a class of frames{F : F |= α}. The most common frame
classes are those which we agreed in Section I to denote
by the labels Rfl, Ser, Sym, Tr and Eucl. Table I lists
these frame classes together with their respective defining
first-order sentences. A structure over a reflexive frame will
simply be called areflexivestructure, and similarly for the
other frame properties. We can now articulate the objective
of this paper. LetF be a subset (possibly empty) of the set
of frame classes{Rfl,Ser,Sym,Tr,Eucl}. We ask: what is
the complexity ofGM∩F -Sat?

Table I: Frame classes considered in this paper.
reflexive frames ∀x.r(x, x)
serial frames ∀x∃y.r(x, y)
symmetric frames ∀x∀y.(r(x, y) → r(y, x))
transitive frames ∀x∀y∀z.(r(x, y) ∧ r(y, z) → r(x, z))
Euclidean frames ∀x∀y∀z.(r(x, y) ∧ r(x, z) → r(y, z)).

III. E UCLIDEAN FRAMES

The purpose of this section is to prove Theorem 4. We
make use of a known complexity result on first-order logic
with counting quantifiers. Denote byC1 the set of first-
order formulas featuring only a single variablex, but with
the counting quantifiers∃≤Cx and ∃≥Cx allowed. The
following result holds for both unary and binary coding of
numerical subscripts:

Theorem 6 ([17], [18]). The problem of deciding satisfia-
bility for C1-formulas isNP-complete.

We show that, forGM-formulas, satisfiability over Eu-
clidean frames is equivalent to satisfiability over frames
having a particularly simple form, and that, for such frames,
the fragmentC1 is as expressive as we need.

Let F = (W,R) be a frame. IfX ⊆ W , R(X) denotes
⋃

x∈X{w ∈ W | 〈x,w〉 ∈ R}; we writeR(w) for R({w}).
If F = (W,R) is a frame, andX ⊆ W , R∗(X) denotes
X ∪R(X)∪R(R(X))∪ · · · ; we writeR∗(w) for R∗({w}).
If A is a structure over a frame(W,R) andX ⊆ W , let
B be the substructure ofA with domainR∗(X). We call
B the substructuregenerated byX . Note that reflexivity,
seriality, symmetry, transitivity and the Euclidean property
are all preserved under generated substructures.

Lemma 1. Let ϕ be a formula ofGM, A a structure,w
a world ofA andB the substructure generated by{w}. If
A |=w ϕ, thenB |=w ϕ.

Proof: Induction on the structure ofϕ.

Lemma 2. Let F = (W,R) be a Euclidean frame andw0 ∈
W . Then: (i) R(w0) ⊆ R(R(w0)), (ii ) R∗(w0) = {w0} ∪
R(R(w0)), and (iii ) R is total onR(R(w0)).

Proof: For the first statement, observe that, in a Eu-
clidean frame,R is total on any setR(w0). In particular,
〈w,w〉 ∈ R for all w ∈ R(w0), whenceR(w0) ⊆
R(R(w0)).

Now consider anyX ⊆ W such thatR is total on
X . We claim thatR is also total onR(X), and that
R(X) = R(R(X)). By the Euclidean property,〈w,w〉 ∈ R
for all w ∈ R(X), so thatR(X) ⊆ R(R(X)). We show
thatR is total onR(X). If w ∈ R(X) andR is total onX ,
then by the Euclidean property,〈x,w〉 ∈ R for all x ∈ X ,
whence, ifw′ ∈ R(X), using the Euclidean property again,
〈w,w′〉 ∈ R. ThusR is total onR(X). Finally, we show
that R(R(X)) ⊆ R(X). Supposew ∈ R(R(X)), so that



〈w′, w〉 ∈ R for somew′ ∈ R(X). Pick anyx ∈ X . Since
R is total onR(X) ⊇ X , 〈w′, x〉 ∈ R, and so, by the
Euclidean property,〈x,w〉 ∈ R. Thus,R(R(X)) ⊆ R(X),
proving the claim.

For the second statement of the lemma, puttingX =
R(w0) in the claim of the previous paragraph, we have
R(R(w0)) = R(R(R(w0))) = R(R(R(R(w0)))) = . . ..
Thus,

R∗(w0) = {w0} ∪R(w0) ∪R(R(w0)) ∪ · · ·

= {w0} ∪R(w0) ∪R(R(w0))

= {w0} ∪R(R(w0)),

with the last step following from the first statement of the
lemma.

Lemmas 1 and 2 show that, when discussing satisfiability
over Euclidean frames, we may restrict attention to frames
of the form (W ∪ {w0}, R), where R is total on W ,
R(w0) ⊆ W , andw0 may or may not be inW . Over such
simple frames, anyGM-formula can be translated into an
equisatisfiableC1-formula. Specifically:

Lemma 3. Let F ⊆ {Rfl,Ser,Sym,Tr}. Given a GM-
formula ϕ, we can compute, in time bounded by a poly-
nomial function of ||ϕ||, a C1-formula α such thatϕ is
satisfiable over a frame in

⋂
F ∩ Eucl if and only if α is

satisfiable.

Proof: Let q0, q1, q2 be new unary predicates (i.e.,
pairwise distinct and not inΠ). We define a two-stage
translation fromGM into C1 as follows. Notice that the
definition of f1 makes reference tof2, but notvice versa.

f1(p) = p(x) (for p ∈ Π)

f1(ϕ ∧ ψ) = f1(ϕ) ∧ f1(ψ) (sim. for ¬, ∨, etc.)

f1(✸≥Cϕ) = ∃≥C .x(f2(ϕ) ∧ q1(x))

f1(✸≤Cϕ) = ∃≤Cx.(f2(ϕ) ∧ q1(x))

f2(p) = p(x) (for p ∈ Π)

f2(ϕ ∧ ψ) = f2(ϕ) ∧ f2(ψ) (sim. for ¬, ∨, etc.)

f2(✸≥Cϕ) = ∃≥Cx.(f2(ϕ) ∧ q2(x))

f2(✸≤Cϕ) = ∃≤Cx.(f2(ϕ) ∧ q2(x)).

Next, we define first-order formulas (in fact,C1-formulas),
which, for Euclidean frames, act as substitutes for the
conditions of reflexivity, seriality, symmetry and transitivity:

εRfl = ∀x.(q0(x) → q1(x))

εSer = ∃x.q1(x)

εSym = ∀x.(q0(x) → q1(x)) ∨ ¬∃x.q1(x)

εTr = ∀x.(q2(x) → q1(x)).

Let us define the requiredC1 formulaα as follows:

α = ∃x.(f1(ϕ) ∧ q0(x)) ∧ ∀x.(q1(x) → q2(x)) ∧
∧

K∈F

εK.

Clearly,α can be constructed in polynomial time fromϕ. It
remains to demonstrate thatϕ is satisfiable over a frame in
⋂
F ∩ Eucl if and only ifα is satisfiable.
SupposeA |=w0

ϕ, whereA is a structure over a Eu-
clidean frame(W,R). Let B be the substructure generated
by {w0}—in other words, the restriction ofA to R∗(w0).
By Lemma 1,B |=w0

ϕ. ExpandB to a structureB+ by
setting

qB
+

0 = {w0}, qB
+

1 = R(w0), qB
+

2 = R(R(w0)).

We shall show thatB+ |= α. By Statement 1 of Lemma 2,
B+ |= ∀x.(q1(x) → q2(x)). Using Lemma 2, a structural
induction onψ easily establishes the following condition.

For all w ∈ qB
+

2 , and allGM-formulasψ,

B |=w ψ if and only if B+ |= f2(ψ)[w]. (1)

Using (1), a further structural induction establishes the
following condition.

For all GM-formulasψ,

B |=w0
ψ if and only if B+ |= f1(ψ)[w0]. (2)

From (2), it follows thatB+ |= ∃x(f1(ϕ) ∧ q0(x)).
It remains to show that, for allK ∈ {Rfl,Ser,Sym,Tr},
(W,R) ∈ K impliesB+ |= εK. Suppose, then(W,R) ∈ K;
we consider the four cases in turn.

1) If K = Rfl, thenw0 ∈ R(w0). It follows that
B+ |= ∀x.(q0(x) → q1(x)).

2) If K = Ser, thenR(w0) 6= ∅. It follows that
B+ |= ∃x.q1(x).

3) If K = Sym, then, since(W,R) is both sym-
metric and Euclidean, either〈w0, w0〉 ∈ R, or
R(w0) = ∅. Thus, eitherB+ |= ∀x.(q0(x) → q1(x)),
or B+ |= ∀x.¬q1(x).

4) If K = Tr, thenR(R(w0)) ⊆ R(w0). It follows that
B+ |= ∀x.(q2(x) → q1(x)).

This establishes thatB+ |= α, as required.
Conversely, supposeA |= α, where A interprets Σ

together with the predicatesq0, q1 and q2. Let B+ be the
substructure ofA with domainW = qA0 ∪ qA1 ∪ qA2 , and let
w0 ∈ W be some element satisfyingf1(ϕ) ∧ q0(x). Since
all quantification inf1(ϕ) is limited to elements satisfying
q1 or q2, B+ |= α; and sinceα contains no occurrences of
r, we may without loss of generality assume that

rB
+

= (qB
+

0 × qB
+

1 ) ∪ (qB
+

2 × qB
+

2 ). (3)

Let B be theΣ-reduct ofB+ obtained by ignoring the predi-
catesq0, q1 andq2; and letR = rB

+

, so thatB is a structure
over the frame(W,R). We show thatB |=w0

ϕ, and,
moreover,(W,R) ∈

⋂
F∩Eucl. Using the definition ofrB

+

in (3), two simple structural inductions again establish (1),
and thence (2). And from (2), it follows thatB |=w0

ϕ.
It remains to show that, for allK ∈ {Rfl,Ser,Sym,Tr},



B+ |= εK implies (W,R) ∈ K. Suppose, thenB+ |= εK;
we consider the four cases in turn, making implicit use of (3)
throughout. Note also that, sinceB+ |= α, qB

+

1 ⊆ qB
+

2 .

1) If K = Rfl, qB
+

0 ⊆ qB
+

1 ⊆ qB
+

2 , whence(W,R) is
total, and hence certainly reflexive.

2) If K = Ser, thenqB
+

1 6= ∅, whence(W,R) is visibly
serial.

3) If K = Sym, eitherqB
+

0 ⊆ qB
+

1 ⊆ qB
+

2 or qB
+

1 = ∅.
In the former case,(W,R) is total, and hence certainly
symmetric; in the latter,(W,R) is visibly symmetric.

4) If K = Tr, thenqB
+

2 ⊆ qB
+

1 , whence(W,R) is visibly
transitive.

The upper bound of Theorem 4 now follows by Theorem 6
and Lemma 3, since Sym∩ Tr ⊆ Eucl. The lower bound is
trivial, sinceGM includes propositional logic.

IV. T RANSITIVE FRAMES

The purpose of this section is to establish Theorem 5. The
upper bound (Section IV-A) is obtained by proving that every
GM-formulaϕ that is satisfiable over a transitive (transitive
and reflexive) frame is also satisfiable over a transitive
(transitive and reflexive) frame whose size is bounded by
an exponential function of||ϕ||. It is shown in [8] that
every GM-formula satisfiable over a transitive frame is
also satisfiable over afinite transitive frame. However, this
paper gives no bound on the size of the satisfying structure.
The matching lower bound (Section IV-B) is obtained by
a reduction from exponential tiling problems. Interestingly,
this reduction features only formulas in which all numerical
subscripts are bounded by 1. Thus, the lower complexity-
bound of Theorem 5 continues to hold even under unary
coding of numerical subscripts.

One note on terminology before we proceed. In the
context of (graded) modal logic, it is customary to think
of the unary predicates inΠ asproposition letters, because
they receive truth-values relative to worlds. Since we shall
not be concerned withC1 or other first-order fragments in the
sequel, we adopt this practice from now on. Accordingly, a
propositionalformula is one containing no modal operators.
Finally, we shall relax our stance on valuations, allowing
structures to interpret only those proposition letters involved
in some collection of formulas of interest, rather than every
proposition letter inΠ.

A. Membership inNExpTime

First we demonstrate that everyGM-formula can be
transformed into a normal form preserving satisfiability
over transitive frames. This normal form is broadly similar
to the so-called Scott normal form for the two-variable
fragment of first-order logic, and is likewise obtained by
a straightforward renaming procedure. For the next lemma,
recall that⊡ϕ abbreviatesϕ ∧ ✷ϕ.

Lemma 4. Let ϕ be a GM-formula. We can compute, in
time bounded by a polynomial function of||ϕ||, a GM-
formulaψ of the form

η∧⊡
(
θ∧

∧

1≤i≤ℓ

(pi → ✸≥Ci
πi)∧

∧

1≤j≤m

(qj → ✸≤Dj
χj)

)
, (4)

where thepi and theqj are proposition letters, theCi and
Dj are natural numbers, andη, θ, the πi and theχj are
propositional formulas, such thatϕ and ψ are satisfiable
over exactly the same transitive frames.

Proof: As usual, if ρ is a subformula ofϕ and σ a
formula, we denote byϕ[σ/ρ] the result of substitutingσ
for every occurrence ofρ in ϕ. If ρ is a formula of the form
✸≤Cπ, denote byρ̄ the corresponding formula✸≥(C+1)π;
similarly, if ρ is a formula of the form✸≥Cπ, with C > 0,
denote byρ̄ the corresponding formula✸≤(C−1)π.

We may assume thatϕ contains no subformulas of the
form ✸≥0π, since these may be replaced with any tautology.
Supposeϕ is not propositional, and letρ be any subformula
of ϕ having either of the forms✸≤Cπ or ✸≥Cπ, with π
propositional. (In the latter case,C > 0.) Let p and q be
fresh proposition letters, and letϕ′ be the formula

ϕ[p/ρ] ∧⊡(p ∨ q) ∧⊡(p→ ρ) ∧⊡(q → ρ̄).

It is easy to verify that, ifA |=w ϕ′ with A transitive, then
A |=w ϕ . Conversely, ifA |=w0

ϕ, we may expandA to
a structureA′ by settingA′ |=w p if and only if A′ |=w

ρ and A′ |=w q if and only if A′ 6|=w ρ, for all worlds
w: evidently, A′ |=w0

ϕ′. Thus,ϕ and ϕ′ are satisfiable
over the same transitive frames. Repeating this process and
re-grouping conjuncts eventually leads to a formula of the
form (4) as required.

We next present lemmas describing transformations of
transitive structures, in which we use the following termi-
nology. Let A = 〈W,R, V 〉 be a transitive structure, and
w1, w2 be worlds ofW . We say:w2 is an R-successor
of w1 if 〈w1, w2〉 ∈ R; w2 is a strict R-successor ofw1

if 〈w1, w2〉 ∈ R, but 〈w2, w1〉 6∈ R; w1 and w2 are R-
equivalentif 〈w1, w2〉 ∈ R and〈w2, w1〉 ∈ R. TheR-clique
for w1 in A is the setQA(w1) ⊆ W consisting ofw1 and
all worlds R-equivalent tow1. We say thatw2 is a direct
R-successor ofw1 if w2 is a strictR-successor ofw1 and,
for everyw ∈ W such that〈w1, w〉 ∈ R and 〈w,w2〉 ∈ R,
we have eitherw ∈ QA(w1) or w ∈ QA(w2).

Thedepth of a structureA is the maximum over allk ≥ 0
for which there exist worldsw0, . . . , wk ∈ W such thatwi

is a strictR-successor ofwi−1 for every i with 1 ≤ i ≤
k, or ∞ if no such maximum exists. Thebreadth ofA is
the maximum over allk ≥ 0 for which there exist worlds
w,w1, . . . , wk such thatwi is a directR-successor ofw for
every i with 1 ≤ i ≤ k, and the setsQA(w1), . . . , QA(wk)
are disjoint, or∞ if no such maximum exists. Thewidth of
A is the smallestk such thatk ≥ ||QA(w)|| for all w ∈ W ,
or ∞ if no suchk exists.



Lemma 5. Let A be a structure of depthd, breadthb and
width c (all finite), and letw be a world ofA. Then the
substructure ofA generated by{w} contains no more than
n worlds, wheren = c if b = 0, n = c · (d + 1) if b = 1,
andn = c · (bd+1 − 1)/(b− 1) otherwise.

Proof: Elementary.
We employ the following notation. For a structureA =

(W,R, V ) and a binary relationR′ on W (possibly dif-
ferent from R), we denote byR′

A
(w,ϕ) the set {v |

〈w, v〉 ∈ R′,A |=v ϕ}. Thus, A |=w ✸≥Cϕ if and only
if ||RA(w,ϕ)|| ≥ C, where ||S|| denotes the cardinality
of the set S. Similarly, A |=w ✸≤Cϕ if and only if
||RA(w,ϕ)|| ≤ C.

Lemma 6. Let ϕ be a formula of the form(4). If ϕ has
a transitive modelA, then it has a transitive modelA′

with depth d′ ≤ 2ℓ, breadth b′ ≤
∑ℓ

i=1 Ci and width
c′ ≤

∑ℓ

i=1 Ci+1. If A is reflexive, then we can additionally
ensure thatA′ is also reflexive.

Proof: Let A = (W,R, V ). We constructA′ =
(W ′, R′, V ′) from A in four stages.
Stage 1: Adapting a technique employed in [8] to establish
the finite model property forGM-formulas, we first define
a transitive modelA′ of ϕ, reflexive ifA is, such thatA′ has
finite depth. The strategy is toenlargethe relationR (thus
reducing the number ofstrict successors of worlds inW ),
preserving satisfaction for subformulas of the form✸≤Dj

χj .
For w ∈ W definedj

A
(w) := min(Dj + 1, ||R∗(w, χj)||)

whereDj and χj (1 ≤ j ≤ m) are as in (4), andR∗ is
the reflexive closure ofR. Let Rd := {〈w1, w2〉 ∈ R |
dj
A
(w1) = dj

A
(w2), 1 ≤ j ≤ m} be the restriction ofR to

pairs of elements that have the same values ofdj
A
(w), and

let R−
d := {〈w1, w2〉 | 〈w2, w1〉 ∈ Rd} be the inverse ofRd.

Let A′ = (W,R′, V ) be obtained fromA = (W,R, V ) by
settingR′ := (R ∪ R−

d )
+. Intuitively, if w1 is R-reachable

from w2, and, for all j (1 ≤ j ≤ m), w1 and w2 agree
on the number (up to the limit ofDj) of χj-worlds that
areR-reachable from them, then we makew1 andw2 R

′-
equivalent. We show thatA′ satisfiesϕ, is reflexive ifA is,
and has finite depth.

SinceR ⊆ R′, A′ is reflexive ifA is. We claim thatA′ has
finite depth. Indeed, for everyw1, w2 ∈ W such thatw2 is a
strictR′-successor ofw1, we havedj

A
(w1) ≥ dj

A
(w2) for all

j, anddj
A
(w1) > dj

A
(w2) for somej (1 ≤ j ≤ m). Hence

∑m

j=1 d
j
A
(w1) >

∑m

j=1 d
j
A
(w2). Sincedj

A
(w) ≤ Dj +1 for

everyw ∈W and everyj (1 ≤ j ≤ m), the length of every
chain w0, . . . , wk such thatwi is a strictR′-successor of
wi−1 (1 ≤ i ≤ k), is bounded by

∑m

j=1Dj +m.
In order to prove thatA′ satisfiesϕ, we first prove

that dj
A
(w) = dj

A′(w) for every w ∈ W and everyj
(1 ≤ j ≤ m). Assume to the contrary thatdj

A
(w) 6= dj

A′(w)
for some w ∈ W and somej (1 ≤ j ≤ m). Since
R ⊆ R′, we havedj

A
(w) < dj

A′ (w) ≤ Dj + 1, which

means, in particular, that there exists an elementw′ ∈ W
with A |=w′ χj such that〈w,w′〉 ∈ R′ but 〈w,w′〉 6∈ R.

Since 〈w,w′〉 ∈ R′, by definition ofR′, there exists a
sequencew0, . . . , wk of different worlds inW such that
w0 = w, wk = w′, and 〈wi−1, wi〉 ∈ R ∪ R−

d for
every i (1 ≤ i ≤ k). Note thatdj

A
(wi−1) ≥ dj

A
(wi) for

every i (1 ≤ i ≤ k) and everyj (1 ≤ j ≤ m). Take
the maximali (1 ≤ i ≤ k) such that〈wi−1, w

′〉 /∈ R.
Since 〈w0, w

′〉 = 〈w,w′〉 /∈ R, such a maximali always
exists. Then〈wi, w

′〉 ∈ R∗, and 〈wi−1, wi〉 /∈ R. Since
〈wi−1, wi〉 ∈ R ∪ R−

d , we have〈wi−1, wi〉 ∈ R−
d , and so

dj
A
(wi−1) = dj

A
(wi) by definition ofRd. Sincedj

A
(wi) ≤

dj
A
(w0) = dj

A
(w) < Dj + 1, we obtain a contradiction, due

to the fact thatdj
A
(wi−1) = dj

A
(wi) ≤ Dj , 〈wi−1, w

′〉 /∈ R∗,
〈wi, w

′〉 ∈ R∗, andA |=w′ χj .
Now to complete the proof thatA′ satisfiesϕ, we demon-

strate that, ifψ is any of the formulasη, θ, (pi → ✸Ci
π)

or (qj → ✸≤Dj
χj) occurring in (4), andw ∈ W , then

A |=w ψ implies A′ |=w ψ. Indeed, for the propositional
subformulasη and θ, this is immediate. For subformulas
pi → ✸≥Ci

πi, this holds sinceR ⊆ R′. Finally, for
subformulasqj → ✸≤Dj

χj this follows from the property
dj
A
(w) = dj

A′(w).
Stage 2: By Stage 1, we may assume thatA has finite
depthd. We define a transitive modelA′ of ϕ, reflexive if
A is, such thatA′ has depthd′ ≤ 2ℓ. If d ≤ 2ℓ then we take
A′ = A. Otherwise, we obtainA′ from A by contracting
the relationR (removing unnecessarydirect successors of
worlds inW ), preserving satisfaction for subformulas of the
form ✸≥Ci

πi. Define, for everyw ∈W , two sets of indices:

IA(w) = {i | 1 ≤ i ≤ ℓ, ||R(w, πi)|| ≥ Ci}, and

IsA(w) = {i | 1 ≤ i ≤ ℓ, ||R(w, πi) \QA(w)|| ≥ Ci},

whereπi andCi are as in (4),1 ≤ i ≤ ℓ. Note that:
(P1) Is

A
(w) ⊆ IA(w) for everyw ∈ W , and

(P2) IA(w2) ⊆ Is
A
(w1) if w2 is a strictR-successor ofw1.

Define the structureA′ = 〈W,R′, V 〉 by setting

R′ := R \ {〈w1, w2〉 | w2 is a directR′-successor ofw1

andIsA(w2) = IA(w1)}.

We claim thatA′ is a transitive structure which satisfiesϕ,
is reflexive if A is, and has depthd′ < d. Repeating this
step sufficiently often, we eventually ensure thatd′ ≤ 2ℓ.

It is easy to see thatR′ is transitive if R is transitive.
Indeed, if 〈w1, w2〉 ∈ R′ and 〈w2, w3〉 ∈ R′, we have
〈w1, w3〉 ∈ R, and either(i) w3 is not a directR-successor
of w1, or (ii) w2 ∈ QA(w1) and Is

A
(w3) 6= IA(w2) =

IA(w1), or (iii) w2 ∈ QA(w3) and Is
A
(w3) = Is

A
(w2) 6=

IA(w1). In all of these three cases, we have〈w1, w3〉 ∈ R′

by the definition ofR′. Trivially, R′ is reflexive ifR is.
In order to prove thatA′ satisfiesϕ, we first point out

some other properties ofIA(w), IsA(w), IA′(w), andIs
A′(w):

(P3) IA′ (w) ⊆ IA(w) andIs
A′(w) ⊆ Is

A
(w) for w ∈ W ;



(P4) Is
A
(w2) ⊆ IA′ (w1) if w2 is a strictR-successor ofw1;

(P5) IA′ (w) = IA(w) for w ∈ W .
Property (P3) holds sinceR′ ⊆ R. Property (P4) holds

since, for everyi (1 ≤ i ≤ ℓ), everyw3 ∈ RA(w2, πi) \
QA(w2) is a strict non-directR-successor ofw1. Hence
〈w1, w3〉 ∈ R′ by the definition ofR′, and so,w3 ∈
RA′(w1, πi). In order to prove (P5), by (P3), it suffices to
prove IA′ (w) ⊇ IA(w). Assume to the contrary that there
existsw ∈ W andi (1 ≤ i ≤ ℓ) such thatA |=w′ πi (equiv-
alently,A′ |=w′ πi), 〈w,w′〉 ∈ R, and〈w,w′〉 /∈ R′. By the
definition of R′, this is only possible ifw′ is a directR-
successor ofw andIs

A
(w′) = IA(w). But then, by (P4), we

haveIs
A
(w′) ⊆ IA′(w). HenceIA(w) = Is

A
(w′) ⊆ IA′(w),

which contradicts the assumption thatIA(w) \ IA′(w) 6= ∅.
In order to prove thatA′ satisfiesϕ, it is sufficient, as in

Stage 1, to demonstrate that, ifψ is any of the formulasη,
θ, (pi → ✸Ci

πi) or (qj → ✸≤Dj
χj) occurring in (4), and

w ∈ W , thenA |=w ψ implies A′ |=w ψ. This property
holds forψ = η, ψ = θ, andψ = (qj → ✸≤Dj

χj), 1 ≤
j ≤ m, sinceR′ ⊆ R. For ψ = (pi → ✸Ci

πi), 1 ≤ i ≤ m,
this property holds by (P5).

Finally, it remains to demonstrate that the depth ofA′ is
smaller than the depthd of A. Suppose, to the contrary, that
there exists a sequence of worldsw0, . . . , wd in W such
that wi is a strictR′-successor ofwi−1, 1 ≤ i ≤ d. By
definition of R′, everywi is a strictR-successor ofwi−1,
and, sinced is the depth ofA, wi is in fact a directR-
successor ofwi−1, 1 ≤ i ≤ d. Again, by definition ofR′,
we haveIs

A
(wi) 6= IA(wi−1), 1 ≤ i ≤ d. By (P1) and (P2)

we haveIs
A
(wi) ( IA(wi−1) and IA(wi) ⊆ Is

A
(wi−1), so

||Is
A
(wi)||+||IA(wi)|| < ||Is

A
(wi−1)||+||IA(wi−1)||, 1 ≤ i ≤ d.

Since ||Is
A
(w)|| ≤ ||IA(w)|| ≤ ℓ for everyw in W , this is

possible only ifd ≤ 2ℓ.
Stage 3: By Stage 2, we may assume thatA has depth
d ≤ 2ℓ. We define a transitive modelA′ of ϕ, reflexive ifA
is, such thatA′ has depthd′ ≤ 2ℓ and breadthb′ ≤

∑ℓ

i=1 Ci.
For every elementw ∈ W and everyi with 1 ≤ i ≤ ℓ, let
Wi(w) be the set of strictR-successors ofw for which πi
holds. We call the elements ofWi(w) thestrict πi-witnesses
for w. Note thatWi(w1) = Wi(w2) whenw1 andw2 are
R-equivalent. LetW ′

i (w) be Wi(w) if ||Wi(w)|| ≤ Ci or,
otherwise, a subset ofWi(w) which contains exactlyCi

elements. We callW ′
i (w) the selected strictπi-witnesses

for w. We assume thatW ′
i (w1) =W ′

i (w2) whenw1 andw2

areR-equivalent. LetRq := {〈w,w′〉 ∈ R | w′ ∈ QA(w)}
be the restriction ofR to elements of the same clique, and
R′

i = {〈w,w′〉 ∈ R | w′ ∈ W ′
i (w)} be the relation between

an elementw ∈ W and the selected strictπi-witnesses for
w. Define the structureA′ = (W,R′, V ) by settingR′ :=
(Rq ∪

⋃

1≤i≤ℓ R
′
i)

+. Intuitively, A′ is obtained fromA by
removing all strict successor relations except those that are
induced by selected strict witnesses. We show thatA′ has
all required properties.

Note thatR′ is transitive, and reflexive ifR is reflexive.

Clearly, the depth ofA′ is bounded byd, since only strict
successor relations are removed. It is also clear that the
breadth ofA′ is bounded byb =

∑ℓ

i=1 Ci, since for every
w ∈W and every directR′-successorw′ of w there existsi
with 1 ≤ i ≤ ℓ such thatQA(w

′) ∩W ′
i (w) 6= ∅, and so the

maximal number of such successorsw′ for which QA(w
′)

are disjoint is bounded by
∑ℓ

i=1 ||W
′
i (w)|| ≤

∑ℓ

i=1 Ci = b.
It remains to demonstrate thatA′ satisfiesϕ. Clearly, the

set of worldsw ∈W that satisfy subformulasη andθ has not
changed. The set of worlds that satisfy subformulas(qj →
✸≤Dj

χj) can only have increased, sinceR′ ⊆ R. Finally,
the set of worlds that satisfy subformulas(pi → ✸≥Ci

πi)
has not changed, since, for everyw ∈ W , the number of
directπi-witnesses has either not changed, or is at leastCi.
Stage 4: By Stage 3, we may assume thatA has depth
d ≤ 2ℓ and breadthb ≤

∑ℓ

i=1 Ci. We define a structure
A′ with all the properties required by the lemma. For every
elementw ∈ W , and everyi with 1 ≤ i ≤ ℓ, let Qi(w) be
the set of elements inQA(w) for whichπi holds. We call the
elements ofQi(w) the equivalentπi-witnesses forw. Note
thatQi(w1) = Qi(w2) whenw1 andw2 areR-equivalent.
Let Q′

i(w) be Qi(w) if ||Qi(w)|| ≤ Ci or, otherwise, a
subset ofQi(w) which contains exactlyCi elements. We
call Q′

i(w) the selected equivalentπi-witnesses forw. Also
letQ′

0(w) be a singleton set containing an element ofQA(w)
that satisfiesϕ if there is one, and any element ofQA(w)
otherwise. We assume thatQ′

i(w1) = Q′
i(w2) whenw1 and

w2 areR-equivalent. Define the structureA′ = 〈W ′, R′, V ′〉
by settingW ′ :=

⋃

w∈W, 0≤i≤ℓQ
′
i(w), R

′ := R|W ′ , and
V ′ := V |W ′ . Intuitively A′ is obtained fromA by removing
elements in everyR-clique, except for those that are selected
witnesses of other elements, and in such a way that the
clique remains non-empty and contains at least one element
satisfyingϕ if there was one. (Note that, since noR-clique
is completely obliterated by this process,W ′ is non-empty.)
We show thatA′ has all required properties.

Clearly,A′ is a transitive structure, and indeed is reflexive
if A is reflexive. Further, the depth and breadth ofA′

is bounded by the depth and breadth ofA since A′ is
a restriction ofA to a subset ofW . It is easy to see
that for everyw ∈ W ′, QA′(w) =

⋃

0≤i≤ℓQ
′
i(w). Hence

||QA′(w)|| ≤
∑ℓ

i=0 ||Q
′
i(w)|| ≤

∑ℓ

i=1 Ci + 1 = c. Therefore
the width ofA′ is bounded byc.

It remains to demonstrate thatA′ satisfiesϕ. By the
definition of W ′ there is a worldw0 ∈ W ′ such that
A |=w0

ϕ. ClearlyA′ |=w0
η sinceA |=w0

η andV ′ = V |W ′ .
Letw ∈W be any world such that〈w0, w〉 ∈ R′. We need to
demonstrate that(i) A′ |=w θ, (ii) A′ |=w (pi → ✸≥Ci

πi),
1 ≤ i ≤ ℓ, and (iii) A′ |=w (qj → ✸≤Dj

χj), 1 ≤ j ≤ m.
Cases(i) and (iii) are trivially satisfied sinceV ′ = V |W ′

andR′ ⊆ R. Case(ii) is satisfied since, for everyi with
1 ≤ i ≤ ℓ, ||RA(w, πi)|| ≥ Ci implies ||R′

A′ (w, πi)|| ≥ Ci.



Lemma 7. Let A = 〈W,R, V 〉 be a transitive structure
that satisfies a formulaϕ of the form(4). Then there exists
a transitive structureA′ = 〈W ′, R′, V ′〉 that satisfiesϕ
such that ||W ′|| ≤ (b + 1) · (b2ℓ+1 − 1)/(b − 1), where
b = max(2,

∑ℓ

i=1 Ci). Moreover, ifA is reflexive, then we
can ensure thatA′ is also reflexive.

Proof: By Lemma 6, there is a transitive structureA′

satisfyingϕ, reflexive ifA is, with depth, breadth, and width
bounded respectively by2ℓ, b, and b + 1. Let w0 be such
thatA′ |=w0

ϕ, and consider the substructure ofA′ generated
by {w0}. The result now follows by Lemmas 1 and 5.

We remark that the bound(b + 1) · (b2ℓ+1 − 1)/(b − 1)
obtained in Lemma 7 is at most exponential in the size of
the input formula, even under binary coding of the numerical
subscriptsC1, . . . , Cℓ. Notice, incidentally, that this bound
does not mention the subscriptsD1, . . . , Dm at all.

Corollary 1. If F is any of{Tr}, {Rfl, Tr} or {Ser,Tr}, then
the problemGM∩F -Sat is inNExpTime.

Proof: Consider first the casesF = {Tr} and F =
{Tr,Rfl}. By Lemma 4, anyGM formula ϕ can be trans-
formed in polynomial time into a formulaψ of the form
(4) preserving satisfiability over

⋂
F . By Lemma 7,ψ is

satisfiable over
⋂
F if and only if it is satisfiable over a

frame in
⋂
F of size at most exponential in||ψ||. This last

condition can be checked in non-deterministic exponential
time. Finally, using Lemma 1, a formulaϕ is satisfiable over
Ser∩Tr if and only if ϕ∧⊡✸⊤ is satisfiable over Tr, where
⊤ is any tautology.

B. NExpTime-hardness

To prove a matching lower bound, we employ the appa-
ratus of tiling systems. Atiling systemis a triple〈C,H, V 〉,
whereC is a non-empty, finite set andH , V are binary
relations onC. The elements ofC are referred to ascolours,
and the relationsH and V as thehorizontal and vertical
constraints, respectively. For any integerN , a tiling for
〈C,H, V 〉 of sizeN is a functionf : {0, . . . , N − 1}2 → C
such that, for alli, j with 0 ≤ i < N − 1, 0 ≤ j ≤ N − 1,
the pair 〈f(i, j), f(i + 1, j)〉 is in H and for all i, j with
0 ≤ i ≤ N−1, 0 ≤ j < N−1, the pair〈f(i, j), f(i, j+1)〉
is in V . A tiling of sizeN is to be pictured as a colouring
of anN×N square grid by the colours inC; the horizontal
constraintsH thus specify which colours may appear ‘to
the right of’ which other colours; the vertical constraintsV
likewise specify which colours may appear ‘above’ which
other colours. Ann-tuple c̄ of elements ofC is an initial
configurationfor the tiling f if c̄ = f(0, 0), . . . , f(n− 1, 0).
An initial configuration forf is to be pictured as a row ofn
colours occupying the bottom left-hand corner of the grid.

Let (C,H, V ) be a tiling system andp a polynomial.
The exponential tiling problem(C,H, V, p) is the following
problem: given ann-tuple c̄ from C, determine whether

there exists a tiling for(C,H, V ) of size 2p(n) with initial
configuration̄c. It is well-known that there exist exponential
tiling problems which areNExpTime-complete (see, e.g.
[19], pp. 242, ff.). We show how, for any class of framesK
such that Tr⊇ K ⊇ Tr∩Rfl, any exponential tiling problem
(C,H, V, p) can be reduced toGMK-Sat, in polynomial
time.

In the sequel, we denote by{0, 1}∗ the set of finite strings
over the alphabet{0, 1}; we denote the length of anys ∈
{0, 1}∗ by ||s||; we denote the empty string byǫ; and we
write s � t if s is a (proper or improper) prefix oft. If
||s|| = k, thens encodes a number in the range[0, 2k − 1]
in the usual way; we follow standard practice in taking the
left-most digit ofs to be the most significant. We equivocate
freely between strings and the numbers they represent; in
particular, we writes + 1 to denote the string representing
the successor of the number represented bys. Finally, if s
is a string and1 ≤ k ≤ ||s||, denote thekth element ofs
(counting from the left and starting with 1) bys[k]. We use
the notation±iϕ (with i a numerical subscript), to stand,
ambiguously, for the formulasϕ or ¬ϕ. All occurrences
of ±iϕ within a single formula should be expanded in all
possible ways toϕ and¬ϕ such that occurrences with the
same indexi are expanded in the same way.

We are going to write formulas that induce a structure
similar to that depicted in Fig. 1a, the bottom of which will
represent the grid associated with (an instance of) a tiling
problem. Fix n > 0. We consider structures interpreting
the proposition lettersu0, . . . , un, v0, . . . , vn, p1, . . . , pn,
q1, . . . , qn, z, oh andov. Let Γ1 be the set of all formulas:

u0 ∧ v0 ∧ z (5)

⊡(¬(ui ∧ uj) ∧ ¬(vi ∧ vj)) (0 ≤ i < j ≤ n) (6)

⊡(ui ∧ vj ∧ z →
✸(ui+1 ∧ vj ∧ z ∧ ±1pi+1))

(0 ≤ i < n,
0 ≤ j ≤ n)

(7)

⊡(ui ∧ vj ∧ z →
✸(ui ∧ vj+1 ∧ z ∧ ±1qj+1))

(0 ≤ i ≤ n,
0 ≤ j < n)

(8)

✷(ui ∧ ±1pk → ✷(z → ±1pk)) (1 ≤ k ≤ i ≤ n) (9)

✷(vj ∧ ±1qk → ✷(z → ±1qk)) (1 ≤ k ≤ j ≤ n) (10)

SupposeA is a transitive structure andw0 a world ofA
such thatA |=w0

Γ1. We employ the following terminology.
A world w of A has character(i, j), for i, j in the range
[0, n], if A |=w ui ∧ vj . A z-world is a member of the
smallest setZ of worlds such that:(i) w0 ∈ Z; and (ii) if
w ∈ Z, andw′ is a direct successor ofw with A |=w′ z,
thenw′ ∈ Z. (Notice that the definition of z-world depends
on w0; wherew0 is not clear from context, we speak of a
z-world relative tow0.) Necessarily, every z-world is either
identical to, or accessible from,w0. For any z-worldw, with
character(i, j), we define stringss, t ∈ {0, 1}∗ of length
i and j, respectively, by settings[k] = 1 if and only if
A |=w pk for all k (1 ≤ k ≤ i), andt[k] = 1 if and only if



(n, n)

w0 (0, 0)

(0, n) (n, 0)

(n, 0) (0, n)

(a) The set of all z-worlds forming a (rather jumbled)
‘ziggurat’ under the direct successor relation. The world
w0, with character(0, 0), lies at the apex of the ziggurat,
and the worlds with character(n, n) form its base.

(i, j)
(i + 1, j)
¬pi+1

(i + 1, j)
pi+1

(i, j + 1)
¬qj+1

(i, j + 1)
qj+1

(b) The direct successors of a z-world
with character(i, j), where0 ≤ i < n

and 0 ≤ j < n. Any such z-world
has four direct successors: two with
character(i+1, j) and complementary
values ofpi+1, and two with character
(i, j+1) and complementary values of
qj+1.

w

a

c

d

y

x u

v
b

(c) Identifying z-worlds with the same indices
using Formulas (11)–(13). From every z-world
w with character(i, j), we can access at most
two z-worldsa andc with character(i+1, j),
at most two z-worldsb and d with character
(i, j+1), and at most four (not eight!) z-worlds
x, y, u andv with character(i+ 1, j + 1).

Figure 1: The set of z-worlds generated by Formulas (5)–(13).

A |=w qk for all k (1 ≤ k ≤ j). The quadruple(i, j, s, t) is
the indexof w.

To see that Formulas (5)–(10) generate the structure in
Fig. 1a, note first that Formula (5) implies the existence of
a z-worldw0 with character(0, 0). Formulas (6) ensure that
every z-world has a unique character. If0 ≤ i < n and
0 ≤ j < n, then Formulas (7) and (8) imply that every z-
world with character(i, j) has four direct successors: two
with character(i+1, j) and complementary values ofpi+1,
and two with character(i, j+1) and complementary values
of qj+1 (Fig. 1b). Similarly, if 0 ≤ i < n and j = n, or if
0 ≤ j < n and i = n, every z-world with character(i, j)
has two direct successors.

Lemma 8. SupposeA |=w0
Γ1. Let w be a z-world with

index (i, j, s, t), and supposei′, j′, s′, t′ satisfy: (i) i ≤
i′ ≤ n; (ii ) j ≤ j′ ≤ n; (iii ) i+ j < i′ + j′; (iv) s � s′ and
||s′|| = i′; and (v) t � t′ and ||t′|| = j′. Then there exists a
z-worldw′, accessible fromw, with index(i′, j′, s′, t′).

Proof: Easy induction using Formulas (7)–(10).

Lemma 9. SupposeA |=w0
Γ1. For all i (0 ≤ i ≤ n), all j

(0 ≤ j ≤ n), all s ∈ {0, 1}∗ (||s|| = i) and all t ∈ {0, 1}∗

(||t|| = j), there exists a z-world with index(i, j, s, t).

Proof: From Lemma 8 and the fact thatw0 has index
(0, 0, ǫ, ǫ).

We now add formulas limiting the number of z-worlds
with any given character (see Fig. 1c). In particular, z-worlds
will turn out to be uniquely identified by their indices. Let
Γ2 be the set of formulas:

⊡(ui ∧ vj →
✸≤1(ui+1 ∧ vj ∧±1pi+1))

(0 ≤ i < n,
0 ≤ j ≤ n)

(11)

⊡(ui ∧ vj →
✸≤1(ui ∧ vj+1 ∧±1qj+1))

(0 ≤ i ≤ n,
0 ≤ j < n)

(12)

⊡(ui ∧ vj →
✸≤1(ui+1 ∧ vj+1∧

±1pi+1 ∧ ±2qj+1))

(0 ≤ i < n,
0 ≤ j < n)

(13)

Lemma 10. SupposeA |=w0
Γ1∪Γ2. Then no two different

z-worlds have the same index.

Proof: Order the pairs of integers in the range[0, n] in
some way such thati+ j < i′ + j′ implies (i, j) < (i′, j′),
and proceed by induction on the character(i, j) of z-worlds,
under this ordering.

Case 1:w has character(0, 0). By definition,w0 is the only
z-world with character(0, 0), and hence the only z-world
with index (0, 0, ǫ, ǫ).

Case 2:w1 andw2 have index(i + 1, j + 1, sa, tb) where,
0 ≤ i < n, 0 ≤ j < n and a, b ∈ {0, 1}. If w1 and
w2 are z-worlds, there exist z-worldsw′

1 andw′
2 such that

wi is a direct successor ofw′
i (1 ≤ i ≤ 2). The possible

characters ofw′
1 andw′

2 are (i+ 1, j) and (i, j + 1). If w′
1

andw′
2 have the same character, then they in fact have the

same index (this follows from Formulas (9) and (10), and
the fact thatw1 andw2 have the same index). By inductive
hypothesis, then,w′

1 = w′
2. Hence, from Formulas (11)

or (12),w1 = w2 as required. Ifw′
1 andw′

2 have different
characters, assume without loss of generality thatw′

1 has
index (i, j + 1, s, tb), andw′

2 has index(i + 1, j, sa, t). By
Lemma 9, letw∗ be any z-world with index(i, j, s, t). By
Lemma 8, letw′′

1 andw′′
2 be z-worlds, accessible fromw∗,

with indices(i, j+1, s, tb), and(i+1, j, sa, t), respectively.
By inductive hypothesis,w′

1 = w′′
1 , andw′

2 = w′′
2 : that is to

say,w′
1 andw′

2 are accessible fromw∗. Therefore, so are
w1 andw2. Formulas (13) then ensure thatw1 = w2.

Case 3:w1 andw2 have index(i + 1, 0, sa, ǫ) where0 ≤
i < n and a ∈ {0, 1}. The argument is similar to Case 2,
and requires only Formulas (11).

Case 4:w1 andw2 have index(0, j + 1, ǫ, tb) where0 ≤
j < n and b ∈ {0, 1}. The argument is similar to Case 2,
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(a) The ziggurat, together with the grid at its base. (b) The world arrangement for the grid.
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(c) An illustration of Formulas (17) and Lemma 14.

Figure 2: Creating o-worlds (shown as a hollow dots) and the grid using Formulas (15)–(20) (n = 3): g-worlds (shown as
filled dots) are arranged according to their coordinates at the base; g-worlds which are horizontal neighbours in this grid
have a common horizontal o-world successor, while g-worldswhich are vertical neighbours in this grid have a common
vertical o-world successor.

and requires only Formulas (12).

Lemma 11. SupposeA |=w0
Γ1∪Γ2. Letw1, w2 be z-worlds

with indices (i1, j1, s1, t1) and (i2, j2, s2, t2), respectively.
Let s∗ be a common prefix ofs1 and s2, and t∗ a common
prefix oft1 and t2. Let i∗ = ||s∗|| and j∗ = ||t∗||. Then there
exists a z-worldw∗ with index(i∗, j∗, s∗, t∗) such that each
of w1 andw2 is either identical to, or accessible from,w∗.

Proof: By Lemma 9 there exists a z-worldw∗ with
index (i∗, j∗, s∗, t∗). If i∗ + j∗ = i1 + j1 thens∗ = s1 and
t∗ = t1, thusw∗ = w1 by Lemma 10. Otherwisei∗ + j∗ <
i1+ j1 and by Lemma 8, there exists a worldw′

1 accessible
fromw∗ with index(i1, j1, s1, t1). By Lemma 10,w′

1 = w1.
Thusw1 is accessible fromw∗. Similarly, one can show that
eitherw∗ = w2 or w2 is accessible fromw∗.

The z-worlds of most interest are those with character
(n, n)—of which, by Lemmas 9 and 10, there are exactly
22n. We refer to such worlds asg-worlds (g for ‘grid’).

For any worldw (not just z-worlds), we define strings
s, t ∈ {0, 1}∗ of lengthn, by setting, for allk (1 ≤ k ≤ n),
s[k] = 1 if and only if A |=w pk, and t[k] = 1 if and only
if A |=w qk. We call the strings the x-coordinateof w, and
the stringt its y-coordinate. Notice that, ifw is a g-world,
with index (n, n, s, t), then its coordinates are(s, t). The
strings s and t may of course be regarded as integers in
the range[0, 2n− 1], and in the sequel we equivocate freely
between strings of lengthn and the integers in this range
they represent. The following abbreviations will be useful.
If 1 ≤ i ≤ n, we writep∗i for ¬pi ∧ pi+1 ∧ · · · ∧ pn, andp+i
for pi ∧ ¬pi+1 ∧ · · · ∧ ¬pn. Thus,p∗i and p+i characterize
those worlds whosex-coordinates are of the forms

a1 · · ·ai−10

n − i times
︷ ︸︸ ︷

1 · · · · · · · 1 a1 · · · ai−11

n − i times
︷ ︸︸ ︷

0 · · · · · · · 0, (14)

respectively. Observe that, ifs and s′ are the respective

strings (i.e. integers) depicted in (14), thens′ = s+ 1. The
abbreviationsq∗i andq+i will be used similarly.

We now write formulas which force the g-worlds to
link up into a 2n × 2n grid (see Fig. 2). This process is
complicated by the fact that we are dealing with transitive
accessibility relations. We employ proposition lettersoh, ov,
and refer to worlds satisfying these proposition letters as,
respectively,horizontal o-worldsand vertical o-worlds(‘o’
stands for nothing in particular). The o-worlds’ function is
to glue the g-worlds into the desired grid pattern. LetΓ3,h

be the set of formulas:

✷(un ∧ vn ∧ p∗i → ✸(oh ∧ p+i )) (1 ≤ i ≤ n) (15)

✷(un ∧ vn ∧ p+i → ✸(oh ∧ p+i )) (1 ≤ i ≤ n) (16)

✷(ui−1 ∧ vn → ✸≤1(oh ∧ p+i )) (1 ≤ i ≤ n), (17)

and supposeA |=w0
Γ1 ∪ Γ2 ∪ Γ3,h. Consider a g-worldw

with coordinates(s, t). If 0 ≤ s < 2n−1, thenw satisfiesp∗i
for somei > 0, and so has a horizontal o-world successor
by Formulas (15); likewise, if0 < s ≤ 2n − 1, thenw
satisfiesp+i for somei > 0, and so has a horizontal o-world
successor by Formulas (16). (Hence, if0 < s < 2n−1, then
w has at least two horizontal o-world successors.) Finally,
let i be such that1 ≤ i ≤ n, and suppose thatw∗ is a
z-world with character(i − 1, n). Formulas (17) imply that
there is at most one horizontal o-world accessible fromw∗,
and satisfyingp+i (see Fig. 2c). The effect of these sets
of formulas is illustrated in Fig. 2 and formalized in the
following lemma:

Lemma 12. SupposeA |=w0
Γ1∪Γ2∪Γ3,h. Letw andw′ be

g-worlds with coordinates(s, t) and (s+ 1, t), respectively.
Then there exists a horizontal o-worldu accessible from both
w andw′ such thatA |=u pn if and only ifA |=w′ pn.

Proof: Since0 ≤ s < s+1 ≤ 2n−1, there existsi such



thatw satisfiesp∗i ; thusw′ satisfiesp+i . From Formulas (15)
and (16), there exist o-worldsu, u′ both satisfyingp+i , with
u accessible fromw, and u′ accessible fromw′. Clearly,
A |=u pn if and only if A |=w′ pn. By Lemma 11, there
exists a z-worldw∗ with character(i − 1, n), for somei
(1 ≤ i ≤ n), such that bothw andw′, and hence bothu and
u′, are accessible fromw∗. From Formulas (17), we have
u = u′.

Similarly, let Γ3,v be the set of formulas:

✷(un ∧ vn ∧ q∗i → ✸(ov ∧ q
+
i )) (1 ≤ i ≤ n) (18)

✷(un ∧ vn ∧ q+i → ✸(ov ∧ q
+
i )) (1 ≤ i ≤ n) (19)

✷(un ∧ vi−1 → ✸≤1(ov ∧ q
+
i )) (1 ≤ i ≤ n). (20)

Lemma 13. SupposeA |=w0
Γ1∪Γ2∪Γ3,v. Letw andw′ be

g-worlds with coordinates(s, t) and (s, t+ 1), respectively.
Then there exists a vertical o-worldu accessible from both
w andw′ such thatA |=u qn if and only ifA |=w′ qn.

Proof: Analogous to Lemma 12.
Let Γ = Γ1 ∪ Γ2 ∪ Γ3,h ∪ Γ3,v, and supposeA |=w0

Γ.
Lemmas 9 and 10 guarantee that, for alls, t in the range
[0, 2n−1], there exists exactly one g-world with coordinates
(s, t); let G be the set of all these22n g-worlds. And letOv,
Oh be sets of horizontal and vertical o-worlds guaranteed
by Lemmas 12 and 13, respectively. Thus, the frame ofA

contains, as a subgraph, the configuration depicted in Fig. 2b.
In short, the formulasΓ manufacture a2n × 2n grid.

Conversely, it is easy to exhibit a model ofΓ, using the
diagrams of Fig. 2 as our guide, containing just such a grid.

Lemma 14. There exists a structureS over a reflexive,
transitive frame, and a worldw0 of S, such thatS |=w0

Γ.

Proof: For h andv distinct symbols, define the sets:

Z = {(i, j, s, t) | 0 ≤ i ≤ n; 0 ≤ j ≤ n;
s, t ∈ {0, 1}∗; ||s|| = i and ||t|| = j}

G = {(n, n, s, t) | s, t ∈ {0, 1}∗ and ||s|| = ||t|| = n}

Oh = {(h, s, t) | s, t ∈ {0, 1}∗; s /∈ {0}∗; ||s|| = ||t|| = n}

Ov = {(v, s, t) | s, t ∈ {0, 1}∗; t /∈ {0}∗; ||s|| = ||t|| = n}.

Note thatG ⊆ Z. Define the binary relationsRZ ⊆ Z ×Z,
Rh ⊆ G×Oh andRv ⊆ G×Ov by:

RZ = {〈(i, j, s, t), (i′, j′, s′, t′)〉
| i ≤ i′; j ≤ j′; s � s and t � t′}

Rh = {〈(n, n, s, t), (h, s′, t′)〉
| t′ = t; s ≤ s′ ≤ n and1 ≤ s′ ≤ s+ 1}

Rv = {〈(n, n, s, t), (v, s′, t′)〉
| s′ = s; t ≤ t′ ≤ n and1 ≤ t′ ≤ t+ 1}.

Finally, let S = Z ∪ Oh ∪ Ov, and letRS be the reflexive,
transitive closure ofRZ ∪ Rh ∪ Rv. Thus, (S,RS) is a
reflexive, transitive frame. Define a valuationV on (S,RS)
by interpreting the proposition letters as follows:

zS = Z; oSh = Oh; oSv = Ov

uSi = {(i, j, s, t) ∈ Z | 0 ≤ j ≤ n; s, t ∈ {0, 1}∗}

vSj = {(i, j, s, t) ∈ Z | 0 ≤ i ≤ n; s, t ∈ {0, 1}∗}

pSi = {(i′, j, s, t) ∈ Z | i′ ≥ i, s[i] = 1} ∪

{(h, s, t) ∈ Oh | s[i] = 1} ∪

{(v, s, t) ∈ Ov | s[i] = 1}

qSj = {(i, j′, s, t) ∈ Z | j′ ≥ j, t[j] = 1} ∪

{(h, s, t) ∈ Oh | t[j] = 1} ∪

{(v, s, t) ∈ Ov | t[j] = 1}.

Denote byS the structure(S,RS , V ). Let w0 ∈ Z be the
element(0, 0, ǫ, ǫ). Thus,S |=w0

Γ1, and, relative tow0, the
z-worlds ofS are simply the elements ofZ. It is obvious
that, for everyw = (i, j, s, t) ∈ Z, the index ofw is w
itself; moreover, for everyw = (h, s, t) ∈ oh and every
w = (v, s, t) ∈ ov, the coordinates ofw are(s, t).

We now show thatS |=w0
Γ. The truth atw0 of Formu-

las (5)–(20) except for Formulas (17) and (20) is immediate.
To demonstrate the truth of Formulas (17), let1 ≤ i ≤ n,
and fix any worldw∗ of S such thatS |=w∗ ui−1 ∧ vn
(see Fig. 2c). We may writew∗ = (i − 1, n, s∗, t∗), where
||s∗|| = i − 1 and ||t∗|| = n. Now supposew′ is any world
of S such that〈w∗, w′〉 ∈ RS andS |=w′ oh ∧ p+i . Again,
we may writew′ = (h, s′, t′), wheres′ andt′ are bit-strings
of lengthn. We claim thats′ = s∗10 . . . 0 and t′ = t∗. But
there is at most one world inS satisfyingoh and having
coordinates(s∗10 . . . 0, t∗); hence,S |=w0

✷(ui−1 ∧ vn →
✸≤1(oh ∧ p+i )), as required.

To prove the claim, observe that, by construction ofS,
there existsw ∈ G such that〈w∗, w〉 ∈ RS and 〈w,w′〉 ∈
RS . Pick any suchw and let it have coordinates(s, t). By
the definition ofRS (and the fact that||t∗|| = n), we have:
(i) t∗ = t = t′, (ii) s∗ � s, and(iii) s′ = s or s′ = s+ 1.
Referring to Fig. 2c, the worldsw∗, w andw′ can be reached
from w0 by traversing two trees of z-worlds: an upper tree,
whose leaves have characters(0, n), and a lower tree, whose
elements have characters(i, n) (0 ≤ i ≤ n). The worldw∗

in the lower tree, has character(i− 1, n); w′ is a horizontal
o-world reachable fromw∗; w is its predecessor g-world.
Now, sinceS |=w′ oh ∧ p+i , we haves′ = s′′10 . . .0 for
some strings′′ with ||s′′|| = i − 1. Sinces is either s′ or
s′ − 1, we have eithers = s′′10 . . . 0 or s = s′′01 . . .1.
Since s∗ � s and ||s∗|| = i − 1, we haves′′ = s∗. Thus,
s′ = s∗10 . . . 0 and t′ = t∗, proving the claim.

The case of Formulas (20) is treated analogously.
Now we are in a position to encode any exponential tiling

problem,(C,H, V, p) in our logic. We regard coloursc ∈ C
as (fresh) proposition letters. SupposeA is transitive and
A |=w0

Γ, and letA additionally interpret the proposition
letters c ∈ C. By Lemmas 9, 10, 12, and 13, the frame
of A contains the arrangement of Fig. 2b as a subgraph,
which we may partition into the setsG (the g-worlds),Oh

(the horizontal o-worlds) andOv (the vertical o-worlds).



Intuitively, for any worldw ∈ G, c represents the colour of
w in some (putative) tiling ofG. Now we write formulas to
ensure that the colours form a tiling for(C,H, V, p). Define
∆ to be the following set of formulas:

✷

(

un ∧ vn →
(∨

C ∧
∧

{¬c ∨ ¬d | c 6= d}
))

(21)

✷(un ∧ vn ∧ ±1pn ∧ c→
✷(oh ∧ ±1pn → c))

(c ∈ C) (22)

✷(un ∧ vn ∧ ±1pn ∧ c→
✷(oh ∧ ¬(±1pn) → ¬d))

(〈c, d〉 /∈ H) (23)

✷(un ∧ vn ∧ ±1qn ∧ c→
✷(ov ∧ ±1qn → c))

(c ∈ C) (24)

✷(un ∧ vn ∧ ±1qn ∧ c→
✷(ov ∧ ¬(±1qn) → ¬d))

(〈c, d〉 /∈ V ). (25)

Formula (21) ensures that every g-world is assigned a
unique colour. Using Lemma 12, Formulas (22) ensure
every horizontal o-world has the same colour as the g-world
‘immediately to the right’. Together with Formulas (21)
and (23), this ensures that the g-worlds satisfy the horizontal
tiling constraints. Likewise, Formulas (21), (24), and (25)
ensure that the g-worlds satisfy the vertical tiling constraints.

Lemma 15. SupposeA is transitive, andA |=w0
Γ ∪ ∆.

For all s, t in the range[0, 2n − 1], definef(s, t) = c if
A |=w c for some g-worldw with coordinates(s, t). Then
f is well-defined, and is in fact a tiling for(C,H, V ).

Proof: Immediate.
Now supposēd = d0, . . . , dm−1 is anm-tuple of elements

of C. Let π0 be the formula:

✷(z ∧ ¬p1 ∧ · · · ∧ ¬pn ∧ ¬q1 ∧ · · · ∧ ¬qn → d0)

implying that any g-world with coordinates(0, 0) has colour
d0; and let the formulasπ1, . . . , πm−1 be defined analo-
gously, assigning coloursd1, . . . ,dm−1 to the g-worlds with
coordinates(1, 0), . . . , (m− 1, 0). Denote byΘd̄ the set of
all these formulas.

Lemma 16. SupposeA is transitive, withA |=w0
Γ∪∆∪Θd̄,

and let the tilingf be as defined in Lemma 15. Then̄d is
an initial configuration forf .

Proof: Immediate.
Thus, we have:

Lemma 17. Let K be any class of frames satisfying
Tr ⊇ K ⊇ Tr ∩ Rfl. The problemGMK-Sat is NExpTime-
hard. It remainsNExpTime-hard, even when all numerical
subscripts in modal operators are bounded by1.

Proof: We reduce any exponential tiling problem
(C,H, V, p) to the problemGMK-Sat. Fix(C,H, V, p), and
let an instanced̄ of size m be given. Writen = p(m).
Consider the conjunctionϕd̄ of all formulas in the set

Γ ∪ ∆ ∪ Θd̄. We claim that the following are equivalent:
(i) ϕd̄ is satisfiable over Tr∩ Rfl; (ii ) ϕd̄ is satisfiable
over Tr; (iii ) d̄ is a positive instance of(C,H, V, p). The
implication (i) ⇒ (ii ) is trivial. For (ii ) ⇒ (iii ), suppose
A |=w0

Γ ∪∆ ∪ Θd̄, with A transitive. Lemmas 15 and 16
then guarantee the existence of a tilingf of size 2n for
(C,H, V ), with initial configuration d̄. For (iii ) ⇒ (i),
supposef is a tiling for (C,H, V ) of size 2n, with initial
configurationd̄. Taking S and w0 to be as in the proof
of Lemma 14, we expandS to a structureS∗ by setting
cS

∗

= {(n, n, s, t), (h, s, t), (v, s, t) | f(s, t) = c} for every
proposition letterc ∈ C. It is obvious thatS∗ |=w0

∆∪Θd̄.

Theorem 5 follows from Corollary 1 and Lemma 17,
noting that Rfl∩ Tr = Rfl ∩ Ser∩ Tr ⊆ Ser∩ Tr ⊆ Tr.

V. CONCLUSION

In this paper, we have investigated the computational
complexity of GM∩F -Sat, the satisfiability problem for
graded modal logic over any frame class

⋂
F , where

F ⊆ {Rfl,Ser,Sym,Tr,Eucl}. The results are as follows.
Suppose first that Eucl6∈ F and Tr 6∈ F . Then Theorem 3
states thatGM∩F -Sat is PSpace-complete. Suppose next
that Eucl ∈ F or {Sym,Tr} ⊆ F . Then Theorem 4
states thatGM∩F -Sat isNP-complete. Suppose finally that
Eucl,Sym 6∈ F , but Tr ∈ F . Then Theorem 5 states that
GM∩F -Sat isNExpTime-complete. All these results hold
under both unary and binary coding of numerical subscripts.
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