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Abstract—Graded modal logic is the formal language ob- our analysis, because its complexity-theoretic treatnient
tained from ordinary modal logic by endowing its modal oper-  comparatively straightforward. The following two theor@m
ators with cardinality constraints. Under the familiar possible- 5.0 \well-known. and may be proved using techniques found

worlds semantics, these augmented modal operators receive . d text dal loqi 0. W ind
interpretations such as “It is true at no fewer than 15 accesble in any modern text on modal logic (e.g./[1]). We remin

worlds that ...”, or “It is true at no more than 2 accessible  the reader that symmetry and transitivity together imply th
worlds that ...”. We investigate the complexity of satisfiality Euclidean property.

for this language over some familiar classes of frames. This .

problem is more challenging than its ordinary modal logic ~ Theorem 1. Let 7 C {Rfl, Ser Sym Tr, Eucl}, with Eucl €
counterpart—especially in the case of transitive frames, Wwere ~ F or {Sym Tr} C F. Then the satisfiability problem for

graded modal logic lacks the tree-model property. We obtain  ordinary modal logic ovef F is NP-complete.
tight complexity bounds for the problem of determining the

satisfiability of a given graded modal logic formula over Theorem 2. If F C {Rfl,SerTr}, then the satisfiability
the classes of frames characterized by any combination of problem for ordinary modal logic ovef)F is PSpace-
reflexivity, seriality, symmetry, transitivity and the Euclidean complete[2]. Also, if F C {Rfl, Ser Sym}, then the sat-

property. isfiability problem for ordinary modal logic ovef)F is
Keywords-modal logic; graded modalities; computational — PSpace-complete.
complexity
The upper complexity bound in Theordm 1 follows from

|. INTRODUCTION the fact that ordinary modal logic has the polynomial-size
model property over the relevant frame classes: if a formula
 of ordinary modal logic is satisfiable over a framginF,
where F satisfies the conditions of Theordrmh 1, then it is
satisfiable over a frame ifi)F whose size is bounded by
a polynomial function of the number of symbols ¢n For

Graded modal logids the formal language obtained by
decorating the<-operator of ordinary modal logic with
subscripts expressing cardinality constraints. Spedifidar
C > 0, the formula®<cy may be glossed:¢ is true at

no more tharC’ accessible worlds,” and the formuta, ¢ the frame classes of Theorém 2, ordinary modal logic lacks

may be glossed:{ is true at no fewer thai®' accessible e .
. . . ._ the polynomial-size model property. However, it does have
worlds.” The semantics for graded modal logic generalize

the relational semantics for ordinary modal logic in thethe tree-modelproperty: if a formula is satisfiable over a

expected way. We employ the labels Rfl, Ser, Sym, Tr amirame in any of the classe§) 7 mentioned in Theorerl 2,

. . . then it is satisfiable over a frame in that class which forms
Eucl to denote, respectively, the classes of reflexiveakeri PR :
: . . - a (possibly infinite) tree[[3]. Because the branches of this
symmetric, transitive and Euclidean frames. (Definitiofs o

these frame classes are given in Table 1.) Using this na:tatiotree can be assumed to be either short or periodic with small
N{Rfl, Tr} denotes the class of reflexive, transitive framesPenOd' and because these branches can be explored one-by-

({Ser Tr, Eucl} denotes the class of serial, transitive, Eu-2"® thePSpace-upper complexity bound may be obtained

clidean frames, and so on. As a limiting cafgf denotes by exh|p|t|ng, for each relevant frame claSp7, a suitable
semantic tableau algorithm.

the class of all frames. In this paper, we investigate the . :
computational complexity of determining the satisfiabilit Turning our attention to the language of graded modal
logic, our first question is whether the results of Theorems 1

of a given formula of graded modal logic over any frameand[} carry over to the larger language. WHErcontains
class of the fornf) /', where € {Rfl, Ser Sym Tr, Bucl}. neither of the classes Tr or Eucl, the answer is yes. We have:

It is easy to see that ordinary modal logic is in effect a
sub-language of graded modal logic: any formula of the formTheorem 3. The satisfiability problem for graded modal
O may be equivalently writter> >, and similarly, any  logic over F = (0 is PSpace-completef4]. In fact, if F C
formula of the formOy may be equivalently writte®<o—p.  {Rfl, Ser Sym}, then the satisfiability problem for graded
And ordinary modal logic provides a good starting point formodal logic oven F is PSpace-complete.
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The reason—and indeed the reasoning—is essentially théfe prove Theorernl5 in Sectién]lV. The final statement of
same as for Theorernl 2: thBSpace upper complexity the theorem is significant, because it means that the result
bound in Theorerhl3 depends on the fact that graded modaloes not depend upon the coding of numerical subscripts.
logic enjoys the tree-model property over the relevant #am A moment’s thought shows that the conditions in Theo-
classes. This can then be used to establish the correctnessns[BEb are exhaustive: together, they establish the com-
of semantic tableau algorithms for graded modal logic oveplexity of the satisfiability problem for graded modal logic
these frame classes. The pager [4] actually considers onlyver () F for every 7 C {Rfl, Ser Sym Tr, Eucl}.
the caseF = () (i.e. the class of all frames); however, the The decidability of the satisfiability problem for graded
modifications required to take account of reflexivity, siiyia  modal logic over various frame classgsF is touched on
and symmetry are routine, because these restrictions do nwt [6], where it is stated (p. 520) that “standard techniques
compromise the tree-model property. Note that the uppemodifications of them may be used to prove the decidability
complexity bound in Theorefd 3 holds even when numericabf most of [these] logics”; however, the paper gives no
subscripts are coded in binary. (The much easier result fdiurther details. Several such decidability results aréba
unary coding can be found inl[5].) in [7]; however, in the (difficult) case whetg = {Tr}, this

When F contains either Eucl or Tr, the complexity of proof contains an error, as reported(in [8]. The latter pfesi
the satisfiability problem for graded modal logic oygrF  a correct proof; however, the method employed there does
is harder to determine. Consider first the analogue of Theaot establish any complexity bounds. It is conjectured jn [9
rem[1, where we have either EuglF or {Tr,Sym} C 7, (Remark 4.12), that the satisfiability problem for graded
and let {¢,},>0 be the sequence of formulas given by modal logic over the class of transitive, symmetric and
on = Osonp. Assuming binary coding of numerical sub- reflexive frames i Space-complete: Theorer]4 shows that
scripts, the number of symbols i, is bounded by a linear this conjecture, if true, would imply th&Space=NP. Earlier
function of n, and everyy,, is satisfiable over a Euclidean accounts of graded modal logics focused primarily on the
frame; buty, is certainly not satisfiable over any frame problem of axiomatizing the set of valid formulas over
with fewer than2™ worlds! Thus, for graded modal logic, these frame classes. For instance, [6] provides (or reports
the reasoning used to prove Theorgm 1 fails. Neverthelessych axiomatizations fof) 7, where F is any of (), {Rfl},
the corresponding complexity result still holds: {Sym}, {Rfl, Sym}, {Rfl, Tr} and {Rfl, Tr, Sym}. Similar

. It be found in_[10], [11]. [12], ; $
Theorem 4. Let F C {Rfl, Ser Sym Tr, Eucl}, with Eucl € results can be found in_10]. [11]. [12]. [13]; see also [9]

Do for axiomatizations of some related logics.
7 or {Sym Tr} g_ F. Then _the satisfiability problem for Graded modal logics are closely related to terminological
graded modal logic ovef) F is NP-complete.

languages and description logics (DLS) [[14] featuring so-
We prove Theorerl4 in Sectignllll. called qualified number restrictions. These logics allow
WhenF contains Tr, but neither Sym nor Eucl, we cannotconcepts to be defined by specifying how many things (of
apply the reasoning of Theordrh 2 at all, since graded modafarious kinds) instances of those concepts can be related to
logic lacks the tree-model property over transitive framesLogics featuring both qualified number restrictions anditra

For example, consider the formujagiven by sitive relations are frequently undecidablel[15], and many
DLs incorporate various syntactic restrictions to restore
@ :=qo0 A O>2(mg0 A g A C>1(mgo A =g1)) A C<igs. decidability. It was recently shown ifil[8] that some of these

The formula ¢ is certainly satisfiable over transitive syntactic restrictions can be considerably relaxed.

frames; however, it is not satisfiable over tree-shaped tran T_h|s paper is an extended version of|[16] containing the
. i . omitted proofs.

sitive frames. For suppose is true at a worldwy in some

structure. The conjune®>z2(—go Aq1 AC>1(—goA—q1)) en- Il. PRELIMINARIES

sures the existence of distinct worlds andw;, accessible Fix a countably infinite sefl. The language ofjraded

from (and distinct from)wo, and, fori = 1,2, a worldw;  modal logicis defined to be the smallest set of expressions,

accessible fromw; and satisfying-q, with wj distinct from g A4 satisfying the following conditions:
wp, wy and we. But the conjunck><;—q; ensures that, if 1) T C GM:;

the accessibility relation is transitive;; = w5. Hence,p is

not satisfiable over a tree. Indeed, we show below that, for
the relevant frame classes, graded modal logic and ordinary 3)
modal logic exhibit different complexities:

2) if ¢ andvy are inGM, then so are~p, p A, oV 1,

@ — 1 andp < Y;

if p isin GM, then so ared < and<>cp, for any
bit-string C.

Theorem 5. Let 7 C {Rfl, Ser, Tr}, with Tr € F. Then the We refer to expressions in this set §s\I-formulas (or
satisfiability problem for graded modal logic ovél) F is  simply formulas if clear from context). Ify is a GM-
NExpTime-complete. It remainBlExpTime-hard, even when formula, we take thsize ofy, denoted |, to be the number
all numerical subscripts in modal operators are at most of symbols in . Throughout the paper, we equivocate



between bit-strings and the natural numbers they represent  Taple I: Frame classes considered in this paper.
in the usual way. Thus, we may informally think of the reflexive frames  Vz.r(z,z)

subscripts inG<c and ¢>¢ as natural numbers, it being  serial frames VaIy.r(z,y)
understood that the number of symbols in, for exampleg tsr)gwg,etg‘;rg;rggs y:yv( (( (y) —)>/”<“ 0 ))) (@,
i i s 1Y eVyVz.(r(z,y) A r —r(x,z
is ap_proxmatelylog C, rather tha_mC. That is: in giving Euclidean frames Va¥yvz.(r(z.4) A r(z, 2) — r(y, 2)).
the size of a formula, we assurb@ary, rather tharunary,
coding.
Let_Z be t_he relatlor_wal signature with unary predlca!ﬂes IIl. EUCLIDEAN FRAMES
and single binary predicatg and let2( be aX-structure with ) o
domain . We refer to the elements d¥ asworlds We The purpose of this section is to prove Theoflem 4. We

define thesatisfactionrelation forGM-formulas inductively ~Make use of a known complexity result on first-order logic
as follows: with counting quantifiers. Denote bg! the set of first-

order formulas featuring only a single variahte but with
the counting quantifiers<cz and 3>cx allowed. The
following result holds for both unary and binary coding of

1) 2 =, p if and only if w € p*;
2) A =, —p if and only if 2 ., ¢, and similarly for

N Vo= o , , numerical subscripts:
3) A w Oscyp if and only if there exist at least’
worlds v € W such that(w, v) € r* and2l =, ¢; Theorem 6 ([17], [18]). The problem of deciding satisfia-

4) A =, O<cyp if and only if there exist at mos¢  bility for C!'-formulas isNP-complete.

worlds v € W such that{w,v) € r* andl =, ¢ We show that, forGM-formulas, satisfiability over Eu-

The notion of satisfaction extends to setsdo#1-formulas clidean frames is equivalent to satisfiability over frames
® as expected?l =, ® if A =, ¢ forall ¢ € ®. If  having a particularly simple form, and that, for such frames
A ., ¢, we sometimes say, informally, that is true at  the fragment! is as expressive as we need.
w in 2. We write Oy as an abbreviation fo®<,—¢, and Let § = (W, R) be a frame. IfX C W, R(X) denotes
< as an abbreviation fof>1¢, or, equivalently~C<op. |, cx{w € W | (z,w) € R}; we write R(w) for R({w}).
Thus, the language of ordinary modal logic may be regardett § = (W, R) is a frame, andX C W, R*(X) denotes
as the subset @ M in which all indices are restricted to 0. X U R(X)UR(R(X))U---; we write R*(w) for R* ({w}).
Finally, we write[-Jp as an abbreviation fop A Ogp. If 2 is a structure over a fram@V, R) and X C W, let

By aframe we mean adr}-structure—in other words, a B be the substructure ol with domain R*(X). We call
non-empty (possibly infinite) digraph. # is a X-structure, ‘B the substructuregenerated byX. Note that reflexivity,
then its{r}-reduct is a framé&: we say tha®l is a structure seriality, symmetry, transitivity and the Euclidean prape
over §. Further, we call the mapping : II — P(W) are all preserved under generated substructures.
given by p ~ p® the valuation of 21 (on W). We write
fQL = (W, R, V) to |nd|cat_e that is a x-structure over_the a world of 2( and 98 the substructure generated Qy}. If
rame (W, R) with valuationV. Obviously, this determines o then
2A completely. Henceforth, the term “structure”, with no w w ¢
signature qualification, will always mearx“structure”. Let Proof: Induction on the structure ap. ]
¢ be agM-formula. We say thatp is satisfiable overa
frame § if there exists a structurdl over§ and a worldw P LN
of 2 such tha®l =,, ¢. Further,p is satisfiable over class E{V.RThen. ) };(WO)}%.R,{(}E(?UO))}%('}% R (wo) = {wo} U
of framesK if it is satisfiable over some frame ikl. We (R(wo)), and(iii) 1 is total on R(R(wo)).
denote byG M -Satthe problem of determining whether a Proof: For the first statement, observe that, in a Eu-
given G M-formula is satisfiable ovef. clidean frame,R is total on any setR(wy). In particular,

Any first-order sentence over the signaturér} defines (w,w) € R for all w € R(wy), whence R(wy) C
a class of framegJ : § | «}. The most common frame R(R(wy)).
classes are those which we agreed in Sediion | to denote Now consider anyX C W such thatR is total on
by the labels Rfl, Ser, Sym, Tr and Eucl. Taljle | lists X. We claim thatR is also total onR(X), and that
these frame classes together with their respective definin@(X) = R(R(X)). By the Euclidean propertyfw, w) € R
first-order sentences. A structure over a reflexive frame wilfor all w € R(X), so thatR(X) C R(R(X)). We show
simply be called aeflexivestructure, and similarly for the thatR is total onR(X). If w € R(X) andR is total onX,
other frame properties. We can now articulate the objectivéhen by the Euclidean propertyy, w) € R for all € X,
of this paper. LetF be a subset (possibly empty) of the setwhence, ifw’ € R(X), using the Euclidean property again,
of frame classegRfl, Ser Sym Tr, Eucl}. We ask: what is  (w,w’) € R. ThusR is total on R(X). Finally, we show
the complexity ofG M z-Sat? that R(R(X)) C R(X). Supposew € R(R(X)), so that

Lemma 1. Let ¢ be a formula ofg M, 21 a structure,w

Lemma 2. Let§ = (W, R) be a Euclidean frame and, €



(w',w) € R for somew’ € R(X). Pick anyz € X. Since
R is total onR(X) D X, (w',x) € R, and so, by the
Euclidean property(xz, w) € R. Thus, R(R(X)) C R(X),
proving the claim.

For the second statement of the lemma, puttiXig=

Clearly, a can be constructed in polynomial time from It
remains to demonstrate thatis satisfiable over a frame in
() F N Eucl if and only if « is satisfiable.

Supposel ., ., where®l is a structure over a Eu-
clidean frameg(W, R). Let 8 be the substructure generated

R(wp) in the claim of the previous paragraph, we haveby {w,}—in other words, the restriction ofl to R*(wo).

R(R(wo)) = R(R(R(wo))) = R(R(R(R(wy)) = ...
Thus,

R (wo) {wo} U R(wo) U R(R(wp)) U- -
= {wo} U R(wp) U R(R(wy))

= {wo} U R(R(wo)),

with the last step following from the first statement of the

lemma. [ |

Lemmadl anfll2 show that, when discussing satisfiability
over Euclidean frames, we may restrict attention to frames

of the form (W U {wo}, R), where R is total on W,
R(wo) € W, andwy may or may not be ifl¥. Over such

simple frames, ang M-formula can be translated into an

equisatisfiable?!-formula. Specifically:
Lemma 3. Let 7 C {Rfl,Ser, Sym Tr}. Given a G M-

formula ¢, we can compute, in time bounded by a poly-

nomial function of |¢|, a C!-formula « such thaty is
satisfiable over a frame ifiyF N Eucl if and only if « is
satisfiable.

Proof: Let qo, g1, g2 be new unary predicates (i.e.,

pairwise distinct and not inI). We define a two-stage
translation fromGM into C! as follows. Notice that the
definition of f; makes reference t@,, but notvice versa

fi(p) = p(z) (for p € 1)
fileAY) = fi(e) A f1(¥) (sim. for -, Vv, etc.)
f[1(Oscp) = I>c.a(fale) A ar(z))
f1(©<cp) = F<cz.(fa(o) N1 (z))

fa(p) = p(x) (for p € 1I)
fale A1) = fa(p) A f2(¥) (sim. for -, v, etc.)
f2(Oscp) = I>cx(fa(p) A ga(z))

f2(C<cp) = F<cr.(fa(p) A q2()).
Next, we define first-order formulas (in fact-formulas),

By Lemmall,8 =,, ¢. ExpandB to a structureéB™ by
setting

@@ ={wo}, ¥ =R(wo), & = R(R(w)).

We shall show tha®3+ = «. By Statement 1 of Lemnid 2,
BT E Vo.(q(r) — g2(z)). Using LemmdR, a structural
induction ony easily establishes the following condition.

For allw € 2", and allgM-formulast),
B =, ¢ if and only if B1 = fo(y)[w]. (1)

Using (1), a further structural induction establishes the
following condition.

For all G M-formulast,
B ., ¢ if and only if B |= f(¢)[wo]. (2)

From (2), it follows that®B™ E Jz(fi(¢) A qo(z)).
It remains to show that, for allk € {Rfl, Ser Sym Tr},
(W,R) € K implies 8™ |= ex. Suppose, thefW, R) € K;
we consider the four cases in turn.

1) If K =Rfl, thenwy € R(wy). It follows that

B Vo (go(r) = q1(2)).

2) If K = Ser, thenR(wy) # 0. It follows that
BT E Jr.qi ().

3) If X = Sym, then, since(W,R) is both sym-
metric and Euclidean, eithefwy,wy) € R, or
R(wp) = 0. Thus, either8™ E Vz.(qo(z) = q1(x)),
or Bt = Vr.—q ().

4) If £ =Tr, thenR(R(wp)) C R(wp). It follows that
BT V2. (g(z) = a(z)).

This establishes tha8* = «, as required.

Conversely, suppos@ E «, where 2l interprets 3
together with the predicateg, ¢ andgs. Let BT be the
substructure ofl with domainW = ¢3' U ¢3* U g3, and let
wo € W be some element satisfyinfi (¢) A go(x). Since
all quantification infi () is limited to elements satisfying

which, for Euclidean frames, act as substitutes for then Or g2, B = «; and sincex contains no occurrences of

conditions of reflexivity, seriality, symmetry and tramaty:
Ern = V2.(qo(2) = q1(2))
Eser = 32.q1 ()
Esym = V2.(qo(2) = q1(x)) V
er = Va.(g2(z) = q1(2)).
Let us define the required' formula« as follows:

o = Fo.(f1(9) A qo(a)) A V(a1 () AN ex.
KeF

—3z.q1(z)

— q2(x

r, we may without loss of generality assume that
+ + + + +

= (g xa@ )U(sz xa3 ). 3
Let B be theX-reduct of 3™ obtained by ignoring the predi-
catesyg, g1 andgs; and letR = 73", so that® is a structure
over the frame(W, R). We show that® =,, ¢, and,
moreover(W, R) € (] FNEucl. Using the definition of %"
in (@), two simple structural inductions again establish (1
and thence[{2). And fronl12), it follows thaB =, «.
It remains to show that, for allC € {Rfl, Ser Sym Tr},



Bt = e implies (W, R) € K. Suppose, the®B™ | ex; Lemma 4. Let ¢ be a GM-formula. We can compute, in
we consider the four cases in turn, making implicit usé bf (3Xime bounded by a polynomial function ¢p|, a GM-
throughout. Note also that, sin@" = «, 2" C ¢2". formula ¢ of the form
+ + + ;
I =RM, qF CqP Cq3 , whence(W,R)is  pr(an N\ i = Osem)n N\ (45 = O<p,x5)), @)
total, and hence ce+rta|nly reflexive. 1<ic 1<j<m
_ B e vi == =I5
2) If IC I_ Ser, theng;” " 7 0, whence(W, R) is visibly where thep; and thegq; are proposition letters, the’; and
senal. D; are natural numbers, and, 6, the =; and they; are

_ i BT BT BT BT _
3) IIL ﬁ]gfc?r)r/nrglr Egger{/]{g R)gisqtlotalgaqrf | hgr:gé ceﬁa?ﬁl propositional formulas, such thap and ¢ are satisfiable
aw, ' Y over exactly the same transitive frames.

symmetric; in the latter(W, R) is visibly symmetric.

4) If K =Tr, theng®" C ¢B", whence(W, R) is visibly Proof: As usual, if p is a subformula ofp ando a
transitive. formula, we denote by[o/p] the result of substituting
m forevery occurrence of in . If p is a formula of the form

The upper bound of Theord 4 now follows by Theofém 6 <c7, denote byp the corresponding formule> c41);
and LemmaB, since SymTr C Eucl. The lower bound is similarly, if p is a formula of the form®s cm, with C' > 0,

trivial, since GM includes propositional logic. denote byp the corresponding formul@< c—1)7.
We may assume that contains no subformulas of the

IV. TRANSITIVE FRAMES form &>, since these may be replaced with any tautology.

The purpose of this section is to establish Thedrem 5. Th&UPPOSEp is not propositional, and lgt be any subformula
upper bound (SectidnIV3A) is obtained by proving that everyof ¢ having either of the forms><cm or &> cm, with =
G M-formulay that is satisfiable over a transitive (transitive Propositional. (In the latter cas€; > 0.) Let p and ¢ be
and reflexive) frame is also satisfiable over a transitivdTesh proposition letters, and let be the formula
(transitive an_d reflexiye) frame whose size i_s bounded by elp/pl ABD(p V q) AB(p — p) AE(q — p).
an exponential function ofip|. It is shown in [8] that
every gM-formula satisfiable over a transitive frame is ,
also satisfiable over finite transitive frame. However, this % Fuw © - C?“VGfse'Yv |le/ Fuo ¢ We may expanlwl to
paper gives no bound on the size of the satisfying structur& structl/Jrte by setting?’ =, P if and only if A" =,

The matching lower bound (Sectién IV-B) is obtained by” @nd 2" Fu q if and /only if A" e P for all worlds

a reduction from exponential tiling problems. Interesting " evidently, 21" |=.,, ¢". Thus,y and ¢’ are satisfiable
this reduction features only formulas in which all numelrica over the Same transmve frames. Repeating this process and
subscripts are bounded by 1. Thus, the lower complexit)f-e'grOUp'ng conjuncts eventually leads to a formula of the

bound of Theoreni]5 continues to hold even under unarf'™m () as required. - u
coding of numerical subscripts. We next present lemmas describing transformations of

One note on terminology before we proceed. In thelransitive structures, in which we use the following termi-

context of (graded) modal logic, it is customary to think nology. Let2 = (W, R, V) be a trangltlve structure, and
of the unary predicates ifl asproposition lettersbecause 1> %2 be worlds of W. W? say-ws IS an f-successor
they receive truth-values relative to worlds. Since we Ishal®f w1 iIf (w1, w2) € F; ws is astrict R-successor ofu,
not be concerned witd! or other first-order fragments in the i <I_Ul’w2>_ € R, but (wp,wy) ¢ R, wy and w, are fi-
sequel, we adopt this practice from now on. Accordingly, gequivalentf (wn,wp) € R and(wy, ws) € R. The R-clique
propositionalformula is one containing no modal operators.for wy In 2 s thg setQu(wy) € W consisting Ofwl.and
Finally, we shall relax our stance on valuations, aIIowingaII worlds R-equwglent tows. We say thatw, is a direct
structures to interpret only those proposition letteroined R-successor ofw, if ws is a strict R-successor ofv, and,

in some collection of formulas of interest, rather than gver for everyw & W' such that{w,, w) € R and (w, ws) € R,
" ; we have eithew € Qg (w1) or w € Qg (ws2).
proposition letter inlI. . .
Thedepth of a structurél is the maximum over alt > 0

A. Membership ifNExpTime for which there exist worldsuy, . . ., wr € W such thatw;
is a strict R-successor ofv;_; for everyi with 1 < ¢ <
k, or oo if no such maximum exists. Thereadth of2l is

It is easy to verify that, iR =, ¢’ with 2 transitive, then

First we demonstrate that eveigM-formula can be
transformed into a normal form preserving satisfiability ) - i
over transitive frames. This normal form is broadly similar t"€ maximum over alk > 0 for which there exist worlds
to the so-called Scott normal form for the two-variable @ w1: - ->wk Such thatw; is a directi-successor ofv for
fragment of first-order logic, and is likewise obtained by €Veryi with 1 <i <k, and the set®y(w1), .. ., Qu(wy)

a straightforward renaming procedure. For the next lemmé&'€ disjoint, oroo if no such maximum exists. Theidth of
recall thatly abbreviatesy A Og. 20 is the smallesk such thatk > |Qy(w)]| for all w € W,

or oo if no suchk exists.



Lemma 5. Let2( be a structure of depth, breadthb and
width ¢ (all finite), and letw be a world of2. Then the

substructure ol generated by{w} contains no more than

n worlds, wheren = cif b=0,n=c-(d+ 1) if b = 1,
andn = c- (b1 —1)/(b — 1) otherwise.

Proof: Elementary.

We employ the following notation. For a structute=
(W,R,V) and a binary relation®’ on W (possibly dif-
ferent from R), we denote byRj(w,y) the set{v |
(w,v) € R,A =, ¢}. Thus, A =, Osce if and only

if |Ru(w,9)| > C, where|S| denotes the cardinality

of the setS. Similarly, 2 =, <C<cp if and only if
| Ra(w, @)| < C.

Lemma 6. Let ¢ be a formula of the forn{d). If ¢ has
a transitive model2(, then it has a transitive modell’
with depth d < 2¢, breadtht! < Z 1 C; and width

means, in particular, that there exists an elemehe W
with 2 |=, x; such that(w,w’) € R’ but (w,w’) € R.

Since (w,w') € R’, by definition of R, there exists a
sequencewy, . . . ,wy of different worlds inTW such that
wg = w, wy = w, and (wi—1,w;) € RU R, for
everyi (1 < i < k). Note thatd} (w;—1) > d}y(w;) for
everyi (1 < i < k) and everyj (1 < j < m). Take
the maximal: (1 < i < k) such that{w;_;,w') ¢ R.
Since (wp, w’) = (w,w’) ¢ R, such a maximak always
exists. Then(w;,w’) € R*, and (w;_1,w;) ¢ R. Since
(wi—1,w;) € RUR,, we have(w;_1,w;) € R;, and so
dy(wi—1) = dj(w;) by definition of Ry. Sinced)(w;) <
d?u( ) = dgl( w) < Dj +1, we obtain a contrad|ct|on due
to the fact thatt, (w; 1) = dly(w;) < Dy, (wi—1,w') ¢ R,
(ws,w') € R*, and2 =, ;-

Now to complete the proof th&t’ satisfiesp, we demon-
strate that, ify) is any of the formulas), 6, (p; — <¢,7)

c < ZZ 1 Ci+1.If A is reflexive, then We can additionally or (¢; — <<p,x;) occurring in [(4), andw e W, then

ensure thatl’ is also reflexive.

Proof: Let & = (W,R,V).
(W', R', V") from 2l in four stages.

We constructl! =

Stage 1: Adapting a technique employed inl [8] to establish

the finite model property fog M-formulas, we first define
a transitive model’ of ¢, reflexive if2l is, such tha®l’ has
finite depth. The strategy is tenlargethe relationR (thus
reducing the number dftrict successors of worlds W),
preserving satisfaction for subformulas of the fotmap, x;.
Forw € W defined)(w) := min(D; + 1, |[R*(w, x;)|)
where D; and x; (1 < j < m) are as in[(), andR* is
the reflexive closure ofR. Let Ry := {(wi,w2) € R |
d)(w1) = dj(we), 1 < j < m} be the restriction ofR to
pairs of elements that have the same valueggfw), and
let R, := {(wi,ws) | (w2, w1) € R4} be the inverse of;.
Let ' = (W, R',V) be obtained froml = (W, R,V) by
setting R’ :=

A Ew ¢ |mpl|es A" =, . Indeed, for the propositional
subformulasny and 6, this is immediate. For subformulas
p; — Osc,m, this holds sinceR C R’. Finally, for
subformulasg; — <<p,x; this follows from the property
i (w) = dy, (w).

Stage 2: By Stage 1, we may assume thdthas finite
depthd. We define a transitive mod@l’ of ¢, reflexive if
2 is, such tha®l’ has depthl’ < 2¢. If d < 2¢ then we take
A’ = 2. Otherwise, we obtai®l’ from 2 by contracting
the relationR (removing unnecessanyirect successors of
worlds in W), preserving satisfaction for subformulas of the
form &> ¢, m;. Define, for everyw € W, two sets of indices:

Iy(w)={i|1<i</{|R(w,m)| > C;}, and
Ly(w)={i|1<i<{|R(w,m)\ Qu(w)| = Ci},
wherer; andC; are as in[(#)]1 < < £. Note that:

(RU R7)T. Intuitively, if w, is R-reachable (P1) I3(w) € Ia(w) for everyw € W, and

from w,, and, for allj (1 < j < m), w andw, agree (P2 Iu(wz) C Iy(w1) if wy is a strict R-successor ofv; .

on the number (up to the limit oD;) of x;-worlds that
are R-reachable from them, then we make andw, R'-
equivalent. We show thall’ satisfiesy, is reflexive if2l is,
and has finite depth.

SinceR C R/, 2’ is reflexive if2l is. We claim tha®l’ has
finite depth. Indeed, for every;, ws; € W such thatw, is a
strict R-successor ofy;, we haved), (w;) > d (w,) for all
7, andd?u(wl) > d) 2 (w2) for somej (1 < j < m). Hence
Doy dy(wr) > ZFl &) (ws). Sinced)(w) < D; +1 for
everyw € W and everyj (1 < j <m), the length of every
chainwy, ..., w; such thatw; is a strict R’-successor of
w;_1 (1 <1< k), is bounded byZ;”:1 D; + m.

In order to prove thatl’ satisfiesy, we first prove
that &}y (w) = d,(w) for everyw € W and everyj
(1 < j <m). Assume to the contrary tha, (w) # d%, (w)
for somew € W and somej (1 < j < m). Since
R C R/, we haved}(w) < dj,(w) < D; + 1, which

Define the structur@’ = (W, R', V') by setting

"= R\ {{wy,ws) | we is a directR’-successor ofy;
and Iy (we) = Iy (w1)}.

We claim that2l’ is a transitive structure which satisfies
is reflexive if 2 is, and has depth’ < d. Repeating this
step sufficiently often, we eventually ensure tHak 2/.

It is easy to see thak’ is transitive if R is transitive.
Indeed, if (w1, ws) € R’ and (wy,w3) € R/, we have
(w1, ws) € R, and either(i) w3 is not a directR-successor
of wy, Or (ZZ) wo € Qm(wl) and Igl(w3) 75 Im(wg) =
Im(wl), or (ZZZ) we € Qm(wg) and I%(w3) = Igsl(’wg) 75
Iy(w1). In all of these three cases, we have,, ws) € R’
by the definition ofR’. Trivially, R’ is reflexive if R is.

In order to prove thagl’ satisfiesso, we first point out
some other properties @ (w), I3 (w), Io (w), andLy, (w):

(P3) In (w) C I(w) and I3, (w) C I (w) for w € W;



(P4 I (w2) C Iy (wr) if wy is a strict R-successor ofy:;
(P5) Iy (w) = IQ[(U/) forwe W.

Property P3) holds sinceR’ C R. Property P4) holds
since, for everyi (1 < i < (), everyws € Rg(wa,m;) \
Qu(ws) is a strict non-directR-successor ofw;. Hence
(w1,ws) € R’ by the definition of R, and so,w; €
Ry (w1, m;). In order to prove R5), by (P3), it suffices to
prove Iy (w) 2 Iy(w). Assume to the contrary that there
existsw € W andi (1 <14 < ¢) such thatl |=,,» m; (equiv-
alently, 2’ =, m;), (w,w’) € R, and(w,w’) ¢ R'. By the
definition of R’, this is only possible ifu’ is a direct R-
successor ofv and I (w') = Iy (w). But then, by P4), we
have I3 (w') C Is (w). Hencely(w) = I5(w') C Iav (w),
which contradicts the assumption thaf(w) \ Iy (w) # 0.

In order to prove tha®l’ satisfiesy, it is sufficient, as in
Stage 1, to demonstrate that,ifis any of the formulag,
0, (pi = Oc,m;) or (¢; — O<p,x;) oceurring in [@), and
w € W, then?l =, ¢ implies?’ =, . This property
holds fory) = n, ¢ = 0, andv¢ = (¢; = C<p,x;), 1 <
j<m,sinceR’' C R. Fory = (p; = O¢,mi), 1 < i <m,
this property holds byR5).

Finally, it remains to demonstrate that the depttRibfis
smaller than the deptt of 2. Suppose, to the contrary, that
there exists a sequence of worldsg, ..., wg in W such
that w; is a strict R’-successor ofv; 1, 1 < 7 < d. By
definition of R/, everyw; is a strict R-successor ofuv;_1,
and, sinced is the depth ofl, w; is in fact a directR-
successor ofv; 1, 1 < i < d. Again, by definition of R/,
we havelj(w;) # Ia(wi—1), 1 <1i <d. By (P1) and P2
we havelgl(wi) - I\g[(wi_l) and _[Q[(wi) - I&(wi_l), SO
| L3 (wi ) [+ [ Lo (wi) | < [ L (wia) [+ Lo (wi—1)], 1 < i < d.
Since |15 (w)| < |Iu(w)| < ¢ for everyw in W, this is
possible only ifd < 2¢.

Stage 3: By Stage 2, we may assume thathas depth
d < 2¢. We define a transitive model’ of ¢, reflexive if

is, such tha@l’ has depthl’ < 2¢ and breadtt’ < >>'_, C;.
For every elementy € W and everyi with 1 <4 </, let
W, (w) be the set of striciR-successors ofv for which 7;
holds. We call the elements &F; (w) the strict 7;-witnesses
for w. Note thatW;(w;) = W;(wz) whenw; andwy are
R-equivalent. LetW/(w) be W;(w) if |[W;(w)| < C; or,
otherwise, a subset diV;(w) which contains exactlyC;
elements. We callW/(w) the selected strictr;-witnesses
for w. We assume thatl’/ (wy) = W/ (w2) whenw; andw;
are R-equivalent. LetR, := {(w,w') € R | w' € Qq(w)}

be the restriction of? to elements of the same clique, and
R; (w,w') € R|w' € W/(w)} be the relation between
an elementw € W and the selected striat;-witnesses for
w. Define the structur@’ = (W, R’, V) by settingR’ :=
(Rg U U <i<e R))T. Intuitively, 2’ is obtained from2( by
removing all strict successor relations except those trat a
induced by selected strict witnesses. We show filahas
all required properties.

Note thatR’ is transitive, and reflexive iR is reflexive.

Clearly, the depth ofl’ is bounded by, since only strict
successor relations are removed. It is also clear that the
breadth of2l’ is bounded by = 3¢_, C;, since for every
w € W and every direcf?’-successot’ of w there exists
with 1 <4 < ¢ such thatQy (w’) N W/ (w) # 0, and so the
maximal number of such successars for which Qg (w’)
are disjoint is bounded bEle W (w)] < Zle C; =b.

It remains to demonstrate th@it satisfiesy. Clearly, the
set of worldsw € W that satisfy subformulagandé has not
changed. The set of worlds that satisfy subformilgs—
O<p,x;) can only have increased, siné¢ C R. Finally,
the set of worlds that satisfy subformulgs, — <¢>c,m)
has not changed, since, for every € W, the number of
direct 7r;-witnesses has either not changed, or is at 1€gst
Stage 4: By Stage 3, we may assume thathas depth
d < 2¢ and breadthh < Zle C;. We define a structure
A’ with all the properties required by the lemma. For every
elementw € W, and everyi with 1 <1 </, let Q;(w) be
the set of elements iQq (w) for which7; holds. We call the
elements ofQ;(w) the equivalentr;-witnesses forw. Note
that Q;(w1) = Q;(w2) whenw; andw, are R-equivalent.
Let Qi(w) be Q;(w) if |Q:;(w)|] < C; or, otherwise, a
subset of@;(w) which contains exactlyC; elements. We
call Q}(w) the selected equivalent;-witnesses forw. Also
let Q,(w) be a singleton set containing an elemenfef(w)
that satisfiesy if there is one, and any element Qfy (w)
otherwise. We assume th@t (w;) = Q’(w2) whenw,; and
wy are R-equivalent. Define the structugé = (W', R', V")
by settingW’ := U, ew o<i<e @i(w), R := R|w, and
V' := Vl]w-. Intuitively 2’ is obtained fron®l by removing
elements in everyr-clique, except for those that are selected
witnesses of other elements, and in such a way that the
cligue remains non-empty and contains at least one element
satisfyingy if there was one. (Note that, since @#bclique
is completely obliterated by this proces$g, is non-empty.)
We show thatl’ has all required properties.

Clearly,2’ is a transitive structure, and indeed is reflexive
if 20 is reflexive. Further, the depth and breadth f
is bounded by the depth and breadth fsince 2’ is
a restriction of2( to a subset oflV. It is easy to see
that for everyw € W', Qu (w) = Uy<,;<, Q;(w). Hence
[Qav (w)] < 3554 |Qi(w)| < 37, € +1 = c. Therefore
the width of’ is bounded bye.

It remains to demonstrate th&t’ satisfiesp. By the
definition of W’ there is a worldwyg € W’ such that
A £y, . Clearly?l’ =, nsince2l =, nandV’ = V|y.
Letw € W be any world such thdtuvg, w) € R'. We need to
demonstrate thati) 2 =, 6, (i7) A v (pi = O>co,m),

1 <i <4, and(iii) A =y (¢ = C<p,x5), 1 < j < m.
Cases(i) and (ii7) are trivially satisfied sincd”’ = V|
and R’ C R. Case(ii) is satisfied since, for every with
1 <3</, ”Rgl(w,ﬂ'i)” > C; |mp||es ||R’Ql/(w,7rl)|| > C;.

[ |



Lemma 7. Let A = (W, R,V) be a transitive structure
that satisfies a formula of the form(d). Then there exists
a transitive structure2ll = (W', R, V') that satisfiesy
such that||W’ﬂ < (b+1)- (¥ —1)/(b — 1), where
b =max(2,) ,_; C;). Moreover, if2 is reflexive, then we
can ensure thafl’ is also reflexive.

Proof: By Lemmal®, there is a transitive structulié
satisfyingyp, reflexive if2l is, with depth, breadth, and width
bounded respectively b@¢, b, andb + 1. Let wy be such
that2l’ ., ¢, and consider the substructuredfgenerated
by {wo}. The result now follows by Lemmas 1 ahH 5=

We remark that the bounth + 1) - (b*+1 —1)/(b — 1)
obtained in Lemma&l7 is at most exponential in the size o
the input formula, even under binary coding of the numerica
subscriptsCy, . .., Cy. Notice, incidentally, that this bound
does not mention the subscripty, ..., D,, at all.

Corollary 1. If Fis any of{Tr}, {Rfl, Tr} or {Ser Tr}, then
the problemG M~ £-Sat is inNExpTime.

Proof: Consider first the cased = {Tr} and F =
{Tr,Rfl}. By Lemmal4, anyg M formula ¢ can be trans-
formed in polynomial time into a formula of the form
@) preserving satisfiability ovef) 7. By LemmalY,v is
satisfiable ovefF if and only if it is satisfiable over a
frame in( F of size at most exponential ify|. This last
condition can be checked in non-deterministic exponenti
time. Finally, using LemmRl1, a formulais satisfiable over
SemTr if and only if o ALICT is satisfiable over Tr, where
T is any tautology. ]

B. NExpTime-hardness

To prove a matching lower bound, we employ the appa- [(—(u; A uj) A —=(v; Avj))

ratus of tiling systems. Ailing systemis a triple (C, H, V),
where C is a non-empty, finite set anél, V' are binary
relations onC'. The elements of" are referred to asolours
and the relationd? and V' as thehorizontal and vertical
constraints, respectively. For any integar, a tiling for
(C,H,V) of size N is a functionf : {0,...,N—-1}? — C
such that, for alk,j with 0 <i< N —-1,0<j < N —1,
the pair (f(i,7), f(i + 1,7)) is in H and for all4,j with
0<i<N-1,0<j< N-1,the pair(f(i,7), f(i,j+1))

there exists a tiling foC, H, V) of size 2°(") with initial
configuratiore. It is well-known that there exist exponential
tiling problems which areNExpTime-complete (see, e.g.
[19], pp. 242, ff.). We show how, for any class of fram€s
such that T2 K 2 TrnRfl, any exponential tiling problem
(C,H,V,p) can be reduced t@ M-Sat, in polynomial
time.

In the sequel, we denote HY, 1}* the set of finite strings
over the alphabef0, 1}; we denote the length of any €
{0,1}* by |s|; we denote the empty string by and we
write s < t if s is a (proper or improper) prefix of. If
|s| = k, thens encodes a number in the ranffe2* — 1]
eft-most digit of s to be the most significant. We equivocate
reely between strings and the numbers they represent; in
particular, we writes + 1 to denote the string representing
the successor of the number represented:.blyinally, if s
is a string andl < k£ < |s|, denote thekth element ofs
(counting from the left and starting with 1) byk]. We use
the notation+;p (with ¢ a numerical subscript), to stand,
ambiguously, for the formulag or —¢. All occurrences
of +;¢ within a single formula should be expanded in all
possible ways t@» and —¢ such that occurrences with the
same index are expanded in the same way.

We are going to write formulas that induce a structure
imilar to that depicted in Fig.Ja, the bottom of which will
epresent the grid associated with (an instance of) a tiling

problem. Fixn > 0. We consider structures interpreting
the proposition lettersug, ..., Un, Vo, ..., Vn, P1,---,Pn,

‘n the usual way; we follow standard practice in taking the

q1,---,qn, 2, op, ando,. LetT'; be the set of all formulas:

ug Avg A 2z (5)

0<i<j<mn) (6)

B(us Avj Az — (0§21<n, )
O(uip1 Avj Az Atpivr)) 0<j<n)

O(u; Avj Az — (OSZ"STL, ®)
Oui ANvjpr ANz AE1gi41))  0<j<n)

O(ui AF1pe — O(z = +apr))  (1<k<i<n) (9)

O(vj At1gr — O(z = 1)) (1 <k <j<n) (10)

Suppose&l is a transitive structure and, a world of 2

is in V. A tiling of size IV is to be pictured as a colouring such thatl =,,, I';. We employ the following terminology.
of an .V x N square grid by the colours ifi; the horizontal A world w of 2( has character(s, j), for 7,7 in the range
constraintsH thus specify which colours may appear ‘to [0,n], if 2 =, u; A v;. A z-world is a member of the
the right of’ which other colours; the vertical constraifts  smallest setZ of worlds such that(i) wy € Z; and (i7) if
likewise specify which colours may appear ‘above’ whichw € Z, andw’ is a direct successor af with 2 =,/ z,

other colours. Ann-tuple ¢ of elements ofC' is aninitial
configurationfor the tiling f if ¢ = f(0,0),..., f(n—1,0).
An initial configuration forf is to be pictured as a row of
colours occupying the bottom left-hand corner of the grid.
Let (C,H,V) be a tiling system ang a polynomial.
The exponential tiling problen{C, H,V, p) is the following
problem: given ann-tuple ¢ from C, determine whether

thenw’ € Z. (Notice that the definition of z-world depends
on wy; wherewy is not clear from context, we speak of a
z-world relative towg.) Necessarily, every z-world is either
identical to, or accessible fromy,. For any z-worldw, with
character(i, j), we define strings, ¢ € {0,1}* of length
i and j, respectively, by setting[k] = 1 if and only if
A =, p forall k& (1 <k <), andt[k] = 1 if and only if



(i,4)

(i+1,5) (i, +1)
“Pi+1 qj+1
(i,5+1) (i+1,7)

qj+1 Di+1

(b) The direct successors of a z-world  (c) Identifying z-worlds with the same indices
with characten(i, j), where0 < i < n using Formulas[(11)E(13). From every z-world
and0 < j < m. Any such z-world w with character(z, j), we can access at most
has four direct successors: two with  two z-worldsa andc with character(: + 1, j),
(a) The set of all z-worlds forming a (rather jumbled) charactei+1, j) and complementary at most two z-worldsb and d with character
‘ziggurat' under the direct successor relation. The world values ofp;+1, and two with character (¢, j+1), and at most four (not eight!) z-worlds
wo, with character(0, 0), lies at the apex of the ziggurat, (4, j + 1) and complementary values of =z, y, w andv with character(i + 1,5 + 1).

and the worlds with charactét, n) form its base. qj+1-

Figure 1: The set of z-worlds generated by Formulas [5)+(13)

A =y gr for all k (1 < k < j). The quadrupldi, 7, s, t) is B(ui A vj — 0<i<n

the indexof w. O<1(tits Avj1A 0<j< n’)
To see that Formulag](5)=(10) generate the structure in E1pit1 A F2041))

Fig.[Ia, note first that Formul&l(5) implies the existence oftLemma 10. Supposél |=,,, I'1 UT'2. Then no two different

a z-worldwy with character(0,0). Formulas[() ensure that z-worlds have the same index.

every z-world has a unigue character.0lf< ¢ < n and

0 < j < n, then Formulas[{7) and(8) imply that every z-

world with characten(i, j) has four direct successors: two

with character(i + 1, 7) and complementary values pf, 1,

and two with charactefi, j + 1) and complementary values

of ¢j+1 (Fig.[IB). Similarly, if0 <i < n andj = n, or if

0 < j < nandi = n, every z-world with charactefi, j)

has two direct successors.

(13)

Proof: Order the pairs of integers in the ran@en| in
some way such that+ j < ¢ + 5/ implies (4, 7) < (¢, j'),
and proceed by induction on the charagtey) of z-worlds,
under this ordering.

Case 1:w has charactef0, 0). By definition,wy is the only
z-world with character(0,0), and hence the only z-world
with index (0, 0, ¢, €).
Case 2:w; andws have index(i + 1, j + 1, sa, tb) where,
Lemma 8. Supposel |=,, I';. Letw be a z-world with 0 < j < n, 0 < j < n anda,b € {0,1}. If w; and
index (i, j, s, t), and suppose’, j', s', ¢’ satisfy: (i) i <  w, are z-worlds, there exist z-worlds; andw} such that
i < (i) g < j < (i) i+ 5 <i'+j5 (V) s 2s"and  w; is a direct successor af, (1 < i < 2). The possible
|s'| =4'; and (v) t <" and || = j'. Then there exists a characters ofv; andw} are (i + 1,5) and (i, j + 1). If w}
z-world w’, accessible fromw, with index(i’, j’, ', t'). andw), have the same character, then they in fact have the
] . . . same index (this follows from Formulas] (9) and](10), and
Proof: Easy induction using Formulagl (7)={10). = the fact thatw; andws have the same index). By inductive
Lemma 9. SupposeX =, ;. Forall i (0 <i < n), all j  hypothesis, thenw| = wj;. Hence, from Formulas (11)
(0<j<n)allse {01} (s| =i andallte{0,1} of {12, w1 =wsas required. Ifw] and ws have different
(It] = ), there exists a z-world with index, j, s, ¢). characters, assume without loss of generality thathas
index (i,j + 1, s,tb), andw), has index(i + 1, j, sa, t). By
Proof: From Lemmd B and the fact thaiy has index Lemmal®, letw* be any z-world with index(, j, s, t). By
(0,0,€,¢). B Lemma3, letw/ andw} be z-worlds, accessible from*,
We now add formulas limiting the number of z-worlds with indices(i, j +1, s, tb), and(i + 1, j, sa, t), respectively.
with any given character (see Figl 1c). In particular, zid®r By inductive hypothesisy; = w{, andws, = w4: that is to
will turn out to be uniquely identified by their indices. Let say,w; andwj are accessible fromv*. Therefore, so are
T'; be the set of formulas: wy andws. Formulas[(IB) then ensure that = ws.

Case 3:w; andwy have index(i + 1,0, sa, €) where0 <

B(us A vy — (0 <i<m, (11) i <n anda € {0,1}. The argument is similar to Case 2,
C<i(uip1 Avj Adapiv1))  0<j<n) and requires only Formulag711).
B(u; Avj — (0 <i<mn, Case 4:w; andw, have index(0,j + 1,¢,tb) where0 <

Ccr(us Avjpr At1gj+1)) 0<j<n) (12) j <nandb e {0,1}. The argument is similar to Case 2,
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(a) The ziggurat, together with the grid at its base. (b) The world arrangement for the grid. (¢) An illustration of Formulas[{17) and Lemrhal14.

Figure 2: Creating o-worlds (shown as a hollow dots) and tfe gsing Formulas[(15)E(20):(= 3): g-worlds (shown as
filled dots) are arranged according to their coordinatehathiase; g-worlds which are horizontal neighbours in thid gr
have a common horizontal o-world successor, while g-wowtiech are vertical neighbours in this grid have a common
vertical o-world successor.

and requires only Formulas_{12). B strings (i.e. integers) depicted in_{14), then= s+ 1. The
abbreviations;? andg;" will be used similarly.

We now write formulas which force the g-worlds to
link up into a2” x 2" grid (see Fig[R). This process is
complicated by the fact that we are dealing with transitive
accessibility relations. We employ proposition lettegs o,,,
and refer to worlds satisfying these proposition letters as
respectivelyhorizontal o-worldsand vertical o-worlds(‘o’

Proof: By Lemmal® there exists a z-world* with stands for nothing in particular). The o-worlds’ functian i
index (i*, j*, s*,t*). If i* + j* = i; + j; thens* = s; and  to glue the g-worlds into the desired grid pattern. gy,
t* = t1, thusw* = w; by LemmaID. Otherwisé* + j* < be the set of formulas:
i1+ 71 and by Lemmal8, there exists a world accessible

Lemma 11. Supposél =, I'1Ul's. Letw;, we be z-worlds
with indices (i1, j1, s1,t1) and (ia, jo, s2,t2), respectively.
Let s* be a common prefix of; and s,, and¢* a common
prefix oft; andts. Leti* = |s*| andj* = |t*|. Then there
exists a z-worldo* with index(i*, j*, s*,t*) such that each
of w; and ws is either identical to, or accessible from;*.

from w* with index (i1, j1, 51, t1). By Lemma IO = wy. O(un Avp Ap; = Olon Apf))  (1<i<n) (15)
Thusw is accessible fronw*. Similarly, one can show that O(un Avp Apf — Olon Apf))  (1<i<n) (16)
eitherw* = wy or ws is accessible fromv*. | O(uicy Avp — O<i(on Apt))  (1<i<n), (17)

The z-worlds of most interest are those with character
(n,n)—of which, by Lemmag19 and 10, there are exactlyand supposé!l |=,, I'1 UTs UT'5 ,. Consider a g-worldy
227 We refer to such worlds ag-worlds (g for ‘grid’). with coordinategs, t). If 0 < s < 2"~1, thenw satisfiesp}

For any worldw (not just z-worlds), we define strings for some: > 0, and so has a horizontal o-world successor
s,t € {0,1}* of lengthn, by setting, for allk (1 <k <n), by Formulas[(Ib); likewise, il < s < 2™ — 1, thenw
s[k] = 1 if and only if A |=,, pr, andt[k] = 1 if and only  satisfiesp;” for somei > 0, and so has a horizontal o-world
if A . gr. We call the strings the x-coordinateof w, and  successor by Formulas_{16). (Hence( ik s < 2"~1, then
the stringt its y-coordinate Notice that, ifw is a g-world, w has at least two horizontal o-world successors.) Finally,
with index (n,n, s, t), then its coordinates args,t). The let i be such thatl < i < n, and suppose that* is a
strings s and ¢t may of course be regarded as integers inz-world with charactefi — 1,n). Formulas[{1l7) imply that
the rangd0, 2" — 1], and in the sequel we equivocate freely there is at most one horizontal o-world accessible from
between strings of length and the integers in this range and satisfyingp;” (see Fig.2c). The effect of these sets
they represent. The following abbreviations will be usefulof formulas is illustrated in Figl]2 and formalized in the
If 1 <i<n,we writep} for =p; Apit1A---Ap,, andp]  following lemma:
for p; A =pix1 A -+ A —p,. Thus,p; and p:r characterize

!
those worlds whose-coordinates are of the forms Lemma 12. Supposel |=,,, I'iUl'2Ul ;.. Letw andw’ be

- - g-worlds with coordinategs, ¢t) and (s + 1,t), respectively.
n i times n i times Then there exists a horizontal o-worldaccessible from both
ar---ai—101---o- 1 ar---a;—110------- 0, (14) w andw’ such thatd =, p,, if and only if 2 =, py.

respectively. Observe that, ¥ and s’ are the respective Proof: Since0 < s < s+1 < 2™ —1, there exists such



thatw satisfies}; thusw’ satisfiesp;”. From Formulas[(15)
and [I6), there exist o-worlds u’ both satisfyingp;", with
u accessible fromw, and v’ accessible fromw’. Clearly,
2 =, p, if and only if A =, p,. By Lemmalll, there
exists a z-worldw* with character(i — 1,n), for somes
(1 <4 < m), such that bothw andw’, and hence both and
u/, are accessible from*. From Formulas[(17), we have

u=1u'. |
Similarly, letI's , be the set of formulas:
O(un Avn Aqf — Olo, Ag))  (1<i<mn) (18)
O(un Avp Ag = Clow Ag))  (1<i<n) (19)
O(tn A vi—1 —)Ogl(ov/\qj)) (1<i<n). (20)

Lemma 13. Supposél |, ['1Ul'2UTs .. Letw andw’ be
g-worlds with coordinates$s, t) and (s, ¢+ 1), respectively.
Then there exists a vertical o-world accessible from both
w andw’ such thatll =, ¢, if and only if =, g,.

Proof: Analogous to Lemma_12. [
LetI' =T, Ul UT'3, UTs,, and supposél |=,, T
Lemmad ® and_10 guarantee that, for glit in the range

1,7,8,t)€Z]10<j5<n; s, te{0,1}}

,7,8t)€Z|0<i<n; s te{0,1}}

I j.s,t)€Z )i >4, sli]=1}U

h,s,t) € Op | s[i] =1} U
]

{(
{(
{(
{(
{(v,s,t) € O, | s[i] =1}
{G,5s,) € Z]j =], t[j]=1}U
{(h,s,t) € Op | t[j] =1} U
{(v,5,1) € Oy | t[j] = 1}.
Denote by& the structure(S, Rg, V). Let wy € Z be the
element(0, 0, ¢, €). Thus,& =, I'1, and, relative tav, the
z-worlds of & are simply the elements df. It is obvious
that, for everyw = (i,4,s,t) € Z, the index ofw is w
itself, moreover, for everyw = (h,s,t) € o, and every
w = (v, s,t) € o,, the coordinates ofy are (s, t).

We now show that5 |=,,, T'. The truth atw, of Formu-
las [B)-120) except for Formulds {17) ahd](20) is immediate.
To demonstrate the truth of Formulas](17), leK i < n,
and fix any worldw* of & such thatS =, u;—1 A v,

[0,2" — 1], there exists exactly one g-world with coordinates(see Fig[Zc). We may write* = (i — 1,n, s*,¢*), where

(s,t); let G be the set of all thes2*" g-worlds. And letO,,

|s*| =i—1 and|t*|] = n. Now supposev’ is any world

Oy, be sets of horizontal and vertical o-worlds guaranteedf & such that{w*,w’) € Rs and& |=, on A p; . Again,

by Lemmad 1P anf 13, respectively. Thus, the framélof

contains, as a subgraph, the configuration depicted i Big. 2of lengthn. We claim thats’ = s*10...0 andt’

In short, the formulag” manufacture 2" x 2™ grid.
Conversely, it is easy to exhibit a model Bf using the

we may writew’ = (h, s’,t’), wheres’ and¢’ are bit-strings
= t*. But
there is at most one world i® satisfyingo, and having
coordinateqs*10...0,t*); hence,5 =y, O(ui—1 A vy —

diagrams of Figll2 as our guide, containing just such a grid><;(ox A pj")), as required.

Lemma 14. There exists a structur€ over a reflexive,
transitive frame, and a worldyy of &, such thats |, T.

Proof: For h andwv distinct symbols, define the sets:

Z = {(i,j,st)[0<i<n; 0<j<n

s;t € {0,1}%;|s| =i and |t] = j}
G = {(n,n,s,t)|s,te{0,1}* and|s| = |t| =n}
On = {(h;s,t) [ 5,0 €{0,1}"55 ¢ {0} |s| = |t] = n}
Oy = {(v,s,t)[s,t€{0,1}"5t ¢ {0} ]s] = |t| = n}.

Note thatG C Z. Define the binary relationR; C Z x Z,
R, CG x Oy andR, C G x O, by:

Rz = {{(i,j,51),(, 5,5, 1))

i<’y j<j's s=<sandt <t}
R, = {{(n,n,s,t),(h,s,t))

[t/ =1t; s<s <nandl <s <s+1}
R, = {{(n,n,s,t),(v,s,1t))

|s'=s; t<t'<nandl <t <t+1}.
Finally, let S = ZuU O, U O,, and letRg be the reflexive,
transitive closure ofRz U R, U R,. Thus, (S, Rs) is a
reflexive, transitive frame. Define a valuatidhon (S, Rg)
by interpreting the proposition letters as follows:

25 = Z; of = On of = Oy

To prove the claim, observe that, by construction@f
there existaw € G such that{w*, w) € Rg and (w,w’) €
Rg. Pick any suchw and let it have coordinates, t). By
the definition of Rg (and the fact thaft*| = n), we have:
(i) t* =t=1¢, (i1) s* 2 s, and(iii) s =sors =s+1.
Referring to Fig[2c, the worlds*, w andw’ can be reached
from wy by traversing two trees of z-worlds: an upper tree,
whose leaves have charactédsn), and a lower tree, whose
elements have characteisn) (0 < i < n). The worldw*
in the lower tree, has charact@r— 1, n); w’ is a horizontal
o-world reachable fromw*; w is its predecessor g-world.
Now, sinceS =, oy, /\pj, we haves’ = s”10...0 for
some strings” with |s”| = ¢ — 1. Sinces is eithers’ or
s’ — 1, we have eithers = s/10...0 or s = s”01...1.
Sinces* < s and |s*| = ¢ — 1, we haves” = s*. Thus,

s’ =s*10...0 andt’ = t*, proving the claim.

The case of Formulag (R0) is treated analogously. B

Now we are in a position to encode any exponential tiling
problem,(C, H,V, p) in our logic. We regard colourse C
as (fresh) proposition letters. Suppdeis transitive and
A =, T, and let2 additionally interpret the proposition
lettersc € C. By Lemmad B[ T0[ 12, anld 113, the frame
of 2 contains the arrangement of Fig.]2b as a subgraph,
which we may partition into the sets (the g-worlds),0y,
(the horizontal o-worlds) and), (the vertical o-worlds).



Intuitively, for any worldw € G, ¢ represents the colour of T' U A U ©; We claim that the following are equivalent:

w in some (putative) tiling of7. Now we write formulas to
ensure that the colours form a tiling f6€, H, V, p). Define
A to be the following set of formulas:

0 (un/\vn—> (\/C/\/\{ﬂc\/—'d|c;£d})) (21)

Ot Avp At1pp Ac —

O(on A +1pn = 0)) (ecd) (22)
O(tn Avp At1pp Ac —

Oon A—(E1pn) - —~d)) (0D EH) (23
Oty A vy A t1gn Ac—

0y A+10n = ) ey @9
O(tp, A vy A t1gn Ac— (e,d) & V). (25)

D(Ov A _‘(:I:1Qn) — _'d))

Formula [21) ensures that every g-world is assigned a
unique colour. Using Lemma 112, Formulds](22) ensur
every horizontal o-world has the same colour as the g-worl
immediately to the right'. Together with Formula§{21)
and [23), this ensures that the g-worlds satisfy the hotion
tiling constraints. Likewise, Formulag (21}, {24), and]))(25

ensure that the g-worlds satisfy the vertical tiling coaisits.

Lemma 15. SupposeX is transitive, and2l =, ' U A.
For all s,¢ in the range(0,2™ — 1], define f(s,t) = c if
A =, ¢ for some g-worldw with coordinates(s,t). Then
f is well-defined, and is in fact a tiling fo{C, H, V).

Proof: Immgdiate. [ |
Now supposel = dy, ..., d,,_1 is anm-tuple of elements
of C. Let my be the formula:

OZA-DPLA AP Aoqr A+ A g, — dp)

implying that any g-world with coordinaté®, 0) has colour
do; and let the formulasry, ..., m,—1 be defined analo-
gously, assigning colouis, ..., d,,_1 to the g-worlds with
coordinate1,0), ..., (m — 1,0). Denote by©; the set of
all these formulas.

Lemma 16. Supposé! is transitive, with?l |=,,, TUAUB,
and let the tiling f be as defined in Lemnmall5. Thérs
an initial configuration forf.

Proof: Immediate. [ |
Thus, we have:

Lemma 17. Let K be any class of frames satisfying

Tr O K O Trn Rfl. The problemG M -Satis NExpTime-
hard. It remainsNExpTime-hard, even when all numerical
subscripts in modal operators are boundedlby

Proof: We reduce any exponential tiling problem

(C, H,V,p) to the probleng M-Sat. Fix(C, H,V,p), and
let an instancel of size m be given. Writen = p(m).
Consider the conjunctiorp; of all formulas in the set

z:omplexity of GMnr-Sat, the satisfiability problem for

(i) pg is satisfiable over Tn Rfl; (i) ¢; is satisfiable
over Tr; (ii) d is a positive instance ofC, H,V,p). The
implication () = (ii) is trivial. For (i) = (iii), suppose
A Ey, ['UA U, with & transitive. Lemmak 15 arld 116
then guarantee the existence of a tilifigof size 2™ for
(C,H,V), with initial configurationd. For (i) = (i),
supposef is a tiling for (C, H, V') of size 2™, with initial
configurationd. Taking & and w, to be as in the proof
of Lemmal1#, we expand to a structureS* by setting
c® ={(n,n,s,t),(h,s,t),(v,s,t) | f(s,t) = c} for every
proposition letter € C. It is obvious thatS* =,,, AUGO,.
]

Theorem[b follows from Corollary]l and Lemniall7,

noting that Rfin Tr = Rfl N Sern Tr C Sern Tr C Tr.

V. CONCLUSION
In this paper, we have investigated the computational

graded modal logic over any frame clag3.F, where

F C {Rfl,Ser Sym Tr,Eucl}. The results are as follows.
Suppose first that Eugt F and Trg F. Then Theoren]3
states thaiGMr-Sat is PSpace-complete. Suppose next
that Eucl € F or {SymTr} C F. Then Theorenil]4
states thay M z-Sat isNP-complete. Suppose finally that
Eucl Sym ¢ F, but Tr € F. Then Theorenil5 states that
GMnr-Sat is NExpTime-complete. All these results hold
under both unary and binary coding of numerical subscripts.
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