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Équipe de logique mathématique, Paris 7, France
E-mail address: hils@logique.jussieu.fr

Department of Computer Science, Durham University, U.K.
E-mail address: barnabymartin@gmail.com

Abstract. The universal-algebraic approach has proved a powerful tool in the study of
the computational complexity of constraint satisfaction problems (CSPs). This approach
has previously been applied to the study of CSPs with finite or (infinite) ω-categorical tem-
plates. Our first result is an exact characterization of those CSPs that can be formulated
with (a finite or) an ω-categorical template.

The universal-algebraic approach relies on the fact that in finite or ω-categorical struc-
tures A, a relation is primitive positive definable if and only if it is preserved by the
polymorphisms of A. In this paper, we present results that can be used to study the com-
putational complexity of CSPs with arbitrary infinite templates. Specifically, we prove
that every CSP can be formulated with a template A such that a relation is primitive
positive definable in A if and only if it is first-order definable on A and preserved by the
infinitary polymorphisms of A.

We present applications of our general results to the description and analysis of the
computational complexity of CSPs. In particular, we present a polymorphism-based de-
scription of those CSPs that are first-order definable (and therefore can be solved in
polynomial-time), and give general hardness criteria based on the absence of polymor-
phisms that depend on more than one argument.

1. Introduction

For a relational structure A over a finite signature the constraint satisfaction problem
CSP(A) is the computational problem to decide whether a primitive positive first-order
sentence ϕ – that is, the existential quantification of a conjunction of atomic formulas –
is true on A. The case where the template A is finite has been extensively studied in the
literature, and is known to comprise a significant microcosm of the complexity class NP
(see, e.g., [19]). The universal-algebraic approach, of studying the invariance properties of
relations under the action of polymorphisms, has been particularly powerful in the com-
plexity analysis of finite-domain CSPs (see [18] as a starting point). This approach has also
been successfully used in infinite-domain CSPs where the template is ω-categorical, i.e., is
the unique countably infinite model of its first-order (fo) theory up to isomorphism – see,
e.g., [8].

Many interesting problems can be formulated as infinite CSPs whose template is not
ω-categorical. To illustrate the wealth of the class of CSPs studied in this paper, we present
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four concrete computational problems that can be formulated as CSP(A), for an infinite
A. Each of these problems is solvable in polynomial time – and the proofs of this are
generally non-trivial. The templates (Z; +, 1) and (R; +, 1), where + is read as the ternary
relation x+y = z, correspond to solutions of Linear Diophantine Equations and Linear Real
Equations, respectively. Another template of interest relates to the Unification Problem.
Let σ := (f1, f2, . . .) be a functional signature, we form the template (T ;F1, F2, . . .), where
T is the term algebra on σ built over a countably infinite set of variables, and each Fi is the
relational form fi(t1, . . . , tri) = t0 of fi over T . A final problem is that of 2-Variable Word
Equations [14] – CSP({0, 1}∗;R1, R2, ...) – where the Ri(x, y) are binary relations defined
by all equations of the form {x, y, 0, 1}∗ = {x, y, 0, 1}∗.

In the case that A is finite or ω-categorical, the relations over A that are invariant under
the polymorphisms of A – Inv(Pol(A)) – are precisely the relations that are pp-definable
over A – 〈A〉pp. We note that this connection, which we paraphrase “Inv-Pol = pp”,
holds on some infinite structures which are not ω-categorical (an example is given in [26],
also the natural numbers under successor may easily be verified to have this property).
Two templates give rise to the same CSP precisely when they agree on all pp-sentences,
that is share the same pp-theory. It might be the case that one such template is better
behaved than another. For example, (Z;<) and (Q;<) share the same pp-theory; while
the connection Inv-Pol=pp does not hold for the former, the latter is ω-categorical, and
therefore the connection subsists. In the present paper we give a necessary and sufficient
condition that a template may have an equivalent that is finite or ω-categorical, which is
that the number of maximal pp-n-types consistent with its theory (equivalently, with its
pp-theory) is finite, for all n. It follows that none of the four examples of the previous
paragraph may be formulated with an ω-categorical template.

For the general case, in which there may be no equivalent ω-categorical template, we
are able to prove the existence of an equivalent, but uncountable template over which a
restricted connection holds. Given any A, we prove the existence of a highly saturated
“monster” elementary extension M such that a relation is pp-definable on M iff it is fo-
definable on M and invariant under the polymorphisms of (countably) infinite arity of M.
In fact, we also prove this weaker connection, which we may paraphrase “Inv-Polω ∩ fo
= pp”, for all saturated structures of cardinality at least 2ω. The “monster” construction
obviates the need for the set-theoretic assumptions usually required to assert the existence
of a saturated elementary extension of an arbitrary structure. However, in many concrete
cases, such as for structures that are uncountably categorical, such saturated models can be
exhibited directly. We go on to prove that each of the three assumptions – high saturation,
infinitary (and not finitary) polymorphism and fo-intersection – is necessary. That is, we
exhibit structures for which any two of these is insufficient for the respective connection.
We note an alternative “global” view of our weak connection states, for any A, that a fo-
sentence ϕ is pp-definable in A iff it is preserved by the ω-polymorphisms of all elementary
extensions of A.

There are several extant works on notions of pp-definability over infinite structures,
including those involving infinitary polymorphisms and infinitary relations [23,25,29]. Re-
lational operations transcending normal pp-definitions are usually permitted, for example:
infinite conjunction, infinite projection and various forms of monotone disjunction. In order
for our results to be applicable to the (finite!) instances of CSPs, we are not able to sacrifice
anything on the relational side, and so pp-definability must remain in its most basic form.
This represents the principle difference between our work and those that have come before.
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We note that this is the first time that infinitary polymorphisms have been considered in
connection with the complexity of CSPs.

We go on to consider the repercussions of our weak connection for the complexity of
CSPs. We show that existential positive (ep-) and pp-definability coincide on a structure
A iff all ω-polymorphisms of all elementary extensions of A are essentially unary. We
demonstrate that the move to elementary extension is necessary by giving a structure whose
ω-polymorphisms include only projections but for which (x = y ∨ u = v) is not primitive
positive definable. Using the notion of local refutability in [5], we note that if a structure
A is not locally refutable, and all ω-polymorphisms of all elementary extensions of A are
essentially unary, then CSP(A) is NP-hard. Introducing our philosophy to the work of [21],
we present a polymorphism-based description of those CSPs that are first-order definable.
We show that CSP(A) is first-order definable if and only if A has an elementary extension
which has a type near unanimity-polymorphism. It follows that such CSPs are polynomial-
time solvable. Finally, we recall a known relationship between certain binary injective
polymorphisms and Horn definability (given in the context of ω-categorical structures in [3]).
Considering as a polymorphism an embedding e of (R; +, 1)2 into (R; +, 1), we show that
the recent complexity classification of [6] may be given a natural algebraic specification.
Assuming P 6=NP, the presence of the polymorphism e separates those fo-expansions of
(R; +, 1) whose CSP is in P from those whose CSP is NP-complete. Thus we demonstrate
that the presence of certain polymorphisms can delineate complexity even outside of the
realm of ω-categoricity.

For reasons of space, the majority of proofs are deferred to the appendix.

2. Preliminaries

2.1. Models, operations, theories and closure

A relational signature (with constants) τ is a set of relation symbols Ri, each of which
has an associated finite arity ki, and a set of constants ci. We consider only countable,
relational signatures (with constants) in this paper. A (relational) structure A over the
signature τ (also called τ -structure) consists of a set A (the domain) together with a relation
RA ⊆ Ak for each relation symbol R of arity k from τ and a constant cA ∈ A for each
constant symbol c.

Let A be a τ -structure, and let A′ be a τ ′-structure with τ ⊆ τ ′. If A and A
′ have the

same domain and RA = RA′

for all R ∈ τ , then A is called the τ -reduct (or simply reduct)
of A′, and A

′ is called a τ ′-expansion (or simply expansion) of A. If A is a τ -structure and
〈aα〉α<β is a sequence of elements of A, then (A; 〈aα〉α<β) is the natural τ ∪ {cα : α < β}-
expansion of A with β new constants, where cα is interpreted by aα, in the natural way.
A is an extension of B if B ⊆ A. Let 〈bα〉α<|B| well-order the elements of B. A is an
elementary extension of B, denoted B � A, if it is an extension and, for each first-order
τ ∪ {cα : α < |B|}-sentence ϕ, (B, 〈bα〉α<|B|) |= ϕ iff (A, 〈bα〉α<|B|) |= ϕ.

A first-order (fo) formula is existential positive (ep) if it involves no instances of univer-
sal quantification or negation. Furthermore, if it involves no instances of disjunction, then it
is termed primitive positive (pp). Suppose A is a finite structure over a finite signature with
domain A := {a1, . . . , as}, and let a := (a1, . . . , ar) be a tuple of distinct elements corre-
sponding to the subset {a1, . . . , ar} of that domain. Let θ(x1, . . . , xs) be the conjunction of
the positive facts of A, where the variables x1, . . . , xs correspond to the elements a1, . . . , as.
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That is, R(xλ1 , . . . , xλk) appears as an atom in θ iff (aλ1 , . . . , aλk) ∈ RA. Define the pp-
formula ϕ[A|a] to be ∃xr+1 . . . xs.θ(x1, . . . , xs). The pp-formula ϕ[A|ǫ],where ǫ is the empty
tuple, is better known as the canonical query of A. A set of formulas Φ := Φ(x1, . . . , xn)
with free variables x1, . . . , xn is called satisfiable in A if there are elements a1, . . . , an from
A such that for all sentences ϕ ∈ Φ we have A |= ϕ(a1, . . . , an). We say that Φ is satisfiable
if there exists a structure A such that Φ is satisfiable in A.

A τ -theory is a set of τ -sentences; two theories are equivalent if they share the same
models. For a τ -structure A, define the theory of A, Th(A), to be the set of τ -sentences
true on A. Note that A � B implies that Th(A) = Th(B). Define the primitive positive
theory of A,

pp-Th(A) := {ϕ : A |= ϕ and ϕ is a primitive positive τ -sentence or its negation}.
Note that we arrive at an equivalent theory if we substitute existential positive for primitive
positive in this definition. More generally, a complete pp-τ -theory T is a satisfiable set of
pp- and negated pp-τ -sentences such that, for all pp-τ -sentences ϕ, either ϕ or ¬ϕ is in T .

For n ≥ 0, an n-type of a theory T is a set p := p(x1, . . . , xn) of formulas in the free
variables x1, . . . , xn such that p ∪ T is satisfiable. In a similar manner, a primitive positive
n-type (pp-n-type) of a theory T is a set of pp-formulas such that p ∪ T is satisfiable. A
pp-n-type p of T is maximal if T ∪ p ∪ ϕ(x1, . . . , xn) is unsatisfiable for any pp ϕ /∈ p. A
(pp-) n-type of a structure A is just a (pp-) n-type of the theory Th(A). An application
of compactness demonstrates, for a set of pp-formulas p, that p ∪ Th(A) is satisfiable iff
p ∪ pp-Th(A) is satisfiable; thus we could equivalently have defined pp-n-type with respect
to the latter theory. An n-type p(x1, . . . , xn) of (A; 〈aα〉α<β) is realised in (A; 〈aα〉α<β) if
there exists a′1, . . . , a

′
n ∈ A s.t., for each ϕ ∈ p, (A; 〈aα〉α<β) |= ϕ(a′1, . . . , a

′
n). For an infinite

cardinal κ, a structure A is κ-saturated if, for all β < κ and expansions (A; 〈aα〉α<β) of
A, every 1-type of (A; 〈aα〉α<β) is realised in (A; 〈aα〉α<β). We say that an infinite A is
saturated when it is |A|-saturated. Realisation of pp-types and pp-(κ-)saturation is defined
in exactly the analagous way. Note that a structure that is κ-saturated is a fortiori pp-κ-
saturated. A theory T is said to be κ-categorical, for some cardinal κ, if it has a unique
model of cardinality κ, up to isomorphism. It is known that, if T is κ-categorical for one
uncountable cardinal κ, then T is κ′-categorical for all uncountable cardinals κ′. A structure
A, of cardinality κ, is said to be κ-categorical if Th(A) is κ-categorical.

Let A andB be τ -structures. A homomorphism from A toB is a function f from A to B
such that for each k-ary relation symbol R in τ and each k-tuple (a1, . . . , ak), if (a1, . . . , ak) ∈
RA, then (f(a1), . . . , f(ak)) ∈ RB. In this case we say that the map f preserves the
relation R. Injective homomorphisms that also preserve the complement of each relation
are called embeddings. Surjective embeddings are called isomorphisms; homomorphisms and
isomorphisms from A to itself are called endomorphisms and automorphisms, respectively.
We will make use later of the following lemma, a close relative of Theorem 10.7.1 in [17]

Lemma 2.1. Let A and B be τ -structures, where |A| ≤ |B| and B is pp-|A|-saturated.
Suppose f is a mapping from {aα : α < µ} ⊆ A (µ < |A|) to B such that all pp-(τ∪{cα : α <
µ})-sentences true on (A; 〈aα〉α<µ) are true on (B; 〈f(aα)〉α<µ). Then f can be extended
to a homomorphism from A to B.

For τ -structures A and B, define the direct (or categorical) product A × B to be the
τ -structure on domain A×B such that ((a1, b1), . . . , (ar, br)) ∈ RA×B iff (a1, . . . , ar) ∈ RA

and (b1, . . . , br) ∈ RB. A property of pp-sentences ϕ that we will use later is that A |= ϕ
and B |= ϕ iff A×B |= ϕ.
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Let 〈A〉fo (respectively, 〈A〉ep and 〈A〉pp) be the sets of relations, over domain A, that
are fo- (respectively, ep- and pp-) definable over A. Let Aut(A) and End(A) be the sets
of automorphisms and endomporphisms, respectively, of A. A κ-polymorphism of A is a
homomorphism from A

κ to A, where the power is with respect to the direct product already
defined. Let Pol∞(A), Polω(A) and Pol(A) be the sets of κ-polymorphisms (for any κ), κ-
polymorphisms (for κ ≤ ω) and k-polymorphisms (for each finite k), respectively. Let
Inv(Aut(A)) be the set of relations, over domain A, that are preserved by (invariant under)
the automorphisms of A. Define Inv(End(A)), Inv(Pol∞(A)), Inv(Polω(A)) and Inv(Pol(A))
in the similar fashion (note that the condition of preservation of an m-ary relation by a κ-

ary function f : Aκ → A is component-wise, i.e. if (aβ1 , . . . , a
β
m) ∈ RA, for all β < κ, then

(f(〈aβ1 〉β<κ), . . . , .f(〈a
β
m〉β<κ)) ∈ RA).

A classical result of model theory holds that A is finite or ω-categorical if, and only
if, Inv(Aut(A)) = 〈A〉fo (follows from the Theorem of Ryll-Nardzewski, see, e.g., [2]). One
direction persists in the realm of the primitive positive, as attested to by the following.

Theorem 2.2 (see [9, 10,16]). When A is finite or ω-categorical, Inv(Pol(A)) = 〈A〉pp.
This characterization is not tight, i.e. there are infinite non-ω-categorical strutures A for
which Inv(Pol(A)) = 〈A〉pp [26].

2.2. The constraint satisfaction problem

For a relational structure A over a finite signature, CSP(A) is the computational prob-
lem to decide whether a given pp-sentence is true in A. It is not hard to see that, for any
A and A

′ with the same domain, such that 〈A〉pp ⊆ 〈A′〉pp, we have CSP(A) ≤P CSP(A′)
(see [18]), where ≤P indicates polynomial-time many-to-one reduction (in fact, logspace
reductions may be used, though this is harder to see and requires the celebrated result
of [24]). In light of this observation, together with Theorem 2.2, we may use the sets Pol(A)
to classify the computational complexity of CSP(A), and a most successful research program
has run in this direction (see [11,12,18], and [31] for a survey).

Sets of the form Pol(A) are always clones (for definitions, see [30]), and the machinery
of Clone Theory can be brought to bear on the classification program for CSPs (e.g., the
classification of minimal clones of [27]). It often transpires that instances of the CSP with
low complexity can be explained by the presence of particular classes of polymorphisms
on the template. When A is finite, the class of problems CSP(A) is conjectured to display
complexity dichotomy between those problems that are in P and those that are NP-complete
(a remarkable property given the breadth of CSP problems together with the result of
Ladner that NP itself does not possess the dichotomy, so long as P 6=NP [20]). While
the dichotomy conjecture was formulated independently of the algebraic method [15], a
conjecture as to exactly where the boundary sits relies on the algebraic language [13].

In the case where A is infinite but ω-categorical, the connection of Theorem 2.2 has
been used to good effect in the complexity classification, e.g., of temporal CSPs in [8]. In
that case dichotomy between P and NP-complete was again observed. For ω-categorical
templates in general, it is known that there are templates whose CSP is undecideable [4]
and of various complexities [4] (even coNP-complete). For infinite templates that are not
ω-categorical, no algebraic machinery has thus far been developed.
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3. Existential-positively closed models

In this section we state some basic concepts and facts about existential-positively closed
models. They are the positive analogs of existentially closed models (the latter are treated
in great detail in [17], Section 8), and have been studied under the name of existentially
closed models in a recent paper on positive model theory by Ben-Yaacov [1].

Definition 3.1. A model A of a theory T is existential-positively closed in T – or short epc
– iff for any homomorphism h from A into another model B of T , any tuple ā from A, and
any primitive positive formula ϕ with B |= ϕ(h(ā)) we have that A |= ϕ(ā).

Note that we could equivalently have used existential positive formula in the previous defini-
tion. To show the existence of certain epc models we apply the direct limit construction (for
simplicity – and because it is the only case we need – we give a presentation for countable
structures only).

Definition 3.2. Let τ be a relational signature, and let A1,A2, . . . be a sequence of count-
able τ -structures such that there are homomorphisms fij : Ai → Aj with fjk ◦ fij = fik for
every i ≤ j ≤ k. Then the direct limit limi<ω Ai is the τ -structure A defined as follows. The
domain A of A comprises the equivalence classes of the equivalence relation ∼ defined on
⋃

i<ω Ai by setting xi ∼ xj for xi ∈ Ai, xj ∈ Aj iff there is a k such that fik(xi) = fjk(xj).
Let gi : Ai → A be the function that maps a ∈ Ai to the equivalence class of a in A. For
R ∈ τ , define A |= R(ā) iff there is a k and b̄ ∈ Ak such that Ak |= R(b̄) and ā = gk(b̄).

The direct limits defined above can be seen as a positive variant of the basic model-theoretic
notion of a union of chains (see Section 2.4 in [17]); we essentially replace embeddings in
chains by homomorphisms. Unions of chains preserve ∀2-sentences; the analogous statement
for direct limits is as follows. A sentence is called positively restricted ∀2 if it is a universally
quantified positive boolean combination of existential positive formulas and negative atomic
formulas.

Proposition 3.3 (see Theorem 2.4.6 in [17]). Let A be the direct limit of A1,A2, . . . ; if ϕ
is positively restricted ∀2 such that Ai |= ϕ for all i, then A |= ϕ.

Proposition 3.4 (Essentially from [1]). Let A be a countable model of a set T of positively
restricted ∀2 sentences. Then there is a homomorphism from A to a countable epc model B
of T .

Proposition 3.5. Let A be a countable epc model of a theory T . Each of the pp-types
realised in A is a maximal pp-type of T .

We conclude this section by noting that epc structures are related to the concept of
cores, which play such an important role in the classification program for CSPs when the
template is finite or ω-categorical. A structure A is a core if all its endomorphisms are
embeddings.

Proposition 3.6. If A is pp-saturated or finite, then A is a core iff A is epc for pp-Th(A).

4. Equivalent ω-categorical templates

A structure is homogeneous (sometimes called ultrahomogeneous [17]) if every finite par-
tial automorphism can be extended to a full automorphism. It is known that a homogeneous
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structure A on which one can define only a finite number of inequivalent atomic formulas
(i.e. through variable substitution on extensional relations) of each arity k is ω-categorical.

For a satisfiable theory T , let ∼T
n be the equivalence relation defined on pp-formulas

with n free variables x1, . . . , xn as follows. For two such formulas ϕ1 and ϕ2, let ϕ1 ∼n ϕ2

iff for all pp-formulas ψ with free variables x1, . . . , xn we have that {ϕ1, ψ}∪T is satisfiable
if and only if {ϕ2, ψ} ∪ T is satisfiable. By proving that an epc model of a certain type of
theory is in fact ω-categorical, we will derive the following.

Theorem 4.1. For a complete pp-τ -theory T , the following are equivalent.

(i) T has a finite or ω-categorical model.
(ii) ∼T

n has finite index for each n.
(iii) T has finitely many maximal pp-n-types for each n.

We note that, if a pp-theory T has a finite model, then it necessarily has an ω-categorical
model (see [9]), thus (i) above could be more concisely stated.

Corollary 4.2. Let A be such that the number of maximal pp-n-types consistent with Th(A)
(equivalently, pp-Th(A)) is finite for each n. Then there is an ω-categorical template C such
that pp-Th(A) = pp-Th(B), i.e. CSP(A) = CSP(C).

5. Primitive positive definability of first-order formulas

To show hardness of CSP(A′), we often try to prove that there is a finite signature reduct
A of 〈A′〉pp such that CSP(A) is NP-hard. An important set of relations that contains the
set of all pp-definable relations 〈A′〉pp is the set of all fo-definable relations 〈A′〉fo. For every
structure A of cardinality greater than one there are fo-definable relations yielding an NP-
hard CSP, and these relations are usually good candidates for proving hardness. Therefore,
it is natural and important to understand which fo-definable relations are pp-definable in A.
In this section we show that, for every problem CSP(A), we can find a relational structure
M for which CSP(A) = CSP(M) where infinitary polymorphisms exactly characterize pp-
definability of fo-definable relations. We will do this by building a “monster” model of
Th(A) that is highly saturated.

Definition 5.1. A τ -structure M has the homomorphism lifting property if, for any a1, . . . ,
ak ∈ M

ω and b1, . . . , bk ∈ M s.t. all pp-(τ ∪ {c1, . . . , ck})-sentences true in (Mω; a1, . . . , ak)
are true in (M; b1, . . . , bk), there is a homomorphism f : (Mω; a1, . . . , ak) →(M; b1, . . . , bk).

The most natural of structures with the homomorphism lifting property are those that are
of large cardinality and saturated.

Lemma 5.2. If M is a saturated structure of cardinality κ = κω, then M has the homo-
morphism lifting property.

We remark that the continuum has the property of Lemma 5.2 – that is 2ω = (2ω)ω.
On the assumption of the continuum hypothesis, we could only work with large saturated
structures, because we could always assume the existence of an elementary extension to
a (countable) model that is of cardinality 2ω and saturated. However, without such a
set-theoretic assumption, we need to construct the rather unwieldy “monster” model as
follows.
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Lemma 5.3. For every τ -structure A there is a “monster” elementary extension M � A

that is ω-saturated and has the homomorphism lifting property.

Let 〈A〉pp∞ be the set of relations pp-definable on A, possibly involving infinitary con-
junction (of pp-formulas in a finite number of free variables). Because we will use it again
later, we give the following lemma in its strongest form.

Lemma 5.4. For all structures A, 〈A〉pp∞ ⊆ Inv(Pol∞(A)).

We are now ready for the main result of this section.

Theorem 5.5. Let A have the homomorphism lifting property. Then a fo-definable relation
R is preserved by the ω-polymorphisms of A if and only if R is pp-definable in A, i.e.

Inv(Polω(A)) ∩ 〈A〉fo = 〈A〉pp.
Corollary 5.6. Let A be any structure with finite relational signature. Then there exists
a structure M such that CSP(A) = CSP(M), and such that an fo-definable relation R is
pp-definable in M if and only if R is preserved by all ω-polymorphisms of M.

Proof. By Lemma 5.3, there is an elementary extension of M � A with the homomorphism
lifting property. We now apply Theorem 5.5.

In the parlance of [23], the following may be seen as the “global” analog of Theorem 5.5.

Corollary 5.7. An fo-formula ϕ is preserved by the ω-polymorphisms of all elementary
extensions of A if and only if ϕ is pp-definable in A.

Proof. (Backwards.) Follows from Lemma 5.4.
(Forwards.) Since ϕ is preserved by the ω-polymorphisms of the “monster” elementary

extension M � A constructed in Lemma 5.3, it follows from Theorem 5.5 that ϕ is pp-
definable on M. But this is a fortiori a pp-definition on A.

Corollary 5.8. Let T be an uncountably categorical fo-theory, and A a model of T of
cardinality ≥ 2ω. Then Inv(Polω(A)) ∩ 〈A〉fo = 〈A〉pp.
Proof. It is well-known that uncountable models of uncountably categorical theories are
saturated in their own cardinality (Fact 1.2. in [32]). Hence, the statement follows from
Theorem 5.5.

5.1. Tightness of Theorem 5.5

One might be interested in the following potential strengthenings of Theorem 5.5.

1. To derive the statement for arbitrary relations (not just for fo-definable relations).

2. To assume preservation under finitary polymorphisms (not infinitary polymorphisms).

3. To show the statement for arbitrary models of T (not just highly saturated structures).

The following proposition shows that each of these stronger assumptions is necessary.

Proposition 5.9.

1. There is a saturated structure Asat of cardinality 2ω such that Inv(Polω(A)) 6= 〈A〉pp.
2. There is a saturated structure Asat of cardinality 2ω such that Inv(Pol(A)) ∩ 〈A〉fo 6= 〈A〉pp.
3. There is a structure A such that Inv(Polω(A)) ∩ 〈A〉fo 6= 〈A〉pp.
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Sketch proof.

(1) Let A := (Q; +, 1, (u = v ∨ x = y)). Take Asat to be the saturated elementary
extension of A of cardinality 2ω.

(2) Let A := (N;Ui : i ∈ ω), where Ui := N \ {0, i}. Take Asat to be the saturated
elementary extension of A of cardinality 2ω. A finite signature variant of this coun-
terexample is provided in the appendix.

(3) Take A := (Q;x = 1, x < 0, S2(x, y)}), where S2 := {(x, y) : 2x < y, 0 < y ≤ 1}.

6. Applications

All polymorphisms are essentially unary. We will begin by demonstrating that the
power of infinitary polymorphisms can be greatly limited. The forthcoming three lemmas
are well-known for finite domains A (also wherever the connections Inv-Pol=pp and Inv-
End=ep persist). They require a little care in the general, infinite case.

A function f : Aα → A is essentially unary if there exists a β < α and g : A→ A such
that, for all x ∈ Aα, f(x) = g(xβ). For x,w ∈ Dα, and X ⊆ α, let x[xX/wX ] be the tuple
x with each entry xβ, where β ∈ X, substituted by wβ .

Lemma 6.1. A function f : Aα → A is not essentially unary iff there exist two non-empty
and disjoint X,Y ⊆ α, such that both

• exist x,w,w′ ∈ Aα s.t. f(x[xX/wX ]) 6= f(x[xX/w
′
X ]), and

• exist y, z, z′ ∈ Aα s.t. f(y[yY /zY ]) 6= f(y[yY /z
′
Y ]).

Lemma 6.2. Let A be such that (u = v∨x = y) ∈ 〈A〉pp. Then all (finitary and infinitary)
polymorphisms of A are essentially unary.

Lemma 6.3. Suppose A is such that (x = y ∨ u = v) ∈ 〈A〉pp. Then 〈A〉pp = 〈A〉ep.
Proposition 6.4. For all structures A, 〈A〉pp = 〈A〉ep iff all ω-polymorphisms of all ele-
mentary extensions of A are essentially unary.

Proof. (Forwards.) If 〈A〉pp = 〈A〉ep then (u = v∨x = y) ∈ 〈A〉pp, and so (u = v∨x = y) ∈
〈A′〉pp for all A′ � A. The result follows from Lemma 6.2.

(Backwards.) If all ω-polymorphisms of all elementary extensions of A are essentially
unary, then in particular this is true of the “monster” elementary extension M built as
in Lemma 5.3. It follows from Theorem 5.5 that (u = v ∨ x = y) ∈ 〈M〉pp, which gives
〈M〉pp = 〈M〉ep by Lemma 6.3. The result 〈A〉pp = 〈A〉ep follows since A � M.

We are able to prove that the stipulation of elementary extension in Proposition 6.4 is
necessary, by exhibiting a structure whose ω-polymorphisms include only projections but
for which (x = y ∨ u = v) is not pp-definable.

Lemma 6.5. The only ω-polymorphisms of (Q; +, 1, 6=) are projections.

It follows that (x = y ∨ u = v) ∈ Inv(Polω(Q; +, 1, 6=)), though (x = y ∨ u = v) /∈
〈(Q; +, 1, 6=))〉pp since if it were we could also derive (x = y ∨ u = v) ∈ 〈(R; +, 1, 6=))〉pp
(since (R; +, 1, 6=) and (Q; +, 1, 6=) share the same theory). This would contradict Lemma 6.2
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as (R; +, 1, 6=) has polymorphisms that are not essentially unary: indeed, there is an iso-
morphism between (R; +, 1)2 and (R; +, 1) (that we shall use again shortly), which gives a
bijective homomorphism from (R; +, 1, 6=)2 to (R; +, 1, 6=).

The following definition comes from [5]. For a structure A and an ep-sentence ϕ, we
generate the boolean sentence FA(ϕ) by removing all existential quantifiers and replacing
each atom R(x1, . . . , xk), where R

A is empty, with false, and replacing all other atoms with
true. A is said to be locally refutable if for every ep-sentence ϕ, A |= ϕ iff FA(ϕ) is true.

Proposition 6.6. Let A be a structure that is not locally refutable and for which all ω-
polymorphisms in all elementary extensions are essentially unary. Then CSP(A) is NP-
hard.

Proof. It is proved in [5] that the evaluation of ep-sentences on A is NP-hard. The result
now follows from Corollary 6.4 (note that the recursive removal of disjunction induces a
polynomial time reduction).

First-order definable CSPs. Recall ϕ[B|ǫ] to be the canonical query of B. CSP(A)
is said to be first-order definable if there is a fo-sentence ψA such that, for all finite B,
A |= ϕ[B|ǫ] (i.e. ϕ[B|ǫ] ∈ CSP(A)) iff B |= ψA. The following definition comes from [21].
The one-tolerant n-th power 1

A
n of a τ -structure A is the τ -structure with domain An

where a k-ary R ∈ τ denotes the relation consisting of all those k-tuples ((a11, . . . , a
n
1 ), . . . ,

(a1k, . . . , a
n
k)) such that

|{j : (aj1, . . . , a
j
k) ∈ RA}| ≥ n− 1 .

For n ≥ 3, an n-ary polymorphism f of A is called a relational near-unanimity polymor-
phism if f is a homomorphism from 1

A
n to A.

Theorem 6.7. Let A be a “monster” elementary extension (as constructed as in Lemma 5.3)
on a finite signature. Then CSP(A) is first-order definable if and only if A has a relational
near-unanimity polymorphism.

Corollary 6.8. Let A structure on a finite signature. Then CSP(A) is first-order defin-
able if and only if A has an elementary extension which has a relational near-unanimity
polymorphism.

Proof. By Lemma 5.3, A has a “monster” elementary extension M Since M and A satisfy
the same primitive positive sentences, CSP(A) is first-order definable if and only if CSP(M)
is. The statement follows immediately from Theorem 6.7.

Horn definability. We will briefly examine a class of structures for which we can give a
neat algebraic condition as to whether a relation that is quantifier-free definable admits
a quantifier-free Horn definition. Recalling known complexity results for fo-expansions of
(R; +, 1) we will see that the presence of a certain polymorphism exactly delineates those
fo-expansions for which the CSP is NP-complete for those which are in P. The following
proposition is essentially from [3].

Proposition 6.9. Let A be a structure with a binary injective polymorphism e that is an
embedding from A

2 into A. Then a relation R that is quantifier-free definable in the relations
of A is preserved by e iff it admits a quantifier-free Horn definition in A.

We have already met an example of a structure with such an embedding: (R; +, 1).
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Corollary 6.10. Let B be an fo-expansion of (R; +, 1) and let e : (R; +, 1)2 → (R; +, 1) be
an embedding. Then: if e is a polymorphism of B, then CSP(B) is in P; otherwise CSP(B)
is NP-complete.

Proof. Note that (R; +, 1) admits quantifier elimination and so all fo-expansions may be
specified as quantifier-free CNFs. It is proved in [6] that those that admit quantifier-free
Horn definitions give a CSP that is in P while those that do not give CSPs that are NP-
complete. The result follows from Proposition 6.9.

7. Concluding remarks and open problems

The results of this paper show that – at least in principle – the universal-algebraic
approach can be applied to study the complexity of CSP(A) for arbitrary infinite-domain
structures A. Among one of the first applications, we have presented a polymorphism-based
characterization of those CSPs that are first-order definable.

A natural question is whether there are results from finite domain constraint satisfaction
where there are principle obstacles for generalizations to infinite domains. We are not aware
of any. However, candidates might arise from the following problems

• Is there an infinite structure A, epc in pp-Th(A), with a finite signature and a
Mal’tsev polymorphism1 such that CSP(A) is NP-hard?

• Is there an infinite structure A, epc in pp-Th(A), with a finite signature and a near-
unanimity polymorphism2 such that CSP(A) is NP-hard? The problem here is that
it might be impossible to algorithmically establish k-consistency.

Further research questions are the following. Can we strengthen our preservation theorem
(Theorem 5.5) to show, under the additional assumption that A is epc, that an fo relation is
pp-definable if and only if it is preserved by the finitary polymorphisms of A? In particular, if
A is saturated, are we forced to use infinitary polymorphisms even if the structure A is a core
(see Proposition 3.6)? Finally, it would be very interesting to understand the polymorphisms
of concrete and important CSPs from the literature; for example, the polymorphisms of the
CSPs that were mentioned in the introduction. In particular, assuming that these CSPs are
formulated with appropriate templates and that P 6= NP, our results (see Proposition 6.6)
imply that essential ω-polymorphisms must exist.
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Appendix

Lemma 2.1. Let A and B be τ -structures, where |A| ≤ |B| and B is pp-|A|-saturated.
Suppose f is a mapping from {aα : α < µ} ⊆ A (µ < |A|) to B such that all pp-(τ∪{cα : α <
µ})-sentences true on (A; 〈aα〉α<µ) are true on (B; 〈f(aα)〉α<µ). Then f can be extended
to a homomorphism from A to B.

Proof. IfB (and therefore A) is finite we may simply find witnesses in (B; f(a0), . . . , f(am−1))
for the existential variables of the canonical query of (A; a0, . . . , am−1), and we are done.
Suppose that B is of infinite cardinality κB .

Suppose µ < |A| = κA ≤ κB . Let 〈a′α〉α<κA well-order A such that 〈a′α〉α<µ = 〈aα〉α<µ
(there is the implicit and harmless assumption that 〈aα〉α<µ contains no repetitions). Set
〈b′α〉α<µ := 〈f(aα)〉α<µ.

We will construct by transfinite recursion on β (up to κA) a sequence 〈b′α〉α<β such that
we maintain the inductive hypothesis

(∗) all pp-(τ ∪ {cα : α < β})-sentences true on (A; 〈a′α〉α<β) are true on (B; 〈b′α〉α<β).
The result will clearly then follow by reading f as the map {a′α 7→ b′α}α<κA .

(Base Case.) β := µ. Follows from hypothesis of lemma.
(Inductive Step. Limit ordinals.) β := λ. Property (∗) holds as a sentence can only

mention a finite collection of constants, whose indices must all be less than some γ < λ.
(Inductive Step. Successor ordinals.) β := γ+ < κA. Set

Σ := {ϕ(x) : ϕ is a pp-(τ ∪ {cα : α < γ})-formula s.t. (A; 〈a′α〉α<γ) |= ϕ(a′γ)}.
By (∗), for every ϕ ∈ Σ, (B; 〈b′α〉α<γ) |= ∃x.ϕ(x). By compactness, since Σ is closed
under conjunction, we have that Σ is a pp-1-type of (B; 〈b′α〉α<γ). By pp-|A|-saturation
of B it is realised by some element b′γ ∈ B. By construction we maintain that all pp-

(τ ∪ {cα : α < γ+})-sentences true on (A; 〈a′α〉α<γ+) are true on (B; 〈b′α〉α<γ+).

Proposition 3.4. Let A be a countable structure of a set T of positively restricted ∀2
sentences. Then there is a homomorphism from A to a countable epc structure B of T .

Proof. Set B0 = A. Having constructed Bi, let {(ϕj , āj) j < ω} be an enumeration of all
pairs (ϕ, ā) where ϕ is existential-positive with free variables x1, . . . , xn, and ā is an n-tuple

from Bi. We construct a sequence (B0
i , f

0
i ), (B

1
i , f

1
i ), . . . where B

j
i is a model of T and f ji

is a homomorphism from B
j
i to B

j+1
i as follows.

Set B
0
i = Bi. Let ā′j be the image of āj in B

j
i under f j−1

i ◦ . . . ◦ f0i . If there is a

model A′ of T and a homomorphism h : Bj
i → A

′ such that A′ |= ϕj(h(ā
′
j)), set B

j+1
i = A

′

and f ji := h, otherwise B
j+1
i = B

j
i and f ji is the identity. Let Bi+1 be limj<ωB

j
i and let

fi : Bi → Bi+1 be the homomorphism given by the limit of . . . ◦ f1i ◦ f0i .
By Proposition 3.3, B = limi<ωBi is a model of T . B is epc in T by construction, and

the function h that is the limit of . . . ◦ f1 ◦ f0 is a homomorphism from A to B.

Proposition 3.5. Let A be a countable epc model of a theory T . Each of the pp-types
realised in A is a maximal pp-type of T .

Proof. Suppose p(x1, . . . , xn) is a pp-m-type, realised in A by (a1, . . . , an), that is not
maximal. Then there is a pp-formula ϕ(x1, . . . , xn) such that A |=/ ϕ(a1, . . . , an) but T ∪
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p(c1, . . . , cn)∪{ϕ(c1, . . . , cn)} is consistent, with a model (B; b1, . . . , bn). Now, let (Bsat; b
′
1,

. . . , b′n) be an ω-saturated model of Th(B; b1, . . . , bn) (such a model always exists, see The-
orem 4.3.12 [22]). Clearly (Bsat; b

′
1, . . . , b

′
n) is pp-|A|-saturated, and all pp-formulas true on

(A; a1, . . . , an) are true on (Bsat; b
′
1, . . . , b

′
n). By Lemma 2.1, there is a homomorphism h

from (A; a1, . . . , an) to (Bsat; b
′
1, . . . , b

′
n). Now, since ϕ(b′1, . . . , b

′
n) holds on Bsat and A is

epc, we deduce the contradiction A |= ϕ(a1, . . . , an).

Proposition 3.6. If A is pp-saturated or finite, then A is a core iff A is epc for pp-Th(A).

Proof. (Backwards.) Suppose A is epc for pp-Th(A). Take a homomorphism h : A → A.
By epc, for a1, . . . , ak in A, if A |= R(h(a1), . . . , h(ak)) or A |= h(a1) = h(a2), then A |=
R(a1, . . . , ak) or A |= a1 = a2, respectively. It follows that h is an embedding.

(Forwards.) Suppose B |= pp-Th(A) and h : A → B is a homomorphism. Suppose
B |= ϕ(h(ā)), where ϕ(x̄) is a pp-formula and ā is a tuple from A; we must prove that
A |= ϕ(ā). First, we note that the image h(A) |= pp-Th(A). For the positive sentences of
pp-Th(A), this follows from the homomorphism h; for the negative sentences of pp-Th(A) it
follows from B |= pp-Th(A) together with h(A) being an induced substructure of B. Since
A is pp-saturated, it follows from Lemma 2.1 that there is a homomorphism g : h(A) → A.
Therefore, we may derive that A |= ϕ(g ◦ h(ā)). But, g ◦ h is an endomorphism of A, which
must be an embedding since A is a core. The result A |= ϕ(ā) follows.

Theorem 4.1. For a complete pp-τ -theory T , the following are equivalent.

(i) T has a finite or ω-categorical model.
(ii) ∼T

n has finite index for each n.
(iii) T has finitely many maximal pp-n-types for each n.

We will prove this theorem in three stages. The first two provide little difficulty.

Proof of Theorem 4.1 (i) ⇒ (ii). For contradiction, suppose ∼T
n has infinite index for some

n, yet T has an ω-categorical model A such that (due to completeness) pp-Th(A) = T .
Let ϕ1 and ϕ2 be two pp-formulas from different equivalence classes of ∼T

n . Hence, there
is a pp-formula ϕ3 with free variables x1, . . . , xn such that exactly one of the two formulas
ϕ1 ∧ ϕ3 and ϕ2 ∧ ϕ3 is satisfiable relative to T . This shows that ϕ1 and ϕ2 define over
A distinct relations. But we know that for ω-categorical structures there is only a finite
number of first-order definable relations of arity n, and in particular only a finite number
of inequivalent pp-definable relations of arity n; a contradiction.

Proof of Theorem 4.1 (ii) ⇒ (iii). We show that every maximal pp-n-type p is determined
completely by the ∼T

n equivalence classes of the pp-formulas contained in p. Since there are
finitely many such classes, the result follows. Let p and q be maximal pp-n-types s.t. for
every ϕ1 ∈ p, exists ϕ′

1 ∈ q s.t. ϕ1 ∼T
n ϕ

′
1 and for every ϕ2 ∈ q, exists ϕ′

2 ∈ p s.t. ϕ2 ∼T
n ϕ

′
2.

We aim to prove that p = q. If not then there exists, w.l.o.g., ψ ∈ p s.t. ψ /∈ q. Clearly,
T ∪ p∪ψ is satisfiable, and, since q is maximal, T ∪ q∪ψ is not satisfiable. By compactness
T ∪ {θq, ψ} is not satisfiable for some finite conjunction θq of formulas from q. Now, θq ∈ q

by maximality and there exists by assumption θ′q ∈ p s.t. θq ∼T
n θ

′
q. By definition of ∼T

n we
deduce T ∪ {θ′q, ψ} satisfiable iff T ∪ {θq, ψ} satisfiable. Since the latter is not satisfiable,
we deduce that neither is the former, which yields the contradiction that T ∪ p ∪ ψ is not
satisfiable.
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Proof of Theorem 4.1 (iii) ⇒ (i). Let the number of maximal pp-n-types, µn, be finite for
all n. We will show that T has an ω-categorical model. We consider the signature τ ′, which
is the expansion of τ by µn relations of each arity n, corresponding to the maximal pp-n-
types of T . Any model of T has a canonical (unique) expansion as a τ ′-structure (by the new
relation symbols labelling tuples that attain their type). Consider the canonical τ ′-expansion
A
′ of a countable epc τ -model A of T , guaranteed to exist by Proposition 3.4. We will

shortly prove that A′ is homogeneous. From this it will follow that A′ is ω-categorical (since
there is only a finite number of inequivalent atomic formulas of each arity n), whereupon
ω-categoricity is inherited by its τ -reduct A.

It remains to prove that A′ is homogeneous. A pp-formula ϕ(x) is said to isolate a max-
imal pp-n-type p(x) of T , if p is the only maximal pp-n-type of T of which ϕ is a member. If
there is only a finite number of maximal pp-n-types of T , then it follows that each has an iso-
lating formula. Let f : (a1, . . . , am) 7→ (b1, . . . , bm) be a partial automorphism of A′ (in the
signature τ ′). Let a′ be an arbitrary element of A′. Consider the pp-n-types p(x1, . . . , xm) of
(a1, . . . , am) and q(x1, . . . , xm, y) of (a1, . . . , am, a

′) in A. By Proposition 3.5, each of these
types is maximal, and is isolated by the pp-formulas θp(x1, . . . , xm) and θq(x1, . . . , xm, y),
respectively. Furthermore, the type of (b1, . . . , bm) in A is p (as the partial automorphism of
A
′ is in the signature τ ′). But now, since ∃y.θq(x1, . . . , xm, y) ∈ p (by maximality), we may

deduce a b′ s.t. A
′ |= θq(b1, . . . , bm, b

′) and consequently A
′ |= q(b1, . . . , bm, b

′). It follows
that f ′ : (a1, . . . , am, a

′) 7→ (b1, . . . , bm, b
′) is a partial automorphism of A′ (in the signature

τ ′). A simple induction shows that we may extend to an automorphism of A′, and the result
follows.

Lemma 5.2. If M is a saturated structure of cardinality κ = κω, then M has the homo-
morphism lifting property.

Proof. This follows immediately from Lemma 2.1, since |Mω| ≤ |M |.

Lemma 5.3. For every τ -structure A there is a “monster” elementary extension M � A

that is ω-saturated and has the homomorphism lifting property.

Proof. We will build M by transfinite induction, as the union of a chain of length ℵ1. Set
M0 := A. For successor ordinals γ+, we take an elementary extension Mγ+ � Mγ that
is |Mγ |ω-saturated (such always exists, see Theorem 4.3.12 [22]). For limit ordinals λ, set
Mλ :=

⋃

α<λMα; finally, let M := Mℵ1
.

M is ω-saturated by construction. It remains to prove that M has the homomorphism
lifting property. Consider the b1, . . . , bk ∈ M and a1, . . . , ak ∈ Mω. The set of coordinates
(of M) involved here,

A := {b1, . . . , bk, a1(1), a1(2), . . . , a2(1), a2(2), . . . , . . . , ak(1), ak(2), . . .},
is of size ≤ ω. It follows that there is some µ < ℵ1 such that A ⊆Mµ (this is why the chain
used in the construction of M is of length ℵ1).

Suppose we are given a1, . . . , ak ∈ M
ω to b1, . . . , bk ∈ M such that all pp-(τ∪{c1, . . . , ck})-

sentences true in (Mω; a1, . . . , ak) are true in (M; b1, . . . , bk). Let f−1 be the partial map
from Mω to M sending a1, . . . , ak to b1, . . . , bk. We first argue that all pp-(τ ∪{c1, . . . , ck})-
sentences true in (Mµ

ω; a1, . . . , ak) are true in (Mµ+1; f−1(a1), . . . , f−1(ak)). Let ϕ be such
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a sentence. Then:

(Mµ
ω; a1, . . . , ak) |= ϕ implies

for each i (Mµ; a1(i), . . . , ak(i)) |= ϕ implies [since Mµ � M]

for each i (M; a1(i), . . . , ak(i)) |= ϕ implies

(Mω; a1, . . . , ak) |= ϕ implies [by hypothesis]

(M; f−1(a1), . . . , f−1(ak)) |= ϕ implies [since M � Mµ+1]

(Mµ+1; f−1(a1), . . . , f−1(ak)) |= ϕ.

It follows from Lemma 2.1 that there is a homomorphism f0 : Mµ
ω → Mµ+1 extending f−1.

We will now proceed with a transfinite induction up to ℵ1. For successor ordinals,
γ+, suppose that we have a homomorphism fγ : Mµ+γ

ω → Mµ+γ+ . We will build a
homomorphism fγ+ : Mµ+γ+

ω → Mµ+γ++ extending fγ. By the homomorphism fγ , all pp-
(τ ∪ {cα : α < |Mµ+γ |ω})-sentences true in (Mµ+γ

ω; 〈aα〉α<|Mµ+γ |ω) – where 〈aα〉α<|Mµ+γ |ω

well-orders the elements of Mµ+γ
ω – are true in (Mµ+γ+ ; 〈fγ(aα)〉α<|Mµ+γ |ω). It follows

that all pp-(τ ∪ {cα : α < |Mµ+γ |ω})-sentences true in (Mµ+γ+
ω; 〈aα〉α<|Mµ+γ |ω) are true in

(Mµ+γ++ ; 〈f(aα)〉α<|Mµ+γ |ω) – let ϕ be such a sentence, we give the derivation again:

(Mµ+γ+
ω; 〈aα〉α<|Mµ+γ |ω) |= ϕ implies

for each i (Mµ+γ+ ; 〈aα(i)〉α<|Mµ+γ |ω) |= ϕ implies

for each i (Mµ+γ ; 〈aα(i)〉α<|Mµ+γ |ω) |= ϕ implies

(Mµ+γ
ω; 〈aα〉α<|Mµ+γ |ω) |= ϕ implies

(Mµ+γ+ ; 〈f(aα)〉α<|Mµ+γ |ω) |= ϕ implies

(Mµ+γ++ ; 〈f(aα)〉α<|Mµ+γ |ω) |= ϕ.

Now we can use Lemma 2.1 to derive some homomorphism fγ+ : Mµ+γ+
ω → Mµ+γ++

extending fγ . For limit ordinals λ, set fλ :=
⋃

α<λ fα.
Finally, we arrive at the homomorphism fℵ1

: Mω → M, which has the desired property.

Lemma 5.4. For all structures A, 〈A〉pp∞ ⊆ Inv(Pol∞(A)).

Proof. We argue by induction on the term-complexity of the formula. Let f : Aα → A be
a polymorphism of A.

(Base Case.) ϕ(v) := R(v). Trivial.
(Inductive Step.) There are two subcases. In the following, suppose v is an m-tuple.

Let 〈aβ〉β<α, be a sequence of m-tuples from A such that ϕ(aβ), for all β.
(Existential Quantification.) ϕ(v) := ∃u.ψ(v, u). Suppose we have ϕ(aβ) for each

β < α. From each ∃u.ψ(aβ, u), derive the witness a′β for u and use the inductive hypothesis

(IH) to deduce that ψ(f(〈aβ〉β<α), f(〈a′β〉β<α)). It follows that ∃u.ψ(f(〈aβ〉β<α), u) and we

are able to deduce ϕ(f(〈aβ〉β<α)).
(Infinite Conjunctions.) ϕ(v) :=

∧

µ<γ ψµ(v). Suppose we have ϕ(aβ) for each β < α.

Then for each µ < γ and β < α we have ψµ(aβ). By IH, we have each ψµ(f(〈aβ〉β<α)). The
result ϕ(f(〈aβ〉β<α)) follows.
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Lemma 5.5. Let A have the homomorphism lifting property. Then a fo-definable relation
R is preserved by the ω-polymorphisms of A if and only if R is pp-definable in A, i.e.

Inv(Polω(A)) ∩ 〈A〉fo = 〈A〉pp.
Proof. (Backwards.) That pp-formulas are preserved by ω-polymorphisms in any structure
is a special case of Lemma 5.4.

(Forwards.) Suppose that R is a k-ary relation that is preserved by all ω-polymorphisms
of A and that has a first-order definition ϕ in A. Let

Ψ := {ψ(x1, . . . , xk) : ψ is a pp-τ -formula s.t. A |= ϕ(x1, . . . , xk) → ψ(x1, . . . , xk)}.
We first show, for all b1, . . . , bk ∈ A, that, if A |= Ψ(b1, . . . , bk), then A |= ϕ(b1, . . . , bk).

Take b1, . . . , bk ∈ A s.t. A |= ψ(b1, . . . , bk) for each ψ ∈ Ψ; if such elements do not
exist there is nothing to show. Let U be the set of all pp-τ -formulas θ(x1, . . . , xk) such
that A |= ¬θ(b1, . . . , bk). If U is empty then every pp-τ -formula is true on b1, . . . , bk; in
particular A |= ϕ(b1, . . . , bk), and we are done. We may assume U to be countably infinite.
We claim that for every θ ∈ U there exists a k-tuple aθ := (aθ1, . . . , a

θ
k) from A such that

A |= ¬θ(aθ1, . . . , aθk) ∧ ϕ(aθ1, . . . , aθk). Otherwise, A |= ϕ(x1, . . . , xk) → θ(x1, . . . , xk), and we
derive θ ∈ Ψ and the consequent contradiction A |= θ(b1, . . . , bk).

Consider the k-tuple a :=
∏

θ∈U a
θ in A

ω. Observe that every pp-τ -formula χ(x1, . . . , xk)
s.t. A

ω |= χ(a) is s.t. A |= χ(b1, . . . , bk). To see this, suppose that A |= ¬χ(b1, . . . , bk).
Therefore χ ∈ U , and by choice of aχ we have A |= ¬χ(aχ). But then A

ω |= ¬χ(a).
Now, we have just shown that all pp-(τ ∪ {c1, . . . , ck})-sentences that hold on (Aω; a)

also hold on (A; b1, . . . , bk). Since A has the homomorphism lifting property, the existence
of a homomorphism f : (Aω; a) → (A; b1, . . . , bk) follows from our definitions. But f is an
ω-polymorphism of A, which preserves ϕ, and hence we derive A |= ϕ(b1, . . . , bk).

It remains to be shown that Ψ is equivalent on A to a single pp-formula. Note that
Ψ(c1, . . . , ck)∪{¬ϕ(c1, . . . , ck)}∪Th(A) is unsatisfiable; for otherwise there is a B |= Th(A)
and b′1, . . . , b

′
k ∈ B, s.t. (B; b′1, . . . , b

′
k) |= Ψ(c1, . . . , ck) and (B; b′1, . . . , b

′
k) |= ¬ϕ(c1, . . . , ck).

In both Cases 1 and 2, A is ω-saturated, and this yields some b′′1, . . . , b
′′
k ∈ A s.t. (A; b′′1 , . . . , b

′′
k)

|= Ψ(c1, . . . , ck) and (A; b′′1 , . . . , b
′′
k) |= ¬ϕ(c1, . . . , ck), which is a contradiction. By com-

pactness of first-order logic there is a finite subset Ψ′ of Ψ such that Ψ′(c1, . . . , ck) ∪
{¬ϕ(c1, . . . , ck)} ∪ Th(A) is unsatisfiable, i.e. Ψ′(c1, . . . , ck) ∪ Th(A) |= ϕ(c1, . . . , ck). Set
ψ′(x1, . . . , xk) :=

∧

ψ∈Ψ′ ψ(x1, . . . , xk), to derive Th(A) |= ψ′(x1, . . . , xk) → ϕ(x1, . . . , xk).

Since A |= ϕ(x1, . . . , xk) → ψ′(x1, . . . , xk) by construction, the result follows.

Lemma 5.9.

1. There is a saturated structure A of cardinality 2ω such that Inv(Polω(A)) 6= 〈A〉pp.
2. There is a saturated structure A of cardinality 2ω such that Inv(Pol(A)) ∩ 〈A〉fo 6= 〈A〉pp.
3. There is a structure A such that Inv(Polω(A)) ∩ 〈A〉fo 6= 〈A〉pp.

Necessity of intersection with FO. Let us consider the model A =: (Q; +, 1, (u =
v ∨ x = y)). By Lemma 6.2, the infinitary polymorphisms of this structure are equivalent
to its endomorphisms, and, in the presence of a fixed 1, it can easily be seen that its only
endomorphism is the identity (indeed, there is a pp-definition of each of the rationals from
1 and +). It follows that all subsets of Q are in Inv(Polω(A)), yet 〈A〉pp must be countable.



18 MANUEL BODIRSKY, MARTIN HILS, AND BARNABY MARTIN

Of course, A is neither saturated nor of cardinality ≥ 2ω. But the continuum of subsets of
Q will remain Inv-Polω in a saturated model of Th(A) of such cardinality (a copy of A sits
in all models of its theory). The existence of a saturated model of Th(A) of cardinality 2ω

follows from this theory’s strong minimality (Fact 1.2. in [32]).

Necessity of infinitary polymorphisms. Let {Ui : i ∈ ω} be a set of unary relations.
Consider the model A := (N;Ui : i ∈ ω), involving a countable set of unary relations, defined
by Ui := N \ {0, i}. Diagrammatically,

U1 U2 U3 · · ·
0 × × × · · ·
1 × √ √ · · ·
2

√ × √ · · ·
3

√ √ × · · ·
...

...
...

...

Consider the first-order definable unary relation P (v) := U1(v) ∨ U2(v), i.e. P := N \ {0}.
It is straightforward to verify that P is closed under the finitary polymorphisms of A and
is not pp-definable over A. Note that P is not preserved under the infinitary polymorphism
f : Nω → N of A defined by f(w) = 0, if w contains all elements of N \ {0}, and f(w) = w0

(the first element of the sequence w), otherwise. Again, these properties will remain if we
move to a saturated model Asat of cardinality 2ω (such a model will simply be A augmented
with a continuum of elements for which all of the relations {Ui : i ∈ ω} hold).

We now detail a finite signature variant of the above structure that also serves as a
suitable (counter)example. Consider the signature 〈E,R〉 involving two binary relations,
edge and red edge. Let the structure A contain

• a directed ω-E-path: i.e., vertices {[0, i] : i < ω} and E-edges {([0, i], [0, i+1]) : i <
ω}.
and for each j < ω:

• a directed ω-E-path with overlaid undirected R-path omitting only the jth edge:
i.e. vertices {[j, i] : i < ω} with E-edges {([j, i], [j, i + 1]) : i < ω} and R-edges
{([j, i], [j, i + 1]), ([j, i + 1], [j, i]) : i < ω, i+ 1 6= j}.

Consider the first-order definable unary relation P (v) := ∃x, y.R(v, x)∨ (E(v, x)∧R(x, y)).
It is not hard to verify that P is preserved by the finitary polymorphisms of A, but is not
pp-definable over A (as it is not preserved by the ω-polymorphisms of A). These properties
transfer to the saturated elementary extension Asat of cardinality 2ω.

Necessity of highly saturated structures. Consider the structure A := (Q;x = 1, x <
0, S2(x, y)}, where S2 := {(x, y) : 2x < y, 0 < y ≤ 1}. Now, x ≤ 0 is clearly first-
order definable in A. It is also in Inv(Polω(A)), being definable by the following infinite
conjunction of pp-formulas in one free variable (see Lemma 5.4).

∧

i∈ω

∃z ∃y1, . . . , yi. S2(x, y1) ∧ S2(y1, y2) ∧ . . . ∧ S2(yi, z) ∧ z = 1.

We will now argue that it is not pp-definable.
Lemma. Let x := (x1, . . . , xk) and suppose that ϕ(x) ∈ 〈A〉pp. If A |= ϕ(a) and aλ1 , . . . , aλj
list exactly the elements of a that are 0, then there exists ǫ > 0 such that, for all ǫ ≥ δ ≥ 0,
A |= ϕ(a[aλ1/δ, . . . , aλj/δ]).
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Proof. By induction on the term complexity of ϕ.
(Base Cases.) ϕ is an atom. The statement is trivially true if ϕ(x) := x = 1, x < 0

or x = x. Suppose ϕ(x1, x2) := S2(x1, x2); if S2(a1, a2), then only a1 could be zero. Set
ǫ := a2/2.

(Inductive Step.) There are two subcases.
ϕ(x) := ψ1(x) ∧ ψ2(x). There exist respective witnesses ǫ1 and ǫ2 for ψ1(a) and ψ2(a):

we may set ǫ := min{ǫ1, ǫ2} as the witness for ϕ(a).
ϕ(x) := ∃y.ψ(y, x). If ϕ(a) holds, then we may choose a b s.t. ψ(b, a). By inductive

hypothesis, there exists an apropriate ǫ for ψ(b, a) and this may also be used for ϕ(a).

That x ≤ 0 is not pp-definable is a trivial consequence of the lemma, for suppose it were
defined by ϕ(x). Since ϕ(0) holds, we may derive the contradiction that ϕ(ǫ) holds for some
ǫ > 0. Note that the first part of the inductive step in the previous lemma would fail for
infinite conjunctions. Finally, suppose Asat were a saturated model of Th(A) of cardinality
≥ 2ω. While we have 〈A〉fo∩Inv(Polω(A)) 6= 〈A〉pp, we must have 〈Asat〉fo∩Inv(Polω(Asat)) =
〈Asat〉pp. We note that x ≤ 0 is not Inv(Polω(Asat)).

Lemma 6.1. A function f : Aα → A is not essentially unary iff there exist two non-empty
and disjoint X,Y ⊆ α, such that both

• exist x,w,w′ ∈ Aα s.t. f(x[xX/wX ]) 6= f(x[xX/w
′
X ]), and

• exist y, z, z′ ∈ Aα s.t. f(y[yY /zY ]) 6= f(y[yY /z
′
Y ]).

Proof. We will benefit from the following local definition. A set Z ⊆ α is termed good if
the following holds: for all x,w,w′ ∈ Aα we have f(x[xZ/wZ ]) = f(x[xZ/w

′
Z ]). If Z is not

good, then we term it bad. Note that good sets are closed under union; i.e., if X and Y
are both good, then so is X ∪ Y . The contrapositive of the lemma is the assertion that f
is essentially unary iff, for any two non-empty and disjoint X,Y ⊆ α, at least one of X and
Y is good.

(Backwards.) By contraposition. If f is essentially unary, then let β and g be s.t.
f(x) = g(xβ). Now, take any two non-empty and disjoint X,Y ⊆ α. At least one does not
contain β, and it must be a good set.

(Forwards.) By contraposition. Assume that, for any two non-empty and disjoint
X,Y ⊆ α, at least one of X and Y is good. If there are no bad subsets of α, i.e. f is
constant, then clearly f is essentially unary. Assume the existence of some bad set. We will
derive the existence of a bad set of cardinality 1; for otherwise let Z be a minimal bad set
(under the total lexicographical order on the 0 − 1 characteristic sequence of length α) of
cardinality greater than 1. Let Z1 and Z2 be a non-trivial partition of Z. At least one of
Z1 and Z2 must be good, by assumption. Hence the other must be bad (as good sets are
closed under union, and Z := Z1 ∪Z2 is bad), contradicting minimality of Z. Let Z = {β}
be a minimal bad set. Set

g(xβ) := f(xβ
α) = f(xβ, xβ, . . .),

i.e. each variable xγ , γ ≤ α, is substituted by xβ (of course the choice of xβ as the variable
here is not important). That f(x) = g(xβ) now follows from α \ {β} being a good set.

Lemma 6.2. Let A be such that (u = v∨x = y) ∈ 〈A〉pp. Then all (finitary and infinitary)
polymorphisms of A are essentially unary.
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Proof. Let P4 := (u = v ∨ x = y) ∈ 〈A〉pp. It follows from Lemma 5.4 that P4 must be
preserved by the polymorphisms of A. Suppose for contradiction that A has a polymorphism
f : Mα → M that is not essentially unary. From Lemma 6.1, we deduce non-empty and
disjoint X,Y ⊆ α, s.t. there exist x,w,w′ ∈ Aα with f(x[xX/wX ]) 6= f(x[xX/w

′
X ]) and

y, z, z′ ∈ Aα with f(y[yY /zY ]) 6= f(y[yY /z
′
Y ]). But, for each β ∈ α,

P4(x[xX/wX ]β , x[xX/w
′
X ]β, y[yY /zY ]β, y[yY /z

′
Y ]β)

holds, by disjointness of X and Y , while

P4(f(x[xX/wX ]), f(x[xX/w
′
X ]), f(y[yY /zY ]), f(y[yY /z

′
Y ]))

does not.

Lemma 6.3. Suppose A is such that (x = y ∨ u = v) ∈ 〈A〉pp. Then 〈A〉pp = 〈A〉ep.
Proof. The proof will be by simulation of the binary ∨. Take ϕ ∈ 〈A〉ep in prenex form; we
will recursively remove disjunctions of the form

ψ1(x1, . . . , xn, y1, . . . , yp) ∨ ψ2(x1, . . . , xn, z1, . . . , zq).

We may assume that each of ψ1 and ψ2 is alone satisfiable, for otherwise their disjunction is
logically equivalent to just one of them. We will introduce new variables x′1, . . . , x

′
n, y

′
1, . . . , y

′
p

and x′′1 , . . . , x
′′
n, z

′
1, . . . , z

′
q. Note that it follows from [7] that there is a θ ∈ 〈(A;x = y ∨ u =

v)〉pp such that θ ≡
(x′1 = x1 ∧ . . . ∧ x′k = xk ∧ y′1 = y1 ∧ . . . ∧ y′p = yp) ∨
(x′′1 = x1 ∧ . . . ∧ x′′k = xk ∧ z′1 = z1 ∧ . . . ∧ z′q = zq).

The disjunct ψ1 ∨ ψ2 should be replaced with the following, in which the existential quan-
tifiers should be read as all coming before the conjunction.

∃x′1, . . . , x′n, y′1, . . . , y′p. ψ1(x
′
1, . . . , x

′
n, y

′
1, . . . , y

′
p) ∧ ψ2(x

′′
1 , . . . , x

′′
n, z

′
1, . . . , z

′
q)∧

∃x′′1, . . . , x′′n, z′1, . . . , z′p. θ(x′1, . . . , x
′
n, y

′
1, . . . , y

′
p, x

′′
1 , . . . , x

′′
n, z

′
1, . . . , z

′
q)

Lemma 6.5. The only ω-polymorphisms of (Q; +, 1, 6=) are projections.

Proof. We give the proof for polymorphisms of arity ω, but the argument works just as well
for any infinite or finite arity. A function f : Dω → D is idempotent if f(d, d, . . .) = d, for all
d ∈ D. It is conservative if it further satisfies f(d1, d2, . . .) ∈ {d1, d2, . . .}, for all d1, d2, . . . ∈
D. Let f : Qω → Q be a polymorphism of (Q; +, 1, 6=). It is clear that f is idempotent
as the only endomorphism of (Q; +, 1) is the identity. Further, by preservation of 6=, it is
easy to see that f must be conservative. Consider {0, 1}ω with the total lexicographical
ordering indduced by 0 < 1. Choose some minimal 〈zλ〉λ<ω ∈ {0, 1}ω s.t. f(〈zλ〉λ<ω) = 1
(since f(1, 1, . . .) = 1, such a 〈zλ〉λ<ω exists). If 〈zλ〉λ<ω had more than one index that
is a 1, then there would exist 〈z′λ〉λ<ω and 〈z′′λ〉λ<ω s.t. 〈z′λ〉λ<ω, 〈z′′λ〉λ<ω < 〈zλ〉λ<ω and
〈z′λ〉λ<ω + 〈z′′λ〉λ<ω = 〈zλ〉λ<ω and so, by preservation of +, one of 〈z′λ〉λ<ω, 〈z′′λ〉λ<ω = 1,
contradicting minimality of 〈zλ〉λ<ω. So, for some i, 〈zλ〉λ<ω is of the form

(0, . . . , 0,

ith position
︷︸︸︷

1 , 0, . . .).
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By preservation of +, it follows, for each q ∈ Q, that f(q · 〈zλ〉λ<ω) = q.
Firstly, we consider 〈xλ〉λ<ω ∈ Qω s.t. q /∈ {xλ : λ < ω} 6= Q. If f(〈xλ〉λ<ω) = p 6= xi,

then, by preservation of +,

f(〈xλ〉λ<ω + (q − p)〈zλ〉λ<ω) = f(〈xλ〉λ<ω) + (q − p)f(〈zλ〉λ<ω) = q.

But this violates conservativity of f as q does not appear in 〈xλ〉λ<ω+(q−p)〈zλ〉λ<ω (since
p 6= xi).

Finally, we take an arbitrary 〈xλ〉λ<ω ∈ Qω. Consider the set Λ := {λ : xλ = 1} and
〈x′λ〉λ<ω and 〈x′′λ〉λ<ω obtained according to x′λ = xλ, if λ /∈ Λ, and = 0 otherwise; and
x′′λ = 1, if λ ∈ Λ, and = 0 otherwise. Clearly 〈xλ〉λ<ω = 〈x′λ〉λ<ω + 〈x′′λ〉λ<ω, and 〈x′λ〉λ<ω
and 〈x′′λ〉λ<ω satisfy the condition of the previous paragraph, i.e. that neither {x′λ : λ < ω}
nor {x′′λ : λ < ω} is Q. The result follows by preservation of +.

Theorem 6.7. Let A be a “monster” elementary extension with a finite signature. Then
CSP(A) is first-order definable if and only if A has a relational near-unanimity polymor-
phism.

Proof. In fact we need both a local lemma and some local definitions.
Local lemma. Let M be a “monster” extension. If all finite substructures C of 1

M
n+1

map homomorphically to M, then 1
M

n+1 maps homomorphically to M.
Proof of local lemma. We note, for structures A and B, that if A and B are elementarily

equivalent, then so are 1
A
n+1 and 1

B
n+1 (as 1

A
n+1 is fo-definable in A). The assumption

of the lemma may be restated as that all pp-τ -sentences true in 1
M

n+1 are true in M.
Let M0 be the structure from which the “monster” was originally built. We deduce that
all pp-τ -sentences true in 1

M
n+1
0 are true in M1, and, using Lemma 2.1, the consequent

homomorphism f0 : 1
M

n+1
0 → M1. Now we undertake the transfinite induction as before.

In fact, the successor steps are simpler: as when all pp-τ ∪ {cα : α < |Mγ |n+1})-sentences
true in (1Mγ

n+1; 〈aα〉α<|Mγ |n+1) are true in (Mγ+ ; 〈aα〉α<|Mγ |n+1), it follows immediately,

by the properties of elementary extension, that all pp-τ ∪ {cα : α < |Mγ |n+1})-sentences
true in (1Mγ+

n+1; 〈aα〉α<|Mγ |n+1) are true in (Mγ++ ; 〈aα〉α<|Mγ |n+1). Limit ordinal steps
proceed as before. Note that we do not actually need the transfinite induction up to ℵ1

here – though it does no harm – an induction up to ω would have sufficed. �
A finite τ -structure C is an obstruction for the τ -structure A if there is no homomor-

phism from C to A. A family F of obstructions for A is called a complete set of obstructions
if for every τ -structure B that does not admit a homomorphism to A there exists some
C ∈ F which admits a homomorphism to B. The structure A is said to have finite duality
if it admits a finite complete set of obstructions. An obstruction C for A is called critical
if every proper (not necessarily induced) substructure of C admits a homomorphism to A.
For any set A, let prnk denote the projection map from An to A which maps any tuple to
its k-th coordinate. We claim the following (essentially from [21]:

Claim. If there exists an (n+1)-ary relational near-unanimity polymorphism of A then
the critical obstructions of A have at most n hyperedges. If A is a “monster” extension, the
converse holds as well.

Proof of Claim. (Forwards.) By contraposition. Let C be a critical obstruction of A
with m distinct hyperedges e1, . . . , em, m > n. Then for k ∈ {1, . . . ,m}, the τ -structure Ck

obtained from C by removing ek (without changing the domain) admits a homomorphism
hk to A. By definition of 1

A
m, the map h = (h1, . . . , hm) is a homomorphism from C to
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1
A
m. Therefore there is no homomorphism from 1

A
m to A, and in particular none from

1
A
n+1 to A.
(Backwards.) Conversely, suppose that A is a “monster” extension, and that there is no

homomorphism from 1
A
n+1 to A. It follows from our local lemma that there exists a finite

substructure C of 1
A
n+1 which has no homomorphism to A. Hence, C is an obstruction

of A which admits a homomorphism h to 1
A
n+1. Let C

′ be a (not necessarily induced)
substructure of C that is critical (such a C

′ always exists). For every k ∈ {1, . . . , n + 1}
there exists a hyperedge ek of C′ which is not preserved by prn+1

k ◦h, since prn+1
k ◦h is not a

homomorphism from C to A. By definition of 1
A
n+1, ek is respected by prn+1

j ◦ h for every
j 6= k, and thus ej 6= ek for j 6= k. Therefore C has at least n+ 1 hyperedges. �

Proof of Theorem 6.7. (Forwards.) Suppose first that CSP(A) is first-order definable.
Since CSP(A) is a class of finite structures that is closed under inverse homomorphisms, by
the dual version of Rossman’s Theorem, [28], there is a universal first-order τ -sentence ϕ
that holds on a finite structure B if and only if B homomorphically maps to A. Bringing ϕ
into prenex negation normal form, it is straightforward to read from ϕ a finite complete set
F of obstructions to A. Let m be the maximal number of hyperedges in the obstructions
from F. By the claim above, since A is a “monster”, there is a homomorphism from 1

A
m+1

to A. This is by definition a relational near-unanimity polymorphism of A.
(Backwards.) Now suppose that for some n the structure 1

A
n+1 admits a homomor-

phism to A. By the claim above the critical obstructions of A have at most n hpyeredges.
Since our signature is finite and relational, this implies that there are finitely many critical
obstructions to A. This implies that the set of all critical obstructions is a finite obstruction
set for A. It is now straightforward to write down a (universal) first-order definition of
CSP(A).

Proposition 6.9. Let A be a structure with a binary injective polymorphism e that is
an embedding from A

2 into A. Then a relation R that is quantifier-free definable in the
relations of A is preserved by e iff it admits a quantifier-free Horn definition in A.

Proof. In this proof x1 . . . , xk should be read as variable subtuples of the variable tuple x.
Likewise with the element subtuples a1 . . . , ak of a.

(Forwards.) Let F be a Horn definition of R. Suppose a and a′ ∈ RA. It suffices
to demonstrate the preservation of each clause in F of the form (R1(x1 ∧ . . . ∧ Rl(xl)) →
Rl+1(xl+1), for R1, . . . , Rl+1 ∈ A.

(R1(a1 ∧ . . . ∧ Rl(al)) → Rl+1(al+1)

(R1(a
′
1 ∧ . . . ∧ Rl(a

′
l)) → Rl+1(a

′
l+1)

(R1(e(a1, a
′
1)) ∧ . . . ∧ Rl(e(al, a

′
l))) → Rl+1(e(al+1, a

′
l+1))

If the fomer clauses are true, there are two cases. Either some antecedent Ri(ai) or Ri(a
′
i) is

false, in which case Ri(e(ai, a
′
i)) is false, and the latter clause is true. Or, if all antecedents

in both former clauses are true, then both Rl+1(al+1) and Rl+1(a
′
l+1) are true, so it follows

that Rl+1(e(al+1, a
′
l+1)) is true, and and the latter clause is true.

(Backwards.) Consider a CNF definition F of R in A that is irreducible in the sense
that it has no redundant literals in its clauses (or, indeed, redundant clauses). Because it
can not be Horn, there exists a clause R1(x1) ∨R2(x2) ∨ S3(x3) ∨ . . . ∨ Sl(xl), with R1, R2
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positive literals S3, . . . , Sl positive or negative literals, with a, a′ ∈ RA s.t.

R1(a1) ∧ ¬R2(a2) ∧ ¬S3(a3) ∧ . . . ∧ ¬Sl(al)
¬R1(a

′
1) ∧R2(a

′
2) ∧ ¬S3(a′3) ∧ . . . ∧ ¬Sl(a′l)

Consider the tuple e(a, a′). Clearly it will fail to satisfy the clause.
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