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This article presents a game semantics for higher-rank polymorphism, leading to a new model of the calculus
System F, and a programming language which extends it with mutable variables. In contrast to previous
game models of polymorphism, it is quite concrete, extending existing categories of games by a simple
development of the notion of question/answer labelling and the associated bracketing condition to represent
“copycat links” between positive and negative occurrences of type variables. Some well-known System F
encodings of type constructors correspond in our model to simple constructions on games, such as the lifted
sum.

We characterize the generic types of our model (those for which instantiation reflects denotational equiv-
alence), and show how to construct an interpretation in which all types are generic. We show how mutable
variables (à la Scheme) may be interpreted in our model, allowing the definition of polymorphic objects with
local state. By proving definability of finitary elements in this model using a decomposition argument, we
establish a full abstraction result.
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1. INTRODUCTION

Polymorphism is an important principle in programming languages, occurring in many
and different contexts. Game semantics has emerged as a means of describing higher-
order program behaviour accurately, also in a wide variety of settings. The aim of this
article is to take further steps towards a semantic understanding of polymorphism
via games by describing a model of a small but expressive programming language
(with functions, higher-order state and full higher-rank polymorphism) which is simple
and concrete (and effectively presentable) and which precisely captures parametricity
through properties of genericity, definability and full abstraction.

Semantic ideas and methods have featured extensively in attempts to capture the
essence of parametric polymorphism in a higher-order setting, (contributing, e.g., the
notion of relational parametricity [Reynolds 1983]). It is often studied in the purely
functional setting of the second-order λ-calculus, System F [Girard 1972; Reynolds
1974]. Whilst the economy of this typing system is particularly elegant, focussing on
the pure calculus raises several issues. Many key examples of polymorphism (such as

This work was supported by the UK EPSRC under grant EP/HO23097.
Author’s address: J. Laird, Department of Computer Science, University of Bath, Bath, UK; email: jiml@cs.
bath.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
2013 Copyright is held by the author/owner(s)
0004-5411/2013/08-ART29 $15.00
DOI: http://dx.doi.org/10.1145/2505986

Journal of the ACM, Vol. 60, No. 4, Article 29, Publication date: August 2013.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2508028.2505986&domain=pdf&date_stamp=2013-09-04


29:2 J. Laird

generic mutable objects) require side-effects such as recursion and local state which
have significant semantic implications (see, e.g., Møgelberg and Simpson [2009]) for
any model of System F typing. There are also tensions between representing proofs of
second-order logic and polymorphic programs: should a model reflect an appropriate
notion of proof equality, or stronger notions of equivalence such as genericity [Longo
et al. 1993]? Finally, there is the question of completeness—inhabitation of System
F types (i.e., provability in second-order logic) is not decidable and so the desirable
properties of full completess and effective presentability are not consistent in this case.

We focus on polymorphism as a property of programming languages, and develop
a semantics for a prototypical example—an extension of System F in which variables
may be updated, and so correspond to locally declared references. This may be used as a
basis for describing polymorphic objects with internal state (for example). Working with
an operational semantics, which gives a notion of observation and thus an associated
equivalence, provides a simple criterion for determining whether the model accurately
reflects the uniform nature of polymorphic programs—namely full abstraction.

A further difficulty involved in modelling higher-rank polymorphism is that of size.
This is not simply the formal problem of capturing the impredicativity of second-order
quantification, but the fact that the solutions still typically involve directly specifying
behaviour at every possible type instantiation, making direct model-checking, for ex-
ample, infeasible. Our semantics takes a rather direct approach to modelling universal
quantification on games based on refining the well-bracketing condition (and associ-
ated question and answer labelling) already used to impose local control flow in game
models.

The main idea making this possible is based on the observation, evident in
earlier game models of, for example, propositional variables in proofs [Abramsky
and Jagadeesan 1994], that polymorphic proofs or programs correspond to copycat
strategies: since such programs must behave uniformly over all instantiating types, all
they can do is copy information between positive and negative occurrences. Thus, any
representation of such a program which permits these “copycat links” to be inferred
is sufficient to determine its behaviour on any type. The key development here is to
show that they can be reconstructed using the well-bracketing condition: answering
the pending question in a game denoted by a polymorphic type corresponds to playing
a copycat link between any occurrences of any type instantiated for the variables
represented by the question and its answer.

1.1. Related Work

Two game models of higher-order polymorphism, in the setting of System F, have been
described previously. The first, due to Dominic Hughes [Hughes 1997], foreshadows
our semantics in several particulars: it introduces a basic notion of polymorphic arena,
giving a very similar interpretation of variable types. Higher rank polymorphism,
however, is interpreted using a notion of hypergame allowing participants to import
arenas instantiating variables, and changing the shape of interaction. This results in a
model which closely reflects the syntax of System F—as shown by a full completeness
result associating strategies to unique η-long normal forms [Hughes 1997], and recent
applications in determining the class of dinatural terms of System F [de Lataillade
2009]. Our semantics could be said to describe polymorphism in a more programming
language oriented way.

A subsequent game model of System F polymorphism was described by Samson
Abramsky and Radha Jagadeesan [Abramsky and Jagadeesan 2004]. This work is
focussed on developing a semantics capturing genericity, as expressed by the gener-
icity principle for System F introduced by Longo et al. [1993]: a System F type T is
generic in a given model if instantiation with T reflects denotational equivalence (i.e.,
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any two terms of universally quantified type which are denotationally equivalent when
instantiated with T are themselves denotationally equivalent). A semantics satisfies
the genericity property if every type is generic. This captures the inability of polymor-
phic programs to exhibit different behaviour on different instantiating types in a strong
sense—although it is consistent with the theory of System F, Longo et al. [1993] note
that none of the models considered in that article satisfy the genericity principle: to the
author’s knowledge, no models which do so have been described until now. (The model in
Abramsky and Jagadeesan [2004], although not, in fact, satisfying the genericity prin-
ciple, contains a large collection of generic types.) In our semantics there is a simple
criterion identifying generic types, and a simple modification making all types generic.

In other respects, our model is rather different from the semantics described in
Abramsky and Jagadeesan [2004]; in particular, the latter interprets universal quan-
tification as a dependent product over all games, requiring a model defined as the
solution to a recursive equation, whereas the interpretations of types in our model are
built up in a simple inductive fashion, with the encodings of constructions such as the
lifted sum having equivalent denotations to their direct interpretations.

The interpretation of general references builds on the work of Abramsky et al. [1998],
showing how general references may be interpreted by lifting the conditions of inno-
cence and visibility placed on an original model of PCF, and further analysis of this
model by the author [Laird 2002] identifying categorical structures which may be used
to construct it.

This article is based on an extended abstract [Laird 2010a]. It describes the same
results—a generic semantics of System F, and a fully abstract model of an extension
with general references—in a different (but related) category of games. The aim of
these revisions in presentation have been to present the key ideas of the model in a
way which keeps the combinatorics of the game semantics as simple as possible, by
avoiding the use of “justification pointers” and making use of the linear decomposition
of intuitionistic types, and the categorical structures introduced in Laird [2002] to
model references. The price paid is a little less generality (the model of System F
described here does not include products, although it could be extended to include
them) and a less direct relationship to the growing body of work on Hyland-Ong games.
We refer back to [Laird 2010a] for indications of how these restrictions may be avoided.

1.2. Outline of this Article

In Section 2, we describe an extension of System F with mutable variables—System
Fref—and its operational semantics.

In Section 3, the fundamental definitions of the game semantics are introduced based
on context games which have “holes” into which games may be instantiated, allowing
the interpretation of types with free variables. In Section 4, a category of context
games is defined using a new notion of abstraction on holes, together with a family of
instantiation functors on it.

In Section 5, we show how intuitionistic function types may be interpreted by a
construction of cofree commutative comonoids in our category, and a semantic repre-
sentation of reference cells is described using further structure.

In Section 6, we give the interpretation of System Frefbased on our constructions, and
show that it is sound (and an instance of the Seely-Pitts hyperdoctrine interpretation
of System F) based on the categorical properties of our game model. We give a simple
proof of computational adequacy.

In Section 7, we give a simple characterization of the types which are generic in
our semantics, and a modified construction of a model in which every type is generic.
We prove that every finite element of our (original) model is denoted by a term, using
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Table I. Term Formation Rules for System Fref

� � �

�; � � () : com
� � �

�; � � � : ∀X.X

� � �, T
�; �, x : T � x : T

� � �, T
�; �, x : T � set(x) : T → com

�, X; � � M : T
�; � � �X.M : ∀X.T

�; � � M : ∀X.T � � S
�; � � M{S} : T [S/X]

�; �, x : S � M : T
�; � � λxS.M : S → T

�; � � M : S → T �; � � N : S
�; � � M N : T

�; � � M : com �; � � N : T
�; � � M; N : T

an argument based on decomposition of strategies and prove a full abstraction result
based upon it.

2. SYSTEM F WITH MUTABLE VARIABLES

We define a prototypical polymorphic programming language, System Fref, by extend-
ing System F [Girard 1972; Reynolds 1974], with assignment to variables, in a similar
style to the language Scheme (although evaluation is lazy).

Types of our language are defined as for System F, extended with a constant ground
type of commands, com. This type is equivalent (isomorphic in the fully abstract model)
to the pure System F type ∀X.X → X. Including it as an explicit constant is a notational
convenience which simplifies presentation of the operational semantics, and plays a
role in the proof of full abstraction.

Type formation rules are as follows (here, and elsewhere, we use X0, . . . , Xn as
metavariables representing a context of actual type variables):

X0,...,Xn�X0 ��com

��S ��T
��S→T

�,X�T
��∀X.T

X0,...,Xn�T
Xπ(0),...,Xπ(n)�T π ∈ perm{0, . . . , n}

Term-formation rules and typing judgments, of the form �; x1 : S1, . . . , xn : Sn �
M : T where � � S1, . . . , Sn, T , are given in Table I. These are based on the rules for
System F, extended with:

—A constant (): com (corresponding to �X.λxX.x).
—Sequential composition of M : com with any term.
—A constant �: ∀X.X denoting error or non-termination.
—For each variable x: T , a term set(x) : T → com. We may write x := M for the

assignment set(x) M.

2.1. Operational Semantics

To give an operational semantics of System Frefwe extend the syntax with an un-
bounded set of typed constants (location names) a : T for each closed type T , which
may take the place of variables. A program is a closed term over this extended lan-
guage. A configuration (M|E) is a pair of a program M : com and an environment E—a
finite set of pairs (a, N) representing a partial function from the set of location names to
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Table II. Operational Semantics of System Fref

E[(�X.M){T }]|E −→ E[M[T/X]]|E
E[(λx.M) N]|E −→ E[M[a/x]]|E, (a, N) (a �∈ πl(E))
E[(); M]|E −→ E[M]|E
E[set(a) M]|E, (a, N) −→ E[()]|E, (a, M)
E[a]|E, (a, M) −→ E[M]|E, (a, M)

the set of programs. The rules in Table II define a reduction relation on configurations
based on the evaluation contexts given by the following grammar:

E[ ] ::= [ ] | E[ {T }] | E[ M] | E[ ; M]

Given a program M : com, we write M ⇓ if M| −→ ()|E for some E . We adopt standard
definitions of contextual approximation and equivalence with respect to this notion of
observation. Given terms M, N : T :

—M � N if for all contexts C[ ] : com, C[M] ⇓ implies C[N] ⇓.
—M ≈ N if M � N and N � M.

2.2. Expressiveness of System Fref

The combination of higher-rank polymorphism, mutable variables and lazy evaluation
might be considered nonstandard from a programming language perspective, although
the comparative simplicity of our model suggests that it is semantically natural (rather
than being intrinsically related to call-by-name evaluation, our model describes poly-
morphism for computation types in the sense of Levy [2004]). The small set of syntactic
operations suffice to define a number of powerful programming language constructs.

Data Types. Encodings of type constructors and inductive and abstract data types
including the Booleans, lazy natural numbers, sum and list types as System F
types are well known. In particular, we shall write T1&T2 for the product type
∀X.(T1 → T2 → X) → X, where X is not free in T1, T2, with the pairing operation
〈M1, M2〉 = �X.λ f T1→T2→X.( f M1) M2, and projections fst = λxT1&T2 .x{T1} λyT1 .λzT2 .y
and snd = λxT1&T2 .x{T2} λyT1 .λzT2 .z. (We write T⊥ for the unary instance ∀X.(T →
X) → X, with proj : T⊥ → T = λxT⊥ .x{T } λyT .y.)

Recursive Definitions. These may be expressed using self-referencing variables: for
example, �X.λ f X→X.(new aX.(a := f a); a) : ∀X.(X → X) → X defines a polymorphic
fixpoint combinator (where new aT .M = (λaT .M) �{T } declares a fresh variable in M).

General References. We may represent the type of references of type T as the product
type var[T ] = T &(T → com) so that left-projection is dereferencing and right projec-
tion is assignment. The term refT : λxT .〈x, set(x)〉 : T → var[T ] declares a reference
cell storing values of type T .

Polymorphic Mutable Objects. Extending the proposals in Abramsky et al. [1998], we
may represent a polymorphic object as a term of type ∀X1 . . . ∀Xm.T → (S1& · · · &Sn),
where T is the type of an initial state and S1, . . . , Sn are method types, parameterised
over the variables X1, . . . , Xm. A simple example is the polymorphic reference cell in
this article. Similarly, the term of type ∀X.(X&(X → com))

�X.new xX⊥ .〈proj(x), λyX.x{com} λzX.x := 〈(x := 〈z〉); y〉〉
represents a stack object (storing a list of terms of type X as a reference of type X⊥
which returns a different value each time it is “unthunked”): pop is left projection and
push is right-projection.

Dynamic Binding. We may use mutable variables of existential type (∃X.T =df
∀Y.(∀X.(T → Y ) → Y ) with Y not free in T ) to store an object which instantiates

Journal of the ACM, Vol. 60, No. 4, Article 29, Publication date: August 2013.



29:6 J. Laird

the quantified variable with any type—for example, we may dynamically bind a vari-
able a : ∃X.T to a term M : T [S/X] by the assignment a := �Y.λ f ∀X.(T →Y ). f {S} M.

3. GAMES FOR POLYMORPHISM

Games are labelled forests of moves, similar to the “Hyland-Ong games” on which an
earlier version of our semantics [Laird 2010a] is based. They are defined with respect
to a fixed universe of moves (from which their forest structure is derived): the set
U = {0, 1}∗ of finite binary sequences. We write � for the prefix relation on sequences,
and given any subset X ⊆ U , we write X− and X+ for the subsets of X consisting of
odd-length sequences (“Player moves”) and even-length sequences (“Opponent moves”)
respectively.

From any partial function f : U → U , we may derive a function on finite sequences
over U— f ∗ : U∗ → U∗ applies f pointwise to the moves on which it is defined, and omits
moves on which it is not defined. Where a partial projection function p from U onto a
subset Y ⊆ U is evident from the context, we shall write s�Y for p∗(s)—for example,
the restriction of a sequence over a disjoint union X1 + · · · + Xn to the disjoint union of
a subset of the Xi. For any binary word u, s�u = p∗

u(s), where pu is the partial function
sending u · v to v—that is, s�u consists of the sequence of words which occur as suffixes
of u in s.

3.1. Pre-Games

Define the pre-order � on U as follows:

m � n if there exist a, c ∈ {0, 1}∗ and b ∈ {0}∗ such that m = a · b and n = a · c.

A pre-game A is a set of moves MA ⊆ U such that m, n ∈ MA and m � n implies m = n.

PROPOSITION 3.1. For any pre-game A, the restriction of � to MA is a partial order.

PROOF. Suppose m �A n and n �A m. Then m = a · b = a′ · c′ and n = a′ · b′ = a · c,
where b, b′ ∈ {0}∗. Suppose (without loss of generality) that a � a′. Then, c′ ∈ {0}∗, and
so b′ � c′ or c′ � b′, and so m � n or n � m and hence m = n as required.

An initial move of A is a minimal element of (MA,�). A pre-game is well opened if it
contains a move o ∈ {0}∗, which must be the unique initial move.

All of the pre-games that we shall use correspond to regular languages over the
alphabet {0, 1}, and so we may represent them using corresponding notation:

Prefixing. Given a sequence u ∈ U , u.A (the offset of A by u) is obtained by prefixing
all moves in A with u.

Union. If A and B are pre-games such that m ∈ A and n ∈ B implies m �� n and vice-
versa, then their union is a pre-game. We write C � D for the disjoint union 10.C ∪01.D.

3.2. Context Games

Types with free variables will be interpreted by labelling moves with natural numbers
representing explicit “holes”, into which any other game can be plugged (similar to the
polymorphic games of Hughes [1997], variable games of Abramsky and Jagadeesan
[2004] and open games of Clairambault [2009]). Moves which are not holes are labelled
as questions or answers.

Given any set X ⊆ N, let XQA = {Q, A} ∪ X, and given f : X → Y , let fQA : XQA → YQA
extend f with the identity on {Q, A}. Formally, a (context) game A is a tuple (MA, λA,�A)
such that:
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—MA is a pre-game.
—λA : MA → NQA is a labelling function partitioning MA into sets QnA = λ−1

A {Q}
(questions), AnsA = λ−1

A {A} (answers), and HA(i) = λ−1
A {i} for each i (“i-holes”).

—�A ⊆ (Qn+
A × Ans−

A) ∪ (Qn−
A × Ans+

A) is an answer relation determining which answers
respond to which questions.

We shall use the following terminology:

—A is negative if every initial move is an Opponent move, and is not an answer.
—A is n-closed if HA(n) = ∅.
—A is a n-context game if it is m-closed for every m ≥ n.
—A is closed if it is n-closed for all n—that is, a 0-context game.

Remark 3.2. The original notion of game in Hyland and Ong [2000] associates ques-
tions to their set of possible answers by an explicit function. In the reformulation of
the notion of game by McCusker [1996], answers implicitly respond to their enabling
question. Our notion of game, with an explicit answering relation, subsumes both of
these definitions.

3.3. Well-Bracketing and Legal Sequences

The legal sequences of moves representing reachable positions of a game are simpler
than Hyland-Ong games because no explicit “justification pointers” are required (their
rôle is played by additional tags on moves induced by an explicit “bang” construction).

The set LA of legal sequences of the closed game A consists of the finite, nonrepeating
sequences s over MA which satisfy the following conditions:

Alternation. s starts with an Opponent move (if nonempty) and alternates between
Player and Opponent moves.

Downwards-closure. If a �A b, then a precedes b in s—that is, the moves in any prefix
of s form a lower set.

Well-Bracketing. Every answer move is related to the last-asked, unanswered ques-
tion by the �A relation.

The well-bracketing condition is essentially as defined in Hyland and Ong [2000],
and Abramsky et al. [2000] etcetera: we give further explanation as it will play a key
role in our model. By definition, in a closed game, every move is either a question or
an answer. A well-bracketed sequence on such a game corresponds to a sequence of
opening and closing parentheses (questions and answers, respectively), such that each
pair of opening and closing brackets are in the answering relation.

Formally, say that a sequence of moves t ∈ M∗
A is bracketed if every prefix of t

contains no more questions than answers and complete if t contains equal numbers
of questions and answers. For any bracketed sequence s on M∗

A, we define a relation
ClA(s) ⊆ QnA × AnsA as follows:

—ClA(ε) = ∅,
—ClA(sq) = Cl(s),
—ClA(sqs′a) = Cl(s) ∪ Cl(s′) ∪ {(q, a)}, if s′ is complete.

s is a well-bracketed sequence on A if and only if ClA(s) is contained in �A.
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Fig. 1. Instantiation: An example.

3.4. Constructions on Context Games

Standard examples of closed games include 
, which has a single Opponent question
enabling a corresponding Player answer—that is, M
 = {00, 1}, λ
(00) = Q, λ
(1) = A
and �
 = {(00, 1)}. Similarly, we have a game B of Booleans with a single Opponent
question enabling two Player answers. We will show later how these are isomorphic
to the interpretations of System F types in our model. The fundamental nontrivial ex-
amples of context games—corresponding to free type variables—are the (well-opened)
games •i for each i, containing the single (Opponent) move ε, which is an i-hole move—
that is, λ•i (ε) = i.

For any X ⊆ N, and game A, the universal quantification of A over X, ∀XA is played
over the same pre-game as A, with the Player n-hole moves becoming answers to the
Opponent n-holes for each n ∈ X—that is, ∀XA = (MA, λA[H+

A (X) → {Q}, H−
A (X) →

{A}],�A ∪ ⋃{H+
A (n) × H−

A (n) | n ∈ X}).
3.5. Instantiation

We will interpret instantiation of type variables with types by substituting hole-moves
with well-opened games. Given games A and B, where B is well opened, we may define
the instantiation of B into A by replacing each 0-hole u with the moves u · B—that is,

—MA[B] = MA\HA(0) ∪ {m · n | m ∈ HA(0) ∧ n ∈ MB}.
—λA[B](m) = λA(m), if m ∈ MA\HA(0),

λA[B](l · m) = λB(m), if l ∈ HA(0).
—�A[B] = �A ∪ {(m · q, m · a) | m ∈ HA(0) ∧ (q, a) ∈ �B}. (See Figure 1)

4. A CATEGORY OF CONTEXT GAMES

A strategy on the closed game A is a nonempty, even-prefix-closed set of even-length
legal sequences on A, which satisfies the determinacy condition: if sa, sb ∈ σ , then
a = b.
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Given negative games A, B, we define the (closed) game A → B to be ∀N(1.A∪01.B)—
that is, the disjoint union of A and B with Player/Opponent polarity switched in A,
with all hole moves quantified out (note that this is not, itself, a negative game in
general). We shall define a category G in which objects are negative context games and
morphisms from A to B are strategies on A → B. To define notions of composition and
identity on G (and the action of instantiation on strategies), we require the following
notion of copycat sequence:

Definition 4.1. Given sets of moves X, Y ⊆ U , a sequence s is a Player X, Y -copycat if
for any even-length prefix t � s, t�X = t�Y and an Opponent X, Y -copycat if for any odd-
length prefix t � s, t�X = t�Y . (Given sequences u, v ∈ U , a play is a (Player/Opponent)
(u, v)-copycat if it is a U, V -copycat, where U , V are the sets of extensions of u and v.)

The identity morphism idA : A → A consists of legal sequences which are Player
copycats between the positive and negative copies of A—that is, Player (01, 1)-copycat
sequences on A → A = ∀N(1.A∪ 01.A).

Composition in G may be defined by a form of “parallel composition plus hiding”
based on Opponent copycat sequences.

Definition 4.2. An interaction sequence on A1, . . . , An+1 is a sequence s on (A1 →
A2) � (A2 → A3) � · · · � (An → An+1) such that:

—s is an Opponent (A−
i , A+

i )-copycat for 2 ≤ i ≤ n (copycat condition).
—s�Ai → Ai+1 is legal for 1 ≤ i ≤ n (projection condition).

Using this notion, we define n-ary composition of strategies for n ≥ 2 as follows:

Definition 4.3. Given σ1 : A1 → A2, . . . , σn : An → An+1, let the n-ary composition
σ1| · · · |σn be the set of legal sequences s on A1 → An+1 such that there exists an
interaction sequence t on A1, . . . , An+1 such that t� Ai → Ai+1 ∈ σi for 1 ≤ i ≤ n and
s = t�A1 → An+1.

LEMMA 4.4. σ1| · · · |σn is a well-defined strategy.

PROOF. σ1| · · · |σn is a set of legal sequences by definition. It consists of even sequences,
since if t is an interaction sequence for which each projection t�Ai → Ai+1 is even-length,
then t is even length, and the restriction of t to A1 → An+1 excludes an even number
of moves by the copycat condition. Even-prefix closure is similarly evident. σ1| . . . |σn is
even-branching because if sa, sb ∈ σ1| · · · |σn, and ta, t′b are interaction sequences such
that ta�Ai → Ai+1 ∈ σi, t′b�Ai → Ai+1 ∈ σi for each i and s = t�A1 → An+1 = t′�A1 → An+1
then t = t′ and hence a = b.

Composition of morphisms in our category of games is the binary composition of
strategies: to show that this is associative, we establish that (σ1|σ2)|σ3 = σ1|σ2|σ3 =
σ1|(σ2|σ3). Key to this is showing that if t is an interaction sequence on A1, . . . , An+1,
then t�A1 → An+1 is a legal sequence if and only if t is itself a legal sequence. First,
note that it is evident that t satisfies the downwards closure condition if and only if
t�Ai is down-closed for each i, if and only if t�A1 → An+1 is down-closed. In the following
lemmas, we will not assume down-closure.

Say that an interaction sequence t on A1, . . . , An+1 satisfies the switching condition
if for every even-prefix s � t, s � Ai → Ai+1 is even-length for each i, and for every
odd-length prefix s � t, s�A1 → An+1 is of odd length. (In other words, if a Player move
in t is in Ai → Ai+1 then the preceding move is in Ai → Ai+1 and if an Opponent move
in t is in A1 → An+1 then the preceding move (if any) is in A1 → An+1.)

LEMMA 4.5. If s is an interaction sequence on A1, . . . , An+1 and s � A1 → An+1 is
alternating, then (i) s is alternating and (ii) s satisfies the switching condition.
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PROOF. By induction on length (with trivial base cases of empty or singleton
sequences):

—Given sab of odd length, by hypothesis, a is a Player move, and sa� Ai → Ai+1 is
even-length for each i, and so by alternation, b must be an Opponent move in some
i, as required. If b is a move in Ai for some 1 < i ≤ n, then it is a copy of a and so by
hypothesis on s, sab�A1 → An+1 is odd-length. Otherwise b is a move in A1 → An+1
and so sab�(A1 → An+1) is odd-length by assumption that it is alternating.

—Given sab of even length, by hypothesis a is an Opponent move in Ai → Ai+1 for
some i, and sa�(A1 → An+1) is odd-length. Then b cannot be an Opponent move in
Ai for some 1 < i ≤ n, as this contradicts the copycat condition, and it cannot be an
Opponent move in A1 → An+1 as this contradicts the hypothesis that sa�A1 → An+1 is
odd-length and alternating. Hence, b is a Player move: by the alternation condition
it must also be a move in Ai → Ai+1 and so sa�Aj → Aj+1 is alternating for each j as
required.

Proof of the following converse is similar:

LEMMA 4.6. If s is an alternating interaction sequence on A1, . . . , An+1, then it satisfies
the switching condition, and s�A1 → Aj is alternating for any j > 1.

We now prove similar results with respect to the well-bracketing condition.

LEMMA 4.7. For any alternating interaction sequence s on A1, . . . , An+1, if s�A1 → An+1
is well bracketed, then s is well bracketed.

PROOF. By induction on the length of s: suppose s = s′qta, where t is complete, we
need to show that q � a.

—Suppose a is a Player move in Ai → Ai+1, then we know by the switching condition
that the preceding move is in Ai → Ai+1. If this is a question (i.e., t is empty), then
by well-bracketedness of s�Ai → Ai+1, q � a as required. If it is an answer—that is,
t = t′q′ra′, where r is complete—then by hypothesis sqt′a is well-bracketed and hence
q � a as required.

—Suppose a is an Opponent move in Ai for some 1 < i ≤ n. Then, it is an answer
move in Ai (all Opponent hole moves become questions under quantification) and a
copy of the previous Player move a′, which must also be an answer. By hypothesis, a′
answers a question q′ such that q′�a′, and by the copycat condition, q′ must be a copy
of the preceding move, which must be q, and so q � a as required. If a is an answer
move in A1 → An+1 then by the switching condition, the preceding Player move is
in A1 → An+1. If this is an answer (i.e., t is empty), then by well-bracketedness of
s� A1 → An+1, q � a as required. If it is an answer—that is, t = t′q′ra′, where r is
complete—then by hypothesis sqt′a is well bracketed and hence q�a as required.

Proof of the following lemma is similar:

LEMMA 4.8. For any alternating interaction sequence s on A1, . . . , An+1, if s is well
bracketed, then s�(A1 → Ai) is well bracketed for each i > 1.

LEMMA 4.9. Suppose r is a legal interaction sequence on A1, A2, A3, and s is a legal
interaction sequence on A1, A3, A4 such that r�A1 → A3 = s�A1 → A3. Then there is a
legal interaction sequence r�s on A1, A2, A3, A4 such that (r�s)�(A1 → A2)�(A2 → A3) = r
and (r�s)�(A1 → A3) � (A3 → A4) = s.

PROOF. By induction on the combined length of r and s.

(1) If r = r′a, where a is a move in A2, then define r�s = (r′�s)a.
(2) If s = s′a, where a is a move in A4, then define r�s = (r�s′)a .
(3) Otherwise, r = r′a and s = s′a for some common move a: define r�s = (r′�s′)a.
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Note that by the switching condition, conditions 1 and 2 are mutually exclusive, and
that r�s is an Opponent (A−

2 , A+
2 ) and (A−

3 , A+
3 ) copycat.

LEMMA 4.10. σ1|σ2|σ3 = (σ1|σ2)|σ3.

PROOF. If s ∈ σ1|σ2|σ3, then there exists an interaction sequence r on A1, A2, A3, A4
such that r�Ai → Ai+1 ∈ σi for i ∈ {1, 2, 3} and r�A1 → A4 = s. By Lemma 4.8, r�A1 → A3
is a legal sequence, and therefore in σ1|σ2. Hence, t = r�(A1 → A3)� (A3 → A4) is a legal
interaction sequence on A1, A3, A4 such that t�A1 → A3 ∈ σ1|σ2 and t�A3 → A4 ∈ σ3.
Thus, s = t�A1 → A4 is in (σ1|σ2)|σ3 as required.

Suppose s ∈ (σ1|σ2)|σ3. Then, there exists a legal interaction sequence r on A1, A3, A4
such that r�A1 → A3 ∈ (σ1|σ2), r�A3 → A4 ∈ σ3 and r�A1 → A4 = s. Hence, there exists a
legal interaction sequence t on A1, A2, A3 such that t�A1 → A2 ∈ σ1 and t�A2 → A3 ∈ σ2
and t� A1 → A3 = r� A1 → A3. Then, r�t is an interaction sequence on A1, A2, A3, A4
such that (r�t)�Ai → Ai+1 ∈ σi for i ∈ {1, 2, 3} and so s = (r�t)�A1 → A4 ∈ σ1|σ2|σ3 as
required.

By symmetry, σ1|σ2|σ3 = σ1|(σ2|σ3). Thus, composition in our category of games is
associative. It is straightforward to check that the identity strategy is an identity for
composition.

4.1. Reindexing, Universal Quantification and Instantiation

Given f : N → N, the (identity-on-morphisms) f -reindexing functor sends the game A
to (MA, fQA ◦ λA,�A). (Reindexing defines a functor from the endofunctions on N to the
endofunctors on G, monoidal with respect to composition.) Let G0 be the full subcategory
of G consisting of 0-closed games: the successor-reindexing and predecessor-reindexing
functors correspond to an isomorphism S : G ∼= G0 : P. G0 is also a reflective subcategory
of G.

PROPOSITION 4.11. The inclusion J : G0 → G has a left adjoint ∀0 : G → G0.

PROOF. For any 0-closed game A, and game B, ∀0(A → B) = A → ∀0 B. Hence, there
is a natural isomorphism between G(J(A), B) and G0(A,∀0(B)).

The instantiation of types for universally quantified type variables in terms will be
interpreted by extending strategies to the instantiated games by playing copycat be-
tween the games substituted for a question and its closing answer move. (See Figure 2.)

Formally, given a strategy σ : A → B, define σ [C] : A[C] → B[C] to be the set of
even-length legal sequences s on A[C] → B[C] such that:

—s�A → B ∈ σ . (i.e., p∗(s) ∈ σ , where p(m · 0∗) = m if m is a move of A → B, and p is
undefined otherwise).

—For any 0-hole moves u, v of A → B such that (u, v) ∈ ClA→B(s�A → B), s is a Player
(u, v)-copycat.

This is a well-defined strategy—it is evidently even-prefix closed and satisfies the
determinacy condition since the response to any move of A → B (or instantiated initial
move of C) is determined by σ , and the response to any non-initial instantiated move
of C is determined by the copycat condition.

To show that instantiation is compositional, we use the following observation: Sup-
pose t is a well-bracketed interaction sequence on A, B, D, and (u, v) ∈ ClA→D(t�A → D).
Then, by the definition of interaction sequences and the closure relation there ex-
ists a (unique) chain of moves w0, . . . , w2n+1 such that w0 = u and w2n+1 = v, and
(w2i, w2i+1) ∈ ClA→B�B→D(s), which we may call a bridging sequence for (u, v) in t. Note
that if u, v are i-hole moves, then all intermediate moves in the bridging sequence are
i-hole moves in B, and that for i > 0, w2i is a copy by Opponent of w2i−1.
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Fig. 2. Instantiation to strategies: An example.

LEMMA 4.12. Given σ : A → B and τ : B → C, σ [C]|τ [C] = (σ |τ )[C]

PROOF. Suppose s ∈ σ [C]|τ [C]. Then, there exists an interaction sequence t on
A[C], B[C], D[C] such that t � A[C] → B[C] ∈ σ [C] and t � B[C] → D[C] ∈ τ [C].
Hence, t� A → D = (t�((A → B) � (B → D)))� A → D ∈ σ |τ . We need to show that,
if (u, v) ∈ ClA→D(t � A → D), then t is a Player (u, v)-copycat. Consider the bridging
sequence w0, . . . , w2n+1 for u, v in t. For each i ≤ n, t is a Player (u2i, u2i+1)-copycat
because t�A[C] → B[C] ∈ σ [C] and t�B[C] → D[C] ∈ τ [C]. For each i < n, t is an Op-
ponent (u2i+1, u2i+2)-copycat, because t is an interaction sequence. Thus, t is a Player
(u, v)-copycat as required.

Suppose s ∈ (σ |τ )[C]. Then, there exists an interaction sequence t on A, B, D such
that s�A → D = t�A → D. We show by induction on the length of s that there exists an
interaction sequence t[s] ∈ σ [C]|τ [C] such that t[s]�A[C] → D[C] = s.

—If s = s′ab, where a, b are not (noninitial) 0-hole moves of A → D, then t = t′at′′b,
where t′′ consists of interaction in B and thus we may define t[s] = t′[s′]at′′b.

—If s = s′(u · w′)(v · w′), where (u, v) ∈ ClA→D(s) ∩ HA→D(0), then there is a bridging se-
quence w0, . . . , w2n+1 for u, v in t, and thus we may define t[s] = t[s′](w0 ·w′) · · · (w2n+1 ·
w′).

LEMMA 4.13. For any game A, idA[C] = idA[C].

PROOF. We prove by induction that s ∈ idA[C] if and only if s ∈ idA[C].

Hence, we have shown that for any well-opened context game C the instantiation
functor [C] : G → G sending A to A[C] and σ : A → B to σ [C] : A[C] → B[C] is well
defined. We shall also make use of the following facts about the instantiation functor,
which follow directly from the definitions above:

LEMMA 4.14. The instantiation [•0] is the identity functor on G.

LEMMA 4.15. For any well-opened games B, C, the composition [C] ◦ [B] = [B[C]].
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4.2. Further Categorical Structure

We define symmetric monoidal structure on G: the tensor product A⊗ B is the disjoint
union 01.A∪ 10.B. Given σ : A → C and τ : B → D, we define σ ⊗ τ : A⊗ B → C ⊗ D =

{s ∈ LA⊗B→C⊗D | s�A → C ∈ σ ∧ s�B → D ∈ τ }.
The unit I for the tensor is the “empty game”—that is, the unique game over an empty
set of moves (note that this is a terminal object). There are copycat strategies yielding
the required isomorphisms making (G,⊗, I) a symmetric monoidal category. (Proof that
⊗ is bifunctorial and satisfies the relevant coherence diagrams follows, for example,
McCusker [1996].) Each instantiation functor is strict monoidal. In the following, we
shall elide associativity and unit isomorphisms, as if in a strict SMC.

Given games A and well-opened B, define the game A � B = 1.A∪ 00.B. This grafts
(a disjoint copy of) Aonto the root of B—if o ∈ {0}∗ is the �-least element of B, then 00.o
is the least element of A � B and all other elements 1.a and 00.b are incomparable.
Opponent moves (even-length sequences) in A become Player moves in A � B and
vice-versa.

LEMMA 4.16. The well-opened negative games form an exponential ideal in (G,⊗, I).

PROOF. If B is well-opened, then for any A, A � B is well-opened, and the exponential
of B by A: the evident correspondence between legal sequences on C → (A � B) and
on C ⊗ A → B yields the required natural isomorphisms.

G is also cpo-enriched with the inclusion order on strategies: let ⊥A,B be the least
element of G(A, B)—the strategy containing only the empty sequence.

As an example, we may observe how the lifted sum of games arises naturally in our
model, corresponding to the encoding of sums in second-order type theory. Let Gt be
the subcategory of G consisting of well-opened context games and total morphisms.
(A morphism f : A → B of a cpo-enriched category is total if for any g : B → C,
f ; g = ⊥A,C implies g = ⊥B,C : concretely f is total if Player always responds to the
unique initial move in B with the unique initial move in A.) For a family of games
{Ai | i < n}, let 
i<nAi = P(∀0(((S(A0) � •0) � · · · � (S(An−1) � •0)) � •0)) (where
P and S are the predecessor and successor reindexings). This construction is familiar
from McCusker [1996] as the lifted sum in which Opponent asks an initial question,
then Player answers with a choice of i < n and play continues in Ai. It is a weak
coproduct on G—
 is left adjoint to the inclusion of the category of very-well-opened
games and total strategies in Fam(G) (the completion of G with finite coproducts). (A
well-opened game is very-well-opened if the initial move enables only Player moves.)

5. THE CO-FREE COMMUTATIVE COMONOID

In order to extend our semantics to intuitionistic function types and mutable variables,
we introduce a “bang” construction on games, à la linear logic.

Definition 5.1. Given a well-opened game A let !A be the well-opened game
(11)∗.00.A—that is, 00.A∪ 1100.A∪ 111100.A∪ · · · .

In other words !A consists of countably many distinctly tagged copies of A: the initial
moves in each copy (of the form 12n · 02m) must be played (by Opponent) in order of the
size of n.

We may identify the following strategies:

—ηA :!A → I—the empty strategy (terminal map),
—δA :!A →!A⊗!A—which plays copycat between !A⊗!A and !A, opening a fresh copy of

A in !A for each thread opened on either side of !A⊗!A.
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These correspond to concrete interpretations of the weakening and contraction rules
of linear logic and make (!A, δA, ηA) a commutative comonoid—indeed we may identify:

—a morphism εA :!A → A (which opens one thread of !A and plays copycat with A) and
—for any commutative comonoid (B, δB, ηB), and σ : B → A, a strategy σ † : B →!A

which plays as σ in each copy of A.

corresponding to the dereliction and promotion rules and making (!A, δA, ηA) the cofree
commutative comonoid on A (see here). Since the bang is also key to our interpretation
of higher-order state, rather than formalising the definitions of this structure combi-
natorically, we shall make use of constructions described in Laird [2002], based on the
fact that it is a minimal invariant for an action � : Gt × G → Gt of the monoidal
category G on its subcategory of total morphisms.

First, we note that for any game A, the exponential restricts to a functor A � :
Gt → Gt with the following property.

LEMMA 5.2. For any A, the functor A � : Gt → Gt has right and left adjoints, which
commute with A � (and therefore coincide)—that is, A � has a dual in the monoidal
category of endofunctors on Gt.

PROOF. For any well-opened A, define A� B = 00.A+11.B (i.e. equivalent as a partial
order to B � A, but without swapping Player/Opponent polarity in B). Then, there are
evident adjunctions:

Gt(A�B,C)
Gt(A,B�C)

Gt(B�A,C)
Gt(A,C�B)

and a natural isomorphism γ : B � (A� B′) ∼= (B � A) � B′.

In the terminology of Laird [2002], this commuting adjunction defines a sequoid, i.e.:

— � : Gt × G → Gt is an action of the SMC (G,⊗, I) on Gt.
—There is a natural transformation ν : J ⊗ J → J( � J ), where J : Gt → G is the

inclusion functor: νA,B = �−1(J(ηA,B)), where ηA,B : A → B � (A� B) is the unit of
the relevant adjunction and �−1 : G(A, B � (A� B)) → G(A⊗ B, A� B) is uncurrying
of the exponential.

This sequoid has the further property of “sequential decomposability”, which we shall
use to define a comonoid.

LEMMA 5.3. For any well-opened games A, B, A⊗ B is a Cartesian product of A� B
and B� A, with projections νA,B : A⊗ B → A� B and θA,B; νB,A : A⊗ B → B� A (where
θA,B : A⊗ B → B⊗ A is the symmetry isomorphism of ⊗).

So, in particular, there is a diagonal morphism �B : B � B → B ⊗ B = 〈idB�B, idB�B〉
for any well-opened game B.

A minimal invariant for an endofunctor of cpo-enriched categories F : C → C is an
object B with an isomorphism in : F(B) ∼= B : out such that the least fixedpoint for the
operation taking f : B → B to out; F( f ); in is the identity on B.

LEMMA 5.4. For any well-opened A, !Ais a minimal invariant for the functor J(A� ) :
G → G.

PROOF. !A = (11)∗.00.A = 00.A∪ 11.(11)∗.00.A = A�!A—minimal invariance follows
by continuity.

We may now use minimal invariance and sequoidal structure to define the comonoid
structure described earlier.
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Definition 5.5. For any well-opened A, the comonoid (!A, δA :!A →!A⊗!A, ηA :!A → I)
is given as follows:

—δA :!A →!A⊗!A is the least fixed point of the endofunction on G(!A, !A⊗!A) sending f
to:

!A ∼= A�!A
idA� f→ A� (!A⊗!A) ∼= (A�!A)�!A ∼=!A�!A

�!A−→!A⊗!A

—ηA :!A → I is the terminal map tA.

For a symmetric monoidal category (C,⊗, I), let Comon(C) be the category of commuta-
tive comonoids and comonoid morphisms of C.

PROPOSITION 5.6. For any well-opened A, !Ais the cofree commutative comonoid on A.

PROOF. In other words, if U : Comon(G) → G is the forgetful functor, then for any
commutative comonoid (B, δB, ηB) there is an isomorphism (natural in B) between
G(U (B), A) and Comon(G)(B, !A) given by a morphism εA : U (!A) → A and an operation
sending each morphism f : U (B) → A in G to f † : B →!A such that f †; εA = f and
ε
†
A = id!A.

εA is defined by:

!A ∼= A�!A
idA�ηA−→ A� I ∼= A

and given f : U (B) → A, define f † : B →!A to be the least fixed point of the operation
sending g : B →!A to:

B
δB−→ B⊗ B

f ⊗g−→ A⊗!A
νA,!A−→ A�!A ∼=!A

These identities follow by straightforward induction.

COROLLARY 5.7. The (free commutative comonoids on) well-opened games form an
exponential ideal in the Cartesian category Comon(G).

PROOF. We have Comon(G)(A⊗ B, !C) ∼= G(U (A) ⊗ U (B), C) ∼= G(U (A),U (B) � C) ∼=
Comon(G)(A, !(U (B) � C)).

Finally, note that the instantiation functor strictly preserves this structure—that is,

— [B] lifts to an endofunctor on Comon(G) (sending (A, δ, η) to (A[B], δ[B], η[B])) which
preserves products and well-opened exponentials.

5.1. Semantics of References

Variables of System Frefdenote mutable reference cells. Following Abramsky et al.
[1998], our semantics is based on representing such a cell as a strategy on the game
§A =!(!A � 
)⊗!A (which is a Cartesian product in our category of comonoids), so that
writing to the cell corresponds to applying the left projection from this product, reading
from it corresponds to right-projection, and declaration of a variable (composition with
the cell strategy in G) connects writes to reads appropriately. Thus, we need to define
a family of strategies cell :!A → §A, uniform in A. Informally, these are a simplified
version of the cell strategy defined in Abramsky et al. [1998]: if Opponent requests
a “write” by asking the initial question on the left, Player responds with the unique
answer to this question “Ok” and if Opponent requests a read by opening a thread of
!A on the right, then Player responds by either:

—Playing copycat with the last-opened write thread, if this exists, or,
—Playing copycat with the source copy of !A, otherwise.
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The polymorphic version cell•0 encapsulates this copycat behaviour in the following
play:

!•0 → (!•0 � 
) ⊗ !•0

Oq

Pa

Oq

Pa

Oq

Pa

To define this strategy formally, we shall give a construction of it based on Laird [2002],
using the properties of the sequoid, and the ! as a minimal invariant.

Recall that � A : Gt → Gt is left (as well as right) adjoint to A � : the counit
η
 : 
 → (A � 
) � A of this adjunction is the basis of the cell strategy.

Definition 5.8. Let cellA :!A →!(!A � 
)⊗!A be the least fixed point of the map
� : G(!A, !(!A � 
)⊗!A) → G(!A, !(!A � 
)⊗!A) sending f to the pairing of:

!A ∼= A�!A
A� f−→ A� (!(A � 
)⊗!A) ∼= A� (!A⊗!(!A � 
)) ∼= (A�!A)�!(!A � 
)

∼= !A�!(!A � 
)

(reading) and

!A
t!A−→ 1 �−→ 


η
,!A−→ (!A � 
)�!A
(!A�
)� f−→ (!A � 
) � (!(!A � 
)⊗!A) ∼=!(!A � 
)�!A

(writing), where � : 1 → 
 is the universal quantification of the curried identity
strategy—recall that !(!A � 
)⊗!A is the Cartesian product of !(!A � 
)�!A and
!A�!(!A � 
) in G.

Thus, we have a family of cell strategies for each context game, which is invariant
under instantiation—that is, cellA[B] = cellA[B] for each A and well-opened B—since
instantiation preserves sequoidal structure. Each cell strategy satisfies key categorical
equations defining the behaviour of a reference cell: We define assignment and derefer-
encing strategies which take left/right projections from the top copy of the cell, and be-
have as the identity on the remainder: Let readA : §A → A�§A = (δ§A; ν§A,§A); (πr; εA�§A)
and write : §A → (!A � 
) � §A = (δ§A; ν§A,§A); (πl; εA � §A).

Reading. cellA; readA :!A → A� §A = (δ!A; ν!A,!A); (εA � cellA) (i.e., reading from the cell
returns the value stored there and leaves the cell unchanged).

Writing. cellA; writeA :!A → (!A � 
) � §A = t!A; �((� ⊗ cellA); ν

,§A); γ!A,
,§A—that is,

selecting the write component returns a method which updates the cell and returns �.

6. DENOTATIONAL SEMANTICS OF SYSTEM FREF

We may now define the semantics of System Fref : we first give a direct interpretation,
and will then observe that it is an instance of a more general hyperdoctrine construc-
tion. Types X0, . . . , Xn−1 � T may be interpreted as objects of Comon(G), as follows:

—[[X0, . . . , Xn−1 � X0]] = •0.
—[[Xπ(0), . . . , Xπ(n−1) � T ]] = �(π )([[X0, . . . , Xn−1 � T ]]) (where �(π ) is the π -reindexing

functor).
—[[� � com]] = 
.
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—[[� � S → T ]] =![[� � S]] � [[� � T ]].
—[[� � ∀X.T ]] = P(∀0([[X,� � T ]]))—universal quantification followed by predecessor-

reindexing.

Terms �; x1 : S1, . . . , xn : Sn � M : T are interpreted as morphisms from §[[� �
S1]] ⊗ · · · ⊗ §[[� � Sn]] to ![[� � T ]] in Comon(G), which we may identify with the
associated morphism from §[[� � S1]] ⊗ · · · ⊗ §[[� � Sn]] to [[� � T ]] in G, defined as
follows:

—[[�; � � () : com]] = � : [[�]] → 
—the � strategy on 
.
—[[�; � � : ∀X.X]] = ⊥—the empty strategy.
—[[�; �, x : T � x : T ]] : [[�]] ⊗ §[[T ]] → [[T ]] = πr; πr; ε—right projection from §[T ]].
—[[�; �, x : T � set(x) : T → com]] : [[�]] ⊗ §[[T ]] → [[T → com]] = πr; πl; ε—left

projection from §[[T ]].
—[[�; � � �X.M : ∀X.T ]] : [[�]] → [[� � ∀X.T ]] = ∀n[[�, X; � � M]]—the action of the

universal adjunction.
—[[�; � � M{S} : T [S/X]]] : [[�]][[[� � S]]] → [[T ]][[[� � S]]] = [[�; � � M]][[[� � S]]]—

the instantiation functor.
—[[�; � � M; N : T ]] : [[�]] → [[T ]] = 〈[[�; � � M : com]]; seqT , [[�; � � N : T ]]〉; app,

where seqT : 
 → [[T → T ]] is the sequential composition strategy.
—[[�; � � λxS.M : S → T ]] : [[�]] → [[S → T ]] = �(([[�]] ⊗ cell[[S]]); [[�; �, x : S � M :

T ]])—composition (in G) with the strategy cell, followed by currying.
—[[�; � � M N : T ]] : [[�]] → [[T ]] = 〈[[�; � � M : S → T ]], [[�; � � N : S]]〉; app—the

standard interpretation of application for an exponential object.

6.1. Soundness

To prove soundness of our semantics, we shall first show that it may viewed as (essen-
tially) an instance of the notion of a categorical model of System F typing introduced by
Seely [1987] and simplified by Pitts [1988]. First, we generalize instantiation to mul-
tiple games. Define the n-fold instantiation functor [B0, . . . , Bn−1] (which substitutes
each Bi into the i-holes of its argument) by induction on n as follows:

—A[ ] = A
—A[B0, . . . , Bn−1] = P(A[Sn(B0)])[B1, . . . , Bn−1]

Let I be the category in which objects are natural numbers, and morphisms from m
to n are m-tuples of n-context games. The identity on n is the tuple [•0, . . . , •n−1] and
composition of (B0, . . . , Bm) with (A0, . . . , Al) is (A0[B0, . . . , Bm], . . . Al[B0, . . . , Bm]). That
this is a category follows from Lemmas 4.14 and 4.15. It has finite products (arithmetic
sums) and is finitely generated by them from the object 1. We define an I-indexed
category with (specified) finite products: the identity-on-morphisms functor ( )∗ from
IOP into the category of categories with finite products sending n to the subcategory
G(n) of Comon(G) consisting of (comonoids on) n-context games, and (B0, . . . , Bm) to the
instantiation functor [B0, . . . , Bm].

PROPOSITION 6.1. The inclusion functors Jn : G(n) → G(n + 1) have an indexed left
adjoint ∀n : G(n + 1) → G(n).

PROOF. For any n-context game A, and n + 1-context game B, ∀n(Jn(A) → B) =
A → ∀nB. Hence, there is a a natural isomorphism between G(n + 1)(Jn(A), B) and
G(n)(A,∀n(B)).

Moreover, these satisfy the Beck-Chevalley condition and so form an indexed adjunc-
tion. In other words, for each instantiation functor F : G(n) → G(m), the following
square commutes:
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If F is the instantiation [B0, . . . , Bn−1], this boils down to the requirement that
∀mA[B0, . . . , Bn−1, •m] = (∀nA)[B0, . . . , Bn−1], which follows from Lemma 4.14.

This completes the characterization of our semantics as a Seely-Pitts hyperdoctrine
model.

6.2. Soundness for System Fref

Soundness of β-reduction for type instantiation follows from the categorical construc-
tion above. To prove soundness of the declaration, assignment and dereferencing rules,
we interpret configurations by defining a partial trace operator [Malherbe et al. 2011]
on our symmetric monoidal category of games using the sequoidal structure that has
already been identified. Given a morphism f : A⊗ B → C ⊗ B, where C is well opened,
define

trace( f ) : A → C = �( f ; νC,B); εB,C

where εB,C : (B � (C � B)) → C is the co-unit of the adjunction � B �
B � . Then, given a configuration (M|((a1, N1), . . . (ak, Nk))) where M, N1 :
T1, . . . , Nk : Tk may contain the names a1, . . . , ak, we define [[M|((a1, N1), . . . (ak, Nk))]] =
trace(〈[[M]], [[N1]]; cell[[T1]], . . . , [[Nk]]; cell[[Tk]]〉).

We may now verify directly that the key reductions of the operational semantics are
sound, using the properties of the trace operator and the read-write behaviour of the
cell strategy which we have identified (see Laird [2002] for further details).

PROPOSITION 6.2 (SOUNDNESS). If M ⇓, then [[M]] = �.

We prove computational adequacy for an approximating semantics in which each cell
can be accessed a bounded number of times, which implies adequacy for the unbounded
system by continuity. Notably, this avoids the logical complexity of arguments, such as
those based on reducibility candidates, which are required to show strong normalization
for System F (or, indeed, to show that our operational semantics is conservative over
β-reduction).

PROPOSITION 6.3. [[M]] = � implies M ⇓.

PROOF. For each n, we define an operational semantics of System Fref in which each
cell may be (read or write) accessed at most n times—that is, environments are sets of
triples (a, M, k), and the rules for declaration, assignment and dereferencing are:

E[(λx.M) N]|E −→ E[M[a/x]]|E, (a, N, n)
E[set(a) M]|E, (a, N, k + 1) −→ E[()]|E, (a, M, k)
E[a]|E, (a, M, k + 1) −→ E[M]|E, (a, M, k).

Write M ⇓n if M : com (closed) reduces to () in this semantics. Evidently, M ⇓n implies
M ⇓.
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We show that reduction with respect to this operational semantics always terminates,
by defining a measure on terms as follows:

—ln(c) = 1 for all constants (and variables) c.
—ln(λx.M) = ln(M) + 1.
—ln(M; N) = ln(M) + ln(N) + 1.
—ln(M N) = ln(M) + n · l(N).
—ln(�X.M) = ln(M) + 1.
—ln(M{T }) = ln(M) + 1.

This extends to configurations: ln(M|E) = ln(M)+
{i ·ln(N) | (a, N, i) ∈ E}. It is routine to
show that reduction in System Fn

ref is strictly reducing on ln—that is, if M|E −→ M′|E ′
then ln(M′|E ′) < ln(M|E), and hence there are no infinite reductions.

We then show that this operational semantics is sound, and therefore adequate,
with respect to a denotational semantics in which the cell strategy is replaced by its
nth approximant—that is, �n(⊥).

Adequacy of the semantics of System Frefnow follows. For any term M : com, [[M]] =⋃
n∈ω[[M]]n. Hence, if [[M]] �= ⊥, there exists n with [[M]]n �= ⊥ and hence M ⇓n, and so

M ⇓ as required.

7. COMPLETENESS: GENERICITY, DEFINABILITY AND FULL ABSTRACTION

What of completeness? Interpretation of System F is not fully complete—that is, there
are strategies which do not correspond to proofs of second order intuitionistic logic—
obvious examples include the empty strategy and denotations of imperative objects
such as the reference cell. Is there a simple criterion for excluding such strategies and
identifying the (System F) definable elements of the model? If we consider the semantics
of second-order implicational multiplicative linear logic (i.e., linear System F) suggested
by our symmetric monoidal category of games with well-opened exponentials, all types
are interpreted as finite games (and all proofs as hereditarily total strategies). However,
undecidability of provability in second-order MLL [Lincoln et al. 1997] implies that
definability of a total strategy as a proof or pure term is not decidable even in this case.

An instructive example, illustrating the difficulty of identifying the strategies which
are definable in pure System F is given in Figure 3 by plays in the strategies denoted
by the terms:

—N1 : ∀X.∀Y.(((Y → X → X) → Y → X) → X)

= �X.�Y.new xY .λ f (Y→X→X)→Y→X.( f λyY zX.x := y; z) x

—N2 : ∀X.((∀Y.((X → Y → X) → Y → X)) → X)

= �X.λ f ∀Y.((X→Y→X)→Y→X).( f {X → X} (λxX.λgX→X.g x)) λyX.y

which are played over the same basic game (but with a different Q/A-labelling). The
plays are concretely the same, although the former corresponds to quintessential gen-
eral reference behaviour.

7.1. Genericity

A different kind of completeness property, the genericity principle for System F was
described by Longo et al. [1993], and shown to be consistent with the equational theory
of System F (i.e., models satisfying the principle exist).

Definition 7.1. A semantics of System F satisfies the genericity principle at type T
if for any terms M, N : ∀X.S, [[M{T }]] = [[N{T }]] implies [[M]] = [[N]]. It satisfies the
(all-type) genericity principle if it satisfies the genericity principle at each type.
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Fig. 3. Typical plays of N1 and N2 (Pointers indicate bracketing).

In other words, in a model satisfying the all-type genericity principle, separability of
denotations at the universal type ∀X.T is parametric in X. Evidently, genericity in our
semantics of System Fref implies genericity in the submodel of System F itself.

One possible criticism of the all-type genericity principle is that it is rather brittle. If
we include finite product types in System F—in particular, a terminal type 1 at which
all terms are equated, then genericity implies inconsistency: we have, for example,
(�X.λxX.λyX.x){1} = (�X.λxX.λyX.y){1}, and thus M : T = ((�X.λxX.λyX.x){T } M) N =
(�X.λxX.λyX.y){T } M) N = N : T for any pair of terms M, N : T . (So genericity is
inconsistent with the faithful encoding of finite products in System F.)

It is straightforward to characterize the (closed) generic types in our model. Re-
call that a legal sequence is complete if it contains equal numbers of questions and
answers—that is, by the well-bracketing condition, every question is closed by a unique
answer. Say that a game A is complete if there is at least one nonempty complete legal
sequence in A. (So [[∀X.X → X]] = 
 is complete, but [[∀X.X]] is not.)

PROPOSITION 7.2. If [[T ]] is complete, then T is generic.

PROOF. Suppose [[T ]] contains the complete sequence m1 · · · m2k. Suppose s is a legal
sequence over [[∀X.S]] (where ∀X.S is closed). We may extend s to a legal sequence s′ over
[[S[T/X]]] by replacing each 0-hole question u ∈ H+

[[S]](0) with u·m1, and each answer v ∈
H−

[[S]](0) such that (u, v) ∈ Cl[[S]](s) with the sequence (v·m1)(v·m2)(u·m2) · · · (v·m2k)(u·m2k).
This is evidently injective on legal sequences, and has the property that s ∈ [[M]] if and
only if s′ ∈ [[M{T }]], so if [[M{T }]] = [[N{T }]], then [[M]] = [[N]] as required.

PROPOSITION 7.3. If T (closed) is generic, then [[T ]] is complete.

PROOF. Consider the terms of type ∀X.∀Y.(∀Z.((((Y → Y → Z) → X) → X) → Z) →
Y ):

—M1 = �X.�Y.λ f ∀Z.(((Y→Y→Z)→X)→X)→Z. f {Y } λg(Y→Y→Y )→X.g λxY .λyY .x.
—M2 = �X.�Y.λ f ∀Z.(((Y→Y→Z)→X)→X)→Z. f {Y } λg(Y→Y→Y )→X.g λxY .λyY .y.
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Fig. 4. Typical plays of [[M1]] and [[M2]].

Then [[M1]] �= [[M2]] as they are separated by the plays depicted in Figure 4. If
[[M1{T }]] �= [[M2{T }]], then there exist well-bracketed plays s1 ∈ [[M1{T }]], s2 ∈ [[M2{T }]]
which restrict to the depicted plays. The restriction of s1, s2 to (each copy of) [[T ]] must
be complete and non-empty, and therefore [[T ]] is complete.

Thus, we have a simple and exhaustive characterization of the generic closed types
in our model. Moreover, we may use it as the basis for an all-type generic model
via a simple construction which adds an answer to the initial question to each type
object, making it a complete game. We may describe this construction syntactically,
as a translation ( ) from System F into itself—providing a concise and clear way to
formalise it and establish soundness. Translation of types is as follows:

—X = X
—S → T = S → T
—∀X.T = ∀X.(X → T ).

Since universal quantification now introduces an answer to any question corresponding
to a quantified type variable, we have:

PROPOSITION 7.4. For any type T , [[T ]] is complete.

To define the translation on terms, for each type X1, . . . , Xn � T , we define a term
X1, . . . , Xn; x1 : X1, . . . , xn : Xn � KT : T as follows:

—KXi = xi.
—KS→T = λyS.KT .
—K∀Xi .T = �Xi.λxXi

i .KT .

By induction over this definition, we have:

LEMMA 7.5. For any type T (Xi), KT [S/Xi ] = (KT [S/Xi])[KS/xi].
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We may now translate terms X1, . . . , Xn; � � M : T of System F as terms
X1, . . . , Xn; x1 : X1, . . . xn : Xn, � � M : T as follows:

—y : T = y : T .
—λyS.M : S → T = λyS.M.
—M N = M N
—�Xi.M = �Xi.λxXi

i .M
—M{T } = M{T } KT

LEMMA 7.6. For any term M, M[T /Xi][KT /xi] = M[T/Xi].

PROOF. By induction on term length, using Lemma 7.5

LEMMA 7.7. The translation ( ) is sound with respect to βη-equality.

PROOF. The key cases are:

—(�Xi.M){T } = (�Xi.λxXi
i .M){T } KT =βη M[T /Xi][KT /xi] = M[T/Xi].

—�Xi.(M{Xi}) = (�Xi.λxXi
i .(M{Xi} xi)) =βη M as required.

This construction yields an interpretation in which all closed types denote complete
games. However, since the interpretation of type instantiation has changed (it now
involves composition with the term KT ), we need to check that this does not affect
genericity.

Define an explicitly complete context game to be a context game A, together with a
function κA : QnA → AnsA such that q � κA(q). A strategy on A is explicitly complete
with respect to κ if for all smn ∈ σ , m is an explicit answer if and only if n is an
explicit answer. (Note that well-bracketing implies that the response of σ to an explicit
answer is therefore completely determined.) We construct a mapping κ�,T : Qn[[��T ]] →
Ans[[��T ]] for each System F type (sending each question to the answer introduced by
( )-translation) by induction on T , and verify the following by induction: (Alternatively,
we may describe the semantics of System F in the category of explicitly complete games
and strategies ab initio.)

LEMMA 7.8. For any term M, [[M]] is an explicitly complete strategy.

We may now adapt the proof of Proposition 7.2 to establish genericity for the modified
model of System Fref.

THEOREM 7.9 (GENERICITY). For any terms M, N :∀X.S, and (closed) type T , [[M{T }]] =
[[N{T }]] implies [[M]] = [[N]].

PROOF. It suffices to prove the result for terms of closed type ∀X.S (since we may
thus show that genericity holds for any sequence of instantiations to a closed type).
Suppose [[M]] �= [[N]]. Let s be the shortest sequence such s ∈ [[M]] and s �∈ [[N]].
Then, s does not contain the explicit answer to the initial question, since it would
otherwise have the form tmn, where t ∈ [[N]] and m and n are explicit answers and so
s = tmn ∈ [[N]]. Because it is complete, instantiating with T yields a sequence s′ on
[[M{T }]] : [[T ]] → [[S[T/X]]] as in Proposition 7.2. Since s does not contain the explicit
answer to the initial question, s′ does not contain any moves in T and so s′�[[S[T/X]]]
is in [[M{T }]] = [[M{T } KT ]] but not in [[N{T }]] = [[N{T } KT ]] as required.

Note that we have achieved genericity by adding more “junk” (undefinable elements)
to our model. In the following, we return to our original interpretation of System Fref.
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7.2. Definability and Full Abstraction

We now prove that every finite strategy in our model of System Fref is definable as a
term, using a decomposition argument based on the one given in Laird [2002] for a
simply-typed language with general references. The principal question to be addressed
in extending this decomposition to polymorphic types is: how to instantiate universal
types which occur negatively? Strategies do not carry direct information about such
instantiations. We show that it is sufficient to always instantiate with the type com.
Since such instantiation typically increases sequence length, we first need to define a
measure on finite strategies which allows it to be performed as part of the inductive
decomposition. For each type T , let com?(T ) be the set of questions in the game [[T ]]
which come from subgames denoted by com—that is, com?(com) is the unique question
in 
, com?(X) = ∅, com?(∀X.T ) = com?(T ) and com?(S → T ) = com?(S) � com?(T ).
Define the noncommand Player question count of a legal sequence s on [[T ]] to be the
number of Player questions in s which are not in com?(T ), and let #T (s) be the pair
〈m, n〉, where m is the noncommand question count of s and n is the length of s. We
order these pairs lexicographically. This measure extends to finite strategies σ : [[T ]]:
let #T (σ ) be the maximum of {#T (s) | s ∈ σ }.

A strategy σ : [[T ]] in G is definable if there is a term Mσ : T such that [[Mσ ]] = σ .
Say that σ is (definability) reducible to the finite set of strategies {σi : [[Ti]] | i ∈ I}
if #Ti (σi) ≤ #T (σ ) for each i, and definability of each σi implies definability of σ . σ is
strictly reducible to {σi : [[Ti]] | i ∈ I} if in addition #Ti (σi) < #T (σ ) for each i ∈ I.

To simplify the proof, we work with types which are canonical—that is, given by the
grammar:

C, C ′ ::= X | com | (∀X1 · · · ∀Xn.C) → C ′

A simple induction on types yields:

LEMMA 7.10. For any type T , there exists a canonical type C such that T is de-
finably isomorphic to ∀X1 . . . Xn.C (i.e. there are terms M : T → ∀X1 . . . ∀Xn.C,
N : ∀X1 . . . ∀Xn.C → T denoting an isomorphism.)

Thus:

LEMMA 7.11. Any finite strategy σ : [[T ]] is reducible to a strategy σ ′ : [[C]] such that
C is canonical.

Hence, it suffices to prove definability at canonical types. Any such type which is
nonatomic is a function-type S → T . We shall say that a strategy on [[S → T ]] is linear
if it is (the currying of) the dereliction of a strict morphism τ : [[S]] → [[T ]]. In other
words, the first Player move by σ is in ![[S]], and σ opens only one “thread” of ![[S]].

LEMMA 7.12. Any linear strategy σ : [[∀X.S → T ]] is reducible to a linear strategy
σ ′ : [[S[com/X] → T ]].

PROOF. Given a legal sequence s in !(∀0 A) � B, we define a (legal) sequence s′ on
A[
] → B as follows: for each pair (u, v) ∈ Cl(s) with u, v ∈ HA(0), add the moves
(u · 1)(v · 1) after v, where 1 is the answer move in 
. Given σ : [[∀X.S → T ]], let σ ′ be
the strategy {t ∈ L![[S]][
]→[[T ]] | ∃s ∈ σ.t �E s′}. Then:

— #S[com/X]→T (σ ′) ≤ #∀X.S→T (σ ), since for any sequence s ∈ σ , either s′ = s, or s′ has
strictly fewer noncommand Player questions.

—If σ ′ is definable as the term M : S[com/X] → T , then σ is definable as the term
λy∀X.S.M (y{com}).
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LEMMA 7.13. Any linear strategy σ : [[( �S → com) → �T → X]] is reducible to a linear
strategy σ ′ : [[( �S → X → X) → �T → X]].

PROOF. Given a legal sequence s = oqt in σ : [[( �S → com) → �T → X]] (where q is
the question move in com), form the legal sequence s′ = oat′ on [[ �S → X → X]] →
[[ �T → X]] by replacing q with the initial move a in X → X, and its answer in t with the
corresponding move in X → X enabled by q. (Note that this preserves well-bracketing.)
Thus, we may define σ ′ : [[ �S → X → X]] → [[ �T → X]] = {s′ | s ∈ σ } ∪ {ε} such that:

— #(σ ) = #(σ ′) since this relabelling of moves does not change sequence length, or
number of noncommand player questions.

—If σ ′ is definable as the term M : ( �S → X → X) → �T → X, then σ is definable as the
term λy �S→com.M λ�z �S.(y �z); (λaX.a).

Given types T , S1, . . . , Sn, write (T → �S) → X for (T → S1) → · · · → (T → Sn) → X.

LEMMA 7.14. Any linear strategy σ : [[( �S → X) → (T → R)]] is reducible to a linear
strategy on [[((T → �S) → X) → R]]

PROOF. Any sequence s ∈ σ of length greater than 2 has the form oamis, where mi is
an Opponent move in some [[Si]]. We may rewrite s to a sequence s′ on [[((T → �S) →
X) → R]] by replacing moves in ![[T ]] with the corresponding moves in (the first thread
of) ![[T → Si]], and define σ ′ = {s′ | s ∈ σ } ∪ {ε, oa}. Then, σ is reducible to σ ′ as:

— #(σ ) = #(σ ′).
—If σ ′ is definable as a term M : ((T → �S) → X) → R, then σ is definable as the term

λx �S→X.λyT .M λ�zT → �S.x (z1 y) · · · (zn y).

An assignment strategy σ : [[( �S → com) → T ]] is a linear strategy in which every
sequence of length greater than 2 has the form oqas—that is, the initial Player question
in [[ �S → com]] is answered immediately.

LEMMA 7.15. Any linear strategy σ : [[( �T → X) → X]] is reducible to a set of assign-
ment strategies {σi : [[( �T → com) → Ti]] | i ≤ n}.

PROOF

—If σ is nonempty, then there exists a strategy σ ′ : I →![[T1]] ⊗ · · ·⊗![[Tn]] such that
σ = (id[[ �T →X]] ⊗ σ ′); app.

—By sequential decomposability of ⊗, and the minimal invariance property of the cofree
commutative comonoid, ![[T1]] ⊗ · · · ⊗![[Tn]] is a Cartesian product of [[Ti]] � (![[T1]]
⊗ · · · ⊗![[Tn]]) : i ≤ n, and thus σ ′ is a tuple of strategies σi : [[Ti]]�![[T1]] ⊗ · · · ⊗![[Tn]].

—For each i, we obtain an assignment strategy σ̂i : [[( �T → com) → Ti]] by adding a
pair of moves qa in com to each (nonempty) sequence in σi, immediately after the
opening move.

σ reduces to {σ̂i | i ≤ n} since:

—Decomposition of σ to σ ′ removes two moves, decomposition of σ ′ to σi is nonincreasing
on #( ), and decomposition of σi to σ̂i adds two moves (which are not noncommand
Player questions).
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—If each σ̂i is definable as a term Mi : ( �T → com) → Ti, then σ is definable as the
term:

λ f �T →X.new �w �T .w1 := (M1 λ�x �T . �w := �x); · · · ; wn := (Mn λ�x �T . �w := �x); f w1 · · · wn.

Suppose T = T1 → · · · → Tn → X.

LEMMA 7.16. Any assignment strategy σ : [[( �S → com) → T ]] is strictly reducible to
a linear strategy σ ′ : [[( �S → Ti) → T ]] for some i ≤ n.

PROOF. By definition, any sequence in σ of length greater than 2 has the form oqamis,
where mi is an opening move in some ![[Ti]]. Thus, we obtain a strategy σ ′ : [[( �S →
Ti) → T ]] by deleting qa, and replacing all moves hereditarily enabled by mi with the
corresponding moves in [[ �S → Ti]].

—The decomposition of σ to σ ′ strictly reduces the length of sequences in σ as it removes
two moves.

—If σ ′ is definable as a term M : ( �S → Ti) → X, then σ is definable as the term:

λ f �S→com.λ�y �T .new �x �S.( f �x); M (λ�z �S.(x1 := z1); · · · ; (xk := zk); yi) y1 · · · yn.

PROPOSITION 7.17. For any canonical type T , every finite linear strategy σ : [[T ]] is
the denotation of a term of System Fref .

PROOF. By induction on the measure #T ( ). At the base case, the empty strategy at
type T is the denotation of the divergent term at T . If σ is nonempty then:

(1) If T has the form ( �S → X) → X then we may apply Lemmas 7.15 and 7.16 to
strictly reduce σ to a family of linear strategies on canonical types.

(2) If T has the form ( �S → X) → �R → X then repeated application of Lemma 7.14
reduces to Case 1.

(3) If T has the form ( �S → X) → �R → com, then the isomorphism com ∼= ∀X.(X → X)
reduces to Case 2.

(4) If T has the form ( �S → com) → R, then Lemma 7.13 reduces to Case 1, Case 2 or
Case 3.

(5) If T has the form �∀X.S → R, then repeated application of Lemma 7.12 reduces to
Case 1, Case 2, Case 3 or Case 4.

Note that definability of linear strategies on [[(T → X) → X]] implies definability of
arbitrary strategies on T .

We may now give a simple and direct characterization of contextual equivalence and
approximation in our model. For any strategy σ , let comp(σ ) be the set of complete
sequences in σ .

THEOREM 7.18 (FULL ABSTRACTION). For any (closed) terms M, N, M � N if and only
if comp([[M]]) ⊆ comp([[N]]).

PROOF. Assuming M, N are closed terms of closed type T , if M �� N, then there
exists C[ ] : com such that C[M] ⇓ and C[N] �⇓. Thus, there exists s ∈ [[M]] such that
qsa ∈ [[λxT .C[x]]] and s �∈ [[N]]. By well-bracketing s is an interleaving of complete
sequences, and thus comp([[M]]) �⊆ comp([[N]]).

Conversely, if comp([[M]]) �⊆ comp([[N]]), then there exists a complete sequence s ∈
[[M]] such that s �∈ [[N]] which we may extend to the finite linear strategy on [[T → com]]
consisting of even prefixes of qsa. This is definable as a term L : T → com such that
L M ⇓ and L N �⇓.
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8. CONCLUSIONS AND FURTHER DIRECTIONS

The major contribution of this article has been to lay the foundations for an intensional
semantics for polymorphism and genericity—that is, a model in which the meaning
of a polymorphic program is given formally by a blueprint for computing it at any
instantiating type, rather than a direct representation of the set of such instances.
This is closer to the way that programmers actually use and think about genericity.
We have shown that the structure required to represent generic programs (question
and answer labellings and relations) is both surprisingly simple, and closely related to
existing concepts in game semantics. Interestingly, it does not appear to be consistent
with only static binding of variables (innocence and visibility [Hyland and Ong 2000]).

Further work proceeding from these foundations includes:

—Computational Effects. Game models for a wide variety of languages with different
computational effects (and none), have been identified, by imposing different con-
straints on strategies. The extent to which these results extend to polymorphic types
is an open question—we have argued that there are no simple constraints on our
model yielding a fully complete model of System F itself, but many other possibilities
exist.

—Polymorphism for Call-by-Value. Our semantics extends readily to polymorphic com-
putation types in languages such as call-by-push-value [Levy 2004]. To describe poly-
morphic value types requires a different approach in which copycat links are cap-
tured by explicit pointers [Laird 2010b]. This leaves open the problem of finding an
approach which embraces both forms of polymorphism.

—Model Checking. Since our model is rather concrete (and, in particular, effectively
presentable) it may be possible to apply the methods of algorithmic game semantics
[Ghica and McCusker 2003] to decide questions of program equivalence for suitably
defined fragments of System Fref (which is very expressive even at simple types).

—Subtyping: A further goal is extension to a semantics of subtype polymorphism, as
in the extension of System F to F< [Cardelli et al. 1994], working towards a full
semantic account of object-oriented polymorphism and inheritance.
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Journal of the ACM, Vol. 60, No. 4, Article 29, Publication date: August 2013.



Game Semantics for a Polymorphic Programming Language 29:27

HUGHES, D. 1997. Games and definability for System F. In Proceedings of the 12th International Syposium
on Logic in Computer Science (LICS’97). IEEE Computer Society Press.

HYLAND, J. M. E. AND ONG, C.-H. L. 2000. On full abstraction for PCF: I, II and III. Inf. Computat. 163,
285–408.

LAIRD, J. 2002. A categorical semantics of higher-order store. In Proceedings of CTCS ’02. ENTCS. Elsevier.
LAIRD, J. 2010a. Game semantics for a polymorphic programming language. In Proceedings of LICS ’10. IEEE

Press.
LAIRD, J. 2010b. Game semantics of call-by-value polymorphism. In Proceedings of ICALP ’10. Lecture Notes

in Computer Science, vol. 6198, Springer-Verlag.
LEVY, P. B. 2004. Call-By-Push-Value. Semantic Structures in Computation. Kluwer.
LINCOLN, P. D., SCEDROV, A., AND SHANKAR, N. 1997. Decision problems for second order linear logic. In Pro-

ceedings of LISM ’97, M. D. Chiara, Ed., Kluwer.
LONGO, G., MILSTED, K., AND SOLOVIEV, S. 1993. The genericity theorem and parametricity in the polymorphic

λ-calculus. Theoreti. Comput. Sci. 121, 1&2, 323–349.
MALHERBE, O., SCOTT, P. J., AND SELINGER, P. 2012. Partially traced categories. J. Pure Appl. Alg. 216, 12,

2563–2585, DOI: 10.1016/j.jpaa.2012.03.026.
MCCUSKER, G. 1996. Games and full abstraction for a functional metalanguage with recursive types. Ph.D.

dissertation, Imperial College London. Published by Cambridge University Press.
MØGELBERG, R. E. AND SIMPSON, A. 2009. Relational parametricity for computational effects. Log. Meth. Com-

put. Sci. 5, 3.
PITTS, A. 1988. Polymorphism is set-theoretic constructively. In Proceedings of CTCS ’88, D. Pitt, Ed., Lecture

Notes in Computer Science, vol. 283, Springer.
REYNOLDS, J. C. 1974. Towards a theory of type structure. In Proceedings of the Programming Symposium,

Paris 1974. Lecture Notes in Computer Science, vol. 19, Springer.
REYNOLDS, J. C. 1983. Types, abstraction and parametric polymorphism. Inf. Proc. 83, 513–523.
SEELY, R. A. G. 1987. Categorical semantics for higher-order polymorphic lambda-calculus. J. Symb.

Logic 52, 4, 969–989.

Received August 2011; revised May 2012, November 2012, January 2013, and April 2013; accepted April 2013

Journal of the ACM, Vol. 60, No. 4, Article 29, Publication date: August 2013.


