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Abstract—We develop the theory of regular cost functions
over finite trees: a quantitative extension to the notion of
regular languages of trees: Cost functions map each input (tree)
to a value in w+ 1, and are considered modulo an equivalence
relation which forgets about specific values, but preserves
boundedness of functions on all subsets of the domain.

We introduce nondeterministic and alternating finite tree
cost automata for describing cost functions. We show that all
these forms of automata are effectively equivalent. We also
provide decision procedures for them. Finally, following Biichi’s
seminal idea, we use cost automata for providing decision
procedures for cost monadic logic, a quantitative extension of
monadic second order logic.
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I. INTRODUCTION

Since the seminal works of Kleene [1] and Rabin and
Scott [2], the theory of regular languages is one of the
cornerstones in computer science. The theory has then been
extended to infinite words [3], to finite trees [4], and to
infinite trees [5]. This latter result is of such importance
that it is sometimes called the ‘mother of all decidability
results’.

Recently, the notion of regular cost function of words
has been presented as a candidate for being a quantitative
extension to the notion of regular languages [6], while
retaining most of the fundamental properties of the original
theory such as the equivalence with logic and decidability'.
A cost function is an equivalence class of the functions
from the domain (e.g. words or trees) to w + 1, modulo
an equivalence relation ~ which allows some distortion, but
preserves the existence of bounds over each subset of the
domain. The model of cost functions is a strict extension to
the notion of languages. The objective of this paper is to
extend this theory to finite trees.

Related work

The models of distance automata and their generalisations
were introduced for solving difficult problems in language

IRegular cost functions differ from other quantitative extensions to
regular languages in the sense that they cannot be reduced to such other
extensions, and that at the same time they retain very strong closure and
decidability properties.
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theory. The most famous of them is the star-height problem,
which amounts to compute the nesting of Kleene stars
required in order to describe a regular language of finite
words by a rational expression. It was raised in 1963 by
Eggan [7], and solved 25 years later by Hashiguchi [8], [9],
[10], [11]. Hashiguchi used in his proof distance automata,
i.e., a model of finite automata used for describing functions:
a distance automaton is a finite state non-deterministic
automaton running over words that can count the number
of occurrences of some ‘special’ states, and hence attach
a value to each input. The proof of Hashiguchi is done
by reduction to the limitedness problem, i.e., the existence
of a bound over the function computed by an automaton
over its domain. The more recent and elegant proof of
Kirsten relies on the same argument, but uses a more general
class of automata [12]. Automata similar to the ones of
Kirsten have also been introduced independently in the
context of verification [13]. Further decision problems that
can be reduced to limitedness questions over words are: in
language theory the finite power property [14], [15] and the
finite substitution problem [16], [17], and in model theory
the boundedness problem of monadic formulas over words
[18]. The notion of distance automata and its relationship
with the tropical semiring has also been the source of
many investigations [8], [19], [20], [21], [22]. The automata
used above compute a minimum over all their runs over
the input of some function. In [23], a new dual form of
automata, computing a maximum over all runs of some
functions, was introduced. The paper [23] was not focused
on those automata by themselves, but at infinitary variants
that also used asymptotic considerations. This makes the
results difficult to compare (though all limitedness results
can be deduced from it). However, the principle of using a
dual form of automata plays a very important role in the
present work.

Finally, the theory of those automata over words has
been unified in [6], in which cost functions are introduced,
and suitable models of automata, algebra, and logic for
defining them are presented and shown to be equivalent, and
furthermore corresponding decidability results are provided.
The resulting theory is a neat extension of the standard
theory of regular languages. All the limitedness problems



from the literature appear as special instances of those
results, as well as all the central results known for regular
languages.

The present paper is about the extension of this theory
of regular cost functions to finite trees. There are different
motivations for such an extension. First of all, some results
have already been obtained for trees. In [24], the star-height
problem over trees has been solved by a reduction to the
limitedness problem of nested distance desert automata over
trees. Though the general approach of the reduction is the
same, it requires the introduction of new concepts (such that
games) and new results. One such result is the decidability
of the limitedness problem for (an extension of) alternating
distance tree automata.

Another similar problem is the Mostowski hierarchy prob-
lem. The Mostowski hierarchy is the hierarchy induced
by the alternation of greatest and least fixpoints in the
definition of languages of infinite trees. It corresponds to
the number of distinct priorities required for describing the
language by means of a parity tree automaton. In [25],
it is shown that the problem of deciding the level of a
language inside the Mostowski hierarchy can be reduced to
the limitedness problem for a form of automata combining
distance automata with parity tree automata. The decidability
of the later problem is open. One motivation of the present
work is to gain a better understanding of cost functions over
trees by providing a solid basis for the case of finite trees.

Beside these points, the theory of regular cost functions
being an approach to extend the notion of regular languages
with counting capabilities, we can expect that more appli-
cations are to come, in particular in the field of verification.
This calls for the development of the theory in the word case
as well as in the tree case.

Contributions

The present paper is the natural continuation of [6]. The
objective in [6] was to raise the standard theory of regular
languages of (finite) words to the level of cost functions.
This paper aims at the same goal, but for (finite) trees.

We define in this paper two dual forms of alternating
finite tree automata, namely B- and S-automata (B-automata
were already used in [24]). We show that these models are
equivalent and are also equivalent to their non-deterministic
variant (simulation and duality theorem). We also provide
closure and decidability results for those automata.

Establishing the duality/simulation theorem is very similar
to establishing the complementation [5], [26] or simulation
[27] results for automata over infinite trees. Our proofs
follow similar techniques, hence, we use games together
with a fine analysis of the shape of strategies in our proofs.
We also use new notions such as history-determinism, that
have no counterpart in the classical theory.

The remainder of the paper is organised as follows. Cost
functions are presented in Section II. Cost automata over

words are introduced in Section III. Games are presented in
Section IV. All results are combined in Section V, where we
study cost tree automata. Finally, all the theory is used in
Section VI for presenting cost monadic logic, an extension
of monadic logic equivalent to cost tree automata.

II. COST FUNCTIONS

We are interested in representing functions f over some
set F assigning to each element of F a cost in w + 1, i.e.,
each z € I is mapped to a natural number or to the first
infinite ordinal w. When using such functions for modelling
boundedness problems, the specific value of the function is
not of importance. Instead, we are interested in the behaviour
of such functions on subsets of the domain, namely on which
subsets of the domain the functions are bounded. Using this
abstract view we can compare functions: A function f :
FE — w + 1 is below some other function g : £ — w + 1,
written as f < g, if on each set X C E on which g is
bounded, f is also bounded. This defines a pre-order on
functions from E to w + 1. The corresponding equivalence
is denoted by =, i.e., f ~ g if f and g are bounded on the
same subsets of their domain. The equivalence classes for ~
are called cost-functions (over E).

An alternative definition uses standard comparison of
functions modulo a “stretching factor” «. Here o : w — w
is a non-decreasing mapping that we extend to w + 1
by a(w) = w. For such o we define:

f=ag iff f<aog.
It is easy to verify that f < g iff f <, g for some a. We also
compare single values using <, with the semantics n <, m
if n < a(m). Throughout the paper, «, o’ etc. denote such
stretching factors, also called correction functions.

Cost functions over a set I can be seen as a refinement of
the subsets of the base set I. Indeed, given some subset A C
E, one defines its characteristic function x4 which maps
elements in A to 0, and other elements to w. We then have
for all A,B C E, A C B iff xg < xa. Consequently,
all the information concerning a set is preserved in the cost
function of its characteristic function: sets can be seen as
particular cases of cost functions. Note also that xy anp =
max(x4,xs) and xaup = min(xa, xB).

III. COST AUTOMATA OVER WORDS

We need a special notion of words in this work introduced
in Section III-A. In Section III-B we introduce objectives,
which are the counterpart of accepting conditions in the
theory of automata over infinite objects. Word automata are
presented in Section III-C and their history-deterministic
variant in Section III-D.



A. Words

It is necessary in our framework to have special symbols
that identify the end of words. For this reason, a word
alphabet A = {Aq, Ao) consists of two disjoint sets of letters.
The letters in A, are called final letters, as opposed to non-
final letters in Ay. A word over A is a sequence in Aj Ay, i.e.,
consisting of a sequence of non-final letters, and terminating
with a final letter. In order to avoid confusion, an element
in A} will be called a sequence of non-final letters. For
coding words in the usual sense, we append the final letter [
to their end.

B. Objectives and basic objectives

An objective is a triple (C, f, goal) in which:

o C is a word alphabet of actions, letters in Cy are called

final actions,

o the value mapping f maps CiCq to w + 1,

e goal € {min, max} is the goal.

Intuitively, an objective in the context of a game is assigned
to a player, and tells which function to optimise (f), over
which domain (C;Cy), and whether the player’s aim is
to minimise or maximise this value (goal). The dual O
of an objective O is obtained by changing the goal, i.e.,
exchanging min for max, or max for min. In a game, this
represents the goal of the opponent. This notion of objective
will be used for games as well as for automata.

We use some basic objectives, that can be seen as
the counterpart to basic acceptance conditions, like Biichi,
Muller, Streett, Rabin, or parity, in the theory of automata
over infinite objects (cf. [28]). The general mechanism for
defining our basic objectives is to use a counter that can
be incremented by one (i), reset to zero (r) or checked
(¢). Elements in {i,r,c} are called atomic actions. We read
a sequence of atomic actions over the counter from left
to right, and the counter, starting with value 0, evolves
according to the actions (the action ¢ does not change the
value of the counter). From such a sequence u, one computes
the set C'(u) C w which collects all the values of the counter
when checked (i.e., when the action C is encountered). For
example C!(iriiicicri) = {3, 4} because the counter values at
the two occurrences of € are 3 and 4, respectively.

This base mechanism is instantiated in different ways
depending on the situation. In particular, one uses several
counters and non-atomic actions (such as ic or cr). Hence,
consider a finite set of counters I', and a set of actions
C1 C {i,r,c}* (those can be non-atomic). For each sequence
u over the alphabet C}, we define C(u) as U, er C(uy), in
which w., € {i,r,c}* is obtained by projecting u to its -
component. In other words, each action in C! tells for each
counter what sequence of actions has to be performed, and
all the values collected by all counters along a sequence of
actions u are gathered into the unique set C(u).

The B-objective (over counters I') is C’ostg =
(({e,ic,r}1,{[0], [w]}), costly, min) in which for all u €

({e;ic, r}")* and [2] € {[0], [w]},
costS (u[z]) = sup (C(u) U {z}) .

This corresponds to the definition of B-automata as in [6],
except for the final letter in {[0], [w]}. This difference comes
from the fact that we use here this last letter for coding
accepting and rejecting states of an automaton: The letter [0]
should be understood as representing an accepting state,
while the letter [w] corresponds to a non-accepting state
because it cancels all the computation before by making the
value of costl;(u[w]) equal to w. The examples are given
in the context of one counter. The corresponding goal is
written Costjlg, the value mapping being cost’. In this case,
we simplify all the notations and use the alphabet {z,ic, r}
without explicit reference to the counter.

The S-objective (over counters I') is C’ostg =
({{e,i,r,cr}t, {{0], [w]}), costl, max) in which for all u €
({e,i,r,er})* and [z] € {[0], [w]},

costs(ulr]) = inf (C(u) U {x}) .

The same comment applies to the final letters. This time, [0]
should be understood as rejecting, and the final letter [w] as
accepting.

For technical reasons we also define a hierarchical version
of the B-objective, the hB-objective. In this case, the set of
counters I is totally ordered, and one sets Hr C {e,ic,r}"
to be the set of counter actions such that whenever a counter
is touched, all smaller counters are reset, i.e., ¢ € Hr if for
all v/ < v, ¢(y) # ¢ implies ¢(y') = r. We set Cost}
to be ((Hr,{[0],[w]}), costl;, min). The hB-objective has
particularly good properties when used in the context of
games, as shown by Theorem 8 below. One can see it in
analogy to the parity condition in the theory of games of
infinite duration and automata on infinite objects (see [28]),
which also has good properties because of its hierarchical
nature.

C. Cost-automata over words

A (non-deterministic word) cost-automaton A =
(Q,A,I,0,A1,F) consists of a finite set of states @, a
word alphabet A, a set of initial states I, an objective
O = (C, f, goal), a set of non-final transitions A; C Q X
A1 xCy xQ, and a final transition mapping F' : Qx Ay — Cy.
The set Ay of final transitions is {(q,b, F(q,b)) : ¢ €
Q, b € Ao}. It is convenient to see A as a word alphabet
consisting of A; and Ag. For short, we call B-automata
(resp. S-automata, hB-automata) the cost automata using B-
objectives (resp. S-objectives, hB-objectives).

We assume that our automata are complete in the sense
that for all states ¢ and all letters a € A;, there exists
a transition of the form (g,a,c,r) in Ap. In the case of
B-objective and S-objective, completeness can be obtained
simply by adding a trap state from which every non-final
transition is possible and is a loop, and only rejecting final



transitions are possible (this construction is consistent with
the definition of the semantics which follows).

A run p of the automaton is a word
(g0,a1,¢1,q1) - - (Gn=1, n, Cny Gn)(Gn, b,d)  over  the
alphabet A such that gq is initial. The corresponding input
word In(p) is a1 ...a,b. One also says that p is a run
over aj . ..anb. The output word Out(p) is ¢ ...cpd. The
value f(p) of arun pis f(Out(p)). The value of a word u
over A depends on the goal and is denoted by [.A]:

e if goal = min, then [A](u) is the infimum? of f(p)
for all runs p over w,

o if goal = max, then [A](w) is the supremum of f(p)
for all runs p over u.

One also says that the function [A] is accepted by A. A
cost function f is accepted by A if [A] € f.

Example 1. The following one counter B-automaton accepts
the function minseg, which associates to each word over the
alphabet {a,b} the minimal length of a maximal segment
of consecutive occurrences of a. States are represented by
circles, and each transition (p, a, ¢, q¢) by an edge from p to
q labelled by a : c. Multiple transitions that differ only by
the input letter, e.g., (p, a, ¢, q), (p, b, ¢, q) are represented by
a single edge labelled a,b : c. Initial states are marked by
ingoing arrows.

Our automata do not have accepting states, but a final
function F. In our case, it maps O to [0] for the states
marked by an outgoing edge, and to [w] otherwise. Given an
input word, one constructs the optimal run as follows: the
automaton guesses non-deterministically the beginning of
the shortest a-segment, and jumps to state g at this moment
(it can be at the beginning of the word). It then proceeds by
counting the length of this interval, until it reaches the end
of the word, or a letter b, in which case it goes to the trap
state 7.

D. History-determinism

In general, the automata we consider cannot be made
deterministic, even modulo =~. For instance, the above Ex-
ample 1 requires to guess the interval of minimal length,
and this is ‘unavoidable’. In replacement of determinism, we
use the notion of history-determinism which is a semantic
driven weakening of the standard (syntactic) definition of
determinism. The use of these automata becomes clear in the

2We use infimum and supremum and not min and max for handling the
case when there are no runs, using inf ) = w and sup® = 0.

context of games (in Lemma 7) for transforming objectives,
which usually requires deterministic automata.

Let us fix a cost automaton A = (Q,A, I, O,AF). A
translation strategy® for A is a mapping § which maps A} x
Ay to A; and A} x Ag to Ag. This mapping tells how to
deterministically construct a run of A over a word. It is
transformed into a mapping & from A7 to A7 and from ATAg
to ATAg by 6(¢) = &, and §(va) = 6(v)d(v, a) for all v €
A% and a € A. Given a word u over A, if 6(u) is a valid
run of A over u, it is called the run driven by § over u. In
the following, we assume that §(u) is a valid run for every
word wu.

An automaton is called history-deterministic if there exists
« and a family of translation strategies (J,,)ne. such that
for all words wu,

o if goal = min and [A](u) < n, f(6,(u)) < a(n),

e if goal = max and [A](u) > a(n), f(0,(u)) > n.
In other words, when restricting the possible behaviours
of the automaton to the ones given by the translation
strategies J,,, then the automaton still computes a function
~R2q-equivalent to its normal semantics. One says that the
automaton is «-history-deterministic when one wants to
make the correction function « explicit.

Example 2. The following automaton is an example of
a history-deterministic B-automaton accepting the func-
tion minseg from Example 1:

We use the same convention as in the previous example
concerning accepting states. Let us assume that there is a
run of value at most n over the word u. This means that the
counter value never exceeds n. Thus the automaton was in
state ¢ with counter value 0 after some b or at the beginning
of the word, then read at most n consecutive occurrences
of letter a, followed by either the end of the word [J or
letter b allowing it to jump to state 7. This witnesses that
minseg(u) < n.

Conversely, assume that minseg(u) < n. We describe
the translation strategy J,, as a deterministic process for
constructing the accepting run reaching r of value at most n.
The sole cause of non-determinism in this automaton occurs
when in state ¢, while reading letter a. The automaton can
choose either to go to state p, and skip the remaining of
the a-segment (call this choice ’skip’), or to stay in state q
and increment and check the counter (choice ’continue’).

3The name comes from a more general presentation of the notion, in
which the notion of a translation strategy can be unified with the standard
notion of strategy in games.



There is no freedom in the definition of the translation
strategy d,,, but in this case. The translation strategy resolves
this non-determinism by choosing the option ’continue’ as
long as possible, i.e., as long as the value of the counter
is less than n, and by choosing to ’skip’ only when it is
unavoidable, i.e., when the counter has value n. It is clear
that following this translation strategy, the counter will never
exceed value n. It is also easy to see that following this
translation strategy, a run will terminate in state ¢ or r iff it
contains an a-segment of length at most n.

Theorem 3 states the equivalence of all forms of automata.

Theorem 3 (duality, Theorem 1 in [6]). It is equivalent
for a cost function to be accepted by a B-automaton, an S-
automaton or an hB-automaton, as well as by their history-
deterministic variants.

We call such cost functions regular. The proof of Theo-
rem 3 relies on algebraic techniques and the transformations
have a very high complexity. For simpler cases it is possible
to provide direct constructions with better complexity, stated
in the following lemmas.

Lemma 4. The function costy (resp. costy) is ac-
cepted by an id-history-deterministic B-automaton (resp. S-
automaton) of size 2Vl + 1 (with id the identity function).

The constructions use similar ideas as in Example 2.

Lemma 5. The cost function costl, is accepted by a
deterministic hB-automaton of size |T|\.

The construction of the hB-automaton uses the idea of
the latest appearance record construction known from the
translation between acceptance conditions for w-automata
(see for instance [28]).

IV. COST GAMES

As it is the case in the theory of automata over infinite
trees, games play a special role in this work. Games are
used below both as the framework in which we define the
semantics of cost tree automata, and as a theory giving
us precious arguments in the proof of equivalences of the
various models.

The definition of games is presented in Section IV-A.
We show in Section IV-B how games can be composed
with history-deterministic automata, and in Section IV-C we
present results concerning the shape of winning strategies.

A. Definition

From now, B1(X) represents the set of positive Boolean
combinations of elements in X. Given some ¢ € BT (X)
and some function h from X to BT(Y), ¢z « h(z)]
represents the formula ¢ in which h(x) has been substituted
for each occurrence of = for x € X. One also denotes by
the dual of ¢, i.e., ¢ in which disjunctions and conjunctions

have been exchanged. Given ¢, ¢’ € BT (X), ¢ = ¢’ holds
when ¢’ is a consequence of ¢ for the usual meaning.

A cost game is a game involving two players, Adam and
Eva, the result of which is a value in w + 1. The standard
definitions are adapted to the present context. A cost game
G = (V, vy, 6, O) consists of the following components:

o V is the set of positions.

e vy € V is the initial position.

e O =(C,f,goal) is a basic objective (for Eva).

e §:V — B*Y(Cy x V)UCy is the control function. The
non-final moves in the game are the triples (v,c,v’) €
V x €1 x V such that some (c,v") appears in d(v).
M is the set of non-final moves. The final moves are
the pairs (v,¢) € V x Cq such that §(v) = ¢. My is
the set of final moves. One requires that every position
either has a successor in M, or is final. One finally
assumes that the game is of finite duration, i.e., that
the graph (V, M7) does not contain any infinite path
(and in particular no cycles).

The dual G of a game G is obtained by dualizing the
objective and the control relation. Dualization amounts to
exchanging the roles of the two players. In particular, all
definitions below are given for Eva, but their counterparts
for Adam are obtained by dualization of the game.

As for the transitions of automata, we see M, and M;
as a word alphabet. A play m is a word of the
form (UQ,al,’Ul)(’Ul,ag,Ug)...(Un7CLn) € MikMO (1n
which vy is indeed the initial position). The output of the
play 7 is Out(m) = ay ...a,. The cost f(m) is f(Out(m)).
A strict prefix of a play is called a partial play. Its output
is defined accordingly. A strategy for Eva og is a set of
plays such that for every partial play 7 € M; ending in a
position v,

N{m e M(v) 5(v) |

in which M (v) is the set of moves of origin v, pref(og) =
{u : w € og, v € M{Mp}, and A\ S denotes the
conjunction over all elements from the set S.

When goal = min, Eva aims at minimising over all
strategies the maximum value of all plays compatible with
the strategy. In other words, the value wvalue(og) of a
strategy for Eva o (with respect to objective O) is defined
as the supremum of f(m) for m € og, and the value of a
game is the infimum of value(og) for o ranging over the
strategies for Eva. Dually, when goal = max, value(og) is
defined as the infimum of f() for 7 € og, and the value of
a game is the supremum of value(og) for o ranging over
the strategies for Eva.

It is well known that games of finite duration are deter-
mined, i.e., that the best value that can be obtained by one
player is the same as the best value which can be obtained by
its opponent. In our case, this is formalised by the following
proposition.

. mm € pref(og)} =



Proposition 6. For all cost games, value(G) = value(G) .

The two following sections give some key arguments for
working with games.

B. History-deterministic reduction

We now show how we can compose word automata with
games. The goal is to transform a game into an “equivalent”
one with a different objective (as it is known from the theory
of infinite games, e.g., the transformation of Muller into
parity games by the latest appearance record construction, cf.
[28]). For this purpose we take the product of a game with
the automaton. The game outputs a word, this word is read
by the automaton, which in turn yields a new word. The
non-determinism of the automaton is controlled by player
Eva, meaning that Eva chooses a run of the automaton
along the play. Hence, given a game G = (V, 4, (A, f, goal)),
and a cost automaton A = (Q, A, I, (C, g, goal), A, F'), one
defines the product A x G = (Q x V,¢,(C, g, goal)) in
which one sets 0’((g,v)) to be

d(v) [(a,v’) — \/{(c, (¢,v") : (g,a,¢,q) € A}

if v is non-final, and F'(6(v)) otherwise.

This construction is standard. However, it is also well
known that it fails to have the correct semantics in general:
it is not true that, when A accepts the function f, the
game A X G has the same value as G. It is classical that
this property holds either if the automaton is deterministic,
or if Adam is never allowed to play in the game (in our
case if all Boolean formulas are disjunctions). However, the
following lemma shows that when composing with history-
deterministic automata, good properties are recovered.

Lemma 7. Let A be an a-history-deterministic cost automa-
ton over alphabet A and G = (V, 0, (A, [A], goal)) be a cost
game, then value(G) ~, value(A x G).

Proof: Let A = (Q,A,1,(C,g,goal), A, F). Let us
treat the case goal = min. We claim that value(G) <
value(Ax G) (this part does not use the history-determinism
of the automaton). For this, consider a strategy for Eva o in
the game A x G. We would like to project this strategy into
a strategy o in the original game G. For this, for each non-
final move m = ((q,v), ¢, (¢’,v")) in the game A X G one
associates a move m = (v, a,v’) in G such that (¢, a,c,q’) €
A, and to each final move m = ((q,v), c), one associates
a final move m = (v,a) in G such that F(q,a) = ¢
(in both cases 7 exists by definition of A x G). One
then constructs o from o by applying this transformation
to each move occurring in the strategy. One can check
that o is a strategy for Eva in G. Furthermore, it is
straightforward that value(cg) > value(ogr) because the
plays in o are combined with a run of A4, and the cost
of plays in og is the minimal value of a run of .A. Hence

value(G) < value(A x G).

Conversely, let or be a strategy for Eva in the game G
such that [A](cg) = n. Let 4, be the translation strategy
for A. Let 7 = (vg,a1,v1)...(vg,ar) be a play in og.
Let (po,a1,c1,p1) ... (Pk,ak,cx) be the run driven by 4,
over the word a; ...ax = Out(w), i.e., §,(Out(r)). Define
7 to be ((po,vo0),c1,(P1,v1))-..((pk,vk), k), which is
a play in the game A x G. By assumption of history-
determinism, one knows that g(7) < a([A](7)) < a(n).
Finally set oy = {7 m € og}. It is not difficult to
check that og is a strategy for Eva in the game A x G.
Furthermore, by the above remark, g(og) < «(n). Hence,
overall, we have established value(A X G) <o value(G).

One uses the same argument when goal = max, replacing
< by > and < by »=. |

What is really interesting in this statement is that it is
possible that every winning strategy for Eva in the game G
may require an unbounded quantity of memory (this is the
case for S-games in general), while at the same time it is
possible to win the game A x G with a bounded quantity
of memory (this is the case for B-games). In this respect,
this result differs a lot from the standard composition with
deterministic automata used in the literature.

C. On the shape of strategies

Given a strategy for Eva op in some game G, and
some u € pref(og), utop denotes the set {v : uv € o}
The strategy og is called positional if for all u,v € og
ending in the same position, v 'og = v log. Given
a stretching function «, a game G is a-positional, if
there exists a positional strategy for Eva og in G such
that value(og) o wvalue(G). In other words, by play-
ing positionally, Eva commits an error which is bounded
by a. The following result has been established in [24] for
Costg p-objectives and the argument can easily be adapted

for Cost), 5-objectives.

Theorem 8. For all finite hierarchical sets of counters T,

the C’ost}:B- and CostZB-games of finite duration are -
positional, in which o(n) = nlTl.

Note finally an asymmetry here: this result does only hold
for the hierarchical B-condition. Using Lemma 5 one can
also show that strategies with finite memory are sufficient
in B-games (where the size of the memory depends on the
number of counters), whereas winning strategies in S-games
may require an unbounded quantity of memory in general.

V. COST TREE AUTOMATA
We introduce here our models of cost automata over trees,
and study their properties.
A. Trees

A ranked alphabet A is a finite set of letters, each of them
having a rank in w. For r € w, A, is the set of letters in A
of rank . Remark that this notation is compatible with the



notion of word alphabet, which is equivalent to a ranked
alphabet that uses only ranks 0 and 1. The set 7, of trees
over the ranked alphabet A is the least set containing Ay, and
such that if ¢q,...,t,. are trees, and a € A, a(ty,...,t,)
is a tree. A position in a tree is a sequence in w* such
that € is a position in every tree, and ix is a position in
a tree a(t1,...,t.) iff 1 < ¢ < r and x is a position
in ¢;. Given a position z in a tree t = a(ty,...,t.), t(z)
denotes the letter at position z, i.e., a when x = ¢, and t;(y)
when x = iy. A position x with ¢(z) of rank 0 is called a
leaf. The set of all positions of ¢ is denoted by pos(t).

B. Cost alternating tree automata

A cost alternating tree automaton A = (Q, A, ¢, O, 6)
consists of a finite set of states (), a ranked al-
phabet A, an initial state q;; € (), an objec-
tive O = (C,f,goal) and a transition function § €
[UQXAiHB+([1,i}X01XQ):| U [Q X Ay — Cql,

>0
where [1,4] denotes the set {1,...,i}. The semantics of

cost alternating automata is defined in terms of games.
Given a tree t over A, one defines the game A x t =
(Qx pos(t), (¢in, €), 8", O) by setting &' (p, ) = d(p, (x)))
for t(x) € Ag, and

' ((p, ) = 6(p, t(x)) [(n, ¢, q) — (e, (g, 2n))]

otherwise. One defines [A](t) to be value(A X t).

A cost (non-deterministic) tree automaton is a cost alter-
nating tree automaton A = (Q, A, ¢in, O, 6) such that there
exists A C U;j»0Q x A; X (C1 x Q)? such that for all states ¢
and all ¢ € A; with 7 > 0,

5(Qaa) = \/ /\ (nvcn7Qn) :

(g,a,(c1,91),.--,(ci,q:))EA  n€E[l,]

An equivalent definition of [.A] that is used in the ex-
ample below can be given when A is non-deterministic,
say defined by the transition relation A. A run over t
is a pair ¢ = (r,c¢) consisting of the mapping r
from pos(t) to @ and the mapping ¢ from pos(t) \ {e}
to C, and such that for all non-leaves x € pos(t),
(r(z),t(x), (c(xl),r(xl)),..., (c(zr),r(r)) € A, r(e) =
qo, and for all leaf = € pos(t), c(x) = o(r(z),t(x)).
Given a branch o < 1 < --- < Tj, l.e., a maximal
sequence of positions ordered by prefix, its cost for o
is f(c(z1)...c(xx)). The cost of a run o is the supremum
if goal = min (otherwise the infimum) of f(7) when 7
ranges over all branches of the tree. The value [A](¢) is
the infimum (resp. the maximum if goal = max) over the
values of all runs over {.

Example 9. Consider the alphabet A consisting of Ag =
{a,b} and Ay = {f} (all other A;’s are empty). One aims at
counting the number of occurrences of leaves labelled by a
using a non-deterministic B-automaton. Our automaton uses

two states p and ¢, and the following set of transitions (the
* is for later reference to the transition):

(p, f,(e,p), (¢,p)) d(p,a) =[]
A=) (@] (59, (p) d(p,b) =10]
(¢, f,(e,p), (£,9)) §(q,a) =[0]
(g, f,(ic,q), (ic,q))  * 6(q,0) = [w]

We assume that both states are initial (formally this is not
covered by our definition, but can be simulated in an easy
way by introducing a new initial state).

This automaton is simpler to read as a bottom-up de-
terministic one. The objective of Eva is to minimise the
maximum value over all branches. As a consequence, the
state p must necessarily be used for every b-labelled leaf, and
the state ¢ over every a-labelled leaf (otherwise the costh
value of the corresponding branch is immediately w). Then,
the transitions force the state p to be used if and only if the
subtree rooted in the corresponding position does not contain
any a-labelled leaf. Conversely, ¢ is used iff there exist an
a-labelled leaf below. Now, the cost of a branch of the run
is exactly the number of occurrences of the transition x.
This transition is used iff state ¢ is assumed by the run
at both children. In other words, the value S(¢) computed
by the automaton over a tree t is the maximal number of
separating positions in a branch, where a separating position
is a position below which both subtrees contain an a. It is
easy to check that S(t) < |t[, < 25" where |t|, is the
number of occurrences of a-leaves.

Lemma 10. The classes of functions computed by alter-
nating B-automata, alternating S-automata, and alternating
hB-automata are effectively equivalent.

Proof: From alternating S-automata to alternating B-
automata: Consider an S-automaton A over counters I'. By
Lemma 4, let S be an id-history-deterministic B-automaton
which accepts costg. One then easily constructs by dualiz-
ing A and product with &, an automaton B such that for all
trees ¢, B x ¢t is a game isomorphic to S x (A x t). We then
directly get that for all trees ¢, [B](t) = value(B x t) =
value(S x (A X t)) W value(A x t) @ value(A x t) =
[A](t), where (1) is by Lemma 7 for o = id, and (2) is
by Proposition 6. The same composition principle allows
similarly to go from B-automata to S-automata and from
B-automata to hB-automata (using Lemma 5). [ ]

The non-deterministic automata have different ‘natural’
closure properties. In particular, one uses the operations
of inf-projection and sup-projection. Given two ranked
alphabets A and B, a translation from A to B is a map-
ping h from A, to B,, for each n. It is naturally extended
into a mapping h from 7, to Tg by h(a(ti,...,t;)) =
h(a)(h(t1),...,h(t,)). Given a mapping f from 7, to w+1,
the (inf, h)-projection of f is the mapping finsp from 7g



to w + 1 defined by:
furan(®) = inf {£() « B() =t} (= inf F(R7 (1)
The (sup, h)-projection of f is defined similarly by:
Fropa(®) = sup { F(t) + h(t) =t} (= sup (')

Lemma 11. B-automata are closed under min, max and
inf-projection, hB-automata are closed under min and inf-
projection, and S-automata are closed under min, max and
sup-projection.

C. Simulation and duality result

We are now able to state and prove the main result of the
paper. It shows the simulation result, i.e., that alternating au-
tomata can be transformed into equivalent non-deterministic
automata, as well as the duality result, which states that non-
deterministic B-automata and non-deterministic S-automata
are equivalent. The proof method is inspired from modern
presentations (see e.g., [28]) of similar results for automata
on infinite trees: the simulation theorem of Muller and
Schupp [27] and Rabin’s complementation lemma [5].

Theorem 12 (simulation and duality). It is effectively equiv-
alent for a cost function to be accepted by a tree B-
automaton, S-automaton, or hB-automaton, as well as their
alternating versions.

Proof sketch: According to Lemma 10, alternating
tree S-, B-, and hB-automata are effectively equivalent.
Furthermore, hB-automata are B-automata over a restricted
output alphabet. Therefore it is sufficient for us to show how
to transform an alternating tree hB-automaton into (1) a non-
deterministic tree hB-automaton and (2) a non-deterministic
tree S-automaton. We sketch the proof of (1), the proof of
(2) uses the same technique.

Consider an alternating tree hB-automaton A =
(Q, A, gin, Costpp,d). Given a tree t, the value [A](t) is
defined as the infimum over the values of all strategies o
for Eva in A X t. According to Theorem 8 it is sufficient
to consider positional strategies. Now note that we can code
such a positional strategy by annotating ¢ at each inner node
x with all the tuples (p,c, ¢,n) such that (¢, (q,zn)) is a
possible move from (p,z) according to og, and similarly
the leaf nodes with tuples (p, ¢) for the possible og-moves
from (p, z). Denote this annotated tree by ¢,,. We construct
a tree hB-automaton B such that [B](¢,,) ~q value(og) for
some correction function ««. We obtain the desired automaton
by applying an inf-projection to B defined by the mapping
that removes the strategy annotations.

The construction of B works as follows: Consider some
path 7 through ¢, and define its cost to be the supremum
over the costs of all og-plays that stay on this path. This
defines a cost function over words. It is not very difficult
to see that this cost function is regular and therefore there

exists a history-deterministic hB-automaton D computing it
(according to Theorem 3). The automaton 5 is constructed
by simulating D over all branches of the tree (in each
direction B takes a transition that D could have taken when
reading the corresponding path coded as a word). Since
D is history-deterministic, we obtain that [B](¢,) is the
supremum over the costs of the paths through 7 computed
by D (formally we apply Lemma 7). This corresponds to
the value of o, as desired. |

D. Decidability

In the spirit of algorithms for automata on infinite trees
([28]), we can use games to decide <.

Theorem 13. The relation < is decidable over regular cost
functions of finite trees.

In particular, the uniform universality problem (whether
the function is bounded on the whole domain) is decidable,
since it amounts to test whether f < 0. This result was
already known from [24] for alternating tree hB-automata.

VI. COST MONADIC LOGIC

In this section, we briefly state/recall the consequences
of our results in logical terms. Let us recall that monadic
second-order logic (monadic logic for short) is the extension
of first-order logic with the ability to quantify over sets (i.e.,
monadic relations). Formally monadic formulae use firsz-
order variables (x,y, . . . , ranging over elements of the struc-
ture), and monadic variables (X,Y, ... ranging over sets of
elements), existential and universal quantification over both
first-order and monadic variables, boolean connectives, the
membership predicate (x € X), as well as all the predicates
in the relational structure.

In cost monadic logic, one uses a single extra variable [N
of a new kind, called the bound variable, which ranges over
non-negative integers. Cost monadic logic is obtained from
monadic logic by allowing the extra predicate | X| < N —
in which X is some monadic variable and N is the bound
variable — iff it appears positively in the formula (i.e., under
the scope of an even number of negations). The semantics
of | X| < N is, as one may expect, to be satisfied if (the
valuation of) X has cardinality at most (the valuation of) N.
If we push negations to the leaves, one obtains the following
syntax:

pu=3x.¢ | Ve | IX$ | VX
| oVe | oNd | 2€X | z¢€X
| R(xla“'vxr) ‘ _'R(:Cla”-axr) ‘ |X| <N

in which z,x1,...,x, are first-order variables, X is a
monadic variable, and R is some predicate symbol of arity .

Given a sentence ¢ of cost monadic logic (i.e., with
N as sole free variable), let us write S,n = ¢ when
the formula ¢ holds over the relational structure S when



the bound variable N takes value n. From the positivity
requirement on the occurrences of the predicates | X| < N,
it is clear that S,n |= ¢ implies S, m = ¢ for all m > n.
We use sentences of cost monadic logic for defining values
over structures as follows. Given a cost monadic sentence ¢
and a relational structure S, one defines [¢](S) € w + 1 as
follows:

[6](S) = inf{n : S,n|=¢}.

Example 14. When representing a digraph as a structure,
the elements are the vertices of the digraph, and the predicate
edge(z,y) expresses the existence of an edge of source z
and target y. The monadic formula reach(z,y, X):

reach(z,y, X) ==VZ.
(x € ZAVz € ZNZ € X. edge(z,2') — 2/ € Z)
— yez

describes the existence of a path in a (directed) graph from
vertex x to vertex y such that all vertices appearing in the
path, but the first one, belong to X. Indeed, it expresses
that every set Z containing x and closed under taking edges
ending in X, also contains y. Consider now the following
cost monadic sentence:

diameter ::= Vx,y.3X.|X| < N Areach(zx,y, X).

It defines the diameter of a graph: the diameter of a graph
is the least n such that for all pair of states x, y, there exists
a set of size at most IV allowing to reach y from z. Remark
that the formula produces value w if the graph is not strongly
connected.

We are interested in using cost monadic logic for defining
values over finite trees. In the case of trees over a ranked
alphabet A, the elements of the structure are the positions in
the tree, and there is a predicate a of arity r + 1 for each
letter a of rank r. The statement a(z, x1, ...z, ) holds if the
letter at position z is a, and its children are, from left to
right, x1,...,%,.

Over (finite or infinite) words as well as (finite or in-
finite) trees, the expressiveness of monadic logic coincide
with standard forms of automata [29], [3], [4], [5]. Those
fundamental results are all established in the same way (cf.
[28]). In our case, we obtain the following result.

Theorem 15. A cost function over finite trees is regular if
and only if it is definable in cost monadic logic.

Proof: From logic to automata. As in the case of
monadic logic, one shows that to each connector of the logic
corresponds an operation under which regular cost functions
are closed. For instance, consider a cost monadic formula
¢V 1, then one easily shows that [¢ V ] = min([¢], [¢]).
It follows that disjunction corresponds to the min operation
over cost functions. Pushing further this relationship, one
gets that conjunction corresponds to the max operation,

monadic existential quantification (and also first-order exis-
tential quantification as a particular case) corresponds to inf-
projection, and universal quantification corresponds to sup-
projection. Concerning the constants, the only novelty com-
pared to standard monadic logic is the predicate |X| < N.
However, by definition, [[|X| < N] evaluates to the cardinal
of X. The corresponding cost function || associates to each
A-tree the number of positions labelled by letters in B C A.
This cost function is regular, using a slight extension of

Example 9.
From automata to logic. One writes a formula guessing a
run and computing its value, as usual. [ ]

Corollary 16. The relation =< is decidable over cost
monadic definable functions over finite trees.

VII. CONCLUSION

In this paper we have extended the theory of regular cost
functions to the case of finite trees, showing all equiva-
lence, closure and decidability results we could expect. The
techniques involved are game-theoretic (in a way similar
to the theory of languages of infinite trees), and require
the use of new notions such as history-determinism. A
challenging continuation would be the extension of those
results to infinite trees. This would imply the decidability of
the Mostowski hierarchy by [25].
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