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Abstract—Every finitary monad T on the category of sets is
described by an algebraic theory whose n-ary operations are
the elements of the free algebra Tn generated by n letters.
This canonical presentation of the monad (called its Lawvere
theory) offers a precious guideline in the search for an intuitive
presentation of the monad by generators and relations. Hence,
much work has been devoted to extend this correspondence
between monads and theories to situations of semantic interest,
like enriched categories and countable monads. In this paper,
we clarify the conceptual nature of these extended Lawvere
theories by investigating the change-of-base mechanisms which
underlie them. Our starting point is the Segal condition recently
established by Weber for a general notion of monad with
arities. Our first step is to establish the Segal condition a
second time, by reducing it to the Linton condition which
characterizes the algebras of a monad as particular presheaves
over the category of free algebras. This reduction is achieved
by a relevant change-of-base from the category of interest to
its subcategory of arities. This conceptual approach leads us
to an abstract notion of Lawvere theory with arities, which
extends to every class of arity the traditional correspondence in
Set between Lawvere theories and finitary monads. Finally, we
illustrate the benefits of Lawvere’s ideas by describing how the
concrete presentation of the state monad recently formulated
by Plotkin and Power is ultimately validated by a rewriting
property on sequences of updates and lookups.

Keywords-Computational effects; finitary monads; algebraic
theories; Lawvere theories; state monad; higher dimensional
algebra; nerve functor; Segal condition; monads with arities.

I. INTRODUCTION

Mathematics is traditionally interested in numbers and

spaces, and there is certainly a conceptual gap to fill in order

to understand the mathematical nature of programming lan-

guages. Quite miraculously, this gap very often disappears

when one climbs in abstraction, revealing beautiful land-

scapes where the conceptual tools of the two fields suddenly

unify. One striking illustration is provided by the notion of

computational monad introduced by Moggi [15] in order

to describe a functional call-by-value language with effects.

The notion of monad is intrinsically mathematical, and offers

at the same time a concise and elegant way to describe a

wide class of effects: nondeterminism, states, exceptions,

This work has been partly supported by the ANR project Curry-Howard
for Concurrency (CHOCO).

interactive input/output, and continuations, see [1]. Another

beautiful illustration is provided by the notion of sheaf

on a Grothendieck topology (typically, the Schanuel topos)

which offers a convenient setting to describe programming

languages with local variables and fresh names [3].

It is fascinating to observe that the most promising links

between mathematics and programming languages emerged

at these somewhat himalayan heights. On the other hand,

there is little doubt that this abstraction is only the pre-

liminary stage of a much deeper unity of the two fields,

including the most concrete and down-to-earth aspects of

mathematics and software engineering. My main ambition

in this paper is to illustrate this conceptual unity by revisiting

the current state of the art on computational effects presented

by operations and equations, in the light of a recent and

unexpected connection with a fundamental tool of homotopy

theory and higher dimensional algebra: the Grothendieck-

Segal characterization of the simplicial nerve of a category.

The state monad, concretely

Given a computational monad capturing a particular no-

tion of effect, typically the state monad

T (X) = (S ⇥X)S

defined by a particular set S of states on the category of

sets, one fundamental question is to understand how to

present the monad by generators and relations. This question

was recently solved in a very elegant way by Plotkin and

Power [17] for a set S of states defined as

S = V L

where L is a finite set of locations, and V is a countable

set of values. A global store on a set A is defined there as

a pair of functions

lookup : AV −! AL

update : A −! AL⇥V

satisfying a series of basic equalities formulated in [17].

The extraordinary thing is that this notion of global store

describes exactly the algebras of the state monad, in a very

concrete way based on intuitive properties of lookups and

updates in a store. However, the notion of global store



defined in [17] is not algebraic in the usual sense, because

the lookup and update operations have outputs with arity L

and V ⇥ L respectively. It is not very difficult however to

reformulate it as an algebraic theory, by defining a global

store as a family of unary operations

updateloc,val : A −! A

indexed by locations loc 2 L and values val 2 V , together

with a family of V -ary operations

lookuploc : AV −! A

indexed by locations loc 2 L. These operations should

satisfy a series of equations easily deduced from [17] and

which the interested reader will find expressed as a series

of coherence diagrams in Section VI.

The fact that there exists such an algebraic theory for the

state monad can be forecast by purely conceptual means, at

least when the set of values V is finite. In that case, the set of

states S = V L is finite, and the state monad is thus finitary,

in the technical sense that it preserves filtered colimits in

the category Set of sets and functions. It is well-known

that every such finitary monad is described by an algebraic

theory (called the Lawvere theory of the monad) whose

n-ary operations are the elements of the free algebra Tn

generated by n elements. In the case of the state monad, a

n-ary operation is thus given by a set-theoretic function

S −! S ⇥ n. (1)

It is instructive to stop at this point, and to look carefully at

the description of the update and lookup operations as such

set-theoretic functions, understood at the same time as maps

in the Lawvere theory of the state monad:

updateloc,val : S −! S

state 7! state[loc := val]

lookuploc : S −! S ⇥ V

state 7! (state, state(loc))

(2)

In their paper, Plotkin and Power [17] apply an advanced

categorical argument (Beck theorem) in order to establish

that the category of sets with global store is equivalent to

the category of algebras of the state monad. We explain at the

end of the paper (Section VII) how to deduce the property

from a very simple and purely combinatorial argument based

on the observation that the update and lookup operations

present the Lawvere theory of the state monad by generators

and relations. This means more specifically:

• that the update and lookup operations (2) generate all

the operations (1) of the Lawvere theory,

• that the equations between the update and lookup

operations formulated in Section VI are sufficient to

reflect the equality between the operations (1) in the

Lawvere theory.

These two fundamental facts will be established by applying

basic rewriting techniques on the sequences of update and

lookup operations.

Beyond finitary monads

The algebraic theory of global stores for a finite set V of

values may be easily extended to a countable set of values...

this requiring however to consider an operation lookuploc
with countable arity V for every location loc. Of course, one

needs to extend accordingly the original notion of Lawvere

theory, in order to incorporate operations with countable

arities. Although this may be done in a somewhat straight-

forward fashion, the question of arity is more subtle and

more interesting than it seems, especially if one considers

the enriched case investigated by Hyland and Power [6].

In fact, a purely conceptual and flexible notion of arity

in algebraic theories is still missing, although it would be

extremely useful in the daily practice of specifying and

combining monadic effects. In this paper, we investigate

that question starting from the notion of monad with arities

recently introduced by Weber [21] in his work on the Segal

condition, along a conceptual track in higher dimensional

algebra opened by Berger [2] and Leinster [11]. We briefly

explain this line of work here, starting from the Segal

condition originally formulated by Grothendieck in order to

characterize the simplicial nerve of a category.

Simplicial sets

The category of simplices ∆ has the natural numbers [n]
seen as totally ordered sets [n] = {0, . . . , n} as objects, and

the monotone functions between them as morphisms. There

exists a fully faithful functor

i : ∆ −! Cat (3)

which embeds the category ∆ into the category Cat of

small categories and functors. The functor i transports every

natural number n to the free category over the filiform graph

0 −! 1 −! · · · −! n

with n edges and n + 1 vertices. A simplicial set X is

then defined as a presheaf over the category ∆, that is, as a

family (Xn)n2N of sets, equipped with a function

Xf : Xq −! Xp

for every monotone function f : [p] ! [q]. The definition

is motivated by geometric intuitions: the point is that every

simplicial set X describes a topological space (called its ge-

ometric realization) obtained by introducing a n-dimensional

simplex for every element of Xn and gluing them together

according to the gluing data provided by the “face” and

“degeneracy” functions Xf .



Nerve of a category

Now, every functor

F : A −! B

to a locally small category B induces a functor noted

B(F, 1) : B −! bA (4)

which transports an object B of the category B to the

presheaf B(F,B) over the category A defined as

B(F,B) : Aop −! Set

A 7! B(FA,B).

The functor (3) induces in this way a functor

Cat(i, 1) : Cat −! b∆
which transports every small category to a simplicial set,

called its nerve. This nerve construction is extremely im-

portant, because it enables to see a category as a higher

dimensional space, and to apply on it the marvelous tools

of homotopy theory, see [13], [14] for details.

Segal condition

The Segal condition appears originally in a paper by Se-

gal [19] where it is attributed to Grothendieck. The condition

enables to characterize the simplical sets isomorphic to the

nerve of a small category, starting from the observation that

the diagram

[p]

##G
GG

GG

[0]

max
;;wwwww

min ##G
GG

GG
[p+ q]

[q]

;;wwwww

defines a colimit diagram (that is, a pushout) in the cate-

gory ∆, for every pair of natural numbers p and q, where

max(0) = p and min(0) = 0. The geometric intuition is

that the graph [p + q] is obtained by gluing together the

graphs [p] and [q] on the terminal vertex p 2 [p] and initial

vertex 0 2 [q]. Now, the Segal condition reads as follows:

Theorem. A simplicial set X is isomorphic to the nerve of

a small category C precisely when the colimit diagram is

transported to a limit diagram (that is, a pullback)

Xp
Xmax

}}|||
||

X0 Xp+q

ccFFFFF

{{xx
xx

x

Xq

Xmin

aaBBBBB

in the category Set of sets and functions.

In other words, the nerve of a category is characterized by

the property that a (p+ q)-dimensional simplex is the same

thing as a pair (x, y) consisting of a p-simplex x and a

q-simplex y whose extremal edges Xmax(x) and Xmin(y)
coincide.

Segal condition reformulated

Let ∆0 denote the subcategory of ∆ with the same

objects, and distance preserving functions f : [m] ! [n]
as morphisms:

8p 2 [m], f(p+ 1) = f(p) + 1.

Note that the category ∆0 is at the same time a full

subcategory of the category Graph of oriented graphs, this

defining a commutative diagram:

∆
i // Cat

∆0

i0 //

`

OO

Graph

Free

OO

(5)

where the functor Free transports an oriented graph to its

free category. Now, it appears that a simplicial set X satisfies

the Segal condition if and only if there exists a graph G such

that the functor

∆op
0

`op

// ∆op X // Set

is isomorphic to the functor

Graph(i0, G) : n 7! Graph(i0n,G).

In this alternative formulation, the nerve X of a small

category is characterized by the fact that its restriction to

the category ∆0 of filiform graphs describes (up to natural

isomorphism) the set Graph(i0n,G) of paths of length n of

some graph G. Note that the Segal condition on X may be

alternatively formulated as a sheaf condition for a particular

Grothendieck topology on the category ∆0, defining the

structure of a Grothendieck topos on the category Graph,

see the work by Berger [2] for details.

Linton condition

This alternative formulation of the Segal condition as a

representability property (rather than as a preservation-of-

limit property) provides the basic pattern of the present work,

a precious guideline which will be reappear once and again

in our investigation of the conceptual nature of algebraic

theories. In order to understand the idea properly, it is wise

to start from a striking analogy with the description by

Linton [12] of the algebras of a monad T , dating back to the

late 1960s. Recall that the Kleisli category AT of a monad T

on a category A has the same objects as the category A,

while its morphisms A! A0 are the morphisms A! TA0

of the category A. The Kleisli category is equivalent to the



category of free algebras of the monad T , this inducing a

commutative diagram

AT
i // T -Alg

A
id //

F

OO

A

Free

OO

(6)

where F is the expected identity-on-object functor, and i is

the comparison functor which transports an object A into

the free algebra (TA, µA). The associated functor

T -Alg(i, 1) : T -Alg −! cAT

transports every algebra (A, h) to a presheaf over AT which

deserves the name of nerve of the algebra (A, h). Note

moreover that the functor i is dense, this simply meaning

that the induced functor T -Alg(i, 1) is fully faithful. Now,

Linton condition states that for every monad T ,

Theorem [Linton] A presheaf ' on the Kleisli category AT

is isomorphic to the nerve of an algebra if and only if the

presheaf

Aop F op

// Aop
T

' // Set

is representable in the category A, this meaning that '◦F op

is isomorphic to the presheaf yA associated by the yoneda

embedding to an object A of the category A:

yA = A(1, A) : A0 7! A(A0, A).

It is thus tempting to think of Linton condition as an

extremal Segal condition where the functor i0 in the com-

mutative diagram (5) is replaced by the identity functor in

the commutative diagram (6). Observe in particular that (6)

is instantiated as

FreeCat
i // Cat

Graph
id //

F

OO

Graph

Free

OO

(7)

for the free category monad T on the category Graph .

Monads with arities

Once the connection with Linton condition established,

the Segal condition reduces to understanding when the

identity functor appearing in (6) may be replaced by a

functor

i0 : Θ0 −! A

describing a class of arities for the monad T . Although

the connection with Linton condition does not appear in

his work, this is precisely the question investigated by

Weber [21] with the notion of monad with arities. The

point is that every notion of arity i0 induces a commutative

diagram

ΘT

iT // T -Alg

Θ0

i0 //

`

OO

A

Free

OO

where the category ΘT is characterized by the fact that the

functor ` is the identity on objects (hence, the category ΘT

has the same objects as the category Θ0) and that the

functor iT is fully faithful (hence, the category ΘT has the

same morphisms as the category T -Alg, locally speaking).

Weber formulates a series of sufficient conditions on the

functor i0 and on the monad T , such that the induced nerve

functor

T -Alg(i0, 1) : T -Alg −! cΘT

satisfies a Segal condition, which states that the category

T -Alg is equivalent to the full subcategory of presheaves of

ΘT whose restriction along the functor ` is isomorphic to the

restriction of a representable presheaf along the functor i0.

The resulting notion of monad with arities is extremely rich

and flexible. Typically, a finitary monad on the category Set

is the same thing as a monad with arity functor i0 defined

as the fully faithful functor

i0 : Nat −! Set (8)

starting from the full subcategory of Set defined by the finite

sets hni = {0, . . . , n− 1}. Similarly, a countable monad is

the same thing as a monad with arity functor

i0 : Count −! Set (9)

defined by extending the previous arity functor (8) with the

countable set h!i = {0, 1, 2, 3, · · ·}. More generally, any ac-

cessible monad on a locally presentable category A defines

a monad with arities, with the arity functor i0 then defined

as the inclusion functor of a skeleton of the full subcategory

of -presentable objects, for a regular cardinal .

Algebraic theories with arities

One main contribution of the present paper is (a) to

improve marginally the original notion of monad with arities,

by relaxing a cocompleteness hypothesis on the underlying

category A, and (b) to derive the Segal condition from the

Linton condition in a nice and conceptual way, thanks to

the discovery of a Beck-Chevalley property of the change-of-

base operations. This analysis enables us (c) to formulate an

abstract notion of Lawvere theory for every category A and

every arity functor i0, and (d) to establish a clean correspon-

dence theorem, which states that the category Law(A, i0) of

Lawvere theories is equivalent to the category Mnd(A, i0)
of monads with arities i0. This level of generality is achieved

by replacing the familiar preservation-of-limit property of



Lawvere theories by a preservation-of-representability prop-

erty inspired by the abstract definition of monad with arities.

Enriched Lawvere A-theories

The notion of enriched Lawvere theory was introduced by

Power [18] ten years ago. This notion has become extremely

important in the semantic practice, at least because it enables

to incorporate recursion and partiality into the study of

monadic effects, see [5]. One must admit however that the

notion of enriched Lawvere theory is technically involved,

and one initial motivation of the present work was precisely

to clarify its conceptual foundations, starting from a 2-

categorical approach. It is only quite recently, in the course

of writing that paper, that I discovered with great excitement

that Nishizawa and Power [16] recently introduced the

notion of enriched Lawvere A-category, which contains

(essentially) the same conceptual ingredients as the Segal

condition formulated by Weber [21] at about the same time.

This extraordinary convergence between two independent

lines of research is another sign of the deep unity of the

field, and of the relevance of the conceptual and unifying

approach developed in the present paper.

Outline of the paper

After this long but necessary introduction, we recall in

Section II the change-of-base operations on presheaves,

followed by the notion of monad with arities in Section III.

We then establish the Segal condition in Section IV, start-

ing from Linton conditon and the observation of a Beck-

Chevalley property on the change-of-base operations. We

introduce in Section V an abstract notion of Lawvere theory

with arities, and establish a correspondence theorem with

monads with arities. Finally, we illustrate in Section VI and

Section VII the concrete benefits of this trend of ideas on

the global state monad, before concluding in Section VIII.

II. THE THREE OPERATIONS

The first step of the paper is to establish the Segal condi-

tion by a purely conceptual argument based on the change-

of-base operations associated to a functor. These operations

are so fundamental that we choose to describe them as

early as possible in the article. The reader unaware of

this categorical yoga inherited from Grothendieck [13], [14]

should have a glimpse at the section, and jump to Section III

where the notion of monad with arities is introduced. Just

like rings are particular kinds of categories (with one object,

enriched over the category of abelian groups) modules over

a ring are particular kinds of presheaves. So, the idea is

to extend to presheaves the classical operations on modules

associated to a change-of-ring. Typically, every functor

F : A −! B

induces a functor

F ⇤ : bB −! bA

defined by transporting every presheaf  to the

presheaf F ⇤( ) obtained by precomposition:

Aop F op

−! Bop
 

−! Set.

Whenever the category A is small (that is, when its objects

define a set, rather than a class) the functor F ⇤ has a left

adjoint

9F : bA −! bB.
as well as a right adjoint

8F : bA −! bB
defined by transporting every presheaf ' to its left and right

Kan extension along the functor F op : Aop ! Bop. The

logical notation for the adjoint functors is justified by the de-

scription of quantification in a topos: the functors 9F and 8F
would be typically written F! and F⇤ in Grothendieck’s

notation.

III. MONADS WITH ARITIES

The notion of monad with arities was introduced by

Weber [21] after a suggestion by Lack, this providing a

concise and elegant account of the conceptual track opened

by Berger [2] and Leinster [11] in higher dimensional

algebra ; the notion of monad with arities has been also

recently applied by Joyal and Kock [7] in order to define a

nerve functor for compact symmetric multicategories (also

called modular operads). As the reader will see below, our

definition of monad with arities is slightly more liberal

than the original one because we do not require that the

underlying category A is cocomplete.

Fully faithful and dense functors

A functor F : A ! B is fully faithful when the associated

function

A(A,A0) −! B(FA,FA0)

is a bijection for all objects A,A0 of the category A. A

functor F : A ! B is dense when the associated functor

B(F, 1) : B −! bA
defined in (4) is fully faithful.

Monads with arities

A monad with arities consists of a monad (T, µ, ⌘) on a

category A together with a fully faithful and dense functor

i0 : Θ0 −! A (10)

where Θ0 is a small category, and such that:

1) the natural transformation

A

id

5=

Θ0
i0

//

T◦i0

EE↵↵↵↵↵↵↵↵↵
A

T

XX222222222
(11)



exhibits the functor T as a left Kan extension of the

functor T ◦ i0 along the functor i0,

2) the Kan extension (11) is preserved by the functor

A(i0, 1) : A −! cΘ0.

Let us briefly discuss these two arity conditions on the

monad. The first condition is somewhat expected: it captures

very neatly the idea that the monad T is entirely defined by

the functor T ◦ i0. This formulation is somewhat folklore:

for instance, Kelly [8] characterizes in this way the finitary

functors in a properly enriched setting.

The second arity condition is less expected, and it is

certainly one main conceptual novelty of Weber’s definition:

it means that every colimit computed in A in order to

reconstruct the monad T from the functor T ◦ i0 should be

also seen as a colimit computed in Set by every arity n in the

category Θ0. This is typically the case when the category Θ0

is the full subcategory of finitely presentable objects in

a locally finitely presentable category A, because all the

colimits considered in A are filtered, and A(i0, 1) preserves

them. In that case, the two arity conditions on the monad T

reduce to the first one, this probably explaining why the

second arity condition never appeared in the literature.

A combinatorial formulation

One should also mention that the two arity conditions

reduce to the fact that the functor A(i0, 1) ◦ T equipped

with the identity transformation on the functor A(i0, 1) ◦
T ◦ i0 defines a left Kan extension of that functor along the

functor i0. The reason is that the functor A(i0, 1) is fully

faithful, and thus reflects left Kan extensions. Hence, the

arity conditions may be equivalently formulated by requiring

that the canonical function
Z p2Θ0

A(i0n, T i0p) ⇥A(i0p,A) −! A(i0n, TA)

is a bijection, for every object n of the category Θ0 and

every object A of the category A. This should be understood

as a unique decomposition property (modulo zig-zag) which

states that every morphism

i0n −! TA

in the category A decomposes as

i0n
e

−! Ti0p
Tf
−! TA

for a pair of morphisms e : i0n ! Ti0p and f : i0p ! A.

And that, moreover, every two such factorizations are equiv-

alent modulo the zig-zag relation ⇠ defined as the transitive,

symmetric and reflexive closure of the binary relation

(e1, f1)  (e2, f2)

which relates two factorizations (e1, f1) and (e2, f2) when

there exists a morphism u : p ! q of the category of

arities Θ0 making the diagram

Ti0p

Ti0u

✏✏

Tf1

##F
FF

FF
F

i0n

e1
;;xxxxxx

e2 ##F
FF

FF
F TA

Ti0q
Tf2

;;xxxxxx

commute in the category A.

The state monad

It is instructive to understand from that point of view why

the state monad T is finitary when the set of states S is

finite. Recall that the finitary monads on the category Set

are precisely the monad with arity functor i0 described

in (8). Hence, the state monad T is finitary because (a) every

function

h : S ⇥ [n] −! S ⇥A

factors as

S ⇥ [n]
e

−! S ⇥ [p]
S⇥f
−! S ⇥A

where the function f : [p] ! A is defined as an injective

enumeration of the finite image of h, and moreover (b) this

factorization is unique modulo zig-zag. The Segal condition

establishes then that the state monad may be presented by

operations of finite arities and equations between them, as

done in Section VI when S = V L. On the other hand,

the state monad is not finitary anymore when the set S is

countable: it defines in that case a countable monad with

arity functor i0 defined as (9). This elementary example

illustrates the flexibility of the notion of monad with arities.

IV. A CONCEPTUAL PROOF OF SEGAL CONDITION

Our alternative proof of Segal condition starts with the

definition of categories with arities, together with a notion

of morphism between them. As we will see, one advantage

of our argument (besides its conceptual simplicity) is that

it does not require the hypothesis that the category A is

cocomplete.

Categories with arities

A category with arities (A, i0) is defined as a fully faithful

and dense functor

i0 : Θ0 −! A

whose domain Θ0 is a small category. A morphism between

categories with arities

(F, `) : (A, i0) −! (B, i1)

is defined as a pair of functors (F, `) making the diagram

Θ1

i1 // B

Θ0

i0 //

`

OO

A

F

OO

(12)



commute, and satisfying moreover the Beck-Chevalley con-

dition which states that the natural transformation

cΘ1

`⇤

✏✏

8i1 // bB

F⇤

✏✏
 ⌘

cΘ0 8i0

// bA

(13)

defined as the mate (in a 2-categorical sense, see [9]) of the

identity natural transformation id : i⇤0 ◦ F ⇤ ) `⇤ ◦ i⇤1, is

reversible. It is not difficult to deduce from the functorial

properties of mateship that these morphisms compose, and

thus define a category of categories with arities.

Segal condition

The Segal condition follows then quite immediately from

two basic properties of these morphisms between categories

with arities, together with Linton condition. The first prop-

erty captures the very essence of Segal condition:

Proposition A. For every morphism (F, `) between cate-

gories with arities

(F, `) : (A, i0) −! (B, i1)

the adjunction i⇤1 a 8i1 induces an adjunction between

• the full subcategory M of presheaves of B whose

restriction along F is representable in A,

• the full subcategory N of presheaves of Θ1 whose

restriction along ` is representable along i0.

Moreover, this adjunction defines an equivalence be-

tween M and N when the functor F is essentially sur-

jective.

Here, a presheaf of Θ0 is called representable along the

functor i0 when it is isomorphic to the restriction along i0 of

a representable presheaf in A. Note that this is equivalent to

being isomorphic to a presheaf A(i0, A) for some object A.

Recall that a functor F is essentially surjective when there

exists for every object B an object A such that FA is

isomorphic to B. The second proposition establishes the

existence of a morphism between categories with arities for

every monad with arities:

Proposition B. Every monad T with arity functor i0 induces

a commutative diagram

ΘT

iT // AT

Θ0
i0 //

`

OO

A

F

OO

(14)

where the pair (F, `) defines a morphism

(F, `) : (A, i0) −! (AT , iT )

of categories with arities.

Theorem [Segal condition]. The canonical functor

H : ΘT

iT // AT
// T -Alg

induces an equivalence

T -Alg
T -Alg(H,1) // cΘT

between the category T -Alg and the full subcategory of

presheaves of ΘT whose restriction along the functor ` is

representable along the functor i0.

V. LAWVERE THEORIES WITH ARITIES

We introduce below a notion of Lawvere theory for a

category with arities (A, i0) and establish in that setting a

clean correspondence theorem between theories and mon-

ads, generalizing the traditional correspondence between

Lawvere theories and finitary monads in the category Set

equipped with finite arities. It is interesting to notice that

our definition proceeds in essentially the same way as the

definitions of globular theory and of globular model by

Berger (see definition 1.5 in [2]) in the particular case of

the category of globular sets with arities defined as level

trees.

Lawvere theories with arities

A Lawvere theory L on a category A with arities i0 :
Θ0 −! A is defined as an identity-on-object functor

L : Θ0 −! ΘL

such that (?) the endofunctor

cΘ0

9L // cΘL

L
⇤

// cΘ0

transports every presheaf representable along i0 to a presheaf

representable along i0. It is not difficult to see that:

Proposition C. Every monad T with arity functor i0 induces

a Lawvere theory LT : Θ0 −! ΘT .

The property follows from the fact that the functor L
⇤◦9L

transports the presheaf A(i0A, 1) defined by an object A of

the category A to a presheaf isomorphic to A(i0TA, 1).

Models of the theory

A model of the Lawvere theory L with arity functor i0 is

defined as a presheaf ' over ΘL whose restriction

Θop
0

L
op

// Θop
L

' // Set

along L is representable along i0. The category Mod(L) is

then defined as the full subcategory of presheaves of ΘL

whose objects are the models of the theory L. There exists

a forgetful functor

U : Mod(L) −! A



defined as the unique functor (up to natural isomorphism)

making the diagram

Mod(L)

✏✏

U // A

y

✏✏
cΘL

L
⇤

// cΘ0

8i0 // bA
commute, up to natural isomorphism. The preservation-

of-representability property (?) required by our definition

of Lawvere theory ensures that the functor U has a left

adjoint Free making the diagram

A
Free //

y

✏✏

Mod(L)

✏✏
bA

i⇤0 // cΘ0

9L // cΘL

commute, up to natural isomorphism. This adjunc-

tion Free a U induces a monad T on the category A with

the expected properties:

Proposition D. The monad T has arity functor i0 and

induces a Lawvere theory LT : Θ0 ! ΘT which coincides

with the theory L : Θ0 ! ΘL.

Note that, strictly speaking, the two categories ΘT and ΘL

are isomorphic, rather than equal.

Correspondence theorem

A morphism L1 ! L2 between Lawvere theories L1 and

L2 with the same arity functor i0, is defined as an identity-

on-object functor

✓ : ΘL1
−! ΘL2

making the diagram below commute:

ΘL1

✓ // ΘL2

Θ0

L1

aaCCCCCCCCC L2

=={{{{{{{{{

This notion of morphism between Lawvere theories defines

a category Law(A, i0) of Lawvere theories on the category

with arities (A, i0) whose definition is justified by the

correspondence theorem below.

Theorem. The category Law(A, i0) is equivalent to the

category Mnd(A, i0) of monads with arities i0.

The proof of the correspondence theorem is purely 2-

categorical, and simply requires a 2-category with Eilenberg-

Moore and Kleisli objects [10], equipped with a Yoneda

structure in the sense of Street and Walters [20], [22]. In

particular, the result applies in exactly the same way to the

enriched setting, by replacing the 2-category of categories,

functors and natural transformations, by the 2-category of

enriched categories, enriched functors and enriched natural

transformations for a sufficiently nice category V of enrich-

ment.

VI. PRESENTATION OF THE STATE MONAD

We formulate the equational theory of global stores as a

series of seven coherence diagrams, each of them providing

the direct transcription of an equation in [17]. Note that

the resulting commutative diagrams look simpler here than

in the original presentation because the manipulation of

locations (duplication, etc.) is done externally, rather than

internally.

1. annihilation lookup − update: reading the value of

a location loc and then updating the location loc with the

obtained value is just like doing nothing.

AV

lookuploc

  A
AA

AA
AA

AA

A

updateloc,V

>>}}}}}}}}}
id // A

Here, the morphism updateloc,V : A −! AV is defined as

the unique morphism making the diagram below commute

AV

Aval

  A
AA

AA
AA

AA
AA

A

updateloc,V

>>}}}}}}}}}}} updateloc,val // A

for every value val 2 V , where Aval : AV −! A is the

val-th projection of AV over A.

2. interaction lookup − lookup: reading twice the same

location loc is the same as reading it once.

AV⇥V
lookup

V
loc //

Adiag

✏✏

AV

lookuploc

✏✏
AV

lookuploc // A

3. interaction update − update: storing a value val and

then a value val0 at the same location loc is just like storing

the value val0 in the location.

A

updateloc,val

10?
??

??
??

??
?

A

updateloc,val0

??���������� updateloc,val0 // A



4. interaction update − lookup: when one stores a

value val in a location loc and then reads the location loc,

one gets the value val.

AV
lookuploc //

Aval

✏✏

A

updateloc,val

✏✏
A

updateloc,val // A

5. commutation lookup − lookup: The order of reading

two different locations loc and loc0 does not matter.

AV⇥V
Aswap

//

lookuploc

32//
//
//
//

AV⇥V

lookuploc0

43<
<<

<<
<<

<

AV
lookup

V
loc0 // A AV

lookup
V
locoo

6. commutation update − update: the order of storing

in two different locations loc and loc0 does not matter.

A
updateloc,val //

updateloc0,val0

✏✏

A

updateloc0,val0

✏✏
A

updateloc,val // A

7. commutation update − lookup: the order of storing

in a location loc and reading in a location loc0 does not

matter.

AV
lookuploc0 //

update
V
loc,val

✏✏

A

updateloc,val

✏✏
AV

lookuploc0

// A

VII. PRESENTATION OF THE STATE MONAD REVISITED

We establish here that the algebraic presentation of objects

with global store described in Section VI provides a presen-

tation by generators and relations of the Lawvere theory T

of the state monad. From this result follows immediately

the result established by Plotkin and Power [17] stating

that the category of objects with store is equivalent to the

category of algebras of the state monad. Note that the result

in [17] applies to any category with countable products and

coproducts, but we focus here on the particular case of Set.

Let S denote the Lawvere theory generated by the object 1
and the family of operations

updateloc,val : 1 ! 1 lookuploc : V ! 1

for loc 2 L and val 2 V , together with the seven equations

of Section VI.

Soundness

The interpretation of updateloc,val and lookuploc de-

scribed in the introduction satisfies the equations of a global

store. This establishes the existence of an identity-on-object

and product-preserving functor

I : S −! T.

There remains to establish that the functor I is fully faithful.

The functor I is full

In order to establish that point, one needs to show that

every set-theoretic function f : S ! S ⇥ n is generated

by a series of lookups and updates. This is not particularly

difficult. The idea is to factor the function f as

S
g

−! S ⇥ V L
h

−! S ⇥ n

where

1. the function g is the diagonal S ! S ⇥ S obtained by

applying a lookup for each location loc 2 L, one after the

other,

2. the function h transports (state1, state2) into f(state2).
Here, the domain S ⇥ V L should be understood as the

sum of S taken S = V L times. This enables to define the

function h as a family of constant functions

hstate2 = f(state2) : S −! S ⇥ n

indexed by state2 2 V L, each constant function imple-

mented as a series of updates writing the value state(loc)
into each location loc 2 L, followed by an injection to the

p-th component of S ⇥ n:

S
state
−! S

inp

−! S ⇥ n

where f(state2) = (state, p).

The functor I is faithful

This is the difficult and interesting part of the proof.

Suppose given two terms u and v of the algebraic theory

of global stores u, v : n! 1 defining the same function

f : S −! S ⇥ n (15)

understood as an operation n ! 1 in the category T. We

need to show that the terms u and v are equal modulo the

seven equations of the theory of global stores. The idea is to

apply the first equation (annihilation) as many times as there

are locations in L, in order to factorize the identity morphism

in S as a sequence g of lookups, one for each location loc 2
L, followed by a sequence f of updates writing in each

location what has been just read:

id : 1
h

−! V L
g

−! 1.



Since u = g ◦ h ◦ u and v = g ◦ h ◦ v, it is sufficient to

establish that h ◦ u = h ◦ v in order to conclude. Since the

category S is cartesian, this amounts to the equality

⇡state ◦ h ◦ u = ⇡state ◦ h ◦ v

for every projection ⇡state : V L ! 1. Now, observe that

the functor I transports the two maps ⇡state ◦ h ◦ u and

⇡state ◦ h ◦ v to the same constant operation n ! 1 of the

theory T. Observe also that hstate = ⇡state ◦ h : 1 ! 1 is

defined as a sequence of updates, one for each location,

writing one after the other the value state(loc) in each

location loc 2 L. The last part of the proof consists in

removing the lookups appearing in hstate ◦ u and hstate ◦ v
one after the other, by permuting them before updates thanks

to equation 7. and removing them thanks to equation 4.

The point is that every lookup in hstate ◦ u and hstate ◦ v
reads a location previously updated in the term. Once every

lookup removed from hstate ◦u and hstate ◦ v, there simply

remains to remove the unnecessary updates by applying

equation 6. to permute them and equation 3. to erase them.

One obtains in this way a normal form for hstate ◦ u
and hstate ◦ v consisting of a sequence of an update for

each location loc 2 L, the two normal forms for u and v

coinciding modulo permutation of the updates by equation 6.

This completes the proof that the functor I is faithful.

VIII. CONCLUSION AND FUTURE WORKS

We establish a general correspondence theorem between

the notion of monad with arities defined by Weber [21] and

an abstract notion of Lawvere theory with arities introduced

here. The proofs are simple and conceptual, and clarify

the change-of-base mechanisms which underlie the notion

of Lawvere theory. Much progress has been made in the

past decade in the art of combining monads [5], [4] this

leading to the discovery of subtle issues about arities in

enriched categories [6]. The present work is to a large extent

motivated by the ambition to establish an appropriate 2-

categorical framework to carry on this promising line of

research. It is also part of a wider project of combining

monadic effects with linear continuations, starting from the

seminal work of Hyland, Levy, Plotkin and Power [4] and

integrating diagrammatic techniques imported from game se-

mantics. Finally, we believe that a conceptual understanding

of these basic questions will contribute to the emergence of a

semantic account of computational effects lying outside the

scope of monadic effects, typically delimited continuations.
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Différentielle, vol. 3, pp. 3–42, 1980.

[9] M. Kelly and R. Street, “Review of the elements of 2-
categories,” Lecture Notes in Mathematics, vol. 420, pp. 75–
103, 1974.

[10] S. Lack and R. Street, “The formal theory of monads II,”
Journal of Pure and Applied Algebra, vol. 175, pp. 243-265,
2002.

[11] T. Leinster, “Nerves of algebras,” talk at the International
Category Theory Conference (CT 2004), slides available at
http://www.maths.gla.ac.uk/∼tl/vancouver, 2004.

[12] F. Linton, “Relative functorial semantics: adjointness results,”
Lecture Notes in Mathematics, vol. 99, 1969.
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APPENDIX

APPENDIX I : PROOFS OF PROPOSITION A AND B.

The proofs of the two propositions are not particularly

difficult conceptually: they are essentially based on a clear

understanding of the meaning and properties of the three

change-of-base operations on presheaves described in Sec-

tion II. Size is a real torment however: because the cate-

gory A is not supposed to be small, we cannot make the

simplifying hypothesis that the functor

F ⇤ : cAT −! bA
associated to the functor F to the kleisli category

F : A −! AT

has a left adjoint

9F : bA −! cAT .

In fact, we only know that F ⇤ has a right adjoint

8F : bA −! cAT

defined as the inverse image functor

U⇤ : bA −! cAT

associated to the functor U right adjoint to F . This lack of

a left adjoint 9F makes the proof much more complicated

than it should be, or becomes when the left adjoint 9F
happens to exist. There is a way to circumvent the difficulty

however, provided by the notion of yoneda structure intro-

duced by Street and Walters [20] and recently investigated

by Weber [22]. We describe below the general proof, and

let the astute reader reconstruct the simpler argument in

the situation when the functor F ⇤ happens to have a left

adjoint 9F .

Proof of Proposition A.

Step 1: Suppose given a morphism

(F, `) : (A, i0) −! (B, i1)

between categories with arity, defining the commutative

diagram

Θ1
i1 // B

Θ0
i0 //

`

OO

A

F

OO

This induces a commutative diagram

cΘ1

`⇤

✏✏

bB

F⇤

✏✏

i⇤1oo

idgo

cΘ0 bA
i⇤0

oo

From this follows that the functor i⇤1 transports every

presheaf  of B whose restriction along F is representable

by an object A, to a presheaf i⇤1 of Θ1 whose restriction

along ` is representable by the object i0A.

By definition, a morphism between categories with arity

satisfies moreover a Beck-Chevalley property, stating that

the induced natural transformation

cΘ1

`⇤

✏✏

8i1 // bB

F⇤

✏✏
⌥✏

cΘ0 8i0

// bA

is reversible. From this follows that the functor 8i1 trans-

ports every presheaf ' of Θ1 whose restriction along ` is

representable by an object i0A, to a presheaf 8i1' of B
whose restriction along F is isomorphic to the presheaf

8i0 ◦i0◦y(A). We then apply the result of the previous step,

which states that the presheaf 8i0 ◦ i0 ◦ y(A) is isomorphic

to the presheaf y(A), and conclude that the functor 8i1
transports every presheaf ' of Θ1 whose restriction along `

is representable by an object i0A, to a presheaf 8i1' of B
whose restriction along F is representable by A.

This establishes that the adjunction i⇤1 a 8i1 between the

presheaf categories of A and Θ1 restricts to an adjunction

between the full subcategory M of presheaves of B whose

restriction along F is representable, and the full subcate-

gory N of presheaves of Θ1 whose restriction along ` is

representable along i0.

Observe moreover that the functor i1 is fully faithful. The

fact that i1 is fully faithful may be equivalently formulated

by saying that the counit

bB i⇤1

⌫⌫
"

↵◆
cΘ1

id

__

8i1
11

cΘ1

of the adjunction i⇤1 a 8i1 is reversible. This is equivalent to

asking that the functor 8i1 is fully faithful, this establishing

that the category N is a reflective subcategory of the

category M.

Step 2: Suppose that the functor F is essentially

surjective, this meaning that for every object B of the

category B, there exists an object A of the category A
such that FA is isomorphic to B. One way to establish

that the adjunction i⇤0 a 8i0 defines an equivalence between

the two categories M and N , is to show that the natural



transformation

⌘

↵◆

M // bB

id

!!

i⇤1 ,,

bB

cΘ1
8i1

GG (16)

is reversible. Now the functor F ⇤ is faithful because F

is essentially surjective. Hence, in order to establish that

(16) is reversible, it is sufficient to establish that the natural

transformation

⌘

↵◆

M // bB

id

!!

i⇤1 ,,

bB
F⇤

// bA

cΘ1
8i1

GG

is reversible. The natural transformation may be decomposed

in the following way:

⌘

↵◆

bA

id

!!

i⇤0

,,

bA

cΘ1

8i0

GG

'
M // bB

F⇤

OO

i⇤0 ,,

bB

F⇤

OO

cΘ0

`⇤

OO

8i0

GG

a diagram which may be completed as

⌘

↵◆

A
y //

'

bA

id

!!

i⇤0

,,

bA

cΘ1

8i0

GG

'
M //

G

OO

bB

F⇤

OO

i⇤0 ,,

bB

F⇤

OO

cΘ0

`⇤

OO

8i0

GG

where the functor G is deduced from the definition of M as

the category of presheaves  whose restriction along F is

representable by an object defining G of the category A.

The first step of the proof has established that this natural

transformation is reversible, because the functor i0 is dense.

This concludes the proof of Proposition A.

Proof of Proposition B.

Step 1: Every monad with arity (T, i0) induces a

commutative diagram

ΘT

iT // AT

Θ0
i0 //

`

OO

A

F

OO

where the category ΘT is characterized by the fact that `

is an identity-on-object functor and iT is a fully faithful

functor. We will show at the last stage of the proof (step 4.)

that the identity natural transformation

AT

id

3;

Θ0
i0

//

F◦i0

EE⌦⌦⌦⌦⌦⌦⌦⌦⌦⌦⌦
A

F

YY33333333333

exhibits the functor F as a left kan extension of the func-

tor F ◦ i0 along the functor i0. To that purpose, we establish

below that the identity natural transformation

cΘT

cAT

i⇤T

OO

AT

y

OO

id

4<

Θ0
i0

//

F◦i0

DD          
A

F

YY333333333

(17)

exhibits the functor

AT (iT , 1) ◦ F = i⇤T ◦ y ◦ F

as a left kan extension of the functor AT (iT , 1) ◦ F ◦ i0
along the functor i0. The proof of that fact is not particularly

difficult, but it is pretty long if one wants to proceed

carefully. On the other hand, we will see that the proof is

nearly finished when the property is established.

Now, one basic property of a yoneda structure is that the



natural transformation χi0

cΘ0

χi0

3;

Θ0
i0

//

y

EE↵↵↵↵↵↵↵↵↵↵↵
A

A(i0,1)

XX22222222222

defines the functor A(i0, 1) as a left kan extension of the

yoneda embedding y along the functor i0. The domain Θ0

of the functor F ◦ i0 is small, this ensuring that the induced

functor (F ◦ i0)
⇤ has a left adjoint functor 9(F◦i0). Since

left adjoint functors preserve kan extensions, the natural

transformation

cAT

cΘ0

9(F◦i0)

OO

χi0

3;

Θ0
i0

//

y

EE↵↵↵↵↵↵↵↵↵↵↵
A

A(i0,1)

YY22222222222

exhibits the functor 9(F◦i0) ◦A(i0, 1) as a left kan extension

of the functor 9(F◦i0) ◦ y along the functor i0. Now, the

functor 9(F◦i0) itself is defined in a yoneda structure as a

particular left kan extension: namely, there exists a natural

transformation ↵

AT

y // cAT

↵
-5

A

F

OO

Θ0 y
//

i0

OO

cΘ0

9(F◦i0)

OO

which exhibits the functor 9(F◦i0) as a left kan extension of

the functor y ◦ F ◦ i0 along the functor i0. Moreover, the

transformation ↵ is reversible because the yoneda embed-

ding y on the category Θ0 is fully faithful. Composing χi0

together with ↵, one obtains a natural transformation χ

cAT

χ

3;

Θ0
i0

//

y◦F◦i0

EE↵↵↵↵↵↵↵↵↵↵↵
A

9(F◦i0)◦A(i0,1)

YY22222222222

which exhibits the functor

9(F◦i0) ◦ A(i0, 1)

as a left kan extension of the functor y ◦ F ◦ i0 along the

functor i0. The universality property of the left kan extension

implies the existence of a natural transformation

β : 9(F◦i0) ◦ A(i0, 1) ) y ◦ F

such that β composed with χ is equal to the identity natural

transformation on the functor y ◦ F ◦ i0.

We want to show that the natural transformation β

composed with i⇤T is reversible, and thus that the natural

transformation (17) exhibits the functor i⇤T ◦ y ◦ F as a left

kan extension. Because the left adjoint functors (iT ◦ `)⇤

preserve kan extensions, the natural transformation

cΘ0

cAT

(iT ◦`)⇤
OO

χ

3;

Θ0
i0

//

y◦F◦i0

EE↵↵↵↵↵↵↵↵↵↵↵
A

9(F◦i0)◦A(i0,1)

YY22222222222

exhibits the functor

(iT ◦ `)⇤ ◦ 9(F◦i0) ◦ A(i0, 1)

as a left kan extension along the functor i0. Now, observe

that the identity natural transformation

cΘ0

cΘT

`⇤

OO

cAT

i⇤T

OO

AT

y

OO

id

3;

Θ0
i0

//

F◦i0

DD44444444
A

F

ZZ44444444

is nothing but the left kan extension appearing in the

definition of the monad with arity (T, i0). Observe indeed

that the functor

AT

y // cAT

i⇤T // cΘT

`⇤ // cΘ0

coincides with

AT

y // cAT

F⇤

// bA
i⇤0 // cΘ0

and thus with

AT
U // A

y // bA
i⇤0 // cΘ0



where U is the “forgetful functor” which transports every

object A of the kleisli category AT to the object TA of the

category A.

This establishes that the natural transformation β com-

posed with the functor i⇤T followed by the functor `⇤

is reversible. Now, the functor `⇤ reflects isomorphisms

because the functor ` is one-to-one on objects. We conclude

that the natural transformation i⇤T ◦ β

i⇤T ◦ 9(F◦i0) ◦ A(i0, 1) ) AT (iT , 1) ◦ F (18)

is reversible, this establishing that our previous diagram (17)

exhibits the functor AT (iT , 1) ◦ F as a left kan extension

along the functor i0.

Step 2: The equality

iT ◦ ` = F ◦ i0

induces an isomorphism

9iT ◦ 9` = 9F ◦ 9i0 .

which may be then composed with (18). This induces a

natural isomorphism

i⇤T ◦ 9iT ◦ 9` ◦ A(i0, 1) ) AT (iT , 1) ◦ F.

Another way to express that the functor iT is fully faithful

is to say that the unit

⌘

↵◆

cΘT

id

##

9iT ,,

cΘT

cAT
i⇤T

FF (19)

of the adjunction 9iT a i⇤T is reversible. Composing the

two natural transformations induces a reversible natural

transformation

9` ◦ A(i0, 1) ) AT (iT , 1) ◦ F

Step 3: We have just established that the diagram

AT

AT (iT ,1) // cΘT

A
A(i0,1) //

F

OO

cΘ0

9`

OO

commutes up to a natural isomorphism. From this we deduce

a natural isomorphism

cΘT (9` ◦ A(i0, 1), 1) ⇠= cΘT (AT (iT , 1) ◦ F, 1)

Now, the two diagrams

cΘT

dΘT (9`◦A(i0,1),1) //

`⇤

10@
@@

@@
@@

@@
@@

bA

cΘ0

cΘ0(A(i0,1),1)

??77777777777

cΘT

dΘT (AT (iT ,1)◦F,1) //

dΘT (AT (iT ,1),1)
  @

@@
@@

@@
@@

@@
bA

cAT

F⇤

??������������

commute up to isomorphism. We then apply the two equal-

ities

8i0 = cΘ0(A(i0, 1), 1)

8iT = cΘT (AT (iT , 1), 1)

to deduce a natural isomorphism

cΘT

`⇤

✏✏

8iT // cAT

F⇤

✏✏
⌥✏

cΘ0 8i0

// bA

(20)

A careful check establishes then that the natural transfor-

mation (20) just constructed coincides with the mate of the

identity natural transformation

cΘT

`⇤

✏✏

cAT

F⇤

✏✏

i⇤Too

idgo

cΘ0 bA
i⇤0

oo

This establishes the Beck-Chevalley condition required by

the definition of morphism between categories with arity.

Step 4: At this stage, there only remains to show that

iT is dense in order to establish the proposition. One follows

essentially the same argument as in the proof of Proposition

A in order to establish that fact. The main point to observe

is that the restriction along F of a presheaf representable

by an object A of the category AT is representable by the

object TA of the category A. This concludes the proof of

Proposition B. Let us add one more fact however: density

of iT means that the functor

AT (iT , 1) : AT −! cΘT



is fully faithful. This implies our initial claim that the

identity natural transformation

AT

id

3;

Θ0
i0

//

F◦i0

EE⌦⌦⌦⌦⌦⌦⌦⌦⌦⌦⌦
A

F

YY33333333333

exhibits the functor F as a left kan extension of the func-

tor T ◦ i0 along the functor i0.

APPENDIX II : PROOFS OF PROPOSITION C AND D.

Proof of Proposition C. We establish here that every

monad T with arity i0 induces a Lawvere theory ` : Θ0 !
ΘT with the same arity i0.

cΘ0

9` //

(a)

cΘT

`⇤ // cΘ0

bA

i⇤0

OO

cAT

i⇤T

OO

F⇤

//

(b)

bA

i⇤0

OO

A

y

OO

F
// AT

y

OO

U
// A

y

OO

Note that the existence of a reversible natural transfor-

mation (a) has been established above, while the reversible

transformation (b) is deduced from the adjunction F a U .

Note in particular that the diagram establishes the existence

of a reversible natural transformation

cΘ0

9` //

'

cΘT

`⇤ // cΘ0

A

A(i0,1)

OO

T
// A

A(i0,1)

OO

Proof of Proposition D. We establish below that every

Lawvere theory

L : Θ0 −! ΘL

with arity i0 induces a monad T with the same arity i0. The

main difficulty is to establish that the monad T induced by

the adjunction Free a U has arity i0. By definition, there

exists a monad morphism

A
T //

y

✏✏
'

A

y

✏✏
bA

i⇤0 // cΘ0

9L // cΘL

L
⇤

// cΘ0

8i0 // bA

By definition, the functor i0 is fully faithful. From this

follows that the diagram

A
T //

y

✏✏
'

A

y

✏✏
bA

i⇤0

✏✏

bA

i⇤0

✏✏
cΘ0

9L // cΘL

L
⇤

// cΘ0

commutes up to reversible natural transformation. The func-

tors L
⇤ and 9L are left adjoint functors. Hence, in order to

establish that the identity natural transformation

cΘ0

cΘL

L
⇤

OO

cΘ0

9L

OO

A

A(i0,1)

OO

id

5=

Θ0
i0

//

i0

DD        
A

id

YY44444444

exhibits the functor L
⇤ ◦9L ◦A(i0, 1) as a left kan extension

of L
⇤ ◦9L ◦A(i0, 1) ◦ i0 along the functor i0, it is sufficient

to establish that the identity natural transformation

cΘ0

A

A(i0,1)

OO

id

5=

Θ0
i0

//

i0

DD        
A

id

YY44444444

exhibits the functor A(i0, 1) as left kan extension of the

functor i0 ◦ A(i0, 1) along the functor i0. This follows

from the fact that i0 is fully faithful, this implying that the

canonical natural transformation

cΘ0

χi0

5=

Θ0
i0

//

y

DD⌦⌦⌦⌦⌦⌦⌦⌦
A

A(i0,1)

YY33333333



is reversible. The fact that the previous diagram describes

a left kan extension follows quite immediately. This estab-

lishes that the functor T induced by the Lawvere arity L has

the same arity i0.

There remains to show that the Lawvere theory induced

by the monad T coincides with L. We will show that ΘL is

the full subcategory of Mod(L) given by the objects of Θ0.

First of all,

Θ0
i0 // A

Free //

y

✏✏

Mod(L)

✏✏
bA

i⇤0 // cΘ0

9L // cΘL

We have already shown that i⇤0 ◦ y ◦ i0 is isomorphic to y

because the functor i0 is fully faithful. This implies that the

functor above is equal to y ◦ L.

cΘL

ΘL

y

EE⌦⌦⌦⌦⌦⌦⌦⌦⌦
Mod(L)

]];;;;;;;;;;

Θ0
i0 //

L

OO

A

Free

OO

commutes up to natural isomorphism. From this, we con-

clude that there exists a fully faithful functor ΘL ! Mod(L)
such that

ΘL
// Mod(L)

Θ0
i0 //

L

OO

A

Free

OO

commutes strictly. This completes the proof of Proposi-

tion D.

APPENDIX III : DISCUSSION ON ALGEBRAIC THEORIES.

When the category A is cocomplete, a natural question is

whether the condition (?) defining our notion of algebraic

theory is equivalent to requiring that the functor

Θ0
L // ΘL

ΘL(L,1) // cΘ0

transports every arity (that is, every object p in the cate-

gory Θ0) to a presheaf representable along i0. It appears

that this is not the case, as we show with the following

example. The category Graph is a category of contravariant

presheaves on the category Γ defined as:

[0]
s //
t

// [1]

Now the category Γ+− is defined as the category

[0]
s //
t

// [1] invgg

together with the equations:

inv ◦ inv = id inv ◦ s = t inv ◦ t

The identity-on-object functor

F : Γ −! Γ+−.

induces a monad T on the category of graphs, defined as

Graph
9F // Graph+−

F⇤

// Graph

where Graph+− denotes the category of contravariant

presheaves on the category Γ+−. The monad T transports

every graph G to the graph TG with the same vertices, and

a pair of edges

u+ : x ! y u− : y ! x

for every edge u : x ! y in the original graph G. By density,

the identity cell

Graph

id

19

∆0
i0

//

i0

CC⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥
Graph

id

]];;;;;;;;;;;;

exhibits the identity functor as a left Kan extension of the

functor i0 along itself. Now, the monad T is left adjoint

to the functor F ⇤ ◦ 8F , and thus preserves this left Kan

extension. From this follows that the identity cell

Graph

id

19

∆0
i0

//

T◦i0

CC⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥
Graph

T

]];;;;;;;;;;;;

(21)

exhibits the monad T as a left Kan extension of the func-

tor T ◦ i0 along the functor i0. An important observation is

that this left Kan extension is not preserved by the nerve

functor

Graph(i0, 1) : Graph −! c∆0

This point is established as follows. Consider the graph

G = A

u
**

v

44 B

and the path

A
u+

// B
v− // A



in the graph TG. This path is represented by a morphism

[2] −! TG.

It is not difficult to see that this morphism does not factor

in the following way:

[2]
e // T [p]

Th // TG

since p = 0 or p = 1 in all the morphisms

[p]
h // G .

This establishes that the left Kan extension (21) is not

preserved by the nerve functor, and thus, that the monad T

is not a monad with arities the subcategory ∆0 of finite

filiform graphs in the category Graph .

Now, let ∆T denote the full subcategory of filiform graphs

in the Kleisli category induces by the monad T . Hence, the

category ∆T has the same objects as the category ∆0 and

its morphisms are defined as:

∆T ([p], [q]) = Graph(i0[p], T i0[q])

The identity-on-object functor

L : ∆0
// ∆T

induces a functor

∆0
L // ∆T

∆T (L,1) // c∆0 (22)

which transports every object [q] of ∆0 to the presheaf:

[p] 7! Graph(i0[p], T i0[q])

Note that this presheaf is the restriction along the functor i0
of a presheaf on the category Graph represented by the

object Ti0[q]. As such, and by definition, the presheaf is

representable along the functor i0.

At this point, we are ready to explain why the functor L

does not define an algebraic theory with arities i0 in our

sense, formulated in Section V. Recall that the identity cell

c∆0

id

3;

∆0 y
//

L

EE↵↵↵↵↵↵↵↵↵↵↵
c∆0

L
⇤
◦9L

YY33333333333

exhibits the functor

c∆0

9L // d∆T

L
⇤

// c∆0

as a left Kan extension of L along the Yoneda embedding.

This left Kan extension is preserved by the left adjoint

colim to the nerve functor. By construction, the theory L

factors as

∆0
i0 // Graph

T // Graph
∆0(i0,1) // c∆0

up to natural isomorphism, and that

Graph
∆0(i0,1) // c∆0

colim // Graph

is naturally isomorphic to the identity. From this follows that

there exists a reversible cell

Graph

19

∆0 y
//

T◦i0

CC⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥
c∆0

colim◦L
⇤
◦9L

[[777777777777

which exhibits the functor

c∆0

9L // d∆T

L
⇤

// c∆0

colim // Graph

as a left Kan extension of T◦i0 along the Yoneda embedding.

This implies that the diagram commutes

c∆0

9L // d∆T

L
⇤

// c∆0

colim

✏✏
Graph

T //

∆0(i0,1)

OO

Graph

up to natural isomorphism, because the functor T is a left

Kan extension of T ◦ i0 along the functor i0, and moreover,

the Yoneda embedding factors as

∆0
i0 // Graph

∆0(i0,1) // c∆0

up to natural isomorphism. Now, suppose that the functor L

is an algebraic theory in the sense of Section V, and thus,

that the functor

c∆0

9L // d∆T

L
⇤

// c∆0

transports every presheaf representable along i0 to a presheaf

representable along i0. This means that there exists a func-

tor F such that

c∆0

9L // d∆T

L
⇤

// c∆0

Graph
F //

∆0(i0,1)

OO

Graph

∆0(i0,1)

OO

commutes up to natural isomorphism... By postcomposing

the diagram with the functor colim, one obtains that the

functor F is equal to the functor T , up to natural isomor-

phism. Hence, the diagram

c∆0

9L // d∆T

L
⇤

// c∆0

Graph
T //

∆0(i0,1)

OO

Graph

∆0(i0,1)

OO



commutes up to natural isomorphism... this meaning that the

left Kan extension (21) is preserved by the nerve functor.

This contradicts our preliminary observation, and we con-

clude that L is not an algebraic theory with arities provided

by the category ∆0 of finite filiform graphs in Graph .

APPENDIX IV : ALGEBRAIC THEORIES (CONTINUED).

We have seen that every algebraic theory with arities i0

L : Θ0 −! ΘL

induces a monad T with the same arities, which makes the

diagram

cΘ0

9L // cΘL

L
⇤

// cΘ0

'

A

A(i0,1)

OO

T // A

A(i0,1)

OO

commute up to natural isomorphism. The composite

Θ0
i0 // A

A(i0,1) // cΘ0

is isomorphic to Yoneda embedding because the functor i0
is fully faithful. From this follows that the functor t defined

as

Θ0
t // A = Θ0

i0 // A
T // A

makes the diagram

cΘ0

9L // cΘL

L
⇤

// cΘ0

'

Θ0
t //

y

OO

A

A(i0,1)

OO

commute, up to natural isomorphism. Observe moreover that

the definition of a monad with arities i0 implies that the

left Kan extension of the functor t along the functor i0 is

preserved by the nerve functor A(i0, 1).
We would like to characterize algebraic theories in this

way when the nerve functor

A(i0, 1) : A −! cΘ0

has a left adjoint, which will be denoted colim, with a

reversible counit:

" : Id −! colim ◦ A(i0, 1)

This typically happens when the category A has small

colimits, because the functor i0 is dense. It is worth noticing

that given an algebraic theory L with arities i0, the associ-

ated monad T may be simply defined in that case as the

composite functor

A
A(i0,1) // cΘ0

9L // cΘL

L
⇤

// cΘ0

colim // A

because the functor colim ◦ A(i0, 1) is isomorphic to the

identity.

So, let us suppose from now on that there exists an

adjunction colim a A(i0, 1) with a reversible counit ", and

consider a functor

L : Θ0 −! ΘL

Suppose moreover that the induced functor

cΘ0

9L // cΘL

L
⇤

// cΘ0

transports every representable presheaf into a presheaf repre-

sentable along i0. This last hypothesis may be alternatively

formulated by requiring that there exists a functor

t : Θ0 −! A

making the diagram

cΘ0

9L // cΘL

L
⇤

// cΘ0

'

Θ0
t //

y

OO

A

A(i0,1)

OO
(23)

commute up to natural isomorphism. Our hypothesis on "

implies that the functor t is isomorphic to the composite

functor

Θ0
y // cΘ0

9L // cΘL

L
⇤

// cΘ0

colim // A

Now, the identity 2-cell

cΘ0

id

5=

Θ0
i0

//

y

DD⌦⌦⌦⌦⌦⌦⌦⌦
A

A(i0,1)

YY33333333

exhibits the nerve functor A(i0, 1) as a left Kan extension

of y along i0, and this left Kan extension is preserved by

the left adjoint functor

cΘ0

9L // cΘL

L
⇤

// cΘ0

colim // A

This means in particular that the functor T defined as

A
A(i0,1) // cΘ0

9L // cΘL

L
⇤

// cΘ0

colim // A



is a left Kan extension of the functor t, exhibited by the

identity 2-cell

A

id

6>

Θ0
i0

//

t

EE⌦⌦⌦⌦⌦⌦⌦⌦
A

T

YY22222222

We claim that the functor L defines an algebraic theory with

arities i0 precisely when the left Kan extension is preserved

by the nerve functor A(i0, 1). One direction has been estab-

lished by the discussion above: when the functor L defines

an algebraic theory with arities i0, the nerve functor A(i0, 1)
preserves the left Kan extension T by definition of a monad

with arities. The other direction reduces to showing that the

diagram

cΘ0

9L // cΘL

L
⇤

// cΘ0

'

A

A(i0,1)

OO

T // A

A(i0,1)

OO

(24)

commutes up to natural isomorphism when the left Kan

extension is preserved by the functor A(i0, 1). So, suppose

that this property holds, and that the functor A(i0, 1) ◦ T is

indeed a left Kan extension of the functor A(i0, 1) ◦ t along

the functor i0. In order to establish that the diagram above

commutes up to natural isomorphism, it is thus sufficient to

establish that the functor

A
A(i0,1) // cΘ0

9L // cΘL

L
⇤

// cΘ0 (25)

is a left Kan extension of the functor A(i0, 1) ◦ t along the

functor i0. The property follows from three facts. First of all,

we know from (23) that the functor A(i0, 1)◦t is isomorphic

to the composite functor

Θ0
y // cΘ0

9L // cΘL

L
⇤

// cΘ0 (26)

Then, the identity 2-cell

cΘ0

id

5=

Θ0
i0

//

y

DD⌦⌦⌦⌦⌦⌦⌦⌦
A

A(i0,1)

YY33333333

exhibits the nerve functor A(i0, 1) as a left Kan extension

of y along i0. Finally, this left Kan extension is preserved

by the left adjoint functor

cΘ0

9L // cΘL

L
⇤

// cΘ0

This establishes that the left Kan extension of the func-

tor (26) along i0 is equal to the functor (25). This implies

the existence of a reversible 2-cell (24) since a left Kan

extension is unique up to reversible 2-cell.

From this, we conclude that an identity-to-object functor

L : Θ0 −! ΘL

defines an algebraic theory with arities i0 precisely when (1)

the induced functor

cΘ0

9L // cΘL

L
⇤

// cΘ0

transports the representable presheaves to presheaves repre-

sentable along i0, and (2) the left Kan extension

A

cΘ0

colim

OO

cΘL

L
⇤

OO

cΘ0

9L

OO

id

5=

Θ0
i0

//

y

DD⌦⌦⌦⌦⌦⌦⌦⌦
A

A(i0,1)

YY33333333

is preserved by the nerve functor A(i0, 1).
Remark: The condition (2) may be alternatively formu-

lated by requiring that the left Kan extension

cΘ0

cΘL

L
⇤

OO

cΘ0

9L

OO

id

5=

Θ0
i0

//

y

DD⌦⌦⌦⌦⌦⌦⌦⌦
A

A(i0,1)

YY33333333

is preserved by the monad

cΘ0

colim // A
A(i0,1) // cΘ0

on the presheaf category cΘ0.



Remark.: The two conditions (1) and (2) may be

unified, and stated more concisely, by simply requiring that

the functor defined as

A
A(i0,1) // cΘ0

9L // cΘL

L
⇤

// cΘ0

is isomorphic to the result of postcomposing itself with the

monad

cΘ0

colim // A
A(i0,1) // cΘ0

Remark.: When A is a presheaf category on a full and

dense subcategory Θ of the category Θ0, the category A is

equipped with the arity functor

i0 : Θ0 −! A

defined as the nerve

Θ(i, 1) : Θ0 −! bΘ
induced by the fully faithful functor

i : Θ −! Θ0

embedding the full subcategory Θ inside Θ0. In that case,

the nerve functor

A(i0, 1) : A −! cΘ0

coincides with the functor

8i : bΘ −! cΘ0.

Hence, an identity-on-object functor

L : Θ0 −! ΘL

is an algebraic theory with arities i0 precisely when (1) the

induced monad

cΘ0

9L // cΘL

L
⇤

// cΘ0

transports representable presheaves into presheaves repre-

sentable along i0, and (2) the left Kan extension

bΘ

cΘ0

i⇤

OO

cΘL

L
⇤

OO

cΘ0

9L

OO

id

5=

Θ0
Θ(i,1)

//

y

EE⌦⌦⌦⌦⌦⌦⌦⌦
bΘ

8i

YY2222222

is preserved by the functor

8i : bΘ −! cΘ0


