
ar
X

iv
:1

10
1.

41
52

v2
 [

cs
.F

L
]

 1
 A

pr
 2

01
1

Languages of Dot-Depth One

over Infinite Words ∗

Manfred Kufleitner Alexander Lauser

University of Stuttgart, FMI

Abstract. Over finite words, languages of dot-depth one are expressively complete
for alternation-free first-order logic. This fragment is also known as the Boolean
closure of existential first-order logic. Here, the atomic formulas comprise order,
successor, minimum, and maximum predicates. Knast (1983) has shown that it
is decidable whether a language has dot-depth one. We extend Knast’s result
to infinite words. In particular, we describe the class of languages definable in
alternation-free first-order logic over infinite words, and we give an effective char-
acterization of this fragment. This characterization has two components. The first
component is identical to Knast’s algebraic property for finite words and the sec-
ond component is a topological property, namely being a Boolean combination of
Cantor sets.

As an intermediate step we consider finite and infinite words simultaneously. We
then obtain the results for infinite words as well as for finite words as special cases.
In particular, we give a new proof of Knast’s Theorem on languages of dot-depth
one over finite words.

1 Introduction

The investigation of logical fragments has a long history. One of the first results in our direction
is due to McNaughton and Papert [22]. They showed that a language over finite words is
definable in first-order logic if and only if it is star-free. A few years earlier, Schützenberger
showed that a language is star-free if and only if its syntactic monoid is aperiodic [28]. For a
regular language given by a (nondeterministic) finite automaton one can effectively compute
its syntactic monoid and test for aperiodicity. Combining the result of McNaughton and
Papert and the result of Schützenberger, this gives an algorithm for checking whether a regular
language is first-order definable.

The very same approach led to similar decision procedures for various other fragments.
The motivation for such results is to have some (descriptive) complexity measure for regular
languages: the simpler a logical formula defining a language, the easier this language is. In
addition, fragments often admit more efficient algorithms for computational problems such

∗This work was supported by the German Research Foundation (DFG) under grant DI 435/5-1.

1

http://arxiv.org/abs/1101.4152v2

as the satisfiability problem. For example, the satisfiability for full first-order logic is non-
elementary [30], whereas the satisfiability problem for first-order logic with only two variables
is in nexptime [15]. Moreover, one can frequently find temporal logic counterparts for first-
order fragments and these temporal logics allow even more efficient algorithms. For example,
there are temporal logics for first-order logic with two variables having a satisfiability problem
in np [9, 21]. The satisfiability problem for most temporal logics is pspace-complete, see
e.g. [13].

When considering some particular logical fragment F , then there are several main aspects
of F which are interesting: First, which languages are definable in F , e.g., in first-order logic
one can define exactly the class of star-free languages. Second, how can one decide whether a
given regular language is definable in F , e.g., a language is first-order definable if and only if its
syntactic monoid is aperiodic. Third, which closure properties does F have, e.g., the inverse
homomorphic image of a first-order definable language is again first-order definable. Other
important aspects are given by relations to other fragments and the computational complexity
of problems such as the satisfiability problem or the model-checking problem for F . In this
paper, we focus on the first three aspects. Very often, the second aspect is solved by giving
a decidable algebraic characterization of the syntactic monoid. Apart from pure decidability,
this also has the advantage that several closure properties come for free by Eilenberg’s Variety
Theorem [12].

The algebraic approach has been very successful for finite words [8, 33, 35, 41]. It has been
generalized in different directions. One such direction is to extend the algebraic setting in
order to be able to characterize more fragments. The syntactic monoid of a language and of its
complement are identical. Hence, if a fragment is not closed under complementation, then only
considering the syntactic monoid is not sufficient. To overcome this obstacle, Pin introduced
ordered monoids and positive varieties [24]. Other fragments, such as stutter-invariant logics,
are not closed under inverse homomorphisms. The solution to this problem was given by
Straubing who suggested to use homomorphisms instead of semigroups or monoids. This led
to the notion of C-varieties [34, 5]. More recently Gehrke, Grigorieff, and Pin developed a
general equational theory for regular languages [16].

Another way to generalize the algebraic approach is to consider other models than finite
words such as infinite words [23], finite trees [3, 14], Mazurkiewicz traces [11], or data words [2],
just to name a few. In most cases, considering models other than finite words requires a new
notion of recognition or even new algebraic objects. The characterizations we give in this paper
rely on an extended notion of recognition based on so-called linked pairs. As it turns out, purely
algebraic conditions are not sufficient in this setting, but together with a topological property
they work well.

When considering language classes for first-order fragments over finite words, there are two
similar hierarchies within the class of star-free languages which take center stage. The first
one is the dot-depth hierarchy introduced by Cohen and Brzozowski [6], and the second one
is the Straubing-Thérien hierarchy [31, 36]. There is a tight connection between the two in
terms of so-called wreath products [32, 40]. Both hierarchies are strict [4] and each level
forms a variety [6, 26]. Thomas showed that there is a one-to-one correspondence between
the quantifier alternation hierarchy of first-order logic and the dot-depth hierarchy [38]. This
correspondence holds if one allows [<,+1,min,max] as a signature. The same correspondence
between the Straubing-Thérien hierarchy and the quantifier alternation hierarchy holds if we
restrict the signature to [<], cf. [26]. In particular, all decidability results for the dot-depth
hierarchy and the Straubing-Thérien hierarchy yield decidability of the membership problem

2

Fragment Algebra + Topology

Σ1[<] x ≤ 1 + Cantor sets [23]

BΣ1[<] J -trivial +
Boolean combination

[23]
of Cantor sets

BΣ1[<,+1,min] B1 +
Boolean combination

Thm. 17
of Cantor sets

FO2[<] DA +
closed in strict

[10]
alphabetic topology

FO2[<,+1] LDA +
closed in strict

[18]
factor topology

Σ2[<] eMee ≤ e +
open in

[10]
alphabetic topology

Σ2[<,+1] ePee ≤ e +
open in

[18]
factor topology

Table 1: Fragments of first-order logic over infinite words Γω

for the respective levels of the quantifier alternation hierarchy and vice versa. Unfortunately,
effectively determining the level of a language in the dot-depth hierarchy or the Straubing-
Thérien hierarchy is one of the most challenging open problems in automata theory. Knast has
shown that the first level of the dot-depth hierarchy is decidable [20], and Simon has given a
decidable characterization for the first level of the Straubing-Thérien hierarchy [29]. These two
levels and the first two half levels of each hierarchy are the only decidable cases known so far,
see e.g. [25] for an overview and [17] for level 3/2 of the dot-depth hierarchy. All of the above
decidability results have been generalized to infinite words [1, 10, 18, 23]; the sole exception
is dot-depth one. The extension of Knast’s result to infinite words is the main purpose of
this paper. So far, all generalizations for infinite words rely on a combination of algebraic and
topological properties. As we shall see, dot-depth one is no exception.

Dot-depth one over finite words corresponds to the Boolean closure of existential first-order
logic with predicates < for order, +1 for successor, min for first position, and max for last
position. This fragment is denoted by BΣ1[<,+1,min,max]. In our setting min and max are
unary predicates rather than constants because a predicate max also makes sense for infinite
words. Note that this does not change the expressive power of the fragment BΣ1 and that
over infinite words the fragments BΣ1[<,+1,min] and BΣ1[<,+1,min,max] coincide. From
an algebraic and topological point of view it is more natural to work with finite and infinite
words simultaneously. However, over Γ∞ = Γ∗ ∪ Γω there is one major difference between
BΣ1[<,+1,min] without max and BΣ1[<,+1,min,max] with max: The latter fragment can
distinguish finite from infinite words whereas BΣ1[<,+1,min] cannot differentiate between Γ∗

and Γω. In particular, every BΣ1[<,+1,min]-definable language with an infinite word also
contains finite words, i.e., BΣ1[<,+1,min] has the finite model property.

In all variations (with or without max-predicate; infinite words Γω only or finite and infinite
words Γ∞) we obtain the same algebraic characterization B1 as Knast did for finite words.
In addition, we have a topological condition which is being a finite Boolean combination of
open sets. Here, open means open in the Cantor topology. This topological property is often

3

denoted by Fσ∩Gδ, see e.g. [39]. As it turns out, there are two slightly different versions of the
Cantor topology on Γ∞. The first one is given by base sets uΓ∞ for u ∈ Γ∗. This corresponds
to the fragment BΣ1[<,+1,min] without max over Γ∞. The second version is given by base
sets of the form uΓω and {u} for u ∈ Γ∗, i.e., finite words are isolated points. This second
version yields a characterization of BΣ1[<,+1,min,max] with max over Γ∞. In our setting,
it is more convenient to work with some equivalent linked pair condition instead of using the
topology itself.

Related Work

Various fragments over infinite words have been considered. Existential first-order logic is
denoted by Σ1 and its Boolean closure is BΣ1. For two-variable first-order logic we write FO2.
The second level of the alternation hierarchy is denoted by Σ2. It contains all formulas in prenex
normal form with two blocks of quantifiers, starting with a block of existential quantifiers.
The prefix of a word can be defined in both FO2[<] and Σ2[<]. Hence, FO2[<,+1,min] =
FO2[<,+1] and Σ2[<,+1,min] = Σ2[<,+1]. In contrast, BΣ1[<,+1] is a strict subclass of
BΣ1[<,+1,min]. The fragment Π2 consists of negations of formulas in Σ2. Since regular
languages are effectively closed under complementation, decidability for Σ2 yields decidability
for Π2.

An overview of effective characterizations can be found in Table 1. For the formal definitions
of the algebraic and topological properties we refer to [10, 18, 23]. The first decision procedures
for FO2[<] and FO2[<,+1] are due to Wilke [42], and the first effective characterization of
Σ2[<] was given by Bojańczyk [1]. Among the topologies in Table 1, the Cantor topology is
the coarsest and the strict factor topology is the finest topology. The relation between the
other topologies is depicted in Figure 1.

Cantor top. alphabetic top.

factor top.

strict alphabetic top.

strict factor top.

Figure 1: Topologies for infinite words.

2 Preliminaries

2.1 Languages

Throughout, Γ is a finite nonempty alphabet. The set of finite words over Γ is denoted by
Γ∗. The empty word is 1, and Γ+ = Γ∗ \ {1} is the set of finite, nonempty words. The set
of infinite words is Γω and Γ∞ = Γ∗ ∪ Γω is the set of finite and infinite words. A language
is a subset of Γ∞. Let L ⊆ Γ∗ and K ⊆ Γ∞. We set LK = {uα ∈ Γ∞ | u ∈ L, α ∈ K},
L∗ = {u1 · · · un | n ∈ N, ui ∈ L}, and Lω = {u1u2 · · · | ui ∈ L}, i.e., L∗ is the set of finite
products of words in L and Lω is the set of infinite products. We have 1ω = 1. Let α ∈ Γ∞

and u ∈ Γ∗. The word u is a factor of α if α = vuβ for some v ∈ Γ∗ and β ∈ Γ∞. It is a prefix
if we can choose v = 1 and it is a suffix if we can choose β = 1. We write u ≤ α if u is a
prefix of α. The length of α is |α| and we have |α| ∈ N∪ {∞}. For k ∈ N, the k-factor alphabet
of α is alphk(α) = {u ∈ Γk | α ∈ Γ∗uΓ∞}. If X ⊆ N, then α(X) is the word comprising all

4

positions of α which are contained in X. By extension, α(x) is the x-th letter of α. Therefore,
α = α(1) · · · α(n) if |α| = n ∈ N and α = α(1)α(2) · · · if |α| = ∞. We say that a position x
of α is covered by a factor u of a factorization α = vuβ if |v| < x ≤ |vu|. If the position at
which u occurs in α is clear from the context, then we say that u covers x. Similarly, a set
of positions is covered by a set of factors if each position is covered by some factor. Here,
factors are understood with implicit positions of occurrence. A monomial is a language of
the form w1Γ

∗w2 · · ·Γ
∗wn, of the form w1Γ

∗w2 · · ·Γ
∗wnΓ

∞, or of the form w1Γ
∗w2 · · ·Γ

∗wnΓ
ω

for n ≥ 1 and wi ∈ Γ∗. The degree of the monomial is |w1 · · ·wn|. A language L ⊆ Γ∗ of
finite words has dot-depth one if it is a finite Boolean combination of monomials of the form
w1Γ

∗w2 · · ·Γ
∗wn. Similarly, a language L ⊆ Γω has dot-depth one if it is a finite Boolean

combination of monomials w1Γ
∗w2 · · ·Γ

∗wnΓ
ω.

2.2 First-Order Logic

We consider first-order logic FO = FO[<,+1,min,max] interpreted over finite and infinite
words. In the context of logic we think of words as labeled linearly ordered positions. Variables
range over positions of the word. Atomic formulas are ⊤ for true, the unary predicates λ(x) = a,
min(x) and max(x), and the binary predicates x < y and x = y+1 for variables x, y and a ∈ Γ.
The formula λ(x) = a means that x is labeled with a, and the formula min(x) (resp. max(x))
expresses that x is the first (resp. last) position of the word. The formula x < y is true if x is
strictly smaller than y, and x = y + 1 means that x is the successor position of y. Formulas
can be composed by Boolean connectives and by the quantifiers ∃x : ϕ and ∀x : ϕ for ϕ ∈ FO.
The semantics of the connectives is as usual. A sentence is a formula without free variables.
For a sentence ϕ and for α ∈ Γ∞ we write α |= ϕ if ϕ interpreted over the word α is true. The
language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

Let C ⊆ {<,+1,min,max}. The fragment Σ1[C] of first-order logic consists of all formulas
in FO in prenex normal form with only one block of existential quantifiers which, apart from
label-predicates, use only predicates in C. The fragment BΣ1[C] contains all finite Boolean
combinations of formulas in Σ1[C]. Let L ⊆ Γ∞ be a language and F be a fragment of first-
order logic. Then L is definable in F if there exists some sentence ϕ ∈ F such that L = L(ϕ).
Sometimes we want to restrict the interpretation of the formula to some subset K ⊆ Γ∞. We
say that L is definable in F over K if there is a sentence ϕ ∈ F with L = {α ∈ K | α |= ϕ}.
We frequently use this with K = Γ∗ or K = Γω. Note that max(x) is false for all positions x of
an infinite word, i.e., a language L is definable in BΣ1[C] over Γω if and only if L is definable
in BΣ1[C,max] over Γω.

2.3 Finite Semigroups and Finite Monoids

Let S be a semigroup. An element x ∈ S is idempotent if x2 = x. If S is finite, then there
exists a number n ≥ 1 such that the element xn is idempotent for all x ∈ S. The monoid
S1 generated by S is defined as follows. If S is a monoid, then we set S1 = S; otherwise
S1 = S ∪ {1} is the monoid obtained by adding a new neutral element 1. Green’s relations R
and L are an important means for structural analysis in the theory of finite semigroups. For
x, y ∈ S we set

x R y iff xS1 = yS1, x ≤R y iff xS1 ⊆ yS1,

x L y iff S1x = S1y, x ≤L y iff S1x ⊆ S1y.

5

Remember that xS1 = {xz | z ∈ S1} and S1x = {zx | z ∈ S1}. We often use these relations
in the following way: The relation x ≤R y holds if and only if there exists z ∈ S1 such that
x = yz. Likewise, x ≤L y if and only if there exists z ∈ S1 such that x = zy. As usual, we
write x <R y if x ≤R y but not x R y. The relation <L is defined similarly.

A finite semigroup S is in B1 if for all idempotents e, f ∈ S and for all s, t, x, y ∈ S we have

(exfy)nexf(tesf)n = (exfy)nesf(tesf)n

for n ≥ 1 such that all n-th powers are idempotent in S. A semigroup S is aperiodic if for every
x ∈ S there exists n ≥ 1 such that xn = xn+1. In the equation for B1 we can set e, f, s, t and y
to xn which yields xnx = xn. Hence, every semigroup in B1 is aperiodic. Another important
property of B1 is given in Lemma 3 below.

The theory of first-order fragments over finite nonempty words is more concise with semi-
groups rather than with monoids. However, we want to treat finite and infinite words simul-
taneously, and our approach is heavily based on allowing the empty word 1 (and the fact that
1ω = 1). On the other hand, it is crucial that the idempotents e and f in the above equation
for B1 correspond to nonempty words. We therefore consider homomorphisms h : Γ∗ → M to
finite monoids. Membership in B1 is then formulated as h(Γ+) ∈ B1.

2.4 Recognizability

A language L ⊆ Γ∞ is regular if it is recognized by an extended Büchi automaton [7], i.e., a
finite automaton with two sorts of final states; the first sort is for accepting finite words and
the second is for accepting infinite words by a Büchi condition. Alternatively, a language is
regular if and only if it is definable in monadic second-order logic [39]. We use a more algebraic
framework for recognition based on finite monoids.

Let h : Γ∗ → M be a homomorphism to a finite monoid M . If h is understood and s ∈ M ,
then we write [s] for the language h−1(s). A linked pair of M is a pair (s, e) ∈ M ×M such
that e is idempotent and s = se. For every word α ∈ Γ∞ there exists a linked pair (s, e) of M
such that α ∈ [s][e]ω by Ramsey’s Theorem [27]. A language L ⊆ Γ∞ is recognized by h if

L =
⋃

{[s][e]ω | (s, e) is a linked pair with [s][e]ω ∩ L 6= ∅} .

The syntactic congruence of L ⊆ Γ∞ is defined as follows. For nonempty words p, q ∈ Γ+ we
let p ≡L q if for all words u, v, w ∈ Γ∗ the following equivalences hold:

upvwω ∈ L ⇔ uqvwω ∈ L and

u(pv)ω ∈ L ⇔ u(qv)ω ∈ L.

Remember that 1ω = 1. This relation indeed is a congruence and the congruence classes
[p]L = {q ∈ Γ+ | p ≡L q} constitute the syntactic semigroup Synt(L). The syntactic monoid
Synt1(L) is the monoid generated by Synt(L), i.e., Synt1(L) = S1 for S = Synt(L). The
syntactic homomorphism hL : Γ∗ → Synt1(L) is defined by hL(a) = [a]L for a ∈ Γ. A
variant of the syntactic monoid is the pure syntactic monoid Synt+(L) = Synt(L)∪̇ {1}, i.e.,
we add a new neutral element to Synt(L), even if Synt(L) is a monoid. The pure syntactic
homomorphism h+ : Γ∗ → Synt+(L) is defined by h+(p) = hL(p) for p 6= 1. The only possible
difference between h+ and hL is their behavior on the empty word. Note that

hL(Γ
+) = h+(Γ

+) = Synt(L) ⊆ Synt1(L) ⊆ Synt+(L)

6

and Synt+(L) \ {1} = Synt(L) (Synt+(L). A language L ⊆ Γ∞ is regular if and only if both
Synt(L) is finite and hL recognizes L, see e.g. [23, 39]. Moreover, L is recognized by its syntactic
homomorphism hL if and only if it is recognized by its pure syntactic homomorphism h+. In
contrast to hL, the pure syntactic homomorphism has the property that h+(u) = 1 if and only
if u = 1.

Lemma 1. Let L ⊆ Γ∞ be recognized by a homomorphism h : Γ∗ → M such that h(u) = 1
only if u = 1. Then both L ∩ Γ∗ and L ∩ Γω are also recognized by h.

Proof: We have [s] = [s][1]ω ⊆ Γ∗. Moreover, [s][e]ω ⊆ Γω if e 6= 1. This proves the claim. �

3 Algebraic Properties

This section contains simple algebraic and combinatorial properties of the class B1. The
following elementary lemma gives a mechanism for obtaining idempotent stabilizers with a
nonempty preimage: Every sufficiently long word u has a short prefix p admitting a nonempty
idempotent stabilizer e.

Lemma 2. Let h : Γ∗ → M be a homomorphism to a finite monoid M and let u ∈ Γ∗ with
|u| = |M |−1. Then there exists a prefix p of u and an idempotent e ∈ h(Γ+) with h(p)e = h(p).

Proof: Let a ∈ Γ and let 1 = p0 < p1 < · · · < p|M | = ua be the prefixes of ua. By the
pigeonhole principle, there exist 0 ≤ i < j ≤ |M | such that h(pi) = h(pj). In particular, we
have i ≤ |M | − 1 and pi is a prefix of u. Let piq = pj for q ∈ Γ+. We set e = h(q)n to be the
idempotent element generated by h(q). Now, h(p)e = h(p) for p = pi. �

Next we state the key property of B1, a substitution rule valid in certain situations. Much
of the work in proving our main theorem is devoted to guarantee its premises.

Lemma 3. Let S ∈ B1. If u R uexf and esfv L v for idempotents e, f ∈ S and for
u, v, x, s ∈ S, then uexfv = uesfv.

Proof: Choose n ≥ 1 such that all n-th powers in S are idempotent. Since u R uexf and
v L esfv, there exist y, t ∈ S1 with u = uexfy and v = tesfv. In particular, u = u(exfy)n

and v = (tesf)nv. We can assume y, t ∈ S because e and f are idempotent. Using the equation
for B1 we conclude

uexfv = u(exfy)nexf(tesf)nv

= u(exfy)nesf(tesf)nv = uesfv. �

Proposition 4 below gives an important combinatorial feature of B1. It shows that if the
R-class changes when reading a word from left to right (resp. the L-class changes when reading
the word from right to left), then this happens with a new factor of bounded length.

Proposition 4. Let h : Γ∗ → M be a homomorphism with h(Γ+) ∈ B1 and let k ≥ |M |. For
all a ∈ Γ and u, x ∈ Γ∗ with |x| ≥ k we have:

1. h(u) R h(ux) >R h(uxa) ⇒ alphk(x) 6= alphk(xa).

2. h(u) L h(xu) >L h(axu) ⇒ alphk(x) 6= alphk(ax).

7

Proof: By left-right symmetry, it suffices to show “1”. Assume h(u) R h(ux) >R h(uxa) and
alphk(x) = alphk(xa). Let w be the suffix of length k of xa. By Lemma 2, there exist y, z ∈ Γ∗

with w = yza and h(y)e = h(y) for some idempotent e ∈ h(Γ+) because |w| ≥ |M |. Let |y| be
maximal with this property. Since w ∈ alphk(xa) = alphk(x), we can write x = syzatz for some
s, t ∈ Γ∗ such that y is a suffix of yzat. Note that there is indeed at least one letter between
the two occurrences of z. Let u′ = h(usy) and x′ = h(zat). We have u′ = u′e, u′x′ = u′x′e,
and there exists y′ ∈ h(Γ+) with u′ = u′x′y′. Therefore, we have u′x′ = u′(ex′ey′)nex′e(eeee)n

for all n ∈ N, and by h(Γ+) ∈ B1 this equals u′(ex′ey′)neee(eeee)n = u′ for sufficiently large n.
Thus u′ = u′x′ and h(u) R u′ = u′x′x′ R h(uxa), contradicting the assumption. �

4 The Fragment BΣ1[<,+1,min] over Γ∞

This section contains our main result Theorem 5. We give an effective characterization of the
first-order fragment BΣ1[<,+1,min] over finite and infinite words.

Over Γ∞, the fragment BΣ1[<,+1,min] yields a strict subclass of the BΣ1[<,+1,min,max]-
definable languages. For example, Γ∗a is not definable in alternation-free first-order logic
without max-predicate. On the other hand, the language aΓ∞ is definable in BΣ1[min]. We
pinpoint this asymmetry of BΣ1[<,+1,min] to some topological condition (expressed in terms
of linked pairs).

Theorem 5. Let L ⊆ Γ∞ be regular. The following assertions are equivalent:

1. L is a finite Boolean combination of monomials of the form w1Γ
∗w2 · · ·Γ

∗wnΓ
∞.

2. L is definable in BΣ1[<,+1,min].

3. The syntactic homomorphism hL : Γ∗ → Synt1(L) satisfies

a) Synt(L) ∈ B1, and

b) for all linked pairs (s, e) and (t, f) of Synt1(L) with s R t we have [s][e]ω ⊆ L ⇔
[t][f]ω ⊆ L.

4. L is recognized by a homomorphism h : Γ∗ → M satisfying

a) h(Γ+) ∈ B1, and

b) for all linked pairs (s, e) and (t, f) of M with s R t we have [s][e]ω ⊆ L ⇔ [t][f]ω ⊆
L.

Remark 6. Suppose h : Γ∗ → M recognizes a regular language L and consider the condition
[s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L for all linked pairs (s, e) and (t, f) of M with s R t. This condition is
equivalent to L being a finite Boolean combination of open sets, cf. [23, Theorem VI.3.7]. Here,
open means open in the Cantor topology defined by the base sets uΓ∞ for u ∈ Γ∗. Therefore,
the conditions “3b” and “4b” in Theorem 5 are actually topological properties.

Remark 7. For languages over Γ∞ there is also the concept of weak recognition. A language
L is weakly recognized by a homomorphism h : Γ∗ → M to a finite monoid if

L =
⋃

{[s][e]ω | (s, e) is a linked pair with [s][e]ω ⊆ L} .

If a language L ⊆ Γ∞ is recognized by a homomorphism h, then it is weakly recognized by h. In
general the converse is not true. However, if in addition [s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L for all linked
pairs (s, e) and (t, f) of M with s R t, then weak recognition implies strong recognition. Suppose
[s][e]ω ∩ L 6= ∅. Then there exists a linked pair (t, f) with [t][f]ω ⊆ L and [s][e]ω ∩ [t][f]ω 6= ∅.
The latter condition implies s R t and hence [s][e]ω ⊆ L.

8

In the remainder of this section we prove Theorem 5. The implications “1 ⇒ 2” and “2 ⇒ 3”
are Lemmas 8, 9 and 10. The most involved part “4 ⇒ 1” is shown in the second half of this
section.

Lemma 8. Let n ≥ 1 and let w1, . . . , wn ∈ Γ∗.

1. The monomial w1Γ
∗w2 · · ·Γ

∗wnΓ
∞ is defined by a sentence in Σ1[<,+1,min] with quan-

tifier depth |w1 · · ·wn|.

2. The monomial w1Γ
∗w2 · · ·Γ

∗wn is defined by a sentence in Σ1[<,+1,min,max] with quan-
tifier depth |w1 · · ·wn|.

Proof: We write ≡ for syntactic equivalence of formulas. For variable vectors x = (x1, . . . , xℓ)
and y = (y1, . . . , ym) we introduce the shortcuts ∃x ≡ ∃x1 · · · ∃xℓ, min(x) ≡ min(x1),
max(x) ≡ max(xℓ), x < y ≡ xℓ < y1, and λ(x) = a1 · · · aℓ for

∧

1≤j≤ℓ

λ(xj) = aj ∧
∧

1≤j<ℓ

xj+1 = xj + 1.

Let L = w1Γ
∗w2 · · ·Γ

∗wnΓ
∞. We introduce variable vectors xi = (xi,1, . . . , xi,|wi|) for every

i ∈ {1, . . . , n}. Then L is defined by the following sentence ϕ:

∃x1 · · · ∃xn : min(x1) ∧
∧

1≤i≤n

λ(xi) = wi ∧
∧

1≤i<n

xi < xi+1.

The second term of the conjunction ensures that each xi corresponds to a factor wi and the
first term says that any model starts with w1. The third term makes sure that the factors wi

occur in the correct order. The sentence for w1Γ
∗w2 · · ·Γ

∗wn is ϕ ∧ max(xn). �

Lemma 9. If L ⊆ Γ∞ is definable in BΣ1[<,+1,min,max], then Synt(L) ∈ B1.

Proof: Let e, f, s, t, x, y ∈ Γ+, let n ≥ 1 and define

p = (enxfny)nenxfn(tensfn)n,

q = (enxfny)nensfn(tensfn)n.

For all u, v, w ∈ Γ∗ and for all sentences ϕ ∈ Σ1[<,+1,min,max] with quantifier depth at
most n, we show upvwω |= ϕ if and only if uqvwω |= ϕ. Let ψ be quantifier free such that
ϕ = ∃x1 · · · ∃xn : ψ. Suppose upvwω |= ϕ and consider positions xi such that ψ is true. The
consecutive positions in this assignment induce a sequence of factors w1, . . . , wm of upvwω with
m ≤ n and |wi| ≤ n for all i. Since this sequence of nonadjacent factors appears in the same
order in uqvwω, we see that uqvwω |= ϕ. Showing that uqvwω |= ϕ implies upvwω |= ϕ is
symmetric.

The equivalence of u(pv)ω |= ϕ and u(qv)ω |= ϕ is similar. Thus the syntactic semigroup of
every BΣ1[<,+1,min,max]-definable language is in B1. �

Lemma 10. Let L ⊆ Γ∞ be definable in BΣ1[<,+1,min] and let M be a finite monoid. For
every surjective homomorphism h : Γ∗ → M which recognizes L we have [s] ⊆ L ⇔ [s][e]ω ⊆ L
for every linked pair (s, e) of M .

9

Proof: Let ϕ ∈ Σ1[<,+1,min] be a sentence. If α ∈ Γ∞ models ϕ, then there is a prefix u of
α such that for every β ∈ Γ∞ we have uβ |= ϕ. This is because α |= ϕ yields some satisfying
assignment for the variables, and positions beyond the last position of this assignment have no
influence. Let L be defined by a sentence in BΣ1[<,+1,min] with quantifier depth d. Consider
α = ŝ êω for ŝ ∈ [s] and ê ∈ [e]. By the above consideration there exists a finite prefix u = ŝ ên

of α such that α and u model the same formulas in Σ1[<,+1,min] with quantifier depth at
most d. Now, u ∈ L if and only if α ∈ L. Therefore, [s] ⊆ L if and only if [s][e]ω ⊆ L. �

In the remainder of this section we show that condition “4” in Theorem 5 is sufficient. To
this end we show that if α and β are contained in the same monomials up to a certain degree,
then their images in a semigroup in B1 are R-related. The main idea is to apply Lemma 3.
The first step is to show that under certain conditions we can replace several factors in finite
words (Lemma 11). To formulate these conditions we introduce the R(k)-factorization and the
L(k)-factorization. Then the substitution principle in Lemma 11 is extended to infinite words
(Lemma 12). Finally, in Proposition 13 we show that in B1 we can guarantee the premises of
Lemma 12.

We think of a factor ui as being equipped with the position xi of its first letter. Consequently,
a factorization F is a tuple (x1, u1, . . . , xℓ, uℓ) ∈ (N× Γ+)ℓ with ℓ ≥ 0 and xi+1 ≥ xi + |ui| for
all 1 ≤ i < ℓ, i.e., we assume that the factors ui are in increasing order and nonoverlapping.
The type of F is the sequence of words (u1, . . . , uℓ). We say that F is a factorization of α if
ui = α({xi, . . . , xi + |ui| − 1}) for all 1 ≤ i ≤ ℓ.

We want to merge two factorizations F = (x1, u1, . . . , xℓ, uℓ) and G = (y1, v1, . . . , ym, vm)
of α. In order to define the join F ∨G of F and G, we combine overlapping factors of F and G
into one factor, see Figure 2 for an illustration. More precisely, let Xi = {xi, . . . , xi + |ui| − 1}
be the positions of the factor ui and let Yi = {yi, . . . , yi + |vi| − 1} be the positions of the
factor vi. We say that X =

⋃ℓ
i=1

Xi is the set of positions of F . Analogously, Y =
⋃m

i=1
Yi

is the set of positions of G. We set Z = X ∪ Y . Let {Z1, . . . , Zn} be the finest partition
of Z such that every class Zj is a union of sets Xi and sets Yi. Therefore, if x < y < z and
x, z ∈ Zj, then y ∈ Zj ; otherwise we could split Zj into two classes Zj ∩ {s ∈ N | s < y} and
Zj ∩ {s ∈ N | s > y}, resulting in a finer partition. Therefore, each α(Zj) is a factor of α. Let
zj be the minimal element in Zj and suppose z1 < · · · < zn. Now, the join of F and G is

F ∨G =
(

z1,α(Z1), . . . , zn,α(Zn)
)

.

It is easy to see that the operation ∨ on factorizations of α is associative and commutative.
An important algebraic concept in our proofs is the R(k)-factorization and its left-right

dual, the L(k)-factorization. Let h : Γ∗ → M be a homomorphism to a finite monoid M . The

α · · ·a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14

F
G

F ∨G

Figure 2: The join F ∨ G of the factorizations F and G obtained by merging overlap-
ping factors. Here, we have F = (1, a1a2a3, 8, a8a9a10, 12, a12a13) and G =
(1, a1a2, 6, a6, 7, a7a8, 10, a.10a11). The join of these two factorizations is F ∨ G =
(1, a1a2a3, 6, a6, 7, a7a8a9a10a11, 12, a12a13). Note that nonoverlapping adjacent fac-
tors are not merged.

10

R-factorization of a word α is given by the positions where the R-class changes when reading
α from left to right. More precisely, let α = a1w1 · · · ar−1wr−1arβ with r ≥ 0, ai ∈ Γ, wi ∈ Γ∗

and β ∈ Γ∞ such that

h(a1w1 · · · ai) R h(a1w1 · · · aiwi) >R h(a1w1 · · · ai+1)

for all 1 ≤ i < r and h(a1w1 · · · ar) R h(a1w1 · · · arw) for every finite prefix w of β. Let zi
be the position of ai in the above factorization. The R-factorization of α is (z1, a1, . . . , zr, ar).
For every word α, the above factorization is unique and its size r is at most |M |. Note that
x1 = 1 for every nonempty word α, even if h(a1) = 1.

We extend this definition by taking the contexts of the R-factorization into account. Let
k ∈ N and consider the R-factorization (z1, a1, . . . , zr, ar) of α. Let Fi = (z′i, wi) with z′i =
max {1, zi − k} and wi = α({zi − k, . . . , zi + k}), i.e., wi is the factor of α induced by all
positions z such that |z − zi| ≤ k. The R(k)-factorization of α is F1 ∨ · · · ∨ Fr. Let F =
(x1, u1, . . . , xℓ, uℓ) be the R(k)-factorization of α and let X be the set of its positions. We
have |X| ≤ |M | (2k + 1) − k since at most k + 1 positions come from the first position of
the R-factorization and all other positions of the R-factorization contribute at most 2k + 1
positions to X. In particular, |X| ≤ 2k2 if k ≥ |M |. We have α = u1w1 · · · uℓ−1wℓ−1uℓ β
for some wi ∈ Γ∗, β ∈ Γ∞ such that the ui’s cover the positions of the R-factorization and
moreover, the R-class changes at neither the k first positions of any ui with i > 1 nor at the
k last positions of any ui with i < ℓ.

The L-factorization of a finite word w ∈ Γ∗ is the left-right dual of the R-factorization: Let
w = w1a1 · · ·wrar with r ≥ 0, ai ∈ Γ, and wi ∈ Γ∗ such that

h(ai−1wiai · · ·wrar) <L h(wiai · · ·wrar) L h(ai · · ·wrar)

for all 1 ≤ i ≤ r. The L-factorization of w is then given by the factors ai of length one together
with their positions in w.

As for R-factorizations, we extend this definition by taking contexts into account. Let
(z1, a1, . . . , zr, ar) be the L-factorization of w. Let k ∈ N and let Gi = (z′i, wi) with z′i =
max {1, zi − k} and let wi = w({zi − k, . . . , zi + k}) be the factor of w induced by all po-
sitions z such that |z − zi| ≤ k. Then, the L(k)-factorization of w is G1 ∨ · · · ∨ Gr. Let
G = (y1, v1, . . . , ym, vm) be the L(k)-factorization of w and let Y be the set of its positions. As
for R(k)-factorizations, we have |Y | ≤ 2k2 if k ≥ |M |.

Lemma 11. Let h : Γ∗ → M with h(Γ+) ∈ B1 and let k ≥ |M |. If u = w0u1w1 · · · uℓwℓ and
v = w0v1w1 · · · vℓwℓ for words ui, vi, wi ∈ Γ∗ such that the wi’s in u cover the positions of the
R(k)-factorization of u and the wi’s in v cover the positions of the L(k)-factorization of v,
then h(u) = h(v).

Proof: The proof goes as follows. Since k is large enough, we find a short prefix pi and a short
suffix qi of each wi admitting idempotent stabilizers fi and ei. Appending these prefixes and
suffixes to the ui’s and vi’s then allows us to apply Lemma 3.

We can assume that each wi covers the positions of a factor of theR(k)-factorization of u or of
a factor of the L(k)-factorization of v. In particular, |w0| , |wℓ| ≥ k and |wi| ≥ 2k for 0 < i < ℓ.
By Lemma 2 and its left-right dual, there exist idempotents f1, . . . , fℓ, e0, . . . , eℓ−1 ∈ h(Γ+)
such that each wi admits a factorization wi = piriqi with |pi| ≤ k and |qi| ≤ k satisfying

h(pi) = h(pi) fi for 0 < i ≤ ℓ,

h(qi) = ei h(qi) for 0 ≤ i < ℓ.

11

In particular, we can assume p0 = 1 = qℓ. Let xi = qi−1uipi and si = qi−1vipi for 1 ≤ i ≤ ℓ.
Then, u = r0x1r1 · · · xℓrℓ and s = r0s1r1 · · · sℓrℓ, and the ri’s in u cover the positions of the
R-factorization of u, whereas the ri’s in v cover the positions of the L-factorization of v. Thus

h(r0x1 · · · ri−1) R h(r0x1 · · · ri−1) · ei−1h(xi)fi,

ei−1h(si)fi · h(ri · · · sℓrℓ) L h(ri · · · sℓrℓ).

An ℓ-fold application of Lemma 3 yields

h(u) = h(r0x1 · · · rℓ−2xℓ−1rℓ−1xℓrℓ)

= h(r0x1 · · · rℓ−2xℓ−1rℓ−1sℓrℓ)

= h(r0x1 · · · rℓ−2sℓ−1rℓ−1sℓrℓ)

= · · ·

= h(r0s1 · · · rℓ−2sℓ−1rℓ−1sℓrℓ) = h(v).

We can think of the above equations as converting h(u) into h(v) by using substitution rules
xi → si. Note that the image under h is preserved only when applying these rules from right
to left. �

Next, we give a version of Lemma 11 for finite and infinite words. The problem is that
there is no canonical choice for the L(k)-factorization of an infinite word α. We overcome this
obstacle by fixing a type and considering L(k)-factorizations of this type for infinitely many
prefixes of α.

Lemma 12. Let h : Γ∗ → M with h(Γ+) ∈ B1, let k ≥ |M | and let α = w0u1w1 · · · uℓwℓγ with
ui, wi ∈ Γ∗ and γ ∈ Γ∞ such that the wi’s cover the positions of the R(k)-factorization of α.
Let τ be a type such that for every finite prefix p of β ∈ Γ∞ there exists q ∈ Γ∗ with pq ≤ β and

• the L(k)-factorization G of pq has type τ, and

• pq = w0v1w1 · · · vℓwℓ for some vi ∈ Γ∗ such that the wi’s cover the positions of G.

Then s ≤R t for all linked pairs (s, e) and (t, f) of M with α ∈ [s][e]ω and β ∈ [t][f]ω.

Proof: Suppose α ∈ [s][e]ω and β ∈ [t][f]ω. We can write β ∈ p[f]ω with h(p) = t. By
assumption, there exists q ∈ Γ∗ such that pq is a prefix of β with L(k)-factorization G of type τ.
Moreover, we have a factorization pq = w0v1w1 · · · vℓwℓ such that the positions of G are covered
by the wi’s. Let r = h(pq). We have r ≤R t because p is a prefix of pq. By Lemma 11 we have
h(w0u1w1 · · · uℓwℓ) = h(w0v1w1 · · · vℓwℓ). Since we can write α ∈ w[e]ω such that h(w) = s
and w0u1w1 · · · uℓwℓ is a prefix of w, we conclude s ≤R r ≤R t. �

Let G = (y1, v1, . . . , ym, vm) be a factorization. A factorization F = (x1, u1, . . . , xℓ, uℓ) is a
subfactorization of G, denoted by F � G, if for every i ∈ {1, . . . , ℓ} there exists j ∈ {1, . . . ,m}
such that vj = puiq and xi = yj + |p| for some p, q ∈ Γ∗. Intuitively, this means that every
ui is covered by some vj. Let G and G′ be factorizations of the same type. Then, there is a
one-to-one correspondence between the positions of G and the positions of G′. Hence, every
subfactorization F � G induces a subfactorization F ′ � G′.

For every factorization F = (x1, u1, . . . , xℓ, uℓ) with x1 = 1 we define the monomial PF =
u1Γ

∗u2 · · ·Γ
∗uℓΓ

∞ of degree |u1 · · · uℓ|. Now, whenever F is a factorization of a word α, then
α ∈ PF . The converse does not hold, but if α ∈ PF , then there exists a factorization F ′ of α
with type (u1, . . . , uℓ). Next, we give a canonical way of turning a membership α ∈ PF into
such a factorization F ′.

12

Let P = u1Γ
∗u2 · · ·Γ

∗uℓΓ
∞ be a monomial and suppose α ∈ P . Write α = u1s1u2 · · · sℓ−1uℓ β

such that (|s1| , . . . , |sℓ−1|) is minimal in the lexicographic order, i.e., we first minimize |s1|,
then |s2|, and so on. We can think of this as greedily minimizing the lengths of the si’s
one after another. Now, the greedy factorization for α ∈ P is F ′ = (x1, u1, . . . , xℓ, uℓ) with
xi = 1 + |u1s1u2 · · · si−1|.

Proposition 13. Let h : Γ∗ → M be a homomorphism with h(Γ+) ∈ B1 and let α ∈ [s][e]ω

and β ∈ [t][f]ω for some linked pairs (s, e) and (t, f) of M . If α and β are contained in the
same monomials w1Γ

∗w2 · · ·Γ
∗wnΓ

∞ of degree at most 4 |M |2, then s R t.

Proof: Let k = |M |. We shall first give an intuitive outline of our proof. We consider the
R(k)-factorization F of α. This converts to a factorization F ′ of β. Then we choose a prefix
pq of β such that its L(k)-factorization G′ is “as far to the right as possible” in a certain sense.
Next, the factorization G′ of β is converted into a factorization G of α. This process makes use
of the factorization F ′ to ensure that on α the factorization G is sufficiently far to the right
of F . Using Proposition 4, the crucial step is to show that F ∨G and F ′ ∨G′ have the same
type. This step was inspired by a proof of Kĺıma [19]. Finally, applying Lemma 12, we obtain
s ≤R t. Since the situation is symmetric in α and β, we conclude s R t.

Let F = (x1, u1, . . . , xℓ, uℓ) be the R(k)-factorization of α. Note that α ∈ PF and the degree
of PF is at most 2k2. Therefore, β ∈ PF by assumption. Let F ′ = (x′1, u1, . . . , x

′
ℓ, uℓ) be the

greedy factorization for β ∈ PF .
There exists a type τ such that for every prefix p of β there is a prefix pq of β with an

L(k)-factorization of type τ. If β is an infinite word, then this means that there are infinitely
many such prefixes pq of β.

Consider some prefix pq of β with an L(k)-factorization G′ = (y′1, v1 . . . , y
′
m, vm) of type

τ such that y′ > x′ for as many positions y′ of G′ and positions x′ of F ′ as possible. Let
H ′ = F ′ ∨ G′. We have β ∈ PH′ and the degree of PH′ is at most 4k2. Thus α ∈ PH′ . Let
H be the greedy factorization for α ∈ PH′ . Further, let G � H be the subfactorization of H
induced by G′ � H ′. Note that we cannot directly transfer the factorization G′ of β to the
word α because we want that G = (y1, v1, . . . , ym, vm) is “sufficiently far to the right”. Next,
we show H = F ∨G.

We claim that for all i ∈ {1, . . . , ℓ}, for all 0 ≤ j < |ui|, and for all r ∈ {1, . . . ,m} we have

xi + j < yr iff x′i + j < y′r and

xi + j ≤ yr iff x′i + j ≤ y′r.

Using property “1” of Proposition 4, we see that F is the greedy factorization for α ∈ PF .
Therefore, x′i + j < y′r in β implies xi + j < yr in α. Similarly, x′i + j ≤ y′r in β implies
xi + j ≤ yr in α. Suppose xi + j < yr in α. Let

J = (x1, w1, . . . , xi, wi) ∨ (yr, vr, . . . , ym, vm).

We have α ∈ PJ and the degree of PJ is at most 4k2. Hence, β ∈ PJ and therefore x′i + j < y′r
by property “2” of Proposition 4 and by choice of pq. Suppose xi + j ≤ yr in α. If xi + j < yr,
then we are done by the previous consideration. So suppose xi+ j = yr. We have α ∈ PJ with
J defined as above. Now, β ∈ PJ implies x′i+ j ≤ y′r. Note that we cannot conclude x

′
i+ j = y′r

at this point. This proves the claim.
The above claim shows that indeed H = F ∨ G. Let p̃q̃ such that pq ≤ p̃q̃ ≤ β and p̃q̃ has

an L(k)-factorization of type τ. Then, by property “2” of Proposition 4, the factors of the

13

L(k)-factorization of p̃q̃ can only lie further to the right than those of the L(k)-factorization of
pq. Thus considering the L(k)-factorization of p̃q̃ instead of pq leads to the same factorization
H of α. Hence, Lemma 12 shows s ≤R t. The situation is symmetric in α and β. Therefore,
s R t. �

We are now ready to prove Theorem 5.
Proof (Proof of Theorem 5): “1 ⇒ 2”: By Lemma 8, every monomial w1Γ

∗w2 · · ·Γ
∗wnΓ

∞ is
definable in Σ1[<,+1,min]. Hence, the Boolean closure of such languages is contained in the
Boolean closure of Σ1[<,+1,min].

“2 ⇒ 3”: The condition Synt(L) ∈ B1 is shown in Lemma 9. By Lemma 10, for every linked
pair (s, e) of Synt1(L) we have [s] ⊆ L if and only if [s][e]ω ⊆ L. This is equivalent to the
condition for linked pairs in “3b”, see [10, Proposition 6.4]. The implication “3 ⇒ 4” is trivial
since L is recognized by its syntactic homomorphism.

“4 ⇒ 1”: We write α ≡ β if α and β are contained in the same monomials w1Γ
∗w2 · · ·Γ

∗wnΓ
∞

of degree at most 4 |M |2. Every ≡-class is a finite Boolean combination of such monomials.
It therefore suffices to show that β ≡ α ∈ L implies β ∈ L. Suppose α ∈ [s][e]ω ⊆ L and
β ∈ [t][f]ω for some linked pairs (s, e) and (t, f). By Proposition 13 we see that α ≡ β implies
s R t. Thus [t][f]ω ⊆ L and in particular β ∈ L. �

5 The Fragment BΣ1[<,+1,min,max] over Γ∗

In this section we give a new self-contained proof of Knast’s result for dot-depth one [20].
Another proof was given by Thérien [37]. Both Knast’s and Thérien’s proof rely on so-called
finite categories. Our proof uses only elementary algebraic concepts like Green’s relations. The
main part of the proof builds on Proposition 13. Note that a language L ⊆ Γ∗ is definable in
BΣ1[<,+1,min,max] over Γ∞ if and only if L is definable in this fragment over Γ∗.

Theorem 14. Let L ⊆ Γ∗. The following are equivalent:

1. L has dot-depth one, i.e., L is a finite Boolean combination of monomials w1Γ
∗w2 · · ·Γ

∗wn.

2. L is definable in BΣ1[<,+1,min,max].

3. Synt(L) ∈ B1.

4. L is recognized by some homomorphism h : Γ∗ → M with h(Γ+) ∈ B1.

Proof: “1 ⇒ 2”: By Lemma 8, every language of the form w1Γ
∗w2 · · ·Γ

∗wn is definable in
Σ1[<,+1,min,max]. Hence, the Boolean closure of such languages is contained in the Boolean
closure of Σ1[<,+1,min,max]. “2 ⇒ 3”: This is Lemma 9. The implication “3 ⇒ 4” is trivial.

“4 ⇒ 1”: We write u ≡ v if u, v ∈ Γ∗ are contained in the same monomials w1Γ
∗w2 · · ·Γ

∗wn

of degree at most 4 |M |2. Every ≡-class is a Boolean combination of such monomials. Thus it
suffices to show h(u) = h(v) whenever u ≡ v. Applying Proposition 13 with e = f = 1 shows
h(u) R h(v) if u ≡ v. The reversal of a word w = a1 · · · an with ai ∈ Γ is w′ = an · · · a1. Let u

′

and v′ be the reversals of u and v, respectively. Now, u ≡ v implies u′ ≡ v′. By Proposition 13
we have h(u′) R h(v′) in the reversal of M . This in turn is equivalent to h(u) L h(v) in M .
Thus h(u) = h(v) since M is aperiodic [23, Proposition A.2.9]. Therefore, for every x ∈ M the
language h−1(x) is a Boolean combination of monomials. �

14

6 The Fragment BΣ1[<,+1,min,max] over Γ∞

In this section, we incorporate the max-predicate. This leads to an effective characterization
of the first-order fragment BΣ1[<,+1,min,max] over finite and infinite words. The major
difference between Theorem 15 below and Theorem 5 is that the “topological” linked pair
condition is slightly different. To express this new condition, we have to use the pure syntactic
homomorphism which can distinguish between finite and infinite words.

Theorem 15. Let L ⊆ Γ∞ be regular. The following assertions are equivalent:

1. L is a finite Boolean combination of monomials w1Γ
∗w2 · · ·Γ

∗wnΓ
∞ and w1Γ

∗w2 · · ·Γ
∗wn.

2. L is definable in BΣ1[<,+1,min,max].

3. The pure syntactic homomorphism h+ : Γ∗ → Synt+(L) satisfies

a) Synt(L) ∈ B1, and

b) for all linked pairs (s, e) and (t, f) of Synt+(L) with s R t and e 6= 1 6= f we have
[s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L.

4. L is recognized by a homomorphism h : Γ∗ → M with h(u) = 1 only if u = 1 satisfying

a) h(Γ+) ∈ B1, and

b) for all linked pairs (s, e) and (t, f) of M with s R t and e 6= 1 6= f we have
[s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L.

Before proving Theorem 15 at the end of this section, we give a counterpart of Lemma 10
for infinite words.

Lemma 16. Let L ⊆ Γ∞ be definable in BΣ1[<,+1,min,max]. If h : Γ∗ → M is a surjective
homomorphism recognizing L such that h(u) = 1 only if u = 1, then [s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L
for all linked pairs (s, e) and (t, f) of M with s R t and e 6= 1 6= f .

Proof: Let ϕ ∈ Σ1[<,+1,min,max] be a sentence. If α ∈ Γω models ϕ, then there is a finite
prefix u of α such that for every β ∈ Γω we have uβ |= ϕ. This is because α |= ϕ yields
some satisfying assignment for the variables, and positions beyond the last position of this
assignment have no influence.

Let L be defined by a formula with quantifier depth d, let t = sx and s = ty for x, y ∈ M .
Consider α1 = ŝ êω for ŝ ∈ [s] and ê ∈ [e], and let x̂ ∈ [x], ŷ ∈ [y], and f̂ ∈ [f]. By
the above consideration, there exists a finite prefix u = ŝ ên of α1 such that β1 = u x̂ f̂ ω

models at least the same formulas in Σ1[<,+1,min,max] with quantifier depth at most d as
α1 does. Similarly, there exists a prefix v = u x̂ f̂ m of β1 such that α2 = v ŷ êω models at
least the same formulas in Σ1[<,+1,min,max] with quantifier depth at most d as β1 does. We
continue this process and construct α1, β1, α2, β2, . . . such that each word satisfies at least
the same formulas with quantifier depth d as its predecessor. There are only finitely many
nonequivalent Σ1[<,+1,min,max]-formulas with quantifier depth at most d. Hence, there
exist words αi ∈ [s]êω and βi ∈ [t]f̂ ω which satisfy the same formulas in Σ1[<,+1,min,max]
with quantifier depth at most d. Now, αi ∈ L if and only if βi ∈ L. This yields [s][e]ω ⊆ L if
and only if [t][f]ω ⊆ L. �

Combining Theorem 5, Theorem 14, and Lemma 16 yields the following proof of Theorem 15.
Proof (Proof of Theorem 15): “1 ⇒ 2”: By Lemma 8, every monomial w0Γ

∗w1 · · ·Γ
∗wnΓ

∞

or w0Γ
∗w1 · · ·Γ

∗wn is definable in Σ1[<,+1,min,max]. Therefore, the Boolean closure of such
languages is contained in BΣ1[<,+1,min,max].

15

“2 ⇒ 3”: Let L be defined by ϕ ∈ BΣ1[<,+1,min,max]. Lemma 9 shows Synt(L) ∈ B1.
The condition “3b” for the linked pairs follows from Lemma 16.

“3 ⇒ 4”: This is trivial, since h+ : Γ∗ → Synt+(L) recognizes L and h+ maps only the
empty word to 1 ∈ Synt+(L).

“4 ⇒ 1”: Consider Lω = L∩Γω and let L∞ be the union of the language Lω and the following
language over finite words:

⋃

{[s] | Lω ∩ [s][e]ω 6= ∅ for some linked pair (s, e) of M} .

Then L∞ satisfies condition “4” in Theorem 5 for the homomorphism h and hence L∞ is a
finite Boolean combination of monomials w1Γ

∗w2 · · ·Γ
∗wnΓ

∞. Since Γω is a finite Boolean
combination of languages Γ∗a and aΓ∞ for a ∈ Γ, we see that Lω = L∞∩Γω is a finite Boolean
combination of monomials w1Γ

∗w2 · · ·Γ
∗wnΓ

∞ and w1Γ
∗w2 · · ·Γ

∗wn. Consider L∗ = L ∩ Γ∗.
Lemma 1 shows that L∗ is recognized by h. Therefore, L is a finite Boolean combination of
monomials w0Γ

∗w1 · · ·Γ
∗wn by Theorem 14. Thus L = L∗ ∪ Lω is of the required form. �

7 The Fragment BΣ1[<,+1,min] over Γω

If we consider infinite words only, the predicate max is always false. Hence, the first-order frag-
ments BΣ1[<,+1,min,max] and BΣ1[<,+1,min] coincide. In this section we give an effective
characterization of this fragment for infinite words. It is a rather straightforward consequence
of Theorem 15.

Theorem 17. Let L ⊆ Γω be regular. The following assertions are equivalent:

1. L has dot-depth one, i.e., L is a finite Boolean combination of monomials of the form
w1Γ

∗w2 · · ·Γ
∗wnΓ

ω.

2. L is definable in BΣ1[<,+1,min] over Γω.

3. The pure syntactic homomorphism h+ : Γ∗ → Synt+(L) satisfies

a) Synt(L) ∈ B1, and

b) for all linked pairs (s, e) and (t, f) of Synt+(L) with s R t and e 6= 1 6= f we have
[s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L.

4. L is recognized by a homomorphism h : Γ∗ → M with h(u) = 1 only if u = 1 satisfying

a) h(Γ+) ∈ B1, and

b) for all linked pairs (s, e) and (t, f) of M with s R t and e 6= 1 6= f we have
[s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L.

Proof: “1 ⇒ 2”: If L is a Boolean combination of monomials w1Γ
∗w2 · · ·Γ

∗wnΓ
ω, then L can

also be written as a Boolean combination of monomials w1Γ
∗w2 · · ·Γ

∗wnΓ
∞ and Γ∗a for a ∈ Γ.

By Theorem 15 the language L is definable in BΣ1[<,+1,min,max] over Γ∞. Since max is
false for all positions of an infinite word, L is definable in BΣ1[<,+1,min] over Γω.

“2 ⇒ 3”: Let L be definable in the fragment BΣ1[<,+1,min] over Γω. Then L is definable
in BΣ1[<,+1,min,max] over Γ∞ and by Theorem 15 the claim follows. “3 ⇒ 4”: Trivial.

“4 ⇒ 1”: Let L∞ be the union of L and the following language over finite words
⋃

{[s] | L ∩ [s][e]ω 6= ∅ for some linked pair (s, e) of M} .

Now, L∞ satisfies condition “4” in Theorem 5 for the homomorphism h and we obtain that L∞
is a Boolean combination of monomials w1Γ

∗w2 · · ·Γ
∗wnΓ

∞. Moreover, L = L∞ ∩ Γω and L is
a Boolean combination of monomials w1Γ

∗w2 · · ·Γ
∗wnΓ

ω. �

16

Fragment Models Languages Algebra + Linked Pairs

BΣ1[<,+1,min] Γ∞ B {w1Γ
∗ · · ·Γ∗wnΓ

∞} B1 + R-closed Thm. 5

BΣ1[<,+1,min,max] Γ∞ B
{w1Γ

∗ · · ·Γ∗wnΓ
∞

w1Γ
∗ · · ·Γ∗wn

}

B1 + R+-closed Thm. 15

BΣ1[<,+1,min,max] Γ∗ B {w1Γ
∗ · · ·Γ∗wn} B1 [20], Thm. 14

BΣ1[<,+1,min] Γω B {w1Γ
∗ · · ·wnΓ

ω} B1 + R+-closed Thm. 17

Table 2: Characterizations of the fragment BΣ1 for various signatures and models

Since condition “3” in Theorem 17 is decidable, we obtain the following corollary.

Corollary 18. It is decidable whether a regular language L ⊆ Γω has dot-depth one. �

Remark 19. Another algebraic framework for infinite words are ω-semigroups [23]. An ω-
semigroup (S+, Sω) has two components. The first component S+ is a semigroup equipped
with an infinite product operation and Sω is the set of results of infinite products. The condi-
tions “3” in Theorem 15 and “3” in Theorem 17 are equivalent to saying that the syntactic
ω-semigroup (S+, Sω) satisfies S+ ∈ B1 and (xπyπ)πxω = (xπyπ)πyω in Sω for all x, y ∈ S+,
cf. [23, Theorem VI.3.8 (6)]. Here, xπ ∈ S+ denotes the idempotent generated by x and xω

is an infinite product. The two components of an ω-semigroup inevitably distinguish between
finite nonempty and infinite words. Therefore, ω-semigroups are only suitable for fragments
which can distinguish finite from infinite words. In particular, BΣ1[<,+1,min] cannot distin-
guish between finite and infinite words and condition “3” in Theorem 5 is not an equational
ω-semigroup condition.

8 Summary

In Table 2 we summarize our results on alternation-free first-order logic BΣ1. We gave classes of
languages for which BΣ1[<,+1,min] and BΣ1[<,+1,min,max] are expressively complete. Our
main results are characterizations of the syntactic homomorphisms of such languages. These
characterizations are combinations of algebraic and topological properties. The topological
properties are stated in terms of linked pairs.

An entry “R-closed” in the column “Linked Pairs” of Table 2 stands for the equivalence
[s][e]ω ⊆ L ⇔ [t][f]ω ⊆ L for all linked pairs (s, e) and (t, f) with s R t in the syntactic
monoid. For “R+-closed” this equivalence has to hold for the pure syntactic homomorphism
and e 6= 1 6= f .

Over Γ∞ there are two variants of the Cantor topology. The first one is defined by the
base sets uΓ∞ for u ∈ Γ∗, and base sets for the second one are uΓω and {u}. A regular
language is a finite Boolean combination of Cantor sets of the first kind if and only if its
syntactic homomorphism is “R-closed”. Boolean combinations of Cantor sets of the second
kind correspond to “R+-closed”.

In all cases, the combination of the algebraic and the topological properties gives decidability
of the membership problem for the respective fragment.

17

Acknowledgments

We thank the anonymous referees of the conference version of this paper for their suggestions
which helped to improve the presentation.

References

[1] M. Bojańczyk. The common fragment of ACTL and LTL. In FoSSaCS’08, Proceedings, volume
4962 of LNCS, pages 172–185. Springer, 2008.

[2] M. Bojańczyk. Data monoids. In STACS’11, Proceedings, volume 9 of LIPIcs, pages 105–116.
Dagstuhl Publishing, 2011.

[3] M. Bojańczyk and I. Walukiewicz. Forest algebras. In Logic and Automata: History and Perspec-
tives, Texts in Logic and Games, pages 107–132. Amsterdam University Press, 2008.

[4] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite. J.
Comput. Syst. Sci., 16(1):37–55, 1978.

[5] L. Chaubard, J.-É. Pin, and H. Straubing. First order formulas with modular predicates. In
LICS’06, Proceedings, pages 211–220. IEEE Computer Society, 2006.

[6] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. J. Comput. Syst. Sci., 5(1):1–16,
1971.

[7] V. Diekert and P. Gastin. First-order definable languages. In Logic and Automata: History and
Perspectives, Texts in Logic and Games, pages 261–306. Amsterdam University Press, 2008.

[8] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic over
finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008.

[9] V. Diekert, M. Horsch, and M. Kufleitner. On first-order fragments for Mazurkiewicz traces.
Fundam. Inform., 80:1–29, 2007.

[10] V. Diekert and M. Kufleitner. Fragments of first-order logic over infinite words. Theory Comput.
Syst., 48:486–516, 2011.

[11] V. Diekert and Y. Métivier. Partial commutation and traces. In Handbook of Formal Languages,
volume 3, pages 457–533. Springer, 1997.

[12] S. Eilenberg. Automata, Languages, and Machines, volume B. Academic Press, 1976.

[13] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science, vol-
ume B, chapter 16, pages 995–1072. Elsevier, 1990.

[14] Z. Ésik and P. Weil. Algebraic characterization of logically defined tree languages. Int. J. Algebra
Comput., 20(2):195–239, 2010.

[15] K. Etessami, M. Y. Vardi, and Th. Wilke. First-order logic with two variables and unary temporal
logic. Inf. Comput., 179(2):279–295, 2002.

[16] M. Gehrke, S. Grigorieff, and J.-É. Pin. Duality and equational theory of regular languages. In
ICALP’08, Proceedings, volume 5126 of LNCS, pages 246–257. Springer, 2008.

[17] Ch. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory Comput. Syst., 42(2):256–286,
2008.

[18] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite words.
In STACS’11, Proceedings, volume 9 of LIPIcs, pages 356–367. Dagstuhl Publishing, 2011.

[19] O. Kĺıma. Piecewise testable languages via combinatorics on words. Unpublished, 2009.

[20] R. Knast. A semigroup characterization of dot-depth one languages. RAIRO, Inf. Théor.,
17(4):321–330, 1983.

[21] K. Lodaya, P. K. Pandya, and S. S. Shah. Marking the chops: an unambiguous temporal logic. In
IFIP TCS’08, Proceedings, volume 273 of IFIP, pages 461–476. Springer, 2008.

[22] R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.

18

[23] D. Perrin and J.-É. Pin. Infinite words, volume 141 of Pure and Applied Mathematics. Elsevier,
2004.

[24] J.-É. Pin. A variety theorem without complementation. In Russian Mathematics (Iz. VUZ),
volume 39, pages 80–90, 1995.

[25] J.-É. Pin. Syntactic semigroups. In Handbook of Formal Languages, volume 1, pages 679–746.
Springer, 1997.

[26] J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput. Syst.,
30(4):383–422, 1997.

[27] F. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264–286, 1930.

[28] M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control, 8:190–194,
1965.

[29] I. Simon. Piecewise testable events. In Automata Theory and Formal Languages, volume 33 of
LNCS, pages 214–222. Springer, 1975.

[30] L. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD thesis,
TR 133, M.I.T., Cambridge, 1974.

[31] H. Straubing. A generalization of the Schützenberger product of finite monoids. Theor. Comput.
Sci., 13:137–150, 1981.

[32] H. Straubing. Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra, 36(1):53–94,
1985.

[33] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

[34] H. Straubing. On the logical descriptions of regular languages. In LATIN’02, Proceedings, volume
2286 of LNCS, pages 528–538. Springer, 2002.

[35] P. Tesson and D. Thérien. Logic meets algebra: The case of regular languages. Log. Methods
Comput. Sci., 3(1):1–37, 2007.

[36] D. Thérien. Classification of finite monoids: The language approach. Theor. Comput. Sci.,
14(2):195–208, 1981.

[37] D. Thérien. Categories et langages de dot-depth un. RAIRO, Inf. Théor., 22(4):437–445, 1988.

[38] W. Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25:360–376, 1982.

[39] W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science, chapter 4,
pages 133–191. Elsevier, 1990.

[40] B. Tilson. Categories as algebras: An essential ingredient in the theory of monoids. J. Pure Appl.
Algebra, 48:83–198, 1987.

[41] P. Weil. Algebraic recognizability of languages. In MFCS’04, Proceedings, volume 3153 of LNCS,
pages 149–174. Springer, 2004.

[42] Th. Wilke. Classifying Discrete Temporal Properties. Habilitationsschrift, Universität Kiel, April
1998.

19

