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Abstract

While much of the current study on quantum computation employs low-level
formalisms such as quantum circuits, several high-level languages/calculi have
been recently proposed aiming at structured quantum programming. The cur-
rent work contributes to the semantical study of such languages by providing
interaction-based semantics of a functional quantum programming language;
the latter is, much like Selinger and Valiron’s, based on linear lambda calculus
and equipped with features like the ! modality and recursion. The proposed
denotational model is the first one that supports the full features of a quantum
functional programming language; we prove adequacy of our semantics. The
construction of our model is by a series of existing techniques taken from the
semantics of classical computation as well as from process theory. The most
notable among them is Girard’s Geometry of Interaction (GoI), categorically
formulated by Abramsky, Haghverdi and Scott. The mathematical genericity of
these techniques—largely due to their categorical formulation—is exploited for
our move from classical to quantum.
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1. Introduction

1.1. Quantum Programming Languages

Computation and communication using quantum data has attracted grow-
ing attention. On the one hand, quantum computation provides a real break-
through in computing power—at least for certain applications—as demonstrated
by Shor’s algorithm. On the other hand, quantum communication realizes “un-
conditional security” e.g. via quantum key distribution. Quantum communica-
tion is being physically realized and put into use.

The extensive research efforts on this new paradigm have identified some
challenges, too. On quantum computation, aside from a few striking ones such
as Shor’s and quantum search algorithms, researchers are having a hard time
finding new “useful” algorithms. On quantum communication, the counter-
intuitive nature of quantum data becomes an additional burden in the task
of getting communication protocols right—which has proved extremely hard
already with classical data.

Structured programming and mathematically formulated semantics are po-
tentially useful tools against these difficulties. Structured programming often
leads to discovery of ingenious algorithms; well-formulated semantics would pro-
vide a ground for proving a communication protocol correct.

In this direction, there have been proposed several high-level languages tai-
lored for quantum computation (see [2] for an excellent survey). Among the
first ones is QCL [3] that is imperative; the quantum IO monad [4] and its suc-
cessor Quipper [5] are quantum extensions of Haskell that facilitate generation
of quantum circuits. Closely related to the latter two is the one in [6], that is
an (intuitionistic) λ-calculus with quantum stores.

Another important family—that is most strongly oriented towards mathe-
matical semantics—is those of quantum λ-calculi that are very often based on
linear λ-calculus. While λ-calculus is a prototype of functional programming
languages and inherently supports higher-order computation, linearity in a type
system provides a useful means of prohibiting duplication of quantum data
(“no-cloning”). Examples of such languages are found in [7, 8, 9, 10, 11, 12, 13].

1.2. Denotational Semantics of Quantum Programming Languages

Models of linear logic (and hence of linear λ-calculus) have been studied fairly
well since 1990s; therefore denotational models for the last family of quantum
programming languages may well be based on those well-studied models. Pres-
ence of quantum primitives—or more precisely coexistence of “quantum data,
classical control”—poses unique challenges, however. It thus seems that deno-
tational semantics for quantum λ-calculi has attracted research efforts, not only
from those interested in quantum computation, but also from the semantics
community in general, since it offers unique and interesting “exercises” to the
semantical techniques developed over many years, many of which are formulated
in categorical terms and hence are aimed at genericity.
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Consider a quantum λ-calculus that is essentially a linear λ-calculus with
quantum primitives. It is standard that compact closed categories provide mod-
els for the latter; so we are aiming a compact closed category 1) with a quantum
flavor, and 2) that allows interpretation of the ! modality that is essential in du-
plicating classical data. This turns out to be not easy at all. For example, the
requirement 1) makes one hope that the category fdHilb of finite-dimensional
Hilbert spaces and linear maps would work. This category however has no conve-
nient “infinity” structure that can be exploited for the requirement 2). Moving
to the category Hilb of possibly infinite-dimensional Hilbert spaces does not
work either, since it is not compact closed.

A few attempts have been made to address this difficulty. In [8] a categorical
model is presented that is fully abstract for the !-free fragment of a quantum
λ-calculus is presented. It relies on Selinger’s category Q in [7]—it can be
thought of as an extension of fdHilb with non-duplicable classical information.
The works [14, 15] essentially take “completions” of this model to accommo-
date the !-modality: the former [14] uses presheaves and thus results in a huge
model; the construction in the latter [15] keeps a model in a tractable size by
the general semantical technique called quantitative semantics [16, 17]. The
difference between the two is comparable to the one between Girard’s normal
functor semantics [18] (see also [19]) and quantitative semantics.

In this paper we take a different path towards a denotational model of a
quantum λ-calculus. Instead of starting from fdHilb (a purely quantum model)
and completing it with structures suitable for classical data, we start from a
general family of models of classical computation,3 and fix its parameter so
that the resulting instance accommodates quantum data too. The family of
models is the one given by Girard’s geometry of interaction (GoI) [20]—more
specifically its categorical formulation by Abramsky, Haghverdi and Scott [21].
GoI, like game semantics [22, 23], is an interaction-based denotational semantics
of (classical) computation that has a strong operational flavor, too. It thus
possibly enables us to extract a compiler from a denotational model, which is
the case with classical computation [24, 25, 26, 27, 28].

1.3. Contributions

In this paper we introduce a calculus Hoq and its denotational model that
supports the full features (including the ! modality and recursion). The language
Hoq is almost the same as Selinger and Valiron’s quantum λ-calculus [9]—in
particular we share their principle of “quantum data, classical control”—but is
modified for a better fit to our denotational model. We also define its operational
semantics and prove adequacy.

For the construction of the denotational model we employ a series of ex-
isting techniques in theoretical computer science (Figure 1). Namely: 1) a
monad with an order structure for modeling branching, used in the coalgebraic
study of state-based systems (e.g. in [29]); 2) Girard’s Geometry of Interaction

3“Classical” as opposed to “quantum”; not as the opposite of “intuitionistic”.
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(GoI) [20], categorically formulated by Abramsky, Haghverdi and Scott [21],
providing interaction-based, game-like semantics for linear logic and computa-
tion; 3) the realizability technique that turns an (untyped) combinatory algebra
into a categorical model of a typed calculus (in our case a linear category [30, 31];
the linear realizability technique is used e.g. in [32]); and 4) the continuation-
passing style (CPS) semantics. In each stage we benefit from the fact that the
relevant technique is formulated in the language of category theory: the tech-
nique is originally for classical computation but its genericity makes it applicable
to quantum settings.

Monad B for branching

Coalgebraic trace semantics [29, 33]
Take the Kleisli category Kℓ(B)��

Traced monoidal category C

(+ other constructs → GoI situation [21])

Categorical GoI [21]
Take C(U,U)��

Linear combinatory algebra A

Realizability, e.g. [34, 32, 35]
Take PERA��

Linear category

Figure 1: The construction of the model

1.4. Organization of the Paper
In §2 we fix the notations for quantum computation and briefly review the

semantical techniques used later. In §3 we introduce our target language Hoq
and its operational semantics. The (subtle but important) differences from its
predecessor are discussed, too. In §4 we introduce the quantum branching monad
Q on Sets; this is our choice for the monad B in Figure 1. The resulting linear
category PERQ is described, too. In §5 we interpret Hoq in this category;
finally in §6 we prove adequacy of the denotational model.

Some details and proofs are deferred to appendices. They are found in [36].

2. Preliminaries

We denote the syntactic equality by ≡.

2.1. Quantum Computation
We follow Kraus’ formulation [37] of quantum mechanics, which is by now

standard and is used in e.g. [38, 7]. For proofs and more detailed explanation,
our principal reference is the standard textbook [38, Chap. 2 & Chap. 8].

Notation 2.1. Im denotes the m×m identity matrix; A† denotes a matrix A’s
adjoint (i.e. conjugate transpose).
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2.1.1. Density Matrices

We motivate the formalism of density matrices as one that generalizes the
state vector formalism. See [38, §2.4] for more details; for our developments
later, it is crucial that we allow density matrices ρ such that the trace tr(ρ) is
possibly less than 1.

A mathematical representation of a state of a quantum mechanical system
is standardly given by a normalized vector |v〉 with the norm ‖|v〉‖ = 1 in
some Hilbert space H. As is usual in the context of quantum information and
quantum computation, we will be working exclusively with finite-dimensional
systems (H ∼= Cn for some n ∈ N). As an example let us consider the following
Bell state:

|Φ+〉 =
1√
2

(

|00〉+ |11〉
)

=
1√
2

(

|0102〉+ |1112〉
)

. (1)

The vector |Φ+〉 ∈ C4 is a state of a 2-qubit system; we shall sometimes use
explicit subscripts 1, 2 as in 02 above to designate which of the two qubits we
are referring to.

We now consider the measurement of the first qubit with respect to the
basis consisting of |01〉 and |11〉. The outcome is |01〉 or |11〉 with the same
probabilities 1/2; in each case the state vector gets reduced and becomes |0102〉
or |1112〉, respectively. In other words, the result of the measurement is a
probability distribution

[

|0102〉 7→
1

2
, |1112〉 7→

1

2

]

over state vectors. Such is called an ensemble.
Density matrices generalize state vectors and also encompass ensembles; in

other words, they represent both pure and mixed states. Given an ensemble
[

|vi〉 7→ pi
]

with pi ∈ R≥0 and
∑

i

pi ≤ 1 ,

the corresponding density matrix is defined to be
∑

i

pi|vi〉〈vi| ,

where 〈vi| = |vi〉† as usual. For example, the Bell state |Φ+〉 is represented by
the density matrix

|Φ+〉〈Φ+| =
1

2





1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



 ; (2)

the ensemble
[

|0102〉 7→ 1
2 , |1112〉 7→ 1

2

]

that results from the measurement
above is represented by

1

2





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



 . (3)
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Notation 2.2. In (2–3) we followed the common lexicographic indexing con-
vention: the matrices are with respect to the basis vectors |00〉, |01〉, |10〉 and
|11〉 in this order. See e.g. [7, §3.2]. This convention will be used in the rest of
the paper too.

Here is an “axiomatic” definition of density matrix. Every density matrix
arises in the way described above from some ensemble; see [38, Theorem 2.5].

Definition 2.3 (Density matrix). An m-dimensional density matrix is an
m × m matrix ρ ∈ Cm×m which is positive and satisfies tr(ρ) ∈ [0, 1]. Here
[0, 1] denotes the unit interval. The set of all m-dimensional density matrices is
denoted by DMm.

Note that we allow density matrices with trace less than 1. This will be the
case typically when “some probability is missing,” such as when the original
ensemble

[

|vi〉 7→ pi
]

is such that
∑

i pi < 1. This generality turns out to
be very useful later when we model classical control structures that depend on
the outcome of measurements. One can also recall, as a related phenomenon
in program semantics, that the semantics of possibly diverging probabilistic
program is given by a subdistribution where the probabilities can add up to less
than 1. The missing probability is then that for divergence.

We note that if a quantum system consists of N qubits, then the system is
2N -dimensional (we can take a basis that consists of |0102 . . . 0N〉, |0102 . . . 1N〉, . . . , |1112 . . . 1N 〉).
In this case a density matrix that represents a (pure or mixed) state will be
2N × 2N .

The following order is standard and used e.g. in [38, 7].

Definition 2.4 (Löwner partial order). The order ⊑ on the set DMm of
density matrices is defined by: ρ ⊑ σ if and only if σ − ρ is a positive matrix.

A prototypical situation in which we have ρ ⊑ σ is when

• ρ arises from an ensemble
[

|vi〉 7→ pi
]

i∈I
;

• σ arises from an ensemble
[

|vi〉 7→ qi
]

i∈I
; and

• pi ≤ qi for each i ∈ I.

That is, when, in comparing ρ and σ thought of as ensembles, ρ has some
components missing.

The following fact is crucial in this work. It is proved in [7, Proposition 3.6]
using a translation into quadratic forms; in Appendix A we present another
proof using matrix norms.

Lemma 2.5. The relation ⊑ in Definition 2.4 is indeed a partial order. More-
over it is an ω-CPO: any increasing ω-chain ρ0 ⊑ ρ1 ⊑ · · · in DMm has the
least upper bound. �
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2.1.2. Quantum Operations

Built on top of the density matrix formalism, the notion of quantum opera-
tion captures the general concept of “what we can do to quantum systems,” uni-
fying preparation, unitary transformation and measurement. See [38, Chap. 8]
for details.

Definition 2.6 (Quantum operation, QO). A quantum operation (QO) from
an m-dimensional system to an n-dimensional system is a mapping E : DMm →
DMn subject to the following axioms.

1. (Trace condition)

tr
(

E(ρ)
)

tr(ρ)
∈ [0, 1] for any ρ ∈ DMm such that tr(ρ) > 0.

2. (Convex linearity) Let (ρi)i∈I be a family of m-dimensional density matri-
ces; and (pi)i∈I be a probability subdistribution (meaning pi ∈ R≥0 and
∑

i pi ≤ 1). Then:

E
(

∑

i∈I

piρi
)

=
∑

i∈I

piE(ρi) .

Here I is a possibly infinite index set—we can assume that I is at most
countable since a discrete probability subdistribution (pi)i∈I necessarily
has a countable support. From this and that the trace of ρi is bounded by
1, it easily follows that the infinite sums on both sides are well-defined.

3. (Complete positivity) An arbitrary “extension” of E of the form idk ⊗ E :
Mk ⊗Mm → Mk ⊗Mn carries a positive matrix to a positive one. (Here
idk : Mk → Mk is the identity function.) In particular, so does E itself.

The set of QOs of the type DMm → DMn shall be denoted by QOm,n.

The definition slightly differs from the one in [38, §8.2.4]. This difference—which
is technically minor but conceptually important—is because we allow density
matrices with trace less than 1.

QO has two alternative definitions other than the above “axiomatic” one.
One is by the operator-sum representation

∑

i Ai( )A†
i and useful in concrete

calculations. This is presented below. The other is “physical” and describes
a QO as a certain succession of operations to a system, namely: combining
with an auxiliary quantum state; a unitary transformation; and measurement.
See [38, §8.2] for further details.

Proposition 2.7 (Operator-sum representation). A mapping E : DMm → DMn

is a QO if and only if it can be represented in the form

E(ρ) =
∑

i∈I

E(i)ρ(E(i))† , (4)
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where I is a finite index set, E(i) is an n×m matrix for each i, and

∑

i∈I

(

E(i)
)†
E(i) ⊑ Im .

Here the order ⊑ refers to the one in Definition 2.4.

Proof. See [38, §8.2.4]. �

We call the right-hand side of (4) an operator-sum representation of a QO E .
Given a QO E , its operator-sum representation is not uniquely determined.
However:

Definition 2.8 (The matrix M(E)). For a QO E =
∑

iE
(i)( )(E(i))†, we

define an m×m matrix M(E) by

M(E) :=
∑

i

(E(i))†E(i) .

Lemma 2.9. The matrix M(E) for a QO E does not depend on the choice of
an operator-sum representation.

Proof. There is only “unitary freedom” in the choice of an operator-sum rep-
resentation [38, Theorem 8.2]: given two operator-sum representations

E =
∑

i E
(i)( )(E(i))† =

∑

j F
(j)( )(F (j))† ,

there exists a unitary matrix U = (ui,j)i,j such that E(i) =
∑

j ui,jF
(j). We

have

∑

i(E
(i))†E(i) =

∑

i

(
∑

j u
∗
i,j(F

(j))†
)(
∑

k ui,kF
(k)
)

=
∑

j,k

(
∑

i u
∗
i,jui,k

)

(F (j))†F (k)

=
∑

j (F
(j))†F (j) ,

where the last equality is because
∑

i u
∗
i,jui,k is the (j, k)-entry of U †U = I. �

The following property is immediate.

Lemma 2.10. The operation M( ) preserves sums. More precisely, let (Ei)i∈I

be a (at most countably infinite) family of quantum operations of the same di-
mensions; assume that

∑

i Ei is again a quantum operation. Then M
(
∑

i Ei
)

=
∑

i M(Ei). �

We exhibit some concrete QOs. Application of a unitary transformation U
to a quantum state (pure or mixed) that is represented by a density matrix ρ
corresponds to a QO

U( )U † : ρ 7−→ UρU † .
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For illustration consider a special case where ρ = |v〉〈v|; the outcome is

U |v〉〈v|U † = U |v〉
(

|v〉
)†
U † = U |v〉

(

U |v〉
)†

,

i.e. the density matrix that is induced by the state vector U |v〉.
We explain measurement using a concrete example. Recall the Bell state

|Φ+〉 in (1) and the corresponding density matrix |Φ+〉〈Φ+| in (2). Consider
now the measurement of the first qubit with respect to the basis consisting of
|01〉 and |11〉. The corresponding QO is

〈01| |01〉+ 〈11| |11〉 , (5)

where, for example, |01〉 is concretely given by

|01〉 = |0〉 ⊗ I2 =
(

1
0

)

⊗
(

1 0
0 1

)

=





1 0
0 1
0 0
0 0



 .

Here we followed the lexicographic indexing convention (Notation 2.2).
Applying the measurement to the Bell state |Φ+〉—i.e. applying the QO

in (5) to the density matrix in (2)—results in the following density matrix.

(

1 0 0 0
0 1 0 0

)

|Φ+〉〈Φ+|





1 0
0 1
0 0
0 0



+
(

0 0 1 0
0 0 0 1

)

|Φ+〉〈Φ+|





0 0
0 0
1 0
0 1





=
1

2

(

1 0
0 0

)

+
1

2

(

0 0
0 1

)

=
1

2
|0〉〈0|+ 1

2
|1〉〈1| .

This density matrix represents the ensemble
[

|0〉 7→ 1
2 , |1〉 7→ 1

2

]

, or
[

|02〉 7→
1
2 , |12〉 7→ 1

2

]

to be more explicit about which qubit in the original system we
are referring to.

Two remarks are in order. Firstly, in the ensemble we have obtained, the
first qubit in the original system has been discarded. This is a matter of choice:
we could use a different QO that does retain the first qubit, resulting in the
density matrix

1

2





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



 that corresponds to the ensemble
[

|0102〉 7→
1

2
, |1112〉 7→

1

2

]

.

Our choice above is because of the type qbit ⊸ bit (rather than qbit ⊸

bit⊗ qbit) of the measurement primitive in our calculus.
The second remark is numbered for future reference.

Remark 2.11. For the purpose of denotational semantics introduced later, we
find it useful to split up a measurement into two separate “projections,” each
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of which corresponds to a possible outcome of the measurement. For example,
the QO in (5) would rather be thought of as a pair of projection QOs

〈01| |01〉 and 〈11| |11〉 . (6)

The two projection QOs describe “what happens to the quantum state when
the measurement outcome is |01〉 (or |11〉, respectively).” Having them sepa-
rate allows us to model classical control structures that rely on the outcome of
quantum measurements. This point will be more evident in §4.

Given a density matrix ρ, the probability for observing |01〉 or |11〉 can then
be calculated as

tr
(

〈01|ρ|01〉
)

or tr
(

〈11|ρ|11〉
)

, (7)

respectively. For example, in the special case where ρ = |v〉〈v|,

tr
(

〈01|ρ|01〉
)

= tr
(

〈01|v〉
(

〈01|v〉
)† )

=
∥

∥ 〈01|v〉
∥

∥

2
.

See [38, §8.2] for more details. This way we let density matrices implicitly carry
probabilities (specifically by their trace values). This is why we allow density
matrices with trace less than 1.

We extend the order ⊑ in Definition 2.4 in a pointwise manner to obtain an
order between QOs. This is done also in [7].

Definition 2.12 (Order ⊑ on QOm,n). Given E ,F ∈ QOm,n, we define E ⊑
F if and only if E(ρ) ⊑ F(ρ) for each ρ ∈ DMm. The latter ⊑ is the Löwner
partial order (Definition 2.4).

Proposition 2.13. The order ⊑ on QOm,n is an ω-CPO.

Proof. See Appendix A; also [7, Lemma 6.4]. �

For illustration, notice that for any density matrix ρ,

〈01|ρ|01〉 ⊑ 〈01|ρ|01〉+ 〈11|ρ|11〉 and 〈11|ρ|11〉 ⊑ 〈01|ρ|01〉+ 〈11|ρ|11〉 ,

in the setting of (6). This establishes

〈01| |01〉 ⊑ 〈01| |01〉+ 〈11| |11〉 and 〈11| |11〉 ⊑ 〈01| |01〉+ 〈11| |11〉

where ⊑ is the order of Definition 2.12. This example is prototypical of our use
of the Löwner partial order (Definition 2.4 & 2.12): E ⊑ F means that E is a
projection (or “partial measurement”) that is a “component” of F .

2.2. Monads for Branching

The notion of monad is standard in category theory. In computer science,
after Moggi [39], the notion has been used for encapsulating computational effect
in functional programming. One such monad denoted by T appears in this
paper—at the last stage, as part of our categorical model.

10



There is another monad Q—called the quantum branching monad—that
marks the beginning of our development. It is introduced in §4. The idea is
drawn from the coalgebraic study of state-based systems (see e.g. [40, 41] for
introduction); in particular from the use of a monad B on Sets for modeling
branching, e.g. in [29].

Example 2.14. We list some examples of such “branching monads” B.

• The lift monad
LX = 1 +X

models potential nontermination. Its unit ηL : X → 1 +X and multipli-
cation µL : 1 + (1 +X) → 1 +X are obvious.

• The powerset monad
PX = {X ′ ⊆ X}

models nondeterminism. Its unit ηP : X → PX returns a singleton set
and its multiplication µP : P(PX) → PX takes the union.

• The subdistribution monad

DX =
{

c : X → [0, 1]
∣

∣

∑

x

c(x) ≤ 1
}

models probabilistic branching. Its unit ηD : X → DX carries x ∈ X
to the so-called Dirac distribution [x 7→ 1]; and its multiplication µD :
D(DX) → DX “suppresses” a distribution over distributions into a dis-
tribution (see also (8) below):

µD(ξ) = λx.
∑

c∈DX

ξ(c) · c(x) .

The monad structures (units and multiplications) of the operations L,P ,D
in the above list have a natural meaning in terms of branching. Among others, a
multiplication µ collapses “branching twice” into “branching once,” abstracting
the internal branching structure. For example, P ’s multiplication

µP
X : PPX −→ PX , like

{

{x, y}, {z}
}

7−→ {x, y, z}

can be understood as follows.

x• 222r2r
+++k+k• 333s3s

+++k+k y• ///o/o z

µ7−→
x

•
,,

8x
6v
4t 2r

0p .n -m

22
&f
(h
*j ,l .n 0p 1q

///o/o/o/o/o y
z

For D, its multiplication

µD
X : DDX −→ DX , like





[

x 7→ 1/2
y 7→ 1/2

]

7→ 1/3

[z 7→ 1] 7→ 2/3





µ7−→





x 7→ 1/6
y 7→ 1/6
z 7→ 2/3
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can be understood as follows.

x•
1/2 333s3s

1/2
+++k

+k•
1/3 333s3s

2/3
)))i

)i
y

•
1

///o/o z

µ7−→
x

•
1/6 44

4t
4t

4t
4t

4t

2/3 ***j
*j

*j
*j

*j
1/6/o ///o y

z

, (8)

Furthermore, these monads come with natural order structures which turn
out to be ω-CPOs. This is exploited in [29] to prove—using a domain-theoretic
technique from [42]—that a final coalgebra in Kℓ(B) coincides with an initial
algebra in Sets. The final coalgebra in Kℓ(B) thus identified provides a fully ab-
stract semantic domain for trace semantics—execution trace-based (i.e. “linear-
time”) semantics for state-based systems that is coarser than (“branching-time”)
bisimilarity. See [29].

2.3. Geometry of Interaction

Girard’s Geometry of Interaction (GoI) [20] is an interpretation of proofs in
linear logic in terms of dynamic information flow. It seems GoI’s position as a
tool in denotational semantics is close to that of the game-based interpretations
of computation [22, 23]. Its original formulation [20] utilizes a C∗-algebra; later
in [24] the same idea is given a more concrete operational representation which is
now commonly called token machines. For an introduction to GoI, our favorite
reference is [43].

Besides these presentations of GoI by C∗-algebras and token machines, par-
ticularly important for our developments is the categorical axiomatization of
GoI by Abramsky, Haghverdi and Scott [21]. They isolated some axiomatic
properties of a category C on which one can build a GoI interpretation. Such a
category C (together with some auxiliary data) is called a GoI situation in [21]:
among other conditions, a crucial one is that C is a traced symmetric monoidal
category (TSMC) [44]. Then applying what they call the GoI construction G—
it is isomorphic to the Int-construction in [44]—one is led to a compact closed
category G(C) of “bidirectional computations” or “(stateless) games.”

The resulting category G(C) comes close to a categorical model of linear
logic—a so-called linear category [30, 31]—but not quite, lacking an appropriate
operator that models the ! modality of linear logic. A step ahead is taken in [21]:
they extract a linear combinatory algebra (LCA) from G(C). The notion of LCA
is a variation of partial combinatory algebra (PCA) and corresponds to a Hilbert-
style axiomatization of linear logic, including the ! modality (see Definition 4.10
later).

A thorough introduction to the rich and deep theory of GoI is certainly out of
the current paper’s scope. We shall nevertheless provide further intuitions—in
a way tailored to categorical GoI and our use of it—later in §4.3.

Remark 2.15 (Three “traces”). In this paper we use three different notions
of trace. One is the trace operator in linear algebra; in quantum mechanics a
probability for a certain observation outcome is computed by “tracing out” a
density matrix, like in (7). Another “trace” is in trace semantics in the context
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of process theory. See (the last paragraph of) §2.2. The other is in traced
monoidal categories that play a central role in categorical GoI [21].

These three notions are not unrelated. The first “linear algebra trace” is
an example of the last “monoidal trace”: namely in the category fdVect of
finite-dimensional vector spaces and linear maps where the monoidal structure
is given by the tensor product ⊗ of vector spaces. The second trace—which
we would like to call “coalgebraic trace”—also yields an example of “monoidal
trace.” This result, shown in [33], will be exploited for construction of a traced
monoidal category Kℓ(Q) on which we run the machinery of categorical GoI.
See §4.

2.4. Realizability

Roughly speaking, an LCA can be thought of as a collection of untyped
closed linear λ-terms. LCAs are, therefore, for interpreting untyped calculi.

What turns such a combinatory algebra into a model of a typed calculus is
the technique of realizability. It dates back to Kleene; and its use in denotational
semantics of programming languages is advocated e.g. in [34]. We shall be based
on its formulation found in [32]. It goes as follows. Starting from an LCA A, we
define the category PERA of partial equivalence relations (PERs) on A; a PER
on A is roughly a subset of A with some of its elements mutually identified. An
arrow of PERA is represented by a code c ∈ A.4

To turn PERA into a model of a typed linear λ-calculus (more specifically
into a linear category) one needs type constructors like ⊗, ⊸ and ! on PERA.
They can be introduced by “programming in untyped linear λ-calculus”—it is
much like encoding pairs, natural numbers, coproducts, etc. in the (untyped)
λ-calculus (〈x, y〉 := λz.zxy, with a first projection λw.w(λxy.x), and so on).
More details can be found later in this paper; see also [32].

This linear version of realizability has been worked out e.g. in [32, 35]. The
outcome of this construction is a model of a typed linear λ-calculus—i.e. a model
of linear logic. There is a body of literature that seeks for what the latter means
exactly—including [45, 46, 31, 30]—and there have been a few different notions
proposed. It now seems that: the essence lies in what is called a linear-non-
linear adjunction between a symmetric monoidal closed category and a CCC;
and that the different notions of model proposed earlier in the literature are
different constructions of such an adjunction. See the extensive survey in [47];
also [9, §9.6].

Among those notions of “model of linear logic,” in this paper we use the
notion of linear category [30, 31] since its relationship to linear realizability has
already been worked out in [32].

4Another standard technique is to use ω-sets (also called assemblies) in place of PERs.
This has been done for LCAs too; see [35].
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3. The Language Hoq

Here we introduce our target calculus. It is a variant of Selinger and Valiron’s
quantum λ-calculus [9]. The calculus shall be called Hoq—for higher-order
quantum computation.5

The (only) major difference between Hoq and the calculus in [9] is separation
of two tensors ⊗ and ⊠.

• The former Hilbert space tensor ⊗ denotes, as usual in quantum mechan-
ics, the tensor productH1⊗H2 of Hilbert spaces and designates compound
quantum systems.

• We use the latter linear logic tensor ⊠ for the “multiplicative and” con-
nective in linear logic (hence in a linear λ-calculus). It is also denoted by
⊗ commonly in the literature; but we choose to use the symbol ⊠.

In fact, in Hoq the Hilbert space tensor ⊗ will not be visible since we let n-qbit
stand for qbit⊗n. The difference between n-qbit⊠m-qbit and (n+m)-qbit
is: the former stands for two (n- and m-qubit) quantum states that are for sure
not entangled ; the latter is for the composite system in which two states are
possibly entangled.

In contrast, in [9] they use the same tensor operator ⊗ for both—that is,
the linear logic tensor is interpreted using the Hilbert space tensor. The reason
for this difference will be explained in §3.3, as well as the design choices that we
share with [9].

In this section we first introduce the syntax (including the type system)
of Hoq in §3.1, followed by the operational semantics (§3.2). Then in §3.3
we discuss our design choices, especially the reason for the difference from the
calculus in [9]. In §3.4 we establish some properties on Hoq, including some
safety properties such as substitution, subject reduction and progress.

3.1. Syntax

Definition 3.1 (Types of Hoq). The types of Hoq are:

A,B ::= n-qbit | !A | A ⊸ B | ⊤ | A⊠B | A+B ,

with conventions qbit :≡ 1-qbit and bit :≡ ⊤+⊤ .
(9)

Here n ∈ N is a natural number.

5Hoq is a minor modification of the calculus qλℓ that we used in the conference version [1]
of the current paper.
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Definition 3.2 (Terms of Hoq). The terms of Hoq are:

M,N,P ::= x | λxA.M | MN |
〈M,N〉 | let 〈xA, yB〉 = M inN |
∗ | let ∗ = M inN |
injBℓ M | injAr M | matchP with (xA 7→ M | yB 7→ N) |
letrec fAx = M inN |
newρ | measn+1

i | U | cmpm,n ,

with conventions tt :≡ inj⊤ℓ (∗) and ff :≡ inj⊤r (∗) .
(10)

Here m,n ∈ N and i ∈ [1, n + 1] are natural numbers; ρ ∈ DM2k is a 2k-
dimensional density matrix (corresponding to a k-qubit system); U is a 2k × 2k

unitary matrix, for some k ∈ N; and A and B are type labels. The terms
are almost the same as in [9]; newρ designates preparation of a new quantum
state—more precisely deployment of some quantum apparatus that is capable
of preparing the quantum state ρ. The additional composition operator cmp

will have the type m-qbit ⊠ n-qbit ⊸ (m + n)-qbit and embed nonentan-
gled states as possibly entangled states. For measurements we have operators
meas11, meas

2
1, meas

2
2, . . . ; meas

n+1
i takes an (n + 1)-qubit system, measures its

i-th qubit, and returns the outcome (in the bit type) as well as the remaining
quantum state that consists of n qubits.

The set FV(M) of free variables in M is defined in the usual manner.

Definition 3.3 (Subtype relation <: in Hoq). For typing in Hoq we em-
ploy the same subtype relation <: as in [9] and implicitly track the ! modality
(see §3.3). The rules that derive <: are as follows.

n = 0 ⇒ m = 0
!n k-qbit <: !m k-qbit

(k-qbit) n = 0 ⇒ m = 0
!n ⊤ <: !m ⊤ (⊤)

A1 <: B1 A2 <: B2 n = 0 ⇒ m = 0

!n(A1 ⊠A2) <: !m(B1 ⊠B2)
(⊠)

A1 <: B1 A2 <: B2 n = 0 ⇒ m = 0

!n(A1 +A2) <: !m(B1 +B2)
(+)

B1 <: A1 A2 <: B2 n = 0 ⇒ m = 0

!n(A1 ⊸ A2) <: !m(B1 ⊸ B2)
(⊸)

(11)

All the rules come with a condition n = 0 ⇒ m = 0, which is equivalent to
m = 0 ∨ n ≥ 1.

We introduce the typing rules. They follow the ones in [9] and take subtyping
into account. In the rules (Ax.1) and (Ax.2) the variables in the context can be
thrown away, making the type system affine (weakening is allowed uncondition-
ally while contraction is regulated by !) rather than linear. Due to these uncon-
ventional features (subtyping and weakening) a derivation of a type judgment
is not necessarily unique in Hoq—making it a delicate issue whether the deno-
tational semantics of a derivable type judgment is well-defined (Lemma 5.35).
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A <: A′

∆, x : A ⊢ x : A′ (Ax.1)
! DType(c) <: A

∆ ⊢ c : A
(Ax.2)

x : A,∆ ⊢ M : B A′ <: A

∆ ⊢ λxA.M : A′ ⊸ B
(⊸.I1)

x : A, ! ∆,Γ ⊢ M : B FV(M) ⊆ |∆| ∪ {x} A′ <: A

! ∆,Γ ⊢ λxA.M : !n(A′ ⊸ B)
(⊸.I2)

!∆,Γ1 ⊢ M : A ⊸ B ! ∆,Γ2 ⊢ N : C C <: A

! ∆,Γ1,Γ2 ⊢ MN : B
(⊸.E)

!∆,Γ1 ⊢ M1 : !n A1 ! ∆,Γ2 ⊢ M2 : !n A2

!∆,Γ1,Γ2 ⊢ 〈M1,M2〉 : !n(A1 ⊠A2)
(⊠.I)

!∆,Γ1 ⊢ M : !n(A1 ⊠ A2) !∆,Γ2, x1 : !n A1, x2 : !n A2 ⊢ N : A

! ∆,Γ1,Γ2 ⊢ let 〈x!n A1

1 , x!n A2

2 〉 = M inN : A
(⊠.E)

∆ ⊢ ∗ : !n ⊤ (⊤.I)
!∆,Γ1 ⊢ M : ⊤ ! ∆,Γ2 ⊢ N : A

! ∆,Γ1,Γ2 ⊢ let ∗ = M inN : A
(⊤.E)

∆ ⊢ M : !n A1 A2 <: A′
2

∆ ⊢ injA2

ℓ M : !n(A1 +A′
2)

(+.I1)
∆ ⊢ N : !n A2 A1 <: A′

1

∆ ⊢ injA1
r N : !n(A′

1 +A2)
(+.I2)

!∆,Γ ⊢ P : !n(A1 + A2) !∆,Γ′, x1 : !n A1 ⊢ M1 : B ! ∆,Γ′, x2 : !n A2 ⊢ M2 : B

! ∆,Γ,Γ′ ⊢ matchP with (x!n A1

1 7→ M1 | x!n A2

2 7→ M2) : B
(+.E)

!∆, f : !(A ⊸ B), x : A ⊢ M : B ! ∆,Γ, f : !(A ⊸ B) ⊢ N : C

! ∆,Γ ⊢ letrec fA⊸Bx = M inN : C
(rec)

Table 1: Typing rules for Hoq

Definition 3.4 (Typing in Hoq). The typing rules of Hoq are as in Table 1.
Here ∆,Γ, etc. denote (unordered) contexts. Given a context ∆ = (x1 :
A1, . . . , xm : Am),

• ! ∆ denotes the context (x1 : !A1, . . . , xm : !Am); and

• |∆| := {x1, . . . , xm} is the domain of ∆.

When we write ∆,Γ as the union of two contexts, we implicitly require that
|∆| ∩ |Γ| = ∅. In the rule (Ax.2), c is a constant and its default type DType(c)
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is defined as follows.

DType(newρ) :≡ k-qbit for a density matrix ρ ∈ DM2k

DType(measn+1
i ) :≡ (n+ 1)-qbit ⊸ (! bit⊠ n-qbit) for n ≥ 1

DType(meas11) :≡ qbit ⊸ ! bit
DType(U) :≡ k-qbit ⊸ k-qbit for a 2k × 2k unitary matrix U

DType(cmpm,n) :≡ (m-qbit⊠ n-qbit) ⊸ (m+ n)-qbit

(12)
We shall write Π  ∆ ⊢ M : A if a derivation tree Π derives the type

judgment. We write  ∆ ⊢ M : A if there exists such Π, that is, the type
judgment is derivable.

3.2. Operational Semantics

First we introduce small-step operational semantics, from which we derive
big-step one. The latter is given in the form of probability distributions over
the bit type and is to be compared with the denotational semantics.

Definition 3.5 (Value, evaluation context). The values and evaluation con-
texts of Hoq are defined in the following (mostly standard) way.

Values V, V1, V2 ::= x | λxA.M | 〈V1, V2〉 | ∗ | injBℓ V | injAr V |
newρ | measn+1

i | U | cmpm,n ;

Evaluation contexts
E ::= [ ] | E[ [ ]M ] | E[V [ ] ] | E[ 〈[ ],M〉 ] | E[ 〈V, [ ]〉 ] |

E[ let 〈xA, yB〉 = [ ] inM ] | E[ let ∗ = [ ] inN ] |
E[ injBℓ [ ] ] | E[ injAr [ ] ] | E[ match [ ]with (xA 7→ M | yB 7→ N) ] .

Here E[F ] is the result of replacing E’s unique hole [ ] with the expression F .

As usual, all the constants (newρ, meas
n+1
i , and so on) are values.

The definition of evaluation context is “top-down.” A “bottom-up” defini-
tion is also possible and will be used in later proofs.

Lemma 3.6. The following BNF notation defines the same notion of evaluation
context as in Definition 3.5.

D ::= [ ] | DM | V D | 〈D,M〉 | 〈V,D〉 |
let 〈xA, yB〉 = D inM | let ∗ = D inN |
injBℓ D | injAr D | matchD with (xA 7→ M | yB 7→ N) .

Here V is a value and M,N are terms, as before. �
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Definition 3.7 (Small-step semantics). The reduction rules of Hoq are de-
fined as follows. Each reduction −→ is labeled with a real number from [0, 1].

E[ (λxA.M)V ] −→1 E[M [V/x] ] (⊸)
E[ let 〈xA, yB〉 = 〈V,W 〉 inM ] −→1 E[M [V/x,W/y] ] (⊠)
E[ let ∗ = ∗ inM ] −→1 E[M ] (⊤)
E[ match (injCℓ V ) with (x!n A 7→ M | y!n B 7→ N) ] −→1 E[M [V/x] ] (+1)
E[ match (injCr V ) with (x!n A 7→ M | y!n B 7→ N) ] −→1 E[N [V/y] ] (+2)
E[ letrec fA⊸Bx = M inN ] −→1 E

[

N
[

(λxA. letrecfA⊸Bx = M inM)/f
] ]

(rec)
E[U(newρ) ] −→1 E[ newUρU† ] (U)
E[ cmpm,n〈newρ, newσ〉 ] −→1 E[ newρ⊗σ ] (cmp)

E[ measn+1
i (newρ) ] −→1 E[ 〈 tt, new〈0i|ρ|0i〉 〉 ] (meas1)

E[ measn+1
i (newρ) ] −→1 E[ 〈 ff, new〈1i|ρ|1i〉 〉 ] (meas2)

E[ meas11(newρ) ] −→〈0|ρ|0〉 E[ tt ] (meas3)
E[ meas11(newρ) ] −→〈1|ρ|1〉 E[ ff ] (meas4)

HereM,N are terms, V,W are values and n ≥ 1 is a natural number. The reduc-
tions that involve newρ—namely (U), (cmp), (meas1–meas4)—occur only when
the dimensions match. The last four rules are called measurement rules. They
always give rise to two reductions in a pair (corresponding to observing tt or
ff); the pair are said to be the buddy to each other.

Observe that the label p in reduction −→p is like a probability but not quite:
from meas2i (newρ) there are two−→1 reductions, to new〈0i|ρ|0i〉 and to new〈1i|ρ|1i〉.
We understand that the probabilities are implicitly carried by the trace values
of the matrices 〈0i|ρ|0i〉 and 〈1i|ρ|1i〉. See (7) and the remarks that follow it.

As is standardly done, we will prove adequacy of our denotational semantics
focusing on bit-type closed terms. For that purpose we now introduce big-step
semantics for such terms.6

Definition 3.8 (Big-step semantics). For each n ∈ N we define a relation
.n between closed bit-terms M and pairs (p, q) of real numbers. This is by
induction on n.

For n = 0, we define

tt .0 (1, 0) , ff .0 (0, 1) , and M .0 (0, 0) for the other M .

For n+ 1, if M has a reduction M −→1 M ′ caused by a rule other than the
measurement rules, we set:

M .n+1 (p, q)
def.⇐⇒ M ′ .n (p, q) .

If M has a reduction M −→r N caused by one of the measurement rules, there
is always its buddy reduction M −→r′ N

′. In this case we set

M .n+1 (rp+ r′p′, rq + r′q′)
def.⇐⇒ N .n (p, q) and N ′ .n (p′, q′) .

6We swapped the notations . and ⇓ from the previous version [1].
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Finally, we define a relation . as the supremum of .n. That is,

M . (p, q)
def.⇐⇒ (p, q) = sup

{

(p′, q′) | M .n (p′, q′) for some n
}

,

where sup is with respect to the pointwise order on [0, 1]× [0, 1]. It is easy to
see that for each M and n, there is only one pair (p, q) such that M .n (p, q).
The same holds for ., too.

The intuition of M . (p, q) is: the term M (which is closed and of type bit)
reduces eventually to tt with the probability p; to ff with the probability q.

Remark 3.9. The operational semantics of [9] employs the notions of quantum
array and quantum closure—it thus has the flavor of a language with quantum
stores (cf. [6]). This is the very key in their setup that allows for using the Hilbert
space tensor ⊗ as the linear logic tensor. We chose to separate the two tensors
so that the ! modality and recursion can be smoothly accommodated using
known techniques (namely GoI and realizability). Accordingly, our operational
semantics for Hoq is much more simplistic without quantum arrays.

3.3. Design Choices

3.3.1. What We Share with the Calculus of Selinger and Valiron

Our calculus Hoq share the following design choices with the original calculus
in [9]:

• building on linear λ-calculus—in particular the enforcement no-cloning by
a linear type discipline;

• a call-by-value reduction strategy;

• uniformity of data, in the sense that classical and quantum data are dealt
with in the same manner;

• a formulation of the letrec operator, as is usually done in a call-by-value
setting (namely, recursion is only at function types, see the (rec) rule in
Table 1); and

• implicit linearity tracking.

The last means the following (see also [9]). Linear λ-calculi, including the one
in [30, 31], typically have explicit syntax for operating on the ! modality. An
example is the derelict operator in

Γ ⊢ M : !A
Γ ⊢ derelictM : A

. (13)

In [9] a subtype relation <: is introduced so that such explicit operators can
be dispensed with. For example, the subtype relation !A <: A replaces the
derelict operator in the above. This design choice is intended to aid program-
mers; and we follow [9] with regard to this choice.
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3.3.2. What Are Different

We now turn to the major difference from the original calculus, namely the
separation of ⊠ from ⊗ (mentioned already at the beginning of the current
section). In [9] they use the same symbol ⊗ for both tensors; in other words,
the linear logic tensor is interpreted using the Hilbert space tensor. This leads
to their clean syntax: a 2-qubit system is naturally designated by the type
qbit ⊗ qbit; and this is convenient when we translate quantum circuits into
programs. Moreover, their ingenious operational semantics—which carries the
flavor of quantum store—allows such double usage of ⊗ (see Remark 3.9).

However, in developing interaction-based denotational semantics, we found
this double usage of ⊗ inconvenient. We would like the linear logic tensor
interpreted in the same way as it is interpreted in the conventional interpretation
of classical computation. This seems to be a natural thing to do when working
with a language with “quantum data, classical control”—leaving the classical
control part untouched. Moreover, there exists ample semantical machinery that
provides natural interpretations of the operators like ! and ⊸ and recursion that
go along well with ⊠.

The latter is not easily the case with ⊗. While the duality H∗ ∼= H gives a
compact closed structure (hence the interpretation of⊸) to the category fdHilb
of finite-dimensional Hilbert spaces, such is not available in the category Hilb
of general Hilbert spaces, on the one hand. On the other hand, Hilb is a natural
choice for a semantic domain: for interpreting the ! modality (“as many copies
as requested”), we will need some kind of “infinity,” whose first candidate would
be infinite-dimensional Hilbert spaces.7

Remark 3.10 (Other categorical models for higher-order quantum computation).
A different approach is taken in [14]. The work keeps the original language
of [9]—where the monoidal and quantum tensors coincide—and starts from an
axiomatic description of categorical models of the language. The latter is the
notion of linear category for duplication [9] that combines a linear-non linear
adjunction and monadic effects.

To construct a concrete instance of such models, the work [14] employs
a series of constructions known in category theory, notable among which is
cocomplete completion that embeds (via Yoneda) a monoidal category C in a
monoidal closed category [Cop,Sets] [48]. The base category is C = Q from [7]
where arrows are essentially quantum operations and a monoidal structure is
given by the quantum tensor ⊗.

The work [15] can be seen as a drastic simplification of the results in [14] by:
1) simplifying the calculus (but still maintaining coincidence of the monoidal and
quantum tensors); and 2) using quantitative semantics for linear logic [16, 17]
instead of completion by presheaves. The latter step is comparable to the sim-
plification of Girard’s normal functor semantics [18] to quantitative semantics.

7 In [6, §1] it is argued—rather on a conceptual level—that the Hilbert space tensor ⊗ does
not seem quite compatible with a closed structure (i.e. with respect to ⊸).
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In comparison to this categorical and axiomatic approach, our approach to
a denotational model is operational, relying on intuitions from token abstract
machines and transition systems. This approach is served well by the categor-
ical formulation of geometry of interaction, and the theory of coalgebras as a
categorical theory of state-based dynamics. Moreover, it allows us to establish
correspondences to operational semantics (soundness and adequacy), a feature
that is lacking in [14].

Remark 3.11 (Other GoI models for higher-order quantum computation).
In contrast to the works discussed previously in Remark 3.10, the line of work [49,
50, 51, 11] aims at models for higher-order quantum computation with strong op-
erational flavors—given by token-based presentations of GoI—rather than cate-
gorical models. Unlike the current work where we distinguish ⊠ and ⊗, they do
use the same tensor ⊗ for both. The price to pay is that they in [49, 50, 51, 11]
need multiple tokens—one for each qubit in entanglement—and they need to
synchronize from time to time, e.g. when they go through a multi-qubit unitary
gate.

Currently it is not clear how the multi-token GoI machines in [49, 50, 51, 11]
can be understood as instances of categorical GoI in [21], or how those machines
can be organized to form a categorical model. These research questions seem
to be important ones, all the more since the significance of multi-token GoI
machines seems to go beyond their roles in modeling quantum computation.
For example, in [52], it is shown that they successfully capture the difference
between CBV and CBN evaluation strategies of PCF, via translations to a linear
λ-calculus—much like CPS translation does in the classic work of Plotkin [53].

Remark 3.12 (“Quantum circuits” in Hoq). Sequential and parallel com-
positions of unitary gates—much like those found in quantum circuits—are per-
vasive in quantum computation.

Many higher-order functional languages for quantum computation (such as [9,
15, 49, 50, 51]) allow to express such compositions in a straightforward manner,
exploiting their coincidence of ⊗ (for composite quantum systems) and ⊠ (as a
type constructor). For example, in [50] their proof nets (on which they define
multi-token GoI machines) are claimed to be one realization of higher-order
quantum circuits.

This is not the case with Hoq, unfortunately: due to the separation of ⊠ from
⊗, there is no type-theoretic infrastructure that supports the above quantum
circuit-like compositions of gates. See also an example in §3.5.

We can however foresee that the kind of (inherently first-order) typing disci-
plines that would be needed for the above quantum circuit-like compositions are
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fairly simple. It is not hard to add one of such typing principles to Hoq—whose
current type system’s job is to take care of higher-order control structures that
are much more complicated—as an additional layer. In other words, in such
an extension of Hoq we will have a first-order fragment of the language that is
devoted to composing quantum gates. We shall not describe such a straightfor-
ward extension in the current paper, since our focus here is on the integration of
classical and quantum information using the GoI and realizability techniques.
We note that, in such an extension, it will suffice to have a finite universal set
of quantum gates as primitives (any other gate can be approximately expressed
in the language).

Remark 3.13. In [15], the previous version [1] of the current paper is discussed,
and the authors say: “. . . the model drops the possibility of entangled states,
and thereby fails to model one of the defining features of quantum computation.”
We believe that this is not the case and the examples in §3.5 will convince the
reader. Entanglement may not be expressed by means of a type constructor,
but is certainly there.

Besides the separation of ⊠ from ⊗, Hoq’s difference from the calculus in [9]
is that bound variables and injections have explicit type labels (such as A in
λxA.M). This choice is to ensure well-definedness of the interpretation J∆ ⊢
M : AK of type judgments (Lemma 5.35)—a delicate issue with Hoq especially
because of the subtype relation <:.

Remark 3.14 (Type labels and well-definedness of interpretations). In
general a derivable type judgment ∆ ⊢ M : A can have multiple derivations.
Since denotational semantics is defined inductively on derivations, it is not al-
ways trivial if the interpretation J∆ ⊢ M : AK is well-defined or not.

It is in fact nontrivial already for the simply typed λ-calculus in the Curry-
style (i.e. variables’ types are not predetermined but are specified in type con-
texts). An example is given by

x : A ⊢ (λy.x)(λz.z) : A ,

where the type of z can be anything. When we turn to classical textbooks: in [54]
a Church-style calculus is used (variables come with their intrinsic types); in [55]
its Curry-style calculus has explicit type labels (much like in Hoq).

For the Curry-style simply typed λ-calculus, we can actually do without
explicit type labels and still maintain well-definedness of J∆ ⊢ M : AK. Its
proof can be given exploiting strong normalization of the calculus. The same
proof strategy is used in [56, Chap. 9–11]—where the strategy is identified as
normalization by evaluation—to prove the well-definedness of J∆ ⊢ M : AK
for the quantum lambda calculus of [9]. (The proof is long and complicated,
reflecting the complexity of the calculus.) We believe the same strategy can be
employed and will get rid of type labels in Hoq; however the proof will be very
lengthy and it is therefore left as future work.
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We also note that all these troubles would be gone if we adopt explicit lin-
earity tracking (explicit operators like derelict in (13), instead of the subtype
relation <:), and move to the Church-style (variables have their own types).
The reasons for not doing so are:

• we agree with [9] in that explicit tracking of the usage of the ! modality
is a big burden to programmers; and

• our denotational model—based on GoI and realizability—has a merit of
supporting implicit linearity tracking. This is not the case with every
linear category, since we need certain type isomorphisms like ! !A ∼= !A
(see Lemma 5.3).

3.4. Syntactic and Operational Properties of Hoq

Here we establish some syntactic and operational properties of Hoq, includ-
ing some safety properties such as substitution, subject reduction and progress.
Although they are mostly parallel to [9, §9.3], syntax is fragile and we have to
redo all the proofs. We shall defer most of the proofs to Appendix B.

Lemma 3.15 (Properties of the subtype relation <:). 1. <: is a preorder.

2. ! is monotone: A <: B implies !A <: !B.

3. If n = 0 ⇒ m = 0 holds, we have !n A <: !m A.

4. Assume that !n A <: !m B. If neither A nor B is of the form !C, we have
(n = 0 ⇒ m = 0) and A <: B.

5. The relation <: has directed sups and infs. The former means the following
(the latter is its dual). If A1 <: A and A2 <: A, then there is a type A0

such that: 1) A1 <: A0 and A2 <: A0; 2) A1 <: A′ and A2 <: A′ imply
A0 <: A′. �

Notation 3.16 (Subtyping <: between contexts). Wewrite ∆′ <: ∆ when:

• |∆′| = |∆|, and

• for each (x : A′) ∈ ∆′, there is (x : A) ∈ ∆ with A′ <: A.

In Table 1, some rules including (⊸.I1) have type coercion: while the term
λxA.M has a type label A, its actual type is A′ ⊸ B with A′ <: A. This is so
that the following holds.

Lemma 3.17. The monotonicity rule is admissible in Hoq.

∆′ <: ∆ ∆ ⊢ M : A A <: A′

∆′ ⊢ M : A′ (Mon)
�

Corollary 3.18. The dereliction and comultiplication rules are admissible in
Hoq.

∆ ⊢ M : !A
∆ ⊢ M : A

(Der) ∆ ⊢ M : !A
∆ ⊢ M : ! !A

(Comult)
�
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Lemma 3.19. 1. If  ∆ ⊢ M : B, then FV(M) ⊆ |∆|.
2. If x 6∈ FV(M) and  ∆, x : A ⊢ M : B, then  ∆ ⊢ M : B.

3. The following rule is admissible.

∆ ⊢ M : A
Γ,∆ ⊢ M : A

(Weakening)

Proof. Straightforward, by induction on derivation. �

Many linear lambda calculi have the promotion rule

!∆ ⊢ M : A
! ∆ ⊢ promoteM : !A

(Prom)

or its variant, like in [30, 31]. Much like the original calculus (see [9, Re-
mark 9.3.27]), Hoq lacks the general promotion rule but it has a restriction to
values admissible.

Lemma 3.20 (Value promotion). Let V be a value.

1. If  ∆ ⊢ V : !A, then for each x ∈ FV(V ), we have (x : !B) ∈ ∆ for
some type B.

2. Conversely, the following rule is admissible in Hoq.

! ∆,Γ ⊢ V : A FV(V ) ⊆ |∆|
! ∆,Γ ⊢ V : !A

(ValProm) , where V is a value.
�

Remark 3.21 (No-cloning). We note that all constants are values (Defini-
tion 3.5); therefore the last result (or ultimately the rule (Ax.2) in Table 1)
implies that any constant can have a type !A, where A is the default type of
the constant (Definition 3.4). This can raise a suspicion that our calculus Hoq
does not respect no-cloning, one of the most fundamental principles in quantum
mechanics: it dictates that no quantum state should be duplicable (unless it is
classical in a suitable sense); still our primitive newρ can have a type ! k-qbit
and hence is duplicable.

We believe this is not problematic. As discussed briefly after Definition 3.2,
we understand the constant newρ to stand for “deployment of some quantum
apparatus that is capable of preparing the quantum state ρ.” In this viewpoint
it is no problem that the term

(

λx! qbit. cmp1,1〈x, x〉
)

(new|0〉〈0|)

is typable—it just denotes that we run an apparatus that prepares the state |0〉
twice to obtain the state |00〉.

Still the no-cloning property is discerned in the calculus Hoq. For example,
the term

λxqbit. cmp1,1〈x, x〉 ,

without ! in its argument type, is not typable. This means we cannot duplicate
a quantum state whose preparation apparatus we do not have access to.
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A general substitution rule

!∆,Γ1 ⊢ M : A ! ∆,Γ2, x : A ⊢ N : B

!∆,Γ1,Γ2 ⊢ N [M/x] : B
(Subst)

is not admissible in Hoq. A counter example can be given as follows. The
following two judgments are both derivable.

x : qbit ⊸ ! qbit, y : qbit ⊢ xy : ! qbit w : ! qbit ⊢ λz! qbit. w : !(! qbit ⊸ ! qbit)

In particular, the latter relies on the (⊸.I2) rule. However, the result of substi-
tution

x : qbit ⊸ ! qbit, y : qbit ⊢ λz! qbit. xy : !(! qbit ⊸ ! qbit)

is not derivable: since the types of the free variables x, y are not of the form
!∆, the (⊸.I2) rule is not applicable. Therefore we impose some restrictions.

Lemma 3.22 (Substitution). The following rules are admissible in Hoq.

! ∆,Γ1 ⊢ M : A ! ∆,Γ2, x : A ⊢ N : B A 6≡ !A′ for any A′

!∆,Γ1,Γ2 ⊢ N [M/x] : B
(Subst1)

!∆ ⊢ M : A !∆,Γ2, x : A ⊢ N : B

!∆,Γ2 ⊢ N [M/x] : B
(Subst2)

!∆,Γ1 ⊢ V : A ! ∆,Γ2, x : A ⊢ N : B V is a value

! ∆,Γ1,Γ2 ⊢ N [V/x] : B
(Subst3)

!∆,Γ1 ⊢ M : A ! ∆,Γ2, x : A ⊢ E[x] : B x does not occur in E

!∆,Γ1,Γ2 ⊢ E[M ] : B
(Subst4)

Note that in the first assumption of the (Subst2) rule, the whole context must be
of the form ! ∆. In the (Subst4) rule E denotes an evaluation context (Defini-
tion 3.5); the side condition means that x occurs exactly once in the term E[x].

�

Lemma 3.23 (Subject reduction). Assume that  ∆ ⊢ M : A, and that there
is a reduction M −→p N (we allow p = 0). Then  ∆ ⊢ N : A. �

Lemma 3.24 (Progress). A typable closed term that is not a value has a re-
duction. More precisely: assume that ⊢ M : A (therefore M is closed by
Lemma 3.19.1), and that M is not a value. Then there exists a term N and
p ∈ [0, 1] such that M −→p N . �

We note that, given M , the sum of the values p for all possible reductions
M −→p N is not necessarily equal to 1. See the remark right after Definition 3.7.
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3.5. Hoq Programs: an Example

We give an example of a Hoq program that simulates quantum teleporta-
tion: a procedure in which Alice sends a quantum state to Bob using a classical
communication channel. The example, although first-order, will exemplify the
expressivity as well as inexpressivity of the calculus Hoq: it fully supports prepa-
ration of quantum states and unitary transformations; it also features (classical)
branching based on measurement outcomes; however, due to the distinction be-
tween⊗ and⊠, composition of unitary transformations—one that is much like in
quantum circuits—is less straightforward to express (cf. Remark 3.12). See (14)
where an explicit use of cmp is required, and some discussions that follow it.

Potential use of higher-order quantum programs has already been advocated
by many authors; see e.g. [9, 2, 6]. They could also be used in formalizing games
in quantum game theory, a formalism that is attracting increasing attention as
a useful presentation of quantum nonlocality (see e.g. [57]). We here use a first-
order example of quantum teleportation, however, since it is one of the most
well-known quantum procedures.

In the quantum teleportation protocol, Alice and Bob start with preparing
an EPR-pair. Alice keeps the first qubit of the EPR-pair; and Bob keeps the
second qubit. In Hoq, we can prepare an EPR-pair by applying a suitable
unitary transformation to a qubit constructed by new:

EPR :≡ U0

(

cmp1,1〈new|0〉〈0|, new|0〉〈0|〉
)

: 2-qbit (14)

where U0 is a unitary transformation given by

U0 :=
1√
2









1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0









.

We note that U0 is usually defined as the following composition of the
Hadamard gate H and the conditional-not gate N :

U0 = N(H ⊗ I2) ,

where I2 is the 2 × 2 identity matrix. However, since the tensor product ⊠ of
Hoq is different from the tensor product ⊗ of vector spaces, we cannot program
U0 as a simple composition of H and N in Hoq. We need to calculate U0 outside
Hoq; see the discussions in Remark 3.12.

Then Alice applies a Bell measurement to the first two qubits of a quantum
state ρ⊠ EPR where ρ is a quantum bit that Alice wishes to send to Bob.

Bellmeasure :≡ λw3-qbit. let 〈bbit0 , p2-qbit〉 = meas31 (U1w) in

let 〈bbit1 , qqbit〉 = meas21 p in 〈b0, 〈b1, q〉〉
: 3-qbit ⊸ bit⊠ (bit⊠ qbit)

(15)
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Here U1 is the following unitary transformation:

U1 :=
1√
2

























1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0

























,

which is equal to
(

(H ⊗ I2)N
)

⊗ I2. Although the third qubit has nothing
to do with the Bell measurement, we need to include the third qubit in the
program (15) because the type 2-qbit ⊠ qbit is different from 3-qbit in Hoq.
This kind of awkwardness will also be gone, once we equip Hoq with constructs
for composing unitary operations.

Alice tells the result (i, j) of measurement to Bob, and Bob applies a unitary
transformation Ui,j to his qubits:

corr :≡ λxbit⊠(bit⊠qbit). let 〈bbit0 , ybit⊠qbit〉 = x in let 〈bbit1 , qqbit〉 = y in

match b0 with (

z⊤0 7→ match b1 with (w⊤
0 7→ U00q | w⊤

1 7→ U01q)

| z⊤1 7→ match b1 with (w⊤
0 7→ U10q | w⊤

1 7→ U11q))

: bit⊠ (bit⊠ qbit) ⊸ qbit

where Uij are given as follows.

U00 :=

(

1 0
0 1

)

U01 :=

(

0 1
1 0

)

U10 :=

(

1 0
0 −1

)

U11 :=

(

0 1
−1 0

)

The result is the qubit that Alice wishes to send to Bob.
We combine the above programs into one: we define a closed value qtel :

qbit ⊸ qbit to be

λxqbit. corr
(

Bellmeasure
(

cmp1,2 〈x, EPR〉
))

.

We can observe that Bob receives Alice’s qubit.

Proposition 3.25. For any unitary transformation U , the reduction tree of
qtel is of the following form.

qtel (U (new|0〉〈0|))

new 1
4
ρ new 1

4
ρ new 1

4
ρ new1

4
ρ

1

∗

vv♠♠♠
♠♠♠

♠♠♠
♠♠

1

∗
��✝✝
✝✝
✝✝

1

∗
��
✽✽

✽✽
✽✽

1

∗

((◗◗
◗◗◗

◗◗◗
◗◗◗

Here ρ ∈ DM2 is U |0〉〈0|U † and
∗−→1 is the transitive closure of →1. �
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3.5.1. Fair Coin Toss

This example is in [9]: it simulates a fair coin toss with quantum primitives.

fcoin :≡ H(new tt) toss :≡ λxqbit. meas11 x

Proposition 3.26. The reduction tree of toss fcoin is the following one.

toss fcoin

tt ff

1
2 ��⑧⑧

⑧⑧
⑧

1
2��

❄❄
❄❄

❄

Here we omitted reductions →1. �

4. The Quantum Branching Monad Q and The Category PERQ

We now turn to denotational semantics of Hoq.

4.1. Background

The starting point of our current work was Jacobs’ observation [33] that
relates: monads for branching (§2.2, used in coalgebraic trace semantics) and
traced monoidal categories that appear in categorical GoI (§2.3). See also Re-
mark 2.15. This relationship establishes the first among the three steps in
Figure 1.

Examples of a traced monoidal category C used in categorical GoI [21] are
divided into two groups: the so-called wave-style ones where C’s monoidal struc-
ture is given by products ×; and the particle-style ones where it is given by
coproducts +. The former are of static nature and includes domain-theoretic
examples like ω-CPO. The latter particle-style examples are often dynamic, in
the sense that we can imagine a “particle” (or a “token”) moving around (we
will further elaborate this point later). This is the class of examples we are more
interested in. The examples include:

• the category Pfn of sets and partial functions;

• the category Rel+ of sets and binary relations, where the subscript +
indicates that the relevant monoidal structure is the one given by disjoint
unions of sets; and

• the category SRel of measurable spaces and stochastic relations.

For us the crucial observation is that these examples are (close to) the Kleisli
categories Kℓ(B) for the “branching” monads B in Example 2.14, §2.2. Indeed,
it is easy to see that Pfn and Rel are precisely Kℓ(L) and Kℓ(P), respectively;
the category Kℓ(D) can be thought of as a discrete variant of SRel.

Generalizing this observation, Jacobs [33] proves that a monadB for branching—
i.e. a monad on Sets with order enrichment, subject to some additional conditions—
has its Kleisli category Kℓ(B) traced monoidal (see Theorem 4.5 later). Here
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the monoidal structure is given by +, coproduct in Sets (and also in Kℓ(B),
since the Kleisli embedding Sets → Kℓ(B) preserves coproducts).

Let us elaborate on such a Kleisli categoryKℓ(B). We look at it as a category
of piping. An arrow8 f : X p→ Y in Kℓ(B) is understood as a bunch of pipes,
with |X |-many entrances and |Y |-many exits.9 The pipes are where a particle
(or token) runs through. See below; here the shaded box f consists of a lot of
pipes.

f

x

y

...

...

...

...... y′

↓

↓ ↓

x′...

↓

(16)

According to the choice of a monad B (see Example 2.14), different “branch-
ing” of such pipes is allowed.

• When B = L a pipe can be “stuck” or “looped.” A pipe connects an
entrance x with the exit f(x)—hence a token entering at x comes out of
f(x) ∈ Y—when f(x) is defined. A token is caught in the piping and
does not come out in case f(x) is undefined, i.e. if f(x) belongs to 1 in
L = 1 + ( ).

• When B = P a pipe can branch, with one entrance x connected to possibly
multiple (or zero) exits (namely those in f(x) ⊆ Y ).

• When B = D a pipe can branch too, but this time the branching is
probabilistic.

For all these monads B it is shown in [33] that the Kleisli category Kℓ(B) is
symmetric traced monoidal, with respect to + as a monoidal product and 0 (the
empty set) as a monoidal unit. In view of Figure 1, all these Kleisli categories can
support construction of a linear category via categorical GoI and realizability.

Moreover, it is plausible that the resulting linear category inherit some fea-
tures from its ingredients—ultimately from the branching monad B. For ex-
ample, we start with B = P and the outcome would be a linear category with
some nondeterminism built-in, hence suited for interpreting a language with
nondeterminism.

Therefore for our purpose of obtaining a linear category with a quantum
flavor—and interpreting a quantum lambda calculus in it—the first question is

8We shall use p→ to denote an arrow in a Kleisli category.
9 Our piping analogy is not completely faithful: in a Kleisli arrow f the two crossings

and are identified, but they are different as physical pipes.
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to find a branching monad with a quantum flavor. Our answer is the quantum
branching monad Q that we introduce now.

4.2. The Quantum Branching Monad Q
The following formal definition of Q below is hardly illustrative. The intu-

ition will be explained shortly, using the piping analogy (16) for arrows in the
Kleisli category Kℓ(Q).

Definition 4.1 (The quantum branching monad Q). The quantum branch-
ing monad Q : Sets → Sets is defined as follows. On objects,

QX =
{

c : X →
∏

m,n∈N

QOm,n

∣

∣

∣ the trace condition (17)
}

where: QOm,n is the set of quantum operations of the type DMm → DMn

(Definition 2.6);
∏

m,n∈N
denotes a Cartesian product; and the trace condition

stands for the following.

∑

x∈X

∑

n∈N

tr

(

(

c(x)
)

m,n
(ρ)
)

≤ 1 , ∀m ∈ N, ∀ρ ∈ DMm. (17)

Here (c(x))m,n is the (m,n)-component of c(x) ∈ ∏

m,n QOm,n. On arrows,
given f : X → Y we define Qf : QX → QY as follows. For c ∈ QX and y ∈ Y :

(

(Qf)(c)(y)
)

m,n
:=

∑

x∈f−1({y})

(

c(x)
)

m,n
. (18)

Note that the sum on the right-hand side is well-defined, because of the upper
bound given by the trace condition (17). As for the monad structure, its unit
ηX : X → QX is:

(

ηX(x)(x′)
)

m,n
:=

{

idm if x = x′ and m = n,

0 otherwise.
(19)

Here idm is the identity map; 0 is the constant QO that maps everything to 0.
The multiplication µX : QQX → QX is defined by:

(

µX(γ)(x)
)

m,n
:=

∑

c∈QX

∑

k∈N

(

(

c(x)
)

k,n
◦
(

γ(c)
)

m,k

)

. (20)

The QO
(

c(x)
)

k,n
◦
(

γ(c)
)

m,k
on the RHS is the sequential composition of

QOs: given a density matrix ρ ∈ DMm it first applies (γ(c))m,k ∈ QOm,k and
then applies (c(x))k,n ∈ QOk,n, transforming ρ eventually into an n-dimensional
density matrix.

In Appendix C we prove that the sums in (18) and (20) exist, that Q is indeed
a functor, and that Q is indeed a monad.
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Let us first note a common pattern that is exhibited by Q and the previous
examples of branching monads B, namely:

BX = {c : X → W | a normalizing condition} , where W is a set of weights.

Specifically:

• For B = L the set W is 2 = {0, 1} (stuck or through); the normalizing
condition is

c(x) = 1 for at most one x ∈ X .

• For B = P the set W is 2 = {0, 1} again, but there is no normalizing
condition.

• For B = D the set W is the unit interval [0, 1] and the normalizing condi-
tion is

∑

x∈X c(x) ≤ 1.

• For B = Q the weights are a tuple (or a block matrix) of quantum oper-
ations and the normalizing condition is the trace condition (17).

Let us continue (16) and think of an arrow f : X p→ Y in Kℓ(Q) as piping.
The piping analogy is still valid for Q; a crucial difference however is that, for
B = Q,

a token that runs through pipes is no longer a mere particle,
but it carries a quantum state.

Each entrance x ∈ X is ready for an incoming token that carries ρ ∈ DMm

of any finite dimension m. Such a token gives rise to one outcoming token.
However, its exit can be any y ∈ Y and the quantum state carried by the token
can be of any finite dimension n ∈ N. We think of the piping to be applying a
certain QO to the quantum state carried by the token; the QO to be applied is
concretely given by

(

f(x)(y)
)

m,n
∈ QOm,n ,

that is determined by: which exit y ∈ Y the token takes; and what is the
dimension n of the resulting quantum state.

f

x

y

...

...

...

...... y′

↓

(

(

f(x)(y)
)

m,n
(ρ)
)

n∈N
∈∏nDMn

(

(

f(x)(y′)
)

m,n
(ρ)
)

n∈N
∈∏nDMn

ρ ∈ DMm

↓ ↓

(21)
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The trace condition (17) now reads, for an arrow f : X p→ Y in Kℓ(Q):

∑

y∈Y

∑

n∈N

tr

(

(

f(x)(y)
)

m,n
(ρ)
)

≤ 1 , for each m ∈ N, ρ ∈ DMm and x ∈ X .

(22)

The trace value tr
(

(

f(x)(y)
)

m,n
(ρ)
)

is understood as the probability with which

a token ρ entering at x leads to an n-dimensional token at y. These probabilities
must add up to at most 1 when the exit y and the outcoming dimension n vary.
This is precisely the condition (22).

The composition ⊙ of Kleisli arrows can then be understood as sequential
connection of such piping, one after another.

f

x

y

...

...

...

...... y′

g

u... ...

↓ ρ ∈ DMm

↓ (k-dimensional)

↓ (n-dimensional)

(23)

Here the numbers m, k and n stand for the dimension of the quantum states
carried by the token, at each stage of the piping.

Concretely, the Kleisli composition ⊙ is described as follows.

Lemma 4.2 (Composition ⊙ in Kℓ(Q)). Given two successive arrows f : X p→
Y and g : Y p→ U in Kℓ(Q), their composition g⊙f : X p→ U is concretely given
as follows.

(

(g ⊙ f)(x)(u)
)

m,n
=
∑

y∈Y

∑

k∈N

(

g(y)(u)
)

k,n
◦
(

f(x)(y)
)

m,k
.

Proof. See Appendix C.1.

This description of ⊙ in Kℓ(Q) is ultimately due to the definition (20) of the mul-
tiplication operation µ. We notice its similarity to the multiplication operation
of the subdistribution monad D. The latter is defined by

µD
X(γ)(x) =

∑

c∈DX

γ(c) · c(x) ,

where · denotes multiplication of real numbers. This notably resembles (20).
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Remark 4.3. The reason why Q is called a quantum branching monad is that
a Kleisli arrow f : X p→ Y in Kℓ(Q)—thought of as piping like (21)—is a
“quantum branching function.” This is in the same sense as an arrow f : X p→ Y
inKℓ(P) is a “nondeterministically branching function” and an arrow f : X p→ Y
in Kℓ(D) is a “probabilistically branching function.”

An example of such an arrow in Kℓ(Q) is given by the following f1. Here
k, l,m and n are natural numbers, and ρ ∈ DMm is an m-dimensional density
matrix.

f1 : N p−→ N ,

(

f1(k)(l)
)

m,n
(ρ) :=











〈0|ρ|0〉 if m = 2, n = 1 and l = 2k,

〈1|ρ|1〉 if m = 2, n = 1 and l = 2k + 1,

0 otherwise.

Imagine a token carrying a quantum state ρ ∈ DMm entering this piping at the
entrance k ∈ N. The token does not come out at all unless ρ is 2-dimensional. If
ρ is 2-dimensional, the token might come out of the exit 2k ∈ N or 2k + 1 ∈ N.
To each of these exits the assigned value is 〈0|ρ|0〉 and 〈1|ρ|1〉, respectively:
these numbers in C1 (or rather [0, 1]) are understood as the probabilities with
which the token takes the exit.

This way we are modeling branching structure that depends on quantum
data—or classical control and quantum data. The principle is:

• a classical control structure is represented by the pipe the token is in; and

• quantum data is the one carried by the token.

Notice also that we are essentially relying on the separation of a measurement
into projections (see Remark 2.11).

A slightly more complicated example is the following f2. Here N ∈ N is a
natural number.

f2 : N p−→ N ,

(

f2(k)(l)
)

m,n
(ρ) :=











〈01|ρ|01〉 if m = 2N+1, n = 2N and l = 2k,

〈11|ρ|11〉 if m = 2N+1, n = 2N and l = 2k + 1,

0 otherwise.

Here an incoming token carries an (N + 1)-qubit state ρ ∈ DM2N+1 , and the
arrow f2 measures its first qubit (with respect to the basis consisting of |01〉 and
|11〉), resulting in the token sent to different exists according to the outcome.
The outcoming token carries a state

〈01|ρ|01〉 or 〈11|ρ|11〉 ∈ DM2N

that represents the qubits from the second to the (N + 1)-th. Here the trace
value of each of the two density matrices implicitly represents the probability
with which the token is sent to the corresponding exit. See Remark 2.11.
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It is not only measurements that we can model using arrows in Kℓ(Q). Con-
sider the following f3. Here K ∈ N is a natural number.

f3 : N p−→ N ,

(

f3(k)(l)
)

m,n
(ρ) :=











ρ⊗ |0〉〈0| if m = 2N , n = 2N+1 and k = l = 2K,

ρ if m = n = 2N and k = l = 2K + 1,

0 otherwise.

This arrow models (conditional) state preparation: it adds, to a token coming
in at k = 2K, a prepared state |0〉〈0| as an (N + 1)-th qubit.

Furthermore, the composition f3 ⊙ f2 : N p→ N represents the following
operation: it measures the first qubit; and if the outcome is |0〉, it adjoins a new
qubit.

The monad Q indeed satisfies the conditions in [33]—much like L,P and D,
it is equipped with a suitable cpo structure—so that the Kleisli category Kℓ(Q)
is a traced symmetric monoidal category (TSMC).

Definition 4.4 (Order ⊑ on QX). We endow the set QX with the pointwise
extension of the Löwner partial order in Definition 2.12. Namely: given c, d ∈
QX , we have c ⊑ d if for each x ∈ X,m, n ∈ N, (d(x))m,n ⊑ (c(x))m,n.

Theorem 4.5. The category Kℓ(Q) is partially additive (a notion from [58]).
Therefore by [59, Chap. 3], (Kℓ(Q), 0,+) is a TSMC, with its trace operator
given explicitly by Girard’s execution formula.

Proof. By [33, Proposition 4.8]; see Theorem Appendix C.5 for details. No-
tably, the Kleisli category Kℓ(Q) is ω-CPO enriched: a homset Kℓ(Q)(X,Y ) is
equipped with the order that is the pointwise extension of that on QY (Defi-
nition 4.4). The trace operator will be described later, in the proof of Theo-
rem 4.14. �

Remark 4.6. Continuing Remark 4.3, we note that in the field of quantum
programming languages the study of quantum control is emerging. With initial
observations in [60, 61], this line of work aims at extending the by-now accepted
paradigm of classical control and quantum data. Under quantum control, the
current program counter of a program’s execution can be a quantum superposi-
tion of multiple program locations. In the token analogue in the current section,
this means that the token’s position can be superposed—this is not possible with
our current monad Q, where a token’s position can be a probabilistic ensemble
of different positions but is never a quantum superposition.

Some authors use the terminologies classical and quantum branching to dis-
tinguish the choices of classical/quantum control structures. In this view the
name “quantum branching monad” of our monad Q is utterly inappropriate—it
is more precisely a “classical control and quantum data monad.” We shall stick
to this name, however, in view of other branching monads such as L,P and D.
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4.3. A Linear Combinatory Algebra via Categorical GoI
In the current section (§4.3) we shall elaborate on the high-level descrip-

tion in §2.3 and review the general definitions and results in [21] on categorical
GoI, using the prototypical example Pfn ∼= Kℓ(L) for providing some intuitions
(where L is the lift monad given in Example 2.14). The constructions in [21],
when applied to Pfn ∼= Kℓ(L), lead to a model that is pretty close to token ma-
chines in [62, 24]. Later in §4.4, building on the categorical theory of branching
in §4.1–4.2, we will observe that the Kleisli category Kℓ(Q) for the quantum
branching monad also constitutes an example of categorical GoI. This fact sug-
gests that the resulting model is a “quantum variant”—one among multiple
possibilities, at least—of token machine semantics.

Definition 4.7 (Retraction). Let X and Y be objects of a category C. A
retraction from X to Y is a pair of arrows f : X → Y and g : Y → X such that
g ◦ f = idX , that is,

Xid ;;

f
''
Y .

g

gg

Such a retraction shall be denoted by f : X ⊳ Y : g, following [21].

Throughout the current paper all the examples of retractions are in fact iso-
morphisms, although retractions are sufficient for the axiomatic developments.

Definition 4.8 (GoI situation). A GoI situation is a triple (C, F, U) where

• C = (C, I,⊗) is a traced symmetric monoidal category (TSMC), see
e.g. [44, 63]. This means that C is a monoidal category equipped with
a trace operator

X ⊗ Z
f−→ Y ⊗ Z in C

X
tr

Z
X,Y (f)−−−−−→ Y in C

that is subject to certain equational axioms.

• F : C → C is a traced symmetric monoidal functor, equipped with the
following retractions (which are monoidal natural transformations).

e : FF ⊳ F : e′ Comultiplication

d : id ⊳ F : d′ Dereliction

c : F ⊗ F ⊳ F : c′ Contraction

w : KI ⊳ F : w′ Weakening

Here KI is the constant functor into the monoidal unit I;

• U ∈ C is an object (called reflexive object), equipped with the following
retractions.

j : U ⊗ U ⊳ U : k

I ⊳ U

u : FU ⊳ U : v

35



Let us try to provide some intuitions on the notion of GoI situation; in
particular, on how this abstract categorical notion manages to encapsulate the
essence of GoI, that is, interaction-based semantics of computation. We shall
use a prototypical example of GoI situations from [21].

Lemma 4.9 ([21]). The triple
(

(Kℓ(L), 0,+), N · , N
)

forms a GoI situation.
Here the functor N · : Kℓ(L) → Kℓ(L) carries a set X to the coproduct N ·X
of countably many copies of X (i.e. to the N-th copower of X). �

In the token-based presentation of GoI like in [62, 24], a term M in a calculus
is interpreted as a partial function JMK from some countable set to another; let
us say it is of type JMK : N p→ N. Note here that we used the general notation
p→ for Kleisli arrows, since partial functions are nothing but Kleisli arrows for
the lift monad L. Recall the piping analogy from §4.1: in this analogy, the
interpretation JMK is a piping with countably many entrances and exits. See
the figure (16).

What is intriguing about GoI is how a function application MN is inter-
preted. In this paper we aim at exploiting GoI in deriving a categorical and
denotational (hence algebraic and compositional) model—therefore we should
be able to derive JMNK : N p→ N from the interpretations JMK : N p→ N and
JNK : N p→ N of the constituent parts.10 This happens as follows. Here we use
the piping analogy in §4.1, identifying a partial function f : N p→ N with a piping
with countably many entrances and exits, with possible loops (a token enters
and it might not come out).

=⇒ =⇒

10It is often emphasized (e.g. in [20]) that GoI semantics is different from “denotational
semantics,” in that the former explicitly uses the execution formula as a semantical counter-
part of β-reduction, while commonly in denotational semantics the interpretation of terms is
unchanged. In this paper we follow categorical GoI [21] and abstract away from this difference.

36



=⇒ (24)

Let us go through the above process by one step after another. In the first step
(=⇒), a bundle of countably many pipes (for the entrances of JMK) is split into
two bundles (left and right); and the same happens for the exits of JMK. This
is possible because the set of natural numbers is isomorphic to two copies of it
(N + N ∼= N); axiomatically this is what is required of the reflexive object U
in Definition 4.8. In the second step we interconnect the bundles on the right
into/from JMK, and the exits/entrances of JNK, in the following way.

Notice that, after this second step (=⇒), we are now looking at a piping with
countably many entrances (top-left) and countably many exits (bottom-left)—
that is, a partial function N p→ N. The third step (=⇒) just means that we take
the piping (i.e. a partial function) thus obtained as the interpretation JMNK of
the function application MN .

One can also think of the process (24) as “parallel composition and hiding,”
a design principle often heard in game semantics [22, 23]. Specifically, the inter-
pretations JMK, JNK of the constituent terms operate in parallel, communicating
with each other by passing a token (information is communicated by the choice
of a pipe via which to pass the token, see below); and the interpretation JMNK
is finally obtained by “hiding” the internal interactions between JMK and JNK
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(the third =⇒ in (24)).

 !""M!#  !""N!#

   

      

   

   

   

(25)

Let us also note that partiality is crucial in GoI. Even if JMK and JNK are
total functions from N to N, the piping obtained in (25) does not necessarily
correspond to a total function: a token that enters from one of the top-left pipes
can be caught in an infinite loop between JMK and JNK, never reaching one of
the exits (the bottom-left pipes).

As we already mentioned, a traced symmetric monoidal category (TSMC)
is a main component of the notion of GoI situation (Def. 4.8), a categorical
axiomatization of GoI given in [21]. The reason is simple, in view of the above
piping and token intuitions about GoI. Recall that a symmetric monoidal cat-
egory C being traced means that it is equipped with a trace operator; in our
current setting where the tensor product of C = Kℓ(L) is given by coproduct +,
the type of the trace operator is

X + Z
f−→ Y + Z in Kℓ(L)

X
tr

Z
X,Y (f)−−−−−→ Y in Kℓ(L)

.

Moreover the operator’s action can be depicted as follows, using the string
diagram formalism for (arrows in) monoidal categories [64].

f

X

Y

Z

Z

7−→ tr
Z
X,Y (f)

X

Y

A trace operator can be thought of as a feedback operator in many examples.
This is also the case in our current specific instance of Kℓ(L) ∼= Pfn. Here a
trace operator can be concretely given in the following straightforward manner,
exploiting partiality. Given f : X + Z p→ Y + Z, let fXY : X p→ Y be its
“restriction” to X and Y , that is

fXY (u) :=

{

f(u) if u ∈ X and f(u) ∈ Y ,

⊥ (undefined) otherwise.
(26)

We define fXZ , fZY and fZZ in a similar manner, and we let trZX,Y (f) : X p→ Y
be

tr
Z
X,Y (f)(x) := fXY (x) ⊔

⊔

n∈N

(

fZY ◦ fn
ZZ ◦ fXZ

)

(x) , (27)
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where ⊔ denotes supremums in the flat cpo LY = {⊥} + Y . The right-hand
side informally reads: either the token immediately comes out of Y , or it comes
out of Z, in which case it is fed back to the Z-entrance again. It bears notable
similarity to Girard’s execution formula, too.

This trace operator is what allows the series of transformations described
in (24). In (24) we used pipes to informally depict partial functions; the same
can be described formally, using string diagrams [64] for the (traced) monoidal
category (Kℓ(L), 0,+), as follows.

JMK JNK

N

N

N

N

7−→ JMK JNK

k

j
N N

N

N

N N

7−→
JMK

JNK

k

j
N

N

N

N

tr
N

N,N7−→
JMK

JNK

k

j
N

N

= JMK JNK

k

j
N

N

(28)

In the above, we start with two arrows JMK, JNK : N p→ N in Kℓ(L); we compose
j and k, from the retraction N + N ⊳ N (Def. 4.8), with JMK; to it we post-
compose the arrow

N+ JNK : N+ N p−→ N+ N

(where the first N stands for the identity arrow idN : N p→ N) and obtain the
arrow (N + JNK) ◦ k ◦ JMK ◦ j (the third string diagram); here we crucially
exploit the trace operator tr in the category Kℓ(L) and obtain the arrow

trNN,N
(

(N+ JNK) ◦ k ◦ JMK ◦ j
)

: N p−→ N ;

finally some “topological reasoning” with string diagrams yields the last equality,
and the last string diagram corresponds to the last “piping” diagram in (24).
This way, a trace operator plays an essential role in axiomatizing “two processes
talking to each other (i.e. feeding one’s answer back to the other).”

As we already discussed in §2.3, the workflow of categorical GoI [21] turns
a GoI situation (Def. 4.8) into an LCA, a model of untyped linear λ-calculus.

Definition 4.10 (Linear combinatory algebra, LCA). A linear combina-
tory algebra (LCA) is a set A equipped with
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• a binary operator (called an applicative structure) · : A2 → A;

• a unary operator ! : A → A; and

• distinguished elements (called combinators) B,C, I,K,W,D, δ, and F, of A.
These are required to satisfy the following equalities.

Bxyz = x(yz) Composition, Cut

Cxyz = (xz)y Exchange

Ix = x Identity

Kx ! y = x Weakening

Wx ! y = x ! y ! y Contraction

D !x = x Dereliction

δ !x = ! !x Comultiplication

F !x ! y = !(xy) Monoidal functoriality

The notational convention is: · associates to the left; · is suppressed; and
! binds stronger than · does.

Theorem 4.11 (From GoI situations to LCAs [21]). Let (C, F, U) be a GoI
situation (Definition 4.8). Then the homset

C(U,U)

is a linear combinatory algebra (LCA). �

We shall review the proof of the previous result (from [21]) and describe the
LCA structure of C(U,U) in some detail. Its application operator · is defined in
the same way as what we already described for the special case of (C, F, U) =
(Kℓ(L),N · ,N). That is, for each a, b : U p→ U ,

a·b := trUU,U

(

U ⊗ U
j
p−→ U

a
p−→ U

k
p−→ U ⊗ U

U⊗b
p−→ U ⊗ U

)

= a b

k

j

.

(29)
Let us now describe the ! operator. Its string diagram presentation, using dashed
boxes and double lines for denoting application of the functor F (like in [65, 47]),
is as follows.

! a :=
(

U
v
p−→ FU

Fa
p−→ FU

u
p−→ U

)

= a

v

u

FU

F ( )

. (30)
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Now, for some intuition, let us instantiate the general definition to the leading
example of (C, F, U) = (Kℓ(L),N· ,N). Since we have an isomorphismN·N ∼= N,
a retraction u : N ·N ⊳ N : v is readily available; let us fix one such pair. In the
string diagram in (30) a plain string represents N and a double line represents
N · N; the dashed box then represents making countably many copies of its
content. Using pipes in place of strings (i.e. thinking of a string of type N as
a bunch of countably many pipes), the diagram in (30) comes to look like the
following.

Here a token moves from the top towards the bottom; the piping v divides
countably many pipes into countably many bunches (each of which consists of
countably many pipes), according to a fixed isomorphism N · N ∼= N; in the
middle we have a copy of a for each bunch; and finally the bunches of pipes are
unified by u into a single bunch.

Let us now go on to describing LCA combinators, like B,C and I, in the LCA
C(U,U) in Theorem 4.11. Their definitions are given in [21, §4], uniformly for
any GoI situation (whether it is particle-style or wave-style), by certain string
diagrams. For example, the B combinator is given by the following element of
C(U,U).

(31)

This diagram is a string diagram in C; the triangles denote the isomorphisms
j : U ⊗ U ∼= U : k. By expanding the application operation · according to (29),
it is not hard to see that the equation Bxyz = x(yz) holds. See Figure 2. In
fact, it is a nice (and easy) puzzle to recover the string diagram (29) from the
specification Bxyz = x(yz) of the combinator B—the (seemingly complicated
and arbitrary) wiring in the middle of (31) can be deduced by working out which
wire should be connected, in the end, to which wire. An important point here
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Bxyz =

B

x y z = x y z

= x y z = · · · = x y z .

Figure 2: Proof of Bxyz = x(yz)

is that two triangles pointing to each other cancel out, that is,

= , since k ◦ j = id.

Remark 4.12. The definition (31) can be derived by working backwards in
the reasoning in Figure 2. A more “logical” derivation is possible, too; it works
as follows. We first turn the TSMC C into a compact closed (hence symmetric
monoidal closed) category Int(C), applying the Int-construction [44] (or the GoI
construction, see §2.3). The reflexive object U will then give rise to an object
(U,U) in Int(C) that is equipped with a retraction (U,U) ⊸ (U,U) ⊳ (U,U).
This retraction—of the function space (U,U) ⊸ (U,U) in (U,U) itself—will
allow the interpretation of untyped linear λ-terms over it. We then interpret
λxyz. x(yz), the λ-term for the combinator B.

Remark 4.13 (wave-style GoI). In §4.3 we have relied on particle-style ex-
amples of GoI situations for intuitions. This leaves wave-style examples—
where tensor products are given by products instead of coproducts, see §4.1—
untouched. In fact we have preliminary observations that suggest the fol-
lowing correspondence: particle-style GoI situations naturally model forward,
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state-based description of tokens’ dynamics, while wave-style ones model back-
ward, predicate-based description of it. Here the contrast is really the one
between state-transformer semantics and predicate-transformer semantics—a
classic topic in theoretical computer science [66, 67] that has also proved to be
relevant in quantum dynamics (the Schrödinger picture and the Heisenberg one;
see e.g. [68]). Details are yet to be worked out.

4.4. Categorical GoI Instantiated to a Quantum Setting

In §4.1 we observed that “particle-style” examples of GoI situations in [21]
allow a uniform treatment as Kleisli categories. This generalizes to the quantum
branching monad Q in §4.2.
Theorem 4.14. The triple

(

(Kℓ(Q), 0,+), N · , N
)

forms a GoI situation.
Here the functor N · : Kℓ(Q) → Kℓ(Q) carries X to the coproduct N · X of
N-many copies of X (i.e. N-th copower of X).

Proof. The main challenge—namely, if (Kℓ(Q), 0,+) is traced or not—is al-
ready answered in Theorem 4.5. Its trace operator is given much like for the cate-
goryKℓ(L) ∼= Pfn of sets and partial functions. Namely, given f : X+Z p→ Y+Z
inKℓ(Q): its “restrictions” fXY , fXZ , fZY and fZZ are defined much like in (26);
and we use Girard’s execution formula

trZX,Y (f)(x) := fXY (x) +
∑

n∈N

(

fZY ⊙ fn
ZZ ⊙ fXZ

)

(x)

to define the trace operator. Notice similarity to the formula (27).
The only nontrivial part that remains is to show that N · preserves traces.

Since the trace operator in Kℓ(Q) can be described using Girard’s execution
formula (much like in (26) for Kℓ(L), due to the results in [33, 59]), we can use
a lemma that is similar to [21, Lemma 5.1]. �

By Theorem 4.11 (that is from [21]) we obtain the following LCA. It will be
denoted by AQ and used in the rest of the paper.

Theorem 4.15 (The quantum LCA AQ). The homset

AQ := Kℓ(Q)(N,N)

is a linear combinatory algebra (LCA). �

The LCA structure of AQ (the operators ·, ! and combinators like B) can
be described very much like for Kℓ(L); we already described the latter in §4.3.
In particular the piping analogy is still valid, except for the difference in the
notion of “branching” (possibly diverging vs. based on quantum operations) we
explained in §4.2.

The following special property is shared by the LCAs that arise from particle-
style GoI situations. For a proof see [32, §2.2].
Proposition 4.16. The LCA AQ in Theorem 4.15 is affine: it has the full K
combinator such that Kxy = x. �
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4.5. A Linear Category via Realizability

According to our workflow in Figure 1, the next step is to employ the (linear)
realizability technique [32, 35] and turn an LCA (an untyped model) into a
linear category (a typed model). Here in §4.5 we describe how that happens,
focusing on the constructions and observations already described in [32, 35]. Our
specific linear category PERQ has some additional properties that result from
the way we construct it and, at the same time, are exploited for interpreting
some features of Hoq that go beyond standard linear λ-calculi. These additional
features will be described separately, later in §5.1.

Although a very brief introduction to realizability is found in §2.4, the cur-
rent paper would hardly be enough in providing good intuitions behind the
technical constructions. Unfamiliar readers are referred to [34, 69] for realiz-
ability in general in categorical settings, and to [32, 35] for linear realizability in
particular. In what follows, for intuitions, it can be helpful to imagine Kleene’s
first combinatory algebra—where elements are natural numbers and application
a · b is defined by the outcome of the a-th recursive function applied to the b-th
tuple of natural numbers—in place of the LCA AQ.

Definition 4.17 (PER). A partial equivalence relation (PER) over AQ is a
symmetric and transitive relation X on the set AQ. The domain of a PER |X |
is defined by

|X | := {x | (x, x) ∈ X} = {x | ∃y. (x, y) ∈ X} ,

where the last equality follows from symmetry and transitivity of X . When
restricted to its domain |X |, X is an equivalence relation; therefore X can be
thought of as a subset |X | ⊆ AQ, suitably quotiented.

Intuitively: X is a “datatype,” each element of which is represented by some
elements of AQ; not every element of AQ represent an entity of X ; the set of
those elements which do is the domain |X | ⊆ AQ; and finally the equivalence
relation X (restricted to the domain |X |) designates which elements of AQ
represent the same entity of X .

Definition 4.18 (The category PERQ). PERs over the LCA AQ form a
category; it is denoted by PERQ. Its object X is a PER over AQ. Its ar-
row X → Y is defined to be an equivalence class of the PER

X ⊸ Y :=
{

(c, c′) | (x, x′) ∈ X ⇒ (cx, c′x′) ∈ Y
}

, (32)

where cx = c ·x denotes c ∈ AQ applied to x ∈ AQ via the applicative structure
· of AQ. We denote by [c] the equivalence class in X ⊸ Y to which c ∈ AQ
belongs. That is, [c] is an arrow that is “realized by the code c.”

Identity arrows and composition of arrows in PERQ are defined as usual
(see e.g. [32, 35]). Explicitly,

idX := [I] ; and [d] ◦ [c] := [Bdc] for X
[c]→ Y

[d]→ Z in PERQ.
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Observe that, for the latter, we indeed have

(

the code of [d] ◦ [c]
)

· x = Bdcx = d(cx) ∈ |Z| .

Note also that we use ◦ for composition of arrows in PERQ. This is to be
distinguished from · (for application in the LCA AQ, that is often omitted);
and from ⊙ (for composition of arrows in Kℓ(Q), like in (23).)

We elaborate further on the definition (32). Its domain |X ⊸ Y | is easily
seen to be the set of c ∈ AQ such that (x, x′) ∈ X implies (cx, cx′) ∈ Y .
This requirement is that the function [c] : |X |/X → |Y |/Y, [x] 7→ [cx] is well-
defined : if (x, x′) ∈ X , that is, if x, x′ ∈ AQ “represent” the same entity in the
PER X , then applying the code c to both elements must result in the elements
cx, cx′ ∈ AQ that again represent the same entity in the PER Y . Furthermore,
the PER X ⊸ Y identifies c and c′ such that (cx, c′x) ∈ Y for each |X |. This is
the extensionality of the functions of the type |X |/X → |Y |/Y . The situation
is much like in recursion theory, where different natural numbers can be “codes”
of the same recursive function.

In (32) cx and c′x′ are short for c · x and c′ · x′, respectively. Recall that ·
here is the application operator in the LCA AQ = Kℓ(Q)(N,N), that is defined
by

a · b :=

in terms of pipes. See §4.3; to repeat some of the intuitions provided there, we
imagine a token that takes one of the entrances (top-left pipes) and comes out of
one of the exits (bottom-left pipes). The token exhibits certain branching: in the
example of Kℓ(L) ∼= Pfn it was simply possible nontermination; in the current
setting of quantum branching, a token carries a quantum state and quantum
measurements on the quantum state give rise to probabilistic branching over
different exits that the token takes (§4.2).

From now on we describe some properties and features of the category
PERQ. It is a linear category, making it a categorical model for usual typed
linear λ-calculi. This fact, with some concrete constructions of the linear cat-
egory structure, is described in short. The category PERQ also exhibits some
additional properties. This is for two principal reasons: 1) due to its construc-
tion via realizability (Definition 4.18); and 2) because the underlying LCA AQ
is affine (rather than linear) and supports full weakening (Proposition 4.16).
These additional features, separately presented later in §5.1, will be exploited
for interpreting various features of the language Hoq.

Let us begin with some preparations.
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Notation 4.19. In what follows, an element of the LCA AQ is often designated
by an untyped linear λ-term. This is justified by combinatory completeness of
LCAs. It is claimed e.g. in [32, 70] and not hard to establish; an explicit proof
is found in [71].

Definition 4.20. We introduce the following additional combinators in AQ;
via combinatory completeness, they stand for certain terms composed of the
basic combinators in Definition 4.10, together with the full K combinator in
Proposition 4.16.

P := λxyz.zxy Pairing
K̄ := KI Weakening, K̄xy = y
Pl := λw.wK Left Projection, Pl(Pxy) = x
Pr := λw.wK̄ Right Projection, Pr(Pxy) = y

It is easy to see that the pairing in PERQ is extensional : Pxy = Px′y′ implies
x = x′ and y = y′.

Theorem 4.21 (PERQ as a linear category). The category PERQ is a linear
category [30, 31], equipped with a symmetric monoidal structure (I,⊠) and a
so-called linear exponential comonad !. The latter means that ! is a symmetric
monoidal comonad, with natural transformations

der : !X → X , δ : !X → ! !X ,
ϕ : !X ⊠ !Y → !(X ⊠ Y ) , ϕ′ : I → ! I ,

(33)

that is further equipped with monoidal natural transformations

weak : !X → I and con : !X → !X ⊠ !X , (34)

subject to certain additional conditions (see [30, 31]).

We use the symbol ⊠ for the monoidal product in PERQ; it is distinguished
from the tensor product of quantum states denoted by ⊗. See §3.3 for the
discussion on this issue.

Proof. The result is due to [32, Theorem 2.1]. For later use, we shall explicitly
describe some of the structures of PERQ.

The category PERQ is a symmetric monoidal closed category with respect
to the following operations.

X ⊠ Y :=
{

(Pxy,Px′y′)
∣

∣ (x, x′) ∈ X ∧ (y, y′) ∈ Y
}

,
I := {(I, I)} , X ⊸ Y := (the same as (32)) .

Here P and I are combinators from Definitions 4.10 and 4.20. The operations’
action on arrows is defined in a straightforward manner. For example, given
[c1] : X1 → Y1 and [c2] : X2 → Y2 in PERQ,

[c1]⊠ [c2] :=
[

λw.w
(

λuv.P(c1u)(c2v)
)]

: X1 ⊠X2 −→ Y1 ⊠ Y2 .
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With this definition we indeed have, for Px1x2 ∈ |X1 ⊠X2|,
(

the code of [c1]⊠ [c2]
)

· (Px1x2) =
[

P(c1x1)(c2x2)
]

∈ Y1 ⊠ Y2 .

The linear exponential comonad ! (see [32]) is given as follows, via the !
operation on the LCA AQ:

!X := {(!x, !x′) | (x, x′) ∈ X} , ![c] := [F(! c)] . (35)

In particular, the use of the combinator F in the latter ensures the type ![c] : !X →
!Y (in PERQ) for c : X → Y (in PERQ): indeed, for any x ∈ |X |,

(

the code of ![c]
)

· (!x) = F(! c)(!x) = !(cx) ∈ Y .

The natural transformations der, δ, ϕ, ϕ′,weak and con that accompany a
linear exponential comonad (see (33–34)) are concretely given as follows.

der := [D] : !X → X
δ := [δ] : !X → ! !X
ϕ :=

[

λw.w(λuv.F(F(! P)u)v)
]

: !X ⊠ !Y → !(X ⊠ Y )
ϕ′ :=

[

λw.w(! I)
]

: I → ! I
weak := [KI] : !X → I
con := [WP] : !X → !X ⊠ !X

(36)

Recall [c] denotes an arrow in PERQ that is realized by the code c ∈ AQ. �

Note that the constructions in the previous proof are the standard ones from [32]
that work for any LCA.

5. Interpretation of Hoq

We now present our interpretation of Hoq in the category PERQ. We
have seen in Theorem 4.21 that the category is a linear category, hence models
(standard) linear λ-calculi. See e.g. [47].

However, the specific calculus Hoq calls for some extra features. Firstly, the
linear exponential comonad ! on PERQ should be idempotent (! !X

∼=→ !X).
This is because in Hoq we chose to implicitly track linearity by subtyping <:—
in contrast to explicit tracking by constructs like derelict in standard linear
λ-calculi. See §3.3. This issue is addressed in §5.1. Secondly, recursion in Hoq
requires suitable cpo structures in the model. In the current style of realizability
models the notion of admissibility is a standard vehicle; this and some related
issues are addressed in §5.2. Thirdly we introduce some quantum mechanical
constructs in PERQ for interpreting constants of Hoq; see §5.3. Finally, we need
a strong monad T on PERQ for the probabilistic effect that arises inevitably
in quantum computation (more specifically through measurements). In fact we
will use for T a continuation monad ( ⊸ R) ⊸ R with the result type R
described as a final coalgebra; see §5.4. The actual interpretation of Hoq in
PERQ is presented in §5.5.

The proofs for §5 are deferred to Appendix D.
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5.1. Additional Structures of PERQ
We go on to study some additional structures that are available in PERQ.

These will be exploited later for interpreting various features of Hoq, such as
subtyping and coproduct types.

Recall that in AQ (that is an affine LCA) a full weakening combinator K is
available (Proposition 4.16).

Lemma 5.1 (I is terminal). The monoidal unit I is terminal (i.e. final) in
PERQ, with a unique arrow weak : X → I given by11

weak := [KI] . �

Lemma 5.2 (Binary (co)products in PERQ). The category PERQ has bi-
nary products × and binary coproducts +. Products are realized by a CPS-like
encoding.

X × Y :=
{ (

Pk1(Pk2u), Pk
′
1(Pk

′
2u

′)
) ∣

∣ (k1u, k
′
1u

′) ∈ X ∧ (k2u, k
′
2u

′) ∈ Y
}

,

X + Y :=
{

(PKx,PKx′)
∣

∣ (x, x′) ∈ X
}

∪
{

(PK̄y,PK̄y′)
∣

∣ (y, y′) ∈ Y
}

.

Their accompanying structures are defined in a straightforward manner. For
example, the projection maps are concretely as follows.

π1 =
[

λw.w(λkv.v(λlu.ku))
]

: X × Y −→ X ;
π2 =

[

λw.w(λkv.v(λlu.lu))
]

: X × Y −→ Y .
(37)

Proof. Straightforward; see e.g. [32, 35].

Logically ⊠ is “multiplicative and”; × is “additive and.”

Lemma 5.3. The following canonical isomorphisms are available in any linear
category with binary (co)products, hence in PERQ.

!(X × Y ) ∼= !X ⊠ !Y ,
(X + Y )⊠ Z ∼= X ⊠ Z + Y ⊠ Z ,

I ⊸ X ∼= X ,
(X + Y ) ⊸ Z ∼= (X ⊸ Z)× (Y ⊸ Z) .

(38)

Additionally, in PERQ, we have the following canonical isomorphisms.

!(X + Y )
∼=−→ !X + !Y

der!X : ! !X
∼=−→ !X : δ ! derX : ! !X

∼=−→ !X : δ

!(X ⊠ Y )
∼=−→ !X ⊠ !Y : ϕ weak : ! I

∼=−→ I : ϕ′
(39)

Here the arrows der, δ, ϕ, ϕ′ are from Theorem 4.21. Therefore ! on PERQ is
idempotent and strong monoidal; it also preserves coproducts.

11We shall use the same notation, weak, for both the unique arrow X → I and a structure
morphism for a linear exponential comonad !X → I (Theorem 4.21). They are indeed the
same arrow [KI].
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Proof. The ones in (38) are standard; see [72, §2.1.2]. The ones in (39) also
hold in any PERA with an affine LCA A. For the first (! distributes over +),
from right to left one takes [!κℓ, !κr] where κℓ, κr are coprojections;12 from left
to right one can take

[a] : !(X + Y ) −→ !X + !Y with a := λw.WPw
(

λuv.P(DuK)(F(!Pr)v)
)

;

indeed it is straightforward to see that a(!(PKx)) = PK(!x) and a(!(PK̄x)) =
PK̄(! x) for the above a. The second line of (39) (! is idempotent) follows imme-
diately from the definitions of der and δ in (36). For example,

(! derX)(! !x) = (![D])(! !x)
= F(!D)(! !x) by (35), def. of !’s action on arrows
= !(D !x) = !x .

For the third line (! distributes over ⊠), an inverse of ϕ can be given by the
following composite, exploiting that I is terminal (Lemma 5.1).

!(X ⊠ Y )
con−→ !(X ⊠ Y )⊠ !(X ⊠ Y )

weak−→ !(X ⊠ I)⊠ !(I⊠ Y )
∼=−→ !X ⊠ !Y

This concludes the proof. �

One consequence of the last result is that we have !(X ⊠ Y ) ∼= !(X × Y ) in
PERQ. As stated in the proof, this is true in PERA for any affine LCA A.

We go ahead and show that the category PERQ has countable limits and
colimits.

Definition 5.4 (Combinators (xi)i∈N, Di). Let x0, x1, . . . ∈ AQ. We define
the element (xi)i∈N ∈ AQ by:

(xi)i∈N :=
(

N
v
p−→ N · N

∐
i xi

p−→ N · N
u
p−→ N

)

= x0

v

u

· · ·x1

where u : N · N ∼= N : v are (fixed) isomorphisms in Theorem 4.15.
For each i ∈ N, we define an element Di ∈ AQ by

Di :=





N
k
p−→ N+ N

κi·N+v
p−→ N · N+ N · N

u+pi·N
p−→ N+ N

[κr ,κℓ]
p−→ N+ N

j
p−→ N



 =

κi · N

u pi · N

v

.

12Note that we are using square brackets [ ] to denote both: equivalence classes modulo
PERs; and cotupling of arrows (like in [!κℓ, !κr]). We hope this does not lead to much
confusion: the two usages have different arities.
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Here κi (for i ∈ N), κℓ, κr (for “left” and “right”) are coprojections; and pi :
N p→ 1 is a “projection” map in [33] (see also Theorem Appendix C.5) that
satisfies

pi ⊙ κj =

{

id1 if i = j,

⊥ otherwise,

where ⊙ denotes composition of arrows in Kℓ(Q) and ⊥ is the least element (the
“zero map”) in the homset Kℓ(Q)(1, 1).

Lemma 5.5. We have Dj ·(xi)i∈N = xj . Here · denotes the applicative structure
of AQ (Theorem 4.15).

Proof. By easy manipulation of string diagrams, the claim boils down to the
equality

(

N
κj ·N
p−→ N · N

∐
i xi

p−→ N · N
pj ·N
p−→ N

)

= xj .

This follows from the fact that

(
∐

i

xi)⊙ (κj · N) =
[

(κi · N)⊙ xi

]

i
⊙ (κj · N) = κj · N⊙ xj

and that pj ⊙ κj = id1. �

Proposition 5.6. The category PERQ has countable limits and colimits.

Proof. Constructions of equalizers and coequalizers in realizability categories
are described in [34]; they work in the current setting of PERs over an LCA,
too. Concretely: given [c], [d] : X ⇒ Y in PERQ, let

E :=
{

(x, x′)
∣

∣ (x, x′) ∈ X ∧ (cx, dx′) ∈ Y
}

; and

C :=
(

the symmetric and transitive closure of
{

(y, y′)
∣

∣ (y, y′) ∈ Y
}

∪
{

(cx, dx′)
∣

∣ (x, x′) ∈ X
} )

.

Then it is straightforward to see that [I] : E → X and [I] : Y → C—where I is
the identity combinator (Definition 4.10)—are an equalizer and a coequalizer of
[c] and [d], respectively.

It suffices to show that PERQ has countable products and coproducts (since
(co)products and (co)equalizers give all (co)limits). Given a countable family
(Xi)i∈N of objects of PERQ, we use the constructs in Definition 5.4 and define

∏

i∈N

Xi :=
{ (

P(ki)i∈Nu, P(k
′
i)i∈Nu

′) ∣
∣ (kiu, k

′
iu

′) ∈ Xi for each i ∈ N
}

;

πi :=
[

λw.w(λvu.(Div)u)
]

:
∏

i∈N

Xi −→ Xi .

Then, given a family
(

[ci] : Y → Xi

)

i∈N
of arrows, its tupling can be given by

〈

[ci]
〉

i∈N
:=

[

λy.P(ci)i∈N y
]

: Y −→
∏

i

Xi .
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The uniqueness of such a tupling directly follows from the definition of the PER
∏

i∈N
Xi.

On coproducts, we define

∐

i∈N

Xi :=
{

(PDixi,PDix
′
i)
∣

∣ i ∈ N, (xi, x
′
i) ∈ Xi

}

;

κi :=
[

PDi

]

: Xi −→
∐

i∈N

Xi .

Given a family
(

[ci] : Xi → Y
)

i∈N
of arrows, its cotupling can be given by

[

[ci]
]

i∈N
:=

[

λw.w(λdx.d(ci)i∈N x)
]

:
∐

i

Xi −→ Y .

This concludes the proof. �

Remark 5.7. Although we have focused on the specific linear categoryPERQ,
what are said in the current §5.1 are true in more general settings.

One point (that is already mentioned) is that the extra canonical isomor-
phisms in (39) hold in any PERA with an affine LCA A. This makes such
categories PERA suitable for modeling linear λ-calculi with implicit linearity
tracking.

Another point is about the constructions in Definition 5.4, Lemma 5.5 and
Proposition 5.6. It is not hard to see that these are all possible in the category
PERAB , where the LCA AB is obtained via categorical GoI [21, Proposition 4.2]
from the Kleisli category Kℓ(B) for any “branching monad” like B = L,P ,D
and Q (see §2.2).

5.2. Order Enrichment and Further Additional Constructs in PERQ

Here in §5.2 we describe another additional construct—namely an alternative
pairing combinator Ṗ—in our categorical model PERQ. What we describe
here are mostly concerned about order/cpo structures, which we exploit for the
purpose of interpreting recursion in Hoq.

Let us first note that (the underlying set of) the LCA AQ is equipped with
an ω-CPO structure ⊑. This is because: AQ = Kℓ(Q)(N,N) (Theorem 4.15);
and the category Kℓ(Q) is ω-CPO enriched (Theorem 4.5). Recalling from
Definition 4.4, the order on AQ is (a suitable pointwise extension of) Löwner
partial order (Definition 2.4). For the record:

Lemma 5.8 (AQ is an ω-CPO). The set AQ is an ω-CPO with the smallest
element ⊥. Furthermore:

1. the application operator · : A2
Q → AQ and the ! operator are continuous;

and

2. application · is left strict, that is, ⊥ · a = ⊥ for each a ∈ AQ. �
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This order structure on AQ, unfortunately, does not give rise to orders on
PERQ in a categorically structured manner. Certainly not so nicely as for the
Kleisli category Kℓ(Q)—we do not see any straightforward way to make the
category PERQ ω-CPO enriched. To see it, consider the following notion of
admissibility of PERs—this is a standard vehicle for interpreting recursion in
realizability models (see e.g. [73, 74]).

Definition 5.9 (Admissible PER). A PER U ∈ PERQ is said to be admis-
sible if:

• (strictness) (⊥,⊥) ∈ U for the least element ⊥ ∈ AQ; and

• (inductiveness) x0 ⊑ x1 ⊑ · · · , y0 ⊑ y1 ⊑ · · · and (xi, yi) ∈ U for each
i ∈ N imply (supi xi, supi yi) ∈ U .

The trickiness of order structures on PERQ is exemplified by the fact that
admissibility is not preserved by isomorphisms in PERQ.

Example 5.10 (Admissibility not preserved by isomorphisms). It is easy
to see that we have an isomorphism I = {(I, I)} ∼= {(⊥,⊥)} =: Bt in PERQ;
here Bt is admissible while I is not.

It is for this trickiness of the order structures on PERQ that we are in-
troducing an alternative Ṗ to the pairing combinator P (Definition 4.20)—the
former leads to a different “implementation” ×̇ of products. The merit of ×̇ is
that it exhibits a better order-theoretic property (namely it preserves admissi-
bility, Lemma 5.13); we will need them for recursion. In contrast, P enjoys a
useful combinatorial property: (Pxy)z = zxy.

Definition 5.11 (Combinator Ṗ, binary product X ×̇ Y ). We define an el-
ement Ṗ ∈ AQ by the string diagram in Kℓ(Q) shown below on the left. The
triangles denote j : N + N ∼= N : k in Theorem 4.15. Then Ṗxy becomes as
shown bottom on the right.

Ṗ := Ṗxy = x y (40)

Let Ṗl and Ṗr be the following elements of AQ.

Ṗl := Ṗr :=
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Here the nodes and denote the unique arrows N p→ 0 and 0 p→ N in
Kℓ(Q), respectively. Furthermore, let us introduce the following conversion
combinators.

C
P7→Ṗ

:= λw.wṖ C
Ṗ7→P

:= P

We define X ×̇ Y by replacing P with Ṗ in X × Y (Lemma 5.2).

Lemma 5.12. We have, for each x, y ∈ AQ,

Ṗl(Ṗxy) = x , Ṗr(Ṗxy) = y ; C
P7→Ṗ

(Pxy) = Ṗxy , C
Ṗ7→P

(Ṗxy) = Pxy .

The latter two result in a canonical natural isomorphism X × Y
∼=→ X ×̇ Y in

PERQ. Therefore in what follows we shall use × and ×̇ interchangeably. That
is, we suppress use of the conversion combinators C

P7→Ṗ
and C

Ṗ7→P
.

Proof. In the proof we shall rely heavily on the reasoning in string diagrams
in the traced monoidal category Kℓ(Q).

For the first equality, the proof goes as follows.

Ṗl(Ṗxy) = x y =
x y

=
x y

(∗)
=

x y

=
x y

(†)
= x y

(‡)
= x = x ,

where (∗) and (†) hold because of the dinaturality (also called sliding) and
yanking axioms of traced monoidal categories, respectively (see [44, 21]); and
(‡) holds by a direct calculation in Kℓ(Q). The second equality Ṗr(Ṗxy) = y is
similar.

The third equality is easy exploiting the combinatorial property (Pxy)z =
zxy of P:

C
P7→Ṗ

(Pxy) = (Pxy)Ṗ = Ṗxy .
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The last equality is shown as follows, where (∗) holds due to the dinaturality
axiom.

C
Ṗ7→P

(Ṗxy) = P x y =

P

x y

(∗)
= P

x
y

=
P x y

= Pxy . �

Lemma 5.13. For admissible U, V and any X, we have U ×̇ V and X ⊸ U
admissible. �

As we observed earlier in Example 5.10, admissibility is not necessarily preserved
by isomorphisms in PERQ. Therefore replacing ×̇ with × (that are isomorphic,
see Lemma 5.12) would make the last result (Lemma 5.13) fail.

Admissibility of a PER (Definition 5.9) gives rise to a fixed-point construc-
tion, in the following sense.

Definition 5.14 (Fixed point operator). Let U,X ∈ PERQ; assume that
U is admissible. We introduce a fixed point operator (denoted by fix) that carries

f : !U ⊠ !X −→ U to fix(f) : !X −→ U

in the following way. Let c be a code of f . We define c0, c1, . . . ∈ | !X ⊸ U | by
c0 := ⊥ ;

cn+1 := the canonical code of
(

!X
con−→ !X ⊠ !X

δ⊠id−→ ! !X ⊠ !X
![cn]⊠id−→ !U ⊠ !X

[c]→ U
)

.

A concrete description of cn+1 in terms of cn can be easily given using in par-
ticular (36). Since U is admissible and ⊥ · x = ⊥, c0 = ⊥ is a valid code. It is
not hard to show that c0 ⊑ c1 ⊑ · · · by induction; since !X ⊸ U is admissible
its supremum supi ci belongs to the domain | !X ⊸ U |. Finally, we define

fix(f) := [ sup
i

ci ] .

It is easily seen too that the above definition of fix(f) does not depend on the
choice of a code c of f . Here admissibility of U is crucial.

5.3. Quantum Mechanical Constructs in PERQ
Here we introduce some constructs in PERQ that we use for interpreting

quantum primitives in Hoq.
We start with the following combinator A that allows to “juxtapose” piping;

see (23).
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Definition 5.15 (Combinator A). We define A ∈ AQ by the string diagram
in Kℓ(Q) shown below. The triangles are j : N+N ∼= N : k in Theorem 4.15. It
is easily seen to satisfy the equation

Axy = x⊙ y , (41)

where ⊙ denotes composition of arrows in Kℓ(Q) (see §4.2).

A := Axy =
y

x

Definition 5.16 (Combinators Qρ, QU , Q
N+1
|0i〉 , QN+1

|1i〉 ). We define elements

Qρ,QU ,Q
N+1
|0i〉 ,QN+1

|1i〉 ∈ AQ as follows. Here N ∈ N, ρ ∈ DM2N , U is an 2N ×2N

unitary matrix, and i ∈ [1, N + 1].

Qρ,QU ,Q
N+1
|0i〉 ,QN+1

|1i〉 : N p−→ N in Kℓ(Q); given σ ∈ DMm,

(

Qρ(k)(l)
)

m,n
(σ) :=

{

ρ⊗ σ if k = l ∧ n = 2N ·m
0 otherwise,

(

QU (k)(l)
)

m,n
(σ) :=

{

(U( )U † ⊗ idj)σ if k = l and ∃j. (n = m = 2N · j)
0 otherwise,

(

Q
N+1
|0i〉 (k)(l)

)

m,n
(σ) :=

{

(

〈0i| |0i〉 ⊗ idj
)

σ if k = l and ∃j. (m = 2N+1 · j ∧ n = 2N · j)
0 otherwise.

(

Q
N+1
|1i〉 (k)(l)

)

m,n
(σ) :=

{

(

〈1i| |1i〉 ⊗ idj
)

σ if k = l and ∃j. (m = 2N+1 · j ∧ n = 2N · j)
0 otherwise.

In the definition of Qρ, ⊗ denotes tensor product of matrices. The combinator
Qρ “adjoins an auxiliary state ρ”: an incoming token carrying σ comes out of
the same pipe, with its state composed with ρ. In particular the state 1 ∈ DM1

comes out as ρ. Similarly, the combinator QU applies the unitary transformation
U to (the first N qubits of) the incoming quantum state; and Q

N+1
|0i〉 and Q

N+1
|1i〉

apply suitable projections (cf. Remark 2.11), focusing on the first N + 1 qubits
of the incoming quantum state σ and projecting its i-th qubit. Indeed:

Lemma 5.17. We have the following equalities.

Qρ⊙Qσ = Qρ⊗σ QU⊙Qρ = QUρU† Q
N+1
|0i〉 ⊙Qσ = Q〈0i|σ|0i〉 Q

N+1
|1i〉 ⊙Qσ = Q〈1i|σ|1i〉

�

Definition 5.18 (JN-qbitK,JbitK). For eachN ∈ N we define a PER JN -qbitK
over AQ by:

JN -qbitK :=
{

(Qρ,Qρ) | ρ ∈ DM2N
}

.

In particular, J0-qbitK = { (Qp,Qp) | p ∈ [0, 1] } (cf. Definition 2.3). This type
can be thought of as the unit interval [0, 1].

A PER JbitK is defined to be I + I (see Lemma 5.2).
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The following fact supports the idea that ! stands for duplicable, hence clas-
sical, data.

Lemma 5.19. There is a canonical isomorphism JbitK
∼=→ !JbitK in PERQ.

Proof. Use the isomorphisms (39) in Lemma 5.3. �

The quantum combinators in Definition 5.16 are combined with the A com-
binator in Definition 5.15 and yield the following combinators for quantum op-
erations.

Definition 5.20 (Combinators UU ,Pr
N+1
|0i〉 ,PrN+1

|1i〉 ). We define

UU := AQU , Pr
N+1
|0i〉 := AQ

N+1
|0i〉 , Pr

N+1
|1i〉 := AQ

N+1
|1i〉 .

Lemma 5.21. For combinators in Definition 5.16 and 5.20, and ρ, σ, U of
suitable dimensions, we have

AQρQσ = Qρ⊗σ , UUQρ = QUρU† ,

Pr
N+1
|0i〉 Qσ = Q〈0i|σ|0i〉 , Pr

N+1
|1i〉 Qσ = Q〈1i|σ|1i〉 .

Proof. Obvious from Lemma 5.17. �

Remark 5.22 (No-cloning in the category PERQ). We noted in Remark 3.21
that: the “preparation” primitive newρ in Hoq can be typable with the type
! k-qbit; hence the constant newρ is duplicable; nevertheless “no-cloning” is en-
forced by the linear typing discipline in Hoq, in the sense that a given quantum
state—whose preparation apparatus we do not have access to—cannot be dupli-
cated. Here we shall discuss how these design choices are reflected in our model
PERQ.

It is important to note that, in Hoq and in its model PERQ alike, the
quantum tensor ⊗ (for composed and entangled systems) and the linear-logic
tensor ⊠ are distinguished. Let us speak in the piping analogy in (21): an
arrow in PERQ is “realized” by a code c ∈ AQ (Definition 4.18); and each
element c of AQ is a Kleisli arrow c : N p→ N in Kℓ(Q) (Theorem 4.15), that
is, piping like in (21) with countably infinite numbers of entrances and exits.
Then the quantum tensor ⊗ resides solely in the quantum states carried by
tokens; importantly it has nothing to do with how tokens move around (except
for the indirect relationship in which measurements on quantum states result
in branching of tokens). In contrast, the type constructors derived from linear
logic—namely ⊠, ⊸ and !—are all concerned about how pipes are connected.

Concretely, the denotation of new|0〉〈0| : ! qbitwill look like the piping in (4.3),
with a = Q|0〉〈0| where the latter is from Definition 5.16. Therefore ! in the type
! qbit here merely makes infinitely many copies a = Q|0〉〈0|; it does nothing
like duplicating quantum states (that are carried by tokens that go through the
pipes). It is easy to see that !Q|0〉〈0| = Q|0〉〈0| as arrows N p→ N in Kℓ(Q), as a
matter of fact, since Q|0〉〈0| does not alter the path taken by a token but only
adjoins the quantum state |0〉〈0| to the one carried by the token.
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5.4. Continuation Monad T

In order to capture probabilistic branching in Hoq, we use a strong monad
T on PERQ following Moggi’s idea [39]: the interpretation of a type judgment
∆ ⊢ M : A will be an arrow J∆K → T JAK in the category PERQ. The monad
T is in fact a continuation monad T = ( ⊸ R) ⊸ R with a suitable result
type R; hence our semantics is in the continuation-passing style (CPS). The
resulting CPS model is fairly complex as a matter of fact, but our efforts for
its simplification have so far been barred by technical problems, leading us to
believe that CPS is a right way to go. Informally, the reason is as follows.

Think of the construct meas11 that measures one qubit; for the purpose of
case-distinction based on the outcome, it is desired that meas11 is of the type
qbit ⊸ bit. Therefore it is natural to use monadic semantics : we use a monad
T—with a probabilistic flavor—so that we have Jmeas11K : JqbitK → T JbitK.

For our GoI semantics based on local interaction, however, a simple “prob-
ability distribution” monad (something like D in §2.2) would not do. One ex-
planation is as follows. Think of the construct meas21 : 2-qbit ⊸ bit⊠ qbit: it
takes a state ρ of a 2-qubit system; measures the first qubit; and returns its out-
come (tt or ff) together with the remaining qubit. The probability of observing

tt is calculated by tr

(

(

〈01| |01〉 ⊗ id2
)

ρ
)

, and use of a naive “probability

distribution monad” requires calculation of the explicit value of this probabil-
ity. However, the calculation traces out the second qubit, destroys and leaves it
inept for further quantum operations.

(To put it differently: since we let a quantum state ρ implicitly carry a
probability in the form of its trace value tr(ρ), a naive interpretation of meas21
would have the codomain bit ⊗ qbit—with entanglement—rather than the
desired codomain bit⊠ qbit that goes along well with ! and recursion.)

Hence we need to postpone such calculation of probabilities until the very
end of computation. Use of continuations is a standard way to do so. As a
result type R, we take that of infinite complete binary trees with each edge
labeled with a real number p ∈ [0, 1]—obtained as a final coalgebra.

Definition 5.23 (The functor Fpbt). We define an endofunctor Fpbt : PERQ →
PERQ by

Fpbt := JbitK ⊸ (J0-qbitK ×̇ )

where the objects JbitK and J0-qbitK are as in Definition 5.18.

In the functor Fpbt we use ×̇ instead of × for Cartesian products. This ensures
a good order-theoretic property (namely admissibility) of the carrier R of the
final coalgebra.

The functor Fpbt represents the branching type of probabilistic binary trees
like the one shown below. In the functor, the JbitK part designates which of the
left and right successors; and the J0-qbitK part designates the value pi ∈ [0, 1]
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that is assigned to the edge (here i ∈ {0, 1}).

p0 p1

(42)

The values p0 and p1 can be thought of as probabilities, although they might
not add up to 1.

As is usual in the theory of coalgebras (see e.g. [40, 41]), the collection of
such trees is identified with (the carrier of) a final coalgebra.

Lemma 5.24 (The result type R). The functor Fpbt has a final coalgebra

r : R
∼=−→ FpbtR .

Proof. We use the standard construction by a final sequence (see e.g. [75, 76]).
Let

Bt := {(⊥,⊥)}
be a final object; here ⊥ ∈ AQ is the least element with respect to the order ⊑
(Lemma 5.8). Although Bt

∼=→ I, we use Bt due to its order-theoretic property
(namely: Bt is admissible while I is not, see Example 5.10). Consider the final
sequence

Bt FpbtBt
weakoo F 2

pbtBt
Fpbtweak

oo · · ·
F 2

pbtweak
oo (43)

in PERQ. Here weak denotes the unique arrow to final Bt. For j ≤ i, let ci,j
be (the canonical choice of) a realizer of the arrow F i

pbtBt → F j
pbtBt in the final

sequence.
By Proposition 5.6 there is a limit R of the sequence (43). Moreover the

PER R can be concretely described as: the symmetric closure of

{ (

Ṗ(ki)iu, Ṗ(k
′
i)iu

′) ∣
∣ j ≤ i implies

(

ci,j(kiu), k
′
ju

′) ∈ F j
pbtBt and

(

kju, ci,j(k
′
iu

′)
)

∈ F j
pbtBt

}

.
(44)

Now the functor Fpbt preserves limits: J0-qbitK×̇ does since ×̇ is for products;
and JbitK ⊸ does since it has a left adjoint JbitK ⊠ (Theorem 4.21).
Therefore the well-known argument (see e.g. [75, 76]) proves that R carries a

final Fpbt-coalgebra, with the coalgebraic structure r : R
∼=→ FpbtR obtained as

a suitable mediating arrow. �

Lemma 5.25. Let
T := ( ⊸ R) ⊸ R .

Then T is a strong monad on PERQ.
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Proof. This is a standard fact that is true—as one would readily prove—for
any symmetric monoidal closed category (C, I,⊠,⊸) and for any R ∈ C. �

We introduce a map

mult : J0-qbitK ⊠R −→ R

that will be needed later. Intuitively, what it does is to receive p ∈ [0, 1] and a
binary tree t like (42) and returns the tree in which the probabilities assigned
to all the edges are multiplied by p. For example,
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2
,

1
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1
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...

1
2

2
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3
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mult7−→

1
6

...

1
8

...

1
4

1
3

...

3
10

...

1
5

.

The precise definition of mult is by coinduction as a definition principle.

Definition 5.26 (mult). Let a coalgebra

cmult : J0-qbitK ⊠R −→ Fpbt

(

J0-qbitK ⊠R
)

in PERQ

be defined as the adjoint transpose of the following composite.

J0-qbitK ⊠R⊠ JbitK
id⊠r⊠id−→ J0-qbitK ⊠ (JbitK ⊸ (J0-qbitK ×̇R))⊠ JbitK

id⊠ev−→ J0-qbitK ⊠ (J0-qbitK ×̇ R)
〈id⊠πℓ,id⊠πr〉−→ (J0-qbitK ⊠ J0-qbitK) ×̇ (J0-qbitK ⊠R)

[λw.wA]×̇id−→ J0-qbitK ×̇ (J0-qbitK ⊠R)

Here the map [λw.wA] : J0-qbitK ⊠ J0-qbitK → J0-qbitK—that carries Pxy to
x⊙y—plays the role of multiplication over [0, 1]. By finality, this coalgebra cmult

induces a unique coalgebra homomorphism from cmult to r. This is denoted by
mult.

Fpbt

(

J0-qbitK ⊠R
) Fpbt(mult)

//❴❴❴❴❴❴ FpbtR

J0-qbitK ⊠R

cmult

OO

mult
//❴❴❴❴❴❴❴❴ R

∼= r
OO

For the purpose of interpreting recursion we need the following property.
The notion of admissibility is from Definition 5.9.

Lemma 5.27. The PER R in (44) is admissible. Therefore by Lemma 5.13,
TX = (X ⊸ R) ⊸ R is admissible for each X; so is X ⊸ TY . �

The last result (Lemma 5.27) implies that the following “fixed-point” con-
struction is available, by Definition 5.14 (where U was required to be admissible).

f : !R⊠ !X −→ R

fix(f) : !X −→ R
, for each X ∈ PERQ.
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Remark 5.28. The need for CPS-style semantics, as is the case here, does not
seem to be a phenomenon unique to (“classical control and quantum data”)
quantum computation. The same kind of difficulties are already observed with
nondeterministic branching (see the leading example in [77]), and they seem to
occur with any computational effect—at least the algebraic ones in the sense
of [78].

The work [77] presents an alternative approach to the one used here (namely
the CPS-style semantics by a continuation monad): it identifies the underlying
problem to be the “memoryless” nature of processes (i.e. links in proof nets,
boxes in string diagrams, etc.), and solves the problem by systematically equip-
ping the processes with internal states (called memories) exploiting coalgebraic
component calculus.

The framework in [77] is categorical and general, parametrized by a monad
and algebraic operations interpreted over it. We expect its application to the
current question (of higher-order quantum computation) will simplify the cur-
rent CPS model by a great deal. This is however left as future work.

5.5. Interpretation

Standing on all the constructs and properties exhibited in §5.1–5.4, we shall
now interpret Hoq in the category PERQ.

Definition 5.29 (Interpretation of types). For each Hoq-type A, we assign
JAK ∈ PERQ as follows, using the structures of PERQ we described in previous
sections. For base types, JN -qbitK is as in Definition 5.18.

J!AK := !JAK JA ⊸ BK := JAK ⊸ T JBK
J⊤K := I JA ⊠BK := JAK ⊠ JBK

JA+ BK := JAK + JBK

Definition 5.30 (Interpretation of the subtype relation). We shall assign,
to each derivable subtype relation A <: B, an arrow

JA <: BK : JAK −→ JBK in PERQ.

For that purpose we first introduce a natural transformation

δn,m : !n X −→ !m X , natural in X ,

for each n,m ∈ N that satisfy n = 0 ⇒ m = 0. This is as follows.

δn,m :=











id if n = m

δ ◦ · · · ◦ δ if n < m (note that in this case n > 0)

der ◦ · · · ◦ der if n > m

Using δn,m, an arrow JA <: BK is defined by induction on the derivation (that
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is according to the rules in (11)).

J!n k-qbit <: !m k-qbitK :=
(

!nJk-qbitK
δn,m−→ !mJk-qbitK

)

,

J!n ⊤ <: !m ⊤K :=
(

!nJ⊤K
δn,m−→ !mJ⊤K

)

,
J!n(A1 ⊠A2) <: !m(B1 ⊠B2)K :=

(

!n
(

JA1K ⊠ JA2K
) !n
(

JA1<:B1K⊠JA2<:B2K
)

−→ !n
(

JB1K ⊠ JB2K
) δn,m−→ !m

(

JB1K ⊠ JB2K
)

)

.

J!n(A1 +A2) <: !m(B1 +B2)K and J!n(A1 ⊸ A2) <: !m(B1 ⊸ B2)K are defined
in a similar manner.

It is obvious from the rules in (11) that a derivable judgment A <: B has
only one derivation. Therefore JA <: BK is well-defined.

Lemma 5.31. Let A <: B and B <: C. Then A <: C by Lemma 3.15.1;
moreover

JA <: CK = JB <: CK ◦ JA <: BK .

Proof. Much like the proof of Lemma 3.15.1, in whose course we exploit natu-
rality of δn,m, and that δn,k = δm,k ◦ δn,m. The latter follows from Lemma 5.3.

�

We now interpret constants. In the general definition (Definition 5.34) a
typed term ∆ ⊢ M : A will be interpreted as an arrow JMK : J∆K → T JAK—
the monad T is there because of our CPS semantics. For constants however
we do not need T : intuitively this is because a constant c can always have the
type !DType(c) (see (Ax.2) in Table 1). Therefore we first define JcKconst : I →
JDType(c)K whose descriptions are simpler, and then JcK : I → T JDType(c)K
will be defined to be the embedding via the unit ηT : id ⇒ T of the monad T .

The technical core is in the interpretation of measurements. We explain its
idea after its formal definition.

Definition 5.32 (Interpretation of constants). To each constant c in Hoq
we assign an arrow

JcKconst : I −→ JDType(c)K

as follows. For c ≡ newρ, JnewρKconst is given by

I
[λx.Qρ]−→ Jn-qbitK .

For c ≡ measn+1
i with n ≥ 1, by transpose we need an arrow

J(n+ 1)-qbitK ⊠
(

(JbitK ⊠ Jn-qbitK) ⊸ R
) m−→ R , (45)

where we also used !JbitK ∼= JbitK (Lemma 5.19). By R’s fixed point property

(namely r : R
∼=→ JbitK ⊸ (J0-qbitK ×R)), this is further reduced to an arrow

J(n+ 1)-qbitK ⊠
(

(JbitK ⊠ Jn-qbitK) ⊸ R
)

⊠ JbitK −→ J0-qbitK ×R .
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This can be obtained as follows.

J(n+ 1)-qbitK ⊠
(

(JbitK ⊠ Jn-qbitK) ⊸ R
)

⊠ JbitK
∼= J(n+ 1)-qbitK ⊠

(

(Jn-qbitK + Jn-qbitK) ⊸ R
)

⊠ JbitK by (38) and I⊠X ∼= X
∼= J(n+ 1)-qbitK ⊠

(

(Jn-qbitK ⊸ R)× (Jn-qbitK ⊸ R)
)

⊠ JbitK by (38)
∼= J(n+ 1)-qbitK ⊠ (Jn-qbitK ⊸ R)×2 + J(n+ 1)-qbitK ⊠ (Jn-qbitK ⊸ R)×2 by (38)
[

Pr
n+1

|0i〉

]

⊠πℓ+
[

Pr
n+1

|1i〉

]

⊠πr

−→ Jn-qbitK ⊠ (Jn-qbitK ⊸ R) + Jn-qbitK ⊠ (Jn-qbitK ⊸ R)
ev+ev−→ R+R

[〈[λx.Q0],id〉,〈[λx.Q0],id〉]−→ J0-qbitK ×R .

Here Pr
n+1
|0i〉 and Pr

n+1
|1i〉 are from Definition 5.20, and Q0 is from Definition 5.16

(see also Definition 5.18).
For c ≡ meas11, similarly, by transpose we need an arrow

JqbitK ⊠
(

JbitK ⊸ R
) m′

−→ R , (46)

which is equivalent to (by R being a final coalgebra)

JqbitK ⊠
(

JbitK ⊸ R
)

⊠ JbitK −→ J0-qbitK ×R .

This is obtained as follows.

JqbitK ⊠
(

JbitK ⊸ R
)

⊠ JbitK
∼= JqbitK ⊠

(

JbitK ⊸ R
)

+ JqbitK ⊠
(

JbitK ⊸ R
)

by (38)
∼= JqbitK ⊠R×2 + JqbitK ⊠R×2 by (38)
[

Pr
1
|0〉

]

⊠πℓ+
[

Pr
1
|1〉

]

⊠πr−→ J0-qbitK ⊠R+ J0-qbitK ⊠R
[κℓ,κr]−→ J0-qbitK ⊠R

〈[λx.Q0],mult〉−→ J0-qbitK ×R ;

here mult is from Definition 5.26.
For the other constants we use Theorem 4.21, Lemma 5.1, Definition 5.16

and Definition 5.20. The arrow JUKconst is the transpose of

Jn-qbitK
[UU ]−→ Jn-qbitK

ηT

−→ T Jn-qbitK ;

Jcmpm,nKconst is the transpose of

Jm-qbitK ⊠ Jn-qbitK
[λw.wA]−→ J(m+ n)-qbitK

ηT

−→ T J(m+ n)-qbitK ;

The use of Q0 (that stands for the value 0 ∈ [0, 1]) in the last line of the
definition of Jmeasn+1

i Kconst indicates that a tree m(t) ∈ |R| that can arise as an
outcome of the map m in (45) looks as follows.

0 0

(47)
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This is strange if we think of the values attached to edges as probabilities. In fact
they are not probabilities: as we discussed in the beginning of §5.4, the actual
probabilities are carried implicitly by the remaining quantum states (consisting
of n qubits) as their trace values. The labels 0 in (47) mean calculation of
probabilities is postponed; they are done later and probabilities occur on some
lower level in the tree (47).

More specifically, the idea for Jmeasn+1
i Kconst is as follows. Let n ≥ 1 and

consider the map m in (45), which can be identified (via Lemma 5.3) with an
arrow

J(n+ 1)-qbitK ⊠ (Jn-qbitK ⊸ R)×2 m−→ R .

Roughly speaking its input is a triple (ρ, ftt, fff) of ρ ∈ DM2n+1 and ftt, fff :
DM2n → R. Then m’s output is the following tree.

ftt
(

〈0i|ρ|0i〉
)

0

fff
(

〈1i|ρ|1i〉
)

0

Here we put 0 as the labels on the edges of depth one; the probabilities for
observing |0i〉 or |1i〉 are implicitly passed down in the form of the trace of the
projected matrices.

When there is only one qubit left, we finally compute actual probabilities.
This is what Jmeas11Kconst does. Consider m′ in (46), which can be identified
with

JqbitK ⊠ (R ×R)
m′−→ R .

Its input is roughly a triple (ρ, ttt, tff) of ρ ∈ DM2 and trees ttt, tff ∈ R. Let
p = 〈0|ρ|0〉 and q = 〈1|ρ|1〉; these are the probabilities for each outcome of the
measurement. Then the output of m′ is the following tree.

mult(p, ttt)

0

mult(q, tff)

0

Recall that mult(p, t) multiplies all the labels of the input tree t by p.
This way we only generate edges with its label 0. This is no problem: once

we use trees with nonzero labels as ttt and tff in the above, we observe nonzero
probabilities.

The following definition of interpretation of type judgments looks rather
complicated. It is essentially the usual definition, as with other typed (linear)
calculi. The subtype relation needs careful handling, however—especially so
that well-definedness (Lemma 5.35) holds—and this adds all the details.

Definition 5.33 (Interpretation of contexts). We fix an enumeration of vari-
ables, i.e. a predetermined linear order ≺ between variables. Given an (un-
ordered) context ∆ = (xi : Ai)i∈[1,n], we define J∆K ∈ PERQ by JAσ(1)K⊠ · · ·⊠
JAσ(n)K, where σ is a bijection s.t. xσ(1) ≺ · · · ≺ xσ(n).
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Definition 5.34 (Interpretation of type judgments). For each derivation
Π  ∆ ⊢ M : A of a type judgment in Hoq, we assign an arrow

JΠK : J∆K −→ T JAK

in the following way. Let ∆|FV(M) denote the obvious restriction of a context
∆ to the set FV(M) of free variables in M . First we define

JΠKFV : J∆|FV(M)K −→ T JAK

by induction on the derivation, which is used in

(

J∆K
JΠK−→ T JAK

)

:=
(

J∆K
weak−→ J∆|FV(M)K

JΠKFV−→ T JAK
)

.

The definition of JΠKFV is as shown below. It is by induction—therefore the def-
inition relies on the interpretations JΠ′KFV, JΠ′′KFV, . . . of the sub-derivation(s)
of Π that derive the second last typing judgment(s).

· · ·

.... Π′

∆′ ⊢ M ′ : A′ · · ·

.... Π′′

∆′′ ⊢ M ′′ : A′′ · · ·
∆ ⊢ M : A

In such cases, for simplicity of presentation, we shall refer to JΠ′KFV as JM ′KFV,
letting a term stand for the derivation tree that assigns a type to it. This will
not cause confusion.

Ax.1 JAK
JA<:A′K−→ JA′K

ηT

−→ T JA′K

Ax.2 I
ϕ′

−→ ! I
!JcKconst (cf. Definition 5.32)−→ !JDType(c)K

ηT

−→ T !JDType(c)K
T J! DType(c)<:AK−→ T JAK

⊸.I1 J∆|FV(λxA.M)K
g−→ JAK ⊸ T JBK

JA′<:AK−→ JA′K ⊸ T JBK = JA′
⊸ BK

ηT

−→ T JA′
⊸ BK ,

where g = JMK∧FV if x ∈ FV(M); otherwise g is the adjoint transpose of

JAK ⊠ J∆|FV(M)K
weak−→ J∆|FV(M)K

JMKFV−→ JBK

⊸.I2 J(!∆,Γ)|FV(λxA.M)K = !J∆|FV(λxA.M)K
δ−→ !n+1J∆|FV(λxA.M)K

!n g−→ !n(JAK ⊸ T JBK)

JA′<:AK−→ !n(JA′K ⊸ T JBK) = J!n(A′
⊸ B)K

ηT

−→ T J!n(A′
⊸ B)K ,

where g is defined as in the case ⊸.I1

⊸.E J(!∆,Γ1,Γ2)|FV(MN)K
con−→ J(! ∆,Γ1)|FV(M)K ⊠ J(!∆,Γ2)|FV(N)K

JMKFV⊠JNKFV−→ T (JAK ⊸ T JBK)⊠ T JCK
JC<:AK−→ T (JAK ⊸ T JBK)⊠ T JAK

str′−→
T
(

(JAK ⊸ T JBK)⊠ T JAK
) T str−→ TT

(

(JAK ⊸ T JBK)⊠ JAK
) ev,µ,µ−→ T JBK

⊠.I J(!∆,Γ1,Γ2)|FV(〈M1,M2〉)K
con−→ J(! ∆,Γ1)|FV(M1)K ⊠ J(!∆,Γ2)|FV(M2)K

JM1KFV⊠JM2KFV−→

T !nJA1K ⊠ T !nJA2K
str′, and then str,µ−→ T (!nJA1K ⊠ !nJA2K)

Lemma 5.3−→ T !n(JA1K ⊠ JA2K)
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⊠.E J(!∆,Γ1,Γ2)|FV(let 〈x!n A1
1 ,x

!n A2
2 〉=M inN)

K
con−→ J(! ∆,Γ1)|FV(M)K ⊠ J(! ∆,Γ2)|FV(N)K

JMKFV⊠id−→ T !n(JA1K ⊠ JA2K)⊠ J(! ∆,Γ2)|FV(N)K

str′, Lemma 5.3,−→ T
(

!nJA1K ⊠ !nJA2K ⊠ J(!∆,Γ2)|FV(N)K
) JNKFV,(∗)−→ T 2JAK

µ−→ T JAK ,

where, in (∗), weak is suitably applied in case x1 or x2 is not in FV(N)

⊤.I I
ϕ′

−→ ! I
δ,der−→ !n I

ηT

−→ T !n I

⊤.E Similar

+.I1 J∆|
FV(inj

A2
ℓ M)

K = J∆|FV(M)K
JMKFV−→ T (!nJA1K)

T !n κℓ−→ T !n(JA1K + JA2K)

JA2<:A′
2K−→ T !n(JA1K + JA′

2K)

+.I2 Similar

+.E J(!∆,Γ,Γ′)|
FV(matchP with (x

!n A1
1 7→M1|x!n A2

2 7→M2))
K

con−→ J(!∆,Γ)|FV(P )K ⊠ J(! ∆,Γ′)|FV(M1)∪FV(M2)K

JP KFV−→ T !n(JA1K + JA2K) ⊠ J(!∆,Γ′)|FV(M1)∪FV(M2)K

str′−→ T
(

!n(JA1K + JA2K)⊠ J(!∆,Γ′)|FV(M1)∪FV(M2)K
)

Lemma 5.3−→ T
(

(!nJA1K + !nJA2K)⊠ J(! ∆,Γ′)|FV(M1)∪FV(M2)K
)

Lemma 5.3−→ T
(

!nJA1K ⊠ J(!∆,Γ′)|FV(M1)∪FV(M2)K + !nJA2K ⊠ J(!∆,Γ′)|FV(M1)∪FV(M2)K
)

T
[

JM1KFV,JM2KFV

]

,(∗)
−→ T 2JBK

µ→ TB , where, in (∗), weak is applied if needed

rec J(!∆,Γ)|FV(letrec fA⊸Bx=M inN)K
con,δ−→ ! !J∆|FV(M)K ⊠ J(! ∆,Γ)|FV(N)K

! g−→

!JA ⊸ BK ⊠ J(!∆,Γ)|FV(N)K
JNKFV,weak−→ T JCK ,

where g : !J∆|FV(M)K → JA ⊸ BK is obtained as follows.

!J∆|FV(M)K ⊠ !(JAK ⊸ T JBK)⊠ JAK −→ T JBK is obtained as JMKFV
(possibly with weak applied too);

!J∆|FV(M)K ⊠ !(JAK ⊸ T JBK) −→ JAK ⊸ T JBK as its adjoint transpose; and then
!J∆|FV(M)K −→ JAK ⊸ T JBK = JA ⊸ BK via the fixed point operator fix in Definition 5.14.

Recall that weak denotes a unique map X → I to the tensor unit I that is
terminal (Lemma 5.1). The arrows der, δ, ϕ, ϕ′ and con are from Theorem 4.21
(see also Lemma 5.3). In the above some obvious elements are omitted: we
write weak in place of weak⊠ id, JMK in place of J∆ ⊢ M : AK, etc. We denote
f ’s transpose by f∧. The strength X ⊠ TY → T (X ⊠ Y ) is denoted by str;
str′ stands for TX ⊠ Y → T (X ⊠ Y ). For the rule (rec) we use the fixed point
operator from Definition 5.14; note that the PER JAK ⊸ T JBK is admissible
(Lemma 5.27).
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The proof of the following important lemma is rather complicated due to
implicit linearity tracking. It is deferred to Appendix E.

Lemma 5.35 (Interpretation of well-typed terms is well-defined). If Π,Π′ are
derivations of the same type judgment ∆ ⊢ M : A, their interpretations are the
same: JΠK = JΠ′K. Therefore the interpretation J∆ ⊢ M : AK of a derivable type
judgment is well-defined. �

To compare with operational semantics (introduced in §3.2), the interpreta-
tion J∆ ⊢ M : AK : J∆K → T JAK thus obtained is too fine. Hence we go further
and extract M ’s denotation which is given by a probability distribution. We do
so only for closed terms M of type bit. This is standard: for non-bit terms
one will find distinguishing contexts of type bit.

In the following definition, the intuitions are:

t0 = (the infinite binary tree whose labels are all 0) ,

ttt =
t0

1

t0

0

and tff =
t0

0

t0

1

.

Definition 5.36 (Trees t0, ttt, tff, and test). Let ctest be the coalgebra

I + I + I
ctest−→ Fpbt(I + I + I)

whose transpose

JbitK ⊠ (I + I + I) −→ J0-qbitK × (I + I + I)

is described as follows, using informal notations.

〈tt, κ1(∗)〉 7−→ 〈1, κ2(∗)〉 , 〈ff, κ1(∗)〉 7−→ 〈0, κ2(∗)〉 ,

〈tt, κ2(∗)〉 7−→ 〈0, κ2(∗)〉 , 〈ff, κ2(∗)〉 7−→ 〈0, κ2(∗)〉 ,

〈tt, κ3(∗)〉 7−→ 〈0, κ2(∗)〉 , 〈ff, κ3(∗)〉 7−→ 〈1, κ2(∗)〉 .

By coinduction we obtain the following arrow ctest.

Fpbt(I + I + I)
Fpbt(ctest)

//❴❴❴❴❴❴ FpbtR

(I + I + I)

ctest
OO

ctest
//❴❴❴❴❴❴❴❴ R

∼= r
OO

Now the trees t0, ttt, tff : I → R are defined by

t0 := ctest ◦ κ2 , ttt := ctest ◦ κ1 , tff := ctest ◦ κ3 .

The arrow
test : I −→ (JbitK ⊸ R)

in PERQ is defined to be the adjoint transpose of [ttt, tff] : I + I → R.
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Definition 5.37 (Operation prob on trees). For each arrow t : I → R thought
of as a tree, we define prob(t) ∈ (R ∪ {∞})2 by:

prob(t) :=
(
∑ {labels on edges going down-left} ,

∑ {labels on edges going down-right}
)

For example, prob(ttt) = (1, 0) and prob(tff) = (0, 1). See also Example 5.40
later.

The operation prob quotients the interpretation J∆ ⊢ M : AK : J∆K → T JAK
and yields a denotation relation ⇓, which is to be compared with the big-step
operational semantics . (Definition 3.8). We note again that we swapped the
notations . and ⇓ from the previous version [1].

Definition 5.38 (Denotation relation ⇓). We define a relation ⇓ between
closed bit-terms M—i.e. those terms for which ⊢ M : bit is derivable—and
pairs (p, q) of real numbers, as follows. Such a term M gives rise to an arrow
tree(M) : I → R in PERQ by:

tree(M) :=

(

I
∼=−→ I⊠ I

test⊠J⊢M :bitK−→ (JbitK ⊸ R)⊠ T JbitK

= (JbitK ⊸ R)⊠ ((JbitK ⊸ R) ⊸ R)
ev−→ R

)

. (48)

We say M ⇓ (p, q) if prob(tree(M)) = (p, q). Obviously such (p, q) is uniquely
determined by M .

The infinite tree tree(M) always satisfies the following conditions:

• every branching is either

0 0 or
p 0 or 0 p

for some p ∈ (0, 1], and

• every non-zero branching is followed by the tree whose labels are all 0:

t0

p

t0

0

t0

0

t0

p

.

Intuitively, each zero-zero branch preceding a non-zero branch corresponds to
measurement in the evaluation of the term M . We will see that the summation
of labels on edges going down-left (going down-right) is the probability to get
tt (to get ff) by evaluating M . We note that when there are infinitely many
measurements in the evaluation sequence of M , the tree associated to M may
have infinitely many non-zero branching.
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Example 5.39. LetH be the Hadamard matrix. The termM := meas11(H(new|0〉〈0|))

is a closed bit-term; it measures the qubit (|0〉+ |1〉)/
√
2. The associated tree

tree(M) is

mult( 12 , ttt)

0

mult( 12 , tff)

0

Indeed we have M ⇓ (1/2, 1/2). Similarly, tree(meas11(new|0〉〈0|)) is

ttt

0

t0

0

and we have meas11(new|0〉〈0|) ⇓ (1, 0). The zero-zero branches at the top node of
tree(M) and tree(meas11(new|0〉〈0|)) correspond to measurement in the evaluation
sequences of M and meas11(new|0〉〈0|).

Example 5.40. Let M be the closed term of type bit given as follows.

1. The termM prepares two qubits v = 1√
2
|0〉+ 1√

2
|1〉 and u = 1√

3
|0〉+

√

2
3 |1〉

2. The term M measures v.

3. If the result of the measurement of v is ff, then M outputs tt.

4. If the result of the measurement of v is tt, then M measures the other
qubit u and outputs the result.

The tree associated to M is

0

mult( 13 , ttt)

0

mult( 16 , tff)

0

mult( 12 , ttt)

0

and we have M ⇓ (56 ,
1
6 ). The branch at the top node corresponds to mea-

surement of v, and the branch of the node at the lower-left corresponds to the
measurement of u.

As we observed in Example 5.39 and Example 5.40, tree(M) associated to
closed bit-term M has intentional information: we can see how measurement
is done in the evaluation of M . For instance, tree(tt) = ttt is different from
tree(meas11(new|0〉〈0|)).
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6. Adequacy

As we use a continuation monad to capture probabilistic branching raised by
measurements, our interpretation of Hoq-terms contains intentional data. For
example, the interpretation of a term ⊢ M : bit is a tree in the result type R
(Lemma 5.24) that reflects the evaluation tree of M . In this section, we show
that the operation prob in Definition 5.37—that reduces a tree in R to a pair
(p, q) of probabilities—correctly extracts the evaluation result of M , that is, we
have M ⇓ (p, q) if and only if M . (p, q).

We list several basic properties of our denotational semantics. Their proofs
are found in Appendix F. Many of them follow common patterns found in the
study of call-by-value languages, although we need to be careful about the fact
that a term can have multiple types (due to subtyping <:)

Lemma 6.1. Let E be an evaluation context, and x be a variable that does not
occur in E. Assume that x : A ⊢ E[x] : B is derivable. Then for any term M
such that  Γ ⊢ M : A, the interpretation JΓ ⊢ E[M ] : BK : JΓK → T JBK is
calculated by

JΓ ⊢ E[M ] : BK = µT
JBK ◦ T Jx : A ⊢ E[x] : BK ◦ JΓ ⊢ M : AK . �

Lemma 6.2. For a closed term ⊢ M : A, if there is a reduction M →1 N that
is not due to a measurement rule ((meas1–meas4) in Definition 3.7), then

J⊢ M : AK = J⊢ N : AK .

Note that ⊢ N : A is derivable by Lemma 3.23. �

If we allow reduction rules meas1–meas4, Lemma 6.2 is no longer correct.
This is because our semantics contains some intentional information. In fact,
tree(tt) is different from tree(meas1(new|0〉〈0|)) since the latter tree contains in-
formation about measurement in the evaluation of meas1(new|0〉〈0|) we observed
in Example 5.39. Therefore, J⊢ tt : bitK is different from J⊢ meas1(new|0〉〈0|) :
bitK. However, at the base type bit, we can kill such intentionality by forgetting
branching information in tree(M) by means of prob( ).

Lemma 6.3. Let E be an evaluation context. If ⊢ E[measn+1
i newρ] : bit is

derivable and

E[〈tt, new〈0i|ρ|0i〉〉] ⇓ (p0, q0) E[〈ff, new〈1i|ρ|1i〉〉] ⇓ (p1, q1),

then E[measn+1
i newρ] ⇓ (p0 + p1, q0 + q1).

Proof. By Lemma 6.1 we have

J⊢ E[measn+1
i newρ] : bit K =

µT
JbitK ◦ T Jx : ! bit⊠ n-qbit ⊢ E[x] : bitK ◦ J⊢ measn+1

i newρ : ! bit⊠ n-qbitK

: I −→ T JbitK .
(49)
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By the definition of the interpretation of measn+1
i , the transpose of the inter-

pretation

J⊢ measn+1
i newρ : ! bit⊠ n-qbit K : I −→ T J!bit⊠ n-qbitK

is equal to

( J! bitK ⊠ Jn-qbitK ) ⊸ R
∼=−→ I⊠

(

(J! bitK ⊠ Jn-qbitK) ⊸ R
)

〈JnewρKconst⊠id〉−→ J(n+ 1)-qbitK ⊠
(

(J! bitK ⊠ Jn-qbitK) ⊸ R
) m−→ R ,

(50)

where m is from (45). Recall that JbitK
∼=→ !JbitK; see Lemma 5.19. Under the

following identifications

(J! bitK ⊠ Jn-qbitK) ⊸ R
∼=−→ (Jn-qbitK ⊸ R)×2 and R

∼=−→ (J0-qbitK ×R)×2

that are derived from Lemma 5.3, 5.19 and 5.24, the value of (50) at 〈f, g〉 : I →
(Jn-qbitK ⊸ R)×2 is

〈

I
[λx.Q0]−→ J0-qbitK, I

f⊠[λx.Prn+1

|0i〉
Qρ]

−→ (Jn-qbitK ⊸ R)⊠ Jn-qbitK
ev−→ R,

I
[λx.Q0]−→ J0-qbitK, I

g⊠[λx.Prn+1

|1i〉
Qρ]

−→ (Jn-qbitK ⊸ R)⊠ Jn-qbitK
ev−→ R

〉

: I −→ (J0-qbitK ×R)×2 .
(51)

Here combinators like Q0, Qρ and Pr|0i〉 are from Definition 5.16 and 5.20; affine
λ-terms like λx.Q0 denote suitable elements of AQ by combinatory completeness;
and the arrow [λx.Q0] is the one in PERQ that is realized by (λx.Q0) ∈ AQ.
From Lemma 5.21, it is easy to see that the last arrow (51) is equal to

〈

[λx.Q0], ev ◦ (f ⊠ Jnew〈0i|ρ|0i〉Kconst),

[λx.Q0], ev ◦ (g ⊠ Jnew〈1i|ρ|1i〉Kconst)
〉

, (52)

where J Kconst is from Definition 5.32. Let us now define f0, f1 : Jn-qbitK →
T JbitK to be the following arrows:

f0 :=

(

Jn-qbitK
∼=−→ I⊠ Jn-qbitK

ϕ′
⊠id−→ ! I⊠ Jn-qbitK

!κℓ⊠id−→ !JbitK ⊠ Jn-qbitK
Jx:! bit⊠n-qbit⊢E[x]:bitK−→ T JbitK

)

,

f1 :=

(

Jn-qbitK
∼=−→ I⊠ Jn-qbitK

ϕ′
⊠id−→ ! I⊠ Jn-qbitK

!κr⊠id−→ !JbitK ⊠ Jn-qbitK
Jx:! bit⊠n-qbit⊢E[x]:bitK−→ T JbitK

)

,

where ϕ′ : I
∼=→ ! I is from Theorem 4.21. By (52), the transpose of (49) is equal

to
〈

[λx.Q0], g0, [λx.Q0], g1
〉

: JbitK ⊸ R −→ R
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where we identified R with (J0-qbitK ×R)×2, and gk : JbitK ⊸ R −→ R is the
transpose of

I
[λx.Q〈ki|ρ|ki〉

]−→ Jn-qbitK
fk−→ T JbitK .

Hence,

(

I
tree(E[measn+1

i newρ])−→ R
∼=−→ (J0-qbitK ×R)×2

)

=
〈

[λx.Q0], tree
(

f0 ◦ Jnew〈0i|ρ|0i〉Kconst
)

, [λx.Q0], tree
(

f1 ◦ Jnew〈1i|ρ|1i〉Kconst
)

〉

,

where we abused the notation tree from (48). This means that the tree tree(E[measn+1
i newρ])

can be illustrated as follows.

tree
(

f0 ◦
Jqstate〈0i|ρ|0i〉Kconst

)

0

tree
(

f1 ◦
Jqstate〈1i|ρ|1i〉Kconst

)

0

Therefore
prob

(

tree
(

J⊢ E[measn+1
i newρ] : bitK

)

)

is equal to

(0, 0) + prob(tree(f0 ◦ Jnew〈0i|ρ|0i〉Kconst)) + prob(tree(f1 ◦ Jnew〈1i|ρ|1i〉Kconst))

where the summation is pointwise. By Lemma 6.1, we have the following equal-
ities:

f0 ◦ Jnew〈0i|ρ|0i〉Kconst = J⊢ E[〈tt, new〈0i|ρ|0i〉〉]K ,

f1 ◦ Jnew〈1i|ρ|1i〉Kconst = J⊢ E[〈ff, new〈1i|ρ|1i〉〉]K .

Therefore, if

E[〈tt, new〈0i|ρ|0i〉〉] ⇓ (p0, q0) E[〈ff, new〈1i|ρ|1i〉〉] ⇓ (p1, q1),

then E[measn+1
i newρ] ⇓ (p0 + p1, q0 + q1). �

We can similarly prove the following lemma.

Lemma 6.4. Let E be an evaluation context. If ⊢ E[meas11newρ] : bit is
derivable and

E[tt] ⇓ (p0, q0) E[ff] ⇓ (p1, q1),

then E[meas11 newρ] ⇓ (〈0 | ρ | 0〉p0 + 〈1 | ρ | 1〉p1, 〈0 | ρ | 0〉q0 + 〈1 | ρ | 1〉q1).
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Our soundness result is restricted to closed bit-terms because we do not
know how to relate evaluation results of closed terms ⊢ M : A with its interpre-
tation J⊢ M : AK : I → T JAK when A is not bit.

Theorem 6.5 (Soundness). For any closed bit-term M (meaning that ⊢ M :
bit is derivable), and for any k ∈ N,

M .k (p, q) and M ⇓ (p′, q′) imply (p, q) ≤ (p′, q′) .

Here the last inequality is the pointwise one and means p ≤ p′ and q ≤ q′.

Proof. By induction on k. When k = 0, if M is neither tt nor ff, then p, q = 0
and the statement is true. IfM ≡ tt, then p = p′ = 1 and q = q′ = 0. IfM ≡ ff,
then p = p′ = 0 and q = q′ = 1.

When k > 0, if there is a reduction M →1 N that is not due to a measure-
ment rule, then J⊢ M : bitK is equal to J⊢ N : bitK by Lemma 6.2. There-
fore, M ⇓ (p′, q′) if and only if N ⇓ (p′, q′). Since M .k (p, q) if and only
if N .k−1 (p, q), we obtain p ≤ p′ and q ≤ q′ from the induction hypothesis.
If M is of the form E[measn+1

i newρ], then we have M .k (p0 + p1, q0 + q1)
where E[〈tt, new〈0i|ρ|0i〉〉] .k−1 (p0, q0) and E[〈ff, new〈1i|ρ|1i〉〉] .k−1 (p1, q1).
By Lemma 6.3, if

E[〈tt, new〈0i|ρ|0i〉〉] ⇓ (p′0, q
′
0) E[〈ff, new〈1i|ρ|1i〉〉] ⇓ (p′1, q

′
1),

then E[measn+1
i newρ] ⇓ (p′0 + p′1, q

′
0 + q′1) ≥ (p0 + p1, q0 + q1).

We can similarly show the statement when the reductions are due to the
(meas3) and (meas4) rules in Definition 3.7 by Lemma 6.4. �

We shall now show the other direction: if M . (p, q) and M ⇓ (p′, q′),
then (p′, q′) ≤ (p, q). Our proof employs the techniques of logical relations (see
e.g. [79, 80]) and ⊤⊤-lifting (see e.g. [74, 81]). We write Val(A) for the set of
closed values of type A and ClTerm(A) for the set of closed terms of type A. We
write EC(A) for the set of evaluation contexts E such that x : A ⊢ E[x] : bit is
derivable.

Firstly, we introduce a relation⋖ betweenPERQ(I, T JbitK) and ClTerm(bit).
It is defined by by

t⋖M
def.⇐⇒ if M . (p, q) then prob(tree(t)) ≤ (p, q) .

Secondly we introduce the operation of ⊤⊤-lifting. Given a relation

S ⊆ PERQ(I, JAK) ×Val(A) ,

we define a relation S⊤ ⊆ PERQ(JAK, T JbitK)× EC(A) by

S⊤ :=
{

(k,E)
∣

∣ ∀(t, V ) ∈ S. k ◦ t⋖ E[V ]
}

;

and we define a relation S⊤⊤ ⊆ PERQ(I, T JAK)× ClTerm(A) by

S⊤⊤ :=
{

(t,M)
∣

∣ ∀(k,E) ∈ S⊤. µT
JbitK ◦ Tk ◦ t⋖ E[M ]

}

.
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This operation of⊤⊤-lifting is applied to the following relationRA ⊆ PERQ(I, JAK)×
Val(A). It is inductively defined for each type A.

RI :=
{

(idI, ∗)
}

Rn-qbit :=
{ (

JnewρKconst, newρ
) ∣

∣ ρ ∈ DM2n
}

RA⊠B :=
{ (

t⊠ s, 〈V,W 〉
) ∣

∣ (t, V ) ∈ RA and (s,W ) ∈ RB

}

RA⊸B :=
{

(t, V )
∣

∣∀(s,W ) ∈ RA.
(

evJAK,JBK ◦ (t⊠ s), V W
)

∈ R⊤⊤
B

}

R!A :=
{

(! t ◦ ϕ′, V )
∣

∣ (t, V ) ∈ RA

}

RA+B :=
{ (

κℓ ◦ t, injB
′

ℓ (V )
) ∣

∣ (t, V ) ∈ RA and B′ <: B
}

∪
{ (

κr ◦ t, injA
′

r (V )
) ∣

∣ (t, V ) ∈ RB and A′ <: A
}

(53)

Here ϕ′ : I
∼=→ ! I is from Theorem 4.21. In order to prove the basic lemma for

the logical relation {RA}A:type, we show some properties of RA.

Lemma 6.6. 1. If (t, V ) is in RA, then (ηTJAK ◦ t, V ) is in R⊤⊤
A .

2. If (t, V ) ∈ RA and A <: A′, then (JA <: A′K ◦ t, V ) ∈ RA′ . �

The following property is much like the admissibility requirement. See
e.g. [74].

Lemma 6.7. Let M be a closed term of type A.

1. ([⊥],M) ∈ R⊤⊤
A .

2. If there exists a sequence of realizers a1 ⊑ a2 ⊑ · · · of arrows [a1], [a2], . . .
in PERQ(I, T JAK), such that ([an],M) ∈ R⊤⊤

A for each n, then we have
(

[
∨

n≥1 an], M
)

∈ R⊤⊤
A . �

Theorem 6.8 (Basic Lemma). Let M be a term such that x1 : A1, · · · , xn :
An ⊢ M : A is derivable. If (ti, Vi) is in RAi for each i ∈ [1, n], then the pair
(

Jx1 : A1, · · · , xn : An ⊢ M : AK ◦ (t1 ⊠ · · ·⊠ tn), M [V1/x1, · · · , Vn/xn]
)

is in R⊤⊤
A .

Proof. By induction on M . When M ≡ xi, we have

Jx1 : A1, · · · , xn : An ⊢ M : AK ◦ (t1 ⊠ · · ·⊠ tn) = ηTJAK ◦ JAi <: AK ◦ ti. (54)

By (2) in Lemma 6.6, the pair (JAi <: AK ◦ ti, Vi) is in RA. Therefore, by (1)
in Lemma 6.6 and (54), we see that

(

Jx1 : A1, · · · , xn : An ⊢ M : AK ◦ (t1 ⊠ · · ·⊠ tn), Vi

)

is in R⊤⊤
A . When M is a constant, see Lemma Appendix F.11–Appendix F.15.

When M is an application !∆,Γ1,Γ2 ⊢ N0N1 : B for !∆,Γ1 ⊢ N0 : A ⊸ B and
!∆,Γ2 ⊢ N1 : A ⊸ B, we suppose that ∆, Γ1, Γ2 are empty lists for simplicity.
Generalization is straightforward. Since

(

µT
JbitK ◦ Tk ◦ evJAK,JBK ◦ (t⊠ JAK), E[V [ ]]

)

∈ R⊤
A
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for any (t, V ) ∈ RA⊸B and (k,E) ∈ R⊤
B, we have

(

µT
JbitK ◦ TµT

JbitK ◦ TTk ◦ T evJAK,JBK ◦ str ◦ (JA ⊸ BK ⊠ (J⊢ N1 : AK)),

E[[ ]N1]
)

∈ R⊤
A⊸B

for any (k,E) ∈ R⊤
B . Therefore,

µT
JbitK ◦ TµT

JbitK ◦ TTµT
JbitK ◦ TTTk ◦ TT evJAK,JBK ◦ T str ◦ str′ ◦

(J⊢ N0 : A ⊸ BK ⊠ J⊢ N1 : AK) ⋖ E[N0N1]

holds for any (k,E) ∈ R⊤
B, and we obtain

(J⊢ N0N1 : BK, N0N1) ∈ R⊤⊤
B .

When M is a lambda abstraction x1 : A1, · · · , xn : An ⊢ λxA.N : A′ ⊸ B, we
suppose that x is the only free variable of N and n = 0 for simplicity. Also in
this case, generalization is straightforward. We have

(

Jx : A ⊢ M : BK ◦ JA′ <: AK ◦ t, M [V/x]
)

∈ R⊤⊤
B

for any (t, V ) ∈ RA′ . By the definition of RA⊸B,

(

g, λxA.M
)

∈ RA⊸B

where g is the adjoint transpose of Jx : A ⊢ M : BK ◦ JA′ <: AK. Hence,
by Lemma 6.6,

(

JMK, λxA.M
)

is in RA⊸B . When M is letrec fA x =
N in L, the statement follows from Lemma 6.7. Note that the interpreta-
tion of letrec fA x = N in L is given by the least upper bound of a sequence
of realizers. The other cases are easy. �

Corollary 6.9 (Adequacy). For a closed term ⊢ M : bit, we have

M . (p, q) ⇐⇒ M ⇓ (p, q).

Proof. We suppose that M . (p, q) and M ⇓ (p′, q′). By Theorem 6.5, we have
(p, q) ≤ (p′, q′) on the one hand. On the other hand, by Theorem 6.8 (consider
its special case where M is closed), we have

(

J⊢ M : bitK,M
)

∈ R⊤⊤
bit . Since

(ηTJbitK, [ ]) is easily shown to be in R⊤
bit, we obtain J⊢ M : bitK ⋖M . Hence

(p′, q′) ≤ (p, q). �

7. Conclusions and Future Work

We presented a concrete denotational model of a quantum λ-calculus that
supports the calculus’ full features including the ! modality and recursion. The
model’s construction is via known semantical techniques like GoI and realizabil-
ity. The current work is a demonstration of the generality of these techniques
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in the sense that, with a suitable choice of a parameter (namely B = Q in Fig-
ure 1), the known techniques for classical computation apply also to quantum
computation (or more precisely “quantum data, classical control”). Our model
is also one answer to the question “Quantum GoI?” raised in [82].

Our semantics is based on so-called particle-style GoI and hence on local
interaction of agents, passing a token to each other. This is much like in game
semantics [22, 23]; our denotational model, therefore, has a strong operational
flavor. We are currently working on extracting abstract machines for quantum
computation, much like the classical cases in [24, 25, 26, 27, 28].13 In doing so,
our current use of the continuation monad T (see §5) is a technical burden; it
seems we need such continuation monads not only for quantum effects (in the
current paper) but also for various computational effects (in general). Endowing
realizers with an explicit notion of memory (or state) [77, 28]—in a systematic
manner using coalgebraic component calculus [83, 84]—seems to be a potent
alternative to use of continuation monads.
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Appendix A. CPO Structures of Density Matrices and Quantum Op-
erations

For the limit properties of density matrices and quantum operations (such
as Lemma 2.5) we employ some basic facts from matrix analysis.

There are various notions of norms for matrices but they are known to co-
incide in finite-dimensional settings. We will be using the following two.

Definition Appendix A.1 (Norms ‖ ‖tr and ‖ ‖Fr). Given a matrixA ∈
Mm, its trace norm ‖ ‖tr is defined by

‖A‖tr := tr(
√
A†A) .

Here the matrix A†A is positive hence its square root is well defined (see
e.g. [38, §2.1.8]). In particular, we have

‖A‖tr = tr(A) when A is positive. (A.1)

The Frobenius norm ‖A‖Fr of a matrix A is defined by

‖A‖Fr :=
√

∑

i,j |Ai,j |2 =
√

tr(A†A) .

Here Ai,j is the (i, j)-entry of the matrix A, hence the Frobenius norm coincides
with the standard norm on Mm

∼= Cm×m. The latter equality is immediate by
a direct calculation.

The metric induced by ‖ ‖tr is called the trace distance and heavily used in [38,
§9.2].

Lemma Appendix A.2. 1. For each matrix A ∈ Mm we have ‖A‖Fr ≤
‖A‖tr ≤ m‖A‖Fr; therefore the two norms induce the same topology on the
set Mm.

2. Both norms ‖ ‖Fr and ‖ ‖tr are complete.

3. The subset DMm ⊆ Mm is closed with respect to both norms ‖ ‖Fr and
‖ ‖tr.

Proof. 1. Let λ1, . . . , λm be the (nonnegative) eigenvalues of positive A†A.
Then the inequality is reduced to

√

λ1 + · · ·+ λm ≤
√

λ1 + · · ·+
√

λm ≤ m ·
√

λ1 + · · ·+ λm

which is obvious.
2. ‖ ‖Fr is complete because so is C. Then one uses 1.
3. Let (ρk)k∈N be a Cauchy sequence in DMm. We show that limk ρk belongs

to DMm. It is positive because the mapping 〈v| |v〉 : DMm → C is continuous
with respect to ‖ ‖Fr (hence also to ‖ ‖tr). Similarly, continuity of tr( ) yields
that tr(limk ρk) ≤ 1. �
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We shall henceforth assume the topology on Mm that is induced by either of the
norms. It is with respect to this topology that we speak, for example, continuity
of the function tr( ) : DMm → C. On the one hand, the Frobenius norm ‖ ‖Fr
is useful since many functions—such as tr( )—are obviously continuous with
respect to it. On the other hand, the trace norm ‖ ‖tr is important for us due
to the following property.

Lemma Appendix A.3. Let (ρn)n∈N be a sequence in DMm that is increasing
with respect to the Löwner order in Definition 2.4. Then (ρn)n∈N is Cauchy and
hence has a limit in DMm.

Proof. For any n, n′ ∈ N with n ≤ n′, we have

‖ρn′ − ρn‖tr
(∗)
= tr(ρn′ − ρn) = tr(ρn′)− tr(ρn) ; (A.2)

where (∗) holds since ρn′ − ρn is positive (see (A.1)). Now observe that the
sequence (tr(ρn))n∈N is an increasing sequence in [0, 1] hence is Cauchy. Com-
bined with (A.2), we conclude that the sequence (ρn)n∈N in DMm is Cauchy
with respect to ‖ ‖tr. By Lemma Appendix A.2, it has a limit limn ρn in DMm.

�

Lemma (Lemma 2.5, repeated). The relation ⊑ in Definition 2.4 is indeed a
partial order. Moreover it is an ω-CPO: any increasing ω-chain ρ0 ⊑ ρ1 ⊑ · · ·
in DMm has the least upper bound.

Proof. Reflexivity holds because 0 is a positive matrix; transitivity is because
a sum of positive matrices is again positive. Anti-symmetry is because, if a
positive matrix A is such that −A is also positive, all the eigenvalues of A are
0 hence A itself is the zero matrix.

That ⊑ is an ω-CPO is proved in [7, Proposition 3.6] via the translation into
quadratic forms. Here we present a proof using norms. By Lemma Appendix A.3,
an increasing ω-chain (ρn)n∈N in DMm has a limit limn ρn in DMm. We claim
that limn ρn is the least upper bound.

To show that ρk ⊑ limn ρn, consider

〈v|(limn ρn)− ρk|v〉 = limn〈v|ρn − ρk|v〉 ; (A.3)

the equality is due to the continuity of 〈v| |v〉 : DMm → C. The value 〈v|ρn −
ρk|v〉 is a nonnegative real for almost all n, therefore (A.3) itself is a nonnegative
real. This proves ρk ⊑ limn ρn. One can similarly prove that limn ρn is the least
among the upper bounds of (ρn)n∈N. �

Proposition (Proposition 2.13, repeated). The order ⊑ on QOm,n (Def-
inition 2.12) is an ω-CPO.

Proof. Let (Ek)k∈N be an increasing chain in QOm,n. We define E to be its
“pointwise supremum”: for each ρ ∈ DMm,

E(ρ) := sup
k→∞

Ek(ρ)
(∗)
= lim

k→∞
Ek(ρ) (A.4)
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where the supremum is taken in the ω-CPO DMn (Lemma 2.5). In the proof
of Lemma 2.5 we exhibited that the supremum is indeed the limit ((∗) above).
We claim that this E is the supremum of the chain (Ek)k∈N.

We check that (A.4) indeed defines a QO E . In Definition 2.6, the trace
condition follows from the continuity of tr( ) : DMn → R. For convex linearity
we have to show

lim
k→∞

(

(ck(x))m,n(
∑

j pjρj)
)

=
∑

j pj
(

lim
k→∞

(ck(x))m,n(ρj)
)

.

This follows from the linearity of the limit operation limk→∞, which is straight-
forward since limk→∞ is with respect to the trace norm ‖ ‖tr. To prove com-
plete positivity of E , one can use Choi’s characterization of complete positive
maps (see [7, Theorem 6.5]). The operations involved in the characterization
are all continuous, hence one can conclude complete positivity of E from that
of Ek.

It remains to show that E is indeed the least upper bound. This is obvious
since ⊑ on QOm,n is a pointwise extension of ⊑ on density matrices. �

Appendix B. Proofs for §3.4

Appendix B.1. Proof of Lemma 3.6

Proof. We let

• the set of evaluation contexts that is defined in Definition 3.5 denoted by
EV, and

• that which is defined in Lemma 3.6 denoted by EV.

We are set out to show EV = EV. We rely on the following facts:

1. if E,E′ ∈ EV then E[E′] ∈ EV; and

2. if D,D′ ∈ EV then D[D′] ∈ EV.

The former is proved by induction on the construction of E′; the latter is by
induction on the construction of D.

One direction EV ⊆ EV is proved easily by induction. We present only one
case. For E ≡ E′[[ ]M ] ∈ EV, by the induction hypothesis we have E′ ∈ EV;
moreover [ ]M ∈ EV. Therefore by the fact 2 above, E ≡ E′[[ ]M ] belongs to
EV.

The other direction EV ⊆ EV is similar; we present only one case. For
D ≡ D′M ∈ EV, by the induction hypothesis we have D′ ∈ EV; moreover
[ ]M ∈ EV. Therefore by the fact 1 above, D ≡ D′M = [D′]M belongs to EV.

�
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Appendix B.2. Proof of Lemma 3.15

Proof. 1. Reflexivity A <: A is easy by induction on the construction of A.
Transitivity

A <: A′ and A′ <: A′′ =⇒ A <: A′′

is shown by induction on the derivation. We present one case; the other cases
are similar. Assume that A <: A′ is derived by the (⊠) rule:

B <: B′ C <: C′ n = 0 ⇒ n′ = 0

A ≡ !n(B ⊠ C) <: !n
′

(B′ ⊠ C′) ≡ A′
(⊠) . (B.1)

The form A′ ≡ !n
′

(B′ ⊠C′) requires the relation A′ <: A′′ to be derived also by
the (⊠) rule:

B′ <: B′′ C′ <: C′′ n′ = 0 ⇒ n′′ = 0

A′ ≡ !n
′

(B′ ⊠ C′) <: !n
′′

(B′′ ⊠ C′′) ≡ A′′
(⊠) . (B.2)

Now we apply the induction hypothesis to B <: B′ and B′ <: B′′ in (B.1–B.2),
and obtain that B <: B′′ is derivable. Similarly C <: C′′ is derivable. That
n = 0 ⇒ n′′ = 0 follows immediately from (B.1–B.2), too. Using the (⊠) rule
we derive A <: A′′.

2. By cases on the rule that derives A <: B. We present the case (⊸):

B1 <: A1 A2 <: B2 n = 0 ⇒ m = 0

A ≡ !n(A1 ⊸ A2) <: !m(B1 ⊸ B2) ≡ B
(⊸) .

Since n+ 1 = 0 ⇒ m+ 1 = 0 is trivially true, using B1 <: A1 and A2 <: B2 we
derive !n+1(A1 ⊸ A2) <: !m+1(B1 ⊸ B2). The other cases are similar.

3. By cases on the outermost type constructor in A (ignoring !). Assume
it is ⊸, with A ≡ !k(B ⊸ C). Then we have B <: B and C <: C due to the
item 1.; and n = 0 ⇒ m = 0 implies n+ k = 0 ⇒ m+ k = 0. Therefore

B <: B C <: C n+ k = 0 ⇒ m+ k = 0

!n+k(B ⊸ C) <: !m+k(B ⊸ C)
(⊸)

derives !n A <: !m A, as required. The other cases are similar.
4. Straightforward, by cases on the rule that derives !n A <: !m B.
5. We show existence of directed sups and infs by simultaneous induction,

on the complexity of upper/lower bounds.
Assume A1 <: n-qbit and A2 <: n-qbit. Then A1 ≡ !n1 n-qbit and A2 ≡

!n2 n-qbit for some n1, n2 ∈ N. We define

A0 :≡
{

!n-qbit if n1 6= 0 and n2 6= 0,

n-qbit otherwise.

This A0 is clearly a supremum of A1 and A2.
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Assume n-qbit <: A1 and n-qbit <: A2. Then A1 and A2 must both be
n-qbit, and A0 :≡ n-qbit is the infimum.

In the cases where the given upper (or lower) bound is !n+1 n-qbit, ⊤ or
!n+1 ⊤, we can similarly compute a supremum (or a infimum).

Assume A1 <: B ⊸ C and A2 <: B ⊸ C. Then the rules in (11) force that
A1 ≡ !n1(B1 ⊸ C1) and A2 ≡ !n2(B2 ⊸ C2), with B <: B1, B <: B2, C1 <: C
and C2 <: C. Since the complexity of B or C is smaller than that of B ⊸ C
we can use the induction hypothesis, obtaining B0 as a infimum of B1, B2 and
C0 as a supremum of C1, C2. Now

A0 :≡
{

!(B0 ⊸ C0) if n1 6= 0 and n2 6= 0,

B0 ⊸ C0 otherwise.

is easily shown to be a supremum of A1, A2. The other cases are similar. �

Appendix B.3. Proof of Lemma 3.17

Proof. By induction on the derivation of ∆ ⊢ M : A. The proof is mostly
straightforward; here we only present one case.

Assume that the derivation of ∆ ⊢ M : A looks as follows, with the (⊸.I2)
rule the one applied last, and ∆ = (!∆0,Γ), M ≡ λxB .N , A ≡ !n(B′ ⊸ C).

x : B, ! ∆0,Γ ⊢ N : C FV(N) ⊆ |∆0| ∪ {x} B′ <: B

! ∆0,Γ ⊢ λxB .N : !n(B′ ⊸ C)
(⊸.I2)

Since ∆′ <: ∆ = (!∆0,Γ), we have ∆′ = (∆′
0,Γ

′) with ∆′
0 <: ! ∆0 and Γ′ <: Γ.

Furthermore, by Lemma 3.15.4, ∆′
0 must be of the form ∆′

0 = !∆′′
0 with some

∆′′
0 . Thus ∆′ = (!∆′′

0 ,Γ
′). Similarly, from the assumption that A ≡ !n(B′ ⊸

C) <: A′ we have A′ ≡ !m(B′′ ⊸ C′′) with B′′ <: B′, C <: C′′ and n = 0 ⇒
m = 0.

Now we have (x : B, ! ∆′′
0 ,Γ

′) <: (x : B, ! ∆0,Γ). Using the induction hy-
pothesis we obtain  x : B, ! ∆′′

0 ,Γ
′ ⊢ N : C′′. Since FV(N) ⊆ |∆0| ∪ {x} =

|∆′′
0 | ∪ {x}, the (⊸.I2) rule can be applied.

x : B, ! ∆′′
0 ,Γ

′ ⊢ N : C′′ FV(N) ⊆ |∆′′
0 | ∪ {x} B′′ <: B

! ∆′′
0 ,Γ

′ ⊢ λxB .N : !m(B′′ ⊸ C′′)
(⊸.I2)

To obtain B′′ <: B we used transitivity (Lemma 3.15.1). This derives ∆′ ⊢
λxB .N : A′. �

Appendix B.4. Proof of Lemma 3.20

Proof. 1. By induction on the construction of a value V .
If V ≡ x, a variable, then the type judgment must be derived by the (Ax.1)

rule. Then the claim follows immediately from Lemma 3.15.4.
If V is some constant (i.e. new, measn+1

i , U, cmpm,n, ornewρ), or if V ≡ ∗,
FV(V ) is empty.
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If V ≡ λxB .M , the type judgment ∆ ⊢ V : !A must be derived by the
(⊸.I2) rule:

x : B, ! ∆0,Γ ⊢ M : C FV(M) ⊆ |∆0| ∪ {x} B′ <: B

! ∆0,Γ ⊢ λxB .M : !n(B′ ⊸ C)
(⊸.I2)

with ∆ = (!∆0,Γ) and A ≡ !n−1(B ⊸ C). Now we have FV(V ) = FV(M) \
{x} ⊆

(

|∆0| ∪ {x}
)

\ {x} = |∆0|, from which the claim follows.
If V ≡ 〈V1, V2〉, the type judgment ∆ ⊢ V : !A must be derived as follows:

!∆0,Γ1 ⊢ V1 : !n A1 ! ∆0,Γ2 ⊢ V2 : !n A2

! ∆0,Γ1,Γ2 ⊢ 〈V1, V2〉 : !n(A1 ⊠A2)
(⊠.I), (†)

with ∆ = (!∆0,Γ1,Γ2). By the induction hypothesis, we have

(!∆0,Γ1)|FV(V1) = !∆1 , (!∆0,Γ2)|FV(V2) = !∆2

for some ∆1 and ∆2 (here (!∆0,Γ1)|FV(V1) denotes the suitable restriction of
a context). The claim follows immediately. The cases where V ≡ injBℓ V ′ or
V ≡ injAr V ′ are similar.

2. By induction on the construction of a value V .
If V ≡ x, a variable, then the claim follows easily from Lemma 3.15.4. The

cases where V is a constant or V ≡ ∗ are similarly easy.
In case V ≡ λxB .M : if A is of the form A ≡ !n(B′ ⊸ C) with n ≥ 1, the

type judgment !∆,Γ ⊢ V : A is derived by the (⊸.I2) rule and it also derives
!∆,Γ ⊢ V : !A. If A is of the form A ≡ B′ ⊸ C, the derivation of !∆,Γ ⊢ V : A
looks as follows.

x : B, ! ∆,Γ ⊢ M : C B′ <: B

! ∆,Γ ⊢ λxB .M : B′ ⊸ C
(⊸.I1) (B.3)

Now the assumption FV(V ) ⊆ |∆| yields FV(M) ⊆ |∆| ∪ {x}; this can be used
in

x : B, ! ∆,Γ ⊢ M : C FV(M) ⊆ |∆| ∪ {x} B′ <: B

! ∆,Γ ⊢ λxB .M : !(B′ ⊸ C)
(⊸.I2) .

Thus we have derived !∆,Γ ⊢ V : !A.
Finally, the cases where V ≡ injBℓ V ′ or V ≡ injAr V ′ are easy using the

induction hypothesis. This concludes the proof. �

Appendix B.5. Proof of Lemma 3.22

Proof. The first two rules are straightforward, by induction on the derivation
of !∆,Γ2, x : A ⊢ N : B. Here we make essential use of the monotonicity rule
(Lemma 3.17) and the weakening rule (Lemma 3.19.3). The third rule (Subst3)
follows from (Subst2) via Lemma 3.19.2 and 3.20.1. The last rule (Subst4) for
evaluation contexts is proved by induction on the construction of E, where we
employ the “bottom-up” definition (Lemma 3.6) in place of Definition 3.5. �
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Appendix B.6. Proof of Lemma 3.23

Proof. By induction on the construction of an evaluation context E. The step
cases where E 6≡ [ ] are easy, since the local character of the typing rules of
Hoq (for a rule to be applied, the terms in the assumptions can be anything).
For the base case (i.e. E ≡ [ ]) we prove by cases according to Definition 3.7.

In the case where M −→p N is by the (⊸) rule of Definition 3.7, we have

p = 1, M ≡ (λxA′

.M ′)V and N ≡ M ′[V/x]. By the assumption we have
 ∆ ⊢ (λxA′

.M ′)V : A; inspection of the typing rules shows that its derivation
must look like the following.

....
x : A′, ! ∆′,Γ1 ⊢ M ′ : A B <: A′

!∆′,Γ1 ⊢ λxA′

.M ′ : B ⊸ A
(⊸.I1)

....
!∆′,Γ2 ⊢ V : C C <: B

! ∆′,Γ1,Γ2 ⊢ (λxA′

.M ′)V : A
(⊸.E)

(B.4)
Here ∆ = (∆′,Γ1,Γ2). We have C <: B <: A′, thus C <: A′ (Lemma 3.15.1).
Using the monotonicity rule (Lemma 3.17) we have  ! ∆′,Γ2 ⊢ V : A′. Combin-
ing this with the top-left judgment in (B.4) via the (Subst3) rule in Lemma 3.22,
we obtain  ! ∆′,Γ1,Γ2 ⊢ M ′[V/x] : A, which is our goal.

The cases of the (⊠), (⊤), and (+i) rules are similar, where we rely on the
substitution rules in Lemma 3.22.

We consider the case of the (rec) rule, where p = 1,M ≡ letrec fB⊸Cx = M ′ inN ′

and

N ≡ N ′[(λxB . letrecfB⊸Cx = M ′ inM ′)/f
]

≡ N ′[(λzB. letrecfB⊸Cx = M ′ inM ′[z/x]) / f
]

.

Here z is a fresh variable and we used the α-equivalence. By the assumption
we have  ∆ ⊢ letrec fB⊸Cx = M ′ inN ′ : A; inspection of the typing rules
shows that its derivation must look like the following.

....
! ∆′, f : !(B ⊸ C), x : B ⊢ M ′ : C

....
! ∆′,Γ, f : !(B ⊸ C) ⊢ N ′ : A

! ∆′,Γ ⊢ letrec fB⊸Cx = M ′ inN ′ : A
(rec)

(B.5)
Here ∆ = (∆′,Γ). Now by α-converging !∆′, f : !(B ⊸ C), x : B ⊢ M ′ : C—the
top-left judgment in (B.5)—we have  ! ∆′, f : !(B ⊸ C), z : B ⊢ M ′[z/x] : C.
Applying the (rec) rule to the last two judgments, we obtain  ! ∆′, z : B ⊢
letrecfB⊸Cx = M ′ inM ′[z/x] : C. By the (⊸.I2) rule this leads to  ! ∆′ ⊢
λzB. letrecfB⊸Cx = M ′ inM ′[z/x] : !(B ⊸ C). The last judgment is com-
bined with the second assumption in (B.5) via the substitution rule (Subst2) in
Lemma 3.22, and yields  ! ∆′,Γ ⊢ N ′[λzB. letrecfB⊸Cx = M ′ inM ′[z/x] / f

]

:
A. This is our goal.

In the other cases, the reduction M −→p N is derived by one of the rules in
Definition 3.7 that deal with quantum constants (such as new and U). We do
only one case, of the rule (meas1). The other cases are similar.
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By inspecting the typing rules it is easy to see that the type A of the term
measn+1

i (newρ) must be A ≡ ! bit⊠ n-qbit. Therefore it suffices to show that
the term tt ≡ inj⊤ℓ (∗) can indeed have the type ! bit ≡ !(⊤+⊤). This is shown
as follows.

∆ ⊢ ∗ : !⊤ (⊤.I)

∆ ⊢ inj⊤ℓ (∗) : !(⊤ +⊤)
(+.I1)

This concludes the proof. �

Appendix B.7. Proof of Lemma 3.24

Proof. By induction on the construction of the (closed) term M . We only
present the case whereM ≡ NL. IfN is not a value, by the induction hypothesis
N has a reduction N −→p N ′; this yields M ≡ NL −→p N ′L. It is similar
when N is a value but L is not.

Now assume that bothN and L are values. By the assumption thatM ≡ NL
is typable, we must have ⊢ N : B ⊸ A for some B. A value N of the type
B ⊸ A must be either of the following forms: λxB′

. N ′, new, measni , U or cmp.

If N ≡ λxB′

. N ′, since L is a value we have M ≡ NL −→1 N ′[L/x]. If
N ≡ new, it is easy to see that a closed value L of type bit must be either tt or
ff. Therefore the reduction (new1) or (new2) in Definition 3.7 is enabled from
M ≡ NL. The other cases are similar.

�

Appendix C. The Quantum Branching Monad Q

The following characterization is standard. See e.g. [38].

Lemma Appendix C.1. The trace condition (17) holds if and only if: for
each m ∈ N,

∑

x∈X

∑

n∈N

M
(

(

c(x)
)

m,n

)

⊑ Im . (C.1)

Here ⊑ is the Löwner partial order (Definition 2.4); M
(

(c(x))m,n

)

is the matrix

from Definition 2.8. Note that M
(

(c(x))m,n

)

is an m×m matrix regardless of
the choice of n, hence the sum in (C.1) makes sense.

Proof. We define a matrix A by

A := Im −
∑

x∈X

∑

n∈N

M
(

(

c(x)
)

m,n

)

. (C.2)
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To prove the ‘if’ part, assume that A is positive. We have, for each ρ ∈ DMm,

tr(Aρ) +
∑

x∈X

∑

n∈N

tr

(

(c(x))m,n(ρ)
)

= tr(Aρ) +
∑

x∈X

∑

n∈N

tr

(

∑

i∈Ix,m,n

E(i)
x,m,n · ρ · (E(i)

x,m,n)
†
)

where {E(i)
x,m,n}i∈Ix,m,n is an operator-sum representation of (c(x))m,n

= tr(Aρ) +
∑

x∈X

∑

n∈N

tr

(

∑

i∈Ix,m,n

(E(i)
x,m,n)

† · E(i)
x,m,n · ρ

)

= tr

(

(

A+
∑

x∈X

∑

n∈N

M
(

(c(x))m,n

) )

(ρ)
)

= tr(ρ) ≤ 1 by (C.2).

Hence it suffices to show that tr(Aρ) ≥ 0. It is a standard fact that any density
matrix ρ ∈ DMm can be written as

∑

i∈I

λi|vi〉〈vi| ,

with |vi〉 ∈ C
m, ‖|vi〉‖ = 1, λi ≥ 0 and

∑

i λi ≤ 1. Therefore it suffices to show
that tr(A|v〉〈v|) ≥ 0 if ‖|v〉‖ = 1. Now:

tr(Aρ) = tr(A|v〉〈v|) (∗)
= 〈v|A|v〉 ≥ 0 ,

where (∗) is because tr(BC) = tr(CB) for any B,C; and the last inequality
holds because A is positive.

For the ‘only if’ part, we must show that the matrix A in (C.2) is positive.
For that purpose it suffices to prove: for any |v〉 ∈ Cm with length 1, 〈v|A|v〉 ≥ 0.

〈v|A|v〉 =
〈

v
∣

∣ Im −
∑

x,n

∑

i

(E(i)
x,m,n)

†E(i)
x,m,n

∣

∣v
〉

where {E(i)
x,m,n}i∈Ix,m,n is an operator-sum representation of (c(x))m,n

= 〈v|v〉 −
∑

x,n

∑

i

〈v| (E(i)
x,m,n)

†E(i)
x,m,n |v〉

= 1−
∑

x,n

∑

i

tr

(

E(i)
x,m,n|v〉〈v|(E(i)

x,m,n)
†
)

using tr(BC) = tr(CB) and 〈v|v〉 = ‖v‖2 = 1

= 1−
∑

x,n

tr

(

(c(x))m,n

(

|v〉〈v|
)

)

≥ 0 by (17).

This concludes the proof. �

Proposition Appendix C.2. The construction Q in Definition 4.1 is indeed
a functor.

84



Proof. First we check that, given a function f : X → Y and c ∈ QX , the
data (Qf)(c) defined in (18) indeed satisfies the trace condition. This is easy
by direct calculations. It remains to be shown that: Q(id) = id and Q(g ◦
f) = Qg ◦ Qf . These are easy consequences of the facts that id−1 = id and
(g ◦ f)−1 = f−1 ◦ g−1, respectively. �

Lemma Appendix C.3. The sum in the definition (20) of µ is well-defined.

Proof. First we show that, for fixed γ ∈ QQX , m ∈ N and ρ ∈ DMm, there
are only countably many pairs (c, k) ∈ QX × N such that

(γ(c))m,k(ρ) 6= 0 , equivalently (because the matrix is positive), tr
(

(γ(c))m,k(ρ)
)

6= 0 .

To see this, observe that the trace condition (17) for γ ∈ QQX means
∑

c,k tr
(

(γ(c))m,k(ρ)
)

≤
1. It is a standard fact that a discrete distribution with sum ≤ 1 has at most a
countable support; from this our claim above follows.

Therefore we can enumerate all such pairs as ((cl, kl))l∈N. Then (20) amounts
to

(

µX(γ)(x)
)

m,n
(ρ) =

∑

l∈N

(

(

cl(x)
)

kl,n
◦
(

γ(cl)
)

m,kl

)

(ρ) .

The right-hand side is the limit of a sequence (over l ∈ N) in DMn that satisfies
the assumption of Lemma Appendix A.3. Thus it is well-defined. �

Proposition Appendix C.4. The construction Q in Definition 4.1 is indeed
a monad.

Proof. First we verify that the data ηX(x) in (19) and µX(γ) in (20) satisfy
the trace condition (17) and hence belong indeed to QX . For the unit ηX(x)
this is obvious. For the multiplication µX(γ) we shall verify (17). For any
ρ ∈ DMm, we have

∑

x∈X

∑

n∈N

tr

(

(

(µX(γ))(x)
)

m,n
(ρ)
)

=
∑

x∈X

∑

n∈N

∑

c∈QX

∑

k∈N

tr

(

(c(x))k,n

(

(γ(c))m,k(ρ)
))

=
∑

x∈X

∑

n∈N

∑

c∈QX

∑

k∈N

tr

(

(γ(c))m,k(ρ)
)

· tr
(

(c(x))k,n

( (γ(c))m,k(ρ)

tr

(

(γ(c))m,k(ρ)
)

))

since (c(x))k,n and tr are linear

=
∑

c∈QX

∑

k∈N

tr

(

(γ(c))m,k(ρ)
)

·
(

∑

x∈X

∑

n∈N

tr

(

(c(x))k,n

( (γ(c))m,k(ρ)

tr

(

(γ(c))m,k(ρ)
)

))

)

≤
∑

c∈QX

∑

k∈N

tr

(

(γ(c))m,k(ρ)
)

· 1 by the trace condition for c ∈ QX , (∗)

≤ 1 by the trace condition for γ ∈ QQX .
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Note that in the above (∗), the matrix

(γ(c))m,k(ρ)

tr

(

(γ(c))m,k(ρ)
)

has its trace 1 hence is a density matrix.
Next we verify that the maps ηX and µX in (19–20) are natural in X . For

ηX it is obvious. For µX , given γ ∈ QQX and f : X → Y :

(

(µY ◦ QQf)(γ)(y)
)

m,n

=
∑

c′∈QY

∑

k∈N

(c′(y))k,n ◦
(

(QQf)(γ)(c′)
)

m,k

=
∑

c′∈QY

∑

k∈N

(c′(y))k,n ◦
(

∑

c∈(Qf)−1({c′})
(γ(c))m,k

)

=
∑

c′∈QY

∑

c∈(Qf)−1({c′})

∑

k∈N

(c′(y))k,n ◦ (γ(c))m,k since (c′(y))k,n is linear

=
∑

c∈QX

∑

k∈N

(

(Qf)(c)(y)
)

k,n
◦ (γ(c))m,k

=
∑

c∈QX

∑

k∈N

(

∑

x∈f−1({y})
(c(x))k,n

)

◦ (γ(c))m,k

=
∑

x∈f−1({y})

∑

c∈QX

∑

k∈N

(c(x))k,n ◦ (γ(c))m,k

=
∑

x∈f−1({y})
(µX(γ)(x))m,n =

(

(Qf ◦ µX)(γ)(y)
)

m,n
.

This proves the naturality of µ.
Finally we verify that η and µ indeed satisfy the monad laws, that is, that

the following diagrams commute.

QX
ηQX

//

◆◆
◆◆

◆

◆◆
◆◆

◆
QQX

µX��

QX
QηX
oo

♣♣
♣♣
♣

♣♣
♣♣
♣

QQQX
QµX

//

µQX ��

QQX
µX��

QX QQX µX

// QX

(C.3)

The leftmost triangle is obvious; for the other triangle, we first observe

(

(QηX)(c)(c′)
)

m,n
=

{

(c(x′))m,n if c′ = ηX(x′) for some x′ ∈ X ,

0 otherwise.
(C.4)
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This is used in the following calculation.

(

(

µX ◦ (QηX)
)

(c)(x)
)

m,n
=

∑

c′∈QX

∑

k∈N

(c′(x))k,n ◦
(

(QηX)(c)(c′)
)

m,k

=
∑

x′∈X

∑

k∈N

(

(ηX(x′))(x)
)

k,n
◦ (c(x′))m,k

by (C.4)

= In ◦ (c(x))m,n = (c(x))m,n .

This proves the commutativity of the triangle in the middle of (C.3). For the
square on the right, given Γ ∈ QQQX :

(

(µX ◦ QµX)(Γ)(x)
)

m,n
=
∑

c∈QX

∑

k∈N

(c(x))k,n ◦
(

(QµX)(Γ)(c)
)

m,k

=
∑

c∈QX

∑

k∈N

(c(x))k,n ◦
(

∑

γ∈µ−1
X ({c})

(Γ(γ))m,k

)

=
∑

c∈QX

∑

k∈N

∑

γ∈µ−1
X ({c})

(c(x))k,n ◦ (Γ(γ))m,k

=
∑

γ∈QQX

∑

k∈N

(µX(γ)(x))k,n ◦ (Γ(γ))m,k

=
∑

γ∈QQX

∑

k∈N

∑

c∈QX

∑

l∈N

(c(x))l,n ◦ (γ(c))k,l ◦ (Γ(γ))m,k ;

(

(µX ◦ µQX)(Γ)(x)
)

m,n
=
∑

c∈QX

∑

l∈N

(c(x))l,n ◦ (µQX(Γ)(c))m,l

=
∑

c∈QX

∑

l∈N

(c(x))l,n ◦
(

∑

γ∈QQX

∑

k∈N

(γ(c))k,l ◦ (Γ(γ))m,k

)

=
∑

γ∈QQX

∑

k∈N

∑

c∈QX

∑

l∈N

(c(x))l,n ◦ (γ(c))k,l ◦ (Γ(γ))m,k .

This concludes the proof. �

Appendix C.1. The Kleisli Category Kℓ(Q)

Lemma (Lemma 4.2, repeated). Given two successive arrows f : X p→ Y
and g : Y p→ U in Kℓ(Q), their composition g ⊙ f : X p→ U is concretely given
as follows.

(

(g ⊙ f)(x)(u)
)

m,n
=
∑

y∈Y

∑

k∈N

(

g(y)(u)
)

k,n
◦
(

f(x)(y)
)

m,k
.
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Proof. Given x ∈ X , u ∈ U and ρ ∈ DMm:

(

(g ⊙ f)(x)(u)
)

m,n
=
(

(µU ◦ Qg ◦ f)(x)(u)
)

m,n

=
(

µU

(

(Qg)(f(x))
)

(u)
)

m,n

=
∑

c∈QU

∑

k∈N

(c(u))k,n ◦
(

(

(Qg)(f(x))
)

(c)
)

m,k

by def. of µ

=
∑

c∈QU

∑

k∈N

(c(u))k,n ◦
(

∑

y∈g−1({c})
(f(x)(y))m,k

)

by def. of Qg

=
∑

c∈QU

∑

k∈N

∑

y∈g−1({c})
(c(u))k,n ◦ (f(x)(y))m,k

=
∑

y∈Y

∑

k∈N

(g(y)(u))k,n ◦ (f(x)(y))m,k . (∗)

Here the equality (∗) holds because, due to g : Y → QU being a function, we
have Y =

∐

c∈QU{y | g(y) = c}. �

Note that Kℓ(Q) has finite coproducts, carried over from Sets by the Kleisli
inclusion functor.

Theorem Appendix C.5. The monad Q on Sets satisfies the following con-
ditions (from [33, Requirements 4.7]); and therefore by [33, Proposition 4.8],
the category Kℓ(Q) is partially additive.

1. Kℓ(Q) is ω-CPO enriched.

2. Kℓ(Q) has monotone cotupling.

3. For each X,Y ∈ Kℓ(Q), the least element ⊥X,Y ∈ Kℓ(Q)(X,Y ) in the
homset is preserved by both pre- and post-composition: that is, f ⊙⊥ = ⊥
and ⊥⊙ g = ⊥.
We note that, under this condition, there exist “projection” maps pj :
∐

i∈I Xi p→ Xj such that

pj ⊙ κi =

{

id if i = j,

⊥ otherwise,

where κj : Xj p→∐

i∈I Xi denotes a coprojection.

4. The “bicartesian” maps

bc(Xi)i∈I
:=

(

Q(
∐

i∈I

Xi)
〈p♭

i〉i∈I−→
∏

i∈I

QXi

)

where p♭i := µ ◦ Tpi
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form a cartesian natural transformation with monic components. This
means that all the naturality squares

T (
∐

iXi) // bc //

T (
∐

i fi) ��

∏

i TXi
∏

i Tfi��

T (
∐

i Yi) //
bc

//
∏

i TYi

are pullback diagrams in Sets, for each fi : Xi → Yi in Sets.

The original condition [33, Requirements 4.7] is stated in terms of DCPOs
instead of ω-CPOs. This difference is not important.

Proof. We use the pointwise extension of the order ⊑ in Definition 4.4 in
homsets Kℓ(Q)(X,Y ). It is an ω-CPO due to Proposition 2.13. It is easy to see
that the bottoms are preserved by pre- and post-composition. To see that
supremums are preserved too, one uses the following facts.

• A QO is continuous, since its operator-sum representation is.

• The fact at the beginning of the proof of Lemma Appendix C.3 (that the
support of each of the relevant functions is at most countable).

• The limit operator limk→∞ (for increasing chains) and the countable sum
operator

∑

l∈N
are interchangeable: limk

∑

l ρk,l =
∑

l limk ρk,l.

Cotupling is monotone since the order in the homsets are pointwise.
To see bc is monic, assume bc(c) = bc(d). Then p♭i(c) = p♭i(d) for each i ∈ I.

It is easy to see that p♭i(c) = c ◦ κi, therefore

c = [c ◦ κi]i = [d ◦ κi]i = d .

It is straightforward to see that the naturality squares are pullbacks. �

Appendix D. Proofs for §5

Appendix D.1. Proof of Lemma 5.8

Proof. The set AQ = Kℓ(Q)(N,N) is an ω-CPO due to the ω-CPO enriched
structure of the category Kℓ(Q) (see Theorem 4.5). Therefore the order ⊑ on
AQ is essentially the Löwner partial order (Definition 2.4).

To show the item 1, we use the fact that composition ⊙ of arrows and
the trace operator tr are both continuous in the Kleisli category Kℓ(Q). In-
deed, the former is part of the fact that Kℓ(Q) is ω-CPO enriched (Theo-
rem Appendix C.5). The proof for the latter is not hard either, exploiting the
explicit presentation of tr by Girard’s execution formula (see [59, Chap. 3]). In
the proof the following Fubini-like result is essential: if (xn,m)n,m∈N is increasing
both in n and m, then supn supm xn,m = supn xn,n. The item 1 then follows
immediately from the definitions of · and ! in (29) and (30).

The item 2 is proved using the presentation of tr by Girard’s execution
formula and the fact that composition ⊙ in Kℓ(Q) is (left and right) strict. �
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Appendix D.2. Proof of Lemma 5.13

Proof. For inductiveness of U ×̇ V , assume x0 ⊑ x1 ⊑ · · · , x′
0 ⊑ x′

1 ⊑ · · · and
(xi, x

′
i) ∈ U ×̇V for each i. By the definition of U ×̇V , we find ki, li, ui, k

′
i, l

′
i, u

′
i

such that xi = Ṗki(Ṗliui), x
′
i = Ṗk′i(Ṗl

′
iu

′
i), (kiui, k

′
iu

′
i) ∈ U and (liui, l

′
iu

′
i) ∈

V . Since ki = Ṗlxi, by continuity of · we have that (ki)i is an increasing
chain. So are (li)i, (ui)i, (k

′
i)i, (l

′
i)i, (u

′
i)i; therefore (kiui)i, (liui)i, (k

′
iu

′
i)i, (l

′
iu

′
i)i

are increasing, too. By the admissibility of U and V we have

(

sup
i

kiui , sup
i

k′iu
′
i

)

∈ U and
(

sup
i

liui , sup
i

l′iu
′
i

)

∈ V .

Again by continuity of · we have

sup
i

xi = Ṗ(sup
i

ki)
(

Ṗ(sup
i

li)(sup
i

ui)
)

and sup
i

x′
i = Ṗ(sup

i
k′i)
(

Ṗ(sup
i

l′i)(sup
i

u′
i)
)

;

since supi kiui = (supi ki)(supi ui) (and so on) we conclude that (supi xi, supi x
′
i) ∈

U ×̇ V .
Strictness is the reason we use ×̇ instead of ×. We have Ṗ⊥(Ṗ⊥⊥) = ⊥:

this is because Ṗxy = j ⊙ (x + y) ⊙ k (see (40)) and that ⊙ is (left and right)
strict. This shows (⊥,⊥) ∈ U ×̇ V .

Inductiveness of X ⊸ U is easily shown by similar arguments. Finally,
strictness of X ⊸ U is because for each (x, x′) ∈ X , (⊥x,⊥x′) = (⊥,⊥) ∈ U .
Here the left strictness of · is crucial. �

Appendix D.3. Proof of Lemma 5.27

Proof. The PER J0-qbitK (Definition 5.18) is admissible. Indeed, (⊥,⊥) =
(Q0,Q0) ∈ J0-qbitK and an increasing chain in J0-qbitK is precisely an increasing
chain in [0, 1]. Therefore Lemma 5.13 shows that the functor Fpbt = JbitK ⊸

(J0-qbitK ×̇ ) preserves admissibility. Since Bt = {(⊥,⊥)} is admissible, each
object F i

pbtB in the final sequence is admissible.
We prove strictness of R. By Definition 5.4 we have ⊥ = (⊥)i∈N; hence

Ṗ(⊥)i⊥ = ⊥ by (40). Thus it suffices to show that for any j and any i such that
j ≤ i, (ci,j⊥,⊥) ∈ F j

pbtBt. This is by cases: we distinguish j = 0 and j > 0.

If j = 0, [ci,j ] : F
i
pbtBt → Bt is the unique map to Bt = {(⊥,⊥)} and hence

ci,j⊥ = ⊥. Therefore (ci,j⊥,⊥) ∈ F j
pbtBt for any i.

Assume j > 0. Let us first note the functor JbitK ⊸ ’s action on arrows:
it carries

[c] : X −→ Y to [λtb.c(tb)] : JbitK ⊸ X −→ JbitK ⊸ Y . (D.1)

The functor J0-qbitK × carries [c] : X → Y to

[

λv.v(λk1w.w(λk2u.Pk1(P(λz.c(k2z))u)))
]

: J0-qbitK ×X −→ J0-qbitK × Y ;
(D.2)

after suitable insertion of the conversion combinators C
P7→Ṗ

and C
Ṗ7→P

, it de-
scribes the functor J0-qbitK ×̇ ’s action on arrows.
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Our aim now is to show

(ci,j⊥,⊥) ∈ F j
pbtBt = JbitK ⊸ (J0-qbitK ×̇ F j−1

pbt Bt) ;

by (32) it suffices to show
(

ci,j⊥b, ⊥b′
)

∈ J0-qbitK ×̇ F j−1
pbt Bt for each (b, b′) ∈ JbitK. (D.3)

By (D.1) we have
(

ci,j , λtb.di−1,j−1(tb)
)

∈ F i
pbtBt ⊸ F j

pbtBt ,

where di−1,j−1 is the realizer of the arrow

J0-qbitK ×̇ [ci−1,j−1] : J0-qbitK ×̇ F i−1
pbt Bt −→ J0-qbitK ×̇ F j−1

pbt Bt

described as in (D.2). Therefore
(

ci,j⊥b , di−1,j−1(⊥b)
)

∈ J0-qbitK ×̇ F j−1
pbt Bt . (D.4)

Now using that · is left strict,
di−1,j−1(⊥b) = di−1,j−1⊥ = ⊥ = ⊥b′ ,

where for the second equality we also used the concrete description (D.2) of
di−1,j−1. Therefore (D.4) proves (D.3).

Inductiveness of R is proved much like the proof of Lemma 5.13. �

Appendix E. Well-Definedness of Interpretation of Well-Typed Terms

Towards our goal of proving Lemma 5.35, we introduce another set of typing
rules, and we call them the principal typing rules. The system is a restriction
of the Hoq typing rules (Table 1).

Definition Appendix E.1 (Principal typing in Hoq). The principal typ-
ing rules of Hoq are in Table E.2.

In the rules, a square-bracketed entry like [x : A] in a context means that it
can be absent. The contexts in the (+.E)P rule are complicated: they form the
following partition of the free variables of the term in the conclusion. Notice
that Γ′ need not be of the form !Γ′′.

FV(P ) FV(M2)

FV(M1)

Γ

∆

∆2

∆1

Γ1

Γ2

Γ′
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x : A ⊢ x : A
(Ax.1)P ⊢ c : ! DType(c)

(Ax.2)P

[x : A],∆ ⊢ M : B ∆ 6≡ ! ∆′ for any ∆′

∆ ⊢ λxA.M : A ⊸ B
(⊸.I1)P

[x : A],∆ ⊢ M : B ∆ ≡ ! ∆′ for some ∆′

∆ ⊢ λxA.M : !(A ⊸ B)
(⊸.I2)P

! ∆,Γ1 ⊢ M : !n(A ⊸ B) !∆,Γ2 ⊢ N : C C <: A

! ∆,Γ1,Γ2 ⊢ MN : B
(⊸.E)P

! ∆,Γ1 ⊢ M1 : !n A1 ! ∆,Γ2 ⊢ M2 : !n A2

(

m = 0 ⇔ n = 0
)

∧
(

m = 1 ⇔ n ≥ 1
)

At least one of A1 and A2 is
not of the form !B

!∆,Γ1,Γ2 ⊢ 〈M1,M2〉 : !m(!m A1 ⊠ !m A2)
(⊠.I)P

! ∆,Γ1 ⊢ M : !m(C1 ⊠ C2)
!∆,Γ2, [x1 : !n A1], [x2 : !n A2] ⊢ N : A

m = 0 ⇒ n = 0
C1 <: A1 C2 <: A2

! ∆,Γ1,Γ2 ⊢ let 〈x!n A1

1 , x!n A2

2 〉 = M inN : A
(⊠.E)P

∆ ⊢ ∗ : !⊤ (⊤.I)P
! ∆,Γ1 ⊢ M : !n ⊤ ! ∆,Γ2 ⊢ N : A

! ∆,Γ1,Γ2 ⊢ let ∗ = M inN : A
(⊤.E)P

∆ ⊢ M : !n A1

(

m = 0 ⇔ n = 0
)

∧
(

m = 1 ⇔ n ≥ 1
)

A1 is
not of the form !B

∆ ⊢ injA2

ℓ M : !m(!m A1 +A2)
(+.I1)P

∆ ⊢ N : !n A2

(

m = 0 ⇔ n = 0
)

∧
(

m = 1 ⇔ n ≥ 1
)

A2 is
not of the form !B

∆ ⊢ injA1
r N : !m(A1 + !m A2)

(+.I2)P

! ∆, ! ∆1, ! ∆2,Γ ⊢ P : !m(C1 + C2)
!∆, ! ∆1,Γ

′,Γ′
1, [x1 : !n A1] ⊢ M1 : B

! ∆, ! ∆2,Γ
′,Γ′

2, [x2 : !n A2] ⊢ M2 : B

m = 0 ⇒ n = 0
C1 <: A1 C2 <: A2

x1 6∈ |Γ,∆2,Γ2|, x2 6∈ |Γ,∆1,Γ1|
! ∆, ! ∆1, ! ∆2,Γ,Γ

′,Γ′
1,Γ

′
2 ⊢ matchP with (x!n A1

1 7→ M1 | x!n A2

2 7→ M2) : B
(+.E)P

! ∆, [f : !(A ⊸ B)], [x : A] ⊢ M : B′′

! ∆,Γ, [f : !(A ⊸ B)] ⊢ N : C B′′ <: B

! ∆,Γ ⊢ letrecfA⊸Bx = M inN : C
(rec)P

Table E.2: Principal typing rules for Hoq
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We shall write Π P ∆ ⊢ M : A if a derivation tree Π, according to these
rules, derives the type judgment. We write P ∆ ⊢ M : A if there exists such
Π, that is, the type judgment is derivable.

Lemma Appendix E.2. P ∆ ⊢ M : A implies  ∆ ⊢ M : A.

Proof. By induction on the principal type derivation of P ∆ ⊢ M : A. We
only present some cases.

When the last rule applied is (⊸.E)P, that is

!∆′,Γ1 ⊢ M ′ : !n(A′ ⊸ A) !∆′,Γ2 ⊢ N ′ : C C <: A′

! ∆′,Γ1,Γ2 ⊢ M ′N ′ : A
(⊸.E)P

with ∆ = (!∆′,Γ1,Γ2) and M ≡ M ′N ′, by the induction hypothesis we have

 !∆′,Γ1 ⊢ M ′ : !n(A′
⊸ A) and  ! ∆′,Γ2 ⊢ N ′ : C .

Applying Corollary 3.18 to the former yields  ! ∆′,Γ1 ⊢ M ′ : A′ ⊸ A . Then,
together with C <: A′, we can use the (⊸.E) rule (of the original type system) to
derive !∆′,Γ1,Γ2 ⊢ M ′N ′ : A. The case (⊠.I)P is similar using Corollary 3.18.
For the case (⊠.E)P we additionally use Lemma 3.17 to show that

 ! ∆,Γ2, x1 : !n A1, x2 : !n A2 ⊢ N : A implies  ! ∆,Γ2, x1 : !n C1, x2 : !n C2 ⊢ N : A .

The case (+.E)P and (rec)P are similar. �

Lemma Appendix E.3. 1. P ∆ ⊢ M : A implies |∆| = FV(M).
2. Principal typing is unique in the following sense:

P ∆ ⊢ M : A and P ∆ ⊢ M : A′ imply A ≡ A′.

3. Derivation in principal typing is unique: if Π P ∆ ⊢ M : A and Π′ P

∆ ⊢ M : A, then Π ≡ Π′.

Proof. 1. Straightforward by induction.
2. By induction on the construction of M . We only present one case; the

other cases are similar.
Assume M is of the form let 〈x!n A1

1 , x!n A2

2 〉 = M ′ inN . Then its principal
type derivation must end with the (⊠.E)P rule, as below.

!∆,Γ1 ⊢ M ′ : !m(C1 ⊠ C2)
!∆,Γ2, [x1 : !n A1], [x2 : !n A2] ⊢ N : A

m = 0 ⇒ n = 0
C1 <: A1 C2 <: A2

! ∆,Γ1,Γ2 ⊢ let 〈x!n A1

1 , x!n A2

2 〉 = M ′ inN : A
(⊠.E)P

(E.1)
The context !∆,Γ2, [x1 : !n1 A1], [x2 : !n2 A2] is determined by the given context
!∆,Γ1,Γ2—in particular we can read off the types !n Ai of the variables xi

from the explicit type labels in M . Therefore by the induction hypothesis, the
principal type A of N is determined; hence so is the principal type of M , too.

3. Straightforward by induction on the construction of a term M . In many
cases (including M ≡ NL, where the rule (⊸.E)P is involved) the items 1–2.
play an essential role. �
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Definition Appendix E.4 (Interpretation of principal type judgments).
For each derivation Π P ∆ ⊢ M : A by the rules in Table E.2, we assign an
arrow

JΠKP : J∆K −→ T JAK

in the way that is a straightforward adaptation of Definition 5.34.

Lemma Appendix E.5. Assume Π  ∆ ⊢ M : A (in the original rules in
Table 1). Then there exist a type A◦ and a derivation Π◦ (in the principal
typing rules in Table E.2) such that:

1. Π◦ P ∆|FV(M) ⊢ M : A◦,
2. A◦ <: A, and

3. the following diagram commutes.

J∆K
weak //

JΠK ..

J∆|FV(M)K
JΠ◦KP

// T JA◦K
T JA◦<:AK
��

T JAK

(E.2)

Proof. The diagram in (E.2) can be refined into the following one; we shall
prove that the triangle therein commutes.

J∆K
weak // J∆|FV(M)K

JΠ◦KP
//

JΠKFV **❯❯
❯❯❯

❯❯❯
❯❯

T JA◦K
T JA◦<:AK
��

T JAK

(E.3)

Here JΠKFV is as in Definition 5.34. The proof is by induction on Π. We present
one case; the others are similar.

Assume Π is in the following form, with the last rule applied being (⊸.E).

Π ≡





.... Π1

! ∆,Γ1 ⊢ M : A ⊸ B

.... Π2

! ∆,Γ2 ⊢ N : C C <: A

! ∆,Γ1,Γ2 ⊢ MN : B
(⊸.E)





By the induction hypothesis, there exist types D,E and derivations Π◦
1,Π

◦
2 such

that

Π◦
1 P !∆,Γ1 ⊢ M : D , Π◦

2 P ! ∆,Γ2 ⊢ N : E ;
D <: A ⊸ B , E <: C ;
JΠ1KFV = T JD <: A ⊸ BK ◦ JΠ◦

1K
P , and JΠ2KFV = T JE <: CK ◦ JΠ◦

2K
P .

Since D <: A ⊸ B, the type D must be of the form D ≡ !m(A′ ⊸ B′) with
A <: A′ and B′ <: B. Now consider the following derivation Π◦.

Π◦ :≡







.... Π◦
1

!∆,Γ1 ⊢ M : !m(A′ ⊸ B′)

.... Π◦
2

! ∆,Γ2 ⊢ N : E E <: A′

! ∆,Γ1,Γ2 ⊢ MN : B′ (⊸.E)P
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Here the side condition E <: A′ holds since E <: C <: A <: A′. Thus we obtain
Π◦ P ! ∆,Γ1,Γ2 ⊢ MN : B′ with B′ <: B.

It remains to show that JΠKFV = (T JB′ <: BK) ◦ JΠ◦KP. This is, however,
an immediate consequence of

• the induction hypothesis,

• JA <: CK = JB <: CK ◦ JA <: BK (Lemma 5.31),

• bifunctoriality of ⊠ and ⊸, and

• naturality of str, str′, ev and µ.

This can be checked by straightforward diagram chasing. �

We are ready to prove Lemma 5.35.

Proof. (Of Lemma 5.35) Assume Π  ∆ ⊢ M : A and Π′  ∆ ⊢ M : A. We
apply Lemma Appendix E.5 to obtain A◦,Π◦, (A′)◦, (Π′)◦ such that

Π◦ P ∆|FV(M) ⊢ M : A◦ , (Π′)◦ P ∆|FV(M) ⊢ M : (A′)◦ ,
JΠK = T JA◦ <: AK ◦ JΠ◦KP ◦ weak and JΠ′K = T J(A′)◦ <: AK ◦ J(Π′)◦KP ◦ weak .

Applying Lemma Appendix E.3 to the first line we have A◦ ≡ (A′)◦, and more-
over Π◦ ≡ (Π′)◦. This is used in the second line to conclude JΠK = JΠ′K. �

Appendix F. Proofs for §6

Lemma Appendix F.1. Let M be a term such that Γ ⊢ M : A is derivable.
Assume a subtype relation A <: B. Then we have

T JA <: BK ◦ JΓ ⊢ M : AK = JΓ ⊢ M : BK .

Proof. By induction on the termM . We only present two cases. WhenM ≡ x,
the composition T JA <: BK ◦ JΓ ⊢ M : AK is equal to

JΓK
weak−−−→ JA′K

JA′<:AK−−−−−→ JAK
JA<:BK−−−−−→ JBK

ηT
JBK−−−→ T JBK. (F.1)

Since JA <: BK ◦ JA′ <: AK is equal to JA′ <: BK by Lemma 5.31, the arrow
(F.1) is equal to JΓ ⊢ x : BK.

When M ≡ M1 M2, the term environment Γ is of the form !∆,Γ1,Γ2, and
there is a type C such that !∆,Γ1 ⊢ M1 : C ⊸ A and !∆,Γ2 ⊢ M2 : C are
derivable. The interpretation JΓ ⊢ M1M2 : AK is

µJAK ◦ µT JAK ◦ TT evJCK,T JAK ◦ T strJCK⊸T JAK,JCK ◦ str′JCK⊸T JAK,T JCK

◦
(

J! ∆,Γ1 ⊢ M1 : C ⊸ AK ⊠ J! ∆,Γ2 ⊢ M2 : CK
)

◦ c ,
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where c : J! ∆,Γ1,Γ2K → J! ∆,Γ1K ⊠ J! ∆,Γ2K is a suitable permutation followed
by contractions. By naturality of µ, str, str′ and ev, the composition T JA <:
BK ◦ JΓ ⊢ M1 M2 : AK is equal to

µJBK ◦ µT JBK ◦ TT evJCK,T JBK ◦ T strJCK⊸T JBK,JCK ◦ str′JCK⊸T JBK,T JCK

◦
(

(

T (JCK ⊸ T JA <: BK) ◦ J! ∆,Γ1 ⊢ M1 : C ⊸ AK
)

⊠J! ∆,Γ2 ⊢ M2 : CK
)

◦ c ,

where the arrow

T
(

JCK ⊸ T JA <: BK
)

: T (JCK ⊸ T JAK) −→ T (JCK ⊸ T JBK)

is obtained by applying suitable functors to the arrow JA <: BK : JAK → JBK.
Since T

(

JCK ⊸ T JA <: BK
)

◦ J! ∆,Γ1 ⊢ M1 : C ⊸ AK is equal to J! ∆,Γ1 ⊢
M1 : C ⊸ BK, we see that T JA <: BK ◦ JΓ ⊢ M1 M2 : AK is equal to JΓ ⊢
M1M2 : BK.

We can prove the other cases in the same way. �

As is usual with the categorical interpretation of call-by-value languages in
Kleisli categories, the interpretation of a value Γ ⊢ V : A in Hoq factorizes
through the monad unit ηT and is the form ηTJAK ◦ f for some arrow f : JΓK →
JAK (see Definition 5.34). We write JΓ ⊢ V : AKv for the arrow such that
JΓ ⊢ V : AK = ηTJAK ◦ JΓ ⊢ V : AKv given in Definition 5.34. It is easy to see that

J⊢ V : !AKv is of the form ! f ◦ ϕ′ for some f : I → JAK. Here ϕ′ : I
∼=→ ! I is from

Theorem 4.21.

Lemma Appendix F.2. Assume that Γ, x : A ⊢ M : B and ⊢ V : A are
derivable for a term M and a closed value V . Then the composition JΓ, x : A ⊢
M : BK ◦ (idJΓK ⊠ J⊢ V : AKv) is equal to JΓ ⊢ M [V/x] : BK.

In Lemma Appendix F.2, we assume that x is the largest in |Γ| ∪ {x} with
respect to the linear order≺ in Definition 5.33. It is straightforward to generalize
the statement to an arbitrary variable x in a term context.

Proof. By induction on the termM . We only present two cases. WhenM ≡ x,
the composition JΓ, x : A ⊢ x : BK ◦ (idJΓK ⊠ J⊢ V : AKv) is equal to ηTJBK ◦ JA <:

BK ◦ JΓ ⊢ V : AKv, which is equal to JΓ ⊢ V : BK by Lemma Appendix F.1.
When M ≡ M1M2, the term environment Γ, x : A is of the form !∆,Γ1,Γ2

and there is a type C such that !∆,Γ1 ⊢ M1 : C ⊸ B and !∆,Γ2 ⊢ M2 : C are
derivable. The interpretation JΓ, x : A ⊢ M1 M2 : BK is

µJBK ◦ µT JBK ◦ TT evJCK,T JBK ◦ T strJCK⊸T JBK,JCK ◦ str′JCK⊸T JBK,T JCK

◦ (J! ∆,Γ1 ⊢ M1 : C ⊸ BK ⊠ J! ∆,Γ2 ⊢ M2 : CK) ◦ c

where c : J! ∆,Γ1,Γ2K → J! ∆,Γ1K ⊠ J! ∆,Γ2K is a suitable permutation followed
by contractions. By the induction hypothesis and naturality of the permutation
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and contractions, the composition JΓ, x : A ⊢ M1M2 : BK ◦ (idJΓK ⊠ J⊢ V : AKv)
is equal to

µJBK ◦ µT JBK ◦ TT evJCK,T JBK ◦ T strJCK⊸T JBK,JCK ◦ str′JCK⊸T JBK,T JCK

◦ (J! ∆′,Γ′
1 ⊢ M1[V/x] : C ⊸ BK ⊠ J! ∆′,Γ′

2 ⊢ M2[V/x] : CK) ◦ c′

where !∆′,Γ′
1,Γ

′
2 is the term environment obtained by removing x : A from

!∆,Γ1,Γ2, and c′ : J! ∆′,Γ′
1,Γ

′
2K → J! ∆′,Γ′

1K⊠J!∆,Γ′
2K is a suitable permutation

followed by contractions. Hence, JΓ, x : A ⊢ M1M2 : BK ◦ (idJΓK ⊠ J⊢ V : AKv)
is equal to JΓ ⊢ (M1 M2)[V/x] : BK.

We can prove the other cases in the same way. �

Lemma Appendix F.3. If ⊢ E[M ] : A is derivable, then there exist a type B
such that ⊢ M : B and x : B ⊢ E[x] : A.

Proof. By induction on the evaluation context E. �

Lemma Appendix F.4 (Lemma 6.1, repeated). Let E be an evaluation con-
text, and x be a variable that does not occur in E. Assume that x : A ⊢ E[x] : B
is derivable. Then for any term M such that  Γ ⊢ M : A, the interpretation
JΓ ⊢ E[M ] : BK : JΓK → T JBK is calculated by

JΓ ⊢ E[M ] : BK = µT
JBK ◦ T Jx : A ⊢ E[x] : BK ◦ JΓ ⊢ M : AK .

Proof. By induction on the evaluation context E, where we use the charac-
terization in Lemma 3.6. We only present two cases. When E ≡ [ ], since
x : A ⊢ x : B is derivable, we must have A <: B. By Lemma Appendix F.1,
JΓ ⊢ E[M ] : BK is equal to T JA <: BK ◦ JΓ ⊢ M : AK, which is nothing but
µJBK ◦ T Jx : A ⊢ E[x] : BK ◦ JΓ ⊢ M : AK.

When E ≡ E′ N , there exists a type C such that x : A ⊢ E′[x] : C ⊸ B
and ⊢ N : C are derivable. The interpretation JΓ ⊢

(

E′[M ]
)

N : BK is given, by
Definition 5.34, by

µJBK ◦ µT JBK ◦ TT evJCK,T JBK ◦ T strJCK⊸T JBK,JCK ◦ str′JCK⊸T JBK,T JCK

◦ (JΓ ⊢ E′[M ] : C ⊸ BK ⊠ J⊢ N : CK) . (F.2)

By the induction hypothesis we have

JΓ ⊢ E′[M ] : C ⊸ BK = µJC⊸BK ◦ T Jx : A ⊢ E′[x] : C ⊸ BK ◦ JΓ ⊢ M : AK .

Using this we see that (F.2) is equal to

µJBK ◦ Tf ◦ JΓ ⊢ M : AK , where

f :=

[

µJBK ◦ µT JBK ◦ TT evJCK,T JBK ◦ T strJCK⊸T JBK,JCK ◦
str′JCK⊸T JBK,T JCK ◦

(

Jx : A ⊢ E′[x] : C ⊸ BK ⊠ J⊢ N : CK
)

]

: JAK −→ T JBK .

Here we notice that f coincides with the interpretation of x : A ⊢ E′[x]N : B.
This concludes the case when E ≡ E′ N .

We can prove the other cases in the same way. �
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Lemma Appendix F.5 (Lemma 6.2, repeated). For a closed term M such that
⊢ M : A, if there is a reduction M →1 N that is not due to a measurement
rule ((meas1–meas4) in Definition 3.7), then

J⊢ M : AK = J⊢ N : AK .

Note that ⊢ N : A is derivable by Lemma 3.23.

Proof. AssumeM ≡ E
[

(λxC . L)V
]

andN ≡ E
[

L[V/x]
]

. By Lemma Appendix F.3,
there exists a type B such that y : B ⊢ E[y] : A and ⊢ (λxC . L)V : B are deriv-
able. By Lemma 3.23, we also have ⊢ L[V/x] : B. Since

J⊢ E[(λxC . L)V ] : AK = µJAK ◦ T Jx : B ⊢ E[x] : AK ◦ J⊢ (λxC . L)V : BK and

J⊢ E[L[V/x]] : AK = µJAK ◦ T Jx : B ⊢ E[x] : AK ◦ J⊢ L[V/x] : BK

by Lemma 6.1, it is enough to show that J⊢ (λxC . L)V : BK is equal to J⊢
L[V/x] : BK. By unfolding the definition of the interpretation (Definition 5.34),
we obtain

J⊢ (λxC . L)V : BK = Jx : A ⊢ L : BK ◦ J⊢ V : AKv ;

this coincides with J⊢ L[V/x] : BK by Lemma Appendix F.2.
For the other reduction rules, we can prove the statement in the same way.

�

Lemma Appendix F.6 (Lemma 6.6 (1), repeated). If (t, V ) is in RA, then
(ηTJAK ◦ t, V ) is in R⊤⊤

A .

Proof. For (k,E) ∈ R⊤
A , since µJbitK ◦ Tk ◦ ηTA ◦ t = k ◦ t, we have

µJbitK ◦ Tk ◦ ηTA ◦ t ⋖ E[V ] .

Therefore (ηTJAK ◦ t, V ) is in R⊤⊤
A .

Lemma Appendix F.7 (Lemma 6.6 (2), repeated). If (t, V ) ∈ RA and A <:
A′, then (JA <: A′K ◦ t, V ) ∈ RA′ .

Proof. By induction on A. When A is ⊤ or n-qbit, the type A′ is equal to
A, and the statement is straightforward.

When A is B⊠C, by the definition of subtyping relation, A′ must be of the
form B′ ⊠ C′ for some B′ :> B and C′ :> C. For (t ⊠ s, 〈V,W 〉) ∈ RB⊠C , the
composition JB ⊠ C <: B′ ⊠ C′K ◦ (t ⊠ s) is equal to (JB <: B′K ◦ t) ⊠ (JC <:
C′K ◦ s). By the induction hypothesis, (JB <: B′K ◦ t, V ) is in RB′ , and
(JC <: C′K ◦ s,W ) is in RC′ , and therefore (JB⊠C <: B′⊠C′K ◦ (t⊠s), 〈V,W 〉)
is in RB′⊠C′ . We can similarly show the statement for A ≡ B + C.

When A is B ⊸ C, the type A′ is of the form B′ ⊸ C′ for some B′ <: B
and C <: C′. For (t, V ) ∈ RB⊸C and (s,W ) ∈ RB′ , by naturality of ev we have

evJB′K,JC′K ◦ ((JB ⊸ C <: B′
⊸ C′K ◦ t)⊠ s)

= T JC <: C′K ◦ evJBK,JCK ◦ (t⊠ (JB′ <: BK ◦ s)). (F.3)
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By the induction hypothesis, (JB′ <: BK ◦ s,W ) is in RB. Since (t, V ) is in
RB⊸C , we see that

(

evJBK,JCK ◦ (t ⊠ (JB′ <: BK ◦ s)), V W
)

is in R⊤⊤
C . By

the induction hypothesis, (k ◦ JC <: C′K, E) is easily seen to be in R⊤
C for any

(k,E) ∈ R⊤
C′ . Therefore,

µJbitK ◦ Tk ◦ T JC <: C′K ◦ evJBK,JCK ◦ (t⊠ (JB′ <: BK ◦ s)) ⋖ E[V W ]

for any (k,E) ∈ R⊤
C′ . By the definition of R⊤⊤

C and (F.3), we obtain

(

evJB′K,JC′K ◦ ((JB ⊸ C <: B′
⊸ C′K ◦ t)⊠ s), V W

)

∈ R⊤⊤
C′

for any (s,W ) ∈ RB′ , which implies that (JB ⊸ C <: B′ ⊸ C′K ◦ t, V ) is in
RB′⊸C′ .

When A is !B, the type A′ is of the form !n B′ for some n ≥ 0 and B <: B′.
If (! t ◦ ϕ′, V ) is in RA, then JA <: A′K ◦ ! t ◦ ϕ′ = !n(JB <: B′K ◦ t) ◦ !n−1 ϕ′ ◦
· · · ◦ !ϕ′ ◦ ϕ′. By the induction hypothesis, (JB <: B′K ◦ t, V ) is in RB′ , and
therefore by (53), (JA <: A′K ◦ ! t ◦ ϕ′, V ) is in RA′ . �

Lemma Appendix F.8 (Lemma 6.7 (1), repeated). For any type A and M ∈
ClTerm(A), we have ([⊥],M) ∈ R⊤⊤

A .

Proof. Let (k,E) ∈ R⊤
A . We claim

µJbitK ◦ Tk ◦ [⊥] = [⊥] , (F.4)

where [⊥] denotes the arrow I → T JAK in PERQ that is realized by ⊥ ∈ AQ
(cf. Lemma 5.27, 5.8.2). We have

µ = [λk(((JAK⊸R)⊸R)⊸R)⊸RyJAK⊸R.k(λh(JAK⊸R)⊸R.hy)]

Tk = [λv(JAK⊸R)⊸Rx((JbitK⊸R)⊸R)⊸R.v(λaJAK.x(cka))]

where ck is a choice of a realizer of k. We put type annotations to explain
intentions of these realizers. The arrow µJbitK ◦ Tk : T JAK → T JbitK is realized
by

λv.(λky.k(λh.hy))((λvx.v(λa.x(cka)))v) = λvy.(λx.v(λa.x(cka)))(λh.hy)

(1)
= λvy.v(λa.(λh.hy)(cka))

(2)
= λvy.v(λa.ckay).

We note that (1) and (2) follow from Remark 4.12: the LCA AQ is a model
of the untyped linear lambda calculus modulo beta-reductions. Therefore the
left-hand side of (F.4) is

[

λx. λy.⊥(λa. ckay)
]

that is nothing but [⊥] due to the left strictness of application of AQ.
From (F.4) it easily follows that prob(tree(µJbitK ◦ Tk ◦ [⊥])) = (0, 0).

Therefore we always have µJbitK ◦ Tk ◦ [⊥]⋖ E[M ]. �
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Lemma Appendix F.9 (Lemma 6.7 (2), repeated). For any type A and M ∈
ClTerm(A), if there exists a sequence of realizers a1 ⊑ a2 ⊑ · · · of arrows in
PERQ(I, T JAK) such that ([an],M) ∈ R⊤⊤

A , then we have ([
∨

n≥1 an],M) ∈
R⊤⊤

A .

Proof. Let (k,E) be an element in R⊤
A . Since the application of AQ is contin-

uous, the value assigned to any edge of the tree

tree
(

µJbitK ◦ Tk ◦
[

∨

n≥1

an
]

)

is the least upper bound of the value on the corresponding edge of the trees

tree(µJbitK ◦ Tk ◦ [an]).

Therefore, if we have µJbitK ◦ Tk ◦ [an]⋖ E[M ] for every n ≥ 1, then it follows
that µJbitK ◦ Tk ◦ [

∨

n≥1 an]⋖ E[M ]. �

Lemma Appendix F.10. Let M →1 N be a reduction that is not due to a
measurement rule ((meas1–meas4) in Definition 3.7). Then

(t,M) ∈ R⊤⊤
A ⇐⇒ (t, N) ∈ R⊤⊤

A .

Proof. Let (k,E) be an element in R⊤
A . Assume (t,M) is in R⊤⊤

A ; then we have
µJbitK ◦ Tk ◦ t⋖E[M ]. By the definition of big-step semantics, E[M ] . (p, q) if
and only if E[N ] . (p, q). Therefore, µJbitK ◦ Tk ◦ t⋖E[N ]. The other direction
is similar. �

Lemma Appendix F.11. For a type A such that !(bit ⊸ qbit) <: A, the
pair (J⊢ new : AK, new) is in R⊤⊤

A .

Proof. When A = bit ⊸ qbit, since (JnewρKconst, newρ) is in Rqbit for any
ρ ∈ DM2, both (J⊢ new|0〉〈0| : qbitK, new tt) and (J⊢ new|1〉〈1| : qbitK, new ff)
are in R⊤⊤

qbit by Lemma Appendix F.6 and Lemma Appendix F.10. There-
fore, (JnewKconst, new) is in Rbit⊸qbit, and by Lemma Appendix F.6, (J⊢ new :
AK, new) is in R⊤⊤

bit⊸qbit. When A = !(bit ⊸ qbit), we have ηTJAK ◦ !JnewKconst ◦
ϕ′ = J⊢ new : AK. Since (JnewKconst, new) is in Rbit⊸qbit, the pair (!JnewKconst ◦
ϕ′, new) is in R!(bit⊸qbit). Therefore, by Lemma Appendix F.6, (J⊢ new :

AK, new) is in R⊤⊤
A . When A satisfies !(bit ⊸ qbit) <: A, the statement fol-

lows from Lemma Appendix F.7, Lemma Appendix F.6 and that (!JnewKconst ◦
ϕ′, new) is in R!(bit⊸qbit). �

Lemma Appendix F.12. For a type A such that !(n-qbit ⊸ n-qbit) <: A,
the pair (J⊢ U : AK, U) is in R⊤⊤

A .

Proof. Similar to the proof of Lemma Appendix F.11. �

Lemma Appendix F.13. For a type A such that !(n-qbit⊠m-qbit ⊸ (n+
m)-qbit) <: A, the pair (J⊢ cmpn,m : AK, cmpn,m) is in R⊤⊤

A .
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Proof. Similar to the proof of Lemma Appendix F.11. �

Lemma Appendix F.14. For a type A such that !
(

(n + 1)-qbit ⊸ ! bit ⊠

n-qbit
)

<: A, the pair (J⊢ measn+1
i : AK, measn+1

i ) is in R⊤⊤
A .

Proof. First we shall prove that, when A ≡ (n + 1)-qbit ⊸ ! bit ⊠ n-qbit,
we have (Jmeasn+1

i Kconst, meas
n+1
i ) is in RA. It is enough to show that for any

ρ ∈ DM2n+1 , the pair (J⊢ measn+1
i newρ : ! bit ⊠ n-qbitK, measn+1

i newρ) is
in R⊤⊤

! bit⊠n-qbit. Let (k,E) be an element in R⊤
! bit⊠n-qbit. We define k0, k1 :

Jn-qbitK → T JbitK to be the following arrows.

k0 = k ◦ ((! κℓ ◦ ϕ′)⊠ idJn-qbitK) k1 = k ◦ ((! κr ◦ ϕ′)⊠ idJn-qbitK)

Then prob(tree(µJbitK ◦ Tk ◦ J⊢ measn+1
i newρ : ! bit⊠ n-qbitK)) is equal to

(0, 0) + prob(tree(k0 ◦ Jnew〈0i|ρ|0i〉Kconst)) + prob(tree(k1 ◦ Jnew〈1i|ρ|1i〉Kconst)) ;

this is seen much like in the proof of Theorem 6.5. Since

k0 ◦ Jnew〈0i|ρ|0i〉Kconst ⋖ E[〈tt, new〈0i|ρ|0i〉〉] and

k1 ◦ Jnew〈1i|ρ|1i〉Kconst ⋖ E[〈ff, new〈1i|ρ|1i〉〉] ,

it follows that µJbitK ◦ Tk ◦ J⊢ measn+1
i newρ : ! bit⊠n-qbitK⋖E[measn+1

i newρ],

and therefore,
(

J⊢ measn+1
i newρ : !bit⊠n-qbitK, measn+1

i newρ
)

is in R⊤⊤
! bit⊠n-qbit.

When A ≡ !
(

(n+1)-qbit ⊸ ! bit⊠n-qbit
)

, since (J⊢ measn+1
i Kconst, meas

n+1
i )

is in R(n+1)-qbit⊸! bit⊠n-qbit, the pair (!Jmeasn+1
i Kconst ◦ ϕ′, measn+1

i ) is in RA.

Therefore, by Lemma Appendix F.6, (J⊢ measn+1
i : AK, measn+1

i ) is in R⊤⊤
A .

Finally, when A satisfies !((n+1)-qbit ⊸ ! bit⊠qbit) <: A, the statement
follows from Lemma Appendix F.7, Lemma Appendix F.6 and that (!Jmeasn+1

i Kconst ◦
ϕ′, measn+1

i ) is in R!((n+1)-qbit⊸! bit⊠qbit). �

Lemma Appendix F.15. For a type A such that !(qbit ⊸ ! bit) <: A, the
pair (J⊢ meas11 : AK, meas11) is in R⊤⊤

A .

Proof. Similar to the proof of Lemma Appendix F.14. �
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