
ar
X

iv
:1

20
1.

28
29

v3
 [

cs
.L

O
]

 1
5

M
ay

 2
01

6

The Complexity of Mean-Payoff Pushdown Games⋆,⋆⋆

Krishnendu Chatterjee and Yaron Velner

1 IST Austria
2 School of Computer Science and Engineering, The Hebrew University, Israel

Abstract. Two-player games on graphs are central in many problems in formal verification and
program analysis such as synthesis and verification of open systems. In this work we consider
solving recursive game graphs (or pushdown game graphs) that model the control flow of sequen-
tial programs with recursion. While pushdown games have been studied before with qualitative
objectives, such as reachability and ω-regular objectives, in this work we study for the first time
such games with the most well-studied quantitative objective, namely, mean-payoff objective.
In pushdown games two types of strategies are relevant: (1) global strategies, that depend on
the entire global history; and (2) modular strategies, that have only local memory and thus do
not depend on the context of invocation, but only on the history of the current invocation of
the module. Our main results are as follows: (1) One-player pushdown games with mean-payoff
objectives under global strategies are decidable in polynomial time. (2) Two-player pushdown
games with mean-payoff objectives under global strategies are undecidable. (3) One-player push-
down games with mean-payoff objectives under modular strategies are NP-hard. (4) Two-player
pushdown games with mean-payoff objectives under modular strategies can be solved in NP (i.e.,
both one-player and two-player pushdown games with mean-payoff objectives under modular
strategies are NP-complete). We also establish the optimal strategy complexity by showing that
global strategies for mean-payoff objectives require infinite memory even in one-player pushdown
games; and memoryless modular strategies are sufficient in two-player pushdown games. Finally
we also show that all the problems have the same complexity if the stack boundedness condition
is added, where along with the mean-payoff objective the player must also ensure that the stack
height is bounded.

1 Introduction

Quantitative verification and synthesis of pushdown systems. Pushdown automata (a.k.a
pushdown systems) are one of the most basic and fundamental computation models. They extend
finite-state systems with a single unbounded stack, to model the call stack of first-order recursive
programs, where the control states hold valuations of the programs global variables, and stack charac-
ters encode the local variable valuations. The fundamental result for the model-checking of pushdown
systems was established by Büchi in [13], who showed how to compute the set of all reachable stack
configurations. Since then, other problems of pushdown model-checking (e.g., wrt safety, LTL or ω-
regular properties) as well as games over pushdown systems have been extensively studied and led to
various efficient implementations and applications to program analysis [39, 5, 18, 30, 42, 41, 6]. While
the traditional model-checking problem asked for Boolean answers (whether a property is satisfied
or not), recent trends explore more quantitative properties, such as performance measure. One of
the most fundamental and well-studied quantitative objective is the mean-payoff or long-run average
objective. In this work we study the verification and synthesis problem of pushdown systems with
mean-payoff objectives. We start with the description of finite-state game graphs, and then pushdown
systems and its various equivalent models, followed by existing results and then our contribution.

Games on graphs. Two-player games played on finite-state graphs provide the mathematical frame-
work to analyze several important problems in computer science as well as mathematics. In particular,
when the vertices of the graph represent the states of a reactive system and the edges represent the
transitions, then the synthesis problem (Church’s problem) asks for the construction of a winning
strategy in a game played on the graph [14, 38, 37, 36]. Game-theoretic formulations have also proved

⋆ A preliminary version of the paper appeared in LICS (Logic in Computer Science) 2012.
⋆⋆ The research was supported by Austrian Science Fund (FWF) Grant No P 23499-N23, FWF NFN Grant No

S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft faculty fellows award, the Israeli
Centers of Research Excellence (I-CORE) program, (Center No. 4/11), and the RICH Model Toolkit (ICT
COST Action IC0901).

http://arxiv.org/abs/1201.2829v3

useful for the verification [4], refinement [31], and compatibility checking [20] of reactive systems.
Games played on graphs are dynamic games that proceed for an infinite number of rounds. The ver-
tex set of the graph is partitioned into player-1 vertices and player-2 vertices. The game starts at an
initial vertex, and if the current vertex is a player-1 vertex, then player 1 chooses an outgoing edge,
and if the current vertex is a player-2 vertex, then player 2 does likewise. This process is repeated
forever, and gives rise to an outcome of the game, called a play, that consists of the infinite sequence
of states that are visited. Two-player games on finite-state graphs with qualitative objectives such as
reachability, liveness and ω-regular conditions formalized by the canonical parity objectives, strong
fairness objectives, etc., have been extensively studied in the literature [29, 23, 24, 44, 40, 28].

The extensions. The study of two-player finite-state games with qualitative objectives has been
extended in two orthogonal directions in the literature: (1) two-player infinite-state games with qual-
itative objectives; and (2) two-player finite-state games with quantitative objectives. One of the most
well-studied models of infinite-state games with qualitative objectives is pushdown games (or games
on recursive state machines) that can model reactive systems with recursion (or model the control
flow of sequential programs with recursion). Pushdown games with reachability and parity objec-
tives have been studied in [42, 41, 7, 6] (also see [25, 26, 12, 11] and the recent work of [27] for sample
research in stochastic pushdown games). The most well-studied quantitative objective is the mean-
payoff objective, where a reward is associated with every transition and the goal of one of the players
is to maximize the long-run average of the rewards (and the goal of the opponent is to minimize).
Two-player finite-state games with mean-payoff objectives have been studied in [22, 45, 35], and more
recently applied in synthesis of reactive systems with quality guarantee [8, 17] and robustness [9], as
well as interprocedural analysis [16]. Moreover recently many quantitative logics and automata theo-
retic formalisms have been proposed with mean-payoff objectives in their heart to express properties
such as reliability requirements, and resource bounds of reactive systems [15, 10, 21, 2]. Thus push-
down games with mean-payoff objectives would be a central theoretical question for model checking
of quantitative logics (specifying reliability and resource bounds) on reactive systems with recursion
feature. Several applications of mean-payoff pushdown systems in the context of program analysis,
such as, resource usage of containers, static profiling of programs for frequency of function calls, are
given in [16, Section 3,Section 5].

Pushdown mean-payoff games. In this work we study for the first time pushdown games with
mean-payoff objectives (to the best of our knowledge mean-payoff objectives have not been studied
in the context of pushdown games). In pushdown games two types of strategies are relevant and
studied in the literature. The first are the global strategies, where a global strategy can choose the
successor state depending on the entire global history of the play (where history is the finite sequence
of configurations of the current prefix of a play). The second are the modular strategies, and modular
strategies are understood more intuitively in the model of games on recursive state machines. A
recursive state machine (RSM) consists of a set of component machines (or modules). Each module
has a set of nodes (atomic states) and boxes (each of which is mapped to a module), a well-defined
interface consisting of entry and exit nodes, and edges connecting nodes/boxes. An edge entering
a box models the invocation of the module associated with the box and an edge leaving the box
represents return from the module. In the game version the nodes are partitioned into player-1 nodes
and player-2 nodes. Due to recursion the underlying global state-space is infinite and isomorphic to
pushdown games. The polynomial-time equivalence of pushdown games and recursive games has been
established in [7]. A modular strategy is a strategy that has only local memory, and thus, the strategy
does not depend on the context of invocation of the module, but only on the history within the current
invocation of the module. In other words, modular strategies are appealing because they are stackless
strategies, decomposable into one for each module. In this work we will study pushdown games with
mean-payoff objectives for both global and modular strategies.

Previous results. Pushdown games with qualitative objectives were studied in [42, 41]. It was shown
in [42] that solving pushdown games (i.e., determining the winner in pushdown games) with reachabil-
ity objectives under global strategies is EXPTIME-hard, and pushdown games with parity objectives
under global strategies can be solved in EXPTIME. Thus it follows that pushdown games with reach-
ability and parity objectives under global strategies are EXPTIME-complete. The notion of modular
strategies in games on recursive state machines was introduced in [7, 6]. It was shown that the mod-
ular strategies problem is NP-complete in pushdown games with reachability and parity objectives
in general [7, 6]. The results of [7] also presents more refined complexity results in terms of the num-

2

ber of exit nodes, showing that if every module has single exit, then the problem is polynomial for
reachability objectives [7] and in NP ∩ coNP for parity objectives [6].

Our contributions. In this work we present a complete characterization of the computational and
strategy complexity of pushdown games and pushdown systems (one-player pushdown games or push-
down automata) with mean-payoff objectives. Solving a pushdown system (resp. pushdown game)
with respect to a mean-payoff objective is to decide whether there exists a path that (resp. a winning
strategy to ensure that every path possible given the strategy) satisfies the mean-payoff objective.
Our main results for computational complexity are as follows.

1. Global strategies.We show that pushdown systems (one-player pushdown games) with mean-payoff
objectives under global strategies can be solved in polynomial time, whereas solving pushdown
games with mean-payoff objectives under global strategies is undecidable.

2. Modular strategies. Solving pushdown systems with single exit nodes with mean-payoff objectives
under modular strategies is NP-hard, and pushdown games with mean-payoff objectives under
modular strategies can be solved in NP. Thus both pushdown systems and pushdown games with
mean-payoff objectives under modular strategies are NP-complete.

Our results are shown in Table 1. First observe that our hardness result for modular strategies is
different from the NP-hardness of [7] because the hardness result of [7] shows hardness for games
with reachability objectives and requires that the number of modules with multiple exit nodes are not
bounded (in fact if every module of the recursive game has a single exit, then the problem is in PTIME
for reachability and in NP ∩ coNP for parity objectives). In contrast we show that for mean-payoff
objectives the problem is NP-hard even for pushdown systems (only one player), where every module
has a single exit node, under modular strategies. Second, we also observe the very different complexity
of global and modular strategies for mean-payoff objectives in pushdown systems vs pushdown games:
the global strategies problem is computationally inexpensive (in PTIME) as compared to the modular
strategies problem (which is NP-complete) in pushdown systems; whereas the global strategies problem
is computationally infeasible (undecidable) as compared to the modular strategies problem (which is
NP-complete) in pushdown games. Also observe that in contrast to finite-state game graphs where
the complexities for mean-payoff and parity objectives match, for pushdown systems and games, the
complexities of parity and mean-payoff objectives are very different. Along with the computational
complexities, we also establish the optimal strategy complexity showing that global winning strategies
for mean-payoff objectives in general require infinite memory even in pushdown systems; whereas
memoryless or positional (independent of history) strategies suffice for modular strategies for mean-
payoff objectives in pushdown games (see Table 2). Finally we also study the stack boundedness
conditions where the goal of one player along with maximizing the mean-payoff objective is also to
ensure that the height of the stack is bounded. We show that all the complexities for the additional
stack boundedness condition along with mean-payoff objectives are the same in pushdown systems
and games as without the stack boundedness condition.

Technical contributions. Our key technical contributions are as follows. For pushdown systems
under global strategies we show that the mean-payoff objective problem can be solved by only consid-
ering additional stack height that is polynomial. We then show that the stack height bounded problem
can be solved in polynomial time using a dynamic programming style algorithm. For pushdown games
under global strategies our undecidability result is obtained by a reduction from the universality
problem of weighted automata (which is undecidable [34, 1]). For modular strategies we first show the
existence of cycle independent modular strategies, and then show that memoryless modular strategies
are sufficient. Given memoryless modular strategies and our polynomial-time algorithm for pushdown
systems, we obtain the NP upper bound for the modular strategies problem. Our NP-hardness result
for modular strategies is a reduction from the 3-SAT problem.

Organization. Our paper is organized as follows. In Section 2 (resp. Section 3) we present the results
for pushdown systems (resp. pushdown games) under global strategies. In Section 4 we present the
results for modular strategies.

2 Mean-Payoff Pushdown Graphs

In this section we consider pushdown graphs (or pushdown systems) with mean-payoff objectives. We
start with the basic definitions of pushdown systems and valid paths in pushdown systems, and then
give the overview of the solution and introduce basic notations.

3

Global strategies Modular strategies

Pushdown systems PTIME NP-complete (NP-hard for single exit)
(Theorem 1 and Theorem 2) (Theorem 8 and Theorem 9)

Pushdown games Undecidable NP-complete
(Theorem 6) (Theorem 8 and Theorem 9)

Table 1. Computational complexity of pushdown systems and pushdown games with mean-payoff objectives.

Global strategies Modular strategies

Pushdown systems Infinite Memoryless
(Example 1) (Lemma 36)

Pushdown games Infinite Memoryless
(Example 1) (Lemma 36)

Table 2. Strategy complexity of pushdown systems and pushdown games with mean-payoff objectives.

Stack alphabet and commands. Let Γ denote a finite set of stack symbols (called the stack alphabet),
and Com(Γ) = {skip, pop} ∪ {push(z) | z ∈ Γ} denote the set of stack commands over Γ . Intuitively,
the command skip does nothing, pop deletes the top element of the stack, push(z) puts z on the top
of the stack. For a stack command com and a stack string α ∈ Γ+ we denote by com(α) the stack
string obtained by executing the command com on α.

Weighted pushdown systems. A weighted pushdown system (WPS) (or a weighted pushdown
graph) is a tuple:

A = 〈Q,Γ, q0 ∈ Q,E ⊆ (Q × Γ)× (Q × Com(Γ)), w : E → Z〉,

where Q is a finite set of states with q0 as the initial state; Γ is a finite stack alphabet and we assume
that there is a special initial stack symbol ⊥ ∈ Γ ; E describes the set of edges or transitions of the
pushdown system; and w is a weight function that assigns integer weights to every edge (and the
weights are encoded in binary). A configuration of a WPS is a pair (α, q) where α ∈ Γ+ is a stack
string and q ∈ Q. We assume that ⊥ can be neither put nor removed from the stack, and thus all
configurations must contain ⊥ at the bottom of the stack. For a stack string α we denote by Top(α)
the top symbol of the stack. The initial configuration of the WPS is (⊥, q0). We use W to denote the
maximal absolute weight of the edge weights.

Successor configurations, paths, and ultimately periodic paths. Given a WPS A, a configuration
ci+1 = (αi+1, qi+1) is a successor configuration of a configuration ci = (αi, qi), if there is an edge
(qi, γi, qi+1, com) ∈ E such that com(αi) = αi+1, where γi = Top(αi). A path π is a sequence of
configurations. A path π = 〈c1, . . . , cn+1〉 is a valid path if for all 1 ≤ i ≤ n the configuration ci+1 is
a successor configuration of ci (and the notation is similar for infinite paths). In the sequel we shall
refer only to valid paths. Let π = 〈c1, c2, . . . , ci, ci+1, . . .〉 be a path. We denote by π[j] = cj the j-th
configuration of the path and by π[i1, i2] = 〈ci1 , ci1+1, . . . , ci2〉 the segment of the path from the i1-th
to the i2-th configuration. A path can equivalently be defined as a sequence 〈c1e1e2 . . . en〉, where c1
is the first configuration and ei are valid transitions. A path π is ultimately periodic if there exists a
finite sequence ξ1 ∈ E∗ and a non-empty finite sequence ξ2 ∈ E+ of transitions such that the path
consists of ξ1 followed by ξ2 forever, i.e., π = 〈c1ξ1(ξ2)ω〉. A configuration cr is reachable if there is a
finite path that begins at the initial configuration and ends in cr. Similarly, a path π is reachable if
its first configuration is reachable.

Average weights of paths. For a finite path π, we denote by w(π) the sum of the weights of the

edges in π and Avg(π) = w(π)
|π| , where |π| is the length of π, denotes the average of the weights.

For an infinite path π, we denote by LimSupAvg(π) (resp. LimInfAvg(π)) the limit-sup (resp. limit-
inf) of the averages (long-run average or mean-payoff objectives), i.e., lim sup(Avg(π[1, i]))i≥1 (resp.
lim inf(Avg(π[1, i]))i≥1). We say that π is a positive path if w(π) > 0, and negative, non-negative and
non-positive paths are similarly defined.
Mean-payoff objectives with strict and non-strict inequalities. For a given integer r, the mean-
payoff objective LimInfAvg ⊲⊳ r (resp. LimSupAvg ⊲⊳ r) defines the set of infinite paths π such that
LimInfAvg(π) ⊲⊳ r (resp. LimSupAvg(π) ⊲⊳ r), where ⊲⊳∈ {≥, >}. Mean-payoff objectives with integer

4

q1 q2

push(γ),−1 pop(γ), 1

skip,−1

skip,−1

Fig. 1. WPS A to witness ultimately periodic words might not suffice for mean-payoff objectives with non-
strict inequality. The pop transition is valid only when the stack is not empty. All other transitions are valid
for all stack tops

threshold r can be transformed to threshold 0 by subtracting r from all transition weights. Hence in this
work w.l.o.g we will consider the mean-payoff objectives (i) LimInfAvg > 0 (resp. LimSupAvg > 0), and
call them mean-payoff objectives with strict inequality; and (ii) LimInfAvg ≥ 0 (resp. LimSupAvg ≥ 0),
and call them mean-payoff objectives with non-strict inequality. We are interested in solving WPSs
with mean-payoff objectives, i.e., to decide if there is a path that satisfies the objective.

Example 1 We now illustrate with an example that ultimately periodic witness paths for non-strict
inequality mean-payoff objectives need not exist, and the only witness paths are non-ultimately pe-
riodic ones. Consider the WPS A with two states Q = {q1, q2}, with two symbol stack alphabet
Γ = {⊥, γ}, and the edge set E = {e1, e2, . . . , e5} is described as follows: e1 = (q1,⊥, q1, push(γ)), e2 =
(q1, γ, q1, push(γ)), e3 = (q1, γ, q2, skip), e4 = (q2, γ, q2, pop), and e5 = (q2,⊥, q1, skip). The weight
function is as follows: w(e4) = 1, and all other edge weights are −1. (See Figure 1 for a pictorial
description). For i ≥ 1, consider the path segment ρi = c1e1e

i−1
2 e3e

i
4e5 that executes the edge e1,

followed by (i− 1)-times the edge e2, then the edge e3, followed by i-times the edge e4, and finally the
edge e5. It is straightforward to verify that for the infinite path π = (⊥, q1)ρ1ρ2ρ3 . . . we have that
LimSupAvg(π) = LimInfAvg(π) = 0. However for every valid path π = c1ξ1(ξ2)

ω, where ξ1 ∈ E∗ and
ξ2 ∈ E+ it must be the case that either (i) ξ2 = e2 and then LimInfAvg(π) = LimSupAvg(π) = −1
or that (ii) ξ2 is a cycle with length |ξ2| and has weight at most −1, and hence LimInfAvg(π) ≤
LimSupAvg(π) ≤ − 1

|ξ2|
< 0. ⊓⊔

Overview of the solution. We first characterize the pumpable paths in a pushdown graph that
determine the possible mean-payoff values of the graph. In a finite-state graph a path with non-
negative mean-payoff exists if and only if there is a finite pumpable path (namely, a cycle) with
non-negative weight. For infinite-state graphs, and pushdown graphs in particular, the latter does not
hold. However we show that a path with a strictly positive mean-payoff exists if and only if there is a
finite pumpable path with positive weight. For this purpose we first characterize the pumpable paths
in a pushdown graph and in Section 2.1 we obtain a polynomial algorithm to detect pumpable paths
with a positive weight, and hence we get a polynomial-time algorithm to detect a path with a positive
mean-payoff in a pushdown graph. In Section 2.2 we show a reduction from the problem of detecting
paths with non-negative mean-payoff to the problem of detecting paths with positive mean-payoff and
a polynomial-time algorithm for mean-payoff pushdown graphs is obtained.

Notations. We shall use (i) γ or γi for an element of Γ ; (ii) e or ei for a transition (equivalently an
edge) from E; (iii) α or αi for a string from Γ ∗. For a path π = 〈c1, c2, . . .〉 = 〈c1e1e2 . . .〉 we denote
by (i) qi: the state of configuration ci, and (ii) αi: the stack string of configuration ci.

Stack height and additional stack height of paths. For a path π = 〈(α1, q1), . . . , (αn, qn)〉, the stack
height of π is the maximal height of the stack in the path, i.e., SH(π) = max{|α1|, . . . , |αn|}. The
additional stack height of π is the additional height of the stack in the segment of the path, i.e., the
additional stack height ASH(π) is SH(π)−max{|α1|, |αn|}.

Pumpable pair of paths. Let π = 〈c1e1e2 . . .〉 be a finite or infinite path. A pumpable pair of paths
for π is a pair of non-empty sequence of edges: (p1, p2) = (ei1ei1+1 . . . ei1+n1 , ei2ei2+1 . . . ei2+n2), for
n1, n2 ≥ 0, i1 ≥ 0 and i2 > i1 + n1 such that for every j ≥ 0 the path πj

(p1,p2)
obtained by pumping

the pair p1 and p2 of paths j times each is a valid path, i.e., for every j ≥ 0 we have

πj

(p1,p2)
= 〈c1e1e2 . . . ei1−1(ei1ei1+1 . . . ei1+in)

jei1+in+1 . . . ei2−1(ei2ei2+1 . . . ei2+n2)
jei2+n2 . . .〉

5

d

c∗p

c∗1 c∗n

Stack
height

Time steps

Fig. 2. Subpath construction.

is a valid path. We will show that large additional stack height implies the existence of a pumpable
pair of paths. To prove the results we need the notion of local minimum of paths.

Local minimum of a path and non-decreasing paths. Let π = 〈c1, c2, . . .〉 be a path. A configuration
ci = (αi, qi) is a local minimum (aka “stair position” in the literature) if for every j ≥ i we have
αi ⊑ αj (i.e., the stack string αi is a prefix string of αj), and we say that π is a non-decreasing path if
c1 is a local minimum. One basic fact about local minima of a path is as follows: Every infinite path
has infinitely many local minima. We discuss the proof of the basic fact and some properties of local
minima. Consider a path π = 〈c1, c2, . . .〉. If there is a finite integer j such that from some point on
(say after the i-th index) the stack height is always at least j, and the stack height is j infinitely often,
then every configuration after the i-th index with stack height j is a local minimum (and there are
infinitely many of them). Otherwise, for every integer j, there exists an index i, such that for every
index after i the stack height exceeds j, and then for every j, the last configuration with stack height
j is a local minimum and we have infinitely many local minima. This shows the basic fact about
infinitely many local minima of a path. We now discuss a property of consecutive local minima in a
path. If we consider a path and the sequence of local minima, and let ci and cj be two consecutive
local minima. Then either ci and cj have the same stack height, or else cj is obtained from ci with
one push operation. In the following lemma we establish that if the additional stack height of a path
exceeds (|Q| · |Γ |)2, then there is a pumpable pair of paths. Also note that if the additional stack
height of a path is at least d, then it means that there are at least d+ 1 configurations in the path.

Lemma 1 Let π be a finite path such that ASH(π) = d ≥ (|Q| · |Γ |)2. Then π has a pumpable pair of
paths.

Proof. We first select a subpath of π, denoted by π∗, such that π∗ = 〈c∗1, . . . , c
∗
p, . . . , c

∗
n〉 and the

following conditions hold: (i) c∗1 is a local minimum in π∗, (ii) |α∗
1| = |α∗

n|, and (iii) |α∗
p| = |α∗

1| + d.
The subpath is selected as follows: consider a configuration c∗p in π where the stack height is maximal,
and c∗1 is the closest configuration before c∗p where the stack height is exactly d less than the stack
height of c∗p, and similarly c∗n is the closest configuration after c∗p where the stack height is exactly d
less than that of c∗p (see Figure 2). Clearly all the three conditions are satisfied. Let c′j (resp. c′′j) be
the closest configuration before (resp. after) c∗p such that the stack height of c′j (resp. c′′j) is |α

∗
1|+ j,

for j ≥ 0. Since d ≥ (|Q| · |Γ |)2 it follows from the pigeonhole principle that there exist j1, j2 such that
j1 < j2, and the states and the top stack symbol of c′j1 , and c′j2 are identical, and the states and the
top stack symbol of c′′j1 and c′′j2 are identical. It is straightforward to verify that the sequence p1 of
edges between c′j1 and c′j2 along with the sequence p2 of edges between c′′j2 and c′′j1 form a pumpable
pair, i.e., (p1, p2) is a pumpable pair for π. ⊓⊔

In the following lemma we establish the connection of additional stack height and the existence of
a pumpable pair of paths with positive weights.

Lemma 2 Let c1 and c2 be two configurations. If there exists n ∈ Z such that the minimal additional
stack height (denoted by d) of the paths from c1 to c2 with weight at least n is at least (|Q| · |Γ |)2, then
there exists a path from c1 to c2 with additional stack height d that contains a pumpable pair (p1, p2)
with w(p1) + w(p2) > 0.

Proof. Let π be one of the shortest paths (in terms of length) from c1 to c2 with weight at least n
and additional stack height d. By Lemma 1, the path π has a pumpable pair (p1, p2) of paths. Assume

6

towards a contradiction that the weight of the pair is not positive (i.e., consider that w(p1)+w(p2) ≤ 0).
Then, we can remove the pair and obtain a path π′ = π0

(p1,p2)
from c1 to c2 with w(π′) ≥ w(π). The

path π′ is shorter in length than π, since either p1 or p2 is not an empty path. Moreover, the additional
stack height of π′ is at most d. If ASH(π′) = d, then this this yields a contradiction to the assumption
that the length of π is minimal. Otherwise, if ASH(π′) < d, we have a contradiction to the minimality
of d. ⊓⊔

Ignoring finite plays. For technical convenience, we will only consider infinite plays, and consider that
finite plays do not satisfy the mean-payoff objective. Thus if there are no transitions from a state,
then we consider it as a losing sink state (a state with a self-loop with negative weight).

2.1 Objectives LimInfAvg > 0 and LimSupAvg > 0

In this section we consider limit-average (or mean-payoff) objectives with strict inequality. We show
that WPSs with such objectives can be solved in polynomial time. A crucial concept in the proof is
the notion of good cycles, and we define them below.

Good cycle. A finite path π = 〈c1, . . . , cn〉 is a good cycle if the following conditions hold:

1. w(π) > 0 (the weight of the path is positive); and
2. π is a non-decreasing path; and
3. let c1 = (α1, q1) and cn = (αn, qn), then q1 = qn and Top(α1) = Top(αn).

We first prove two lemmas and the intuitive descriptions of them are as follows: In the first lemma
(Lemma 3) we show that for every WPS, for every natural number d, there exists a natural number
n such that if there is a path with weight at least n and additional stack height at most d, then
there is a good cycle in the WPS. The second lemma (Lemma 4) is similar to the first lemma, and
shows that if the additional stack height of the path is large, then it is possible to construct paths
with arbitrarily large weights. Using the above two lemmas we then show that if the weight of a finite
path is sufficiently large, then either a good cycle exists or paths with arbitrarily large weights can be
constructed (Lemma 5). Finally we prove the key lemma (Lemma 6) that establishes the equivalence
of the existence of a path satisfying mean-payoff objectives with strict inequality and the existence of
a good cycle.

Restrictions to reachable configurations. In the sequel of this whole section we will only consider
reachable configurations and reachable paths, and not explicitly mention the reachability property.
For good cycles, we often mention the reachable property explicitly.

Lemma 3 Let A be a WPS. For every d ∈ N there exists nA,d ∈ N such that the following as-
sertion holds: If there exists a non-decreasing path π = 〈c1, . . . , cr〉 such that (i) w(π) ≥ nA,d and
(ii) ASH(π) ≤ d; then A has a reachable good cycle.

Proof. Let us define nA,d = W · (|Q| · |Γ |d+|Q|·|Γ |+1). We prove the result by induction over SH(cr)−
SH(c1). Note that since π is a non-decreasing path, we have SH(cr)− SH(c1) ≥ 0.

Base case. In the base case we prove the result for SH(cr)−SH(c1) ≤ |Q| · |Γ |. Let Gd be a graph that
contains all the configurations that occur in one of the non-decreasing paths from c1 to cr, for which
c1 is a local minimum and that has additional stack height at most d. The set of edges of Gd (and their
weights) is induced by the set of transitions in A. Note that ASH(π) ≤ d and SH(cr)−SH(c1) ≤ |Q|·|Γ |
implies that Gd contains only configurations with stack height between SH(c1) and SH(c1)+d+|Q|·|Γ |.
Hence the graph Gd is a finite graph with at most |Q| · |Γ |d+|Q|·|Γ | states, and the maximal absolute
weight is at most W (the maximal absolute weight of A). A reachable positive cycle in Gd implies the
existence of a reachable good cycle in A, and if no positive cycle is reachable, then the weight of each
path is bounded by (|Gd|+ 1) ·W . Thus with nA,d = W · (|Q| · |Γ |d+|Q|·|Γ | + 1) ≥ (|Gd|+ 1) ·W we
obtain the desired result.

Inductive case.We now prove the result for SH(cr)−SH(c1) > |Q|·|Γ |. Since SH(cr)−SH(c1) > |Q|·|Γ |,
then π has at least |Q| · |Γ | + 1 local minima with different stack heights. Hence, by the pigeonhole
principle, there must be two configurations in π, namely ci and cj (for 1 ≤ i ≤ j ≤ r), such that
ci and cj are local minima with different stack heights and Top(ci) = Top(cj). We denote by π1 the
sequence of transitions that is induced by π from c1 to ci, by π2 the sequence of transitions from ci

7

to cj , and by π3 the sequence of transitions from cj to cr. We note that by definition π = π1π2π3.
Moreover, since ci and cj are local minima, the path π1π3 is a valid path that begins in configuration
c1 and ends in some configuration cℓ such that SH(cℓ) − SH(c1) < SH(cr) − SH(c1). Hence, by the
induction hypothesis, if w(π1π3) ≥ nA,d, then A has a good cycle. Otherwise, if w(π1π3) < nA,d and
w(π) ≥ nA,d, then it must be the case that w(π2) > 0. Thus, A has a good cycle, namely, the path
π2. The desired result follows. ⊓⊔

Lemma 4 Let A be a WPS. Let n ∈ Z and let π = 〈c1, . . . , cr〉 be a non-decreasing path with weight
at least n, with minimal additional stack height among all paths from c1 to cr with weight at least n.
If ASH(π) ≥ (|Q| · |Γ |)2, then for every m ∈ N there exists a non-decreasing path πm from c1 to cr
with w(πm) ≥ m.

Proof. By Lemma 2 there exists a path π from c1 to cr that has a pumpable pair (p1, p2) such that
w(p1) + w(p2) > 0. Hence for every i ∈ N we get that w(πi+1

(p1,p2)
) > w(πi

(p1,p2)
) (i.e., the weight after

pumping i+1 times the pair of paths exceeds the weight of pumping i times). Hence for i = m−w(π)
we get that w(πi

(p1,p2)
) ≥ m. The desired result follows. ⊓⊔

Lemma 5 Let A be a WPS. There exists nA ∈ N such that if there exists a non-decreasing path π
from configuration c1 to configuration cr and w(π) ≥ nA, then one of the following conditions holds:

1. The WPS A has a reachable good cycle.
2. For every n′ ∈ N there exists a non-decreasing path π′ from c1 to cr with w(π′) > n′.

Proof. Observe that the number nA is of our choice and we will choose it sufficiently large for the
proof. Let d∗ = (|Q| · |Γ |)2, and our choice of nA is |Q| · |Γ | · nA,d∗ (where nA,d∗ is as defined in
Lemma 3). Let π = 〈c1, c2, . . . , cr〉 be a path such that c1 is a local minimum and w(π) ≥ nA. Let
m1, . . . ,mj be the local minima along the path. Note that m1 = c1 and cr = mj . Also note that
j ≥ |αr|− |α1|. Note that if mi1 = (αi1γ, q) and mi2 = (αi2γ, q) (for some γ ∈ Γ), then if a good cycle
does not exist we get that the weight of the path between mi1 and mi2 is not positive. Hence, since
Q and Γ are finite, either a good cycle exists (by the pigeonhole principle) or there exists mi,mi+1

such that αi+1 = αiγ for some γ ∈ Γ ∪{ǫ} (where ǫ denotes the empty string) and there exists a path
from mi to mi+1 such that mi is a local minimum and the weight of the path is at least nA,d∗ (since
the longest sequence of local minimum configurations that do not contain a cycle is of length at most
|Q| · |Γ |, and there is a sequence of acyclic configurations that has a weight of at least nA). Let π∗

be such a path with minimal additional stack height between mi and mi+1. We consider two cases to
complete the proof.

1. If the additional stack height of π∗ is smaller than d∗, then by Lemma 3 we have a reachable good
cycle from mi and since mi is reachable from c1 we have reachable good cycle from c1 (condition 1
of the lemma holds).

2. If the additional stack of π∗ is at least d∗, then by Lemma 4 for every n0 we can construct a path
πn0 between mi and mi+1 with weight w(πn0) at least n0, and m1 is a local minimum of πn0 .
For n′ ∈ N, let n0 = n′ +W · |π|, and let π′ be the path constructed using the segment from c1
to mi, then the path πn0 , and then the segment of π from mi+1 to cr. The configuration c1 is a
local minimum of π′ and the weight of π′ is at least n0 −W · |π| ≥ n′. Hence it follows that for
every n′ we can construct a path from c1 to cr with c1 as a local minimum and weight at least n′

(condition 2 of the lemma holds).

This completes the proof of the lemma. ⊓⊔

Lemma 6 Let A be WPS. The following statements are equivalent: (i) There exists a path π1 with
LimSupAvg(π1) > 0; (ii) there exists a path π2 with LimInfAvg(π2) > 0; and (iii) there exists a path π
that contains a good cycle.

Proof. The direction from right to left (i.e., (iii)⇒(ii)⇒(i)) is immediate. Let π = π1π2 be a finite path
in A such that π2 is a good cycle. Let π1 = c1e

1
1e

1
2 . . . e

1
n1

and π2 = c2e
2
1e

2
2 . . . e

2
n2
. The infinite path

π′ = π1c2(e
2
1e

2
2 . . . e

2
n2
)ω obtained by repeating the good cycle forever is a valid path which witnesses

that LimSupAvg(π′) ≥ LimInfAvg(π′) > 0.
In order to prove the opposite direction, we consider an infinite path π such that LimSupAvg(π) > 0.

Let q ∈ Q and γ ∈ Γ be such that the sequence m1 = (αi1 , q),m2 = (αi2 , q), . . . is an infinite sequence

8

of local minima of π and Top(αij) = γ (note that such state and symbol are guaranteed to exist due
to the existence of infinitely many local minima and finiteness of Q and Γ). If there exists j > 1 such
that w(π[i1, ij]) > 0 then by definition π[i1, ij] is a good cycle and the result follows. Otherwise let us
assume that for every j > 1 we have w(π[i1, ij]) ≤ 0. As LimSupAvg(π) > 0 it follows that for every
n∗ ∈ N there exists n ∈ N with in > 1 such that the path π[i1, in] contains a prefix with weight at
least n∗ (otherwise LimSupAvg(π) ≤ 0). We now use Lemma 5 to complete the proof. Let n∗ = nA

(where nA is as used in Lemma 5). Let π′ = m1, . . . , c
∗ be the prefix of π[i1, in] such that w(π′) ≥ n∗.

If the first condition of Lemma 5 holds (i.e., A has a good cycle), then we are done with the proof.
Otherwise, by condition 2 of Lemma 5 it follows that for every n0 ∈ N there exists a path πn0 from
m1 to c∗ such that m1 is a local minimum and w(πn0) ≥ n0. Let us choose n0 = W · |π[i1, in]| + 1.
Then consider the path π = πn0π[i + |π′|, in] that is obtained by concatenating the witness path πn0

for n0 from m1 to c∗, and then the part of π from c∗ to π[in]. For the path π we have (i) the sum of
weights is at least n0 − W · |π[i1, in]| ≥ 1 > 0; (ii) π[i1] is a local minimum; and (iii) the state and
the top stack symbol of π[i1] and π[in] are the same. Thus π is a witness good cycle. For conclusion
we get that if LimSupAvg(π) > 0, then there exists a good cycle, which also implies that there exists
a path π′ such that LimInfAvg(π′) > 0. This concludes the proof of the lemma. ⊓⊔

In the above key lemma we have established the equivalence of the decision problems for WPSs
with mean-payoff objectives with strict inequality and the problem of determining the existence of
good cycles. We will now present a polynomial-time algorithm for detecting good cycles. To this end
we introduce the notion of non-decreasing α-paths and summary functions.

Non-decreasing α-paths. A path from a configuration (αγ, q1) to a configuration (αγα2, q2) is a non-
decreasing α-path if (αγ, q1) is a local minimum. Note that if π is a non-decreasing α-path for some
α ∈ Γ ∗, then the same sequence of transitions leads to a non-decreasing β-path for every β ∈ Γ ∗.
Hence we say that π is a non-decreasing path if there exists α ∈ Γ ∗ such that π is a non-decreasing
α-path.

Summary function. Let A be a WPS. For α ∈ Γ ∗ we define sα : Q × Γ × Q → {−∞} ∪ Z ∪ {ω} as
follows.

1. sα(q1, γ, q2) = ω iff for every n ∈ N there exists a non-decreasing path from (αγ, q1) to (αγ, q2)
with weight at least n.

2. sα(q1, γ, q2) = z ∈ Z iff the weight of the maximal-weight non-decreasing path from configuration
(αγ, q1) to configuration (αγ, q2) is z.

3. sα(q1, γ, q2) = −∞ iff there is no non-decreasing path from (αγ, q1) to (αγ, q2).

Remark 1 For every α1, α2 ∈ Γ ∗: sα1 ≡ sα2 .

Due to Remark 1 it is enough to consider only s ≡ s⊥. The computation of the summary function
will be achieved by considering the stack height bounded summary functions defined below.

Stack height bounded summary function. For every d ∈ N, the stack height bounded summary function
sd : Q× Γ ×Q → {−∞} ∪ Z ∪ {ω} is defined as follows: (i) sd(q1, γ, q2) = ω iff for every n ∈ N there
exists a non-decreasing path from (⊥γ, q1) to (⊥γ, q2) with weight at least n and additional stack
height at most d; (ii) sd(q1, γ, q2) = z iff the weight of the maximal-weight non-decreasing path from
(⊥γ, q1) to (⊥γ, q2) with additional stack height at most d is z; and (iii) sd(q1, γ, q2) = −∞ iff there
is no non-decreasing path with additional stack height at most d from (⊥γ, q1) to (⊥γ, q2).

Basic facts of summary functions. We have the following basic facts: (i) for every d ∈ N, we have
sd+1 ≥ sd (monotonicity); and (ii) sd+1 is computable in polynomial time from sd and A (we will
show this fact in Lemma 9). We first present a lemma that shows that from sd, with d = (|Q| · |Γ |)2,
we obtain the values of function s for all values in Z ∪ {−∞}.

Lemma 7 Let d = (|Q| · |Γ |)2. For all q1, q2 ∈ Q and γ ∈ Γ , if s(q1, γ, q2) ∈ Z ∪ {−∞}, then
s(q1, γ, q2) = sd(q1, γ, q2).

Proof. By definition we have s(q1, γ, q2) ≥ sd(q1, γ, q2). Towards a contradiction, we assume that
s(q1, γ, q2) > sd(q1, γ, q2). By the assumption there exists a non-decreasing path π with minimal
additional stack height from (⊥γ, q1) to (⊥γ, q2) with weight n > sd(q1, γ, q2) and additional stack
height d′ > (|Q| · |Γ |)2. Hence by Lemma 4 for every m ∈ N there exists a non-decreasing path
from (⊥γ, q1) to (⊥γ, q2) with weight at least m (note that in Lemma 4 the witness path constructed
by pumping the positive pumpable pair yields a non-decreasing path). Hence s(q1, γ, q2) = ω in
contradiction to the assumption that s(q1, γ, q2) ∈ Z ∪ {−∞}. The desired result follows. ⊓⊔

9

Our goal now is the computation of the ω values of the summary function. To achieve the compu-
tation of ω values we will define another summary function s∗ and a new WPS A∗ such that certain
cycles in A∗ will characterize the ω values of the summary function. We now define the summary
function s∗ and the pushdown system A∗. Let d = (|Q| · |Γ |)2. The new summary function s∗ is
defined as follows: if the values of sd and sd+1 are the same then it is assigned the value of sd, and
otherwise the value ω. Formally, for all states q1, q2 ∈ A and a stack symbol γ,

s∗(q1, γ, q2) =

{

sd(q1, γ, q2) if sd(q1, γ, q2) = sd+1(q1, γ, q2)
ω if sd(q1, γ, q2) < sd+1(q1, γ, q2).

The new WPS A∗ is constructed from A by adding the following set of ω-edges: {(q1, γ, q2, skip) |
s∗(q1, γ, q2) = ω}. Note that s∗ is a summary function for A, but not necessarily for A∗.

Lemma 8 For all q1, q2 ∈ Q and γ ∈ Γ , the following assertion holds: the original summary function
satisfies s(q1, γ, q2) = ω iff there exists a non-decreasing path in A∗ from (⊥γ, q1) to (⊥γ, q2) that goes
through an ω-edge.

Proof. The direction from right to left is easy: if there is a non-decreasing path in A∗ that goes
through an ω-edge, it means that there exists (q′1, γ

′, q′2) with either sd(q
′
1, γ, q

′
2) = ω or sd(q

′
1, γ

′, q′2) <
sd+1(q

′
1, γ

′, q′2). If sd(q
′
1, γ, q

′
2) = ω, then clearly s(q′1, γ, q

′
2) = ω. Otherwise we have sd(q

′
1, γ

′, q′2) <
sd+1(q

′
1, γ

′, q′2), and then by Lemma 7 we get that s(q′1, γ
′, q′2) = ω. Since there exists a finite path

from (⊥γ, q1) to (⊥γ, q2) with an ω-edge it follows that s(q1, γ, q2) = ω.
For the converse direction, we consider the case that s(q1, γ, q2) = ω. If s∗(q1, γ, q2) = ω, then the

proof follows immediately. Otherwise it follows that sd(q1, γ, q2) ∈ Z. Hence there exists a weight n ∈ Z

such that a non-decreasing path with minimal additional stack height with weight n has additional
stack height d′ ≥ d+1. Let π be such a path. Then there exists a non-decreasing subpath that starts
at (αγ′, q′1) and ends at (αγ′, q′2) with additional stack height exactly d+1 (for some states q′1, q

′
2 and

stack symbol γ′). If sd+1(q
′
1, γ

′, q′2) = sd(q
′
1, γ

′, q′2), then π is not a path with the minimal additional
stack height. Hence, as sd+1(q

′
1, γ

′, q′2) > sd(q
′
1, γ

′, q′2), by definition s∗(q′1, γ
′, q′2) = ω and the proof

follows. ⊓⊔

We are now ready to show that the summary function s can be computed polynomial time.

Remark 1. We show that the number of arithmetic operations required is polynomial in the size of
the WPS, and hence the polynomial time bound follows. In the sequel, instead of polynomial number
of operations in the size of the WPS we simply write polynomial time.

Lemma 9 For a WPS A, the summary function s is computable in polynomial time.

Proof. There are two key steps of the proof: (i) computation of sd, for d = (|Q| · |Γ |)2, and we will
argue how to compute si+1 from si in polynomial time; and (ii) computation of a non-decreasing
path in A∗ that goes through an ω-edge. We first argue how the key steps give us the desired result
and then present the details of the key steps. Given the computation of (i), we construct sd, sd+1 in
polynomial time, and hence also s∗. Given s∗ we construct A∗ in polynomial time. By computation
(ii) we can assign the ω values for the summary function, and all other have values as defined by sd.
Thus with the computation of key steps (i) and (ii) in polynomial time, we can compute the summary
function s in polynomial time. We now describe the key steps:

1. Computation of si+1 from si and A. Let GA be the finite weighted graph that is formed by all
the configurations of A with stack height either zero, one or two, that is, the vertices are of the
form (α, q) where q ∈ Q and α ∈ {⊥,⊥γ,⊥γ1γ2 | γ, γ1, γ2 ∈ Γ}. The edges (and their weights)
are according to the transitions of A: formally, (i) (Skip edges): for vertices (⊥α, q) we have an
edge to (⊥α, q′) iff e = (q,Top(α), skip, q′) is an edge in A (and the weight of the edge in GA is
w(e)) where α = γ or α = γ1γ2 for γ, γ1, γ2 ∈ Γ ; (ii) (Push edges): for vertices (⊥γ, q) we have
an edge to (⊥γγ′, q′) iff e = (q, γ, push(γ′), q′) is an edge in A (and the weight of the edge in GA

is w(e)) for γ, γ′ ∈ Γ ; and (iii) (Pop edges): for vertices (⊥γγ′, q) we have an edge to (⊥γ, q′)
iff e = (q, γ′, pop, q′) is an edge in A (and the weight of the edge in GA is w(e)) for γ, γ′ ∈ Γ .
Intuitively, GA allows skips, push pop pairs, and only one additional push. Note that GA has at
most 3 · |Q| · |Γ |2 vertices, and can be constructed in polynomial time.

10

(⊥, q1) (⊥, q2)

(γ, q1) (γ, q2)

(γγ, q1) (γγ, q2)si(q1, γ, q1) si(q2, γ, q2)

push(γ),−1

push(γ),−1 pop(γ), 1

pop(γ), 1

skip,−1

skip,−1

skip,−1

skip,−1

skip,−1

skip,−1

si(q1, γ, q2)

si(q2, γ, q1)

Fig. 3. Gi
A that corresponds to the WPS A from Figure 1. The reader should note that this is a finite graph.

We explicitly label some of the transitions by pop, push and skip only to simplify the illustration.

For every i ≥ 1, given the function si, the graph Gi
A is constructed from GA as follows (e.g., see

Figure 3): adding edges ((⊥γ1γ2, q1), (⊥γ1γ2, q2)) (if the edge does not exist already) and changing
its weight to si(q1, γ2, q2) for every γ1, γ2 ∈ Γ and q1, q2 ∈ Q. The value of si+1(q1, γ, q2) is exactly
the weight of a maximal-weight path between (⊥γ, q1) and (⊥γ, q2) in Gi

A (with the following
convention: −∞ < z < ω, z + ω = ω and z + −∞ = ω + −∞ = −∞ for every z ∈ Z). If in Gi

A

there is a path from (⊥γ, q1) to (⊥γ, q2) that contains a cycle with positive weight, then we set
si+1(q1, γ, q2) = ω. Hence, given si and A, the construction of Gi

A is achieved in polynomial time,
and the computation of si+1 is achieved using the Bellman-Ford algorithm [19] in polynomial time
(a maximal-weight path is a shortest-weight path if we define the edge length as the negative of the
edge weight). Also note that the Bellman-Ford algorithm reports cycles with positive weight (that
is, negative length) which is required to set ω values of si+1. It follows that we can compute si+1

given si and A in polynomial time. In order to compute s0 we run the Bellman-Ford algorithm over
the graph G0

A in which all the push and pop transitions are disabled. We note that the number
of vertices in G0

A is at most |A|. Hence, the computation is polynomial.
2. Non-decreasing ω-edge path in A∗. We reduce the problem of checking if there exists a non-

decreasing path from (⊥γ, q1) to (⊥γ, q2) in A∗ that goes through an ω-edge to the problem
of pushdown reachability in pushdown systems (or pushdown graphs), which is known to be in
PTIME [43, 3]. The reduction is as follows: for every state q ∈ Q we add a fresh (new) state qω, add
a transition (or edge) (qω1 , γ, q

ω
2 , com) for every (q1, γ, q2, com) ∈ ∆ (i.e., the freshly added states

follow the transition in the fresh copy as in the original WPS), and a transition (q1, γ, q
ω
2 , com) for

every transition (q1, γ, q2, com) that has an ω weight (i.e., there is a transition to the fresh copy
only for an ω-edge). It follows that there exists an ω-edge non-decreasing path in A∗ from (⊥γ, q1)
to (⊥γ, q2) iff the configuration (⊥γ, qω2) is pushdown reachable from the configuration (⊥γ, q1).
Hence it follows that the existence of a non-decreasing ω-edge path in A∗ can be determined in
polynomial time.

The desired result follows. ⊓⊔

Given the computation of the summary function, we will construct a summary graph, and show
the equivalence of the existence of good cycles in a WPS with the existence of positive cycles in the
summary graph.

Summary graph and positive simple cycles. Given a WPS A = 〈Q,Γ, q0 ∈ Q,E ⊆ (Q × Γ) × (Q ×
Com(Γ)), w : E → Z〉 and the summary function s, we construct the summary graph Gr(A) = (V ,E)

11

(⊥, q1) (⊥, q2)

(γ, q1) (γ, q2)

s(q1, γ, q1)

push(γ),−1

s(q2, γ, q2)

push(γ),−1

s(q1,⊥, q2)

s(q2,⊥, q1)

s(q1, γ, q2)

s(q2, γ, q1)

Fig. 4. Gr(A) that corresponds to the WPS A from Figure 1. The reader should note that this is a finite
graph. We explicitly label some of the transitions by pop, push and skip only to simplify the illustration.

of A with a weight function w : E → Z ∪ {ω} as follows (e.g., see Figure 4): (i) V = Q × Γ ;
and (ii) E = Eskip ∪ Epush where Eskip = {((q1, γ), (q2, γ)) | s(q1, γ, q2) > −∞}, and Epush =
{((q1, γ1), (q2, γ2)) | (q1, γ1, q2, push(γ2)) ∈ E}; and (iii) for all e = ((q1, γ), (q2, γ)) ∈ Eskip we have
w(e) = s(q1, γ, q2), and for all e ∈ Epush we have w(e) = w(e) (i.e., according to the weight function
of A). A simple cycle C in Gr(A) is a positive simple cycle iff one of the following conditions holds:
(i) either C contains an ω-edge (i.e., edge labeled ω by w); or (ii) the sum of the weights of the edges
of the cycle C according to w is positive.

Lemma 10 A WPS A has a good cycle iff the summary graph Gr(A) has a positive simple cycle.

Proof. If A has a good cycle, then let π be a good cycle. The good cycle π is a non-decreasing path
〈c1, . . . , cn〉 such that c1 = (α1γ, q) and either cn = (α1γα2γ, q) or cn = (α1γ, q) and w(π) > 0.
Let m1, . . . ,mr be the local minima along the path. Note that for every i < r, either mi and mi+1

have the same stack height or mi+1 is reachable from mi via one push transition. For configuration
c = (αγ, q), let us denote Top(c) = (γ, q). Hence the path Top(m1), . . . ,Top(mr) is a cycle in Gr(A). If
the cycle contains an ω-edge, then it is a positive cycle (by the definition of positive cycles in Gr(A)).
Otherwise, the weight of the cycle in Gr(A) is at least w(π), and therefore Gr(A) has a positive cycle
(and therefore a positive simple cycle).

The other direction is as follows. Consider a positive cycle in Gr(A). If the cycle does not contain
an ω-edge, then there exists a non-decreasing path in A with the same weight that forms a good cycle.
Otherwise, let (γ, q) be a vertex in the cycle, and ((γ1, q1), (γ1, q2)) be an ω-edge in the cycle of Gr(A).
From the construction of Gr(A), it follows that there exist α1, α2, α3 in A such that the following
non-decreasing paths exist:

– A non-decreasing path π1 from (α1γ, q) to (α1γα2γ1, q1) (due to the path of the cycle).
– For every m ∈ N: a non-decreasing path πm from (α1γα2γ1, q1) to (α1γα2γ1, q2) with weight at

least m (due to the ω-edge).
– A non-decreasing path π2 from (α1γα2γ1, q2) to (α1γα2γ1α3γ, q) (due to the path of the cycle).

Hence, for m = W · (|π1| + |π2|) + 1, we get that the path π1π
mπ2 is a good cycle. This completes

both directions of the proof and gives us the result. ⊓⊔

Since the summary function and the summary graph can be constructed in polynomial time, and
the existence of a positive cycle in a graph can be checked in polynomial time (for example, first
checking the existence of a cycle with an ω-edge, and then applying Karp’s mean-cycle algorithm [33]
after removing all ω edges), we have the following lemma.

Lemma 11 Given a WPS A, whether A has a good cycle can be decided in polynomial time.

Lemma 6 and Lemma 11 give us the following theorem.

12

Theorem 1 Given a WPS A, whether there exists an infinite path π such that LimInfAvg(π) > 0
(or LimSupAvg(π) > 0) can be decided in polynomial time. If there exists an infinite path π such
that LimSupAvg(π) > 0, then there exists an ultimately periodic infinite path π′ such that both
LimSupAvg(π′) > 0 and LimInfAvg(π′) > 0.

2.2 Objectives LimInfAvg ≥ 0 and LimSupAvg ≥ 0

In this section we consider mean-payoff objectives with non-strict inequality. Since in this section we
will also consider rational weights due to certain transformation, we first discuss the issue of integer
versus rational weights.

Integer versus rational weights. We will assume that the input WPS A has integer weights, but we
will consider certain transformations that produce rational weight functions. We note that we can
easily transform rational weights back to integer weights by multiplying all the weights by the least
common multiple (LCM) of all the denominators of the weights. As a result the mean-payoff value
of every path is multiplied by the least common multiple, but since we only ask if the mean-payoff
value is positive (or non-negative), the result does not change. We also note that the least common
multiple is bounded by D|E|, where D is the greatest denominator that occur in the weight function
(in absolute value) and |E| is the number of transitions. Hence, the least common multiple requires
only |E| · log(D) bits to encode and the blowup is polynomial.

Transformed weight functions and weighted graphs. Let w : E → Q be a weight function, and r ∈ Q

be a rational value, then the weight function w + r : E → Q is defined as follows: for all e ∈ E we
have (w + r)(e) = w(e) + r. Let G = (V,E) be a (possibly infinite)3 graph with a weight function
w : E → Q. In order to emphasize that w is the weight function for G, we use wG. We denote by Gr

the same infinite graph with weight function wG+r. We first show that if the lim-inf-average objective
can be satisfied for all ǫ > 0, then the non-strict lim-inf-average objective can also be satisfied.

Solution overview. We prove that there is a computable ǫ > 0 with polynomial number of bits such that
there is a witness path π with LimInfAvg(π) ≥ 0 iff there is a witness path π with LimInfAvg(π) > −ǫ.
Hence, a reduction to the strict mean-payoff problem follows. In Lemmas 12 and 13 we prove the
existence of such ǫ, and in Theorem 2 we prove the correctness of the reduction.

Lemma 12 Let A be a WPS. There exists a path π with LimInfAvg(π) ≥ 0 iff for every ǫ > 0 there
exists a path πǫ with LimInfAvg(πǫ) > −ǫ.

Proof. The direction from left to right is trivial. In order to prove the converse direction let us assume
that for every n ∈ N there exists a path πn with LimInfAvg(πn) > − 1

n
. Hence for every n ∈ N there

exists a path π∗
n which leads to a path Cn that is a good cycle with respect to the weight function

w + 1
n
. Since there are infinitely many values of n ∈ N, and since Q and Γ are finite, w.l.o.g all the

good cycles (with respect to w + 1
n
) start at the same top configuration (γ, q). We define an infinite

path π = π∗
1C

W ·|C2|
1 C

2·W ·|C3|
2 . . . C

i·W ·|Ci+1|
i . . . such that |Ci+1| > |Ci| (since we can always extend

the length of a cyclic path by taking several copies of it). We claim that LimInfAvg(π) ≥ 0. To prove
the claim it is enough to show that for all ν > 0 we have LimInfAvg(π) ≥ −ν, and for this purpose it
is enough to prove that for the suffix π′ that begins at position |π∗

1 | we have LimInfAvg(π′) ≥ −ν. For

every ℓ ∈ N we denote by π′(ℓ) the prefix of π′ that ends at position
∑ℓ

i=1 i · |Ci| · |Ci+1| ·W . Since

Ci is a good cycle for w + 1
i
we get that w(Ci) ≥ − |Ci|

i
, hence the average weight of π′(ℓ) is at least

∑ℓ
i=1 −

i·W ·|Ci|·|Ci+1|
i

∑ℓ
i=1 i · |Ci| · |Ci+1| ·W

= −

∑ℓ
i=1 |Ci| · |Ci+1|

∑ℓ
i=1 i · |Ci| · |Ci+1|

.

Since |Ci+1| > |Ci|, we get that

ℓ
∑

i=1

|Ci| · |Ci+1| ≤ 2 ·
ℓ

∑

i= ℓ
2

|Ci| · |Ci+1|; and

ℓ
∑

i=1

i · |Ci| · |Ci+1| ≥
ℓ

2
·

ℓ
∑

i= ℓ
2

|Ci| · |Ci+1|,

and thus we get that the average weight of π′(ℓ) is at least − 4
ℓ
. Since each copy of Cℓ+1 has an

average weight of at least − 1
1+ℓ

it is obvious that the average value of π′(ℓ)Cn
ℓ+1 remains at least − 4

ℓ
.

3 In this subsection we often look at a WPS as an infinite graph of the configurations.

13

Moreover, since |π′(ℓ)| ≥ ℓ · W · |Cℓ+1| we get that the average value of π′(ℓ)Cn
ℓ+1D (where D is a

prefix of the finite path Cℓ+1) is at least

− 4·ℓ·W ·|Cℓ+1|
ℓ

−W · |D|

ℓ ·W · |Cℓ+1|+ |D|
≥ −

5

ℓ
.

Hence, we get that for all ν > 0, every prefix of π′ that is longer than |π′(⌈ 5
ν
⌉)| has an average weight

of at least −ν and thus LimInfAvg(π) = LimInfAvg(π′) ≥ −ν and the proof is completed. ⊓⊔

Lemma 13 Let A be a WPS with integer weights (weight function w). Let ℓ = |Γ | · |Q|, and fix
ǫ = 1

ℓ(ℓ+1)2 ·2·ℓ
. Then the WPS Aǫ (with weight function w + ǫ) has a good cycle iff for every δ > 0

the WPS Aδ (with weight function w + δ) has a good cycle. Moreover, every good cycle in Gr(Aǫ) is
a good cycle in Gr(Aδ).

Proof. The direction from right to left is trivial. For the converse direction we first prove the following
lemma.

Lemma 14 Let sǫ be the summary function for Aǫ.

1. If sǫ(q1, γ, q2) 6= ω, then sǫ(q1, γ, q2) ≤ s(q1, γ, q2) +
1
2·ℓ .

2. If sǫ(q1, γ, q2) = ω, then for every δ > 0 we have sδ(q1, γ, q2) = ω, where sδ is the summary
function for Aδ.

Proof. We prove both the items below.

1. If sǫ(q1, γ, q2) 6= ω, then consider a maximal-weight non-decreasing path with minimal additional
stack height from (⊥γ, q1) to (⊥γ, q2) that has an additional stack height of at most (|Q|·|Γ |)2 = ℓ2.
Note that this path does not contain positive cycles (since sǫ(q1, γ, q2) 6= ω). Hence there exists a
path π with the same weight and with stack height at most ℓ2 which does not contain any cycles.
Hence |π| ≤ ℓℓ

2

, and therefore

wAǫ(π) = wA(π) + ǫ · |π| ≤ wA(π) + ǫ · ℓℓ
2

≤ wA(π) +
1

2 · ℓ
.

Since s(q1, γ, q2) ≥ wA(π) (as π is a non-decreasing path we have s(q1, γ, q2) ≥ wA(π)), we obtain
the result of the first item.

2. In order to prove the second item of the lemma, it is enough to prove that if an edge weight is
ω in (Aǫ)∗ (where (Aǫ)∗ is the WPS constructed with the function (sǫ)∗), then for every δ > 0
the weight of the edge is also ω in the summary graph Gr(Aδ) of Aδ. We consider two cases to
complete the proof.

– Case 1. If sǫℓ(q1, γ, q2) = ω, then the infinite graph Aǫ has a positive cycle C with stack

height at most ℓ2, and hence there exists a positive cycle C′ such that |C′| ≤ ℓℓ
2

. Towards a
contradiction, let us assume that wA(C

′) < 0. As all the weights in A are integers we get that
wA(C

′) ≤ −1. As wA(C
′)+ǫ·|C′| = wAǫ(C′) ≥ 0 we get that |C′| ≥ 1

ǫ
which is a contradiction.

Thus wA(C
′) ≥ 0, and hence for every δ > 0 we have wAδ (C′) > 0. Thus sδℓ(q1, γ, q2) = ω.

– Case 2. Otherwise, we have sǫℓ+1(q1, γ, q2) > sǫℓ(q1, γ, q2). Let π be a path from (⊥γ, q1) to
(⊥γ, q2) with additional stack height ℓ + 1 and weight sǫℓ+1(q1, γ, q2). As sǫℓ+1(q1, γ, q2) >
sǫℓ(q1, γ, q2), by Lemma 2 it follows that π has a pumpable pair (p1, p2) with wAǫ(p1) +
wAǫ(p2) > 0. If p1 (resp. p2) contains a positive cycle, then by the same arguments pre-
sented in the proof of the first item of the lemma this cycle will be positive also in Aδ, for
every δ > 0, and hence sδ(q1, γ, q2) = ω. If p1 (resp. p2) contains a non-negative cycle, then we
can remove the cycle and still obtain a pumpable pair with sum of weights positive. Therefore
w.l.o.g both p1 and p2 do not contain any cycles and thus |p1|, |p2| ≤ ℓℓ+1. Again by the same
arguments presented in the proof of the first item we obtain that wA(p1) + wA(p2) ≥ 0 and
hence for every δ > 0 we have wAδ (p1) +wAδ (p2) > 0. As (p1, p2) is a positive pumpable pair
in Aδ it follows that sδ(q1, γ, q2) = ω.

This completes the proof of the second item.

We obtain the desired result of the lemma. ⊓⊔

14

We are now ready to prove Lemma 13. Let us assume that there exists a good cycle in Aǫ. Then
by Lemma 10 there exists a positive simple cycle C in the summary graph Gr(Aǫ). We consider two
cases:

– If C contains an ω-edge e, then by Lemma 14 for every δ > 0 the same cycle in Gr(Aδ) will also
contain an ω-edge. Therefore C is a positive cycle also in Gr(Aδ) and hence Aδ has a good cycle.

– Otherwise C does not contain an ω-edge. Towards a contradiction assume that the weight of C
in Gr(A) is negative. As the weights of A are integers it follows that the weight of C is at most
−1. By Lemma 14, for every e ∈ C we have wGr(Aǫ)(e) ≤ wGr(A)(e) +

1
2·ℓ ; and thus wGr(Aǫ)(C) ≤

wGr(A)(C) + |C|
2·ℓ . As C is a simple cycle (in Gr(Aǫ)) we get that |C| ≤ ℓ, and hence we have

wGr(Aǫ)(C) ≤ wGr(A)(C) + 1
2 ≤ − 1

2 , which contradicts the assumption that C is a positive cycle.
Therefore we have wGr(A)(C) ≥ 0, and therefore for every δ > 0 we get that wGr(Aδ)(C) > 0 and

hence Aδ has a good cycle.

The moreover part of the lemma follows from the fact that C is an arbitrary positive cycle in Gr(Aǫ).
This completes the proof of the lemma. ⊓⊔

Theorem 2 Given a WPS A, whether there exists an infinite path π such that LimInfAvg(π) ≥ 0 (or
LimSupAvg(π) ≥ 0) can be decided in polynomial time. There exists a WPS A such that there exists a
path π with LimInfAvg(π) = 0 but for every ultimately periodic path π we have both LimInfAvg(π) < 0
and LimSupAvg(π) < 0.

Proof. From Lemma 12 it follows that if there is a path π such that LimInfAvg(π) ≥ 0, then for every
ǫ1 > 0 there is a path π′ such that LimInfAvg(π′) > −ǫ1. By Lemma 13 it follows that it suffices to
check for ǫ (for the ǫ described by Lemma 13). Given a WPS A, the WPS Aǫ can be constructed
in polynomial time (as ǫ only has polynomial number of bits). Then applying the polynomial-time
algorithm to find good cycles (as given in the previous subsection) we answer the decision problems
in polynomial time. We observe that Lemma 12 and Lemma 13 also hold for LimSupAvg objectives,
and thus the result also follows for LimSupAvg objectives.

Example 1 shows that ultimately periodic witness paths might not exist in some cases. ⊓⊔

We get the next corollary from Lemma 13.

Corollary 1 Given a WPS A with integer weights, let ℓ = |Γ | · |Q|, and ǫ = 1

ℓ(ℓ+1)2 ·2·ℓ
. Then there is

a path π′ with LimInfAvg(π′) > 0 if and only there is a path π with LimInfAvg(π) ≥ ǫ.

Proof. Towards a contradiction we assume that there is a path π′ such that LimInfAvg(π′) > 0 but
for all paths π we have LimInfAvg(π) < ǫ. Consider the WPS A−ǫ obtained by subtracting ǫ from all
the weights of A. Then in A−ǫ there are no good cycles, that is, for all the cycles C in Gr(A−ǫ) the
sum of the weights of the cycle C is negative (note that if Gr(A−ǫ) has a cycle with non-negative sum
of weights then we could obtain a path π with LimInfAvg(π) ≥ ǫ). We construct a WPS (−A)ǫ by
multiplying all the weights of A−ǫ by −1. Since all the cycles in Gr(A−ǫ) have negative sum of weights
it follows that all the cycles in Gr((−A)ǫ) are good. Hence, by Lemma 13 it follows that for every δ > 0,
all the cycles in Gr((−A)δ) are good. Therefore, for every δ > 0 we get that all the cycles in Gr(A−δ)
have negative sum of weights and it follows that for all paths π in A−δ we have LimInfAvg(π) < 0.
Thus, we conclude that for every δ > 0 and for every infinite path π we have LimInfAvg(π) ≤ δ, which
contradicts the assumption that there exists a path π′ with LimInfAvg(π′) > 0 (since surely, for some
δ > 0 it must hold that LimInfAvg(π′) > δ). ⊓⊔

Remark 2. In Corollary 1 we show a bound ǫ such that if there is a path π′ with LimInfAvg(π′) > 0
then there is a path π such that LimInfAvg(π) ≥ ǫ > 0, where the denominator of ǫ is exponential
in the input WPS (thus can be expressed in polynomially many bits). A matching exponential lower
bound is also easy to obtain and we describe the main ideas: consider the language that consists of
a single string a2

n

, and it is well-known that a pushdown automata with O(n) states can accept the
language. Consider a WPS obtained from the pushdown automata that after reaching the accepting
state receives weight 1, and all other weights are 0, and from the accepting state returns back to the
start state. In such a WPS with O(n) states there is a path π′ such that LimInfAvg(π′) > 0, but for
all paths π we have LimInfAvg(π) ≤ 1

2n .

15

Corollary 2 Given a WPS A, whether there exists an ultimately periodic infinite path π such that
LimInfAvg(π) ≥ 0 (or LimSupAvg(π) ≥ 0) can be decided in polynomial time.

Proof. We first observe that for any ultimately periodic path π we have LimInfAvg(π) = LimSupAvg(π).
Hence, it is enough to prove the assertion for the LimInfAvg(π) ≥ 0 objective. The proof will im-
mediately follow from the next claim: There exists an ultimately periodic path π = π0(π1)

ω with
LimInfAvg(π) ≥ 0 if and only if the summary graph Gr(A) contains a (reachable) cycle with non-
negative sum of weights. We first prove the claim. The proof for the direction from right to left
is straightforward and is as follows. If Gr(A) has a cycle with non-negative sum of weights, then
there exists a non-decreasing cyclic path π1 that begins in configuration (αγ, q) with w(π1) ≥ 0.
Since the cycle is reachable, then there is a path π0 that begins in (⊥, q0) and ends in (αγ, q). Since
π1 is non-decreasing, the path π0(π1)

ω is a valid infinite path, and since w(π1) ≥ 0 we get that

LimInfAvg(π0(π1)
ω) = w(π1)

|π1|
≥ 0. To prove the converse direction, we assume that all the cycles

in Gr(A) have negative sum of weights and show that for all ultimately periodic paths π we have
LimInfAvg(π) < 0. Let π = π0(π1)

ω be a valid path in A, and let c1, c2, . . . be the configurations
of π and m1,m2, . . . be the sequence of infinitely many local minima in π. Let (γ, q) be a stack
symbol and a state such that |{i | Top(mi) = (γ, q)}| = ∞. Since π is ultimately periodic, then for
some index i we get that for every j ∈ N it holds that Top(ci+|π1|·j) = (γ, q). Hence, if we denote
by W(γ,q) the weight of the maximal-weight non-decreasing path from (γ, q) to (γ, q) we get that

LimInfAvg(π = π0(π1)
ω) ≤

W(γ,q)

|π1|
. Since all the cycles in Gr(A) have negative sum of weights we get

that W(γ,q) < 0, and therefore LimInfAvg(π) < 0. Hence, the polynomial-time algorithm is to construct
Gr(A) and to detect the existence of a non-negative cycle. ⊓⊔

2.3 Mean-payoff objectives with stack boundedness

In this section we consider WPSs with mean-payoff objectives along with the stack boundedness con-
dition that requires the height of the stack to be bounded. An infinite path π = 〈c1, c2, . . . ci . . .〉 is a
stack bounded path if there exists n ∈ N such that |αi| ≤ n for every i ∈ N (recall that αi is the stack
string of configuration ci).

Theorem 3 Given a WPS A, the following problems can be solved in polynomial time.

1. Does there exist a stack bounded infinite path π such that LimInfAvg(π) ⊲⊳ 0 (resp. LimSupAvg(π) ⊲⊳
0), for ⊲⊳∈ {≥, >}?

2. Is sup{LimInfAvg(π) | π is a stack bounded path} ≥ 0 (resp.
sup{LimSupAvg(π)|π is a stack bounded path} ≥ 0)?

Proof. The results for each item are proved with a lemma below.

Lemma 15 There exists a stack bounded infinite path π in A such that LimSupAvg(π) > 0 (resp.
LimSupAvg(π) ≥ 0) iff the summary graph Gr(A) has a vertex with self-loop that has a positive (resp.
non-negative) weight.

Proof. If there exists a stack bounded infinite path π in A such that LimSupAvg(π) > 0 (resp.
LimSupAvg(π) ≥ 0), then it contains a cycle that begins and ends at configuration (αγ, q) with
positive (resp. non-negative) weight. Hence in the summary graph Gr(A) the vertex (γ, q) will have a
self-loop with positive (resp. non-negative) weight. Conversely, if there is a (reachable) vertex (γ, q)
in Gr(A) with a positive (resp. non-negative) weight self-loop, then for some stack string α there
is a non-decreasing path π1 from (αγ, q) to (αγ, q) with w(π1) > 0 (resp. w(π1) ≥ 0) and there is
a path π0 from (⊥, q0) to (αγ, q). Hence the stack height of the path π = π0(π1)

ω is bounded by
ASH(π0) + ASH(π1), and LimSupAvg(π) > 0 (resp. LimSupAvg(π) ≥ 0). ⊓⊔

It is straightforward to verify that Lemma 15 also holds for LimInfAvg(π) objectives (we simply
replace every occurrence of LimSupAvg by LimInfAvg and the same argument holds). This gives us the
first item of the theorem. The next lemma proves the last item of the theorem.

Lemma 16 Let ǫ be the constant from Lemma 13. Then there exists a stack bounded infinite path π
such that LimInfAvg(π) > −ǫ iff sup{LimInfAvg(π) | π is a stack bounded path} ≥ 0.

16

Proof. The direction from right to left is immediate (clearly, if all paths π have LimInfAvg(π) ≤ −ǫ,
then sup{LimInfAvg(π) | π is a stack bounded path} < 0). In order to prove the other direction let
us assume that there exists a stack bounded infinite path π such that LimInfAvg(π) > −ǫ. Hence by
Lemma 15 the summary graph Gr(Aǫ) contains a self-loop for vertex (γ, q) with positive weight. By the
same argument used in the proof of Lemma 13 it follows that for every δ > 0 the self-loop of vertex (γ, q)
will have a positive weight in graph Gr(Aδ). Hence for every δ > 0 there exists a stack bounded path πδ

such that LimInfAvg(πδ) > −δ, which implies that sup{LimInfAvg(π) | π is a stack bounded path} ≥ 0.
✷

The proof of Lemma 16 straightforwardly extends to LimSupAvg(π) objectives (we simply replace
every occurrence of LimInfAvg by LimSupAvg and the same argument holds), and hence we have the
desired result of the theorem. ⊓⊔

Thus we have the following result summarizing the computational complexity.

Theorem 4 Given a WPS A, the following questions can be solved in polynomial time: (1) Whether
there exists a path π in Φ ⊲⊳ 0, where Φ ∈ {LimSupAvg, LimInfAvg} and ⊲⊳∈ {≥, >}; and (2) whether
there exists a path π in Φ ⊲⊳ 0 such that π is stack bounded, where Φ ∈ {LimSupAvg, LimInfAvg} and
⊲⊳∈ {≥, >}.

3 Mean-Payoff Pushdown Games

In this section we consider pushdown games with mean-payoff objectives. We will show that the
problem of deciding the existence of a strategy (or even a finite-memory strategy) to ensure mean-
payoff objectives in pushdown games is undecidable. The undecidability results will be obtained by a
reduction from the universality problem of weighted automata, which is known to be undecidable [34,
1]. We start with the definition of weighted pushdown games.

Weighted pushdown games (WPGs). A weighted pushdown game (WPG) G = 〈A, (Q1, Q2)〉
consists of a WPS A and a partition (Q1, Q2) of the state space Q of A into player-1 states Q1

and player-2 states Q2. A WPG defines an infinite-state game graph (V ,E) with partition (V 1, V 2)
of the vertex set V , where V is the set of configurations of A, and V 1 = {(α, q) ∈ V | q ∈ Q1},
V 2 = {(α, q) ∈ V | q ∈ Q2} and E is obtained from the transitions of A. The initial vertex is the
configuration (⊥, q0).

Plays and strategies. A play on G (or equivalently on the infinite-state game graph) is played in the
following way: a pebble (or token) is placed on the initial vertex; and in every round, if the pebble
is currently on player-1 vertex (a vertex in V 1), then he chooses an edge to follow, and moves the
pebble accordingly; and if the current vertex is a player-2 vertex, he does likewise. The process goes on
forever and generates an infinite play (an infinite path π in the infinite graph of the game). A strategy

for player 1 is a recipe to extend plays; formally, a strategy for player 1 is a function τ : V
∗
×V 1 → V

such that for all w ∈ V
∗
and v ∈ V 1 we have (v, τ(w · v)) ∈ E. Equivalently a strategy for player 1

given a history of configurations (i.e., the sequence of configurations of the finite prefix of a play)
ending in a player-1 state, chooses the successor configuration according to the transitions of A. A
play π = v1v2 . . . is consistent with a strategy τ if for every vi ∈ V 1 we have vi+1 = τ(v1v2 . . . vi),
i.e., the play is possible according to the strategy τ . The definition of player-2 strategies is analogous.
Informally a strategy can be viewed as a transducer that takes as input the sequence of transitions,
and outputs the transitions to be taken. A strategy is called a finite-memory strategy if there is a
finite-state transducer to implement the strategy. Formally, a finite path in a WPG G with WPS A
starts in the initial configuration and is a finite sequence of transitions in A, and a finite-memory
strategy is a finite-state transducer that has the set of transitions as both the input and the output
alphabet. Thus given a finite sequence of transitions, the strategy as the transducer outputs the next
transition to be played.

Winning strategies. We will consider mean-payoff objectives, as already defined in the previous section.
A player-1 strategy τ is a winning strategy if for every play π consistent with τ we have LimInfAvg(π) ≥
0 (resp. LimInfAvg(π) > 0, LimSupAvg(π) ≥ 0, LimSupAvg(π) > 0). In other words, a winning strategy
for player 1 ensures the mean-payoff objective against all strategies of player 2. We are interested in
the question of existence of a winning strategy, and the existence of a finite-memory winning strategy

17

for player 1 in WPGs with mean-payoff objectives. Our undecidability results for WPGs with mean-
payoff objectives will be obtained by a reduction from the non-universality problem of weighted finite
automata. We define the problem below.

Weighted finite automata (WFA). A weighted finite automaton (WFA) is a tuple A =
〈Σ,Q, q0, ∆,w : ∆ → Z〉, where Σ is a finite input alphabet, Q is a finite set of states, ∆ ⊆ Q×Σ×Q
is a transition relation, w : ∆ → Z is a weight function and q0 ∈ Q is the initial state. For a word
ρ = σ1σ2 . . . σn, a run of A on ρ is a sequence r = r0r1 . . . rn ∈ Q+, where r0 = q0, and for all 1 ≤ i ≤ n
we have di = (ri−1, σi, ri) ∈ ∆. The weight of the run r is w(r) =

∑n
i=1 w(di). Since the automaton

is non-deterministic there maybe several runs for a word, and the weight of a finite word ρ ∈ Σ∗

over A is the minimal weight over all runs on ρ, i.e., LA(ρ) = min{w(r) | r is a run of A on ρ}. The
non-universality problem asks, given ν ∈ Z, whether there exists a word ρ ∈ Σ∗ for which LA(ρ) ≥ ν?;
equivalently, is it not the case that for every ρ ∈ Σ∗ we have LA(ρ) ≤ ν − 1?

Theorem 5 ([1]) The non-universality problem is undecidable for WFA, even in the special case
where the weight function is w : ∆ → {−1, 0, 1}, the automaton has unique initial state and the
threshold is 0.

Informally, given a WFA A we will construct a WPG in such way that in the first rounds player-
1 fills the stack with letters that construct a word ρ of A, and then player-2 simulates the WFA’s
minimal run on ρ and then the game returns to the initial state. If for all ρ ∈ Σ∗ we have LA(ρ) ≤ 0,
then the mean-payoff of the play will be at most 0, otherwise, there exists a word ρ ∈ Σ∗ such that
LA(ρ) > 0, and then by playing according to ρ, player-1 can ensure a positive mean-payoff.

Reduction: WFA to WPGs. We first prove that WPGs are undecidable for LimInfAvg(π) > 0
and LimSupAvg(π) > 0 objectives. This proof will immediately show the undecidability also for
LimInfAvg(π) ≥ 0 and LimSupAvg(π) ≥ 0 objectives, as LimInfAvg(π) ≥ 0 (resp. LimSupAvg(π) ≥ 0)
is dual to the objective of player 2 when the objective of player 1 is LimSupAvg(π) > 0 (resp.
LimInfAvg(π) > 0).

Reduction. The reduction from the non-universality problem of a weighted automaton is as follows.
Given a WFA A = 〈Σ,Q, q0, ∆,w : ∆ → {−1, 0, 1}〉 we construct a WPG G with the aid of five
gadgets, and we describe the gadgets below. WLOG we assume that there is a special symbol $ that
does not belong to Σ.

1. Gadget 1. The first gadget contains only one state, namely q$, which is a player-1 state. The state
has two possible transitions. In the first transition it pushes $ into the stack and remains in the
same state. In the second transition it pushes $ and goes to the second gadget. All the weights in
this gadget are −10.

2. Gadget 2. The second gadget also contains one state, namely qΣ , which is also a player-1 state.
For every σ ∈ Σ the state has a transition that pushes σ into the stack and remains in the same
state. In addition there is one more transition, which leads to the third gadget keeping the stack
unchanged with weight 0. All the weights in this gadget (other than the skip transition) are −1.
Informally, in this gadget player 1 needs to construct a word ρ such that the reverse of ρ has value
at least 1 in A. For a word ρ, let rev(ρ) denote the reverse of the word.
– In this gadget player 1 should construct a word ρ ∈ Σ∗ for which LA(rev(ρ)) ≥ 1.
– The WPG G will be constructed in such way that player 1 must play in a way so that the

number of $ in the stack will be greater than the number of letters from Σ to ensure the
mean-payoff objectives.

3. Gadget 3. The third gadget is the choice gadget with only one player-2 state qch , which either
leads to the fourth gadget or the fifth gadget. The weights of the transitions are 0 and the stack
is not changed. Informally, player-2 should go to the fifth gadget if the word that player 1 pushed
into the stack has non-positive weight, and should go to the fourth gadget if the number of $
symbols in the stack is less than the number of symbols from Σ.

4. Gadget 4. The fourth gadget consists of only one player-2 state q<$ (to denote that there is not
enough $ symbols). It has a transition pop(σ) with 0 weight, for all σ ∈ Σ; and a transition pop($)
with +11 weight. If the stack is empty, then there is a transition to the initial state.
A pictorial description of the first four gadgets is shown in Figure 5, where © denotes player-
1 states, ✷ denotes player-2 states, and edges are labeled by stack top; followed by the stack
command; and then the weight; and if the stack top is irrelevant (i.e., the transition is valid for
all stack tops), then it is denoted as . We now describe the fifth gadget.

18

q$ qΣ qch

q<$

Gad5

, push($),−10

, push(σ),−1;σ ∈ Σ

, push($),−10 , skip, 0

, skip, 0

, skip, 0

σ, pop(σ), 0; σ ∈ Σ

$, pop($), 11⊥, skip, 0

⊥, skip, 0

Fig. 5. The WPG G from WFA A.

5. Gadget 5. The fifth gadget is the simulate run gadget. The states in this gadgets are essentially
the set Q of states of the automaton A; and all the states are player-2 states. The transitions
and edge weights are as follows: (i) for every (q, σ, q′) ∈ ∆ we have a transition (q, σ, q′, pop(σ)),
with weight wA(q, σ, q

′) + 1 (1 plus the weight in A); and (ii) in addition there exists a transition
(q, $, q, pop($)) with weight +10 and a transition (q,⊥, q$, skip) to the initial state for empty stack
with weight 0.

Remark 3. (Comment on naive solution). Our reduction consists of five gadgets and we comment
on a simpler reduction. Consider a naive solution with only two gadgets (Gadget 2 and Gadget 5): in
one player 1 fills the stack and in the other player 2 simulates the run. This reduction only works for
LimInfAvg objectives with strict inequality. We comment on other cases below.

1. For LimInfAvg(π) ≥ 0 objective, it is possible that the WFA assigns −1 value for all finite words,
but player 1 can still achieve LimInfAvg(π) = 0 by selecting words with increasing lengths.

2. For the LimSupAvg(π) > 0 objective it is possible that player 1 will select a finite word ρ such
that there is a run of the WFA A that assigns a zero weight to ρ, but the run has a prefix with
positive weight. Hence, for infinitely many positions of the path of the two-player game the total
weight is positive and hence the path satisfies LimSupAvg(π) > 0 objective.

Hence a reduction with only Gadget 2 and Gadget 5 fails to uniformly capture all cases. To handle
the above issues, we introduce Gadgets 1, 3, and 4. Intuitively, these gadgets ensure that before
player 1 fills the stack with a word ρ, he will make at least |ρ| + 1 push $ transitions (with negative
weights). Consequently, when player 2 simulates a run of the WFA the total weight of the play remains
non-positive, at least until the pop $ transitions are done, and the weight becomes positive only if
LA(ρ) > 0.

Correctness of reduction. We will now prove the correctness of the reduction by showing that
there is a winning strategy (also a finite-memory winning strategy) in the WPG G for mean-payoff
objectives with strict inequality iff there is a finite word ρ ∈ Σ∗ such that LA(ρ) ≥ 1. Let π be a play
on the above WPG G. The i-th iteration of the play are the positions between the i-th visit and the
(i+ 1)-th visit to the initial state.

Lemma 17 If there is a word ρ ∈ Σ∗ such that LA(ρ) ≥ 1, then there exists a finite-memory strategy
τ∗1 for player 1 to ensure that for all plays π consistent with τ∗1 we have LimSupAvg(π) > 0 and
LimInfAvg(π) > 0.

Proof. The finite-memory strategy τ∗1 for player 1 is to play in every iteration $n+1 in q$ followed by
rev(ρ) in qΣ , where n = |ρ| is the length of the word ρ. In every iteration, the sum of the weights is
at least 1 as LA(ρ) ≥ 1, and the length of a play in every iteration is at most 4 · n+ 2. It follows that
for all plays π consistent with τ∗1 we have both LimSupAvg(π) > 0 and LimInfAvg(π) > 0. ⊓⊔

19

Lemma 18 If for all words ρ ∈ Σ∗ we have LA(ρ) ≤ 0, then there exists a counter strategy τ∗2 for
player 2 to ensure that for all strategies τ1 of player 1, for the play given τ∗2 and τ1: for all iterations
i, for every position between the i-th iteration and the (i+1)-th iteration, the sum of the weights from
the beginning of the iteration to the current position of the iteration is at most 0.

Proof. The counter strategy τ∗2 is as follows: consider an iteration i, and let the strategy of player 1
in this iteration produce the sequence $nρ, for ρ ∈ Σ∗. Note that if the state qch is never reached,
then all the weights are negative (in q$ and qΣ all weights are negative). The strategy τ∗2 is described
considering the following two cases.

1. If n ≤ |ρ|, then the strategy τ∗2 chooses the state q<$ at the state qch (since there are not enough $
in the stack). For any position of the play till state qch is reached, the sum of the weights is negative.
Once q<$ is reached, for any position, the payoff is at most −10 · n− |ρ|+ 11 · n = −|ρ|+ n ≤ 0,
as n ≤ |ρ|.

2. Otherwise, we have n > |ρ| and LA(rev(ρ)) ≤ 0. There exists a run r on rev(ρ) such that for every
prefix β of rev(ρ) the sum of the weights is at most 2 · |β| ≤ 2 · |ρ| < 2 · n (since the absolute value
of the weights of A are bounded by 1 and therefore the weights in Gadget 5 are bounded by 2)
and in the end of the run, the sum of the weights is at most 0. The counter strategy τ∗2 follows the
run r. Hence the sum of the weights for any prefix β is at most −10 ·n+2 · |β| ≤ −10 ·n+2 ·n < 0,
until the letter $ is the top symbol of the stack. Once $ is the top symbol, the sum of the weights
is at most −10 · n, since the sum of the weights of the run is at most 0. Since with each pop of $
the weight is 10, and there are n pops, it follows that in every position of the iteration the sum of
the weights is at most 0. Finally, once the iteration is completed the sum of the weights is also at
most 0.

The desired result follows. ⊓⊔

Lemma 19 Given WFA A and the WPG G constructed by the reduction, the following the assertions
hold:

1. If there is a word ρ ∈ Σ∗ such that LA(ρ) ≥ 1, then there is a finite-memory winning strategy τ∗1
for player 1 for the objectives LimSupAvg(π) > 0 and LimInfAvg(π) > 0.

2. If for all words ρ ∈ Σ∗ we have LA(ρ) ≤ 0, then there is no winning strategy for player 1 for the
objectives LimSupAvg(π) > 0 and LimInfAvg(π) > 0.

3. There exists a winning strategy (resp. a finite-memory winning strategy) for player 1 for the
objectives LimSupAvg(π) > 0 and LimInfAvg(π) > 0 iff there is a word ρ ∈ Σ∗ such that LA(ρ) ≥ 1.

Proof. Note that the third item is a consequence of the first two items. The first item follows from
Lemma 17. We now use Lemma 18 to prove the second item. Given the condition of the second item,
let us consider the strategy τ∗2 for player 2 as described in Lemma 18. Let π be a play consistent with
τ∗2 . We consider two cases to complete the proof.

– If π does not have an infinite number of iterations, then from some point on only states q$ or qΣ
are visited, and they both have only negative weights. Hence all the weights that occur in π from
some point on are non-positive and hence LimInfAvg(π) ≤ LimSupAvg(π) ≤ 0.

– Otherwise, π has an infinite number of iterations. Given τ∗2 it follows from Lemma 18 that for
all iterations, in every position of an iteration, the sum of the weights from the beginning of the
iteration to the current position is non-positive. Hence LimInfAvg(π) ≤ LimSupAvg(π) ≤ 0.

The desired result follows. ⊓⊔

Undecidability for related decision problems. It follows from Lemma 19 that the existence
of winning strategies (resp. finite-memory winning strategies) for mean-payoff objectives with strict
inequality is undecidable for WPGs. For general strategies the result also follows for non-strict in-
equality by duality. We now show the undecidability for finite-memory strategies for the non-strict
inequality as well as undecidability for stack boundedness. This is done by showing a reduction from
the non-universality problem for WFA with threshold ν = 0. The reduction is identical to the original
reduction presented in this section. If there exists a word ρ ∈ Σ∗ such that LA(ρ) ≥ 0, then play-
ing $|ρ|+1rev(ρ) in every iteration is a finite-memory winning strategy for player-1 (also for the stack
boundedness condition). Otherwise, for every ρ ∈ Σ∗ we have LA(ρ) ≤ −1. In this case, against every

20

q1I q2I

q2II q1II

, push(γ),−2 , pop, 4

, push(γ), 2, pop,−4

, skip, 0

, skip, 0

, skip, 0

, skip, 0

Fig. 6. Example WPG G.

player-1 finite-memory strategy, with memory size M , player-2 has a strategy that ensures that the
mean-payoff is at most − 1

2M . Indeed, every iteration is either of length at most 2M (i.e., M steps for
filling the stack and M steps for simulating the WFA) or infinite (player 1 repeatedly pushes symbols
to the stack, and player 2 does not get a chance to make a move). In the first case the mean-payoff is
at most − 1

2M and in the second case it is at most −1. Similarly, against every player-1 strategy that
ensures stack height at most M , player 2 has a strategy that ensures that the mean-payoff at most
− 1

2M (since every iteration is of length at most 2M and the total weight of every iteration is at most
−1).

Theorem 6 Given a WPG G, the following questions are undecidable: (1) Whether there ex-
ists a winning strategy (resp. finite-memory winning strategy) to ensure Φ ⊲⊳ 0, where Φ ∈
{LimSupAvg, LimInfAvg} and ⊲⊳∈ {≥, >}; and (2) whether there exists a winning strategy (resp.
finite-memory winning strategy) to ensure Φ ⊲⊳ 0 along with stack boundedness, where Φ ∈
{LimSupAvg, LimInfAvg} and ⊲⊳∈ {≥, >}.

Distinguishing facts. We now show some interesting facts about WPGs with mean-payoff objectives
that distinguish them from finite game graphs with mean-payoff objectives.

1. Fact 1. It follows from the proof of Theorem 2 (Example 1 for the fact that ultimately periodic
paths are not sufficient) that in general, positional (or memoryless) strategies are not sufficient, and
infinite-memory strategies are required in general (in contrast, in finite game graphs, memoryless
winning strategies are guaranteed to exist).

2. Fact 2. The objectives LimSupAvg and LimInfAvg do not coincide in general for WPGs. We show
this in Example 2.

3. Fact 3. We also note that pushdown mean-payoff games are very different as compared to parity
games. For finite-state games both parity and mean-payoff objectives have the same complexity
(both lie in NP ∩ coNP and also in UP ∩ coUP [32]), in contrast for pushdown games the mean-
payoff problem is undecidable, whereas the parity problem is EXPTIME-complete [42]. Moreover,
for countably infinite games with finitely many priorities, for parity objectives memoryless winning
strategies exist [40], whereas as we show (Fact 1) for mean-payoff pushdown games infinite-memory
strategies are required.

Example 2 We show that there exists a WPG such that player-1 can ensure that LimSupAvg(π) ≥ 2
and player-2 can ensure that LimInfAvg(π) ≤ −2. The WPG is described as follows: Let Q1 = {q1I , q

2
I}

and Q2 = {q1II , q
2
II}, and let E, the set of transitions, be as follows

– (q1I ,⊥, q1I , push(γ)) with weight −2;
– (q1I , γ, q

1
I , push(γ)) with weight −2;

– (q1I , γ, q
2
I , skip) with weight 0;

– (q2I , γ, q
2
I , pop) with weight +4;

– (q2I ,⊥, q1II , skip) with weight 0;
– (q1II ,⊥, q1II , push(γ)) with weight +2;

21

– (q1II , γ, q
1
II , push(γ)) with weight +2;

– (q1II , γ, q
2
II , skip) with weight 0;

– (q2II , γ, q
2
II , pop) with weight −4;

– (q2II ,⊥, q1I , skip) with weight 0.

The WPG is shown in Figure 6. It is straightforward to verify that player-1 can ensure LimSupAvg(π) ≥
2, and player-2 can ensure LimInfAvg(π) ≤ −2. ⊓⊔

4 Recursive Games and Modular Strategies

In this section we will consider a special class of strategies, namely modular strategies, in pushdown
games. Modular strategies are more intuitive in the model of recursive game graphs, and recursive
game graphs are equivalent to pushdown game graphs. We first present the definitions of recursive
game graphs from [7], then give an overview of the solution and present some basic properties for
recursive game graphs.

Weighted recursive game graphs (WRGs). A recursive game graph A consists of a tuple
〈A1, . . . , An〉 of game modules, where each game module Ai = (Ni, Bi, V

1
i , V

2
i ,Eni,Ex i, δi) consists of

the following components:

– A finite nonempty set of nodes Ni.
– A nonempty set of entry nodes En i ⊆ Ni and a nonempty set of exit nodes Ex i ⊆ Ni.
– A set of boxes Bi.
– Two disjoint sets V 1

i and V 2
i that partition the set of nodes and boxes into two sets, i.e., V 1

i ∪V 2
i =

Ni∪Bi and V 1
i ∩V 2

i = ∅. The set V 1
i (resp. V 2

i) denotes the places where it is the turn of player 1
(resp. player 2) to play (i.e., choose transitions). We denote the union of V 1

i and V 2
i by Vi.

– A labeling Yi : Bi → {1, . . . , n} that assigns to every box an index of the game modules A1 . . . An.
– Let Callsi = {(b, e) | b ∈ Bi, e ∈ Enj , j = Yi(b)} denote the set of calls of module Ai and

let Retnsi = {(b, x) | b ∈ Bi, x ∈ Ex j , j = Yi(b)} denote the set of returns in Ai. Then, δi ⊆
(Ni ∪ Retnsi)× (Ni ∪ Callsi) is the transition relation for module Ai.

A weighted recursive game graph (for short WRG) is a recursive game graph, equipped with a weight
function w on the transitions. We also refer the readers to [7] for detailed description and illustration
with figures of recursive game graphs. WLOG we shall assume that the boxes and nodes of all modules
are disjoint. Let B =

⋃

i Bi denote the set of all boxes, N =
⋃

iNi denote the set of all nodes,
En =

⋃

i En i denote the set of all entry nodes, Ex =
⋃

i Ex i denote the set of all exit nodes, V
1 =

⋃

i V
1
i

(resp. V 2 =
⋃

i V
2
i) denote the set of all places under player 1’s control (resp. player 2’s control), and

V = V 1 ∪V 2 denote the set of all vertices. We will also consider the special case of one-player WRGs,
where either V 2 is empty (player-1 WRGs) or V 1 is empty (player-2 WRGs).

Configurations, paths, and local history. A configuration c consists of a sequence (b1, . . . , br, u),
where b1, . . . , br ∈ B and u ∈ N . Intuitively, b1, . . . , br denote the current stack (of modules), and u is
the current node. A sequence of configurations is valid if it does not violate the transition relation. The
configuration stack height of c is r. Let us denote by C the set of all configurations, and let C1 (resp.
C2) denote the set of all configurations under player 1’s control (resp. player 2’s control), that is, all
configurations in which u is under the control of player 1 (resp., player 2). A path π = 〈c1, c2, c3, . . .〉 is
a valid sequence of configurations. Let ρ = 〈c1, c2, . . . , ck〉 be a valid finite sequence of configurations,
such that ci = (bi1, . . . , b

i
di
, ui), and the stack height of ci is di. The stack height of π, denoted by

SH(π), is max{d1, . . . , dk} and ASH(π) = SH(π)−max{d1, dk}. Let ci be the first configuration with
stack height di = dk, such that for every i ≤ j ≤ k, if cj has stack height di, then uj /∈ Ex (uj is not
an exit node). The local history of ρ, denoted by LocalHistory(ρ), is the longest sequence (uj1 , . . . , ujm)
such that cj1 = ci, cjm = ck, j1 < j2 < · · · < jm, and the stack height of cj1 , . . . , cjm is exactly di.
In other words, the local history contains the nodes of configurations ci and cr and all the nodes of
the intermediate configurations of the same stack height. Intuitively, the local history is the sequence
of nodes in a module. Note that by definition, for every ρ ∈ C∗, there exists i ∈ {1, . . . , n} such that
all the nodes that occur in LocalHistory(ρ) belongs to Vi. We say that LocalHistory(ρ) ∈ Ai if all the
nodes in LocalHistory(ρ) belong to Vi.

Global game graph and isomorphism to pushdown game graphs. The global game graph
corresponding to a WRG A = 〈A1, . . . , An〉 is the graph of all valid configurations, and an edge

22

(c1, c2) between configurations c1 and c2 exists if there is a transition from c1 to c2. It follows from
the results of [7] that every recursive game graph has an isomorphic pushdown game graph that is
computable in polynomial time. We note that the simulation requires some extra transitions that
may influence the value of mean-payoff in the original and the simulated runs. But since we only ask
whether the mean-payoff value is positive (or non-negative), this does not influence our results, since
we assign zero weights for the auxiliary transitions.

Plays, strategies, and modular strategies. A play begins at the entry node of module A0 and it
is played in the usual sense over the global game graph (which is possibly an infinite graph). A (finite)
play is a (finite) valid sequence of configurations 〈c1, c2, c3, . . .〉 (i.e., a path in the global game graph).
A finite path π is a sub-play if there exist a finite path π0 such that π0 · π is a prefix of a valid play.
A strategy for player 1 is a function τ : C∗ × C1 → C respecting the edge relationship of the global
game graph, i.e., for all w ∈ C∗ and c1 ∈ C1 we have that (c1, τ(w · c1)) is an edge in the global game
graph. A modular strategy τ for player 1 is a set of functions {τi}ni=1, one for each module, where for
every i, we have τi : (Ni ∪ Retnsi)

∗ → δi. The function τ is defined as follows: For every play prefix ρ
we have τ(ρ) = τi(LocalHistory(ρ)), where LocalHistory(ρ) ∈ Ai. The function τi is the local strategy of
module Ai. Intuitively, a modular strategy only depends on the local history, and not on the context
of invocation of the module. A modular strategy τ = {τi}ni=1 is a finite-memory modular strategy if
τi is a finite-memory strategy for every i ∈ {1, . . . , n}. A memoryless modular strategy is defined in
similar way, where every component local strategy is memoryless.

Mean-payoff objectives and winning modular strategies. The weight of a finite path π, denoted
by w(π) is the sum of all the weights along the path. For an infinite path π (as in the previous sections)

we denote LimInfAvg(π) = lim infn→∞
w(π[1,n])

n
(resp. LimSupAvg(π) = lim supn→∞

w(π[1,n])
n

), where
π[1, n] is the initial prefix of length n. The modular winning strategy problem asks if player 1 has a
modular strategy τ such that for every play ρ consistent with τ we have LimInfAvg(ρ) ≥ 0 (note that
the counter strategy of player 2 is a general strategy), and similarly for other mean-payoff objectives.

Overview of the solution. We first show that player 1 has a modular winning strategy that is cycle
free, namely, it is does not depend on the simple cycles that occur in the history of the play. We
then show that a cycle-free strategy can be simulated by a memoryless strategy and by the results of
Section 2 we get that mean-payoff modular games are in NP (as we have a polynomial-time verifier for
a player-1 winning strategy, namely, a verifier for a memoryless winning strategy). The NP-hardness
is obtained via a reduction from the 3-SAT problem.

Basic properties. We now present some basic properties of recursive game graphs.

Non-decreasing cycles and proper cycles. A non-decreasing cycle in a recursive game graph A =
〈A1, . . . , An〉 is a path segment from a module Ai and vertex vi ∈ Ai to the same module and the
same vertex (possibly at different stack level), such that the first occurrence of module Ai in the path
segment does not return (i.e., does not reach an exit node) during the path segment. A non-decreasing
cycle C is a proper cycle if the stack heights at the beginning and the end of the path segment are
the same.

Lemma 20 Consider a one-player WRG A = 〈A1, . . . , An〉 (i.e., consists of only one-player). The
following assertions hold:

– The WRG A has a path π with LimInfAvg(π) > 0 (resp. LimSupAvg(π) > 0) iff there exists a
positive non-decreasing cycle.

– The WRG A has a path π with LimInfAvg(π) < 0 (resp. LimSupAvg(π) < 0) iff there exists a
negative non-decreasing cycle.

Proof. The first item follows from (i) the isomorphism of one-player WRGs and weighted pushdown
systems (WPSs), (ii) the correspondence of positive non-decreasing cycles and good cycles for WPSs,
and (iii) the results established in Section 2 showing the equivalence of the existence of a path π with
LimInfAvg(π) > 0 (resp. LimSupAvg(π) > 0) and the existence of good cycles in a WPS. The second
item follows from the duality of LimInfAvg(π) > 0 and LimSupAvg(π) < 0. ⊓⊔

WRG given finite-memory strategies. Given a WRG A, let τ = {τi}ni=1 be a finite-memory modular
strategy. Let Mi be the set of memory states of strategy τi, i.e., τi is described as a deterministic
transducer with state space Mi. The one-player WRG (player-2 WRG) given τ is the tuple Aτ =
〈Aτ1

1 = A1 × M1, . . . , A
τn
n = An × Mn〉, where each Aτi

i = Ai × Mi is obtained as the synchronous

23

product of Ai and the deterministic transducer describing the local strategy τi. Formally, in the
product, if the second component is a state xi ∈ Mi, then the transition for the second component is
as defined by the transition function of the deterministic transducer over xi, and in the first component
transition we only retain the transition prescribed by xi. The weights of the transitions are specified
according to the weight function of A. Note that if τ is a memoryless modular strategy, then Aτ is a
sub-game graph of A.

Lemma 21 Given a WRG A and a modular strategy τ , every (finite or infinite) path in the one-player
WRG Aτ is a (finite or infinite) play in A consistent with τ , and vice versa.

4.1 Decidability of the modular winning strategy problem

In this section we will establish the decidability of the existence of a modular winning strategy problem.
In the following section we will establish the NP upper bound, and finally show NP-hardness. We start
with the objective LimInfAvg ≥ 0, and then show the result for the objective LimSupAvg ≥ 0. The
results for mean-payoff objectives with strict inequality will also easily follow from our results.

Remark 4. We note that the reduction we presented in Section 3 from the non-universality problem of
WFA to two-player mean-payoff pushdown games does not hold when we restrict player 1 to modular
strategies. Indeed, a modular strategy cannot fill the stack with an arbitrary long stack alphabet string
without eventually visiting the same module twice (and then it must be the case that the operations
are repeated forever). Hence, player 1 cannot fill the stack with an arbitrary word to witness the
non-universality of the WFA.

Objective LimInfAvg ≥ 0. For the decidability result, we will show the existence of cycle independent
modular winning strategies, and the result will also be useful to establish the complexity results.
Informal description of the solution. We show that there is a winning strategy that is oblivious to

cycles that are formed in the play. Informally, this is true since there must exists a winning strategy in
which all the cycles that are formed during the play has non-negative weight. Intuitively, if a strategy
cannot prevent a negative weight cycle to occur even once, then it cannot prevent it from occurring
infinitely often, and thus it cannot prevent a play with negative mean-payoff. Since the strategy may
assume that all formed cycles have positive weight, it may ignore any formed cycle, as it should
be able to win even in the scenario where this cycle never occurred, and the fact that it did occur
only increase the total weighted sum of the play. We formalize this intuition in the next lemmas:
In Lemma 22 we show how to construct a cycle-free strategy from any arbitrary (not necessarily
modular) winning strategy. In Lemmas 23 and 24 we show that if the original strategy is winning
for the lim-inf objective, then the formed cycle-free strategy is winning for the lim-sup objective. In
Lemmas 25 and 26 we show that if the original strategy is a modular one, then the formed strategy is
also a modular winning strategy for the lim-inf objective, and thus a modular winning strategy exists
if and only if there exists a cycle-free modular winning strategy.

We start with the notion of a cycle free path in a graph.

Cycle free path. Let G = (V,E) be a simple (no parallel edges) directed graph. We define the
operator CycleFree : V ∗ → V ∗ in the following way: let π = 〈v1, v2, . . . , vn〉 be a finite path in G.

– CycleFree(π) = π if π is a simple path (i.e., with no cycles).
– Otherwise we define CycleFree inductively as follows. Let CycleFree(v1 . . . vn−1) = u1u2 . . . um.

Let i be the first index such that vn = ui. If such an index does not exist, then CycleFree(π) =
u1u2 . . . umvn. Otherwise CycleFree(π) = u1u2 . . . ui. Intuitively, the CycleFree operator takes a
finite path and returns a simple path by removing the simple cycles according to the order of
appearance.

Cycle independent modular strategy. Given a recursive game graph, a local strategy τi for module
Ai is a cycle independent local strategy, if for every ρ ∈ V ∗

i we have τi(ρ) = τi(CycleFree(ρ)). A modular
strategy τ = {τi}ni=1 is a cycle independent modular strategy if τi is a cycle independent local strategy
for every i ∈ {1, . . . , n}.

Observation 1 For a recursive game graph A = 〈A1, . . . , An〉, there exist at most |V ||V ||V |

different
cycle independent modular strategies, where |V | is the number of vertices in A.

24

The main result of this section is that if there is a modular winning strategy, then there is a cycle
independent modular winning strategy. To establish the result we introduce the notion of manipulated
paths, using rewind, fast forward, and simulation operations.

Manipulated paths, rewind, fast forward, and simulation operations. Let τ = {τi}ni=1 be a
modular winning strategy for the objective LimInfAvg ≥ 0, and let ǫ > 0 be an arbitrary constant. Let
πm = πm−1 ·ni be a play prefix at position m, that ends at node ni ∈ Ai . The manipulated play prefix
of πm according to τ and ǫ, denoted by Manτǫ (πm), is defined inductively as follows: Let Manτǫ (πm−1)
be the manipulated play prefix at position m− 1. Then Manτǫ (πm) is obtained from Manτǫ (πm−1) and
ni by one of the following operations.

1. Rewind operation: The condition for the rewind operation is that CycleFree(Manτǫ (πm−1))·ni closes
a proper cycle in the top module Ai. If the rewind condition holds, then Manτǫ (πm) is formed from
Manτǫ (πm−1) ·ni by removing the proper cycle suffix from Manτǫ (πm−1) ·ni. Intuitively the rewind
operation rewinds the path by chopping off the cycle in the end (we note that the cycle may not
be simple, but it is unique).

2. Fast forward operation: Let h0 = Manτǫ (πm−1) ·ni. The fast forward condition for a history h that
ends at node ni is as follows: there exists a play prefix h ·π′(h) consistent with τ such that ni ·π′(h)
is a proper cycle with average weight less than −ǫ. In order to be precise, we define π′(h) as the
first such prefix according to the lexicographic ordering of the prefixes. If the rewind condition does
not hold, and the fast forward condition holds for h0, then construct h1 = h0 · π′(h0). Continue
the process and build hi = hi−1 · π′(hi−1), as long as hi−1 satisfies the fast forward condition. If
there exists a minimal index i ∈ N such that hi does not satisfy the fast forward condition, then
we define Manτǫ (πm) = hi. Otherwise, Manτǫ (πm) is undefined (not well defined), and we say that
the process is stuck in the fast forward operation.

3. Simulation operation: Else, if the rewind and the fast forward conditions do not hold, then we
have Manτǫ (πm) = Manτǫ (πm−1) · ni.

Intuitive overview of the Manτǫ operator. The Manτǫ operator generates an alternative history
for the play. The generated history does not contain cycles with average weight more than −ǫ (due
to the rewind operations) and if the strategy τ allows a possible future in which the play returns to
the same position and the formed cycle has an average weight less than −ǫ, then this possible future
is added to the history (fast forward operation). The alternative history has the following three key
properties: (i) It is consistent with τ , i.e., it could really have happened. (ii) If the average weight of
the alternative history is is at least −ǫ, then the average weight of the actual history is also at least
−ǫ. Hence, if player 1 wins in the play that is induced by the alternative history, then he also wins in
the real play. (iii) When player 1 applies τ on the alternative history, all the cycles in the real history
have average weight at least −ǫ. Hence, player 1 does not need to remember the actual cycles in the
history (because in the worst case scenario they will simply occur again, and their weights are good for
him) and he can play independently of the formed cycles. The next example demonstrates a strategy
according to manipulated history.

Example 3 Consider the RSM shown in Figure 7, and consider a player-1 modular strategy τ that
follows the edge v1 → v3 if v1 is visited odd number of times (in the current invocation of A0) and
otherwise it follows the edge v1 → v2. In this strategy player 1 will play v1 → v3 in the first time v1 is
visited, v1 → v2 in the second time, v1 → v3 in the third time, and so forth. With this strategy player 1
can ensure a mean-payoff value of at least 0. We now illustrate a play according to the manipulated
history for ǫ = 1

2 . The play begins by following En → v1 and the Manτǫ operator performs a simulation
step. So the current manipulated history is En → v1. According to τ , the next move for player 1 is
v1 → v3 and if player 2 will then select v3 → v1, then a cycle with average weight −1 < −ǫ will be
formed. Hence, a fast-forward step is made and the manipulated history is now En → v1 → v3 → v1
(the real history is En → v1). According to the manipulated history, v1 has been visited twice, hence the
next move for player 1 is v1 → v2, and a corresponding simulation step is done for the manipulated
history (which is currently En → v1 → v3 → v1 → v2). We now consider that the next move for
player 2 is v2 → v1. Hence, the new manipulated history is En → v1 → v3 → v1 → v2 → v1, and
since the suffix contains a cycle with average weight 1 > −ǫ, then a rewind operation is done and
the manipulated history is (again) En → v1 → v3 → v1, and therefore the next move for player 1 is
(again) v1 → v2. We now consider that the next move for player 2 is to invoke the module A0. This
move is simulated in the manipulated history, and the play continues.

25

We observe that when playing according to the manipulated history the only real move that player 1
will ever do is v1 → v2, and therefore the obtained strategy is cycle independent (although τ is not),
and it is easy to verify that this strategy ensures a mean-payoff value of at least −ǫ (and in this example
even a positive mean-payoff).

A0

A0

A0

v1

v2

v3

0

7

−5

0

9

−11

−9

Fig. 7. RSM with only one module (A0) and no exit nodes. Player 1 controls the circle vertex and the rest of
the vertices are controlled by player 2.

In the following lemma we establish consistency of the manipulated operation for a winning strategy
and the fact that it is well-defined.

Lemma 22 Let τ be a winning strategy (a general winning strategy, not necessarily modular) for the
objective LimInfAvg ≥ 0. Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following
way: for a history π′ we have σ(π′) = τ(Manτǫ (π

′)). Let πm be a play prefix of length m that is
consistent with σ. Then the following assertions hold:

– Manτǫ (πm) is well defined, i.e., the process does not get stuck in the fast forward operation.
– Manτǫ (πm) is consistent with τ .

Proof. We prove both the items by induction on m. In the base case when m = 0 (i.e., empty play
prefix), all the claims are trivially satisfied. We now consider the inductive case with m > 0. Let
πm = πm−1 · ni, for some ni ∈ Ai, be a play prefix consistent with σ. By the inductive hypothesis
Manτǫ (πm−1) is well defined and consistent with τ . Then Manτǫ (πm) is computed by performing one of
the following operations.

– Rewind operation: In this case clearly Manτǫ (πm) is well defined. In addition Manτǫ (πm) is a prefix
of Manτǫ (πm−1), which is by the inductive hypothesis consistent with τ , hence also Manτǫ (πm) is
consistent with τ .

– Fast forward operation: Towards contradiction, let us assume that the fast forward process enters
an infinite loop. We consider the prefix h0 = h0 ·ni, where h0 = Manτǫ (πm−1), and let v0 be the last
vertex in h0. The prefix h0 is consistent with τ for the following reason: Manτǫ (πm−1) is consistent
with τ by the inductive hypothesis, and if v0 is under player 1’s control, then τ(Manτǫ (πm−1)) = ni

(as πm consistent with σ), and otherwise v0 is under player 2’s control, and since there is a
transition from v0 to ni (as πm is a play prefix) the consistency of h0 follows. The prefix h0 has
an infinite sequence of extensions π1, π2, . . . such that the infinite play h = h0π

1π2 . . . πjπj+1 . . .
is consistent with τ and Avg(πj) < −ǫ for every j ∈ N (by the infinite loop of the fast forward
operation). Hence, by definition, LimInfAvg(h) ≤ −ǫ < 0.4 Thus we get that there exists a play
consistent with τ that is not winning for the objective LimInfAvg ≥ 0, which contradicts that τ is
a winning strategy. Hence, the fast forward process always terminates. It follows that Manτǫ (πm)
is well defined and also by definition of the fast forward operation it is consistent with τ .

– Simulation operation: By definition, Manτǫ (πm) = Manτǫ (πm−1) · ni. Let h0 = Manτǫ (πm−1), and
let v0 be the last vertex in h0. The prefix Manτǫ (πm) is consistent with τ for the following reason:
Manτǫ (πm−1) is consistent with τ by the inductive hypothesis, and if v0 is under player 1’s control,
then τ(Manτǫ (πm−1)) = ni, and otherwise v0 is under player 2’s control, and there is a transition
from v0 to ni. Thus we have the consistency of Manτǫ (πm), and the fact that it well-defined is
trivial.

4 only this inequality need not hold for LimSupAvg(h)

26

Hence we have that Manτǫ (πm) is both consistent with τ and well defined. ⊓⊔

In the following lemma we obtain a bound on the average of the play prefixes obtained from the
manipulated operation of a winning strategy.

Lemma 23 Let τ be a winning strategy (a general winning strategy, not necessarily modular) for the
objective LimInfAvg ≥ 0. Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following
way: for a history π′ we have σ(π′) = τ(Manτǫ (π

′)). Let πm be a play prefix of length m that is
consistent with σ. Then we have w(πm) ≥ w(Manτǫ (πm))− ǫ · |πm|.

Proof. The following claim is the key for the proof.

Claim. Every time a rewind operation is done, the cycle C, for which Manτǫ (πm) ·C = Manτǫ (πm−1) ·ni,
satisfies that Avg(C) ≥ −ǫ.

We first prove the claim. Towards a contradiction, assume that Avg(C) < −ǫ. Let j < m be the
first index for which Manτǫ (πj) = Manτǫ (πm). Recall that by definition a rewind operation was done
if CycleFree(Manτǫ (πm−1) · ni) forms a proper cycle that begins and ends in the node ni. Hence, the
beginning of the proper cycle was not generated by a fast-forward operation (otherwise, it would
have been omitted by the CycleFree operator). Thus, such an index j must exist. We first argue
that Manτǫ (πm) · C = Manτǫ (πm−1) · ni is consistent with τ : (i) Manτǫ (πm−1) is consistent with τ
(by Lemma 22); and (ii) let h0 = Manτǫ (πm−1), and let v0 be the last vertex in h0; if v0 is under
player 1’s control, then τ(Manτǫ (πm−1)) = ni, and otherwise v0 is under player 2’s control, and there
is a transition from v0 to ni. Thus we have the consistency of Manτǫ (πm) · C = Manτǫ (πm−1) · ni,
and it follows that Manτǫ (πj) · C is also consistent with τ . Hence, since Avg(C) < −ǫ, a fast forward
operation had occurred in position j (note that it is not possible that Manτǫ (πj) was obtained after
a rewind operation, since j is the first index for which Manτǫ (πj) = Manτǫ (πm)). So by definition,
a fast forward operation and not a simulation operation must occur. Hence it is not possible that
Manτǫ (πj) = Manτǫ (πm), since at the very least, Manτǫ (πm) ·C is a prefix of Manτǫ (πj). Thus, for every
j < m we have Manτǫ (πj) 6= Manτǫ (πm), and the contradiction (to the existence of j) is obtained.

We now complete the proof of the lemma using the claim. We note that the difference between πm

and Manτǫ (πm) contains only (i) cycles with negative weight that were added to Manτǫ (πm) (by fast
forward operation) or (ii) cycles with average weight at most −ǫ and length at most |πm| that were
chopped from Manτǫ (πm) (by rewind operation). The desired result follows. ⊓⊔

We now show that from a winning strategy for the objective LimInfAvg ≥ 0, the strategy obtained
using manipulated operation is winning for the objective LimSupAvg ≥ −2 · ǫ.

Lemma 24 Let τ be a winning strategy (a general winning strategy, not necessarily modular) for the
objective LimInfAvg ≥ 0. Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following
way: for a history π′ we have σ(π′) = τ(Manτǫ (π

′)). Then σ is a winning strategy for the objective
LimSupAvg ≥ −2 · ǫ.

Proof. Let π be a play consistent with σ, and let πm be the play prefix until position m. We consider
two cases to complete the proof.

1. In the first case, there exists a constant n0 ∈ N such that for infinitely many indices m1,m2, . . . ,
we have |Manτǫ (πmi

)| ≤ n0. In this case, due to Lemma 23, in positions m1,m2, . . . we get that
w(πmi

) ≥ −n0 ·W − ǫ · |πmi
|. Hence, by definition, LimSupAvg(π) ≥ −ǫ > −2 · ǫ.

2. In the second case, for every i > 0 there exists ℓi ∈ N, such that for every m > ℓi we have
|Manτǫ (πm)| ≥ i. By the definition of the manipulation operations, we get that Manτǫ (πℓi)[0, i] =
Manτǫ (πℓi+1)[0, i], i.e., the prefix up to length i coincides. Denote ρi = Manτǫ (πℓi)[i] the i-th po-
sition of Manτǫ (πℓi). Due to Lemma 22 the infinite play ρ = ρ1ρ2 . . . is consistent with τ . Since
τ is a winning strategy we get that LimInfAvg(ρ) ≥ 0. Hence there exists infinitely many in-
dices m1,m2, . . . for which Avg(Manτǫ (πmi

)) ≥ −ǫ, and therefore, due to Lemma 23, we get that
Avg(πmi

) ≥ −2 · ǫ. Hence by definition of LimSupAvg, we obtain LimSupAvg(π) ≥ −2 · ǫ.

This concludes the proof of the lemma. ⊓⊔

Lemma 25 Given a WRG A, let τ be a modular winning strategy for the objective LimInfAvg ≥ 0.
Let ǫ > 0 be an arbitrary constant. We define a strategy σ in the following way: for a history π′ we
have σ(π′) = τ(Manτǫ (π

′)). Then σ is a cycle independent modular strategy.

27

Proof. In order to verify that σ is a modular strategy, we observe that LocalHistory(Manτǫ (π)) only
depends on LocalHistory(π) and that τ is a modular strategy.

To verify that σ is a cycle independent strategy, we observe that if π and π ·πc are consistent with
σ and πc is a cycle in CycleFree(π) · πc, then Manτǫ (π · πc) = Manτǫ (π) as πc will be chopped by the
rewind operation. ⊓⊔

Lemma 26 Given a WRG A, if there exists a modular winning strategy for the objective LimInfAvg ≥
0 for player 1, then there exists a cycle independent modular winning strategy for the objective for
player 1.

Proof. Let τ be a modular winning strategy for the objective LimInfAvg ≥ 0. For every ǫ > 0, define
the strategy σǫ in the following way: for a history π′ we have σǫ(π

′) = τ(Manτǫ (π
′)). By Lemma 24

and Lemma 25, for every ǫ > 0 we have that σǫ is a cycle independent modular winning strategy for
the objective LimSupAvg > −2 · ǫ. There are only a bounded number of cycle independent modular
strategies (by Observation 1), thus there is an optimal cycle independent modular strategy, and it
must be the case that it is a winning strategy for the LimSupAvg ≥ 0 objective (otherwise it does not
win for the objective LimSupAvg > −ǫ for some ǫ > 0). Let σ be that strategy. Let Aσ be the player-2
WRG obtained given the strategy σ. As σ is a winning strategy for the objective LimSupAvg ≥ 0, then
due to Lemma 21 and Lemma 20, the graph Aσ does not have a negative non-decreasing cycle. Hence
due to Lemma 21 and Lemma 20, the strategy σ is winning also for the objective LimInfAvg ≥ 0. This
completes the proof of the result. ⊓⊔

The next theorem is an immediate consequence of Lemma 26.

Theorem 7 Given a WRG A, the problem of deciding if player 1 has a modular winning strategy for
the objective LimInfAvg ≥ 0 is decidable.

Proof. By Lemma 26 it is enough to check if player 1 has a cycle independent modular strategy. As
the number of such strategies is bounded (by Observation 1), it is enough to construct the graph
Aτ for every cycle independent modular strategy τ and check if in Aτ there exists a path π with
LimInfAvg(π) < 0 (this check is achieved using the algorithms of Section 2). ⊓⊔

Objective LimSupAvg ≥ 0. The proof of Lemma 26 shows the following: if player 1 has a modular
winning strategy for LimInfAvg ≥ 0 objective, then he has a cycle independent modular winning
strategy for the LimSupAvg ≥ 0 objective, which is also a cycle independent modular winning strategy
for the LimInfAvg ≥ 0 objective. However, it does not imply that an arbitrary modular winning strategy
for the LimSupAvg ≥ 0 objective can be transformed into a winning strategy for the LimInfAvg ≥ 0
objective, or that it can be transformed into a cycle independent modular strategy. The key ingredient
that is missing is that it does not establish that if there is a modular winning strategy for LimSupAvg ≥
0 objective, then there is a cycle independent modular winning strategy for LimSupAvg ≥ 0 objective.
We establish this fact now. The proof for the objective LimSupAvg ≥ 0 will reuse many parts of
the proof for the objective LimInfAvg ≥ 0, however, some parts of the proof are different and we
present them below. In fact we show that for modular winning strategies the objective LimSupAvg ≥ 0
coincides with the objective LimInfAvg ≥ 0. For the proof we need the notion of non-negative cycle
free local history, which we define below.

Non-negative cycle free local history operator. Consider a WRG A and let τ be a modular
strategy, and π be a path in A, consistent with τ , that begins at the entry of module Ai and ends at
module Ai (in the same stack height). The non-negative cycle free local history operator is defined as
follows:

1. For |LocalHistory(π)| = 1 we have NonNegCFLocalHistoryτ (π) = LocalHistory(π).
2. For |LocalHistory(π)| > 1, let π = π0vi such that NonNegCFLocalHistoryτ (π0) = u0u1 . . . um. Let

j ∈ {0, . . . ,m} be the first index such that uj = vi, and every sub-play π∗ consistent with τ with
local history ujuj+1 . . . umvi is a cycle with non-negative total weight. If such index j exists, then
NonNegCFLocalHistoryτ (π) = u0 . . . uj, otherwise NonNegCFLocalHistoryτ (π) = u0u1 . . . umvi.

Informally, the NonNegCFLocalHistoryτ operator removes cycles that are ensured to have non-negative
total weight from the local history.

28

Non-negative cycle independent modular strategy. Given a modular strategy τ , the non-
negative cycle independent modular strategy σ of τ , is defined as follows: For a local history ρ we
have σ(ρ) = τ(NonNegCFLocalHistoryτ (ρ)). We now present some notations required for the proofs.

Sure non-negative cycle and proper simple cycle. Given a modular strategy τ , a path π = v0v1 . . . vm
is a sure non-negative cycle if π is a proper cycle consistent with τ , and every path π′ consistent with
τ such that LocalHistory(π) = LocalHistory(π′) is a proper cycle with non-negative weight. A path π
is a proper simple cycle if π is a proper cycle, and LocalHistory(π) is a simple cycle.

Lemma 27 If τ is a modular winning strategy for the objective LimSupAvg ≥ 0, then the non-negative
cycle independent modular strategy σ of τ is also a winning strategy for the objective LimSupAvg ≥ 0.

Proof. The proof is essentially similar to the proof of the result for the objective LimInfAvg ≥ 0, and
we present a succinct argument (as it is very similar to the previous proofs for LimInfAvg ≥ 0). As
previously, we define the manipulated operations on histories such that every sure non-negative cycle is
chopped (by the rewind operation) from the history. By definition, the non-negative cycle independent
strategy σ of τ makes choices according to the choices of τ on the manipulated history. The weight of
the manipulated history, in every position, is at most the weight of the original history, since only non-
negative cycles are chopped. By similar arguments to those presented in Lemma 24, we get that the
LimSupAvg of the original history is at most 0, and thus the non-negative cycle independent strategy
σ of τ is a winning strategy. ⊓⊔

In the following lemmas we establish that for modular strategies the objectives LimSupAvg ≥ 0
and LimInfAvg ≥ 0 coincide.

Lemma 28 Given a WRG A, let σ be a non-negative cycle independent modular strategy. Let Ai be
a module in A. Then there exist nσ ∈ N and δσ > 0, such that for every possible non-negative cycle
free local histories h0 and h1 of the module Ai, and for every sub-play ρ, consistent with σ such that

– ρ is a proper cycle with negative weight; and
– the non-negative cycle free local history of Ai before (resp. after) ρ was played is h0 (resp. h1);

there exists a sub-play ρh0,h1 , consistent with σ and that satisfies the items above, such that every play
prefix of ρh0,h1 with length at least nσ has an average weight of at most −δσ.

Proof. Let (b1, n1), . . . , (bm, nm) be the pairs of all boxes and their return nodes that appear in module
Ai. For every pair (bj , nj), let πbj ,nj

be one of the shortest plays, consistent with σ, with minimal
weight from bj to nj . If such a path exists we denote w(bj ,nj) = w(πbj ,nj

). Let X be the maximal such
weight. W.l.o.g all the weights of the edges that occur in Ai are at most X , and X ≥ 0.

For every bj , nj such that there exists a play from bj to nj consistent with σ, but a minimal-weight
play does not exist, we denote by πbj ,nj

one of the shortest plays consistent with σ that leads from bj
to nj with weight at most −20 · |Vi| ·X , (where |Vi| is the size of the vertex set in Ai). Let Π be one
of the longest plays among all πbj ,nj

. Let ρ be a sub-play consistent with σ such that ρ is a proper
cycle in module Ai with negative weight. Let h0 (resp. h1) be the non-negative cycle free history of
Ai before (resp. after) playing ρ.

First, we form ρ′ from ρ by removing all the sure non-negative cycles from ρ. Clearly, (i) the sum
of weights of ρ′ is negative; and (ii) ρ′ is consistent with σ, because ρ is consistent with σ and σ is
a non-negative cycle independent strategy. Moreover, the non-negative cycle free local history after
playing ρ′ is the same as after playing ρ. Next we form ρ′′ from ρ′ by replacing every sub-play from bj
to nj (such that nj is the first time the sub-play enters Ai) in ρ′ with πbj ,nj

. Again, ρ′′ is consistent
with σ, since σ is a modular strategy. In addition, the local history of Ai was not changed at all.

We claim that ρ′′ does not contain simple proper non-negative cycles in module Ai. Indeed, towards
a contradiction let v1v2 . . . vm be the local history of the first such cycle (note that m ≤ |Vi|). Note that
if the cycle contains a sub-play πbj ,nj

such that w(bj ,nj) = −20 · |Vi| ·X , then the sum of the weights
of the cycle cannot be non-negative. Hence it follows that this cycle is the cycle with minimal weight
among all simple cycles with local history v1v2 . . . vm. Hence this cycle is sure non-negative, which
contradicts the fact that v1v2 . . . vm is a local history of sub-play of ρ′′. Thus for every simple proper
cycle in ρ′′ the sum of the weights of the cycle is negative. Moreover, the length of every simple proper
cycle in ρ′′ is at most |Vi| · |Π |. Hence every sub-play of ρ′′ with length at least nσ = (|Vi| · |Π | ·X)2

will have an average weight of at most −δσ = − 1
|Vi|·|Π|·X . Note that nσ and δσ do not depend on ρ,

and hence the desired result follows. ⊓⊔

29

Lemma 29 Let σ be a non-negative cycle independent modular strategy. If there exists a play ρ
consistent with σ such that the suffix of ρ is an infinite sequence of proper cycles C1, C2, . . . with
negative weights, then σ is not a winning strategy for the objective LimSupAvg ≥ 0.

Proof. Let ρ = ρ0C1C2 . . . Ci . . . , and let Ai and ni be the module and the vertex, respectively, that all
the cycles begin and end in. Let nσ, δσ be the constants from Lemma 28. Let hi

0 be the non-negative
cycle free local history of Ai before cycle Ci is played, and hi

1 be the non-negative cycle free local
history of Ai after cycle Ci is played. By Lemma 28, for every cycle Ci there exists a cycle Chi

0,h
i
1

consistent with σ, with negative weight, and the average weight of every sub-play of Chi
0,h

i
1
longer

than nσ is at most −δσ. The play ρ′ = ρ0C1C2 . . . Ci−1Chi
0,h

i
1
Ci+1 . . . is consistent with σ, since Chi

0,h
i
1

is consistent with the initial non-negative cycle free local history hi
0, and the non-negative cycle free

local history after playing Chi
0,h

i
1
is hi

1. Since σ is a non-negative cycle independent strategy, the play
ρ∗ = ρ0Ch0

0,h
0
1
Ch1

0,h
1
1
. . . Chi

0,h
i
1
. . . is consistent with σ. On the other hand, it is straightforward to

verify that we have LimSupAvg(ρ∗) ≤ max{− 1
nσ

,−δσ} < 0. Hence σ is not a winning strategy for the
objective LimSupAvg ≥ 0, and the desired result follows. ⊓⊔

Lemma 30 If player 1 has a modular winning strategy for the objective LimSupAvg ≥ 0, then for every
ǫ > 0, player 1 has a cycle independent modular winning strategy σ for the objective LimSupAvg ≥ −ǫ.

Proof. Let τ∗ be a modular winning strategy for the objective LimSupAvg ≥ 0, and let τ be the
non-negative cycle independent strategy of τ∗. For ǫ > 0, consider the cycle independent modular
strategy σ such that for histories π we have σ(π) = τ(Manτǫ (π)). By Lemma 28 the strategy τ is also
a winning strategy. We note that all the arguments for the objective LimInfAvg ≥ 0 also hold for the
objective LimSupAvg ≥ 0, other than the inequality (mentioned as footnote) in Lemma 22. We replace
the inequality (mentioned as footnote) of Lemma 22 with Lemma 29, and repeat exactly the same
arguments for the objective LimInfAvg ≥ 0 (up to Lemma 26) to obtain the desired result. ⊓⊔

We obtain the following result as a corollary, and all the desired results follow for the objective
LimSupAvg ≥ 0.

Corollary 3 Given a WRG A, there exists a modular winning strategy for the objective LimSupAvg ≥
0 iff there exists a modular winning strategy for the objective LimInfAvg ≥ 0.

Comment on LimSupAvg and LimInfAvg coincide. We have showed in Example 2 that in pushdown
games with arbitrary strategies LimSupAvg and LimInfAvg do not coincide, whereas in contrast in
Corollary 3 we show that they coincide for modular strategies. The key reason that they do not coincide
for arbitrary strategies is due to infinite-memory strategies, which makes it possible to construct paths
(that are not ultimately periodic) where LimSupAvg and LimInfAvg do not coincide. Our results for
WPS (weighted pushdown systems, or only one-player pushdown games) show that if there is only one-
player (the opponent) then LimSupAvg and LimInfAvg coincide, even though infinite-memory strategies
can be used. Our results for modular strategies establish that even if the opponent is allowed infinite-
memory strategies, memoryless modular winning strategies exist. Since once a memoryless modular
winning strategy is fixed, we obtain a WPS where LimInfAvg and LimSupAvg coincides, we obtain the
result of Corollary 3.

4.2 Modular winning strategy problem in NP

In this section we will show that the modular winning strategy problem is in NP. Informal de-

scription of the solution. Our solution relays on the notion of strategy signature. The signature of
a strategy is defined for every couple of nodes (in the same module) and stands for the weight of the
worst-case path (w.r.t all possible histories) that exists between the two nodes, which is consistent
with the strategy. The intuition is that if two strategies has the same signature, then they obtain the
same mean-payoff value. This intuition need not hold in the general case, but we prove that it does
hold if one strategy is modular and cycle-independent and the second strategy is memoryless. Finally,
the NP solution is to guess a signature and a memoryless strategy that realizes the signature, and
to verify (in polynomial time) that the memoryless strategy is winning. We formalize the intuition
with the next lemmas: In Lemma 31 we show how to verify that a signature can be realized, and in
Lemma 32 we show that a realizable signatures can be realized by memoryless strategies. In Lemma 33

30

we show that a cycle-independent modular winning strategy has a signature of polynomial size (and
thus, we can guess one), and in Lemmas 34-35 we prove that a memoryless strategy that has the same
signature as a cycle-independent modular winning strategy is also a winning strategy.

The signature game. Let G = ((V,E), (V1, V2)) be a finite two-player game graph (on finite directed
graph (V,E)) with vertex set V , edge set E, and partition (V1, V2) of the vertex set into player-
1 (resp. player-2) vertex set V1 (resp. V2). Let the game graph be equipped with a weight function
w : E → Z∪{−ω}. Let the initial vertex be v0 ∈ V . Let ν = (ν0, . . . , ν|V |−1) be a threshold vector such
that all νi ∈ Z ∪ {+∞,−ω} (equivalently, ν is a mapping from V to Z ∪ {+∞,−ω} with ν(vi) = νi).
The weight of a finite path in G is the sum of the edge weights of the path, according to the following
convention: −ω + z = −ω, for any z ∈ Z ∪ {−ω}. A signature game is defined with respect to the
mapping vector ν and consists of a tuple (G,ν), where G is a two-player game graph, and ν is the
threshold vector. For a play ρ = ρ0ρ1ρ2 . . . ρjρj+1 . . . , player 1 is the winner if both the following two
conditions hold:

– The play ρ does not contain a negative cycle, or a cycle that has an edge with weight −ω.

– For every j ∈ N, w(ρ0ρ1ρ2 . . . ρj) ≥ ν(ρj), according to the convention (i) −ω < z for every z ∈ Z,
and (ii) z,−ω < +∞ for every z ∈ Z. In other words, the sum of the weights up to any index j
must be at least ν(ρj), and no −ω-edge must be visited unless ν(ρj) = −ω.

We will consider signature games such that if νi ∈ Z, then νi ≥ −2 ·W · |V |, where W is the maximum
absolute values of the integer weights in graph G. If for a vertex v, the threshold value is +∞, then
to ensure winning player 1 must ensure that v is never visited. In other words, vertices with +∞
threshold must be avoided (it can be interpreted as a safety objective with +∞ vertices as non-safe
vertices to be avoided). Our first goal is to show that memoryless winning strategies exist in signature
games, and the result will be obtained by a reduction to finite-state mean-payoff games. Given a
signature game (G,ν) we define an auxiliary finite-state mean-payoff game as follows.

From signature game (G,ν) to auxiliary mean-payoff game Gν . Given a signature game (G,ν)
we construct a finite-state auxiliary mean-payoff game Gν = ((V ,E), (V 1, V 2)), with a weight function
w as follows: let the signature game graph be G = ((V,E), (V1, V2)) and the weight function in G be
wG. Then we have the following components in the auxiliary game:

– (Vertex set and partition). V = V × {1, 2}; and V 1 = V1 × {1}.
– (Edges). E = {((u, 1), (v, 2)) | (u, v) ∈ E} ∪ {((v, 2), (v, 1)) | v ∈ V } ∪ {((vi, 2), (v0, 1)) | vi ∈

V, νi 6= −ω}.
– (Weight function). If wG(u, v) 6= −ω, then w((u, 1), (v, 2)) = wG(u, v); otherwise (we have

wG(u, v) = −ω) we set w((u, 1), (v, 2)) = −10 ·W · |V |. Moreover, w((vi, 2), (v0, 1)) = −νi and all
the other edges are assigned with zero weight. Note that if νi = +∞, then w assigns weight −∞,
and to win player 1 must avoid such edges (can be interpreted as a safety condition).

Informally, the auxiliary mean-payoff game is constructed from the signature game by adding for every
vertex vi a fresh copy (vertex (vi, 2) and the original vertex is represented as (vi, 1)), and an option
for player 2 to return to the initial vertex (v0, 1) “paying” cost −νi (whenever νi 6= −ω). Thus, if at
any position of the play the current vertex is (vi, 2), and the sum of the weights since the last visit to
(v0, 1) is less than νi, then player 2 can ensure that a negative cycle is completed. The mean-payoff
objective of player 1 is to ensure non-negative average payoff. Also note that player 1 must avoid the
−∞ edge weights, and equivalently it can be treated as a mean-payoff safety game. In the following
lemma we establish the relation of the signature game and the auxiliary game.

Lemma 31 Let (G,ν) be a signature game such that νi ≥ −2 ·W · |V | for every νi ∈ Z, and let Gν

be the corresponding auxiliary mean-payoff game. Then the following statements are equivalent:

1. Player 1 is the winner in the auxiliary mean-payoff game Gν (i.e., player 1 can ensure non-negative
mean-payoff).

2. Player 1 has a memoryless winning strategy in the signature game (G,ν).

3. Player 1 is the winner in the signature game (G,ν).

Proof. We first prove that item 1 implies item 2.

31

1. In order to prove that item 1 implies item 2, let us assume that player 1 is the winner in the
auxiliary mean-payoff game. Note that the auxiliary mean-payoff game is equivalently a finite-
state mean-payoff safety game, and therefore player 1 has a memoryless winning strategy τ in the
auxiliary mean-payoff game [22] (a mean-payoff safety game is easily transformed to a mean-payoff
game by making the non-safe vertices absorbing with negative weights). Hence the memoryless
strategy τ ensures that edges with weight −∞ are never visited. Towards a contradiction, let us
assume that τ is not a winning strategy for the signature game (note that τ is also a well-defined
player-1 strategy in the signature game choosing edges in copy 1 according to τ). Therefore one
of the following two cases occur.

– Case 1: There exists a finite play prefix ρ that is consistent with τ , which starts from the initial
vertex v0 to some vertex vi ∈ V with sum of weights less than νi. In this case, either ρ goes
through an −ω edge, or wG(ρ) < νi. If ρ goes through an −ω edge in G, then the weight of ρ in
Gν is at most −9·W ·|V |, since w.l.o.g we can assume that ρ does not have positive cycles (as τ
is memoryless). As −9 ·W · |V | < νi, it follows that the path (ρ · ((vi, 2), (v0, 1)))ω is consistent
with τ and has a negative mean-payoff in the auxiliary game. This contradicts the assumption
that τ is a winning strategy. If ρ does not go through an −ω edge, then wG(ρ) < νi and again
(ρ ·((vi, 2), (v0, 1)))ω is consistent with τ and has a negative mean-payoff in the auxiliary game.
This is again a contradiction that τ is a winning strategy, and concludes the proof of the first
case.

– Case 2: There exists a finite play prefix ρ = ρ1 · ρ2 that is consistent with τ , such that ρ2 is a
negative cycle (or a cycle with −ω edge) in the signature game graph. If ρ2 does not contain
an −ω edge e, then by definition, ρ2 is a negative cycle also in the auxiliary game. Otherwise,
ρ2 contains an −ω edge e, and then again ρ2 is a negative cycle in the auxiliary game, as
w.l.o.g we can assume that ρ2 does not contain positive cycles, and since w(e) ≤ −10 ·W · |V |.
Thus the play ρ1 · (ρ2)

ω is consistent with τ and has a negative mean-payoff in the auxiliary
game. This contradicts the assumption that τ is a winning strategy, and completes the proof.

2. Item 2 trivially implies item 3.
3. We now show that item 3 immediately implies item 1. It is straightforward to verify that if player 1

plays according to the signature game winning strategy in every position, then a negative cycle
will not be formed in the auxiliary game (as a negative cycle is not formed in the signature game,
and the threshold vector is always satisfied in the signature game) and a vertex with threshold
+∞ will never be reached. Hence the mean-payoff of the play in the auxiliary mean-payoff game
will be non-negative and −∞ edges will never be visited. This shows that item 3 implies item 1.

This completes the proof. ⊓⊔

Lemma 32 Let (G,ν) be a signature game such that νi ≥ −2 · W · |V | for every νi ∈ Z. There is
a winning strategy for player 1 in the signature game (G,ν) iff player 1 has a memoryless winning
strategy.

Proof. Follows from Lemma 31. ⊓⊔

Remark 5. The result of Lemma 32 holds for all thresholds νi, but we consider νi ≥ −2 ·W · |V | for
simplicity of the proof.

Signature games to memoryless modular strategies. We will now use the existence of cycle
independent modular winning strategies, and memoryless winning strategies in signature games to
show the existence of memoryless modular strategies. For simplicity we will consider recursive game
graphs where every module has a single entry, and a simple polynomial reduction from multi-entry
recursive game graphs to single entry recursive game graphs is established in [7]. To prove the result
of memoryless modular strategies we define the signature games for modular strategies.

Signature games for modular strategies. Consider a WRG A = 〈A1, A2, . . . , An〉 and let τ =
{τi}ni=1 be a modular strategy. Consider a module Ai in A. Let b ∈ Bi be a box in module Ai, which
invokes the module Aj , and let ni ∈ Ni be a node in module Ai that is connected to one exit of Aj ,
which is reachable according to the strategy τ . We denote by wτ

b,ni
the minimal weight of all plays

according to τ that begins at the call to box b and ends at ni (in the same stack height), and do not
visit any other vertices in Ai (in the same stack height). If such a minimal-weight play does not exist,
then let wτ

b,ni
= −ω. For every module Ai, we form a finite-state two-player game graph GAi

, with a

32

weight function as follows: (i) in the module Ai we add an edge from every box b to every return node
ni with weight wτ

b,ni
, and add a self loop, with weight 0, to every exit node; and (ii) every box is now

interpreted as a player-2 vertex. Note that the local strategy τi is a well-defined player-1 strategy in
the game graph GAi

. For a vertex v ∈ Vi, (i) if v is visited along a play consistent with τi, then let
ηv denote the maximal value such that in every position of a play according to τi on GAi

, that begins
in the entry node of Ai, and is currently at vertex v ∈ Vi, the sum of weights from the beginning of
the play is at least ηv; and (ii) otherwise, v is never visited along all plays consistent with τi, then
ηv = +∞ (note that this is like a safety condition to ensure that v is not visited). The signature game
for τ on module Ai consists of the game graph GAi

and the threshold vector νi ∈ ({−ω,+∞}∪Z)|Vi|,
such that νiv = ηv for all vertices v ∈ Vi. We denote by (GAi

,νi, τ) the signature game obtained
given the modular strategy τ on module Ai. We first give an example that illustrates the connection
between signature games and cycle independent modular winning strategies. We establish some basic
properties in Lemma 33, and then in Lemma 34 we establish properties of the winning strategies in
the signature games from modular strategies.

Example 4 Consider the RSM 〈A0, A1〉 (shown in Figure 8) and a player-1 modular strategy τ =
{τ0, τ1} such that in module A0 the strategy τ0 always selects v4 → v5 if the play visited v3 and
otherwise it always invokes A1, and in module A1, the strategy τ1 selects the upper exit (denoted by
Ex1) if u3 is visited (in the current invocation of A1) and otherwise it selects the lower exit (denoted
by Ex 2). The strategy τ is a cycle independent strategy, but it is not a memoryless strategy. In a play
according to τ if the upper exit of A1 is reached, then the path En1 → u1 → u3 → Ex 2 with weight
−1 is played, and if the lower exit is reached, then the weight of the sub-play is 1. Hence, if in module
A0, vertex v4 invokes A1, then if the upper exit of A1 is reached, then the play continues to v5 and
from there to v4 and a cycle with weight 0 is formed. If the lower exit of A1 is reached, then the play
continues to v4 and a cycle with weight 1 is formed. If in v4 the player-1 move is v4 → v5, then
the play continues to v4, and a cycle with weight 0 is formed. Therefore, the strategy τ ensure that
mean-payoff is at least 0.

The corresponding signature game is illustrated in Figure 9. Note that the box that invokes A1 is
replaced by bA1 . We note that player 1 has to decide on the next move only in u4 in A1 and in v4
in A0. Hence, the strategies τ0 and τ1 are well defined over GA0 and GA1 , respectively. The strategy
τ1 ensures the following signature over GA1 : ν

0 = 0, ν1 = 0, ν2 = 7, ν3 = 6, ν4 = 6, ν5 = −1, ν6 = 1
and the strategy τ0 ensures the following signature over GA0 : ν

0 = 0, ν1 = 0, ν2 = 1, ν3 = −1, ν4 =
2, ν5 = 7, νbAi = 2, ν6 = 1, ν7 = 3. The same signatures are satisfied by a memoryless strategy that
always selects u4 → u5 in GA1 and v4 → bA1 in GA0 . The corresponding memoryless strategy in A1

is to select the upper exit in u4 and in A0 is to invoke A1 when in v4. It is easy to verify that this
memoryless strategy is a winning strategy in the recursive game for the mean-payoff objective.

33

u1

u2

u3

u4

A1
0

7

6 0

0 −7

−6

A0

v1

v2

v3

v4

A1

v5

0

6
−5

0

1

−1 3

7 0

5

Fig. 8. RSM with two modules (A0 and A1). Player 1 controls the round vertices and the rest of the vertices
are controlled by player 2.

u1

u2

u3

u4GA1
u0

u5

u6

0
7

6 0

0 −7

−6

v0GA0
v1

v2

v3

v4

bA1

v6
v7

v5

0

6
−5

−1

1
0

1

−1 3

7 0

5

Fig. 9. GA0 and GA1 are the corresponding signature games for module A0 and A1 from Figure 8.

Lemma 33 Let A be a WRG. If τ is a cycle independent modular winning strategy for the objective
LimInfAvg ≥ 0, then for every module Ai the following assertions hold:

– τi is a winning strategy for the signature game (GAi
,νi, τ); and

– the integer coefficients of νi are at least −2 ·W · |Vi|.

Proof. The first fact of the lemma follows from the facts that every path according to τi has sum
of weights at least νi and does not contain negative cycles (by the definition of the signature game
given τ , since τ is a winning strategy). The second fact of the lemma follows from the fact that every
path according to τi does not contain negative cycles, as τi is a cycle independent modular winning
strategy. ⊓⊔

Lemma 34 Let A be a WRG. Let τ = {τi}ni=1 be a cycle independent modular winning strategy in
A for the objective LimInfAvg ≥ 0. Let σ = {σi}ni=1 be a modular strategy such that σi is a winning
strategy for the signature game (GAi

,νi, τ). Then for every play ρσ, consistent with σ, which starts
from the entry node of a module Ai to a node n in the same module (and possibly goes through box
nodes), there exists a play ρτ , consistent with τ , from the same entry node to the same node n, such
that w(ρσ) ≥ w(ρτ). In addition, the path ρσ does not contain a negative proper cycle.

Proof. The proof is by induction on the additional stack height of ρσ.

34

– Base case: Additional stack height is 0. In this case the play ρσ have only edges from Ai, and the
weight of the play is identical to the weight of the same play in (GAi

,νi, τ). The play ρσ does not
visit a vertex with threshold +∞, otherwise σi would not be a winning strategy in the signature
game (GAi

,νi, τ). Hence, by definition, there exists a play ρτ , consistent with τ from the entry
node to n with weight at most νin. Since σi is a winning strategy in the signature game, and ρσ

is consistent with σi, we get that w(ρσ) ≥ νin. Therefore w(ρσ) ≥ w(ρτ). Since σi is a winning
strategy in the signature game, and the path ρσ is consistent with σi also in graph GAi

, we get
that ρσ does not contain negative cycles.

– Inductive step: Additional stack height > 0. For simplicity, we first assume that ρσ goes only
through one box node in the module Ai (in the first stack level). Let node b be that box, and let
node u ∈ Ai be the return node in that path. Let ρσb,u be the sub-play from the entry node of b to
node u. Recall that wτ

b,u is the minimal weight among all plays consistent with τ between b and
u. Let Aj be the module invoked by b, and let u′ be the exit node that leads to the return node
u in Ai. As the additional stack height from the entry node of Aj to u′ is strictly smaller than
the additional stack height of ρσ, it follows from the inductive hypothesis that there exists a path
consistent with τ between these two nodes with weight at most w(ρσb,u). Hence wτ

b,u ≤ w(ρσb,u).
Thus, the weight of ρσ is bounded from below by the induced path of ρσ over the signature
game (GAi

,νi, τ). Thus, by the definition of the signature game there exists a path ρτ as desired.
In addition, by the inductive hypothesis, the path ρσb,u does not contain proper negative cycles,
and by the same arguments as above, there is also no negative proper cycle in module Ai. The
case where ρσ goes through more then one box, is a straightforward extension of the argument
presented above.

Thus we have the desired result. ⊓⊔

Lemma 35 Let A be a WRG. Let τ = {τi}ni=1 be a cycle independent modular winning strategy in
A for the objective LimInfAvg ≥ 0. Let σ = {σi}ni=1 be a memoryless modular strategy such that σi is
a memoryless winning strategy for the signature game (GAi

,νi, τ). Then σ is a memoryless modular
winning strategy in A for the objective LimInfAvg ≥ 0.

Proof. Let Aσ be the player-2 WRG obtained by fixing the memoryless modular strategy σ in A.
Assume towards a contradiction that Aσ has a reachable non-decreasing negative cycle C, and let ρ
be a finite path that leads to the first vertex of C. By Lemma 34 it follows that C cannot be a proper
cycle.

First, we argue that in A there exists a finite path ρτ from the first vertex of ρ to the last vertex
of ρ that is consistent with τ . Indeed, by Lemma 34, between every entry node and box node in ρ
there exists a path consistent with τ , and finally there also exists such a path between the last entry
node and the last node of ρ.

Second, to achieve the contradiction we will show that τ is not a winning strategy. Let e1 be the
first entry node in C (it must exist as C is not a proper cycle), and ni be the last (and the first) node in
C (note that C is not a proper cycle, and hence this node is well defined). Note that for every m ∈ N,
the path Cm is a non-decreasing cycle that is consistent with σ (as σ is a memoryless strategy). Let
ρe1,ni

be the path from e1 to ni. Let ρni,e1 be the path from ni to first appearance of e1 in C. We
consider the path ρ∗ = ρe1,ni

· Cm · ρni,e1 , for m = 2 · W · (|ρe1,ni
| + |ρni,e1 |). This is a path that is

(i) consistent with σ, (ii) begins and ends in the entry node e1 of the same module (not necessarily in
the same stack height). Let b1, b2, . . . , bℓ be the boxes that occur in the path. By Lemma 34, for every
k there exists a path ρτbi,bi+1

consistent with τ such that w(ρτbi,bi+1
) ≤ w(ρσbi,bi+1

). Hence there exists
a path ρτ∗ that is consistent with τ from e1 to e1 such that the sum of the weights is negative. As τ
is a modular strategy, and e1 is an entry node, it follows that the path (ρτ∗)

ω is also consistent with
τ , and has a negative mean-payoff. In conclusion, we obtain that there exists a reachable negative
non-decreasing cycle in A consistent with τ , and this contradicts that τ is a winning strategy.

Hence, every path consistent with σ does not contain a negative non-decreasing cycle. By Lemma 20
it follows that σ is a winning strategy in A for the objective LimInfAvg ≥ 0. ⊓⊔

Lemma 36 Let A be a WRG. Player 1 has a modular winning strategy for the objective LimInfAvg ≥ 0
iff there exists a memoryless modular winning strategy for player 1 for the LimInfAvg ≥ 0 objective.

Proof. The proof for the direction from right to left is trivial. The opposite direction is obtained
as follows: by Lemma 26 it follows that if there is a modular winning strategy, then there is a cycle

35

independent modular winning strategy; and by Lemma 35 it follows that if there is a cycle independent
modular winning strategy, then there is a memoryless modular winning strategy. The desired result
follows. ⊓⊔

We are now ready to prove the main result of this section.

Theorem 8 The problem of deciding if player 1 has a modular winning strategy in a WRG A for the
objective LimInfAvg ≥ 0 is in NP.

Proof. By Lemma 36 it is enough to guess a memoryless modular strategy (the memoryless modular
strategy is the polynomial witness) and verify that it is indeed a winning strategy. The verification
can be achieved in polynomial time using the polynomial-time algorithms of Section 2 for WPSs with
mean-payoff objectives. ⊓⊔

Strict inequalities and stack boundedness. Note that by Corollary 3, the results of Lemma 36
and Theorem 8 also hold for the LimSupAvg ≥ 0 objective. For modular strategies we only presented
the result for mean-payoff objectives with non-strict inequalities. The results for strict inequalities
follow from an adaptation of the proofs for non-strict inequalities (for which we prove memoryless
modular strategies are sufficient). In particular, Corollary 3 holds also for strict inequalities, that is,
given a WRG A, there exists a modular winning strategy for the objective LimSupAvg > 0 iff there
exists a modular winning strategy for the objective LimInfAvg > 0. Moreover, the results also follow
for mean-payoff objectives with the stack boundedness condition for the following reason: we observe
that the manipulated operations never increase the stack height. Thus from our results it follow that if
there is a modular winning strategy to ensure the mean-payoff objective along with stack boundedness,
then there is also a memoryless modular winning strategy. Hence the NP upper bound follows for strict
inequalities as well as for stack boundedness.

WRGs with multi-entry modules. We now discuss the implication of our results for WRGs with
modules that have multiple entries. The polynomial-time reduction from multi-entry recursive game
graphs A to single-entry recursive game graphs A′ presented in [7] preserves the winner of the game
for reachability objectives, and we observe that the reduction also preserves the winner for mean-
payoff objectives. Hence, Theorem 8 holds also when modules have multiple entry nodes. However,
the reduction does not preserve memorylessness of modular strategies, i.e., in general a modular
memoryless winning strategy for player 1 in A′ corresponds to a modular strategy that needs memory
over A. In other words, for WRGs with multi-entry modules, though the reduction and Theorem 8
can be used to obtain the NP complexity, the reduction and Lemma 36 do not imply the existence of
memoryless modular winning strategies. In the following example we show that there exist WRGs with
multi-entry modules, where modular winning strategies exist, but there is no memoryless modular
winning strategy (and the example works even for reachability objectives, and when all nodes are
controlled by player 1).

36

u1

A1

A0

A1 A1

v1

v2

−1

1

Fig. 10. RSM with two modules (A0 and A1). Player 1 controls all the vertices.

Example 5 Consider the WRG shown in Figure 10, where player 1 has to make decisions only in
node u1 in module A1 (and all the other nodes have out-degree 1). A player-1 modular winning strategy
in node u1 is to go to the upper exit node if the module is invoked from the lower entry, and otherwise
player 1 chooses the lower exit node. With this strategy the play reaches v2 and the mean-payoff is
1. On the other hand, any play according to a player-1 memoryless modular strategy, namely, either
always go to the upper node or always go to the lower exit node, reaches v1 and has mean-payoff −1.
Hence, in this example, player 1 has a modular winning strategy but not memoryless modular winning
strategy (even for the objective is reachability to v2).

4.3 NP-hardness of the modular winning strategy problem

In this section we establish the NP-hardness of the modular winning strategy problem. Our hardness
result will be for one-player WRGs (player-1 WRGs), where every module will have single exits, and
the weights are {−1, 0,+1}. In other words, our hardness result shows that even a very simple version
of the problem (single exit one-player WRGs with constant weights) is NP-hard.

Reduction. We present a reduction from the 3-SAT problem (satisfiability of a CNF for-
mula where every clause has exactly three distinct literals). Consider a 3-SAT formula
ϕ(x1, x2, . . . , xn) =

∧m
i=1 cl i, over n variables x1, x2, . . . , xn, and m clauses cl1, cl2, . . . , clm. A

literal is a variable xi or its negation ¬xi. We construct a player-1 WRG as follows: Aϕ =
〈A0, x1,¬x1, x2,¬x2, . . . , xn,¬xn, cl1, cl2, . . . , clm〉 in the following way: there is an initial module
A0, there is a module for every literal, and for every clause. We now describe the modules.

Module A0. The module invokes in an infinite loop in sequence the modules cl1, cl2, . . . clm, and all
the transitions in this module have weight zero.

Module for clause cl i. There is an edge from the entry node of module cl i to a box that invokes module
y, for every literal y that appears in the clause cl i. There is also an edge from the return node of y to
the exit node of cl i. All the weights in this module are zero.

Module for literal yi. The entry node of yi has outdegree two (left edge and right edge). The left edge
is the FALSE edge, which leads to the exit node, and has a weight −1. The right edge is the TRUE

edge, which leads to a box that invokes a call for module ¬yi, and its weight is −1. The return of
the box leads to the exit node and the edge weight is +2. The reduction is illustrated pictorially in
Figure 11.

Observation 2 Every path (that is generated by a modular strategy) from the entry node of the module
yi to its exit node, has a total weight of at most 0, hence every path (that is generated by a modular
strategy) from the entry node of module cl i to its exit node, has a total weight of at most 0.

37

cli

+2
-1

-1

cl1 cl2 clm

yj

yℓ

yk

¬yi

yi

A0

Fig. 11. NP-hardness reduction

Lemma 37 There exists a modular winning strategy for player 1 in Aϕ for the objective LimInfAvg ≥ 0
iff ϕ is satisfiable.

Proof. We first observe that every modular strategy in Aϕ is a memoryless modular strategy. Observe
that modular strategy for player 1 is a selection of a literal for every clause module, and selecting
either the TRUE or FALSE edge for every literal module. We now present both directions of the proof.

– Modular winning strategy implies satisfiability. Let τ be a modular winning strategy for player 1,
such that the literal yτi is chosen for clause cl i. First, towards a contradiction, let us assume that
there exists i ∈ {1, . . . ,m} such that τ selects the FALSE edge for module yτi . Hence the weight
of the path inside the module cl i is negative. Thus, due to Observation 2, the mean-payoff value
according to τ is negative. Therefore τ selects the TRUE edge for the module yτi . Next, towards
a contradiction, let us assume that there exist i, j ∈ {1, . . . ,m} such that yτi = ¬yτj and τ selects
the TRUE edge for both modules. In this case, the play will never exit module yτi , and will go
forever through edges with negative weights. Therefore if τ selects the TRUE edge for yτi , then it
does not select the TRUE edge for ¬yτi . Due to the above, the assignment that assigns a true value
to the literal yτi in clause cl i is a valid (non-conflicting) assignment that satisfies ϕ.

– Satisfiability implies modular winning strategy. Let x be a satisfying assignment (a non-conflicting
assignment of truth values to variables) for the formula ϕ. We construct a modular winning
strategy τx as follows. In module cl i, the modular strategy invokes the module yxi , where yxi is
a literal for which x assigns a true value (since x is a satisfying assignment such a literal must
exist). In module yi, follow the TRUE edge if x assigns a true value to the literal yi, and follow
the FALSE edge otherwise. It is straightforward to verify that the mean-payoff of a play according
to τx is zero.

This completes the proof. ⊓⊔

Observe that in the hardness reduction we have used positive weight +2 for simplicity, which can be
split into two edges of weight +1 each. Hence we have the following theorem.

Theorem 9 The modular winning strategy problem is NP-hard for one-player WRGs (player-1
WRGs) with single exit for every module and objective LimInfAvg ≥ 0 with edge weights in {−1, 0,+1}.

Strict inequalities and stack boundedness. We first observe that the above reduction also holds
for LimSupAvg ≥ 0 objective. Moreover, whenever the 3-SAT formula ϕ is satisfiable, then the witness
memoryless modular strategy along with mean-payoff objective also ensures stack boundedness. Hence
the hardness result follows for mean-payoff objectives with non-strict inequalities as well as for stack
boundedness. The result for strict inequality is obtained as follows: we modify the above reduction by
changing the weight of the edge back to the entry node of A0 from 0 to 1. Then if the formula ϕ is

38

satisfiable, then the average payoff for memoryless modular strategies is at least 1
|V | , where |V | is the

number of vertices, and if the formula ϕ is not satisfiable, then the mean-payoff under all memoryless
modular strategies is at most 0. Hence the hardness follows also for mean-payoff objectives with strict
inequalities. We have the following theorem summarizing the results for modular strategies.

Theorem 10 The following assertions hold for WRGs with objectives Φ ⊲⊳ 0, for ⊲⊳∈ {≥, >}, Φ ∈
{LimSupAvg, LimInfAvg}, as well as objectives Φ ⊲⊳ 0 along with stack boundedness.

1. If there is a modular winning strategy, then there is a memoryless modular winning strategy.
2. The decision problem of whether there is a memoryless modular winning strategy is NP-complete.
3. The decision problem is NP-hard for player-1 WRGs with single exit for every module and edge

weights in {−1, 0,+1}.

5 Conclusion

In this work we study for the first time mean-payoff objectives in pushdown games and present a
complete characterization of computational and strategy complexity. We show that pushdown systems
(one-player pushdown games) with mean-payoff objectives under global strategies can be solved in
polynomial time, whereas pushdown games with mean-payoff objectives under global strategies are
undecidable. For modular strategies both pushdown systems and pushdown games with mean-payoff
objectives are NP-complete. We also show that global strategies for mean-payoff objectives in general
require infinite memory even in pushdown systems; whereas memoryless strategies suffice for modular
strategies for mean-payoff objectives. An interesting direction of future work would be to consider
such games with multi-dimensional mean-payoff objectives.

References

1. S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted automata? In ATVA, pages
482–491, 2011.

2. S. Almagor, U. Boker, and O. Kupferman. Formally Reasoning About Quality. In Journal of the ACM,
to appear.

3. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M. Yannakakis. Analysis of recursive
state machines. ACM Trans. Program. Lang. Syst., 27(4):786–818, 2005.

4. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of the ACM,
49:672–713, 2002.

5. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In CAV, pages 207–220,
2001.

6. R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for infinite games on recursive graphs. In
CAV, pages 67–79, 2003.

7. R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for recursive game graphs. Theor. Comput.

Sci., 354(2):230–249, 2006.
8. R. Bloem, K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Better quality in synthesis through quan-

titative objectives. In CAV, pages 140–156, 2009.
9. R. Bloem, K. Greimel, T. A. Henzinger, and B. Jobstmann. Synthesizing robust systems. In FMCAD,

pages 85–92, 2009.
10. U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal specifications with accumulative

values. In LICS, pages 43–52, 2011.
11. T. Brázdil, V. Brozek, V. Forejt, and A. Kucera. Reachability in recursive Markov decision processes. Inf.

Comput., 206(5):520–537, 2008.
12. T. Brázdil, V. Brozek, A. Kucera, and J. Obdrzálek. Qualitative reachability in stochastic BPA games.

Inf. Comput., 209(8):1160–1183, 2011.
13. J.R. Büchi. Regular canonical systems. Archive for Mathematical Logic 6(3), pp. 91111, 1964.
14. J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-state strategies. Transactions of

the AMS, 138:295–311, 1969.
15. K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM Trans. Comput. Log., 11(4),

2010.
16. K. Chatterjee, A. Pavlogiannis, and Y. Velner. Quantitative interprocedural analysis. In POPL, 2015.
17. K. Chatterjee, T. A. Henzinger, B. Jobstmann and R. Singh. Measuring and Synthesizing Systems in

Probabilistic Environments. Journal of the ACM, 2015.

39

18. H. Chen and D. Wagner. Mops: an infrastructure for examining security properties of software. In
Proceedings of ACM Conference on Computer and Communications Security, pages 235244, 2002.

19. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
2001.

20. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. In EMSOFT, LNCS
2211, pages 148–165. Springer, 2001.

21. M. Droste and I. Meinecke. Describing average- and longtime-behavior by weighted MSO logics. In MFCS,
pages 537–548, 2010.

22. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. Int. Journal of Game

Theory, 8(2):109–113, 1979.
23. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In FOCS’88, pages

328–337. IEEE, 1988.
24. E.A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In FOCS, pages 368–377.

IEEE, 1991.
25. K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive stochastic games. In

ICALP’05, LNCS 3580, Springer, pages 891–903, 2005.
26. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and monotone systems

of nonlinear equations. J. ACM, 56(1), 2009.
27. K. Etessami and M. Yannakakis. Recursive Markov Decision Processes and Recursive Stochastic Games.

J. J. ACM, 2015.
28. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current

Research, LNCS 2500. Springer, 2002.
29. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages 60–65. ACM Press,

1982.
30. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre and W. Weimer. Temporal-safety proofs

for systems code. In CAV’02, pages 526–538, 2002.
31. T. A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information and Computation,

173:64–81, 2002.
32. M. Jurdzinski. Deciding the winner in parity games is in UP ∩ co-UP. Information Processing Letters,

68(3):119–124, 1998.
33. R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Mathematics, 23:309–

311, 1978.
34. D Krob. The equality problem for rational series with multiplicities in the tropical semiring is undecidable.

In ICALP, pages 101–112, 1992.
35. T. A. Liggett and S. A. Lippman. Stochastic games with perfect information and time average payoff.

Siam Review, 11:604–607, 1969.
36. R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied Logic, 65:149–184,

1993.
37. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190. ACM Press,

1989.
38. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-event processes. SIAM

Journal of Control and Optimization, 25(1):206–230, 1987.
39. T. Reps, S. Horwitz and M. Sagiv. Precise Interprocedural Dataflow Analysis via Graph Reachability In

POPL, pages 49–61. ACM Press, 1995.
40. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, volume 3, Beyond

Words, chapter 7, pages 389–455. Springer, 1997.
41. I. Walukiewicz. Model checking CTL properties of pushdown systems. In FSTTCS, pages 127–138, 2000.
42. I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164(2):234–263, 2001.
43. M. Yannakakis. Graph-theoretic methods in database theory. In PODS, pages 230–242, 1990.
44. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.

In Theoretical Computer Science, volume 200(1-2), pages 135–183, 1998.
45. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical Computer

Science, 158:343–359, 1996.

40

