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Abstract

We study on which classes of graphs first-order logic (fo) and monadic second-order logic (mso)

have the same expressive power. We show that for all classes C of graphs that are closed under taking

subgraphs, fo and mso have the same expressive power on C if, and only if, C has bounded tree depth.

Tree depth is a graph invariant that measures the similarity of a graph to a star in a similar way that

tree width measures the similarity of a graph to a tree. For classes just closed under taking induced

subgraphs, we show an analogous result for guarded second-order logic (gso), the variant of mso

that not only allows quantification over vertex sets but also over edge sets. A key tool in our proof is

a Feferman–Vaught-type theorem that is constructive and still works for unbounded partitions.

Keywords: first-order logic, monadic second-order logic, guarded second-order logic, tree depth,

graph classes

1 Introduction

First-order logic (FO) and monadic second-order logic (MSO) are arguably among the most important

logics studied in computer science, partly because of their tight links to finite automata and regular

languages. It is well-known that MSO is strictly more expressive than FO, indeed, the difference in the

expressive power of the two logics manifests already on finite words: The MSO-definable classes of words

are precisely the regular languages [2, 6, 18], whereas the FO-definable classes are the star-free regular

languages [13, 16]. This implies, for example, that not even the class of all finite words of even length is

FO-definable.

In this paper, we study the question on which classes of structures MSO and FO have the same expres-

sive power, with the focus lying on graph classes. Monadic second-order logic on graphs is commonly

studied in two different versions: the first only allows quantification over vertex sets, whereas the second

allows quantification over both vertex sets and edge sets. From now on, we use MSO to refer to the first

version (with quantification over vertex sets only) and refer to the second version as guarded second-

order logic (GSO)1. It is obvious that there are classes of graphs where the three logics are equally

expressive: all finite classes are examples, but it is also easy to construct infinite classes. Indeed, the

work of Dawar and Hella [4] implies that every infinite class of graphs has an infinite subclass on which

1Another common terminology is to write MSO1 instead of MSO and MSO2 instead of GSO.
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the sentences from FO, MSO, and GSO have the same expressive power; this can be proved using diago-

nalization arguments that lead to completely artificial classes. Our main contribution in the present paper

is the characterization of natural classes of graphs on which the three logics are equally expressive. We

show that all classes of graphs of bounded tree depth have this property and, furthermore, under natural

closure conditions on the classes this is optimal: no other classes have this property.

Let us explain our results in more detail: Tree depth is a graph invariant that was introduced by Nešetřil

and Ossona de Mendez in [14] and has turned out to be useful in various algorithmic applications. While

the definition of tree depth is fairly technical, there are two intuitive characterisations of graph classes of

bounded tree depth: First, a class C of graphs has bounded tree depth if, and only if, the graphs in C have

tree decompositions of bounded width where the decomposition trees have bounded height. Intuitively,

this characterisation shows that tree depth measures the similarity of graphs to stars, whereas tree width

measures their similarity to trees. The second characterisation states that a class C has bounded tree

depth if, and only if, there is an upper bound on the lengths of simple paths in the graphs of C. (Note

that this implies that the graphs have bounded diameter, but the two conditions are not equivalent, as the

example of the class of complete graphs shows: all graphs in this class have diameter 1, but they still

contain arbitrarily long paths.)

Theorem 1. Let C be a class of graphs of bounded tree depth. Then FO, MSO, and GSO have the same

expressive power on C.

In [5] it is shown that all GSO-definable decision problems on graphs of bounded tree depth are in

the complexity class AC0. One might wonder whether Theorem 1 is not already implied by this result

in view of the well-known descriptive characterisation of AC0 by FO due to Barrington, Immerman and

Straubing [1]. It is the other way round, however: Our theorem is significantly stronger, because the

characterisation of AC0 requires FO with built-in arithmetic. In our context, this makes a big difference

when it comes to defining tree decompositions (on which we could then simulate an automaton corre-

sponding to a given GSO-sentence): without having at least a built-in order, there is no hope of defining

decompositions because in general they are not invariant under automorphisms of the underlying graph,

and only automorphism-invariant objects are definable. One approach to resolving this issue without a

built-in order would be to use the treelike decompositions of [9, 10], but we take a different route that

avoids the explicit construction of decompositions within the logic altogether. For our proof we develop a

constructive Feferman–Vaught-type composition theorem that shows how to first-order reduce the evalu-

ation of a GSO-formula on a structure to the evaluation of GSO-formulas on an unbounded, even infinite,

number of substructures. Using this theorem and the characterization of tree depth in terms of a bounded

number of parallel vertex eliminations, we are able to evaluate GSO-formulas on graphs of bounded tree

depth using first-order formulas.

Theorem 1 prompts the question of whether there are classes of unbounded tree depth on which FO
has the same expressive power as MSO or GSO. Indeed there are such classes since, as noted above,

there is a (highly artificial) infinite class of paths where the logics coincide; and by the second of the

above characterisations of tree depth an infinite class of paths has unbounded tree depth. However, when

looking for classes of structures satisfying natural closure conditions, it turns out that for classes closed

under taking subgraphs, Theorem 1 is optimal.

Theorem 2. Let C be a class of graphs closed under taking subgraphs. Then the following three state-

ments are equivalent:

1. FO and MSO have the same expressive power on C.

2. FO and GSO have the same expressive power on C.

3. C has bounded tree depth.

This follows immediately from Theorem 1, because a class of unbounded tree depth that is closed

under taking subgraphs contains all paths, and MSO is strictly more expressive than FO on the class of

all paths. For example, “even cardinality” is expressible in MSO, but not in FO on the class of paths.
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A weaker closure condition we consider next is closure under taking induced subgraphs. (Remember

that a subgraph of a graph is obtained by arbitrarily deleting vertices and edges, whereas an induced

subgraph is obtained by only deleting vertices and the edges incident with these vertices.) Theorem 2

does not extend to all classes closed under taking induced subgraphs as the class of all complete graphs

shows: It is closed under taking induced subgraphs, it has unbounded tree depth, and FO and MSO have

the same expressive power on it. However, for GSO the result can be extended to classes closed under

taking induced subgraphs.

Theorem 3. Let C be a class of graphs closed under taking induced subgraphs. Then the following

statements are equivalent:

1. FO and GSO have the same expressive power on C.

2. C has bounded tree depth.

As opposed to Theorem 2, this theorem is not an immediate consequence of Theorem 1. The proof

of the forward direction relies on a Ramsey-type lemma stating that for every k there is an n such that

every graph that contains a path of length n (not necessarily as an induced subgraph) contains either a

complete graph with k vertices or a complete bipartite graph with k vertices in each shore or a path of

length k as an induced subgraph. This lemma may be of independent interest.

Let us finally remark that it cannot be taken for granted that every logic coincides with first-order logic

on some natural, infinite classes of graphs. For instance the analogue to Theorem 3 for full second-order

logic states that for all classes C of graphs closed under taking induced subgraphs, FO and SO have the

same expressive power on C if, and only if, C is finite (up to isomorphism). This follows from Ramsey’s

theorem, which implies that every infinite class of graphs closed under taking induced subgraphs either

contains the class of all complete graphs or the class of all graphs with no edges and that on both of these

graph classes SO is strictly more expressive than FO.

Related Work. The expressive power of both first-order logic and monadic second-order logic has been

extensively studied in various contexts. On words, various automata theoretic and algebraic character-

isations are known (see [17]). The monadic second-order logic of graphs and in particular the relation

between MSO and GSO on various graph classes has been intensively studied by Courcelle and his col-

laborators (see [3]). However, to the best of our knowledge the simple question we study here has not

been addressed in the literature.

Organization of This Paper. In Section 2 we review the used logics and describe conventions used

throughout the paper. Section 3 contains the statement and proof of the composition theorem that is used

in Section 4 to prove Theorem 1. Finally, Theorem 3 is proven in Section 5.

2 Review of First-Order and Second-Order Logics

In the present section we fix the basic terminology and review the logics FO, MSO, and GSO. Concerning

MSO and GSO, we review the definition of types as used in [11] and a standard construction that shows

how we can restrict attention to second-order variables only.

In the present paper, all vocabularies τ are finite and purely relational, that is, we do not consider

constant or function symbols. We write R ∈ τ to indicate that R is a relation symbol in τ and Rr ∈ τ to

additionally indicate that R’s arity is r. A relation symbol of arity 1 is called monadic. A structure S
over a vocabulary τ consists of a universe S and one subset RS ⊆ Sr for each Rr ∈ τ . A structure S is a

substructure of a structure S ′ over the same vocabulary if S ⊆ S′ and for each Rr ∈ τ we have RS ⊆ RS′

.

We say that S is an induced substructure if, in addition, for all Rr ∈ τ we have RS = RS′

∩Sr. Given two
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structures S and T over the same vocabulary τ , their union has universe S∪T and for every R ∈ τ , we

have RS∪T = RS ∪RT .

Given an arbitrary r-ary relation R ⊆ Sr on a universe S, we define the Gaifman graph of R as the

undirected graph whose vertex set is S and where there is an edge between two distinct vertices u,v ∈ S if,

and only if, there is a tuple (s1, . . . ,sr) ∈ R with u = si and v = s j for some i, j ∈ {1, . . . ,r}. The Gaifman

graph of a structure S is the union of all Gaifman graphs of relations RS for R ∈ τ . An arbitrary relation

R on S is called guarded in S if the Gaifman graph of R is a subgraph of the Gaifman graph of S . Note

that a monadic relation is automatically guarded, because its Gaifman graph contains no edges.

We denote first-order and second-order variables by lowercase and uppercase Latin letters, respec-

tively. For a second-order variable X , its arity is a number r(X) ∈ N. A variable assignment for a struc-

ture S is a mapping a whose domain is a finite set of first- and second-order variables that maps each

first-order variable x to an element of a(x) ∈ S and each second-order variable X to a subset a(X)⊆ Sr(X).

Given a vocabulary τ , the first-order formulas over τ are defined inductively in the usual way; we

just remark that we consider x = y to be an atomic formula, so equality is always available. We only

consider the existential quantifier ∃, the conjunction symbol ∧, and the negation symbol ¬ to be part of

the formal syntax. Free and bound variables of a formula are defined in the usual way. The set of all

first-order formulas over a vocabulary τ is denoted by FO[τ ]. Similarly, we define SO[τ ] as the set of all

second-order formulas also in the usual way. Again, only the existential quantifier is formally part of the

syntax. We use lowercase Greek letters like ϕ and ψ for first-order formulas and uppercase Greek letters

like Φ and Ψ for second-order formulas.

Given a structure S , a formula Φ, and a variable assignment a that assigns a value to every free

variable of Φ, we write (S,a) |= Φ to indicate that (S,a) is a model of Φ, where the modeling relation

is defined in the usual way. We write Mod(Φ) for the set of all pairs (S,a) with (S,a) |= Φ. Assuming

that Φ has exactly the free variables x1 to xn and X1 to Xm and assuming that a(xi) = ai ∈ S and a(Xi) =
Ai ⊆ Sr(Xi), we also write S |= Φ(a1, . . . ,an,A1, . . . ,Am) instead of (S,a) |= Φ.

Two restrictions of second-order logic will be of particular interest. The first is monadic second-order

logic, which is defined by restricting the syntax of second-order formulas: the class MSO[τ ] contains all

formulas from SO[τ ] where all second-order variables are monadic (have arity 1). Second, we consider

guarded second-order logic [8], which is defined by restricting the semantics of second-order logic: the

class GSO[τ ] is exactly SO[τ ], but the semantics is restricted by allowing only guarded relations to be

assigned to relational variables (bound or free) in the inductive definition of the semantics of composed

formulas. For graph structures, MSO is sometimes denoted by MSO1 and GSO by MSO2.

Second-Order Formulas without First-Order Variables. It will be convenient to consider only second-

order formulas that do not contain any first-order variables (free or bound). For this purpose, it will

be necessary to introduce two new atomic formulas: First, empty(X) is an atomic formula for every

monadic second-order variable X and semantically (S,a) |= empty(a(X)) means a(X) = ∅. Second,

elem(Y1, . . . ,Yr,Z) is an atomic formula, where the Yi are monadic second-order variables and Z is ei-

ther an r-ary relation symbol from τ or it is an r-ary second-order variable. Semantically, (S,a) |=
elem(Y1, . . . ,Yr,Z) means |a(Yi)| = 1 for each i ∈ {1, . . . ,r}, and a(Y1)× ·· · × a(Yr) ⊆ ZS when Z is a

relation symbol and a(Y1)×·· ·×a(Yr)⊆ a(Z) when Z is a second-order variable.

These new atomic formulas can be used to transform any MSO (or GSO) formula with first-order vari-

ables into an equivalent MSO (or GSO) formula without first-order variables: First, for every first-order

variable x we introduce a fresh monadic second-order variable X . Second, replace every occurrence of

the atom x = y by the formula elem(X ,Y )∧elem(Y,X). Third, replace every occurrence of Z(x1, . . . ,xr),
where Z is either a relation symbol or a second-order variable, by elem(X1, . . . ,Xr,Z). Finally, replace

each quantification ∃x(Φ) by the formula ∃X(elem(X ,X)∧Φ), expressing that X is a singleton set and Φ
holds. In the following, we will assume that second-order formulas do not contain first-order variables.
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Types. The quantifier rank qr(Φ) of a formula Φ is defined in the usual way as the nesting depth of

quantifiers (not necessarily alternating) in the formula; for instance qr(∃X∃Y R(X ,Y)) is 2. Let GSOk,q[τ ]
be the set of second-order formulas Φ whose free variables lie in {X1, . . . ,Xk} and for which qr(Φ) ≤ q.

The set MSOk,q[τ ] is define analogously, only for monadic formulas.

We say that two formulas Φ and Ψ are equivalent, written Φ ≡ Ψ, if Mod(Φ) = Mod(Ψ). For

a set F of formulas, let us write F/≡ for the set of all equivalence classes of F with respect to the

equivalence relation ≡. The following fact can be proven by defining normal forms for the formulas of

the corresponding logic, see for example [11]:

Fact 4. For every finite vocabulary τ and for every k and q the sets MSOk,q[τ ]/≡ and GSOk,q[τ ]/≡
contain only finitely many equivalence classes.

Definition 5 (GSO- and MSO-Types). For a structure S and a guarded variable assignment a with domain

{X1, . . . ,Xk}, we call the set of all formulas Φ ∈ GSOk,q[τ ] with (S,a) |= Φ the k-variable rank-q GSO-

type of (S,a); we denote it by typeGSO
k,q (S,a). The definition of MSO-types is analogous.

By Fact 4 there are only finitely many different k-variable rank-q types (for every fixed vocabulary τ)

since there are only finitely many non-equivalent formulas in MSOk,q[τ ] and GSOk,q[τ ]. Thus, we can

view these types also as symbols of finite alphabets ΣMSO
k,q and ΣGSO

k,q . An additional consequence of Fact 4

is that we can describe types by formulas:

Lemma 6. Let L be MSO or GSO. For every type T ∈ ΣL
k,q there is a formula ∆T ∈ Lk,q[τ ] such that

for every τ-structure S and every guarded variable assignment a we have (S,a) |= ∆T if, and only if,

T = typeL
k,q(S,a).

Proof. By Fact 4 there is a finite representative system R of Lk,q[τ ]/≡. Let ∆T =
∧

Ω∈R∩T Ω∧
∧

Ω∈R\T ¬Ω.

Clearly, ∆T is true exactly if the (representative) formulas from T are true in (S,a) and the (representative)

formulas not in T are false. By definition, this is exactly the case when T = typeL
k,q(S,a).

For two logics L1 and L2 (like FO and MSO or FO and GSO) and a class C of structures, we say that L2

is at least as expressive as L1 on C (and write L1 ≦C L2) if for every L1-sentence ϕ1 there is an L2-sentence

ϕ2 such that ModL1(ϕ1)∩C = ModL2(ϕ2)∩C. We say that L1 and L2 are equally expressive on C (and

write L1 ≡C L2) if L1 ≦C L2 and L2 ≦C L1.

3 A Constructive Feferman–Vaught-type Composition Theorem

for Unbounded Partitions

The question answered by Feferman–Vaught-type composition theorems is the following: Suppose a log-

ical structure S is the disjoint union of two structures S1 and S2 and suppose we wish to find out whether

S |= Φ holds; can we decide this solely based on knowing which formulas hold in S1 and S2? Intuitively,

this should be the case at least for logics like monadic second-order logic where a formula cannot “estab-

lish connections” between the two disjoint parts of S . Indeed, a basic version of the Feferman–Vaught

theorem [12, 7] states exactly this: For every formula Φ ∈ MSOk,q we can decide S |= Φ solely based on

knowing which formulas Ψ ∈ MSOk,q have the property S1 |= Ψ and which have the property S2 |= Ψ.

Phrased in terms of k-variable rank-q mso-types, the theorem states that the type of S is uniquely deter-

mined by the types of S1 and S2. An elegant proof of this uses that the k-variable rank-q mso-type of

a structure is uniquely determined by which Ehrenfeucht–Fraı̈ssé game strategies can be played on the

structure. Since strategies for the individual structures S1 and S2 can be combined into a strategy for the

structure S , we get the claim.

The basic version of the Feferman–Vaught theorem can be extended in several ways. First, instead

of considering only two structures, one can consider an unbounded, even infinite, number of structures;
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the proof based on Ehrenfeucht–Fraı̈ssé games will still work. Second, one can make explicit how we

can compute the type of S when the types of S1 and S2 are given as input. Third, one can allow that the

structures are not completely disjoint, but have a fixed-size intersection.

The first two directions of extension, “unbounded” and “constructive”, appear to be quite incompat-

ible at first sight. Constructive Feferman–Vaught theorems for MSO roughly state that for each formula

Φ ∈ MSOk,q one can construct a propositional formula F that has two propositional variables p1
Ψ and p2

Ψ
for one representative Ψ of each equivalence class [Ψ]≡ ∈ MSOk,q/≡. When we set these propositional

variables to true or false, depending on whether the formulas Ψ hold in S1 and S2, the formula F will

evaluate to true if, and only if, S |= Φ. Clearly, one can extend this idea to any fixed number of structures

S1, . . . , Sk by introducing new propositional variables p3
Ψ to pk

Ψ (as done, for instance, in [12]), but the

construction will not work for an unbounded number of structures, let alone for an infinite number.

In the present section, we present a theorem that can be seen as a “constructive, unbounded” Feferman–

Vaught-type theorem. The idea is to use first-order formulas rather than propositional formulas in order

to “evaluate” whether a formula holds in a structure S that is the disjoint union of an arbitrary number

of structures Si for i ∈ I (actually, we allow that the structures have a fixed-size intersection). Instead of

having to introduce new propositional variables as the number of structures increases, we simply enlarge

the universe: We consider a structure I whose universe is the index set I. Instead of using propositional

variables pi
Φ inside a propositional formula F , we now use atomic formulas TΦ(i) inside a first-order

formula α where TΦ is a monadic relation symbol that “tells us whether Φ holds in the structure Si”.

(Actually, we use types instead of formulas, but this is purely a matter of taste.) The result is a first-order

formula αΦ that “takes a structure as input that encodes which formulas hold in the structures Si” and

“outputs whether S |= Φ holds”.

Our composition theorem encompasses both the classical Feferman–Vaught theorems for infinite

index sets and the constructive versions for a fixed number of structures as special cases: The classical

infinite version simply states that there is some mapping from the types of the structures Si to the type

S; we show that this mapping is first-order definable. For a fixed-size index set I, we obtain the bounded

version by reformulating the question I |= αΦ for the fixed-size structure I using propositional logic.

Concerning proof techniques, the main problem in proving constructive composition theorems is

the handling of existentially quantified formulas ∃X(Φ). When indicator variables or atoms tell us that

∃X(Ψ1) and ∃X(Ψ2) hold in some structure Si, two different assignments for the variable X might be the

cause. This makes it necessary to combine the information concerning the types of the structures Si in

rather intricate ways. For the case of a bounded number of structures, one typically computes disjunctive

normal forms of intermediate propositional formulas in an inductive process and then combines these

normal forms to form a new formula (a detailed proof of this kind is given in [3]). We cannot apply

this “normal form method” since it fails when the number of structures is not fixed. Our approach is,

essentially, to ignore the problem of “conflicting” assignments and to use the fact that the type indicators

are such simple structures that first-order formulas have rather special model theoretic properties on them.

In later sections we will apply our composition theorem only to structures of bounded tree depth.

Nevertheless, it holds for arbitrary structures, which can have arbitrary tree depth.

3.1 Indicator Structures and Type Indicators

In order to formulate our composition theorem, we first need to define a logical structure that encodes

information about the types of logical structures Si for i ∈ I. Toward this aim, we first introduce indicator

structures and later type indicators. Indicator structures are akin to strings, but there is no ordering.

Definition 7 (Indicator Structure). Let Σ be an alphabet (a finite nonempty set). Let τΣ be the vocabulary

that contains one monadic relation symbol T 1 ∈ τΣ for each T ∈Σ. An indicator structure is a τΣ-structure

I such that for each i ∈ I there is exactly one T ∈ Σ with I |= T (i).
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The following lemma will be a crucial technical tool in the proof of our composition theorem. It

states, essentially, that for every first-order formula α describing a set of indicator structures over a fixed

universe we can find a “well-behaved” first-order formula βα that describes the same set of indicator

structures, but whose class of models enjoys a number of closure properties, namely being “closed under

universe-preserving extensions” and its minimal models all being indicator structures.

Lemma 8. Let Σ be an alphabet. For every first-order τΣ-formula α there is first-order τΣ-formula βα
such that for every τΣ-structure B the following holds: B |= βα if, and only if, there is a structure A |= α
that is (a) an indicator structure, (b) a substructure of B, and (c) A = B.

Proof. Let Σ = {T1, . . . ,Tt}. Let B be an arbitrary indicator structure over the vocabulary τΣ. Observe

that since τΣ does not contain any non-monadic relation symbols, the elements of the universe B of B can

only be considered “in isolation” by a first-order formula. More formally, let c j denote the cardinality

of {i ∈ B | B |= Tj(i)}. Then whether B |= ϕ holds for some first-order formula ϕ , can depend only on

the value of the number vector (c1, . . . ,ct) ∈ N
t . Using Ehrenfeucht–Fraı̈ssé games, one can prove (see

[17, Exercise IV.3.2] for a detailed argument) that for every α there is a constant C ∈ N such that for

the “capped cardinalities” c′j = min{c j,C} we have B |= ϕ if, and only if, (c′1, . . . ,c
′
t) ∈ Z for some fixed

set Z ⊆ {0, . . . ,C}t of number vectors. For a number vector z = (z1, . . . ,zt) ∈ {0, . . . ,C}t let us define

a formula βz that “tests” whether the “capped cardinalities” of a structure B are exactly z. It has the

following form:

∃i1 . . .∃in
(

ϕdistinct(i1, . . . , in)∧T 1(i1)∧ ·· ·∧T n(in)∧

∀ j
[

ϕdistinct(i1, . . . , in, j)→
(

T n+1( j)∨ ·· ·∨T m( j)
)])

.

Here, ϕdistinct is a standard formula for expressing that elements are distinct. The symbols T 1 to T n are

chosen from Σ in such a way that exactly z1 of them are T1, exactly z2 of them are T2, and so on; thus

n = ∑t
i=1 zi. The symbols T n+1 to T m are exactly those Tj for which z j =C. To see that this construction

is correct, just note that the formula expresses “there are indices i1 to in where the cardinalities of the

symbols are exactly as prescribed by z and at all other indices the symbol is one of the capped symbols”.

We claim that setting βα =
∨

z∈Z βz yields the sought formula βα . By the above arguments, βα and α
have exactly the same models when we restrict attention to indicator structures. To show that βα has the

claimed properties, we argue as follows: For the only-if-part, suppose B |= βα . Then, by construction,

B |= βz holds for some z ∈ Z and, thus, there is an indicator structure A |= α that is a substructure of B
and has the same universe. For the if-part, consider an indicator structure A that is a model of α . Then,

it is also a model of βα and by the monotonicity of βα , every extension of A over the same universe is

also a model of βα .

Recall that ΣGSO
k,q and ΣMSO

k,q , which contain the k-variable rank-q types for the two different logics, are

finite alphabets. In particular, we can use them as alphabets for an indicator structure, but let us write

τMSO
k,q and τMSO

k,q for τΣMSO
k,q

and τΣGSO
k,q

.

Definition 9 (gso- and mso-Type Indicators). Let q and k be fixed. Let I be an index set (not necessarily

finite) and let F = (Si)i∈I be a family of structures. Let U =
⋃

i∈I Si. Let a map each variable in X ∈

{X1, . . . ,Xk} to a subset a(X) ⊆ U r(X) and let ai(X) = a(X)∩ Sr(X)
i be its restriction to the universe of

Si. The gso-type indicator is the τGSO
k,q -structure IGSO

k,q (F,a) with universe I where for each type symbol

T ∈ ΣGSO
k,q we have TIGSO

k,q (F,a) = {i ∈ I | T = typeGSO
k,q (Si,ai)}. The definition for mso-type indicators is

analogous.

Both gso- and mso-type indicators encode a lot of information concerning the structures Si by en-

coding their types. In particular, we can use them to find out whether a given formula Φ holds in some Si.

The below lemma follows trivially from the definition.
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Definition 10. Let L ∈ {GSO,MSO}. For Φ ∈ Lk,q[τ ] let γL
Φ(i) =

∨

T∈ΣL
k,q[τ ],Φ∈T T (i).

Lemma 11. Let L ∈ {GSO,MSO}. For every family F = (Si)i∈I , every variable assignment a, every

Φ ∈ Lk,q[τ ], and every i ∈ I, we have (Si,ai) |= Φ if, and only if, IL
k,q(F,a) |= γL

Φ(i).

3.2 Formulation and Proof of the Composition Theorem

Definition 12 (Rooted Structure). Let w ≥ 0 denote a width. A width-w rooted structure is a logical

structure S over a vocabulary τ in which there are special monadic relation symbols B1 to Bw such that

for each i ∈ {1, . . . ,w} the set BS
i is a singleton (has exactly one element). We say that B(S) =

⋃w
ℓ=1 BS

ℓ

is the bag of S .

Definition 13 (Rooted Partition). Let S be a rooted τ-structure. A rooted partition of S is a family

(Si)i∈I of τ-structures such that the following holds: (a) The union of all Si is exactly S; (b) each Si is

an induced substructure of S; and (c) for all distinct i, j ∈ I we have Si ∩S j = B(S).

Note that in a width-0 rooted partition (Si)i∈I of S , the structure S is the disjoint union of the Si.

Theorem 14 (Composition Theorem). Let L be the logic MSO or GSO. For every τ-formula Φ ∈ Lk,q[τ ]
and every width w, there is a first-order τL

k,q-formula αΦ,w without free variables such that the following

holds: For every rooted partition F = (Si)i∈I of a width-w rooted τ-structure S and every guarded

variable assignment a we have

IL
k,q(F,a) |= αΦ,w if, and only if, (S,a) |= Φ.

Proof. The proof is by induction on the structure of Φ. We start with the atomic formulas. Since w is

fixed throughout the proof, we write αΦ instead of αΦ,w.

For Φ = empty(X) we can set αΦ to ∀i(γL
empty(X)(i)) where γ is the formula from Definition 10. By

Lemma 11, ∀i(γL
empty(X)(i)) |= T L

k,q(F,a) means that for all i ∈ I we have (Si,ai) |= empty(X). Clearly,

this is the case if, and only if, (S,a) |= empty(X).
For Φ = elem(X1, . . . ,Xr,R) with Rr ∈ τ , we set αΦ to

∃i
(

γΦ(i)∧∀ j
(

j 6= i →

r
∧

m=1

γempty(Xm)( j)∨ γ∨w
ℓ=1 elem(Xm,Bℓ)( j)

)

)

.

For the correctness proof first assume that (S,a) |= Φ holds. Then we know |a(Xm)| = 1 for each m ∈
{1, . . . ,r} and a(X1)×·· ·×a(Xr)⊆ RS . Since S is the union of the Si, we have a(X1)×·· ·×a(Xr)⊆ RSi

for some Si. Moreover, each singleton a(Xm) is either part of the bag B(S), and we have a(Xm) ⊆ B
S j

ℓ

for some ℓ ∈ {1, . . . ,w} and all S j, or it is not part of the bag, and a(Xm) 6⊆ S j holds for all j 6= i.
For the other direction assume IL

k,q(F,a) |= αΦ. The formula witnesses that there exists some i with

(Si,ai) |= elem(X1, . . . ,Xm,R) and for all other S j and sets a(Xm), we have S j ∩a(Xm)⊆ B(S). From the

definition of rooted partitions, we know B(S) ⊆ Si, which implies a(Xm) ⊆ Si for each m ∈ {1, . . . ,r}.

Thus, (S,a) |= elem(X1, . . . ,Xm,R) follows from (Si,ai) |= elem(X1, . . . ,Xm,R).
For Φ = elem(X1, . . . ,Xr,Z), where Z is an r-ary second-order variable, the formula and correctness

arguments are the same, except that we work with a guarded relation a(Z) that is assigned to Z instead

of a relation RS from the structure.

For the inductive step, we start with Φ = ¬Φ′. Here we can set αΦ = ¬αΦ′ . Clearly, this has the

required properties. Similarly, for Φ = Φ1 ∧Φ2, setting αΦ = αΦ1 ∧αΦ2 also has the desired properties.

The difficult case is Φ = ∃X(Φ′). Let αΦ′ be the τk,q−1-formula resulting from the inductive assump-

tion. We apply Lemma 8 to αΦ′ , resulting in a formula βαΦ′
, which we abbreviate as β in the following.
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Recall that β has the following properties: A structure B is a model of β if, and only if, there a structure

A |= αΦ′ that is (a) an indicator structure, (b) a substructure of B, and (c) has the same universe as B.

Let b j denote the single element of B j for j ∈ {1, . . . ,w}. Define αΦ =
∨

C⊆B(S)r αC, where each αC

is obtained from β as follows: In β , replace every occurrence of an atom T (i) for some type T ∈ ΣL
k,q−1

and some first-order variable i by γL
Ψ(i) with

Ψ = ∃X

(

∆T ∧
∧

(b j1 ,...,b jr )∈C

elem(B j1 , . . . ,B jr ,X)∧

∧

(b j1 ,...,b jr )∈B(S)r\C

¬elem(B j1 , . . . ,B jr ,X)

)

.

Here, ∆T is the formula from Lemma 6 expressing that T is the type of some structure.

Before we proceed to prove that αΦ defined in this way satisfies the equivalence claimed in the theo-

rem, let us try to get some intuition. Ignoring C for the moment (let us just assume that B(S) is empty),

Ψ states “Can we set X to some relation R that is guarded in Si for which the type of Si is exactly T?”

This means that when we replace an occurrence of T (i) by γL
Ψ(i), we turn the question “Is it true that T is

the type of (Si,a)?” into the question “Is is true that T is the type of (Si,a[X 7→ R]) for some set R?” (Let

a[X 7→ R] denote the variable assignment that is identical to a, except that X is mapped to R.) We now

see that αΦ “almost” tests whether Φ holds in (S,a[X 7→ R]). The problem is that for each replacement

of some T (i) by γL
Ψ(i) a different set R might cause T (i) to hold, while we need a “global” R that can

be used as a value for a(X). This is the point where the set C and the special properties of β become

important: The set C ensures that all chosen R agree on the bag across all replacements. The special

properties of β will ensure that we can pick a single R consistently.

Claim. Fix the set C. Define a τL
k,q-structure TC (which will typically not be an indicator structure)

with universe I as follows: Let i ∈ TTC if there exists a relation R ⊆ Sr
i that is guarded in Si, for which

R∩B(S)r =C, and such that T = typeL
k,q−1(Si,a[X 7→ R]). Then

IL
k,q(F,a) |= αC ⇐⇒ TC |= β . (∗)

Proof. In the formula αC, each occurrence of an atom T (i) has been replaced by γL
Ψ(i). By definition,

T (i) holds in TC if, and only if, there is a relation R guarded in Si with R∩B(S)r =C such that T is the

k-variable rank-(q−1) type of (Si,a[X 7→ R]). However, having a look at the definition of Ψ, we see that

γL
Ψ(i) will be true exactly if this is the case.

Let us now prove the equivalence claimed in the theorem. First assume that (S,a) |= Φ. Then there is

a set R ⊆ Sr guarded in S such that (S,a[X 7→ R]) |= Φ′. Let C = R∩B(S)r. By the induction hypothesis,

IL
k,q−1(F,a[X → R]) |= αΦ′ . Observe that IL

k,q−1(F,a[X → R]) has the following three properties: (a) It is

an indicator structure since all type indicators are indicator structures, (b) it is a substructure of TC, and

(c) it has the same universe I as TC. By Lemma 8 we can conclude that TC is a model of β . By (∗), this

implies IL
k,q(F,a) |= αC which in turn implies IL

k,q(F,a) |= αΦ.

For the second direction, assume that IL
k,q(F,a) |= αΦ holds. Then IL

k,q(F,a) |= αC must hold for

some C. By (∗), this means that TC |= β . By Lemma 8, we can conclude that αΦ′ must have a model

A that is (a) an indicator structure, (b) is a substructure of TC, and (c) has the universe I. However,

(a) and (c) together imply that A is a type indicator. Together with (b) and the definition of TC, we

can now conclude that for every i ∈ I there is a relation Ri ⊆ Sr
i guarded in Si with Ri ∩ B(S)r = C

and T = typeL
k,q−1(Si,a[X 7→ Ri]). Setting R =

⋃

i∈I Ri, we get a single guarded relation R such that

IL
k,q(F,a[X 7→ R]) = A. Hence, IL

k,q(F,a[X 7→ R]) |= αΦ′ . Applying the inductive assumption yields

(S,a[X 7→ R]) |= αΦ′ , from which we can directly conclude (S,a) |= αΦ.
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4 FO, MSO and GSO Coincide on Graphs of Bounded Tree Depth

In the present section we prove Theorem 1 from the introduction. The tree depth of graphs can be defined

recursively as follows [14], where G[U ] is the subgraph of G induced on the nodes in U :

Definition 15 (Tree Depth). Let G = (V,E) be a graph with connected components (Gi)i∈I . Its tree depth

td(G) is











1 if |V |= 1,

1+minx∈V
{

td(G[V \{x}])
}

if |V |> 1 and |I|= 1,

maxi∈I
{

td(Gi)
}

otherwise.

We say that a class C of graphs has bounded tree depth if there exists a constant d ∈N, such that td(G)≤ d
for every G ∈ C.

Examples of graphs of bounded tree depth are stars like that have tree depth 2 via deleting the center

vertex and producing independent sets like of tree depth 1. A slightly more complicated example is

with tree depth 3; this bound can be seen by deleting the vertex in the middle, which produces

a graph whose components are stars. The vertex deletion process can also be interpreted as the task

of finding a depth-first graph search tree of minimum possible height for the graph. Formally, this is

captured by the following alternative definition of tree depth: The height of a rooted tree T = (V,E) is

the length of a longest path from the root to a leaf. The closure of T is the graph with vertex set V that

has edges between all vertices v ∈V and w ∈V that lie on some root-to-leaf path in T . By induction, one

can show that the tree depth of a connected graph G is 1 plus the minimum possible height of a rooted

tree whose closure contains G as a subgraph [14].

For any graph class C of bounded tree depth, Definition 15 states that every graph G ∈ C can be split

recursively into graphs of strictly decreasing tree depth by eliminating vertices x. The parallel splitting

process, which ends after a constant number of steps, can be implemented using a first-order formula.

In the following we will use the recursive definition of tree depth and combine it with Theorem 14 to

evaluate GSO-formulas on graphs of bounded tree depth using first-order formulas.

In order to get a handle on the components that arise during the elimination process, for a graph

G = (V,E) and two different vertices x,s ∈ V (G), called the elimination vertex and the selector vertex,

let us write Cx,s for the set of vertices in the component of G[V \{x}] that contains s. Let us write Gx,s

for G[Cx,s ∪{x}].

Lemma 16. For every d there is a first-order formula ϕd(x,s,y) such that for all graphs G with td(G)≤ d
we have G |= ϕ(x,s,y) if, and only if, y ∈V (Gx,s).

Proof. The formula just has to test whether there is a path from s to y that does not go through x. Since

in graphs of tree depth at most d all paths have length at most 2d −2, as shown in [15], reachability can

be defined for them using a first-order formula.

In order to prove Theorem 1, we prove the following lemma, where a colored graph is a graph that is

accompanied by a finite number of monadic color relations. (Formally, a colored graph is a τ-structure

for a signature τ = {E2,C1
1 , . . . ,C

1
k}.)

Lemma 17. Let d ≥ 1. For every GSO-formula Φ on colored graphs there exists an FO-formula ϕΦ,d

on colored graphs such that for every colored graph G with td(G)≤ d we have G |= ϕΦ,d if, and only if,

G |= Φ.

Proof. It will be convenient to prove the lemma’s claim only for connected graphs G. This is no loss

of generality since if G is not connected (which can be tested using a first-order formula for graphs of
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bounded tree depth), we add a single new vertex to G that is connected to all vertices of G, arriving at a

new graph G′ in which the new vertex gets a new special color. We can then easily adjust the formula Φ
to a formula Φ′ so that for all G′ constructed in this way we have G |= Φ if, and only if, G′ |= Φ′. (The

formula Φ′ must just “ignore” the new vertex.) Note that td(G′) = 1+ td(G).
We now prove the claim by induction on d. For d = 1, the only connected graph of tree depth 1

consists of a single vertex. Thus, we can trivially replace Φ by a formula ϕΦ,d as claimed.

For the inductive step from d −1 to d, let

ϕΦ,d = ∃x(ψd(x)∧α(x)).

Here, ψd(x) is a first-order formula that tests whether G[V \{x}] has tree depth d − 1. By definition of

the tree depth, this must be true for at least one vertex x ∈V .

Our objective is to adjust the formula αΦ,1 from Theorem 14 to form the formula α(x). Setting

B1 = {x} and introducing a new color B1, we can view G as a width-1 rooted structure in the sense of

Definition 12. Form the set I by picking one vertex from each component of G[V \{x}] and let Gi = Gx,i

for i ∈ I. Then F = (Gi)i∈I is a rooted partition of G in the sense of Definition 13.

Theorem 14 tells us that IGSO
0,q (F) |= αΦ,1 ⇐⇒ G |= Φ. Thus, our objective is to setup α(x) is such a

way that G |= α(x) ⇐⇒ IGSO
0,q (F) |= αΦ,1. To achieve this, we modify αΦ,1 so that we “simulate access

to” the structure IGSO
0,q (F).

Inside αΦ,1, we replace every occurrence of ∃i(ψ), which quantifies over elements of the index set I,
by ∃si(¬(si = x)∧ψ), which quantifies over selector vertices of the graph G. We replace every occurrence

of an equality test i = j by ϕd(x,si,s j) from Lemma 16. This formula verifies that si and s j select the

same component of G[V \ {x}]. The tough part is replacing atoms T (i). Such an atom tests whether

T = typeGSO
0,q (Gi) holds. By Lemma 6, the type of Gi can be determined by testing Gx,si |= Ω for a finite

number of GSO-formulas Ω.

For the test Gx,si |= Ω, we cannot apply the induction hypothesis directly to Gx,si since its tree depth

is still d. Instead, let us write G−
x,si

for the graph G[Cx,si ] where we introduce a new color and color every

vertex v ∈Cx,si with this new color if there is an edge between x and v in G. This graph contains the same

information as Gx,si does, only the edges to x are now replaced by a coloring of the vertices. In particular,

we can transform every formula Ω into a formula Ω′ such that Gx,si |= Ω ⇐⇒ G−
x,si

|= Ω′.

The graph G−
x,si

has tree depth d − 1 and is connected, so we can apply the induction hypothesis to

it. It states that for every GSO-formula Ω′ there is an FO-formula ϕΩ′,d−1 such that G−
x,si

|= ϕΩ′,d−1 ⇐⇒
G−

x,si
|= Ω′.

Consider the formula ∆T from Lemma 6. By replacing each Ω with ϕΩ′,d−1 inside ∆T we get an

FO-formula ωT such that G−
x,si

|= ωT ⇐⇒ T = typeGSO
0,q (Gx,si). As a final step, we modify ωT to arrive at

a new formula ω ′
T (x,si) with the property G−

x,si
|= ωT ⇐⇒ G |= ω ′

T (x,si). This last modification is easy

to achieve: Inside ωT , simply replace each quantifier ∃y(ψ) by ∃y(ϕ(x,si,y)∧¬(x = y)∧ψ) to ensure

that y is picked from G−
x,si

.

Putting it all together, starting from αΦ,1, we have now arrived at a formula α(x) with the property

that IGSO
0,q (F) |= αΦ,1 holds if, and only if, G |= α(x).

5 Characterizing where FO and GSO Coincide On Graph Classes

Closed Under Taking Induced Subgraphs

We have already seen that FO ≡C MSO ≡C GSO holds for all classes C of graphs that have bounded tree

depth. As we pointed out in the introduction in Theorem 2, this is “optimal” in the following sense: For

any class C of graphs that is closed under taking subgraphs and that does not have bounded tree width,

FO and MSO are not equally expressive on C. The reason is that if C contains graphs of arbitrarily large

tree depth, by the second characterization of tree depth from the introduction, C will contain graphs in

11



which there are arbitrarily long paths. Since C is closed under taking subgraphs, these paths themselves

are also elements of C and MSO can express that a path has even length, which FO cannot.

Although it is a natural requirement for a class of graphs that it should be closed under taking sub-

graphs, it is also a strong requirement. For instance, the quite natural classes of all complete graphs or the

class of all complete bipartite graphs are not closed under taking subgraphs. A less strict requirement,

which broadens the range of classes C that we can study, is to require only that the class is closed under

induced subgraphs. This encompasses for instance the two just-mentioned classes. For classes C closed

under taking induced subgraphs, it is no longer true that if C contains graphs of arbitrary tree depth, then

FO 6= MSO must hold; the class of all cliques, for instance, is a counterexample.

In the present section we show that the tree depth of a class C that is closed under taking induced

subgraphs is related to the question of whether FO ≡C GSO holds rather than on the question of whether

FO ≡C MSO holds. Indeed, it is an open problem for which classes C of graphs closed under taking

induced subgraphs FO ≡C MSO holds. We discuss this in the conclusion.

The relationship between tree depth and FO ≡C GSO on classes closed under taking induced sub-

graphs is summed up by Theorem 3 from the introduction. The theorem states that for every class C of

graphs that is closed under taking induced subgraphs, we have FO ≡C GSO if, and only if, C has bounded

tree depth.

The if-direction was already proved in Section 4. For the only-if part, recall the argument that we

used above for classes C that are closed under taking subgraphs: We argued that since C contains graphs

containing arbitrarily long paths, C itself must contain all paths and MSO is more expressive than FO on

paths. We wish to apply a similar argument now that C must only be closed under induced subgraphs,

but it will no longer be the case that C will contain all paths as the examples of the class of all cliques

and the class of all complete bipartite graphs show. Now, for these two examples GSO happens to be

more expressive than FO since we can express that a clique or a complete bipartite graph has even size in

GSO, but not in FO. But what happens when C contains neither all paths nor all cliques nor all complete

bipartite graphs?

Somewhat surprisingly, this cannot happen. We next prove a lemma that implies that every class of

graphs that is closed under induced subgraphs and has unbounded tree depth, contains all paths or all

complete graphs or all complete bipartite graphs. Thus, together with the fact that GSO is more expressive

than FO on each of these classes, by proving this lemma, we show that Theorem 3 from the introduction

holds. We believe that Lemma 18 may be of independent interest. Its proof uses Ramsey’s theorem.

Lemma 18. For every k there is an n(k) such that every graph that contains an n(k)-vertex path as a

subgraph contains Kk or Kk,k or a k-vertex path as an induced subgraph.

Proof. We start by ruling out some trivial cases and fixing the terminology. The claim is trivial for k ≤ 1,

so let k ≥ 2. Let G′ be a graph that contains a path of length n ≥ n(k) as a subgraph (we will fix n(k)
later). We consider the graph G induced by the n-vertex path in G′. From this construction we know that

G contains a Hamiltonian path. It will be convenient to denote paths by their sequence of vertices, that

is, P = (v1, . . . ,vℓ) denotes the path with vertex set V (P) = {v1, . . . ,vℓ} and edge set E(P) = {{vi,vi+1} |
i ∈ {1, . . . , ℓ− 1}}. Let us write P[i] for vi. Since we can name the vertices arbitrarily, we may assume

that V (G) = [n] = {1, . . . ,n} holds and, since G has a Hamiltonian path, we may additionally assume that

(1,2,3, . . . ,n) is this path.

A path P = (v1, . . . ,vℓ) in G is increasing if v1 < v2 < · · · < vℓ. A path P from v to w is a shortest

increasing path if it is increasing and if there is no shorter increasing path from v to w. For all v,w ∈V (G)
with v < w we fix a shortest increasing path Pv,w from v to w. Note that such a path exists because

(v,v+1, . . . ,w) is an increasing path from v to w. An important property of shortest increasing paths is

that they are all induced paths of the graph G. In particular, if we find a shortest increasing path of length

at least k, we are done.
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For every 4-element subset {v1,v2,v3,v4} ⊆ V (G) with v1 < v2 < v3 < v4 let Q({v1,v2,v3,v4}) =
G
[

V (Pv1,v2)∪V (Pv3,v4)
]

. This means that Q is the part of G induced by the vertices of the two shortest

increasing paths Pv1,v2 and Pv3,v4 . It will contain all edges on these paths and all edges between vertices

on the one path and vertices on the other path (since the paths themselves are induced, there are no other

edges in Q). In the following, we will call the vertices from Pv1,v2 the left vertices and the vertices from

Pv3,v4 the right vertices of Q.

If any Q({v1,v2,v3,v4}) has order more than 2k+ 2, then at least one path Pu,v must have length k
and we are done. So, we may assume that |Q({v1,v2,v3,v4})| ≤ 2k+2.

Given graphs Q({v1,v2,v3,v4}) and Q({w1,w2,w3,w4}), let us say that there is an order isomorphism

between them if

1. there is a graph isomorphism ι : V (Q({v1,v2,v3,v4}))→V (Q({w1,w2,w3,w4})), and

2. ι is order-preserving, that is, for i < j we have ι(i)< ι( j), and (c) ι(vi) = wi for i ∈ {1, . . . ,4}.

Applying Ramsey’s Theorem. Consider the set F of all 4-element subsets of V (G). We color its

elements as follows: Two sets A,B ∈ F get the same color if, and only if, there is an order isomorphism

between Q(A) and Q(B). Note that, since the number of possible graphs Q depends only on k (since

their sizes are at most 2k+ 2), the number c of different colors that we need is bounded by a constant

c(k) that depends only on k. Now, F is a set of 4-element subsets of a set V (G) of size n colored with

at most c(k) colors. By Ramsey’s theorem, the Ramsey number r(4,c(k),4k) has the property that if

n ≥ r(4,c(k),4k), then there is a subset M ⊆ V (G) of size |M| ≥ 4k such that all 4-element subsets of

M have the same color. We choose n(k) = r(4,c(k),4k), so we know that such a monochromatic set M
always exists inside our graph G. Let M = {v1,v2,v3, . . . ,v4k} with v1 < · · ·< v4k. Let us write Pi for the

path Pvi,vi+1 for i ∈ {1, . . . ,4k−1} in the following, that is, for the path that leads from one vertex in M to

the next. Note that the vertices of each Pi lie outside M, except for the first and last vertex.

Since all 4-element subsets A of M have the same color, the graphs Q(A) are all order isomorphic to

a single graph Q. Recall that in Q there is a left path and a right path. These two paths must have the

same length since Q is order isomorphic to Q({v1,v2,v3,v4}) and also to Q({v3,v4,v5,v6}) (here, we use

k ≥ 2). Because of the first isomorphism, Pv3,v4 is isomorphic to the right path of Q and because of the

second isomorphism it is also isomorphic to the left path of Q, which must hence have the same length.

Let l be this length and let us say that the first vertices of these paths are at position 1, the second vertices

are at position 2, and so on up to position l.
We will now make a case distinction depending on which edges are present between the vertices of

these paths. Each case will lead to either an induced path of length k, an induced Kk, or an induced Kk,k

in G.

Case 1: No Edges Between Left and Right Path. First assume that there are no edges in Q between

the vertices on the left path and the right path. We claim that in this case the distance between v1 and

v4k in the graph H = G[
⋃4k−1

i=1 V (Pi)] is at least 2k. For vertices from the set V (P1) there can be no edge

in H to any vertex in one of the sets V (Pi) for i > 2 since such an edge would constitute an edge in

Q({v1,v2,vi,vi+1}) between the left path and the right path. Thus, starting from v1, to get to v4k inside

H , we need to go through at least one vertex from V (P2). Next, we can argue in the same way that there

is no edge from any vertex in V (P2) to a vertex in any V (Pi) for i > 3. Thus, a path to v4k next needs to

contain at least one vertex from V (P3). Applying the same argument repeatedly shows that a path from

v1 to v4k in H must contain at least one vertex from each V (Pi) and, thus, must have length at least 2k.

We have now seen that the distance from v1 to v4k in H is at least 2k. On the other hand, there is an

increasing path from v1 to v4k in H , namely the union of all Pi. In particular, there is a shortest increasing

path and its length cannot be less than the distance. Thus, there is an induced path of length 2k in H and

hence also in G.

Case 2: An Edge Between Left and Right Path at the Same Position. We now consider the case that

in Q there is an edge from a vertex on the left path to a vertex on the right path at the same position j.
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We claim that in this case

H = G
[{

Pi[ j] | i ∈ {1,3,5,7, . . . ,2k−1}
}]

∼= Kk.

To see this, consider any two different vertices u = Pi[ j] and v = Pi′ [ j] of H for i+1 < i′. By assumption,

in Q({vi,vi+1,vi′ ,vi′+1}) there is an edge between the vertices at position j and these are exactly u and v.

Case 3: An Edge Between Left and Right Path at Different Positions. In this last case, we assume that

neither the first nor the second case holds. Then there must be an edge between the left and right path

at some positions jl and jr, but there are no edges between vertices at the same position, in particular,

there are no edges between the vertices at position jl in the left and right paths nor between the vertices

at position jr. We claim that in this case H =

G
[

{Pil [ jl] | il ∈ {1,3,5, . . . ,2k−1}}∪

{Pir [ jr] | ir ∈ {2k+1,2k+3, . . . ,4k−1}}
]

∼= Kk,k.

To see this, first consider any two vertices u=Pil [ jl] and v=Pi′l
[ jl] for il +1< i′l among the first k vertices.

Since there are no edge between the vertices at position jl in Q, neither is there an edge between these

vertices in Q({vil ,vil+1,vi′l
,vi′l+1}) and, hence, there is no edges between u and v. In the same way, we

see that there is no edge between two vertices Pir [ jr] and Pi′r [ jr]. Finally, for any two vertices Pil [ jl] and

Pir [ jr] there is an edge, because there is one in Q({vil ,vil+1,vir ,vir+1}) between the vertex at position jl
on the left path and the vertex at position jr on the right path.

6 Conclusion

So far, studies of the expressive power of first-order and monadic second-order logics have been devoted

to identifying classes of structures where MSO is more expressive than FO. For example, MSO on words

can express exactly the regular languages while different kinds of FO express natural restrictions of regular

languages. In the paper at hand we broadened this research by identifying classes of graphs where MSO
and GSO coincide with FO, and give complete characterizations of where these logics coincide with FO
for classes of graphs that satisfy natural closure conditions.

We showed that on classes of graphs of bounded tree depth, FO, MSO, and GSO have the same

expressive power and used this result to show that having bounded tree depth is a sufficient and necessary

property for FO ≡C MSO ≡C GSO on classes C of graphs that are closed under taking subgraphs, and

FO ≡C GSO on classes C of graphs that are closed under taking induced subgraphs. In our proofs we

developed a composition theorem that shows how to compute the type of a structure from the types of

an unbounded number of substructures using first-order formulas, and proved that any class of graphs of

unbounded tree depth that is closed under taking induced subgraphs contains all paths or all cliques or

all complete bipartite graphs.

The main open question that remains is to give a characterization of where FO ≡C MSO holds for

graph classes C closed under taking induced subgraphs. By considering the class C of cliques on which

we have FO ≡C MSO, but unbounded tree depth, one can see that bounding the tree depth does not lead

to a complete characterization in this case. One idea is to develop an adjusted notion of clique width that

has the same relation to clique width as tree depth has to tree width.

Another direction is to consider other kinds of monadic second-order logics like MSO with parity

predicates, which test whether bound relations have even cardinality. For such logics the classical con-

structive composition theorem that combines a bounded number of substructures using propositional

formulas still works, but to compute the type of a structure from the types of an unbounded number of

substructures first-order is not enough. Which kind of first-order logics do we need to combine the types

of which kinds of monadic second-order logics? Answers to this question prove composition theorems

that can be used to show equal expressibility on bounded tree depth graphs.
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