A Perfect Model for Bounded Verification

Javier Esparza
TUM

Pierre Ganty
IMDEA Software Institute

Rupak Majumdar
MPI-SWS

Abstract

A class of languages \mathcal{C} is perfect if it is closed under Boolean operations and the emptiness problem is decidable. Perfect language classes are the basis for the automatatheoretic approach to model checking: a system is correct if the language generated by the system is disjoint from the language of bad traces. Regular languages are perfect, but because the disjointness problem for context-free languages is undecidable, no class containing them can be perfect.

In practice, verification problems for language classes that are not perfect are often under-approximated by checking if the property holds for all behaviors of the system belonging to a fixed subset. A general way to specify a subset of behaviors is by using bounded languages (languages of the form $w_{1}^{*} \ldots w_{k}^{*}$ for fixed words w_{1}, \ldots, w_{k}). A class of languages \mathcal{C} is perfect modulo bounded languages if it is closed under Boolean operations relative to every bounded language, and if the emptiness problem is decidable relative to every bounded language.

We consider finding perfect classes of languages modulo bounded languages. We show that the class of languages accepted by multi-head pushdown automata are perfect modulo bounded languages, and characterize the complexities of decision problems. We also show that bounded languages form a maximal class for which perfection is obtained. We show that computations of several known models of systems, such as recursive multi-threaded programs, recursive counter machines, and communicating finite-state machines can be encoded as multi-head pushdown automata, giving uniform and optimal underapproximation algorithms modulo bounded languages.

I. INTRODUCTION

The automata-theoretic approach to model checking lineartime properties formalizes the verification problem as a language-theoretic problem about two automata: the system automaton, which recognizes the set of executions of the system, and the property automaton, which recognizes either the sequences of actions satisfying the property (positive specification), or those violating it (negative specification). Given a system automaton S and a property automaton P, verification of positive and negative specifications reduces to checking $L(S) \subseteq L(P)$ (inclusion problem), or to checking $L(S) \cap L(P)=\emptyset$ (disjointness problem), respectively.

Language classes effectively closed under boolean operations and with a decidable emptiness problem are particularly interesting for the automata-theoretic approach. For such classes not only the inclusion and disjointness problems are decidable, they also have many further advantages. For example, in these classes systems are closed under parallel composition by rendez-vous, properties are closed under boolean operations, and systems can be seen as properties, or vice versa, with many useful consequences for compositional and assume-guarantee verification techniques. For all these reasons, we call these classes perfect.

The regular languages are perfect but, since because the disjointness problem for the context-free languages (CFL) is undecidable (see [1]), no class containing CFL can be perfect. This "context-free barrier" restricts the search for perfect classes to those properly contained in CFL or incomparable with them, and both possibilities have been investigated. In a seminal paper [2], Alur and Madhusudan proved that the visibly pushdown languages-a subclass of CFL-are perfect, a result that lead to a very successful theory and efficient algorithms (see e.g.[3], [2]). Later La Torre, Madhusudan, and Parlato discovered a perfect class incomparable with CFL: the languages recognized by multi-stack visibly pushdown automata whose computations can be split into a fixed number of stages during which at most one stack is popped [4].

The "context-free barrier" continues to be a serious obstacle in many applications, in particular in the verification of concurrent systems. For this reason, many tools only check a subset of the executions of the system. Intuitively, they direct a spotlight to a region of the possible executions, and check whether the executions under the spotlight satisfy the property. The spotlight is controlled by the user, who can freely move it around to check different regions, and conventional verification corresponds to a spotlight that illuminates all the space of possible executions. In particular, the "spotlight principle" is applied by bounded model-checkers, which unroll program loops and recursion up to a fixed depth (often after taking the product of the program with an automaton for the property to be checked), leaving a system whose executions have a fixed bounded length (see e.g. [5], [6]). It is also used by context-bounded checkers for multi-threaded programs [7], [8], [9], which only examine executions containing at most a fixed number of context-switches (communication events between threads). Context-bounded checkers break the context-free barrier, but at the price of only exploring finite action sequences. ${ }^{1}$ Recently, building on ideas by Kahlon [10] on bounded languages [11], context-bounded checking has been extended to bounded verification $[12]^{2}$, which checks whether executions of the system of the form $w_{1}^{*} \ldots w_{n}^{*}$ for some finite words w_{1}, \ldots, w_{n} satisfy a property.
In automata-theoretic terms, the spotlight principle corresponds to verification modulo a language. The inclusion check $L(S) \subseteq L(P)$ and the disjointness check $L(S) \cap L(P)=\emptyset$ are

[^0]replaced by checks $L_{M}(S) \subseteq L_{M}(P)$ and $L_{M}(S) \cap L_{M}(P)=$ \emptyset, respectively, where L_{M} denotes $L \cap M$. Context-bounded checking corresponds to verification modulo the language of all words up to fixed length, and bounded verification to verification modulo a bounded expression.

Verification modulo a language M allows to break the context-free barrier, which raises the question of identifying perfect classes modulo language classes. Given a boolean operation $O p\left(L_{1}, \ldots, L_{n}\right)$ on languages, let us define the same operation modulo a language M by $O p_{M}\left(L_{1}, \ldots, L_{n}\right)=$ $O p\left(L_{1} \cap M, \ldots, L_{n} \cap M\right)$, and, similarly, let us say that an automaton A is empty modulo M if $L(A) \cap M=\emptyset$. Let \mathcal{L} and \mathcal{C} be classes of languages. We call \mathcal{L} perfect modulo \mathcal{C} if it is closed under Boolean operations modulo any $M \in \mathcal{C}$, and has a decidable emptiness problem modulo any $M \in \mathcal{C}$. It is easy to see that the recursive languages are perfect modulo the finite languages. But for bounded expressions the question becomes harder. The disjointness problem modulo a bounded expression is decidable for CFL [11], which hints at a perfect class modulo bounded expressions containing CFL. However, CFL itself is not perfect modulo bounded expressions, because it is not closed under intersection: there is no CFL L such that $\left\{a^{n} b^{n} c^{*} \mid n \geq 0\right\} \cap\left\{a^{*} b^{n} c^{n} \mid n \geq 0\right\} \cap a^{*} b^{*} c^{*}=L \cap a^{*} b^{*} c^{*}$.

In this paper we present the first perfect class modulo bounded expressions: the languages recognized by multihead pushdown automata (MHPDA). This result is very satisfactory, because the class has a simple and purely syntactic definition, and as we demonstrate, is expressive enough to capture many well-known models. We also characterize the complexity of the Booleans operations and the emptiness check modulo bounded expressions: we show that the emptiness check is coNEXPTIME-complete, union and intersection are polynomial, and complementation is at most triply exponential. Surprisingly, the emptiness problem is coNP-complete (and complementation doubly exponential) for the subclass of letter-bounded expressions, in which each string w_{1}, \ldots, w_{n} is a single letter. We also show that bounded expressions are a maximal class of regular languages for which perfection can be attained for MHPDAs, any additional language leads to undecidability of emptiness.

In the second part of the paper, we show that central automata models of software can be encoded into MHPDA. Encoding recursive multithreaded programs to MHPDA is obvious, since the intersection of CFLs is MHPDA-definable, and we subsume the results of Esparza and Ganty [12]. Additionally, we supply encodings for recursive counter machines (CM), the main automata-theoretic model of procedural programs with integer variables, and for finite-state machines communicating through unbounded perfect FIFO channels (CFSM), the most popular model for the verification of communication protocols. While the existence of some encoding is not surprising, since emptiness problems for CM, CFSM, and MHPDA are all undecidable, our encodings exhibit only a small polynomial blowup, and, perhaps more importantly, preserve bounded behaviours. More precisely, using our encodings we reduce bounded control-state reachability
for CM and CFSM—deciding reachability of a given control state by means of a computation conforming to a bounded expression-to non emptiness of MHPDA modulo bounded expression. As a consequence, we prove that bounded controlstate reachability for both CM and CFSM are NP-complete. The NP-completeness also extends to unrestricted control-state reachability for flat CM and flat CFSM, because by construction their computations conform to a bounded expression. (See e.g. [13] and [14] for a study of those models). More generally, our language-based approach provides a uniform framework for the verification of models using auxiliary storage like counters, queues or a mix of both as defined in [15]. Incidentally, our framework allows to uniformly derive optimal complexity upper bounds for models manipulating counters, queues or both, and shared memory multithreaded programs.
Related work. Multi-tape and multi-head finite-state and pushdown machines were extensively studied in the 1960's and 1970's, e.g. [16], [17], [18]. The decidability of emptiness for MHPDA modulo bounded languages was proved by Ibarra in [17], using previous results going back to his (hard to find) PhD thesis [16]. Our proof settles the complexity of the problem (coNEXPTIME-complete). Additionally, our constructions show the surprising coNP-completeness result for letter-bounded expressions. (A similar coNP-completeness result was recently obtained in [19], but for a different model.)
Reversal bounded counter machine as bounded language acceptors (see e.g. [20]) and Bounded Parikh automata [21] have the same expressive power as MHPDA modulo bounded expressions (they all recognize the languages of the form $\left\{w_{1}^{k_{1}} \ldots w_{n}^{k_{n}} \mid\left(k_{1}, \ldots, k_{n}\right) \in S\right\}$ for some semilinear set $\left.S\right)$. These three characterizations of the same class complement each other. While MHPDAs have the modelling advantage of allowing to directly encode recursive procedures, queues and counters, reversal bounded counter machine (and by extension flat counter machine) have very good algorithmic methods and tool support (see e.g. [19][22]). Our results allow to apply these algorithms and tools to a larger range of problems.

II. Preliminaries

Language theory. An alphabet Σ is a finite and non-empty set of letters. We use Σ^{*} for the set of finite words over Σ, ε for the empty word.

We assume the reader is familiar with the basics of language theory, such as regular languages, context-free languages (CFL), context-sensitive languages (CSL), and the formalisms to describe them: nondeterministic finite automata (NFA), context-free grammars (CFG), pushdown automata (PDA), etc. (see, e.g., [1]).

Let us mention that for NFAs, CFGs and PDAs the size of their encoding (denoted using $|\cdot|$) is the number of bits required to represent them.
Parikh images. For $k \in \mathbb{N}$, we write \mathbb{Z}^{k} and \mathbb{N}^{k} for the sets of (k-dim) vectors of integers and naturals, $\mathbf{0}$ for $(0, \ldots, 0)$, and \mathbf{e}_{i} for the vector $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{N}^{k}$ such that $z_{j}=1$ if $j=i$ and $z_{j}=0$ otherwise. Addition and equality on k-dim vectors are defined pointwise.

Given a fixed linear order $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$, the Parikh image of $a_{i} \in \Sigma$, written Parikh ${ }^{\Sigma}\left(a_{i}\right)$, is the vector \mathbf{e}_{i}. The Parikh image is extended to words by defining $\operatorname{Parikh}^{\Sigma}(\varepsilon)=\mathbf{0}$ and $\operatorname{Parikh}^{\Sigma}(u \cdot v)=\operatorname{Parikh}^{\Sigma}(u)+$ Parikh ${ }^{\Sigma}(v)$, and to languages by letting $L \subseteq \Sigma^{*}$, $\operatorname{Parikh}^{\Sigma}(L)=\left\{\operatorname{Parikh}^{\Sigma}(w) \mid w \in L\right\}$. We sometimes omit the superscript Σ.
Presburger Formulas. A term is a constant $c \in \mathbb{N}$, a variable x from a set X of variables, or an expression of the form $t_{1}+t_{2}$ or $t_{1}-t_{2}$, where t_{1}, t_{2} are terms. A Presburger formula is an expression of the form $t \sim 0$, where t is a term and $\sim \in\{\leq,<,=, \neq,>, \geq\}$, or of the form $\phi_{1} \wedge \phi_{2}, \phi_{1} \vee \phi_{2}, \exists x . \phi, \forall x . \phi$, where ϕ, ϕ_{1}, ϕ_{2} are Presburger formulas. Given a Presburger formula ϕ with free variables x_{1}, \ldots, x_{k} (written $\phi\left(x_{1}, \ldots, x_{k}\right)$), we denote by $\llbracket \phi \rrbracket$ the set $\left\{\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k} \mid \phi\left(n_{1}, \ldots, n_{k}\right)\right.$ is true $\}$, where $\phi\left(n_{1}, \ldots, n_{k}\right)$ denotes the formula without free variables obtained by substituting n_{i} for x_{i}. We recall that satisfiability of Presburger formulas is decidable [11] and that the Parikh image of a context-free language is Presburgerdefinable [23].
Bounded expressions. A bounded expression $\overline{\boldsymbol{w}}$ over Σ is a regular expression of the form $w_{1}^{*} \ldots w_{n}^{*}$ such that $n \geq 1$ and w_{i} is a non-empty word over Σ for each $i \in[1, n]^{3}$. Abusing notation we sometimes write $\overline{\boldsymbol{w}}$ for $L(\overline{\boldsymbol{w}})$. The size of a bounded expression $\overline{\boldsymbol{w}}$ is defined as $|\overline{\boldsymbol{w}}|=1+\sum_{i=1}^{n}\left|w_{i}\right|$. A bounded expression is letter-bounded if $\left|w_{1}\right|=\ldots=\left|w_{n}\right|=$ 1 , where the w_{i} s are not necessarily distinct.

Shuffle and indexed shuffle. The shuffle of two words $x, y \in \Sigma^{*}$ is the language

$$
\begin{aligned}
x \amalg y=\left\{x_{1} y_{1} \ldots\right. & x_{n} y_{n} \in \Sigma^{*} \mid \text { each } x_{i}, y_{i} \in \Sigma^{*} \\
& \left.\quad \text { and } x=x_{1} \cdots x_{n} \wedge y=y_{1} \cdots y_{n}\right\} .
\end{aligned}
$$

and the shuffle of two languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ is the language $L_{1} \amalg L_{2}=\bigcup_{x \in L_{1}, y \in L_{2}} x \amalg y$. Shuffle is associative, and so we can write $L_{1} \amalg \ldots \amalg L_{k}$, which we often shorten to $Ш_{i=1}^{k} L_{i}$.

Given $i>0$ let $\Sigma \bowtie i=\{\langle\sigma, i\rangle \mid \sigma \in \Sigma\}$. We say that i is the index of $\langle\sigma, i\rangle$, and extend indexing to words and languages in the natural way. For $w=b_{1} \ldots b_{t} \in \Sigma^{*}$ and $i>$ $0,(w \bowtie i)=\left\langle b_{1}, i\right\rangle \cdots\left\langle b_{t}, i\right\rangle$, and $L \bowtie i=\{w \bowtie i \mid w \in L\}$. The indexed shuffle of L_{1}, \ldots, L_{k} is the language

$$
\amalg_{i=1}^{k} L_{i}=Ш_{i=1}^{k}\left(L_{i} \bowtie i\right)
$$

For example, if we shorten $\langle a, 1\rangle$ to $a 1$ etc., we have

$$
\{a b\} \uplus\{b\}=\{a 1 b 1\} ш\{b 2\}=\{a 1 b 1 b 2, a 1 b 2 b 1, b 2 a 1 b 1\} .
$$

It is well known that if L_{i} is recognized by an NFA of size n_{i}, then both $\varpi_{i=1}^{k} L_{i}$ and $\uplus_{i=1}^{k} L_{i}$ are recognized by NFAs of size $O\left(\Pi_{i=1}^{k} n_{i}\right)$.

[^1]
III. Models

A tape content (or simply tape) w over Σ is a word $w \in \Sigma^{*}$. For $d \geq 1$, a d-tuple of tapes is a d-tuple $\left(w_{1}, \ldots, w_{d}\right)$ where each w_{i} is a tape. Let $w \in \Sigma^{*}$, define $[w]^{d}$ as the d-tuple (w, \ldots, w). It extends to languages as follows: let $L \subseteq \Sigma^{*}$, we write $[L]^{d}$ to denote the set of d-tuples of tapes given by $\left\{\left(w_{1}, \ldots, w_{d}\right) \mid w_{i} \in L\right\}$.
Definition 1: A d-tape pushdown automaton (d-TPDA, for short) is a 9-tuple $A=\left\langle S, \Sigma, \$, \Gamma, M, \nu, s_{0}, \gamma_{0}, F\right\rangle$ where

1) S is a finite non-empty set of states,
2) Σ is the tape alphabet,
3) $\$$ is a symbol not in Σ (the endmarker for the tape),
4) Γ is the stack alphabet,
5) M, the set of transitions, is a mapping from $S \times(\Sigma \cup$ $\{\$\} \cup\{\varepsilon\}) \times \Gamma$ into the finite subsets of $S \times \Gamma^{*}$,
6) $\nu: S \rightarrow[1, d]$ is the tape selector function,
7) $s_{0} \in S$ is the start state,
8) $\gamma_{0} \in \Gamma$ is the initial pushdown symbol,
9) $F \subseteq S$ is the set of final states.

Intuitively, a d-TPDA has a finite-state control (S), d input tapes, and a stack. There is a separate input-reading head on each tape. Each state $s \in S$ in the finite state control reads from the tape given by $\nu(s)$ and pops the top of the stack. The transition relation then non-deterministically determines the new control state and the sequence of symbols pushed on to the stack. The read head moves one step to the right on its input tape.

For the sake of readability, we write $(s, \gamma) \stackrel{\sigma}{\hookrightarrow}\left(s^{\prime}, w\right)$ whenever $\left(s^{\prime}, w\right) \in M(s, \sigma, \gamma)$. We sometimes write $(s, \gamma) \stackrel{[\sigma\rangle_{i}}{\hookrightarrow}$ $\left(s^{\prime}, w\right)$ where $\nu(s)=i$ when we want to make explicit from which tape we are reading.

The size $|A|$ of a d-TPDA A is given by $|S|+|\Sigma|+|\Gamma|+$ $|M|+|\nu|$, where in the encoding of the function ν, the numbers in $[1, d]$ are encoded in binary. Intuitively, $|A|$ is proportional to the number of bits required to represent a d-TPDA when numbers are represented in binary.

Let us fix a d-TPDA $A=\left\langle S, \Sigma, \$, \Gamma, M, \nu, s_{0}, \gamma_{0}, F\right\rangle$.
Definition 2: Let \# be a symbol distinct from symbols in $\Sigma \cup\{\$\}$. Define $\mathfrak{T}=\left\{w \# w^{\prime} \mid w \cdot w^{\prime} \in \Sigma^{*} \$\right\}$. An instantaneous description (ID) of A is a triple $(s, \bar{t}=$ $\left.\left\langle t_{1}, \ldots, t_{d}\right\rangle, w\right) \in S \times[\mathfrak{T}]^{d} \times \Gamma^{*}$. An ID (s, \bar{t}, w) denotes that A is in state s, with pushdown store content $w \in \Gamma^{*}$, and where $\bar{t}=\left\langle t_{1}, \ldots, t_{d}\right\rangle$ is such that $t_{i} \in \mathfrak{T}$ gives the configuration of tape i where the position of the head indicated by $\#$.

Definition 3: Let \vdash, be the relation between IDs defined as follows: let $c=(s, \bar{t}, w \gamma)$ and $c^{\prime}=\left(s^{\prime}, \bar{t}^{\prime}, w w^{\prime}\right)$ be two IDs. We have $c \vdash c^{\prime}$ iff each of following conditions is satisfied:

1) $(s, \gamma) \xrightarrow{\sigma_{r}}\left(s^{\prime}, w^{\prime}\right)$ for some $\sigma_{r} \in \Sigma \cup\{\varepsilon, \$\}$.
2) $t_{\nu(s)}=x \# \sigma_{r} y$ and $t_{i}^{\prime}= \begin{cases}x \sigma_{r} \# y & \text { if } i=\nu(s) \\ t_{i} & \text { else }\end{cases}$

Let \vdash^{*} be the reflexive and transitive closure of \vdash.
We now introduce helper functions Lft and Rgt which given an ID c and a tape $h \in[1, d]$ returns the tape content

Fig. 1. 2-HPDA accepting $\left\{w \& w \mid w \in(\{0,1\})^{*}\right.$ and w is a palindrome $\}, \perp$ is the end-of-stack symbol
lying to the left and to the right (without the head position), respectively.

Definition 4: Given an ID $c=\left(s, \bar{t}=\left\langle t_{1}, \ldots, t_{d}\right\rangle, w\right)$ and $h \in[1, d]$, define $\operatorname{Rgt}(c, h)$ and $\operatorname{Lft}(c, h)$ as follows: let $t_{h}=$ $w_{1} \# w_{2}$ then $\operatorname{Rgt}(c, h)=w_{2}$ and $\operatorname{Lft}(c, h)=w_{1}$.

Let us now define the languages accepted by d-TPDA.
Definition 5: Given a ID c, we say that a head i is off its tape in c whenever $\operatorname{Rgt}(c, i)=\varepsilon$. Let $c=(s, \bar{t}, w)$ be an ID, we say that c is accepting iff $s \in F$ and for every $i \in[1, d]$ head i is off its tape in c. A d tuple of tapes $\left(x_{1}, \ldots, x_{d}\right) \in\left[\Sigma^{*}\right]^{d}$ is accepted by A if $\left(s_{0},\left\langle \# x_{1} \$, \ldots, \# x_{d} \$\right\rangle, \gamma_{0}\right) \vdash^{*}(s, \bar{t}, w)$ for some ID (s, \bar{t}, w) that is accepting. The set of d-tuple of tapes accepted by A is denoted $T(A)$. A subset $L \subseteq\left[\Sigma^{*}\right]^{d}$ is d-TPDA definable if there exists some d-TPDA A such that $L=T(A)$.

Remark 1:

- Having all heads off their tape is a necessary condition to accept. Therefore any accepting run (even if the tape is $[\varepsilon]^{d}$) needs to perform at least one read on each tape because of $\$$. This implies that for any non-trivial d TPDA, $d \leq|S|$.
- The language of d-TPDA are recursive for each $d>0$ [16]. The languages that are 1-TPDA definable are the CFLs. Observe the following difference w.r.t. classical definition, e.g. as in [1]. In fact, for a 1-TPDA to accept we need the current control state to be final and the head to be off the tape.
In latter sections, we use a graphical notation for MHPDAs because it better carries intuitions. Fig. 1 gives such an example of 2-HPDA which recognize a language over symbols $\{0,1, \&\}$ given by $\left\{w \& w \mid w \in(\{0,1\})^{*}\right.$ and w is a palindrome\}. Intuitively, in q_{\uparrow} the 2-HPDA uses head 2 to recognize the first palindrome using its stack. When head 2 reads \& the MHPDA enters q_{s} where it checks using both heads that the subwords before and after \& are identical. If the check succeeds then the MHPDA enters q then q_{f} (head 2 has fallen off the tape) where it accepts after making head 1 fall off the tape. The transition from q_{\downarrow} to q_{s} labelled $[\&\rangle_{2}, \perp / \perp$ reads as follows: if in state q_{\downarrow} stack symbol \perp is on the top of the stack then read $\&$ with head 2 and update the location to q_{s}. Also read the transition from q_{f} to itself and labelled
$[x \in\{0,1\}\rangle_{1}$ as follows: in state q_{f} read any symbol of $\{0,1\}$, go to q_{f}. In what follows, to ease the readability we omit the formal description of the automata and use our graphical notation instead.
We now introduce a generalization of pushdown automata with several heads working on a shared tape. This model is closely related to d-TPDA as described below.

Definition 6: Let $\Delta_{d} \subseteq\left[\Sigma^{*}\right]^{d}$ be given by $\left\{\left(w_{1}, \ldots, w_{d}\right) \in\left[\Sigma^{*}\right]^{d} \mid w_{1}=\cdots=w_{d}\right\}$ and $\pi_{1}:\left[\Sigma^{*}\right]^{d} \rightarrow$ Σ^{*} to be the function which maps $L \subseteq\left[\Sigma^{*}\right]^{d}$ onto the first tape: $\pi_{1}(L)=\left\{w_{1} \in \Sigma^{*} \mid\left(w_{1}, \ldots, w_{d}\right) \in L\right\}$.

When the d-tuple of tapes is restricted to Δ_{d}, that is, when all the tapes have identical content, we can view A as a pushdown automaton with d-heads sharing a unique tape. In this case we define the language $L \subseteq \Sigma^{*}$ accepted by the d-head pushdown automaton A (or d-HPDA) to be $\pi_{1}\left(T(A) \cap \Delta_{d}\right)$ and we denote this language by $L(A)$. We write MHPDA for the class of models d-HPDA for $d \geq 1$.

IV. Emptiness modulo Bounded Expressions

Given a d-HPDA M and a bounded expression $\overline{\boldsymbol{w}}=$ $w_{1}^{*} \ldots w_{n}^{*}$, both over an alphabet Σ, we show how to check emptiness of $L(M) \cap \overline{\boldsymbol{w}}$. Recall that we can construct a d TPDA A of size $O(|M|)$ such that $L(M) \cap \overline{\boldsymbol{w}}=\varnothing$ iff $T(A) \cap[\overline{\boldsymbol{w}}]^{d} \cap \Delta_{d}=\varnothing$, where Δ_{d} is the set of d-tuples of the form (w, w, \ldots, w) (see def. 6).

In Section IV-A we show that emptiness of $T(A) \cap[\overline{\boldsymbol{w}}]^{d}$ can be reduced to emptiness of a context-free grammar, and in Section IV-B that emptiness of $L(M) \cap \overline{\boldsymbol{w}}$ can be reduced to unsatisfiability of an existential Presburger formula. The steps of the reduction are summarized in Fig. 2.

A. Emptiness of $T(A) \cap[\overline{\boldsymbol{w}}]^{d}$

We construct in three steps a context-free grammar that recognizes an "encoding" of $T(A) \cap[\overline{\boldsymbol{w}}]^{d}$.

Roughly speaking, in the first step we construct a d-TPDA recognizing the result of applying a transformation on $T(A) \cap$ $[\overline{\boldsymbol{w}}]^{d}$ which "contracts" each word w_{i} of $\overline{\boldsymbol{w}}$ into a single letter.
Let $\bar{\Sigma}=\left\{a_{1}, \ldots, a_{n}\right\}$ be a new alphabet and let $\overline{\boldsymbol{a}}=$ $a_{1}^{*} \cdots a_{n}^{*}$ be a bounded expression over $\bar{\Sigma}$. Given a bounded expression $\overline{\boldsymbol{w}}=w_{1}^{*} \cdots w_{n}^{*}$ over Σ, we define the mapping $f_{\overline{\boldsymbol{w}}}: \mathbb{N}^{n} \rightarrow \Sigma^{*}$ by $f_{\overline{\boldsymbol{w}}}:\left(i_{1}, \ldots, i_{n}\right) \mapsto w_{1}^{i_{1}} \cdots w_{n}^{i_{n}}$.

Lemma 1: There is a computable d-TPDA B over Σ of size $O\left(|A| \cdot|\overline{\boldsymbol{w}}|^{d}\right)$ such that for every $\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}} \in \mathbb{N}^{n}$ we have:

$$
\begin{gathered}
\left(f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(A) \cap[\overline{\boldsymbol{w}}]^{d} \\
\text { iff } \\
\left(f_{\overline{\overline{\boldsymbol{a}}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{a}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(B) .
\end{gathered}
$$

Sketch of Proof: We first construct a d-TPDA B_{1} such that $T\left(B_{1}\right)=T(A) \cap[\overline{\boldsymbol{w}}]^{d}$. For this, let W be an NFA recognizing $\overline{\boldsymbol{w}} \cdot \$$, and let Q_{W} be its set of states and $F_{W} \subseteq Q_{W}$ the accepting ones. Adapting the shuffle construction for NFAs, we can construct a NFA W^{d} with states $\left[Q_{W}\right]^{d}=\underbrace{Q_{W} \times \cdots \times Q_{W}}_{d \text { times }}$ recognizing $\uplus_{i=1}^{d} L(\overline{\boldsymbol{w}} \cdot \$)$. We synchronize $A^{d \text {-times }} W^{d}$ with follows. The set of states of B_{1} is $S \times\left[Q_{W}\right]^{d}$, where S is the set of states of A, and the set of final states is $F \times\left[F_{W}\right]^{d}$. The tape selection function of B_{1} is determined by the one of A. If A has a transition $\left(s_{a}, \gamma\right) \stackrel{[\sigma\rangle_{e}}{\longrightarrow}\left(s_{b}, w\right)$, where $\sigma \in \Sigma \cup\{\$\}$ is read from the tape $\ell=\nu\left(s_{a}\right)$, and W^{d} has a transition $\left\langle q_{1}, \ldots, q_{\ell}, \ldots, q_{d}\right\rangle \xrightarrow{\langle\sigma, \ell\rangle}\left\langle q_{1}, \ldots, q_{\ell}^{\prime}, \ldots, q_{d}\right\rangle$, then B_{1} has a transition $\left(\left\langle s_{a}, q_{1}, \ldots, q_{\ell}, \ldots, q_{d}\right\rangle, \gamma\right) \xrightarrow{[\sigma\rangle_{\ell}}$ $\left(\left\langle s_{b}, q_{1}, \ldots, q_{\ell}^{\prime}, \ldots, q_{d}\right\rangle, w\right)$. If A has a transition $\left(s_{a}, \gamma\right) \xrightarrow{\stackrel{\varepsilon\rangle_{e}}{\hookrightarrow}}\left(s_{b}, w\right) \quad$ (resp. W^{d} has a transition $\left.\left\langle q_{1}, \ldots, q_{j}, \ldots, q_{d}\right\rangle \xrightarrow{\langle\varepsilon, j\rangle}\left\langle q_{1}, \ldots, q_{j}^{\prime}, \ldots, q_{d}\right\rangle\right)$, then B_{1} has transition $\left(\left\langle s_{a}, q_{1}, \ldots, q_{d}\right\rangle, \gamma\right) \stackrel{[\varepsilon\rangle_{e}}{\longrightarrow}\left(\left\langle s_{b}, q_{1}, \ldots, q_{d}\right\rangle, w\right)$ (resp. $\left(\left\langle s_{a}, q_{1}, \ldots, q_{j}, \ldots, q_{d}\right\rangle, \gamma\right) \stackrel{\stackrel{\varepsilon\rangle_{e}}{\hookrightarrow}}{\hookrightarrow}\left(\left\langle s_{a}, q_{1}, \ldots, q_{j}^{\prime}, \ldots, q_{d}\right\rangle, \gamma\right)$ for every $\gamma \in \Gamma$). B_{1} has no further transitions.

Now we construct B. It is easy to construct W so that for every word w_{i} of $\overline{\boldsymbol{w}}$ it contains a state $q_{w_{i}}$ that is entered every time (and only when) W reads the last letter of w_{i}. We proceed as follows. First, we transform all transitions of B_{1}, with the exception of those labeled with endmarkers, into ε transitions. Then, we relabel again all transitions entering $q_{w_{i}}$, i.e, all transitions in which some copy of W takes a transition with target $q_{w_{i}}$: we replace ε by a_{i}.
In a second step we construct a PDA that recognizes the indexed shuffle of $T(B)$. Let $\bar{\Sigma}_{d}=\bigcup_{i=1}^{d}(\bar{\Sigma} \bowtie i)$. Given a d-tuple of tapes $u=\left(u_{1}, \ldots, u_{d}\right)$ define $\uplus(u)=\underline{\amalg}_{i=1}^{d}\left\{u_{i}\right\}$.

Lemma 2: There is a computable PDA C over $\bar{\Sigma}_{d}$ of size $O(|B|)$ such that $u \in T(B)$ iff $\underline{ }(u) \cap L(C) \neq \varnothing$ for every $u \in\left[\bar{\Sigma}^{*}\right]^{d}$.

Sketch of Proof: B and C have the same states, initial and final states, and stack alphabets. Assume B is currently at state s, and the tape selector assigns to s tape number $\ell=\nu(s)$. The transitions of C are defined so that if in the next move B reads a letter σ, then C reads the letter $\langle\sigma, \ell\rangle$ (unless $\sigma \in\{\$, \varepsilon\}$, in which case C reads ε). Formally, for $\sigma \neq \$$ and $\sigma \neq \varepsilon$ the PDA C has a transition $(s, \gamma) \stackrel{\langle\sigma, \ell\rangle}{\longrightarrow}\left(s^{\prime}, w\right)$ iff B has a transition $(s, \gamma) \stackrel{[\sigma\rangle_{\ell}}{\hookrightarrow}\left(s^{\prime}, w\right)$, and C has a transition $(s, \gamma) \stackrel{\varepsilon}{\hookrightarrow}\left(s^{\prime}, w\right)$ iff B has a transition $(s, \gamma) \stackrel{[\$\rangle_{e}}{\hookrightarrow}\left(s^{\prime}, w\right)$ or $(s, \gamma) \stackrel{[\varepsilon\rangle_{e}}{\hookrightarrow}\left(s^{\prime}, w\right)$. Now,
C accepts the word of $\underline{(u)}$ that interleaves the letters from the different tapes in the order in which they are read by B.

The third step is standard [1]:
Lemma 3: There is a computable CFG G over $\bar{\Sigma}_{d}$ of size $O(|C|)^{3}$ such that $L(G)=L(C)$.
Putting these lemmas together, we finally get
Proposition 1: There is a computable CFG G over $\bar{\Sigma}_{d}$ of size $O\left(|A|^{3} \cdot|\overline{\boldsymbol{w}}|^{3 d}\right)$ such that for every $\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}} \in \mathbb{N}^{n}$ we have:

$$
\begin{gathered}
\left(f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{1}}\right), \ldots, f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(A) \cap[\overline{\boldsymbol{w}}]^{d} \\
\text { iff } \\
\underline{\omega}\left(f_{\overline{\boldsymbol{a}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{a}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \cap L(G) \neq \varnothing
\end{gathered}
$$

B. Emptiness of $L(M) \cap \overline{\boldsymbol{w}}$

Recall that $L(M) \cap \overline{\boldsymbol{w}}=\varnothing$ iff $T(A) \cap[\overline{\boldsymbol{w}}]^{d} \cap \Delta_{d}=\varnothing$. To decide this problem, we rely on the notion of Parikh image. By definition of indexed shuffle, for every tuple $v \in\left[\bar{\Sigma}^{*}\right]^{d}$ all the words of $\amalg(v)$ have the same Parikh image, which justifies the notation Parikh $(\amalg(v))$. Now we have:
Lemma 4: For every $v \in\left[\bar{\Sigma}^{*}\right]^{d}: \underline{(v)} \cap L(G) \neq \varnothing$ iff $\operatorname{Parikh}(\underline{m}(v)) \in \operatorname{Parikh}(L(G))$.

Proof: The right-to-left direction is obvious. For the converse, $\amalg(v) \cap L(G) \neq \varnothing$ implies $\operatorname{Parikh}\left(v^{\prime}\right) \in \operatorname{Parikh}(L(G))$ for some $v^{\prime} \in \amalg(v)$, but all elements of $\amalg(v)$ have the same Parikh mapping.
So checking $\amalg(v) \cap L(G) \neq \varnothing$ can be done by checking $\operatorname{Parikh}(\underline{\amalg}(v)) \in \operatorname{Parikh}(L(G))$. For this check we can resort to the following theorem.

Theorem 1: [23] For each CFG G, there is a computable existential Presburger formula Φ of size $O(|G|)$ such that Parikh $(L(G))=\llbracket \Phi \rrbracket$.
We immediately get:
Proposition 2: There is a computable existential Presburger formula Φ with free variables $\left\{x_{i j} \mid i \in[1, n], j \in[1, d]\right\}$ of size $O(|G|)$ such that

$$
\begin{gathered}
\left(f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(A) \cap[\overline{\boldsymbol{w}}]^{d} \\
\text { iff } \\
\Phi\left(\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}}\right) \text { is true }
\end{gathered}
$$

Proof: Take for Φ the formula of Thm. 1. We have:

$$
\begin{array}{ll}
\quad\left(f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{1}}\right), \ldots, f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(A) \cap[\overline{\boldsymbol{w}}]^{d} & \\
\text { iff } \amalg\left(f_{\overline{\boldsymbol{a}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{a}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \cap L(G) \neq \varnothing & \text { Prop. 1 } \\
\text { iff }\left(\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}}\right) \in \operatorname{Parikh}(L(G)) & \text { Lem. 4 } \\
\text { iff } \Phi\left(\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}}\right) \text { is true } & \text { Thm. 1 }
\end{array}
$$

The advantage of Prop. 2 is that it can be easily extended to a procedure for checking not only emptiness of $T(A) \cap[\overline{\boldsymbol{w}}]^{d}$, but also emptiness of $T(A) \cap[\overline{\boldsymbol{w}}]^{d} \cap \Delta_{d}$. Recall that the tuples in $T(A) \cap[\overline{\boldsymbol{w}}]^{d} \cap \Delta_{d}$ are the tuples of $T(A)$ of the form
$(w, \ldots, w) \in\left[\Sigma^{*}\right]^{d}$ for some $w \in \overline{\boldsymbol{w}}$. Let $\boldsymbol{k}, \boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}} \in \mathbb{N}^{n}$. We have:

$$
\left(f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{w}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(A) \cap[\overline{\boldsymbol{w}}]^{d} \cap \Delta_{d}
$$

iff (property of $\Delta_{d}, \boldsymbol{k}=\boldsymbol{k}_{\boldsymbol{1}}=\cdots=\boldsymbol{k}_{\boldsymbol{d}}$)

$$
\left[f_{\overline{\boldsymbol{w}}}(\boldsymbol{k})\right]^{d} \in T(A) \cap[\overline{\boldsymbol{w}}]^{d}
$$

iff (Prop. 2)

$$
\begin{aligned}
& \quad \Phi(\underbrace{\boldsymbol{k}, \ldots, \boldsymbol{k}}_{d \text { times }}) \text { is true } \\
& \text { iff } \exists \boldsymbol{i}_{\boldsymbol{1}}, \ldots, \boldsymbol{i}_{\boldsymbol{d}} \in \mathbb{N}^{n}: \Phi\left(\boldsymbol{i}_{\boldsymbol{1}}, \ldots, \boldsymbol{i}_{\boldsymbol{d}}\right) \text { is true } \\
& \text { and } \boldsymbol{i}_{\boldsymbol{1}}=\cdots=\boldsymbol{i}_{\boldsymbol{d}} \\
& \text { iff } \exists x_{11} \ldots \exists x_{k d}\left(\Phi \wedge \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{d} x_{i j}=k_{i}\right) \text { is true }
\end{aligned}
$$

where Φ is the formula of Prop. 2. So we get
Theorem 2: There is a computable formula $\Psi\left(x_{1}, \ldots, x_{n}\right)$ of existential Presburger arithmetic of size $O\left(|M|^{3} \cdot|\overline{\boldsymbol{w}}|^{3 d}\right)$ such that $f_{\overline{\boldsymbol{w}}}\left(k_{1}, \ldots, k_{n}\right) \in L(M) \cap \overline{\boldsymbol{w}}$ iff $\Psi\left(k_{1}, \ldots, k_{n}\right)$ is true. In particular, $L(M) \cap \overline{\boldsymbol{w}} \neq \varnothing$ iff Ψ is satisfiable.

Proof: It suffices to take $\Psi\left(x_{1}, \ldots, x_{n}\right)=$ $\exists x_{11} \ldots \exists x_{k d}:\left(\Phi \wedge \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{d} x_{i j}=x_{i}\right)$.

This theorem admits a simple but useful generalization:
Theorem 3: Let $\left\{M_{i}\right\}_{i \in[1, q]}$ be a family of MHPDA such that M_{i} is a c_{i}-HPDA for each $i \in[1, q]$. Let $c=$ $\max \left(\left\{c_{i}\right\}_{i \in[1, q]}\right)$ and $m=\max \left(\left\{\left|M_{i}\right|\right\}_{i \in[1, q]}\right)$. There is a computable formula $\Psi\left(x_{1}, \ldots, x_{n}\right)$ of existential Presburger arithmetic of size $O\left(q \cdot m^{3} \cdot|\overline{\boldsymbol{w}}|^{3 c}\right)$ such that $f_{\overline{\boldsymbol{w}}}\left(k_{1}, \ldots, k_{n}\right) \in$ $\bigcap_{i=1}^{q} L\left(M_{i}\right) \cap \overline{\boldsymbol{w}}$ iff $\Psi\left(k_{1}, \ldots, k_{n}\right)$ is true.

Proof: Define $\Psi\left(x_{1}, \ldots, x_{n}\right)$ to be $\bigwedge_{i=1}^{q} \Psi_{i}\left(x_{1}, \ldots, x_{n}\right)$ such that each $\Psi_{i}\left(x_{1}, \ldots, x_{n}\right)$ is the formula obtained by Thm. 2 on input M_{i} and $\overline{\boldsymbol{w}}$. Correctness is proved as follows:

$$
f_{\overline{\boldsymbol{w}}}\left(k_{1}, \ldots, k_{n}\right) \in \bigcap_{i=1}^{q} L\left(M_{i}\right) \cap \overline{\boldsymbol{w}}
$$

iff $\bigwedge_{i=1}^{q} f_{\overline{\boldsymbol{w}}}\left(k_{1}, \ldots, k_{n}\right) \in L\left(M_{i}\right) \cap \overline{\boldsymbol{w}}$
iff $\bigwedge_{i=1}^{q} \Psi_{i}\left(x_{1}, \ldots, x_{n}\right)$ is true
iff $\Psi\left(x_{1}, \ldots, x_{n}\right)$ is true
Thm. 2
def. of Ψ
We conclude from Thm. 2 that $\left|\Psi_{i}\right|=O\left(m \cdot|\overline{\boldsymbol{w}}|{ }^{3 c}\right)$ for each $i \in[1, q]$, hence that $|\Psi|=O\left(q \cdot m \cdot|\overline{\boldsymbol{w}}|^{3 c}\right)$.

C. Complexity

Emptiness of MHPDAs is clearly undecidable (by reduction from the emptiness problem for intersection of contextfree languages). We prove that emptiness modulo a bounded expression is coNEXPTIME-complete.

Fig. 2. Summary of the decision procedure steps

Theorem 4: The emptiness problem for MHPDAs modulo an arbitrary bounded expression is in coNEXPTIME. Moreover, the emptiness problem for MHPDAs and $\overline{\boldsymbol{w}}=(01)^{*}$ is coNEXPTIME-hard.
The question arises whether emptiness remains coNEXPTIME-complete for letter-bounded expressions. Remarkably, this is not the case: for such expressions the emptiness problem is only NP-complete. Fix a letter-bounded expression $\overline{\boldsymbol{b}}=b_{1}^{*} \ldots b_{n}^{*}$ where b_{i} 's are not necessarily distinct. The key to the result is that Lem. 1 (with $\overline{\boldsymbol{w}}$ now equal to \bar{b}) can be replaced by the following one.

Lemma 5: There is a family $\left\{B_{i}\right\}_{i=1}^{\alpha}$ of d-TPDAs over $\bar{\Sigma}$, where $\alpha=d^{|\overline{\bar{b}}| d}$ and each B_{i} has size $O\left(|A| \cdot|\overline{\boldsymbol{b}}| \cdot d^{2}\right)$, such that for every $\boldsymbol{k}_{\mathbf{1}}, \ldots, \boldsymbol{k}_{\boldsymbol{d}} \in \mathbb{N}^{n}$ we have

$$
\begin{gathered}
\left(f_{\overline{\boldsymbol{b}}}\left(\boldsymbol{k}_{\mathbf{1}}\right), \ldots, f_{\overline{\boldsymbol{b}}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in T(A) \cap[\overline{\boldsymbol{w}}]^{d} \\
\text { iff } \\
\left(f_{\overline{\boldsymbol{a}}}\left(\boldsymbol{k}_{\boldsymbol{1}}\right), \ldots, f_{\bar{a}}\left(\boldsymbol{k}_{\boldsymbol{d}}\right)\right) \in \bigcup_{i=1}^{\alpha} T\left(B_{i}\right)
\end{gathered}
$$

Moreover, we can decide in time $O\left(|A| \cdot|\overline{\boldsymbol{b}}| \cdot d^{2}\right)$ if a given MHPDA belongs to $\left\{B_{i}\right\}_{i=1}^{\alpha}$.

Proof: We can easily construct an NFA W recognizing $L(\overline{\boldsymbol{b}} \cdot \$)$ with states $\left\{q_{1}, \ldots, q_{n+1}\right\}$ (recall that $n+$ $1=|\overline{\boldsymbol{b}}|)$, initial state q_{1}, final state q_{n+1}, and transitions $\left\{q_{i} \xrightarrow{b_{i}} q_{i} \mid i \in[1, n]\right\} \cup\left\{q_{j} \xrightarrow{\varepsilon} q_{j+1} \mid j \in[1, n-1]\right\} \cup$ $\left\{q_{n} \xrightarrow{\$} q_{n+1}\right\}$. Let W^{d} be the NFA defined in Lem. 1 recognizing $\uplus_{i=1}^{d} L(\overline{\boldsymbol{b}} \cdot \$)$. While W^{d} has $(n+1)^{d}$ states, it is easy to see that for $\overline{\boldsymbol{w}}=\overline{\boldsymbol{b}}$ every accepting run of W^{d} only visits $(n+1) \cdot d$ distinct states, because every transition $\left\langle q_{i_{1}}, \ldots, q_{i_{d}}\right\rangle \xrightarrow{\langle\sigma, \ell\rangle}\left\langle q_{j_{1}}, \ldots, q_{j_{d}}\right\rangle$ of W^{d} satisfies $i_{1} \leq j_{1}, \ldots, i_{d} \leq j_{d}$ We can then associate to each accepting run ρ the subset $Q_{W^{d}}^{\rho}$ of the states of $Q_{W^{d}}$ visited by ρ, and so the sub-NFA W_{ρ}^{d} of W^{d} with $Q_{W^{d}}^{\rho}$ as set of states, and whose transitions are the transitions of W^{d} between states of $Q_{W^{d}}^{\rho}$. Clearly, W_{ρ}^{d} has at most $(n+1) \cdot d$ states and at most $((n+1) \cdot d) \cdot(d+d)=O\left(n \cdot d^{2}\right)$ transitions. (Let a state $\left\langle q_{i_{1}}, \ldots, q_{i_{d}}\right\rangle$; the term $(d+d)$ corresponds to the transitions labeled by $\left\langle b_{i_{j}}, j\right\rangle$ or $\langle\varepsilon, j\rangle$ for each $j \in[1, d]$.) Moreover, even though there are infinitely many accepting runs, the number of different such sub-NFAs is $d^{|\vec{b}| d}$, because each state of W^{d} has d successors different from itself, and every accepting run of W^{d} only visits $(n+1) \cdot d$ distinct states. Let $W_{1}^{d}, \ldots, W_{\alpha}^{d}$ be an enumeration of them.

In Lem. 1 we first construct a d-TPDA B_{1} by synchronizing A and W^{d}, and then we transform B_{1} into another d-TPDA B. Now we first synchronize A and W_{i}^{d}, yielding a d-TPDA $B_{1 i}$ for every $i \in[1, \alpha]$, and then we apply the same transformation as in Lem. 1 to obtain a d-TPDA B_{i}. Clearly, we have $T(B)=$ $\bigcup_{i=1}^{\alpha} T\left(B_{i}\right)$, and so the result follows.

Proceeding as in the previous section, we now obtain for each d-TPDA B_{i} a grammar G_{i}, and from it an existential Presburger formula Ψ_{i}. We get:
Proposition 3: There is a computable family $\left\{\Psi_{i}\left(x_{1}, \ldots, x_{n}\right)\right\}_{i=1}^{\alpha}$ of existential Presburger formulas, each of them of size $O\left(|M|^{3} \cdot|\overline{\boldsymbol{b}}|^{3} \cdot d^{6}\right)$, such that
$f_{\bar{b}}\left(k_{1}, \ldots, k_{n}\right) \in L(M) \cap \overline{\boldsymbol{b}}$ iff $\bigvee_{i=1}^{\alpha} \Psi_{i}\left(k_{1}, \ldots, k_{n}\right)$ is true. In particular, $L(M) \cap \bar{b} \neq \varnothing$ iff at least one of the formulas in the family is satisfiable. Moreover, we can decide in time $O\left(|M|^{3} \cdot|\overline{\boldsymbol{b}}|^{3} \cdot d^{6}\right)$ if a given formula belongs to $\left\{\Psi_{i}\left(x_{1}, \ldots, x_{n}\right)\right\}_{i=1}^{\alpha}$
Finally, we get:
Theorem 5: The emptiness problem for MHPDAs modulo letter-bounded expressions is in coNP. Moreover, the emptiness problem for MHPDAs and $\overline{\boldsymbol{w}}=b^{*}$ is coNP-hard.

Proof: Let M be a d-HPDA and let \bar{b} be a letter-bounded expression. The nondeterministic polynomial algorithm for non-emptiness of $L(M) \cap \overline{\boldsymbol{b}}$ first guesses one of the formulas Ψ_{i} of Prop. 3, checks in polynomial time that it belongs to the family and then nondeterministically checks that it is satisfiable. Since Ψ_{i} has polynomial size in $|M|+|\overline{\boldsymbol{b}}|+d$, the whole procedure takes nondeterministic polynomial time.
The coNP-hardness result follows from [12, Theorem 1], which proves that given CFGs G_{1}, \ldots, G_{k}, deciding non emptiness of $L\left(G_{1}\right) \cap \ldots \cap L\left(G_{k}\right) \cap L\left(b^{*}\right)$ is coNP-hard. Since we can easily construct in linear time a k-HPDA recognizing $L\left(G_{1}\right) \cap \ldots \cap L\left(G_{k}\right)$, the result follows.

V. Closure under Boolean operations

It is straightforward to show that MHPDAs are effectively closed under union and intersection.

Proposition 4: Let A_{1} be a k_{1}-HPDA and A_{2} a k_{2}-HPDA. We can construct in linear time $\left(k_{1}+k_{2}\right)$-HPDAs A_{\cup} and A_{\cap} such that $L\left(A_{\cup}\right)=L\left(A_{1}\right) \cup L\left(A_{2}\right)$ and $L\left(A_{\cap}\right)=L\left(A_{1}\right) \cap$ $L\left(A_{2}\right)$.

Proof: A_{\cup} nondeterministically decides to simulate A_{1} or A_{2}; it requires max k_{1}, k_{2} heads. A_{\cap} simulates A_{1} with heads [$1, k_{1}$] and if A_{1} reaches an accepting state, then it simulates A_{2} with heads $\left[k_{1}+1, k_{1}+k_{2}\right]$.

MHPDAs are not closed under complement, but closed under complement modulo any bounded expression.
Proposition 5: Given an d-HPDA A and a bounded expression $\overline{\boldsymbol{w}}$, there is an MHPDA B such that $L(B)=\overline{\boldsymbol{w}} \backslash L(A)$ and $|B|$ is at most triply exponential in $|A|,|\overline{\boldsymbol{w}}|$.

Proof: The complementation procedure works as follows:

- Compute the existential Presburger formula Ψ of Thm. 2 with constants written in unary. A simple inspection of the result of [23] shows that the size of Ψ is still $O\left(|A|^{3}\right.$. $|\overline{\boldsymbol{w}}|^{3 d}$) (the constants of Φ for a context-free grammar G have linear size in $|G|$ even when written in unary).
- Compute a quantifier-free formula $\Phi \equiv \neg \Psi$ (with constants written in unary). This is possible because Presburger arithmetic has quantifier elimination procedures. Moreover, since Ψ has one single block of existential quantifiers, we have $|\Phi| \in 2 \exp (O(|\Psi|))$ [24][25], where $2 \exp (n)=2^{2^{n}}$. We have $w_{1}^{k_{1}} \ldots w_{n}^{k_{n}} \in(\overline{\boldsymbol{w}} \backslash L(A))$ iff $\Psi\left(k_{1}, \ldots, k_{n}\right)$ is false iff $\Phi\left(k_{1}, \ldots, k_{n}\right)$ is true.
- Construct the MHPDA B as follows. B has a head for each atomic formula of Φ. Control ensures that heads read the input one after the other (i.e., the $i+1$-st head starts reading the input after the i-th head has completely read $\mathrm{it})$. The i-th head checks whether the i-th atomic formula
is satisfied by the input. For instance, a constraint like $3 k_{1}-2 k_{2} \leq 5$ is checked using the stack as follows: the stack is used as a counter over the integers (using two symbols, say P and N, and encoding i where $i \geq$ 0 as $P^{i} \perp$ and $-i(i>0)$ as $N^{i} \perp$ for some bottom stack symbol \perp); B reads $w_{1}^{k_{1}} w_{2}^{k_{2}}$, so that at the end the counter contains $3 k_{1}-2 k_{2}$; then B compares the content of the counter with 5 . Control takes care of evaluating the formula by combining the results of the evaluation of the atomic formulas. B accepts $w_{1}^{k_{1}} \ldots w_{n}^{k_{n}}$ if the evaluation of Φ is true. Since the constants of Φ are written in unary, we have $|B| \in O(|\Phi|)$.
This procedure yields a triple exponential bound for B in the size of A. More precisely, the procedure is only triply exponential in the number of heads of A, but not on its number of states or transitions.

For letter-bounded expressions, we get one exponential less by using Prop. 3 to compute a family of exponentially many Presburger formulas, each polynomial in the size of the automaton and the bounded expression, then following the previous construction and noting that the intersection of exponentially many MHPDAs, each doubly exponential, still gives a doubly exponential MHPDA.
Proposition 6: Given a d-HPDA A and a letter-bounded expression $\overline{\boldsymbol{b}}$, there is an MHPDA B such that $L(B)=\overline{\boldsymbol{b}} \backslash L(A)$ and $|B|$ is at most doubly exponential in $|A|,|\overline{\boldsymbol{b}}|$.

VI. Optimality Questions

Let \mathcal{P} denote the class of finite unions of bounded expressions, let \mathcal{F} denote the class of finite languages, and let $\mathcal{U}=\mathcal{P} \cup \mathcal{F}$. We have shown that MHPDA is perfect modulo \mathcal{U}. This raises two questions: (1) is MHPDA perfect modulo some class of regular languages larger than \mathcal{U} ?, and (2) is some class larger than MHPDA perfect modulo \mathcal{U} ?.
Prop. 7.1 shows that the answer to (1) is negative. We do not settle (2), but show in Prop. 7.2 that the largest class of regular languages for which the context-sensitive languages (CSL) are perfect is \mathcal{F}. Actually, the proposition shows that no class with an undecidable emptiness problem (and satisfying some additional very weak properties) can be perfect modulo any class of regular languages larger than \mathcal{F}. So, in particular, no class containing the languages generated by Okhotin's conjunctive grammars can be perfect [26].
Proposition 7:

1) \mathcal{U} is the largest class of regular languages such that MHPDA is perfect modulo \mathcal{U};
2) \mathcal{F} is the largest class of regular languages such that CSL is perfect modulo \mathcal{F}.
Proof:
point 1. Let \mathcal{C} be a class of regular languages stronger than \mathcal{U}. We show that the emptiness problem of MHPDA modulo \mathcal{C} is undecidable, which implies that MHPDA is not perfect modulo \mathcal{C}.

Since \mathcal{C} is stronger than \mathcal{U}, there is an infinite regular language $L \in \mathcal{C}$ that is not equal to a finite union of bounded
expressions. We show that there are words u, v_{0}, v_{1}, x, such that $\varepsilon \neq v_{0} \neq v_{1} \neq \varepsilon, v_{0} v_{1} \neq v_{1} v_{0}$ and $u\left(v_{0}+v_{1}\right)^{*} x \subseteq L$.
We need some preliminaries. We call a NFA A with ε-transitions simple if every strongly connected component (SCC) of A is either trivial or a cycle containing at least one non- ε transition, and every bottom SCC contains a final state. Clearly, if A is simple then there is a finite union p_{1}, \ldots, p_{n} of bounded expressions such that $L(A)=p_{1}+\cdots+p_{n}$ (informally, each p_{i} corresponds to a path in the acyclic graph obtained by contracting every SCC to a single node). Conversely, every finite union of bounded expressions is recognized by a simple NFA with ε-transitions.

Since L is regular, there is NFA with ε-transitions A_{L} such that $L\left(A_{L}\right)=L$. W.l.o.g. we can assume that every bottom SCC of A_{L} contains some final state. Since L is infinite, A_{L} contains at least one nontrivial SCC reachable from the initial state. Since L is not equal to a finite union of bounded expressions, A_{L} contains at least one SCC , say C, reachable from the initial state, that is not a cycle. Moreover, we can assume that from some state q of C there are two paths leading from q to q that read two different nonempty words v_{0}, v_{1} such that $v_{0} v_{1} \neq v_{1} v_{0}$ (otherwise, C can be "replaced" by two cycles: one for v_{0}^{*} and one for v_{1}^{*}). Let u be any word leading to q, and x be any word leading from q to a final state. Clearly, $u\left(v_{0}+v_{1}\right)^{*} x \subseteq L$.

We now prove that the emptiness problem of MHPDA modulo L (and so modulo \mathcal{C}) is undecidable by reduction from the emptiness problem for intersection of CFG the alphabet $\{0,1\}$. Let G_{1}, G_{2} be two CFG. Using closure of CFL with respect to concatenation and homomorphism, we can easily construct grammars $G_{1}^{\prime}, G_{2}^{\prime}$ such that G_{i} accepts $a_{1} \ldots a_{n} \in\{0,1\}^{*}$ iff G_{i}^{\prime} accepts the word $u\left(w_{1} \ldots w_{n}\right) x$, where $w_{j}=v_{0}$ if $a_{j}=0$, and $w_{j}=v_{1}$ if $a_{j}=1$ for every $j \in[1, n]$. Now, since $L\left(G_{1}^{\prime}\right), L\left(G_{2}^{\prime}\right) \subseteq u\left(v_{0}+v_{1}\right)^{*} x$, we have $L\left(G_{1}^{\prime}\right) \cap L\left(G_{2}^{\prime}\right) \cap L=L\left(G_{1}^{\prime}\right) \cap L\left(G_{2}^{\prime}\right) \cap u\left(v_{0}+v_{1}\right)^{*} x$, and so $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing$ iff $L\left(G_{1}^{\prime}\right) \cap L\left(G_{2}^{\prime}\right) \cap L=\varnothing$. So the emptiness problem of MHPDA modulo L is undecidable
point 2. Since CSL is closed under boolean operations and has a decidable membership problem, CSL is perfect modulo \mathcal{F}. Any class of regular languages stronger than \mathcal{F} contains an infinite regular language L. We prove that emptiness of CSL modulo L is undecidable by reduction from the emptiness problem for CSL, which implies that CSL is not perfect modulo L.

Since L is infinite, there are words w_{1}, w_{2}, w_{3} such that $w_{1} w_{2}^{*} w_{3} \in L$. Given a context-sensitive grammar G, it is easy to construct a grammar G^{\prime} satisfying $L\left(G^{\prime}\right) \subseteq w_{1} w_{2}^{*} w_{3}$ and such that $L(G)$ is empty iff $L\left(G^{\prime}\right)$ is empty. First, we replace every terminal symbol of G by a variable generating w_{2}, and then we add a new production $S^{\prime} \rightarrow S_{1} S S_{3}$, where S is the axiom of G, and S_{1}, S_{3} are variables generating w_{1}, w_{3}.

VII. Applications to Verification

In this section, we show MHPDAs are expressive enough to capture several automata-theoretic models. More surprisingly, we show that MHPDA are an elegant solution to find optimal
complexity results as well. As an appetizer consider the non emptiness problem for the intersection of k context free languages and a bounded expression $\overline{\boldsymbol{w}}$. In [12], the authors show that this problem is in NP, and use it to show that assertion checking of multithreaded programs communicating through shared memory is in NP as well. To show that this result is subsumed by ours, proceed as follows. First, compute in polynomial time 1 -HPDAs $\left\{M_{i}\right\}_{i \in[1, k]}$ recognizing the context-free languages. Then, use Thm. 3 to compute in $O\left(k \cdot \max _{i}\left(\left|M_{i}\right|\right) \cdot|\overline{\boldsymbol{w}}|^{3}\right)$ time a formula Ψ such that Ψ is satisfiable iff the intersection of k CFLs and $\overline{\boldsymbol{w}}$ is non empty. Conclude that the problem is in NP.

In the next two sections we prove that the control-state reachability problem for recursive counter machines (CM) and communicating finite-state machines (CFSM) modulo bounded expressions also reduces to bounded emptiness of MHPDA, and use this to prove that both problems are NP-complete.

VIII. Recursive Counter Machines

Let $k \geq 1$. A recursive counter machine (CM) is a tuple $\left(S, \Gamma, \mathcal{C}, \mathcal{T}, s_{0}\right)$ where S is a non-empty finite set of control states; Γ is a stack alphabet with a distinguished bottom stack symbol $\perp ; \mathcal{C}=\left\{c_{1}, \ldots, c_{k}\right\}$ is a finite set of k counters; $s_{0} \in S$ is the initial control state; and \mathcal{T} is a finite set of transitions of the form $(\alpha, \gamma) \xrightarrow{o p}(\beta, v)$, where $\alpha, \beta \in S$, $\gamma \in \Gamma, v \in \Gamma^{*}$, and $o p \in\left\{\operatorname{inc}_{i}, \operatorname{dec}_{i}, \text { zerotest }_{i}\right\}_{i \in[1, k]}$ is one of the counter operations increment, decrement, or test for zero of $c_{i} \in \mathcal{C}$ respectively.
A configuration $\left(s, w, v_{1}, \ldots, v_{k}\right) \in S \times \Gamma^{*} \times \mathbb{N}^{k}$ consists of a control state s, a stack content w, and a valuation of the counters. The initial configuration is $\mathbf{c}_{0}=\left(s_{0}, \perp, \mathbf{0}\right)$. Let t be a transition $(\alpha, \gamma) \xrightarrow{o p}(\beta, v)$. We say that a configuration $\mathbf{c}^{\prime}=\left(s^{\prime}, w^{\prime}, v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)$ is a flow t-successor of $\mathbf{c}=\left(s, w, v_{1}, \ldots, v_{k}\right)$, denoted by $\mathbf{c} F_{t} \mathbf{c}^{\prime}$, if $s=\alpha, s^{\prime}=\beta$, $w=\gamma u$ and $w^{\prime}=v u$ for some $u \in \Gamma^{*}$. We say that \mathbf{c}^{\prime} is a t-successor of \mathbf{c}, denoted by $\mathbf{c} R_{t} \mathbf{c}^{\prime}$, if $\mathbf{c} F_{t} \mathbf{c}^{\prime}$ and either $o p=\operatorname{inc}_{i}$ and $\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)=\left(v_{1}, \ldots, v_{k}\right)+\mathbf{e}_{i}$, or $o p=\operatorname{dec}_{i}$ and $\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)=\left(v_{1}, \ldots, v_{k}\right)-\mathbf{e}_{i}$, or $o p=$ zerotest $_{i}$ and $v_{i}=0$ and $\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)=\left(v_{1}, \ldots, v_{k}\right)$. Given a sequence $\pi \in \mathcal{T}^{*}$, we define $F(\pi)$ recursively as follows: $F(\varepsilon)$ is the identity relation over configurations, and $F\left(\pi^{\prime} \cdot t\right)=F\left(\pi^{\prime}\right) \circ F_{t}$, where \circ denotes join of relations. Given $L \subseteq \mathcal{T}^{*}$, we define $F(L)=\bigcup_{\pi \in L} F(\pi)$. We define $R(\pi)$ and $R(L)$ analogously. The set of configurations reachable through L is post $[L]=\left\{\mathbf{c} \mid \mathbf{c}_{0} R(L) \mathbf{c}\right\}$.
The control reachability problem for CM asks, given a control state s_{f}, whether $\operatorname{post}\left[\mathcal{T}^{*}\right]$ contains a configuration with control state s_{f}. The problem is undecidable even for non-recursive counter machines [27].

Given a bounded expression $\overline{\boldsymbol{w}}$ over the alphabet \mathcal{T} of transitions, the control reachability problem modulo $\overline{\boldsymbol{w}}$ is the question whether $\operatorname{post}[\overline{\boldsymbol{w}}]$ contains a configuration with control state s_{f}. We show that this problem is NP-complete by means of a reduction to the bounded emptiness problem for sequential MHPDAs.

Fig. 3. The 1-HPDA $P_{\sqrt{ }}$ over alphabet $\{+,-, 0\}$.

A. Encoding Counter Machines

Fix a $\mathrm{CM}\left(S, \Gamma, \mathcal{C}, \mathcal{T}, s_{0}\right)$ with k counters and a bounded expression $\overline{\boldsymbol{w}}$ over \mathcal{T}. We construct $k+11$-HPDAs such that $\pi \in \mathcal{T}^{*}$ is accepted by all the 1 -HPDA iff post $[\pi]$ contains a configuration with s_{f} as control state. (Following Prop. 4, we can then construct an equivalent ($k+1$)-HPDA if we wish.)

The first PDA P_{0} checks whether $\mathbf{c}_{0} F(\pi) \mathbf{c}$ holds for some configuration c having s_{f} as control state. Since for each transition t of the CM the relation F_{t} exactly corresponds to the relation induced by the productions of a pushdown automaton, the construction of P_{0} is straightforward, and we omit the details.

A word π accepted by P_{0} is consistent with the control flow of the CM, but might not be feasible (π may zero-test a counter whose value is not 0 , or decrement a counter whose value is 0). Feasibility is checked by PDAs P_{1}, \ldots, P_{k}. More precisely, P_{i} checks that the projection of π onto the operations of c_{i} is feasible. We first describe a generic PDA $P_{\sqrt{ }}$ over the alphabet $\{+,-, 0\}$, where " + " encodes increment, "-" decrement, and " 0 " a zero-test, as a template that can be instantiated to generate P_{1}, \ldots, P_{k}.
$P_{\sqrt{ }}$ is shown in Fig. 3. It uses its stack as a counter. The stack alphabet is $\{\perp, a\}$. When $P_{\sqrt{ }}$ reads $\mathrm{a}+(\mathrm{a}-)$, it pushes an a into (pops an a from) the stack, and when it reads 0 , it checks that the top element is the end-of-stack marker \perp $([0\rangle, \perp / \perp)$. Now, P_{i} is a suitably modified version which, when reading a letter $t=(\alpha, \gamma) \xrightarrow{o p}(\beta, w)$, acts according to the operation op: if op=$=\operatorname{inc}_{i}\left(\operatorname{dec}_{i}\right.$, zerotest $\left.{ }_{i}\right)$, then t is treated as $+(-, 0)$. If $o p$ does not operate on the i-the counter, then control ignores t.

Applying Thm. 3, we get:

Theorem 6: Given a CM $A=\left(S, \Gamma, \mathcal{C}, \mathcal{T}, s_{0}\right)$ with k counters, a control state $s_{f} \in S$, and a bounded expression $\overline{\boldsymbol{w}}$ over \mathcal{T}, there is a computable formula $\Phi_{A, s_{f}}$ of existential Presburger arithmetic of size $O\left(k \cdot|A|^{3} \cdot|\overline{\boldsymbol{w}}|^{3}\right)$ such that $\operatorname{post}[\overline{\boldsymbol{w}}]$ contains a configuration with state s_{f} iff $\Phi_{A, s_{f}}$ is satisfiable. As a consequence, the bounded control reachability problem for recursive counter machines is in NP.
NP-hardness holds even for non-recursive counter machines (this result has been communicated to us by S. Demri, but for completeness a proof can be found in the Appendix), and therefore the bound of Thm. 6 is optimal.

A similar construction can be used to simulate recursive machines with k-auxiliary stacks.

Fig. 4. The 2-HPDA $P_{\sqrt{ }}$ where $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$.

IX. Communicating Finite State Machines

Let $k \geq 1$. A communicating finite state machines (CFSM) is a tuple $\left(S, K, \Sigma, \mathcal{T}, s_{0}\right)$ where S is a non-empty finite set of control states; $K=\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right\}$ is a finite set of unbounded FIFO channels; Σ is a non-empty finite set of messages; $s_{0} \in$ S is the initial control state; and \mathcal{T} is a finite set of transitions. Each transition $t \in \mathcal{T}$ is given by a triple $\left(\alpha_{t}, o p_{t}, \beta_{t}\right)$ where $\alpha_{t}, \beta_{t} \in S$ and $o p_{t}$ is the channel operation: either ! $\sigma: \mathcal{C}_{i}$, which writes message $\sigma \in \Sigma$ to channel \mathcal{C}_{i} or ? $\sigma: \mathcal{C}_{j}$, which reads message $\sigma \in \Sigma$ from channel \mathcal{C}_{j}. A configuration is a tuple $\left(s, x_{1}, \ldots, x_{k}\right) \in S \times\left[\Sigma^{*}\right]^{k}$ containing a control state and the content of each channel $\mathcal{C}_{i} \in K$. The initial configuration is $\mathbf{c}_{0}=\left(s_{0}, \varepsilon, \ldots, \varepsilon\right)$.

Given $t=(\alpha, o p, \beta) \in \mathcal{T}$, we define the relations F_{t} and R_{t} over configurations as follows: $\left(s, x_{1}, \ldots, x_{k}\right) F_{t}$ $\left(s^{\prime}, x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ iff $\alpha_{t}=s$ and $\beta_{t}=s^{\prime}$, and $\left(s, x_{1}, \ldots, x_{k}\right) R_{t}$ $\left(s^{\prime}, x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ iff $s=\alpha, s^{\prime}=\beta$, and for all $i \in[1, k]$ either $x_{i}=\sigma \cdot x_{i}^{\prime}$ and $o p_{t}=? \sigma: \mathcal{C}_{i}, x_{i}^{\prime}=x_{i} \cdot \sigma$ and $o p_{t}=!\sigma: \mathcal{C}_{i}$, or $x_{i}^{\prime}=x_{i}$ otherwise.
$F(L), R(L)$, post $[L]$, the control reachability problem and the control reachability problem modulo a bounded expression for CFSMs are defined as for CM. The reachability problem for CFSM is undecidable [28].

A. Encoding Communicating Machines

We proceed as for recursive counter machines. Given a CFSM with k channels, we construct a finite automaton P_{0} and $k 2$-HPDAs P_{1}, \ldots, P_{k} such that $\pi \in \mathcal{T}^{*}$ is accepted by all of P_{0}, \ldots, P_{k} iff post $[\pi]$ contains a configuration with s_{f} as control state. Again, P_{0} checks whether $\mathbf{c}_{0} F(\pi) \mathbf{c}$ holds for some configuration chaving s_{f} as control state, and P_{1} to P_{k} check feasibility of π. In the case of CFSM, feasibility means that the contents of the channels after taking a transition t are the ones given by $R(t)$.
P_{0} is even simpler as for CM , since there is no recursion. ${ }^{4}$

[^2]P_{i} checks feasibility of π with respect to the i-th channel. As in the case of CM, we define a generic 2-HPDA $P_{\sqrt{ }}$, depicted in Fig. 4, that checks consistency for a channel \mathcal{C}.
For convenience the heads of $P_{\sqrt{ }}$ are named h and H. The stack alphabet is $\{\perp, a\}$, where \perp is, as above, a special end-of-stack marker. $P_{\sqrt{ }}$ works as follows. In state q_{H}, head H reads symbols $\left\{!\sigma_{i} \mid i \in[1, n]\right\}$ to channel \mathcal{C} until a symbol $? \sigma_{i}$ for some $i \in[1, n]$ or $\$$ is read. When ? σ_{i} is read, control jumps to q_{h}^{i}. In q_{h}^{i}, head h looks for the first symbol $\left\{!\sigma_{i} \mid i \in[1, n]\right\}$. If it is ! σ_{i} (which corresponds to ? σ_{i}) then control returns to q_{H}. Intuitively, if a symbol is read from channel \mathcal{C} it must have been written previously. Observe that the stack ensures ensure that h does not move beyond H. In fact, in every reachable configuration not in state $q_{f}, P_{\sqrt{ }}$ maintains the invariant that the number of symbols between H and h coincides with the number of a 's on the stack. For instance for tapes $\left\langle t_{h}, t_{H}\right\rangle$ where
\[

$$
\begin{aligned}
t_{h} & =!\sigma_{1} \#!\sigma_{2} ? \sigma_{1} ? \sigma_{2} \& \\
t_{H} & =!\sigma_{2} \quad!\sigma_{2} ? \sigma_{1} ? \sigma_{2} \& \#
\end{aligned}
$$
\]

the stack content is given by $\perp a^{3}$. Because of the invariant, head H will be the first to read $\$$ in which case the control is updated to q_{f}. Hence transitions read anything until with head h until it falls down the tape.

We can now apply Thm. 3 again. In this case, the members of our family of MHPDAs have at most 2 heads, i.e., $c=2$.

Theorem 7: Given a CFSM $A=\left(S, K, \Sigma, \mathcal{T}, s_{0}\right)$ with k channels, a control state $s_{f} \in S$, and a bounded expression $\overline{\boldsymbol{w}}$ over \mathcal{T}, there is a computable formula $\Phi_{A, s_{f}}$ of existential Presburger arithmetic of size $O\left(k \cdot|A|^{3} \cdot|\overline{\boldsymbol{w}}|^{6}\right)$ such that $\operatorname{post}[\overline{\boldsymbol{w}}]$ contains a configuration with state s_{f} iff $\Phi_{A, s_{f}}$ is satisfiable. As a consequence, the bounded control reachability problem for CFSM is NP.

Again, we can prove that NP-hardness holds for CFSM, and therefore that our bound is optimal. The proof is in Appendix.

Finally, let us observe that the above reduction can be extended so as to handle machines where transitions are either counter operations or channel operations, i.e. $(S, \Gamma, \mathcal{C} \cup$ $\left.K, \mathcal{T}, s_{0}\right)$. The construction of P_{0} is as for CM. Then, for each auxiliary storage $S \in \mathcal{C} \cup K$, it suffices to use the adequate MHPDA (for counter or channel) checking for feasibility of a sequence of operations on S. Again, we can show an NP upper bound for the bounded control reachability problem.

X. Conclusions

We have introduced verification modulo a class of languages, which formalizes the common practice, for efficiency reasons, of checking only a subset of the behaviours of a system. This leads to the notion of a perfect computational model \mathcal{M} modulo a class of behaviours \mathcal{C}. We have presented a perfect model for the class of bounded expressions: multihead pushdown automata (MHPDA). We have determined the complexity of the emptiness problem, shown that many popular modelling formalisms can be easily compiled into MHPDA, and proved that the compilation leads to verification algorithms of optimal complexity.

There are two interesting open problems. The first one is to search for more expressive perfect models modulo bounded expressions. The second is to determine whether our bounds relating the sizes of two MHPDAs accepting a bounded language and its bounded complement are tight.

References

[1] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.
[2] R. Alur and P. Madhusudan, "Adding nesting structure to words," J. ACM, vol. 56, no. 3, 2009.
[3] C. Löding, P. Madhusudan, and O. Serre, "Visibly pushdown games," in FSTTCS '04, LNCS 3328, 2004, pp. 408-420.
[4] S. L. Torre, P. Madhusudan, and G. Parlato, "A robust class of contextsensitive languages," in LICS '07. IEEE, 2007, pp. 161-170.
[5] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, "Bounded model checking using satisfiability solving," FMSD, vol. 19, no. 1, pp. 7-34, 2001.
[6] E. M. Clarke, D. Kroening, and K. Yorav, "Behavioral consistency of c and verilog programs using bounded model checking,' in DAC '03. ACM, 2003, pp. 368-371.
[7] S. Qadeer and J. Rehof, "Context-bounded model checking of concurrent software," in TACAS '05, LNCS 3440. Springer, 2005, pp. 93-107.
[8] S. Qadeer, "The case for context-bounded verification of concurrent programs," in SPIN '08, LNCS 5156. Springer, 2008, pp. 3-6.
[9] M. F. Atig, A. Bouajjani, and S. Qadeer, "Context-bounded analysis for concurrent programs with dynamic creation of threads," LMCS, vol. 7, no. 4, 2011.
[10] V. Kahlon, "Tractable dataflow analysis for concurrent programs via bounded languages," July 2009, patent WO/2009/094439.
[11] S. Ginsburg, The Mathematical Theory of Context-Free Languages. New York, NY, USA: McGraw-Hill, Inc., 1966.
[12] J. Esparza and P. Ganty, "Complexity of pattern-based verification for multithreaded programs," in POPL'11. ACM Press, 2011, pp. 499-510.
[13] J. Leroux and G. Sutre, "Flat counter automata almost everywhere," in ATVA '05, LNCS 3707. Springer, 2005, pp. 489-503.
[14] A. Bouajjani and P. Habermehl, "Symbolic reachability analysis of fifochannel systems with nonregular sets of configurations," Theor. Comput. Sci., vol. 221, no. 1-2, pp. 211-250, 1999.
[15] S. Bardin and A. Finkel, "Composition of accelerations to verify infinite heterogeneous systems," in ATVA '04, LNCS 3299. Springer, 2004, pp. 248-262.
[16] O. H. Ibarra, "Generalizations of pushdown automata," Ph.D. dissertation, University of California, Berkeley, 1967.
[17] _-, "A note on semilinear sets and bounded-reversal multihead pushdown automata," IPL, vol. 3, no. 1, pp. 25-28, 1974.
[18] I. H. Sudborough, "Bounded-reversal multihead finite automaton languages," Inf. and Cont., vol. 25, pp. 317-328, 1974.
[19] M. Hague and A. W. Lin, "Model checking recursive programs with numeric data types," in CAV '11, LNCS. Springer, 2011.
[20] O. H. Ibarra, "Reversal-bounded multicounter machines and their decision problems," Journal of the ACM, vol. 25, no. 1, pp. 116-133, 1978.
[21] M. Cadilhac, A. Finkel, and P. McKenzie, "Bounded Parikh automata," in WORDS '11, ser. EPTCS, vol. 63, 2011, pp. 93-102.
[22] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci, "Fast: acceleration from theory to practice," STTT, vol. 10, no. 5, pp. 401-424, 2008.
[23] K. N. Verma, H. Seidl, and T. Schwentick, "On the complexity of equational horn clauses," in CADE '05, LNCS 1831. Springer, 2005.
[24] C. R. Reddy and D. W. Loveland, "Presburger arithmetic with bounded quantifier alternation," in STOC '78. ACM, 1978, pp. 320-325.
[25] M. Fürer, "The complexity of presburger arithmetic with bounded quantifier alternation depth," TCS, vol. 18, pp. 105-111, 1982.
[26] A. Okhotin, "Conjunctive grammars," J. Automata, Languages and Combinatorics, vol. 6:4, pp. 519-535, 2001.
[27] M. Minsky, Finite and Infinite Machines. Englewood Cliffs, N.J., Prentice-Hall, 1967.
[28] D. Brand and P. Zafiropulo, "On communicating finite-state machines," J. ACM, vol. 30, no. 2, pp. 323-342, 1983.
[29] J. von zur Gathen and M. Sieveking, "A bound on solutions of linear integer equalities and inequalities," Proc. AMS, vol. 72, no. 1, pp. 155158, 1978.

Appendix
 Missing Proofs

A. Proposition 4

The emptiness problem for MHPDAs modulo an arbitrary bounded expression is in coNEXPTIME. Moreover, the emptiness problem for MHPDAs and $\overline{\boldsymbol{w}}=(01)^{*}$ is coNEXPTIME-hard.

Proof of Prop. 4: Membership in coNEXPTIME follows immediately from Thm. 2 and the fact that satisfiability of existential Presburger formulas is in NP [29].

For the hardness part, we reduce from 0-1 Succinct Knapsack.

Input: Boolean circuit θ with $k+n$ variables ($k, n>$ 0 given in unary). The circuit represents 2^{k} numbers $a_{0}, \ldots, a_{2^{k}-1}$, each with 2^{n} bits in binary, as follows. The i th bit of the binary representation of a_{j} is $x \in\{0,1\}$ if the circuit θ on input $\operatorname{bin}^{k}(j), \operatorname{bin}^{n}(i)$ evaluates to x, for $i \in\left[0,2^{n}-1\right], j \in\left[0,2^{k}-1\right]$, where $\operatorname{bin}^{\alpha}(\beta)$ is the binary representation of β using α bits.
Output: "Yes" if there exist $z_{1}, \ldots, z_{2^{k}-1} \in\{0,1\}$ such that $a_{0}=\sum_{i=1}^{2^{k}-1} a_{i} z_{i}$; "No" otherwise.
Given an instance of the 0-1 Succinct Knapsack problem, we construct in polynomial time a MHPDA that accepts a string of the form (01)* iff the 0-1 Succinct Knapsack problem answers "Yes."

The idea of the proof is to use d heads of a MHPDA and the bounded expression $(01)^{*}$ to encode 2^{d} states, and to use the stack to compute up to $2^{2^{d}}$. The MHPDA use two heads, one to track a_{0} and one to track the sum on the r.h.s. If these heads point to the same location at the end, we accept. Note that we cannot directly check if two heads are pointing to the same location. However, we can alternately move the heads to the right (by reading) and check that they hit the end marker at the same time.
We start with some preliminary constructions. We use d heads h_{1}, \ldots, h_{d} to encode a d-bit configuration $b \in\{0,1\}^{d}$: to encode b, we make sure that head h_{i} is pointing to bit b_{i} on the tape. For $b \in\{0,1\}^{d}$, we write b_{i} for the i th bit of b. With this representation, we denote by $\boldsymbol{h} d$-bit binary number given by the symbols under the heads h_{1}, \ldots, h_{d}. Also, we denote by $\llbracket \boldsymbol{l} \rrbracket$ the number that is represented.

Given a constant $c \in\{0,1\}^{d}$, we can check that the current store encodes c without destroying the current encoding as follows. First, observe that the bounded expression (01)* ensures that by reading twice from any head, the head points to the same bit as it was pointing to before the two reads (for a long enough string). For $i=1, \ldots, d$, read twice with h_{i} and remember the first value, say x, that is read. Then check that $x=c_{i}$. If not, we go to a state signifying that the current configuration is not storing c, otherwise we continue the next iteration of the loop. At the end of the loop, we go to a state
that signifies that the current encoding is equal to c. The stack is not touched.
Given heads h_{1}, \ldots, h_{d}, we can "reset" the encoding to a specific $c \in\{0,1\}^{d}$ (noted $\boldsymbol{h} \leftarrow c$) as follows. For $i=$ $1, \ldots, d$, read with h_{i} and let x be the value read. If $x=c_{i}$, then again read with h_{i}; else do nothing (because after the read with h_{i}, it points to c_{i}). The stack is not touched.

Given heads h_{1}, \ldots, h_{d} and $h_{1}^{\prime}, \ldots, h_{d}^{\prime}$, we can "copy" the encoding of the $h_{i} \mathrm{~s}$ to $h_{i}^{\prime} \mathrm{s}\left(\boldsymbol{h}^{\prime} \leftarrow \boldsymbol{h}\right)$ as follows. For $i=$ $1, \ldots, d$, we execute the following. Read twice with h_{i} and remember the first value, say x, that is read. Now read with h_{i}^{\prime}, if the value read equals x then read again; else do nothing. At the end of updating the d heads we have that \boldsymbol{h}^{\prime} equals \boldsymbol{h}. The stack is not touched.
Given the binary number $\boldsymbol{h}, \boldsymbol{h} \neq 1^{d}$, we show how to add one to the number such that the resulting \boldsymbol{h} encodes $\llbracket \boldsymbol{h} \rrbracket+1$. Read with h_{1}, if the symbol read is 0 then we are done (h_{1} points to 1); else (h_{1} points to 0) do the following: read with h_{2}, if the symbol read is 0 (h_{1} points to 1) then we are done. In general, if h_{i} points to zero (and all h_{1}, \ldots, h_{i-1} point to 1 's), read with each head h_{1}, \ldots, h_{i}. We can similarly subtract one from the number $\boldsymbol{h}, \boldsymbol{h} \neq 0^{d}$, by replacing zero with one in the above construction. In both constructions, the stack is not touched.

Finally, suppose we have heads h_{0}, \ldots, h_{d}, a head H, and 2^{d} bits $c_{1} c_{2} \ldots c_{2^{d}}$ on the stack. Let C be the number with binary representation $c_{2^{d}} \ldots c_{1}$. We show how the head H can be moved C times to the right, using the heads h_{0}, \ldots, h_{d}. Note that C can be as large as $2^{2^{d}}-1$, so we cannot directly store C using $\operatorname{poly}(d)$ heads. Instead, we use the d heads to count the position in the stack, and perform binary arithmetic on the number in the stack. We execute the following program.

```
\(\llbracket \boldsymbol{h} \rrbracket \leftarrow 2^{d}\)
while \(\llbracket \boldsymbol{h} \rrbracket \neq 0\) and top of stack is \(0\{\)
    pop;
    \(\llbracket \boldsymbol{h} \rrbracket \leftarrow \llbracket \boldsymbol{h} \rrbracket-1 ;\)
\}
if \(\llbracket \boldsymbol{h} \rrbracket=0\{\)
    exit; /* H has now moved C times */
\} else \(\{\) /* top of stack is necessarily 1 */
    pop 1 ; push 0 ; read with \(H\);
    while \(\llbracket \boldsymbol{h} \rrbracket \neq 2^{d}\{\)
        push 1;
        \(\llbracket \boldsymbol{h} \rrbracket \leftarrow \llbracket \boldsymbol{h} \rrbracket+1 ;\)
    \}
\}
goto 1 ;
```

Using the constructions above, the program can be implemented by an MHPDA of size polynomial in d. We call this procedure MoveRight (H).
We now show how to evaluate the circuit θ. W.l.o.g., we assume that θ is given as $p_{1}(n+k)$ layers, each layer has $p_{2}(n+k)$ binary gates, for polynomials p_{1} and p_{2}. We use $k+n+p_{1}(k+n) p_{2}(k+n)$ heads. The inputs are copied into
$k+n$ heads. Then, we evaluate the value of each gate, starting at the lowest layer, and store it into the head representing that gate. To evaluate the gate, we look at the values encoded by the heads representing its inputs, and evaluate the Boolean function for the gate. The stack is untouched in the evaluation. Thus, circuit evaluation can be performed by an MHPDA (indeed, a multi-head finite automaton) using polynomially many (in $k+n$) heads.

Now we come to the main construction. The MHPDA has the following heads:

- a head A_{0} to track a_{0}, a head $S U M$ to track the r.h.s.
- k heads K_{1}, \ldots, K_{k} to track the indices of the numbers $a_{0}, \ldots, a_{2^{k}-1}$;
- m heads M_{1}, \ldots, M_{m} to track the 2^{m} bits of each number;
- $m+1$ heads H_{0}, \ldots, H_{m} to implement procedure MoveRight above;
- additional heads (polynomial in $k+n$) to evaluate circuit θ.
Initially, each head points to a 0 , in particular, $\boldsymbol{K}=0^{k}$. The MHPDA works in the following phases.

In the first phase, we initialize M to 1^{m} and then run the following iteratively. We evaluate θ on the input $\boldsymbol{K} ; \boldsymbol{M}$ (by copying $K_{1}, \ldots, K_{k}, M_{1}, \ldots, M_{m}$ on to the circuit inputs and then evaluating the circuit), and push the evaluated value on to the stack. If $M=0^{m}$ we move to the next phase of the construction. Otherwise, we subtract 1 from $\llbracket M \rrbracket$ and repeat the evaluation.

At the end of the above loop, we have 2^{m} bits, representing the number a_{0} stored on the stack (least significant bit on top). We now invoke MoveRight $\left(A_{0}\right)$, which will move head A_{0} of a_{0} times to the right.

Then comes the phase of guessing and summing a subset of $\left\{a_{1}, \ldots, a_{2^{k}-1}\right\}$ to compare the resulting value against a_{0}. First we set $\llbracket \boldsymbol{K} \rrbracket$ to 1 . For $\llbracket \boldsymbol{K} \rrbracket=1$ to $2^{k}-1$, do the following loop. We guess if $z_{\llbracket K \rrbracket}$ is zero or one, using the finite state of the automaton. If $z_{\llbracket K \rrbracket}$ is guessed to be zero, we continue with the next iteration of the loop. Otherwise, we initialize M to 1^{m}, and iteratively evaluate θ on $\boldsymbol{K} ; \boldsymbol{M}$ for each \boldsymbol{M} from 1^{m} to 0^{m}, and push each evaluated bit on the stack. At the end of the process, we have the 2^{m} bits of $a_{\llbracket K \rrbracket}$ on the stack, least significant bit first. We now invoke MoveRight(SUM) to move the head $S U M a_{\llbracket K \rrbracket}$ times to the right.

At the end of the loop, we have that the head $S U M$ has moved $\sum_{i=1}^{2^{k}-1} z_{i} a_{i}$ times to the right, where the z_{i} 's are the guesses made by the MHPDA. We now check if A_{0} and $S U M$ are pointing to the same tape cell by moving them alternately and checking that they read the end marker $\$$ immediately one after the other. If so, we read with all heads until they fall off the tape and accept. Otherwise, we reject. Note that the computations can be performed by a MHPDA that is polynomial in the size of the input.
If the answer to the 0-1 Succinct Knapsack instance is "Yes," then there is a sequence of guesses, and a string in $(01)^{*}$ that is sufficiently long to perform all the computations,
such that the MHPDA accepts. However, if the answer is "No" then the language of the automaton is empty.
Thus, given a MHPDA M, and the fixed bounded expression $(01)^{*}$, checking if $L(M) \cap(01)^{*}$ is empty is coNEXPTIME-hard.

B. Proposition 6

Given a d-HPDA A and a letter-bounded expression $\overline{\boldsymbol{b}}=$ $b_{1}^{*} \ldots b_{n}^{*}$, there is an MHPDA B such that $L(B)=\overline{\boldsymbol{b}} \backslash L(A)$ and $|B|$ is at most doubly exponential in $|A|,|\overline{\boldsymbol{b}}|$.

Proof of Prop. 6: The complementation procedure follows these steps:

- Compute the family $\left\{\Psi_{i}\left(x_{1}, \ldots, x_{n}\right)\right\}_{i=1}^{\alpha}$ of existential Presburger formulas of Prop. 3, each of them of size $p(|A| \cdot|\overline{\boldsymbol{b}}|)$ for a suitable polynomial p. Recall that $\alpha=d^{|\bar{b}| d}$.
- Compute quantifier-free formulas $\Phi_{i} \equiv \neg \Psi_{i}$ with constants in unary of size $\left|\Phi_{i}\right| \in \mathcal{2} \exp \left(O\left(\left|\Psi_{i}\right|\right)\right)$. By Prop. 3 we have $b_{1}^{k_{1}} \ldots b_{n}^{k_{n}} \in(\overline{\boldsymbol{b}} \backslash L(A))$ iff $\bigvee_{i=1}^{\alpha} \Psi_{i}\left(k_{1}, \ldots, k_{n}\right)$ is false iff $\bigwedge_{i=1}^{\alpha} \Phi_{i}\left(k_{1}, \ldots, k_{n}\right)$ is true.
- Construct for every formula Φ_{i} a MHPDA B_{i} of size $O\left(\Phi_{i}\right)$ as in Prop. 5.
- Let B be a MHPDA accepting $\bigcap_{i=1}^{\alpha} L\left(B_{i}\right)$, which exists by Prop. 4. We have

$$
\begin{aligned}
|B| & \in O\left(\sum_{i=1}^{\alpha}\left|B_{i}\right|\right) \\
& \in O\left(\sum_{i=1}^{\alpha}\left|\Phi_{i}\right|\right) \\
& \in \sum_{i=1}^{\alpha} 2 \exp \left(O\left(\left|\Psi_{i}\right|\right)\right) \\
& \in d^{n d} \cdot 2 \exp \left(p^{\prime}(|A| \cdot n)\right) \\
& =2 \exp \left(p^{\prime \prime}(|A| \cdot n)\right)
\end{aligned}
$$

for suitable polynomials $p^{\prime}, p^{\prime \prime}$.

C. NP-hardness of control state reachability modulo bounded expressions for Counter Machines

Proof: We reduce from 3SAT. Given a 3SAT formula $c_{1} \wedge \ldots \wedge c_{m}$ over variables x_{1}, \ldots, x_{n}, we construct a CM with counters $\left\{t_{x_{i}}, f_{x_{i}} \mid i \in[1, n]\right\} \cup\left\{c_{i} \mid i \in[1, m]\right\}$. We use a gadget to assign values to variables and a gadget to check that a clause is satisfied by the current assignment to variables. Fig. 5 shows the gadgets.
For each variable x in the formula, we keep two counters t_{x} and f_{x}. The variable gadget (top of Fig. 5) ensures that when control reaches q_{2}, then either $t_{x}=1$ and $f_{x}=0$ (encoding that x is true) or $t_{x}=0$ and $f_{x}=1$ (encoding that x is false), depending on whether the loop is executed one or zero times, respectively. Note that the loop can be executed at most once: the second iteration gets stuck decrementing f_{x}.
The clause gadget (bottom of Fig. 5) shows how we check that a clause $c \equiv x_{1} \vee \neg x_{2} \vee x_{3}$ is satisfied. The gadget keeps a "control" counter c. The first loop checks that $f_{x_{1}}=0$ (i.e., $t_{x_{1}}=1$, and x_{1} is set to true) and increments c. The second loop checks that $t_{x_{2}}=0$ (i.e., $f_{x_{1}}=1$, and x_{2} is set to
false) and increments c. The third loop checks that $f_{x_{3}}=0$ (i.e., $t_{x_{3}}=1$, and x_{3} is set to true) and increments c. Each loop can be executed any number of times. At the end, the decrement succeeds only when at least one iteration of a loop has executed, which indicates that c is satisfied. Note that if c is not satisfied, control cannot reach the last location r_{3} : either one of the tests in the loops get stuck, or the decrement at the end gets stuck.

For the reduction, we sequentially compose gadgets for all the variables and then all the clauses and ask if the control state at the end of the last clause can be reached. Clearly, paths of the automaton conform to a bounded expression.
D. NP-hardness of control state reachability modulo bounded expressions for CFSM

Proof: We reduce from 3SAT. Given a 3SAT formula $c_{1} \wedge \ldots \wedge c_{m}$ over variables x_{1}, \ldots, x_{n}, we construct a CFSM with channels $\left\{x_{i}, \hat{x}_{i} \mid i \in[1, n]\right\} \cup\left\{c_{i} \mid i \in[1, m]\right\}$. There are two messages: 0 and 1 . The channel x_{i} is used to keep a guess for the variable x_{i}. The channel \hat{x}_{i} is a "control channel" used to ensure only one guess is made. The control flow graph of the CFSM consists of gadgets selecting a value for each variable and gadgets checking that each clause is satisfied.
The gadget for variables is shown on the top of Fig. 6. The gadget first puts a single message 0 into the control channel \hat{x}_{i}. It then defines two loops. The first puts 0 in the channel x_{i} (thereby guessing x_{i} is false) and flips the control channel by dequeueing the 0 and enqueueing a 1 . The second puts 1 in the channel x_{i} (thereby guessing that x_{i} is true) and flips the control channel as before. Finally, the edge from q_{2} to q_{3} dequeues a 1 from the control channel.

By the use of the control channel, we note that any execution that reaches q_{3} must execute exactly one loop, exactly one time. When control reaches q_{3}, the control channel \hat{x}_{i} is empty, and the channel x_{i} is either 0 or 1 .

The gadget for clauses is shown in the bottom of Fig. 6, for the particular clause $c \equiv\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)$ (the general case is immediate). The gadget for the clause has three loops, one for each literal in the clause. Each loop checks if the value guessed for the variable matches the literal (i.e., the clause is satisfied). If so, a message is added to the channel c. At the end of the three loops (edge r_{2} to r_{3}), we check that the control channel c has at least one message. By construction, control can reach r_{3} only when the current guess for the variables satisfies the clause. Moreover, the channels x_{i} are unchanged.

The CFSM sequentially composes the variable gadgets and the clause gadgets, and checks if control can reach the last node of the last clause gadget. Clearly, paths of the automaton conform to a bounded expression.

Fig. 5. Reduction for CMs. The top gadget shows variable assignment. The bottom gadget shows the checks for a clause $c \equiv x_{1} \vee \neg x_{2} \vee x_{3}$.

Fig. 6. Reduction for CFSMs. The top gadget shows variable selection. The bottom gadget shows the checks for a clause $x_{1} \vee \neg x_{2} \vee x_{3}$.

[^0]: ${ }^{1}$ More precisely, in automata-theoretic terms context-bounded checkers explore runs of S of arbitrary length, but containing only a fixed number of non- ε transitions.
 ${ }^{2}$ In [12] bounded verification was called pattern-based verification, but, since pattern is a rather generic term, we opt for bounded verification here.

[^1]: ${ }^{3}$ For integers $x \leq x^{\prime}$, we write $\left[x, x^{\prime}\right]$ for the set $\left\{i \in \mathbb{Z} \mid x \leq i \leq x^{\prime}\right\}$.

[^2]: ${ }^{4}$ Our results also hold for recursive CFSM, but since this model is rather artificial we refrain from describing it.

