
A Perfect Model for Bounded Verification
Javier Esparza

TUM
Pierre Ganty

IMDEA Software Institute
Rupak Majumdar

MPI-SWS

Abstract—A class of languages C is perfect if it is closed
under Boolean operations and the emptiness problem is decid-
able. Perfect language classes are the basis for the automata-
theoretic approach to model checking: a system is correct if the
language generated by the system is disjoint from the language
of bad traces. Regular languages are perfect, but because the
disjointness problem for context-free languages is undecidable,
no class containing them can be perfect.

In practice, verification problems for language classes that
are not perfect are often under-approximated by checking if the
property holds for all behaviors of the system belonging to a
fixed subset. A general way to specify a subset of behaviors is
by using bounded languages (languages of the form w∗1 . . . w

∗
k

for fixed words w1, . . . , wk). A class of languages C is perfect
modulo bounded languages if it is closed under Boolean operations
relative to every bounded language, and if the emptiness problem
is decidable relative to every bounded language.

We consider finding perfect classes of languages modulo
bounded languages. We show that the class of languages ac-
cepted by multi-head pushdown automata are perfect modulo
bounded languages, and characterize the complexities of de-
cision problems. We also show that bounded languages form
a maximal class for which perfection is obtained. We show
that computations of several known models of systems, such as
recursive multi-threaded programs, recursive counter machines,
and communicating finite-state machines can be encoded as
multi-head pushdown automata, giving uniform and optimal
underapproximation algorithms modulo bounded languages.

I. INTRODUCTION

The automata-theoretic approach to model checking linear-
time properties formalizes the verification problem as a
language-theoretic problem about two automata: the system
automaton, which recognizes the set of executions of the
system, and the property automaton, which recognizes either
the sequences of actions satisfying the property (positive
specification), or those violating it (negative specification).
Given a system automaton S and a property automaton P ,
verification of positive and negative specifications reduces to
checking L(S) ⊆ L(P) (inclusion problem), or to checking
L(S) ∩ L(P) = ∅ (disjointness problem) , respectively.

Language classes effectively closed under boolean oper-
ations and with a decidable emptiness problem are partic-
ularly interesting for the automata-theoretic approach. For
such classes not only the inclusion and disjointness problems
are decidable, they also have many further advantages. For
example, in these classes systems are closed under paral-
lel composition by rendez-vous, properties are closed under
boolean operations, and systems can be seen as properties, or
vice versa, with many useful consequences for compositional
and assume-guarantee verification techniques. For all these
reasons, we call these classes perfect.

The regular languages are perfect but, since because the
disjointness problem for the context-free languages (CFL) is
undecidable (see [1]), no class containing CFL can be perfect.
This “context-free barrier” restricts the search for perfect
classes to those properly contained in CFL or incomparable
with them, and both possibilities have been investigated. In
a seminal paper [2], Alur and Madhusudan proved that the
visibly pushdown languages—-a subclass of CFL—are per-
fect, a result that lead to a very successful theory and efficient
algorithms (see e.g.[3], [2]). Later La Torre, Madhusudan, and
Parlato discovered a perfect class incomparable with CFL:
the languages recognized by multi-stack visibly pushdown
automata whose computations can be split into a fixed number
of stages during which at most one stack is popped [4].

The “context-free barrier” continues to be a serious obsta-
cle in many applications, in particular in the verification of
concurrent systems. For this reason, many tools only check
a subset of the executions of the system. Intuitively, they
direct a spotlight to a region of the possible executions, and
check whether the executions under the spotlight satisfy the
property. The spotlight is controlled by the user, who can freely
move it around to check different regions, and conventional
verification corresponds to a spotlight that illuminates all
the space of possible executions. In particular, the “spotlight
principle” is applied by bounded model-checkers, which unroll
program loops and recursion up to a fixed depth (often after
taking the product of the program with an automaton for the
property to be checked), leaving a system whose executions
have a fixed bounded length (see e.g. [5], [6]). It is also
used by context-bounded checkers for multi-threaded programs
[7], [8], [9], which only examine executions containing at
most a fixed number of context-switches (communication
events between threads). Context-bounded checkers break the
context-free barrier, but at the price of only exploring finite
action sequences.1 Recently, building on ideas by Kahlon [10]
on bounded languages [11], context-bounded checking has
been extended to bounded verification [12]2, which checks
whether executions of the system of the form w∗1 . . . w

∗
n for

some finite words w1, . . . , wn satisfy a property.
In automata-theoretic terms, the spotlight principle corre-

sponds to verification modulo a language. The inclusion check
L(S) ⊆ L(P) and the disjointness check L(S)∩L(P) = ∅ are

1 More precisely, in automata-theoretic terms context-bounded checkers
explore runs of S of arbitrary length, but containing only a fixed number of
non-ε transitions.

2In [12] bounded verification was called pattern-based verification, but,
since pattern is a rather generic term, we opt for bounded verification here.

ar
X

iv
:1

20
1.

31
94

v1
 [

cs
.F

L
]

 1
6

Ja
n

20
12

replaced by checks LM (S) ⊆ LM (P) and LM (S)∩LM (P) =
∅, respectively, where LM denotes L ∩M . Context-bounded
checking corresponds to verification modulo the language of
all words up to fixed length, and bounded verification to
verification modulo a bounded expression.

Verification modulo a language M allows to break the
context-free barrier, which raises the question of identifying
perfect classes modulo language classes. Given a boolean
operation Op(L1, . . . , Ln) on languages, let us define the same
operation modulo a language M by OpM (L1, . . . , Ln) =
Op(L1 ∩M, . . . , Ln ∩M), and, similarly, let us say that an
automaton A is empty modulo M if L(A) ∩M = ∅. Let L
and C be classes of languages. We call L perfect modulo C
if it is closed under Boolean operations modulo any M ∈ C,
and has a decidable emptiness problem modulo any M ∈ C. It
is easy to see that the recursive languages are perfect modulo
the finite languages. But for bounded expressions the question
becomes harder. The disjointness problem modulo a bounded
expression is decidable for CFL [11], which hints at a perfect
class modulo bounded expressions containing CFL. However,
CFL itself is not perfect modulo bounded expressions, because
it is not closed under intersection: there is no CFL L such that
{anbnc∗ | n ≥ 0}∩ {a∗bncn | n ≥ 0}∩ a∗b∗c∗ = L∩ a∗b∗c∗.

In this paper we present the first perfect class modulo
bounded expressions: the languages recognized by multihead
pushdown automata (MHPDA). This result is very satisfactory,
because the class has a simple and purely syntactic definition,
and as we demonstrate, is expressive enough to capture many
well-known models. We also characterize the complexity of
the Booleans operations and the emptiness check modulo
bounded expressions: we show that the emptiness check is
coNEXPTIME-complete, union and intersection are polyno-
mial, and complementation is at most triply exponential.
Surprisingly, the emptiness problem is coNP-complete (and
complementation doubly exponential) for the subclass of
letter-bounded expressions, in which each string w1, . . . , wn
is a single letter. We also show that bounded expressions are
a maximal class of regular languages for which perfection can
be attained for MHPDAs, any additional language leads to
undecidability of emptiness.

In the second part of the paper, we show that central
automata models of software can be encoded into MHPDA.
Encoding recursive multithreaded programs to MHPDA is
obvious, since the intersection of CFLs is MHPDA-definable,
and we subsume the results of Esparza and Ganty [12].
Additionally, we supply encodings for recursive counter ma-
chines (CM), the main automata-theoretic model of proce-
dural programs with integer variables, and for finite-state
machines communicating through unbounded perfect FIFO
channels (CFSM), the most popular model for the verification
of communication protocols. While the existence of some
encoding is not surprising, since emptiness problems for CM,
CFSM, and MHPDA are all undecidable, our encodings exhibit
only a small polynomial blowup, and, perhaps more impor-
tantly, preserve bounded behaviours. More precisely, using
our encodings we reduce bounded control-state reachability

for CM and CFSM—deciding reachability of a given control
state by means of a computation conforming to a bounded
expression—to non emptiness of MHPDA modulo bounded
expression. As a consequence, we prove that bounded control-
state reachability for both CM and CFSM are NP-complete.
The NP-completeness also extends to unrestricted control-state
reachability for flat CM and flat CFSM, because by construc-
tion their computations conform to a bounded expression. (See
e.g. [13] and [14] for a study of those models). More generally,
our language-based approach provides a uniform framework
for the verification of models using auxiliary storage like coun-
ters, queues or a mix of both as defined in [15]. Incidentally,
our framework allows to uniformly derive optimal complexity
upper bounds for models manipulating counters, queues or
both, and shared memory multithreaded programs.
Related work. Multi-tape and multi-head finite-state and push-
down machines were extensively studied in the 1960’s and
1970’s, e.g. [16], [17], [18]. The decidability of emptiness
for MHPDA modulo bounded languages was proved by
Ibarra in [17], using previous results going back to his (hard
to find) PhD thesis [16]. Our proof settles the complexity
of the problem (coNEXPTIME-complete). Additionally, our
constructions show the surprising coNP-completeness result
for letter-bounded expressions. (A similar coNP-completeness
result was recently obtained in [19], but for a different model.)

Reversal bounded counter machine as bounded language
acceptors (see e.g. [20]) and Bounded Parikh automata [21]
have the same expressive power as MHPDA modulo bounded
expressions (they all recognize the languages of the form
{wk11 . . . wknn | (k1, . . . , kn) ∈ S} for some semilinear set S).
These three characterizations of the same class complement
each other. While MHPDAs have the modelling advantage of
allowing to directly encode recursive procedures, queues and
counters, reversal bounded counter machine (and by extension
flat counter machine) have very good algorithmic methods and
tool support (see e.g. [19][22]). Our results allow to apply
these algorithms and tools to a larger range of problems.

II. PRELIMINARIES

Language theory. An alphabet Σ is a finite and non-empty set
of letters. We use Σ∗ for the set of finite words over Σ, ε for
the empty word.

We assume the reader is familiar with the basics of language
theory, such as regular languages, context-free languages
(CFL), context-sensitive languages (CSL), and the formalisms
to describe them: nondeterministic finite automata (NFA),
context-free grammars (CFG), pushdown automata (PDA), etc.
(see, e.g., [1]).

Let us mention that for NFAs, CFGs and PDAs the size
of their encoding (denoted using | · |) is the number of bits
required to represent them.
Parikh images. For k ∈ N, we write Zk and Nk for the sets
of (k-dim) vectors of integers and naturals, 0 for (0, . . . , 0),
and ei for the vector (z1, . . . , zk) ∈ Nk such that zj = 1 if
j = i and zj = 0 otherwise. Addition and equality on k-dim
vectors are defined pointwise.

Given a fixed linear order Σ = {a1, . . . , an}, the Parikh
image of ai ∈ Σ, written ParikhΣ(ai), is the vector
ei. The Parikh image is extended to words by defining
ParikhΣ(ε) = 0 and ParikhΣ(u · v) = ParikhΣ(u) +
ParikhΣ(v), and to languages by letting L ⊆ Σ∗,
ParikhΣ(L) = {ParikhΣ(w) | w ∈ L}. We sometimes omit the
superscript Σ.

Presburger Formulas. A term is a constant c ∈ N, a vari-
able x from a set X of variables, or an expression of
the form t1 + t2 or t1 − t2, where t1, t2 are terms. A
Presburger formula is an expression of the form t ∼ 0,
where t is a term and ∼ ∈ {≤, <,=, 6=, >,≥}, or of the
form φ1 ∧ φ2, φ1 ∨ φ2, ∃x.φ, ∀x.φ, where φ, φ1, φ2 are
Presburger formulas. Given a Presburger formula φ with
free variables x1, . . . , xk (written φ(x1, . . . , xk)), we denote
by JφK the set {(n1, . . . , nk) ∈ Nk | φ(n1, . . . , nk) is true},
where φ(n1, . . . , nk) denotes the formula without free vari-
ables obtained by substituting ni for xi. We recall that
satisfiability of Presburger formulas is decidable [11] and that
the Parikh image of a context-free language is Presburger-
definable [23].

Bounded expressions. A bounded expression w̄ over Σ is a
regular expression of the form w∗1 . . . w

∗
n such that n ≥ 1

and wi is a non-empty word over Σ for each i ∈ [1, n]3.
Abusing notation we sometimes write w̄ for L(w̄). The size of
a bounded expression w̄ is defined as |w̄| = 1+

∑n
i=1 |wi|. A

bounded expression is letter-bounded if |w1| = . . . = |wn| =
1, where the wis are not necessarily distinct.

Shuffle and indexed shuffle. The shuffle of two words x, y ∈ Σ∗

is the language

x� y = {x1y1 . . . xnyn ∈ Σ∗ | each xi, yi ∈ Σ∗

and x = x1 · · ·xn ∧ y = y1 · · · yn} .

and the shuffle of two languages L1, L2 ⊆ Σ∗ is the language
L1�L2 =

⋃
x∈L1,y∈L2

x�y. Shuffle is associative, and so we
can write L1� . . .�Lk, which we often shorten to �k

i=1Li.
Given i > 0 let Σ ./ i = {〈σ, i〉 | σ ∈ Σ}. We say that

i is the index of 〈σ, i〉, and extend indexing to words and
languages in the natural way. For w = b1 . . . bt ∈ Σ∗ and i >
0, (w ./ i) = 〈b1, i〉 · · · 〈bt, i〉, and L ./ i = {w./i | w ∈ L}.
The indexed shuffle of L1, . . . , Lk is the language

�
k
i=1Li = �k

i=1(Li ./i) .

For example, if we shorten 〈a, 1〉 to a1 etc., we have

{ab}�{b} = {a1 b1}�{b2} = {a1 b1 b2, a1 b2 b1, b2 a1 b1} .

It is well known that if Li is recognized by an NFA of size
ni, then both �k

i=1Li and �k
i=1Li are recognized by NFAs

of size O(Πk
i=1ni).

3For integers x ≤ x′, we write [x, x′] for the set {i ∈ Z | x ≤ i ≤ x′}.

III. MODELS

A tape content (or simply tape) w over Σ is a word w ∈ Σ∗.
For d ≥ 1, a d-tuple of tapes is a d-tuple (w1, . . . , wd) where
each wi is a tape. Let w ∈ Σ∗, define [w]d as the d-tuple
(w, . . . , w). It extends to languages as follows: let L ⊆ Σ∗,
we write [L]d to denote the set of d-tuples of tapes given by
{(w1, . . . , wd) | wi ∈ L}.

Definition 1: A d-tape pushdown automaton (d-TPDA, for
short) is a 9-tuple A = 〈S,Σ, $,Γ,M, ν, s0, γ0, F 〉 where

1) S is a finite non-empty set of states,
2) Σ is the tape alphabet,
3) $ is a symbol not in Σ (the endmarker for the tape),
4) Γ is the stack alphabet,
5) M , the set of transitions, is a mapping from S × (Σ ∪
{$} ∪ {ε})× Γ into the finite subsets of S × Γ∗,

6) ν : S → [1, d] is the tape selector function,
7) s0 ∈ S is the start state,
8) γ0 ∈ Γ is the initial pushdown symbol,
9) F ⊆ S is the set of final states.

Intuitively, a d-TPDA has a finite-state control (S), d input
tapes, and a stack. There is a separate input-reading head on
each tape. Each state s ∈ S in the finite state control reads
from the tape given by ν(s) and pops the top of the stack.
The transition relation then non-deterministically determines
the new control state and the sequence of symbols pushed on
to the stack. The read head moves one step to the right on its
input tape.

For the sake of readability, we write (s, γ)
σ
↪→ (s′, w)

whenever (s′, w) ∈M(s, σ, γ). We sometimes write (s, γ)
[σ〉i
↪→

(s′, w) where ν(s) = i when we want to make explicit from
which tape we are reading.

The size |A| of a d-TPDA A is given by |S|+ |Σ|+ |Γ|+
|M |+|ν|, where in the encoding of the function ν, the numbers
in [1, d] are encoded in binary. Intuitively, |A| is proportional
to the number of bits required to represent a d-TPDA when
numbers are represented in binary.

Let us fix a d-TPDA A = 〈S,Σ, $,Γ,M, ν, s0, γ0, F 〉.
Definition 2: Let # be a symbol distinct from symbols

in Σ ∪ {$}. Define T = {w#w′ | w · w′ ∈ Σ∗$}. An
instantaneous description (ID) of A is a triple (s, t̄ =
〈t1, . . . , td〉, w) ∈ S×[T]d×Γ∗. An ID (s, t̄, w) denotes that A
is in state s, with pushdown store content w ∈ Γ∗, and where
t̄ = 〈t1, . . . , td〉 is such that ti ∈ T gives the configuration of
tape i where the position of the head indicated by #.

Definition 3: Let `, be the relation between IDs defined as
follows: let c = (s, t̄, wγ) and c′ = (s′, t̄′, ww′) be two IDs.
We have c ` c′ iff each of following conditions is satisfied:

1) (s, γ)
σr
↪→ (s′, w′) for some σr ∈ Σ ∪ {ε, $}.

2) tν(s) = x#σry and t′i =

{
xσr#y if i = ν(s)

ti else

Let `∗ be the reflexive and transitive closure of `.
We now introduce helper functions Lft and Rgt which

given an ID c and a tape h ∈ [1, d] returns the tape content

q↑ q↓ qs

q′s

q qf
[ε〉2

[1〉2 , ε/1

[0〉2 , ε/0

[1〉2 , 1/ε

[0〉2 , 0/ε

[&〉2 ,⊥/⊥

[0
〉 1
,
ε
/
0

[1
〉 1
,
ε
/
1

[1
〉 2
,
1
/
ε

[0
〉 2
,
0
/
ε

[&〉1 [$〉2

[x ∈ {0, 1}〉1

[$〉1

Fig. 1. 2-HPDA accepting {w&w | w ∈ ({0, 1})∗ and w is a palindrome}, ⊥ is the end-of-stack symbol

lying to the left and to the right (without the head position),
respectively.

Definition 4: Given an ID c = (s, t̄ = 〈t1, . . . , td〉, w) and
h ∈ [1, d], define Rgt(c, h) and Lft(c, h) as follows: let th =
w1#w2 then Rgt(c, h) = w2 and Lft(c, h) = w1.

Let us now define the languages accepted by d-TPDA.
Definition 5: Given a ID c, we say that a head i is off

its tape in c whenever Rgt(c, i) = ε. Let c = (s, t̄, w)
be an ID, we say that c is accepting iff s ∈ F and
for every i ∈ [1, d] head i is off its tape in c. A d-
tuple of tapes (x1, . . . , xd) ∈ [Σ∗]d is accepted by A if
(s0, 〈#x1$, . . . ,#xd$〉, γ0) `∗ (s, t̄, w) for some ID (s, t̄, w)
that is accepting. The set of d-tuple of tapes accepted by A
is denoted T (A). A subset L ⊆ [Σ∗]d is d-TPDA definable if
there exists some d-TPDA A such that L = T (A).

Remark 1:

• Having all heads off their tape is a necessary condition to
accept. Therefore any accepting run (even if the tape is
[ε]d) needs to perform at least one read on each tape
because of $. This implies that for any non-trivial d-
TPDA, d ≤ |S|.

• The language of d-TPDA are recursive for each d > 0
[16]. The languages that are 1-TPDA definable are the
CFLs. Observe the following difference w.r.t. classical
definition, e.g. as in [1]. In fact, for a 1-TPDA to accept
we need the current control state to be final and the head
to be off the tape.

In latter sections, we use a graphical notation for MHPDAs
because it better carries intuitions. Fig. 1 gives such an
example of 2-HPDA which recognize a language over symbols
{0, 1,&} given by {w&w | w ∈ ({0, 1})∗ and w is a
palindrome}. Intuitively, in q↑ the 2-HPDA uses head 2 to
recognize the first palindrome using its stack. When head 2
reads & the MHPDA enters qs where it checks using both
heads that the subwords before and after & are identical. If the
check succeeds then the MHPDA enters q then qf (head 2 has
fallen off the tape) where it accepts after making head 1 fall
off the tape. The transition from q↓ to qs labelled [&〉2 ,⊥/⊥
reads as follows: if in state q↓ stack symbol ⊥ is on the top
of the stack then read & with head 2 and update the location
to qs. Also read the transition from qf to itself and labelled

[x ∈ {0, 1}〉1 as follows: in state qf read any symbol of {0, 1},
go to qf . In what follows, to ease the readability we omit
the formal description of the automata and use our graphical
notation instead.

We now introduce a generalization of pushdown automata
with several heads working on a shared tape. This model is
closely related to d-TPDA as described below.

Definition 6: Let ∆d ⊆ [Σ∗]d be given by
{(w1, . . . , wd) ∈ [Σ∗]d | w1 = · · · = wd} and π1 : [Σ∗]d →
Σ∗ to be the function which maps L ⊆ [Σ∗]d onto the first
tape: π1(L) = {w1 ∈ Σ∗ | (w1, . . . , wd) ∈ L}.

When the d-tuple of tapes is restricted to ∆d, that is,
when all the tapes have identical content, we can view A
as a pushdown automaton with d-heads sharing a unique
tape. In this case we define the language L ⊆ Σ∗ accepted
by the d-head pushdown automaton A (or d-HPDA) to be
π1(T (A) ∩ ∆d) and we denote this language by L(A). We
write MHPDA for the class of models d-HPDA for d ≥ 1.

IV. EMPTINESS MODULO BOUNDED EXPRESSIONS

Given a d-HPDA M and a bounded expression w̄ =
w∗1 . . . w

∗
n, both over an alphabet Σ, we show how to check

emptiness of L(M) ∩ w̄. Recall that we can construct a d-
TPDA A of size O(|M |) such that L(M) ∩ w̄ = ∅ iff
T (A) ∩ [w̄]d ∩ ∆d = ∅, where ∆d is the set of d-tuples
of the form (w,w, . . . , w) (see def. 6).

In Section IV-A we show that emptiness of T (A) ∩ [w̄]d

can be reduced to emptiness of a context-free grammar, and
in Section IV-B that emptiness of L(M)∩w̄ can be reduced to
unsatisfiability of an existential Presburger formula. The steps
of the reduction are summarized in Fig. 2.

A. Emptiness of T (A) ∩ [w̄]d

We construct in three steps a context-free grammar that
recognizes an “encoding” of T (A) ∩ [w̄]d.

Roughly speaking, in the first step we construct a d-TPDA
recognizing the result of applying a transformation on T (A)∩
[w̄]d which “contracts” each word wi of w̄ into a single letter.

Let Σ = {a1, . . . , an} be a new alphabet and let ā =
a∗1 · · · a∗n be a bounded expression over Σ. Given a bounded
expression w̄ = w∗1 · · ·w∗n over Σ, we define the mapping
fw̄ : Nn → Σ∗ by fw̄ : (i1, . . . , in) 7→ wi11 · · ·winn .

Lemma 1: There is a computable d-TPDA B over Σ of size
O(|A| · |w̄|d) such that for every k1, . . . ,kd ∈ Nn we have:(

fw̄(k1), . . . , fw̄(kd)
)
∈ T (A) ∩ [w̄]d

iff(
fā(k1), . . . , fā(kd)

)
∈ T (B) .

Sketch of Proof: We first construct a d-TPDA B1

such that T (B1) = T (A) ∩ [w̄]d. For this, let W be
an NFA recognizing w̄ · $, and let QW be its set of
states and FW ⊆ QW the accepting ones. Adapting the
shuffle construction for NFAs, we can construct a NFA
W d with states [QW]d = QW × · · · ×QW︸ ︷︷ ︸

d-times

recognizing

�
d
i=1L(w̄ · $). We synchronize A with W d as follows.

The set of states of B1 is S × [QW]d, where S is the set
of states of A, and the set of final states is F × [FW]d.
The tape selection function of B1 is determined by the

one of A. If A has a transition (sa, γ)
[σ〉`
↪→ (sb, w), where

σ ∈ Σ ∪ {$} is read from the tape ` = ν(sa), and W d

has a transition 〈q1, . . . , q`, . . . , qd〉
〈σ,`〉→ 〈q1, . . . , q

′
`, . . . , qd〉,

then B1 has a transition (〈sa, q1, . . . , q`, . . . , qd〉, γ)
[σ〉`
↪→

(〈sb, q1, . . . , q
′
`, . . . , qd〉, w). If A has a transition

(sa, γ)
[ε〉`
↪→ (sb, w) (resp. W d has a transition

〈q1, . . . , qj , . . . , qd〉
〈ε,j〉→ 〈q1, . . . , q

′
j , . . . , qd〉), then B1 has

transition (〈sa, q1, . . . , qd〉, γ)
[ε〉`
↪→ (〈sb, q1, . . . , qd〉, w) (resp.

(〈sa, q1, . . . , qj , . . . , qd〉, γ)
[ε〉`
↪→ (〈sa, q1, . . . , q

′
j , . . . , qd〉, γ)

for every γ ∈ Γ). B1 has no further transitions.
Now we construct B. It is easy to construct W so that for

every word wi of w̄ it contains a state qwi that is entered
every time (and only when) W reads the last letter of wi. We
proceed as follows. First, we transform all transitions of B1,
with the exception of those labeled with endmarkers, into ε-
transitions. Then, we relabel again all transitions entering qwi

,
i.e, all transitions in which some copy of W takes a transition
with target qwi : we replace ε by ai.

In a second step we construct a PDA that recognizes the
indexed shuffle of T (B). Let Σd =

⋃d
i=1(Σ ./ i). Given a

d-tuple of tapes u = (u1, . . . , ud) define �(u) = �d
i=1{ui}.

Lemma 2: There is a computable PDA C over Σd of size
O(|B|) such that u ∈ T (B) iff �(u) ∩ L(C) 6= ∅ for every
u ∈ [Σ

∗
]d.

Sketch of Proof: B and C have the same states, initial and
final states, and stack alphabets. Assume B is currently at state
s, and the tape selector assigns to s tape number ` = ν(s). The
transitions of C are defined so that if in the next move B reads
a letter σ, then C reads the letter 〈σ, `〉 (unless σ ∈ {$, ε}, in
which case C reads ε). Formally, for σ 6= $ and σ 6= ε the

PDA C has a transition (s, γ)
〈σ,`〉
↪→ (s′, w) iff B has a transition

(s, γ)
[σ〉`
↪→ (s′, w), and C has a transition (s, γ)

ε
↪→ (s′, w) iff

B has a transition (s, γ)
[$〉`
↪→ (s′, w) or (s, γ)

[ε〉`
↪→ (s′, w). Now,

C accepts the word of �(u) that interleaves the letters from
the different tapes in the order in which they are read by B.

The third step is standard [1]:
Lemma 3: There is a computable CFG G over Σd of size

O(|C|)3 such that L(G) = L(C).
Putting these lemmas together, we finally get
Proposition 1: There is a computable CFG G over Σd of

size O(|A|3 · |w̄|3d) such that for every k1, . . . ,kd ∈ Nn we
have: (

fw̄(k1), . . . , fw̄(kd)
)
∈ T (A) ∩ [w̄]d

iff

�

(
fā(k1), . . . , fā(kd)

)
∩ L(G) 6= ∅

B. Emptiness of L(M) ∩ w̄

Recall that L(M)∩ w̄ = ∅ iff T (A)∩ [w̄]d ∩∆d = ∅. To
decide this problem, we rely on the notion of Parikh image.
By definition of indexed shuffle, for every tuple v ∈ [Σ

∗
]d all

the words of�(v) have the same Parikh image, which justifies
the notation Parikh(�(v)). Now we have:

Lemma 4: For every v ∈ [Σ
∗
]d: �(v) ∩ L(G) 6= ∅ iff

Parikh(�(v)) ∈ Parikh(L(G)).
Proof: The right-to-left direction is obvious. For the con-

verse, �(v) ∩ L(G) 6= ∅ implies Parikh(v′) ∈ Parikh(L(G))
for some v′ ∈ �(v), but all elements of �(v) have the same
Parikh mapping.

So checking �(v) ∩ L(G) 6= ∅ can be done by checking
Parikh(�(v)) ∈ Parikh(L(G)). For this check we can resort
to the following theorem.

Theorem 1: [23] For each CFG G, there is a computable
existential Presburger formula Φ of size O(|G|) such that
Parikh(L(G)) = JΦK.

We immediately get:
Proposition 2: There is a computable existential Presburger

formula Φ with free variables {xij | i ∈ [1, n], j ∈ [1, d]} of
size O(|G|) such that(

fw̄(k1), . . . , fw̄(kd)
)
∈ T (A) ∩ [w̄]d

iff
Φ(k1, . . . ,kd) is true .

Proof: Take for Φ the formula of Thm. 1. We have:(
fw̄(k1), . . . , fw̄(kd)

)
∈ T (A) ∩ [w̄]d

iff �
(
fā(k1), . . . , fā(kd)

)
∩ L(G) 6= ∅ Prop. 1

iff (k1, . . . ,kd) ∈ Parikh(L(G)) Lem. 4
iff Φ(k1, . . . ,kd) is true Thm. 1

The advantage of Prop. 2 is that it can be easily extended to
a procedure for checking not only emptiness of T (A)∩ [w̄]d,
but also emptiness of T (A)∩ [w̄]d∩∆d. Recall that the tuples
in T (A) ∩ [w̄]d ∩ ∆d are the tuples of T (A) of the form

(w, . . . , w) ∈ [Σ∗]d for some w ∈ w̄. Let k,k1, . . . ,kd ∈ Nn.
We have:(

fw̄(k1), . . . , fw̄(kd)
)
∈ T (A) ∩ [w̄]d ∩∆d

iff (property of ∆d, ,k = k1 = · · · = kd)

[fw̄(k)]d ∈ T (A) ∩ [w̄]d

iff (Prop. 2)

Φ(k, . . . ,k︸ ︷︷ ︸
d times

) is true

iff ∃i1, . . . , id ∈ Nn : Φ(i1, . . . , id) is true
and i1 = · · · = id

iff ∃x11 . . . ∃xkd
(

Φ ∧
∧n
i=1

∧d
j=1xij = ki

)
is true

where Φ is the formula of Prop. 2. So we get

Theorem 2: There is a computable formula Ψ(x1, . . . , xn)
of existential Presburger arithmetic of size O(|M |3 · |w̄|3d)
such that fw̄(k1, . . . , kn) ∈ L(M) ∩ w̄ iff Ψ(k1, . . . , kn) is
true. In particular, L(M) ∩ w̄ 6= ∅ iff Ψ is satisfiable.

Proof: It suffices to take Ψ(x1, . . . , xn) =

∃x11 . . . ∃xkd :
(

Φ ∧
∧n
i=1

∧d
j=1 xij = xi

)
.

This theorem admits a simple but useful generalization:
Theorem 3: Let {Mi}i∈[1,q] be a family of MHPDA such

that Mi is a ci-HPDA for each i ∈ [1, q]. Let c =
max

(
{ci}i∈[1,q]

)
and m = max

(
{|Mi|}i∈[1,q]

)
. There is a

computable formula Ψ(x1, . . . , xn) of existential Presburger
arithmetic of size O(q ·m3 · |w̄|3c) such that fw̄(k1, . . . , kn) ∈⋂q
i=1 L(Mi) ∩ w̄ iff Ψ(k1, . . . , kn) is true.

Proof: Define Ψ(x1, . . . , xn) to be
∧q
i=1Ψi(x1, . . . , xn)

such that each Ψi(x1, . . . , xn) is the formula obtained by
Thm. 2 on input Mi and w̄. Correctness is proved as follows:

fw̄(k1, . . . , kn) ∈
⋂q
i=1L(Mi) ∩ w̄

iff
∧q
i=1fw̄(k1, . . . , kn) ∈ L(Mi) ∩ w̄

iff
∧q
i=1Ψi(x1, . . . , xn) is true Thm. 2

iff Ψ(x1, . . . , xn) is true def. of Ψ

We conclude from Thm. 2 that |Ψi| = O(m · |w̄|3c) for each
i ∈ [1, q], hence that |Ψ| = O(q ·m · |w̄|3c).

C. Complexity

Emptiness of MHPDAs is clearly undecidable (by reduc-
tion from the emptiness problem for intersection of context-
free languages). We prove that emptiness modulo a bounded
expression is coNEXPTIME-complete.

M A B C G Φ

w̄
O(|M3| · |w̄|3d)

Thm. 2

O(|M |) O(|A| · |w̄|d)

Lem. 1

O(|B|)

Lem. 2

O(|C|3)

Lem. 3

O(|G|)

Thm. 1

Fig. 2. Summary of the decision procedure steps

Theorem 4: The emptiness problem for MHPDAs modulo
an arbitrary bounded expression is in coNEXPTIME. More-
over, the emptiness problem for MHPDAs and w̄ = (01)∗ is
coNEXPTIME-hard.

The question arises whether emptiness remains
coNEXPTIME-complete for letter-bounded expressions.
Remarkably, this is not the case: for such expressions the
emptiness problem is only NP-complete. Fix a letter-bounded
expression b̄ = b∗1 . . . b

∗
n where bi’s are not necessarily

distinct. The key to the result is that Lem. 1 (with w̄ now
equal to b̄) can be replaced by the following one.

Lemma 5: There is a family {Bi}αi=1 of d-TPDAs over Σ,
where α = d|b̄|d and each Bi has size O(|A| · |b̄| · d2), such
that for every k1, . . . ,kd ∈ Nn we have(

fb̄(k1), . . . , fb̄(kd)
)
∈ T (A) ∩ [w̄]d

iff(
fā(k1), . . . , fā(kd)

)
∈
⋃α
i=1T (Bi)

Moreover, we can decide in time O(|A| · |b̄| · d2) if a given
MHPDA belongs to {Bi}αi=1.

Proof: We can easily construct an NFA W recogniz-
ing L(b̄ · $) with states {q1, . . . , qn+1} (recall that n +
1 = |b̄|), initial state q1, final state qn+1, and transi-
tions {qi

bi→ qi | i ∈ [1, n]} ∪ {qj
ε→ qj+1 | j ∈ [1, n− 1]} ∪

{qn
$→ qn+1}. Let W d be the NFA defined in Lem. 1 rec-

ognizing �d
i=1L(b̄ · $). While W d has (n + 1)d states, it

is easy to see that for w̄ = b̄ every accepting run of
W d only visits (n + 1) · d distinct states, because every

transition 〈qi1 , . . . , qid〉
〈σ,`〉→ 〈qj1 , . . . , qjd〉 of W d satisfies

i1 ≤ j1, . . . , id ≤ jd We can then associate to each accepting
run ρ the subset Qρ

Wd of the states of QWd visited by ρ, and
so the sub-NFA W d

ρ of W d with Qρ
Wd as set of states, and

whose transitions are the transitions of W d between states of
Qρ
Wd . Clearly, W d

ρ has at most (n+ 1) · d states and at most
((n + 1) · d) · (d + d) = O(n · d2) transitions. (Let a state
〈qi1 , . . . , qid〉; the term (d+ d) corresponds to the transitions
labeled by 〈bij , j〉 or 〈ε, j〉 for each j ∈ [1, d].) Moreover, even
though there are infinitely many accepting runs, the number
of different such sub-NFAs is d|b̄|d, because each state of W d

has d successors different from itself, and every accepting run
of W d only visits (n+ 1) · d distinct states. Let W d

1 , . . . ,W
d
α

be an enumeration of them.
In Lem. 1 we first construct a d-TPDA B1 by synchronizing

A and W d, and then we transform B1 into another d-TPDA B.
Now we first synchronize A and W d

i , yielding a d-TPDA B1i

for every i ∈ [1, α], and then we apply the same transformation
as in Lem. 1 to obtain a d-TPDA Bi. Clearly, we have T (B) =⋃α
i=1 T (Bi), and so the result follows.
Proceeding as in the previous section, we now obtain for

each d-TPDA Bi a grammar Gi, and from it an existential
Presburger formula Ψi. We get:

Proposition 3: There is a computable family
{Ψi(x1, . . . , xn)}αi=1 of existential Presburger formulas,
each of them of size O(|M |3 · |b̄|3 · d6), such that

fb̄(k1, . . . , kn) ∈ L(M) ∩ b̄ iff
∨α
i=1 Ψi(k1, . . . , kn) is

true. In particular, L(M) ∩ b̄ 6= ∅ iff at least one of the
formulas in the family is satisfiable. Moreover, we can decide
in time O(|M |3 · |b̄|3 · d6) if a given formula belongs to
{Ψi(x1, . . . , xn)}αi=1

Finally, we get:
Theorem 5: The emptiness problem for MHPDAs modulo

letter-bounded expressions is in coNP. Moreover, the emptiness
problem for MHPDAs and w̄ = b∗ is coNP-hard.

Proof: Let M be a d-HPDA and let b̄ be a letter-bounded
expression. The nondeterministic polynomial algorithm for
non-emptiness of L(M) ∩ b̄ first guesses one of the formulas
Ψi of Prop. 3, checks in polynomial time that it belongs
to the family and then nondeterministically checks that it is
satisfiable. Since Ψi has polynomial size in |M |+ |b̄|+d, the
whole procedure takes nondeterministic polynomial time.

The coNP-hardness result follows from [12, Theorem 1],
which proves that given CFGs G1, . . . , Gk, deciding non
emptiness of L(G1)∩ . . .∩L(Gk)∩L(b∗) is coNP-hard. Since
we can easily construct in linear time a k-HPDA recognizing
L(G1) ∩ . . . ∩ L(Gk), the result follows.

V. CLOSURE UNDER BOOLEAN OPERATIONS

It is straightforward to show that MHPDAs are effectively
closed under union and intersection.

Proposition 4: Let A1 be a k1-HPDA and A2 a k2-HPDA.
We can construct in linear time (k1 +k2)-HPDAs A∪ and A∩
such that L(A∪) = L(A1) ∪ L(A2) and L(A∩) = L(A1) ∩
L(A2).

Proof: A∪ nondeterministically decides to simulate A1 or
A2; it requires max k1, k2 heads. A∩ simulates A1 with heads
[1, k1] and if A1 reaches an accepting state, then it simulates
A2 with heads [k1 + 1, k1 + k2].

MHPDAs are not closed under complement, but closed
under complement modulo any bounded expression.

Proposition 5: Given an d-HPDA A and a bounded expres-
sion w̄, there is an MHPDA B such that L(B) = w̄ \ L(A)
and |B| is at most triply exponential in |A|, |w̄|.

Proof: The complementation procedure works as follows:
• Compute the existential Presburger formula Ψ of Thm. 2

with constants written in unary. A simple inspection of
the result of [23] shows that the size of Ψ is still O(|A|3 ·
|w̄|3d) (the constants of Φ for a context-free grammar G
have linear size in |G| even when written in unary).

• Compute a quantifier-free formula Φ ≡ ¬Ψ (with con-
stants written in unary). This is possible because Pres-
burger arithmetic has quantifier elimination procedures.
Moreover, since Ψ has one single block of existential
quantifiers, we have |Φ| ∈ 2exp(O(|Ψ|)) [24][25], where
2exp(n) = 22n

. We have wk11 . . . wknn ∈ (w̄ \ L(A)) iff
Ψ(k1, . . . , kn) is false iff Φ(k1, . . . , kn) is true.

• Construct the MHPDA B as follows. B has a head for
each atomic formula of Φ. Control ensures that heads read
the input one after the other (i.e., the i+ 1-st head starts
reading the input after the i-th head has completely read
it). The i-th head checks whether the i-th atomic formula

is satisfied by the input. For instance, a constraint like
3k1 − 2k2 ≤ 5 is checked using the stack as follows:
the stack is used as a counter over the integers (using
two symbols, say P and N , and encoding i where i ≥
0 as P i⊥ and −i (i > 0) as N i⊥ for some bottom
stack symbol ⊥); B reads wk11 wk22 , so that at the end the
counter contains 3k1−2k2; then B compares the content
of the counter with 5. Control takes care of evaluating the
formula by combining the results of the evaluation of the
atomic formulas. B accepts wk11 . . . wknn if the evaluation
of Φ is true. Since the constants of Φ are written in unary,
we have |B| ∈ O(|Φ|).

This procedure yields a triple exponential bound for B in
the size of A. More precisely, the procedure is only triply
exponential in the number of heads of A, but not on its number
of states or transitions.

For letter-bounded expressions, we get one exponential
less by using Prop. 3 to compute a family of exponentially
many Presburger formulas, each polynomial in the size of
the automaton and the bounded expression, then following
the previous construction and noting that the intersection of
exponentially many MHPDAs, each doubly exponential, still
gives a doubly exponential MHPDA.

Proposition 6: Given a d-HPDA A and a letter-bounded ex-
pression b̄, there is an MHPDA B such that L(B) = b̄\L(A)
and |B| is at most doubly exponential in |A|, |b̄|.

VI. OPTIMALITY QUESTIONS

Let P denote the class of finite unions of bounded ex-
pressions, let F denote the class of finite languages, and let
U = P ∪ F . We have shown that MHPDA is perfect modulo
U . This raises two questions: (1) is MHPDA perfect modulo
some class of regular languages larger than U?, and (2) is
some class larger than MHPDA perfect modulo U?.

Prop. 7.1 shows that the answer to (1) is negative. We do
not settle (2), but show in Prop. 7.2 that the largest class of
regular languages for which the context-sensitive languages
(CSL) are perfect is F . Actually, the proposition shows that no
class with an undecidable emptiness problem (and satisfying
some additional very weak properties) can be perfect modulo
any class of regular languages larger than F . So, in particular,
no class containing the languages generated by Okhotin’s
conjunctive grammars can be perfect [26].

Proposition 7:
1) U is the largest class of regular languages such that

MHPDA is perfect modulo U ;
2) F is the largest class of regular languages such that CSL

is perfect modulo F .
Proof:

point 1. Let C be a class of regular languages stronger than
U . We show that the emptiness problem of MHPDA modulo
C is undecidable, which implies that MHPDA is not perfect
modulo C.

Since C is stronger than U , there is an infinite regular
language L ∈ C that is not equal to a finite union of bounded

expressions. We show that there are words u, v0, v1, x, such
that ε 6= v0 6= v1 6= ε, v0v1 6= v1v0 and u(v0 + v1)∗x ⊆ L.

We need some preliminaries. We call a NFA A with
ε-transitions simple if every strongly connected component
(SCC) of A is either trivial or a cycle containing at least one
non-ε transition, and every bottom SCC contains a final state.
Clearly, if A is simple then there is a finite union p1, . . . , pn
of bounded expressions such that L(A) = p1 + · · · + pn
(informally, each pi corresponds to a path in the acyclic
graph obtained by contracting every SCC to a single node).
Conversely, every finite union of bounded expressions is
recognized by a simple NFA with ε-transitions.

Since L is regular, there is NFA with ε-transitions AL such
that L(AL) = L. W.l.o.g. we can assume that every bottom
SCC of AL contains some final state. Since L is infinite,
AL contains at least one nontrivial SCC reachable from the
initial state. Since L is not equal to a finite union of bounded
expressions, AL contains at least one SCC, say C, reachable
from the initial state, that is not a cycle. Moreover, we can
assume that from some state q of C there are two paths leading
from q to q that read two different nonempty words v0, v1

such that v0v1 6= v1v0 (otherwise, C can be “replaced” by
two cycles: one for v∗0 and one for v∗1). Let u be any word
leading to q, and x be any word leading from q to a final state.
Clearly, u(v0 + v1)∗x ⊆ L.

We now prove that the emptiness problem of MHPDA
modulo L (and so modulo C) is undecidable by reduction
from the emptiness problem for intersection of CFG the
alphabet {0, 1}. Let G1, G2 be two CFG. Using closure of
CFL with respect to concatenation and homomorphism, we
can easily construct grammars G′1, G

′
2 such that Gi accepts

a1 . . . an ∈ {0, 1}∗ iff G′i accepts the word u(w1 . . . wn)x,
where wj = v0 if aj = 0, and wj = v1 if aj = 1 for every
j ∈ [1, n]. Now, since L(G′1), L(G′2) ⊆ u(v0 +v1)∗x, we have
L(G′1) ∩ L(G′2) ∩ L = L(G′1) ∩ L(G′2) ∩ u(v0 + v1)∗x, and
so L(G1) ∩ L(G2) = ∅ iff L(G′1) ∩ L(G′2) ∩ L = ∅. So the
emptiness problem of MHPDA modulo L is undecidable
point 2. Since CSL is closed under boolean operations and
has a decidable membership problem, CSL is perfect modulo
F . Any class of regular languages stronger than F contains an
infinite regular language L. We prove that emptiness of CSL
modulo L is undecidable by reduction from the emptiness
problem for CSL, which implies that CSL is not perfect
modulo L.

Since L is infinite, there are words w1, w2, w3 such that
w1w

∗
2w3 ∈ L. Given a context-sensitive grammar G, it is easy

to construct a grammar G′ satisfying L(G′) ⊆ w1w
∗
2w3 and

such that L(G) is empty iff L(G′) is empty. First, we replace
every terminal symbol of G by a variable generating w2, and
then we add a new production S′ → S1SS3, where S is the
axiom of G, and S1, S3 are variables generating w1, w3.

VII. APPLICATIONS TO VERIFICATION

In this section, we show MHPDAs are expressive enough to
capture several automata-theoretic models. More surprisingly,
we show that MHPDA are an elegant solution to find optimal

complexity results as well. As an appetizer consider the non
emptiness problem for the intersection of k context free
languages and a bounded expression w̄. In [12], the authors
show that this problem is in NP, and use it to show that
assertion checking of multithreaded programs communicating
through shared memory is in NP as well. To show that this
result is subsumed by ours, proceed as follows. First, compute
in polynomial time 1-HPDAs {Mi}i∈[1,k] recognizing the
context-free languages. Then, use Thm. 3 to compute in
O(k · maxi(|Mi|) · |w̄|3) time a formula Ψ such that Ψ is
satisfiable iff the intersection of k CFLs and w̄ is non empty.
Conclude that the problem is in NP.

In the next two sections we prove that the control-state
reachability problem for recursive counter machines (CM) and
communicating finite-state machines (CFSM) modulo bounded
expressions also reduces to bounded emptiness of MHPDA,
and use this to prove that both problems are NP-complete.

VIII. RECURSIVE COUNTER MACHINES

Let k ≥ 1. A recursive counter machine (CM) is a tuple
(S,Γ, C, T , s0) where S is a non-empty finite set of control
states; Γ is a stack alphabet with a distinguished bottom stack
symbol ⊥; C = {c1, . . . , ck} is a finite set of k counters;
s0 ∈ S is the initial control state; and T is a finite set of
transitions of the form (α, γ)

op→ (β, v), where α, β ∈ S,
γ ∈ Γ, v ∈ Γ∗, and op ∈ {inci, deci, zerotesti}i∈[1,k] is one
of the counter operations increment, decrement, or test for
zero of ci ∈ C respectively.

A configuration (s, w, v1, . . . , vk) ∈ S × Γ∗ × Nk consists
of a control state s, a stack content w, and a valuation of
the counters. The initial configuration is c0 = (s0,⊥,0).
Let t be a transition (α, γ)

op→ (β, v). We say that a con-
figuration c′ = (s′, w′, v′1, . . . , v

′
k) is a flow t-successor of

c = (s, w, v1, . . . , vk), denoted by cFt c
′, if s = α, s′ = β,

w = γu and w′ = vu for some u ∈ Γ∗. We say that
c′ is a t-successor of c, denoted by cRt c

′, if cFt c
′ and

either op = inci and (v′1, . . . , v
′
k) = (v1, . . . , vk) + ei,

or op = deci and (v′1, . . . , v
′
k) = (v1, . . . , vk) − ei, or

op = zerotesti and vi = 0 and (v′1, . . . , v
′
k) = (v1, . . . , vk).

Given a sequence π ∈ T ∗, we define F (π) recursively as
follows: F (ε) is the identity relation over configurations, and
F (π′·t) = F (π′) ◦ Ft, where ◦ denotes join of relations. Given
L ⊆ T ∗, we define F (L) =

⋃
π∈L F (π). We define R(π) and

R(L) analogously. The set of configurations reachable through
L is post[L] = {c | c0R(L) c}.

The control reachability problem for CM asks, given a
control state sf , whether post[T ∗] contains a configuration
with control state sf . The problem is undecidable even for
non-recursive counter machines [27].

Given a bounded expression w̄ over the alphabet T of
transitions, the control reachability problem modulo w̄ is
the question whether post[w̄] contains a configuration with
control state sf . We show that this problem is NP-complete
by means of a reduction to the bounded emptiness problem
for sequential MHPDAs.

q qf
[$〉

[0〉 ,⊥/⊥

[+〉 , ε/a [−〉 , a/ε

Fig. 3. The 1-HPDA P√ over alphabet {+,−, 0}.

A. Encoding Counter Machines

Fix a CM (S,Γ, C, T , s0) with k counters and a bounded
expression w̄ over T . We construct k+ 1 1-HPDAs such that
π ∈ T ∗ is accepted by all the 1-HPDA iff post[π] contains a
configuration with sf as control state. (Following Prop. 4, we
can then construct an equivalent (k + 1)-HPDA if we wish.)

The first PDA P0 checks whether c0 F (π) c holds for some
configuration c having sf as control state. Since for each
transition t of the CM the relation Ft exactly corresponds
to the relation induced by the productions of a pushdown
automaton, the construction of P0 is straightforward, and we
omit the details.

A word π accepted by P0 is consistent with the control
flow of the CM, but might not be feasible (π may zero-test a
counter whose value is not 0, or decrement a counter whose
value is 0). Feasibility is checked by PDAs P1, . . . , Pk. More
precisely, Pi checks that the projection of π onto the operations
of ci is feasible. We first describe a generic PDA P√ over
the alphabet {+,−, 0}, where “+” encodes increment, “−”
decrement, and “0” a zero-test, as a template that can be
instantiated to generate P1, . . . , Pk.
P√ is shown in Fig. 3. It uses its stack as a counter. The

stack alphabet is {⊥, a}. When P√ reads a + (a −), it pushes
an a into (pops an a from) the stack, and when it reads 0,
it checks that the top element is the end-of-stack marker ⊥
([0〉 ,⊥/⊥). Now, Pi is a suitably modified version which,
when reading a letter t = (α, γ)

op→ (β,w), acts according
to the operation op: if op = inci (deci, zerotesti), then t is
treated as + (−, 0). If op does not operate on the i-the counter,
then control ignores t.

Applying Thm. 3, we get:
Theorem 6: Given a CM A = (S,Γ, C, T , s0) with k

counters, a control state sf ∈ S, and a bounded expression w̄
over T , there is a computable formula ΦA,sf of existential
Presburger arithmetic of size O(k · |A|3 · |w̄|3) such that
post[w̄] contains a configuration with state sf iff ΦA,sf is
satisfiable. As a consequence, the bounded control reachability
problem for recursive counter machines is in NP.

NP-hardness holds even for non-recursive counter machines
(this result has been communicated to us by S. Demri, but
for completeness a proof can be found in the Appendix), and
therefore the bound of Thm. 6 is optimal.

A similar construction can be used to simulate recursive
machines with k-auxiliary stacks.

qH qf

qnhq2
hq1

h • • •

[x ∈ ({!} × Σ)〉H , ε/a [x ∈ ({!, ?} × Σ)〉h

[$〉h

[$〉H

[x ∈ ({?} × Σ)〉h , a/ε [x ∈ ({?} × Σ)〉h , a/ε [x ∈ ({?} × Σ)〉h , a/ε

[?
σ1
〉 H
, ε
/a

[!σ
1
〉 h
, a
/ε

[?σ
2 〉

H , ε/a[!σ
2
〉 h
, a
/ε

[?σ
n 〉
H
, ε/a

[!σ
n 〉
h , a/ε

Fig. 4. The 2-HPDA P√ where Σ = {σ1, . . . , σn}.

IX. COMMUNICATING FINITE STATE MACHINES

Let k ≥ 1. A communicating finite state machines (CFSM)
is a tuple (S,K,Σ, T , s0) where S is a non-empty finite set of
control states; K = {C1, . . . , Ck} is a finite set of unbounded
FIFO channels; Σ is a non-empty finite set of messages; s0 ∈
S is the initial control state; and T is a finite set of transitions.
Each transition t ∈ T is given by a triple (αt, opt, βt) where
αt, βt ∈ S and opt is the channel operation: either !σ : Ci,
which writes message σ ∈ Σ to channel Ci or ?σ : Cj , which
reads message σ ∈ Σ from channel Cj . A configuration is a
tuple (s, x1, . . . , xk) ∈ S×[Σ∗]k containing a control state and
the content of each channel Ci ∈ K. The initial configuration
is c0 = (s0, ε, . . . , ε).

Given t = (α, op, β) ∈ T , we define the relations Ft
and Rt over configurations as follows: (s, x1, . . . , xk) Ft
(s′, x′1, . . . , x

′
k) iff αt = s and βt = s′, and (s, x1, . . . , xk)Rt

(s′, x′1, . . . , x
′
k) iff s = α, s′ = β, and for all i ∈ [1, k] either

xi = σ · x′i and opt =?σ : Ci, x′i = xi · σ and opt =!σ : Ci, or
x′i = xi otherwise.
F (L), R(L),post[L], the control reachability problem and

the control reachability problem modulo a bounded expression
for CFSMs are defined as for CM. The reachability problem
for CFSM is undecidable [28].

A. Encoding Communicating Machines

We proceed as for recursive counter machines. Given a
CFSM with k channels, we construct a finite automaton P0

and k 2-HPDAs P1, . . . , Pk such that π ∈ T ∗ is accepted by
all of P0, . . . , Pk iff post[π] contains a configuration with sf
as control state. Again, P0 checks whether c0 F (π) c holds for
some configuration c having sf as control state, and P1 to Pk
check feasibility of π. In the case of CFSM, feasibility means
that the contents of the channels after taking a transition t are
the ones given by R(t).
P0 is even simpler as for CM, since there is no recursion. 4

4Our results also hold for recursive CFSM, but since this model is rather
artificial we refrain from describing it.

Pi checks feasibility of π with respect to the i-th channel.
As in the case of CM, we define a generic 2-HPDA P√,
depicted in Fig. 4, that checks consistency for a channel C.

For convenience the heads of P√ are named h and H . The
stack alphabet is {⊥, a}, where ⊥ is, as above, a special end-
of-stack marker. P√ works as follows. In state qH , head H
reads symbols {!σi | i ∈ [1, n]} to channel C until a symbol
?σi for some i ∈ [1, n] or $ is read . When ?σi is read,
control jumps to qih. In qih, head h looks for the first symbol
{!σi | i ∈ [1, n]}. If it is !σi (which corresponds to ?σi) then
control returns to qH . Intuitively, if a symbol is read from
channel C it must have been written previously. Observe that
the stack ensures ensure that h does not move beyond H .
In fact, in every reachable configuration not in state qf , P√

maintains the invariant that the number of symbols between
H and h coincides with the number of a’s on the stack. For
instance for tapes 〈th, tH〉 where

th =!σ1#!σ2?σ1?σ2&

tH =!σ2 !σ2?σ1?σ2&#

the stack content is given by ⊥a3. Because of the invariant,
head H will be the first to read $ in which case the control is
updated to qf . Hence transitions read anything until with head
h until it falls down the tape.

We can now apply Thm. 3 again. In this case, the members
of our family of MHPDAs have at most 2 heads, i.e., c = 2.

Theorem 7: Given a CFSM A = (S,K,Σ, T , s0) with k
channels, a control state sf ∈ S, and a bounded expression
w̄ over T , there is a computable formula ΦA,sf of existential
Presburger arithmetic of size O(k · |A|3 · |w̄|6) such that
post[w̄] contains a configuration with state sf iff ΦA,sf is
satisfiable. As a consequence, the bounded control reachability
problem for CFSM is NP.

Again, we can prove that NP-hardness holds for CFSM, and
therefore that our bound is optimal. The proof is in Appendix.

Finally, let us observe that the above reduction can be
extended so as to handle machines where transitions are
either counter operations or channel operations, i.e. (S,Γ, C ∪
K, T , s0). The construction of P0 is as for CM. Then, for each
auxiliary storage S ∈ C ∪ K, it suffices to use the adequate
MHPDA (for counter or channel) checking for feasibility of
a sequence of operations on S. Again, we can show an NP
upper bound for the bounded control reachability problem.

X. CONCLUSIONS

We have introduced verification modulo a class of lan-
guages, which formalizes the common practice, for efficiency
reasons, of checking only a subset of the behaviours of a
system. This leads to the notion of a perfect computational
modelM modulo a class of behaviours C. We have presented
a perfect model for the class of bounded expressions: multi-
head pushdown automata (MHPDA). We have determined
the complexity of the emptiness problem, shown that many
popular modelling formalisms can be easily compiled into
MHPDA, and proved that the compilation leads to verification
algorithms of optimal complexity.

There are two interesting open problems. The first one is
to search for more expressive perfect models modulo bounded
expressions. The second is to determine whether our bounds
relating the sizes of two MHPDAs accepting a bounded
language and its bounded complement are tight.

REFERENCES

[1] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[2] R. Alur and P. Madhusudan, “Adding nesting structure to words,” J.
ACM, vol. 56, no. 3, 2009.

[3] C. Löding, P. Madhusudan, and O. Serre, “Visibly pushdown games,”
in FSTTCS ’04, LNCS 3328, 2004, pp. 408–420.

[4] S. L. Torre, P. Madhusudan, and G. Parlato, “A robust class of context-
sensitive languages,” in LICS ’07. IEEE, 2007, pp. 161–170.

[5] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” FMSD, vol. 19, no. 1, pp. 7–34, 2001.

[6] E. M. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of
c and verilog programs using bounded model checking,” in DAC ’03.
ACM, 2003, pp. 368–371.

[7] S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent
software,” in TACAS ’05, LNCS 3440. Springer, 2005, pp. 93–107.

[8] S. Qadeer, “The case for context-bounded verification of concurrent
programs,” in SPIN ’08, LNCS 5156. Springer, 2008, pp. 3–6.

[9] M. F. Atig, A. Bouajjani, and S. Qadeer, “Context-bounded analysis for
concurrent programs with dynamic creation of threads,” LMCS, vol. 7,
no. 4, 2011.

[10] V. Kahlon, “Tractable dataflow analysis for concurrent programs via
bounded languages,” July 2009, patent WO/2009/094439.

[11] S. Ginsburg, The Mathematical Theory of Context-Free Languages.
New York, NY, USA: McGraw-Hill, Inc., 1966.

[12] J. Esparza and P. Ganty, “Complexity of pattern-based verification for
multithreaded programs,” in POPL’11. ACM Press, 2011, pp. 499–510.

[13] J. Leroux and G. Sutre, “Flat counter automata almost everywhere,” in
ATVA ’05, LNCS 3707. Springer, 2005, pp. 489–503.

[14] A. Bouajjani and P. Habermehl, “Symbolic reachability analysis of fifo-
channel systems with nonregular sets of configurations,” Theor. Comput.
Sci., vol. 221, no. 1-2, pp. 211–250, 1999.

[15] S. Bardin and A. Finkel, “Composition of accelerations to verify
infinite heterogeneous systems,” in ATVA ’04, LNCS 3299. Springer,
2004, pp. 248–262.

[16] O. H. Ibarra, “Generalizations of pushdown automata,” Ph.D. disserta-
tion, University of California, Berkeley, 1967.

[17] ——, “A note on semilinear sets and bounded-reversal multihead push-
down automata,” IPL, vol. 3, no. 1, pp. 25–28, 1974.

[18] I. H. Sudborough, “Bounded-reversal multihead finite automaton lan-
guages,” Inf. and Cont., vol. 25, pp. 317–328, 1974.

[19] M. Hague and A. W. Lin, “Model checking recursive programs with
numeric data types,” in CAV ’11, LNCS. Springer, 2011.

[20] O. H. Ibarra, “Reversal-bounded multicounter machines and their deci-
sion problems,” Journal of the ACM, vol. 25, no. 1, pp. 116–133, 1978.

[21] M. Cadilhac, A. Finkel, and P. McKenzie, “Bounded Parikh automata,”
in WORDS ’11, ser. EPTCS, vol. 63, 2011, pp. 93–102.

[22] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci, “Fast: acceleration from
theory to practice,” STTT, vol. 10, no. 5, pp. 401–424, 2008.

[23] K. N. Verma, H. Seidl, and T. Schwentick, “On the complexity of
equational horn clauses,” in CADE ’05, LNCS 1831. Springer, 2005.

[24] C. R. Reddy and D. W. Loveland, “Presburger arithmetic with bounded
quantifier alternation,” in STOC ’78. ACM, 1978, pp. 320–325.

[25] M. Fürer, “The complexity of presburger arithmetic with bounded
quantifier alternation depth,” TCS, vol. 18, pp. 105–111, 1982.

[26] A. Okhotin, “Conjunctive grammars,” J. Automata, Languages and
Combinatorics, vol. 6:4, pp. 519–535, 2001.

[27] M. Minsky, Finite and Infinite Machines. Englewood Cliffs, N.J.,
Prentice-Hall, 1967.

[28] D. Brand and P. Zafiropulo, “On communicating finite-state machines,”
J. ACM, vol. 30, no. 2, pp. 323–342, 1983.

[29] J. von zur Gathen and M. Sieveking, “A bound on solutions of linear
integer equalities and inequalities,” Proc. AMS, vol. 72, no. 1, pp. 155–
158, 1978.

APPENDIX
MISSING PROOFS

A. Proposition 4

The emptiness problem for MHPDAs modulo
an arbitrary bounded expression is in coNEX-
PTIME. Moreover, the emptiness problem for
MHPDAs and w̄ = (01)∗ is coNEXPTIME-hard.

Proof of Prop. 4: Membership in coNEXPTIME follows
immediately from Thm. 2 and the fact that satisfiability of
existential Presburger formulas is in NP [29].

For the hardness part, we reduce from 0-1 Succinct Knap-
sack.

Input: Boolean circuit θ with k+n variables (k, n >
0 given in unary). The circuit represents 2k numbers
a0, . . . , a2k−1, each with 2n bits in binary, as fol-
lows. The ith bit of the binary representation of aj
is x ∈ {0, 1} if the circuit θ on input bink(j), binn(i)
evaluates to x, for i ∈ [0, 2n − 1], j ∈ [0, 2k − 1],
where binα(β) is the binary representation of β
using α bits.
Output: “Yes” if there exist z1, . . . , z2k−1 ∈ {0, 1}
such that a0 =

∑2k−1
i=1 aizi; “No” otherwise.

Given an instance of the 0-1 Succinct Knapsack problem, we
construct in polynomial time a MHPDA that accepts a string of
the form (01)∗ iff the 0-1 Succinct Knapsack problem answers
“Yes.”

The idea of the proof is to use d heads of a MHPDA and
the bounded expression (01)∗ to encode 2d states, and to use
the stack to compute up to 22d

. The MHPDA use two heads,
one to track a0 and one to track the sum on the r.h.s. If these
heads point to the same location at the end, we accept. Note
that we cannot directly check if two heads are pointing to the
same location. However, we can alternately move the heads to
the right (by reading) and check that they hit the end marker
at the same time.

We start with some preliminary constructions. We use d
heads h1, . . . , hd to encode a d-bit configuration b ∈ {0, 1}d:
to encode b, we make sure that head hi is pointing to bit bi
on the tape. For b ∈ {0, 1}d, we write bi for the ith bit of b.
With this representation, we denote by h d-bit binary number
given by the symbols under the heads h1, . . . , hd. Also, we
denote by JhK the number that is represented.

Given a constant c ∈ {0, 1}d, we can check that the current
store encodes c without destroying the current encoding as
follows. First, observe that the bounded expression (01)∗

ensures that by reading twice from any head, the head points
to the same bit as it was pointing to before the two reads (for
a long enough string). For i = 1, . . . , d, read twice with hi
and remember the first value, say x, that is read. Then check
that x = ci. If not, we go to a state signifying that the current
configuration is not storing c, otherwise we continue the next
iteration of the loop. At the end of the loop, we go to a state

that signifies that the current encoding is equal to c. The stack
is not touched.

Given heads h1, . . . , hd, we can “reset” the encoding to
a specific c ∈ {0, 1}d (noted h ← c) as follows. For i =
1, . . . , d, read with hi and let x be the value read. If x = ci,
then again read with hi; else do nothing (because after the
read with hi, it points to ci). The stack is not touched.

Given heads h1, . . . , hd and h′1, . . . , h
′
d, we can “copy” the

encoding of the his to h′is (h′ ← h) as follows. For i =
1, . . . , d, we execute the following. Read twice with hi and
remember the first value, say x, that is read. Now read with
h′i, if the value read equals x then read again; else do nothing.
At the end of updating the d heads we have that h′ equals h.
The stack is not touched.

Given the binary number h, h 6= 1d, we show how to add
one to the number such that the resulting h encodes JhK + 1.
Read with h1, if the symbol read is 0 then we are done (h1

points to 1); else (h1 points to 0) do the following: read with
h2, if the symbol read is 0 (h1 points to 1) then we are done.
In general, if hi points to zero (and all h1, . . . , hi−1 point to
1’s), read with each head h1, . . . , hi. We can similarly subtract
one from the number h, h 6= 0d, by replacing zero with one
in the above construction. In both constructions, the stack is
not touched.

Finally, suppose we have heads h0, . . . , hd, a head H , and
2d bits c1c2 . . . c2d on the stack. Let C be the number with
binary representation c2d . . . c1. We show how the head H can
be moved C times to the right, using the heads h0, . . . , hd.
Note that C can be as large as 22d − 1, so we cannot directly
store C using poly(d) heads. Instead, we use the d heads to
count the position in the stack, and perform binary arithmetic
on the number in the stack. We execute the following program.

JhK← 2d

1: while JhK 6= 0 and top of stack is 0 {
pop;
JhK← JhK− 1;

}
if JhK = 0 {

exit; /* H has now moved C times */
} else { /* top of stack is necessarily 1 */

pop 1; push 0; read with H;
while JhK 6= 2d {

push 1;
JhK← JhK + 1;

}
}
goto 1;

Using the constructions above, the program can be imple-
mented by an MHPDA of size polynomial in d. We call this
procedure MoveRight(H).

We now show how to evaluate the circuit θ. W.l.o.g., we
assume that θ is given as p1(n + k) layers, each layer has
p2(n + k) binary gates, for polynomials p1 and p2. We use
k+n+ p1(k+n)p2(k+n) heads. The inputs are copied into

k+n heads. Then, we evaluate the value of each gate, starting
at the lowest layer, and store it into the head representing that
gate. To evaluate the gate, we look at the values encoded by
the heads representing its inputs, and evaluate the Boolean
function for the gate. The stack is untouched in the evaluation.
Thus, circuit evaluation can be performed by an MHPDA
(indeed, a multi-head finite automaton) using polynomially
many (in k + n) heads.

Now we come to the main construction. The MHPDA has
the following heads:

• a head A0 to track a0, a head SUM to track the r.h.s.
• k heads K1, . . . ,Kk to track the indices of the numbers
a0, . . . , a2k−1;

• m heads M1, . . . ,Mm to track the 2m bits of each
number;

• m + 1 heads H0, . . . ,Hm to implement procedure
MoveRight above;

• additional heads (polynomial in k+n) to evaluate circuit
θ.

Initially, each head points to a 0, in particular, K = 0k. The
MHPDA works in the following phases.

In the first phase, we initialize M to 1m and then run the
following iteratively. We evaluate θ on the input K;M (by
copying K1, . . . ,Kk,M1, . . . ,Mm on to the circuit inputs and
then evaluating the circuit), and push the evaluated value on
to the stack. If M = 0m we move to the next phase of the
construction. Otherwise, we subtract 1 from JMK and repeat
the evaluation.

At the end of the above loop, we have 2m bits, representing
the number a0 stored on the stack (least significant bit on top).
We now invoke MoveRight(A0), which will move head A0

of a0 times to the right.
Then comes the phase of guessing and summing a subset

of {a1, . . . , a2k−1} to compare the resulting value against a0.
First we set JKK to 1. For JKK = 1 to 2k−1, do the following
loop. We guess if zJKK is zero or one, using the finite state
of the automaton. If zJKK is guessed to be zero, we continue
with the next iteration of the loop. Otherwise, we initialize M
to 1m, and iteratively evaluate θ on K;M for each M from
1m to 0m, and push each evaluated bit on the stack. At the
end of the process, we have the 2m bits of aJKK on the stack,
least significant bit first. We now invoke MoveRight(SUM)
to move the head SUM aJKK times to the right.

At the end of the loop, we have that the head SUM has
moved

∑2k−1
i=1 ziai times to the right, where the zi’s are the

guesses made by the MHPDA. We now check if A0 and SUM
are pointing to the same tape cell by moving them alternately
and checking that they read the end marker $ immediately
one after the other. If so, we read with all heads until they
fall off the tape and accept. Otherwise, we reject. Note that
the computations can be performed by a MHPDA that is
polynomial in the size of the input.

If the answer to the 0-1 Succinct Knapsack instance is
“Yes,” then there is a sequence of guesses, and a string in
(01)∗ that is sufficiently long to perform all the computations,

such that the MHPDA accepts. However, if the answer is “No”
then the language of the automaton is empty.

Thus, given a MHPDA M , and the fixed bounded ex-
pression (01)∗, checking if L(M) ∩ (01)∗ is empty is
coNEXPTIME-hard.

B. Proposition 6

Given a d-HPDA A and a letter-bounded expression b̄ =
b∗1 . . . b

∗
n, there is an MHPDA B such that L(B) = b̄ \ L(A)

and |B| is at most doubly exponential in |A|, |b̄|.

Proof of Prop. 6: The complementation procedure fol-
lows these steps:
• Compute the family {Ψi(x1, . . . , xn)}αi=1 of existential

Presburger formulas of Prop. 3, each of them of size
p(|A| · |b̄|) for a suitable polynomial p. Recall that
α = d|b̄|d.

• Compute quantifier-free formulas Φi ≡ ¬Ψi with con-
stants in unary of size |Φi| ∈ 2exp(O(|Ψi|)). By Prop. 3
we have bk11 . . . bknn ∈ (b̄\L(A)) iff

∨α
i=1 Ψi(k1, . . . , kn)

is false iff
∧α
i=1 Φi(k1, . . . , kn) is true.

• Construct for every formula Φi a MHPDA Bi of size
O(Φi) as in Prop. 5.

• Let B be a MHPDA accepting
⋂α
i=1 L(Bi), which exists

by Prop. 4. We have

|B| ∈ O(
∑α
i=1|Bi|)

∈ O(
∑α
i=1|Φi|)

∈
∑α
i=12exp(O(|Ψi|))

∈ dnd · 2exp(p′(|A| · n))

= 2exp(p′′(|A| · n))

for suitable polynomials p′, p′′.

C. NP-hardness of control state reachability modulo bounded
expressions for Counter Machines

Proof: We reduce from 3SAT. Given a 3SAT formula
c1 ∧ . . . ∧ cm over variables x1, . . . , xn, we construct a CM
with counters {txi , fxi | i ∈ [1, n]}∪{ci | i ∈ [1,m]}. We use
a gadget to assign values to variables and a gadget to check
that a clause is satisfied by the current assignment to variables.
Fig. 5 shows the gadgets.

For each variable x in the formula, we keep two counters tx
and fx. The variable gadget (top of Fig. 5) ensures that when
control reaches q2, then either tx = 1 and fx = 0 (encoding
that x is true) or tx = 0 and fx = 1 (encoding that x is false),
depending on whether the loop is executed one or zero times,
respectively. Note that the loop can be executed at most once:
the second iteration gets stuck decrementing fx.

The clause gadget (bottom of Fig. 5) shows how we check
that a clause c ≡ x1 ∨¬x2 ∨x3 is satisfied. The gadget keeps
a “control” counter c. The first loop checks that fx1

= 0 (i.e.,
tx1 = 1, and x1 is set to true) and increments c. The second
loop checks that tx2 = 0 (i.e., fx1 = 1, and x2 is set to

false) and increments c. The third loop checks that fx3
= 0

(i.e., tx3 = 1, and x3 is set to true) and increments c. Each
loop can be executed any number of times. At the end, the
decrement succeeds only when at least one iteration of a loop
has executed, which indicates that c is satisfied. Note that if c
is not satisfied, control cannot reach the last location r3: either
one of the tests in the loops get stuck, or the decrement at the
end gets stuck.

For the reduction, we sequentially compose gadgets for all
the variables and then all the clauses and ask if the control
state at the end of the last clause can be reached. Clearly, paths
of the automaton conform to a bounded expression.

D. NP-hardness of control state reachability modulo bounded
expressions for CFSM

Proof: We reduce from 3SAT. Given a 3SAT formula
c1∧ . . .∧ cm over variables x1, . . . , xn, we construct a CFSM
with channels {xi, x̂i | i ∈ [1, n]}∪{ci | i ∈ [1,m]}. There are
two messages: 0 and 1. The channel xi is used to keep a guess
for the variable xi. The channel x̂i is a “control channel” used
to ensure only one guess is made. The control flow graph of the
CFSM consists of gadgets selecting a value for each variable
and gadgets checking that each clause is satisfied.

The gadget for variables is shown on the top of Fig. 6. The
gadget first puts a single message 0 into the control channel
x̂i. It then defines two loops. The first puts 0 in the channel
xi (thereby guessing xi is false) and flips the control channel
by dequeueing the 0 and enqueueing a 1. The second puts 1
in the channel xi (thereby guessing that xi is true) and flips
the control channel as before. Finally, the edge from q2 to q3

dequeues a 1 from the control channel.
By the use of the control channel, we note that any execution

that reaches q3 must execute exactly one loop, exactly one
time. When control reaches q3, the control channel x̂i is empty,
and the channel xi is either 0 or 1.

The gadget for clauses is shown in the bottom of Fig. 6,
for the particular clause c ≡ (x1∨¬x2∨x3) (the general case
is immediate). The gadget for the clause has three loops, one
for each literal in the clause. Each loop checks if the value
guessed for the variable matches the literal (i.e., the clause is
satisfied). If so, a message is added to the channel c. At the end
of the three loops (edge r2 to r3), we check that the control
channel c has at least one message. By construction, control
can reach r3 only when the current guess for the variables
satisfies the clause. Moreover, the channels xi are unchanged.

The CFSM sequentially composes the variable gadgets and
the clause gadgets, and checks if control can reach the last
node of the last clause gadget. Clearly, paths of the automaton
conform to a bounded expression.

q0 q1 q2
inc(fx)

inc(tx);
dec(fx)

r0 r1 r2 r3

zerotest(fx1);
inc(c)

zerotest(tx2);
inc(c)

zerotest(fx3);
inc(c)

dec(c)

Fig. 5. Reduction for CMs. The top gadget shows variable assignment. The bottom gadget shows the checks for a clause c ≡ x1 ∨ ¬x2 ∨ x3.

q0 q1 q2 q3
!0 : x̂i

!0 : xi;
?0 : x̂i;
!1 : x̂i

!1 : xi;
?0 : x̂i;
!1 : x̂i

?1 : x̂i

r0 r1 r2 r3

?1 : x1;
!1 : x1;
!1 : c

?0 : x2;
!0 : x2;
!1 : c

?1 : x3;
!1 : x3;
!1 : c

?1 : c

Fig. 6. Reduction for CFSMs. The top gadget shows variable selection. The bottom gadget shows the checks for a clause x1 ∨ ¬x2 ∨ x3.

	I Introduction
	II Preliminaries
	III Models
	IV Emptiness modulo Bounded Expressions
	IV-A Emptiness of T(A) []d
	IV-B Emptiness of L(M)
	IV-C Complexity

	V Closure under Boolean operations
	VI Optimality questions
	VII Applications to Verification
	VIII Recursive Counter Machines
	VIII-A Encoding Counter Machines

	IX Communicating Finite State Machines
	IX-A Encoding Communicating Machines

	X Conclusions
	References
	Appendix: Missing Proofs
	A Proposition ??
	B Proposition ??
	C NP-hardness of control state reachability modulo bounded expressions for Counter Machines
	D NP-hardness of control state reachability modulo bounded expressions for CFSM

