
A Higher-Order Distributed Calculus
with Name Creation

Adrien Piérard
Tohoku University

Email: adrien@kb.ecei.tohoku.ac.jp

Eijiro Sumii
Tohoku University

Email: sumii@kb.ecei.tohoku.ac.jp

Abstract—This paper introduces HOπPn, the higher-order π-
calculus with passivation and name creation, and develops an
equivalence theory for this calculus. Passivation [Schmitt and
Stefani] is a language construct that elegantly models higher-
order distributed behaviours like failure, migration, or duplica-
tion (e.g. when a running process or virtual machine is copied),
and name creation consists in generating a fresh name instead
of hiding one. Combined with higher-order distribution, name
creation leads to different semantics from name hiding, and is
closer to implementations of distributed systems. We define for
this new calculus a theory of sound and complete environmental
bisimulation to prove reduction-closed barbed equivalence and
(a reasonable form of) congruence. We furthermore define
environmental simulations to prove behavioural approximation,
and use these theories to show non-trivial examples of equivalence
or approximation. Those examples could not be proven with
previous theories, which were either unsound or incomplete
under the presence of process duplication and name restriction,
or else required universal quantification over general contexts.

I. INTRODUCTION

Background: With the increasing call for fault tolerance,
on-demand computational power and better responsiveness,
higher-order and distribution are pervasive in today’s com-
puting environment. In this paper, we call higher-order the
ability to send and receive processes through communication
channels, and distribution the possibility of location-dependant
behaviour. For example, Dell and Hewlett Packard sell prod-
ucts with virtual machine live migration [17], [5], and Gmail
relies on remote execution of JavaScript in the users’ browsers.
Yet, despite the ubiquity and importance of such higher-order
distributed systems, the inherent complexity of these systems
makes them difficult to analyse, and thus subject to bugs.
Therefore, formal models and methods that help reason about
higher-order distribution are sought after.

Passivation [18], [6], [8], [11] is a language abstraction
for elegantly modelling higher-order distributed systems in
process calculi based on the higher-order π-calculus [12], [15]
(with which we assume our reader’s familiarity). In its simplest
form, passivation consists of a syntax of located processes
l[P], where l is a name called a location and P is a process
located at l, and two labelled transition rules, l[P]

α−→ l[P ′]

if P
α−→ P ′ (TRANSP), and l[P]

l〈P 〉−−−→ 0 (PASSIV), where the
relation P

α−→Q in general reads “P does action α and becomes
Q.” The TRANSP rule states that locations are transparent,
i.e. do not hide any transition α of the processes they are

hosting. The PASSIV rule shows how a located process can be
passivated, i.e. stopped and output to a channel of the same
name as the location.

Despite its simplicity, passivation is yet powerful enough
to model complex higher-order distributed behaviours. For
example, one can conveniently model failure of a process P at
location l as l[P] | l(X).fail−→0 | fail , migration from location
l to location m as l[P] | l(X).m[X]−→0 |m[P], or duplication
as l[P] | l(X).(l[X] | l[X])−→ 0 | l[P] | l[P].

Name creation versus restriction: To our knowledge,
previous process calculi with passivation—or, more generally,
with higher-order distribution (i.e. communication of processes
through channels across locations)—all used so-called name
restriction [6], [18], [8], [11]. It hides names, forbidding
reactions like a.Q | νa.(a.R1 | a.R2) −→ Q | νa.(R1 | a.R2),
where the syntax νa.P in general means that name a is local
to process P , hidden from the outside. Although the name a
is textually present in the process a.Q above, the a under the
ν operator is only visible to a.R1 and a.R2, hence not usable
for synchronisation with a.Q.

Nonetheless, sharing of hidden names is possible via name
extrusion, as in the reaction l[νa.c〈a〉.Q] | m[c(x).R] −→ νa.
(l[Q]|m[R{a/x}]). This reaction shows that the name a, which
was local to location l, can be sent on another channel c and
shared with the receiver outside l. In other words, extrusion
extends the scope of the sent name to contain the receiver too,
possibly crossing location boundaries outwards.

This makes name restriction harder to implement in higher-
order distributed settings, as one needs to maintain the scope
of extruded names across physically different locations. For
example, guaranteeing that the process νa.(l[Q] |m[R{a/x}])
above cannot interfere with another process that coincidentally
uses the same name a seems to require somehow keeping
global information about its scope.

By contrast, real implementations of distributed systems
often use name creation [19], which (perhaps against common
belief) leads to a different equivalence theory from that of
name restriction. Our name creation consists in forbidding
transitions under a ν operator and in generating a fresh name
as an internal transition step, shown in the following rule

a 6∈ s

s ` νa.P
τ−→ s ∪ {a} ` P

CREATE

where the syntax s ` Q in general reads “process Q, given

a set s of already created names.” This rule means that the
process νa.P can, in an internal transition step, create a name
a that is stored immediately in the set of created names, and
continue as process P . Assuming that we identify processes
up-to alpha-conversion of names bound by the ν operator, the
clause a 6∈ s is a simple precaution to guarantee that freshly
created names are indeed unique.

The creationist treatment of names makes the semantics
closer to implementations: for example, suppose name cre-
ation is the generation of random numbers (arguably unique).
Then, two different names in the model would actually be
different numbers in the implementation too, thus ruling out
interferences between processes and eliminating the need for
explicit scope information.

Equivalence of higher-order distributed processes with name
creation differs from that with name restriction. Concretely,
consider the process

P = νl.(l[νa.(a | a.a.ω)] | l(X).(X |X))

which, with name restriction semantics, can at best reduce
(in several steps) to νl.(0 | νa.(0 | a.ω) | νa.(0 | a.ω)). With
name creation semantics, there is also a reduction sequence
that leads to the exhibition of name ω by having creation of
name a happen before passivation and duplication:

{ω} ` νl.(l[νa.(a | a.a.ω)] | l(X).(X |X))
−→ {ω, l} ` l[νa.(a | a.a.ω)] | l(X).(X |X)(create l)
−→ {ω, l, a} ` l[a | a.a.ω] | l(X).(X |X) (create a)
−→ {ω, l, a} ` 0 | a | a.a.ω | a | a.a.ω (react on l)
−→ {ω, l, a} ` 0 | 0 | a.ω | a | a.a.ω (react on a)
−→ {ω, l, a} ` 0 | 0 | ω | 0 | a.a.ω (react on a)

Similarly, another (perhaps surprising) difference is the non-
bisimilarity between l[νa.νb.P] and l[νb.νa.P] with P = a.b.
a.ω1 |a.b.b.ω2, which are indistinguishable under name restric-
tion. To see it, suppose s ` l[νa.νb.P] with s = {l, ω1, ω2}
creates name a and is duplicated (i.e. is passivated and then
spawned twice), after which the b of each copy is created,
giving s′ ` (a.b1.a.ω1 | a.b1.b1.ω2) | (a.b2.a.ω1 | a.b2.b2.ω2)
with s′ = s ∪ {a, b1, b2}. Then, this process can exhibit ω1

using both a’s and a b1, giving s′ ` (ω1 | b1.ω2) | (a.b2.a.
ω1 | b2.b2.ω2). Yet, it cannot exhibit ω2 which is guarded by
two b2’s while there is only one b2. In order for l[νb.νa.
P] to weakly follow and exhibit ω1 too, it must also share
a, i.e. create it before duplication, forcing the creation and
sharing of b as well. This gives s ∪ {a, b} ` (a.b.a.ω1 | a.b.b.
ω2) | (a.b.a.ω1 | a.b.b.ω2) which weakly exhibits not only ω1

but also ω2, therefore telling apart l[νa.νb.P] and l[νb.νa.P].
More non-bisimilarities because of name creation semantics
are discussed in Section VI. (We will note, however, that these
processes are still mutually similar.)

In this paper, we argue that name creation is a realistic
alternative to name restriction when modelling higher-order
distribution. We recall that a restriction-based semantics is
harder to implement, because of the difficulty of implementing
distributed scope (which is inherent to the communication of
bound names). Here, we discuss several of such semantics and

their additional differences from name creation in a higher-
order distributed setting. (i) A structural congruence rule a[νc.
P] ≡ νc.a[P] (cf. [1]). Under the presence of process duplica-
tion, it is “unsound,” i.e. makes some inequivalent processes
structurally congruent. For example, it allows a[νc.(c̄|c.c.
ω̄)] ≡ νc.a[c̄|c.c.ω̄], but the two processes are distinguished by
an observer R = a(X).(X |X). (ii) Enforcing extrusion [18]
before passivation like l[νc.P] | l(X).(m[X] | n[X]) −→ νc.
(m[P] | n[P]). It does not allow duplication without sharing
private channels, keeping passivation from being used as a
general device for copying. (iii) Forbidding passivation when

ν is in evaluation position, i.e. l[νc.P]
l〈νc.P 〉9 0. It hinders du-

plication with private channels as well. Moreover, expectedly
equivalent processes l[νa.a[P]] and l[P] are distinguished by
l(X).ω, which reacts only with l[P]. (iv) Vertical extrusion
with an extra rule like l[νc.P]

τ−→νc.l[P]. It differs from name
creation too: consider Q = l[m[νa.P] |m(X).(X |X)] | l(Y).
(Y |Y) which can become Q′ = l[νa.m[P] |m(X).(X |X)] |
l(Y).(Y | Y) in a step, and then (weakly) become either νa.
(P |P |P |P) with one bound name, or νa.(P |P) |νa.(P |P)
with two. With name creation, there is no reduction Q =⇒Q′

such that only Q′=⇒P{a1/a} |P{a1/a} |P{a1/a} |P{a1/a}
and Q′ =⇒ (P{a1/a} | P{a1/a}) | (P{a2/a} | P{a2/a}) with
a1 and a2 fresh, whence the difference.

Equivalence and inequivalence in higher-order distribu-
tion: We have just seen that equivalence differs depending on
the semantics of names. Consequently, the equivalence theory
under the presence of name creation needs to be rethought. Be-
havioural equivalence can be characterised as reduction-closed
barbed equivalence (or congruence) [7] which has a simple
definition but is impractical as a proof method because of a
universal quantification on observer processes (or contexts)
in its definition. Therefore, more convenient relations like
bisimulations, whose membership implies reduction-closed
barbed equivalence and which come with a co-inductive proof
method, are sought after.

Accordingly, we define a theory of (environmental [20],
[21], [14], [16], [11]) bisimulation for a higher-order π-
calculus with both passivation and name creation. The theory
is proven to be sound and, thanks to name creation seman-
tics, complete. (In contrast, environmental bisimulations for
higher-order π-calculus with passivation [11] were far from
complete under name restriction semantics, being unsound
without severe constraints on environments.) It can then be
used to prove non-trivial equivalences that could not be shown
previously [11], [8], like that of distributed left and right list
folds (simplified versions of “MapReduce” [3]), detailed in
Section V.

One may also want to prove bisimilarity of distributed
programs that are more structurally different than the two
fold functions, e.g. linear and logarithmic implementations of
power functions. Perhaps surprisingly again, these implemen-
tations are not bisimilar. The reason is that the linear dis-
tributed implementation uses more hosts than the logarithmic
one, and is therefore more likely to fail (under either of name

creation and restriction). Thus, bisimilarity may sometimes be
too strong an equivalence. Instead, mutual simulation can be
desirable, so as to provide a coarser equivalence (cf. [9, p. 20,
Exercise 3.10]) still useful for comparing such programs. En-
vironmental simulations can be proven, for example, between
distributed linear and logarithmic power functions as detailed
in Section VI-B.

Summary of our contributions: In this paper, we intro-
duce the higher-order π-calculus with passivation and name
creation (henceforth HOπPn) a dialect of HOπP (the higher-
order π-calculus with passivation and name restriction) [8].
We then provide environmental bisimulations that are sound
and complete with respect to reduction-closed barbed equi-
valence and (a reasonable form of) congruence, and use them
to prove a non-trivial equivalence that could not be shown
with previous methods. We also provide sound environmental
simulations that can be used to show reduction-closed barbed
approximation, and give a non-trivial simulation proof as well.

Overview of the paper: The rest of the paper is structured
as follows. Section II defines HOπPn. Section III formalises
our environmental bisimulations and simulations, and Sec-
tion IV establishes their soundness and completeness. Sec-
tion V shows the example bisimilarity proof of distributed
left and right folds. Section VI discusses non-bisimilarity in
higher-order distribution and shows the simulation proof of
distributed power functions. Finally, Section VII considers
previous and future work.

II. HIGHER-ORDER π-CALCULUS WITH PASSIVATION AND
NAME CREATION

We formally introduce HOπPn through its syntax and
labelled transition system. The syntax of HOπPn processes
P , Q and terms M , N is given by the following grammar
(the same as in [11]):

P,Q ::= 0 | a(X).P | a〈M〉.P | (P |Q) | a[P]
| νa.P | !P | run(M)

M,N ::= X | ‘P

Briefly, X ranges over the set of variables, and a over names. 0
is a stuck process, a(X) and a〈M〉 input and output prefixes,
| the parallel composition operator, and a[P] the process P
located at location a. νa is the name creation prefix, ! the
replication operator, run the thawing operator which is used
to turn a term into a process, X a variable and ‘P a process
as a term. As in [11], the distinction between processes and
terms is needed for our generic up-to context technique (see
Section III).

The semantics of HOπPn is given by the following labelled
transitions system which is based on that of the higher-order
π-calculus with passivation [8]—itself being based on that
of the higher-order π-calculus [12]—and is now defined on
configurations. A configuration s ` P is the pair of a set s
of names and a process P such that fn(P) ⊆ s. We casually
write sx or s, x for s ∪ {x} or s ∪ x when x is a name or a
set of names. Omitting symmetric rules PAR-R and REACT-
R, the transition relation is defined inductively by the rules in

s ` a(X).P
a(M)−−−→ s ` P{M/X}

HO-IN

s ` a〈M〉.P a〈M〉−−−→ s ` P
HO-OUT

s ` P
α−→ s′ ` P ′ (s′ \ s) ∩ fn(Q) = ∅

s ` P |Q α−→ s′ ` P ′ |Q
PAR-L

s ` P
a〈M〉−−−→ s ` P ′ s ` Q

a(M)−−−→ s ` Q′

s ` P |Q τ−→ s ` P ′ |Q′ REACT-L

s `!P | P α−→ s′ ` P ′

s `!P α−→ s′ ` P ′ REP
a 6∈ s

s ` νa.P
τ−→ s, a ` P

CREATE

s ` P
α−→ s′ ` P

s ` a[P]
α−→ s′ ` a[P ′]

TRANSP

s ` a[P]
a〈‘P 〉−−−→ s ` 0

PASSIV
s ` run(‘P)

τ−→ s ` P
RUN

Fig. 1. Labelled transitions system of HOπPn

Figure 1. Assuming knowledge of the standard higher-order π-
calculus [15], [12], [13], we skim over the distribution-related
transitions and comment on the notable changes coming from
name creation. The TRANSP rule expresses the transparency of
locations—the fact that transitions can happen inside a location
and be observed outside its boundaries. The PASSIV rule shows
how a process running inside a location can be passivated, i.e.
stopped, turned into a term, and sent along a channel whose
name corresponds to that of the location. The RUN rule shows
how to retrieve a process from a term at the cost of an internal
transition.

The rule CREATE shows how a process νa.P can create a
name a—which is added to the configuration’s set of names—
and become P in an internal transition step. As we identify
processes up-to alpha-conversion of bound names, progress
is guaranteed. The rule PAR-L shows that a transition can
happen in a sub-process provided it does not create a name
that is free in another sub-process put in parallel (the function
fn , which returns the set of free names of a process or a term,
is standard). Again, alpha-conversion is used for guaranteeing
that no free name of Q will be captured.

The other rules are straightforward even in the presence of
name creation and will not be discussed further. As usual with
small-step semantics, when the assumptions cannot be satisfied
or when a case is undefined (as in run(X)), transition does
not progress and the process is stuck.

Henceforth, we shall write a.P for a〈0〉.P and a.P for
a(X).P when X is not free in P . We define structural
congruence ≡ as the smallest congruence on processes with
P ≡ P | 0, P1 | (P2 | P3) ≡ (P1 | P2) | P3, P1 | P2 ≡ P2 | P1

and !P ≡ !P | P . Notice that this definition is not standard: it
allows neither (νa.P) |Q ≡ νa.(P |Q), νa.νb.P ≡ νb.νa.P ,
nor νa.0 ≡ 0.

III. ENVIRONMENTAL BISIMULATION AND SIMULATION
FOR HOπPN

We define an environmental relation X as a set of sextuples
(E , r, s, P , t, Q) where E is a binary relation (called the
environment) on terms with no free variables and finitely many
free names, r is a finite set of names (the public names), s
and t too are finite sets of names (the created names) such
that r ⊆ s ∩ t, and P and Q are variable-closed processes
(the tested processes). We often write (s ` P)XE;r (t ` Q) to
mean (E , r, s, P, t,Q) ∈ X for an environmental relation X .

Definition 1. We define multi-hole contexts for terms C
(contexts that have holes for terms) and multi-hole contexts
for processes Cp (contexts that have holes for processes) as:

C ::= 0 | a(X).C | a〈D〉.C | (C | C) | a[C] | νa.C | !C | run(D)
D ::= [·]i | X | ‘C
Cp ::= [·]i | 0 | a(X).Cp | a〈Dp〉.Cp | (Cp | Cp) | a[Cp] | νa.Cp

| !Cp | run(Dp)
Dp ::=X | ‘Cp

Definition 2. We define process context closure and term
context closure as:

(E ; r)◦ = {(C[fM], C[eN]) |
bn(C) ∩ fn(fM, eN) = ∅, fn(C) ⊆ r, (fM, eN) ∈ E}

(E ; r)? = {(D[fM], D[eN]) |
bn(D) ∩ fn(fM, eN) = ∅, fn(D) ⊆ r, (fM, eN) ∈ E}

The process context closure (E ; r)◦ intuitively represents
the processes that an attacker can craft given some terms and
public names. It allows him to create processes using terms
(M̃, Ñ) from the environment and names from r. Capture of
names is forbidden, hence the condition on names bound by
the context. As this closure uses a context for terms, it will
necessarily put its terms in an output prefix or under a run.
The term context closure (E ; r)? intuitively corresponds to all
the terms that the attacker can craft from his knowledge. We
point out that these closure operations are monotonic on all
their arguments, and thus for any E and r, (E ; r)? includes the
identity (∅; r)?.

A few extra notations are used in this paper. We define the
weak transitions τ

=⇒ (or =⇒) as the reflexive transitive closure
of τ−→ (or −→), and α

=⇒ as τ
=⇒ α−→ τ

=⇒ for any α 6= τ . Finally, we
write a⊕b to express the union {a} ∪ b.

We now formally define environmental bisimulations (a
subset of environmental relations):

Definition 3. X is an environmental bisimulation if for all
(s ` P) XE;r (t ` Q),

1) if s ` P
τ−→ s′ ` P ′ then there is t′ ` Q′ such that

t ` Q
τ
=⇒ t′ ` Q′ and (s′ ` P ′) XE;r (t

′ ` Q′),

2) if s ` P
a(M)−−−→s ` P ′ with a ∈ r and (M,N) ∈ (E ; r)?,

then there is t′ ` Q′ such that t ` Q
a(N)
===⇒ t′ ` Q′ and

(s ` P ′) XE;r (t
′ ` Q′),

3) if s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are

t′ ` Q′ and N such that t ` Q
a〈N〉
===⇒ t′ ` Q′ and

(s ` P ′) X(M,N)⊕E;r (t
′ ` Q′),

4) for all l ∈ r and (‘P1, ‘Q1) ∈ E , we have (s ` P |
l[P1]) XE;r (t ` Q | l[Q1]),

5) for all n 6∈ s ∪ t, we have (s, n ` P) XE;r,n (t, n ` Q),
and

6) the converse of the three first clauses, on Q’s transitions.

Clause 1 requires weak reduction closure and is fairly usual;
clause 2 requires tested processes in a bisimulation to be able
to input on a public channel any related terms that the attacker
may create (hence the use of the term context closure), and to
have their continuations in the bisimulation; clause 3 enlarges
the knowledge of the attacker with terms that were output on a
public channel, and requires the continuations to be bisimilar
under this new knowledge; clause 4 allows the attacker to
spawn and immediately run terms from the environment as
processes in parallel to the tested processes (this allows to
virtually consider an arbitrary process from the process context
closure, while being much more tractable [11, Section 1]);
clause 5 means that the attacker can create fresh names at
will; finally, clause 6 is just the symmetric of the first three
ones.

We remind that, because the set r of names is included in
both s and t, we know that no name created by P nor Q will
clash with r; this is why we do not need extra constraints on
names like (s′ \s)∩r = ∅ (in clause 1) and (t′ \ t)∩r = ∅ (in
clauses 1, 2, 3), and why we do not have to require n 6∈ r in
clause 5. Also, using clause 5, the attacker can always generate
fresh names before creating terms (that will use these new
names) for input in clause 2.

As all the clauses of environmental bisimulations are mono-
tonic on X , the union of all bisimulations exists and is
itself an environmental bisimulation. We call it environmental
bisimilarity and write it ∼. For proving the equivalence of two
processes P and Q, we show that (f ` P) ∼∅;r (f ` Q) for
some r ⊆ f = fn(P,Q). It corresponds to equivalence where
the attacker can send and receive messages over the public
channels r of P and Q, but is yet to learn and put any term
into the environment. Since ∼ is the union of all bisimulations,
to prove this equivalence, it suffices to find an environmental
bisimulation X such that (f ` P) X∅;r (f ` Q) with public
names r ⊆ f = fn(P,Q).

For improving the practicality of our proof method, we
define an up-to context technique. Let us write X ? for an
environmental relation X , such that:

X ? = {(E , r, s, P, t,Q) | P ≡ P0 | P1, Q ≡ Q0 |Q1,
r′ ∩ (s ∪ t) = ∅,
(s, r′ ` P0) XE′;r,r′ (t, r

′ ` Q0),

(P1, Q1) ∈ (E ′; rr′)◦, E ⊆ (E ′; rr′)?}
Even though we call it “up-to context” for simplicity, it is
in fact the combination of several up-to techniques: (i) “up-to
context” since we allow the spawning of any related processes
(P1, Q1) taken from the process context closure (E ′; rr′)◦

of the knowledge E ′, rr′ in parallel to the tested processes
P0 and Q0 related by (s, r′ ` ·)XE′;rr′(t, r

′ ` ·); (ii) “up-
to environment” since we allow, through the condition with
the term context closure, the use of environments that are

larger than immediately necessary; (iii) “up-to name creation”
since we allow the use of extra new names r′; and (iv) “up-to
structural congruence” since we identify processes structurally
congruent to P0 | P1 and Q0 | Q1. This convenient notation
allows us to define environmental bisimulations up-to context:

Definition 4. X is an environmental bisimulation up-to context
if for all (s ` P) XE;r (t ` Q),

1) if s ` P
τ−→ s′ ` P ′ then there is t′ ` Q′ such that

t ` Q
τ
=⇒ t′ ` Q′ and (s′ ` P ′) X ?

E;r (t
′ ` Q′),

2) if s ` P
a(M)−−−→s ` P ′ with a ∈ r and (M,N) ∈ (E ; r)?,

then there is t′ ` Q′ such that t ` Q
a(N)
===⇒ t′ ` Q′ and

(s ` P ′) X ?
E;r (t

′ ` Q′),

3) if s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are

t′ ` Q′ and N such that t ` Q
a〈N〉
===⇒ t′ ` Q′ and

(s ` P ′) X ?
(M,N)⊕E;r (t

′ ` Q′),
4) for all l ∈ r and (‘P1, ‘Q1) ∈ E , we have (s ` P |

l[P1]) X ?
E;r (t ` Q | l[Q1]),

5) for all n 6∈ s ∪ t, we have (s, n ` P) XE;r,n (t, n ` Q),
and

6) the converse of the three first clauses, on Q’s transitions.

This is basically the same definition as Definition 3 but all
the positive instances of X became X ? (except in clause 5
for technical reasons). Clause 4 is not a tautology since it
spawns terms immediately as processes while the definition
of X ? allows only quoted processes. This distinction between
quoted and non-quoted processes enables the use of generic
contexts (as in [16], [11]) instead of redex contexts (as in [14]).
Similarly to ∼, we define environmental bisimilarity up-to
context and write it '.

Finally, we define environmental similarity ≺ and similarity
up-to context � by removing the converse conditions from the
appropriate definitions.

IV. SOUNDNESS AND COMPLETENESS OF
ENVIRONMENTAL BISIMULATION AND SIMULATION

We outline here main results and proofs concerning the
soundness and completeness of our proof method. More details
are found in the appendix [10].

A. Behavioural Equivalences

We say process P has or exhibits barb a (resp. a), written
P ↓a (resp. P ↓a), whenever P

a(·)−−→· (resp. P
a〈·〉−−→·). We say

process P weakly exhibits barb µ, written P ⇓ µ, whenever
P=⇒ ↓ µ for a name or a co-name µ.

We can now formally define the equivalence predicates of
our language, based on that of [7] (see also [15, Section 2.4.4])
with extensions for name creation.

Definition 5. Reduction-closed barbed equivalence ≈ is the
largest binary relation on variable-closed configurations, in-
dexed with a set of names r ⊆ s ∩ t, such that when
s ` P ≈r t ` Q,

• s ` P −→ s′ ` P ′ implies there are Q′ and t′ such that
t ` Q=⇒ t′ ` Q′ and s′ ` P ′ ≈r t′ ` Q′,

• s ` P ↓µ implies t ` Q ⇓µ if µ or µ is in r,
• the converse of the above two on Q, and
• for all R with fn(R)∩((s∪t)\r) = ∅, we have s∪fn(R) `

P |R ≈r∪fn(R) t ∪ fn(R) ` Q |R.

Note that we parameterised the equivalence with public
names r. This is necessary for distinguishing the public names
from private names that are not known to the attacker and
cannot be observed nor used. This explains why the clause on
barbs (and its symmetric) only considers barbs in r, and why
in the last clause private names cannot be free in R. However,
the free names created by the attacker are public and must
thus be added to r for observation, and to s and t to avoid
re-creation.

Definition 6. Reduction-closed barbed congruence
�
≈ is de-

fined similarly to Definition 5, but replacing ≈ with
�
≈ and the

last clause with: for all Cp (context with holes for processes)
such that fn(Cp)∩ ((s∪ t) \ r) = bn(Cp)∩ fn(P,Q) = ∅, we
have s ∪ fn(Cp) ` Cp[P]

�
≈r∪fn(Cp) t ∪ fn(Cp) ` Cp[Q].

It might be surprising that we consider a “congruence”
which cannot capture public names (bn(Cp)∩ fn(P,Q) = ∅),
but we argue that this is a reasonable definition. Indeed, free
names in our language represent already created constants
(private or public) in the compared processes; allowing the
capture of names would virtually correspond to allowing in-
place changes to the constant values in programs. Even though
this may well tell some systems apart—as the attacker wishes
to do—we doubt it represents a reasonable way to compare
the behaviours of systems in execution contexts (in fact, this
rather looks like using a binary editor to tell apart programs
by modifying their code).

Definition 7. Reduction-closed barbed approximation / is
defined similarly to Definition 5, but replacing ≈ with / and
removing the converse clauses. Respectively, reduction-closed

barbed pre-congruence
�
/ is defined similarly to Definition 6,

but replacing
�
≈ with

�
/ and removing the converse clause.

We say P approximates Q if f ` P /r f ` Q with some

r ⊆ f = fn(P,Q). Intuitively, P / Q (or P
�
/ Q) whenever

Q can do at least as much as P , in parallel with an observer
R (or under a non-capturing context Cp).

B. Soundness

Theorem 1. If (s ` P)'E;r(t ` Q) then (s ` P)∼E;r(t ` Q).

Outline of proof: knowing ' ⊆ '? by definition, we show
that:

1) transitions from '? lead to '− (a superset of '? called
run-erasure [10]),

2) if (s ` P) '−
E;r (t ` Q) and s ` P

a〈M〉−−−→ s ` P ′, then

t ` Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′)'−

(M,N)⊕E;r (t
′ ` Q′),

and using this result,
3) '− is also closed by input and internal transitions.

It is then quite easy to show that '− verifies all the clauses
of environmental bisimulations, that is, '− ⊆ ∼.

Corollary 1. If (f ` P)∼∅;r (f ` Q) with r ⊆ f = fn(P,Q),
then f ` P ≈r f ` Q.

Outline of proof: we show that ∼ is reduction-closed (by defi-
nition), that it weakly exhibits the same barbs (by definition of
bisimulation, ignoring the continuations after input or output
transitions), and that it is preserved by parallel composition of
arbitrary processes (that do not use private names) using the
up-to context technique (with ∼ ⊆ ').

It is interesting to remark that reduction-closed barbed
congruence can easily be shown as follows. Let us define
P lr Q if (f ` 0)∼{(‘P,‘Q)};r(f ` 0) with r ⊆ f = fn(P,Q).
Then:

Theorem 2. If P lr Q, then f ` P
�
≈r f ` Q with r ⊆ f =

fn(P,Q).

Outline of proof: We first show that a set relating run-erasures
of (C[M̃], C[Ñ]) for any non-capturing context C, with (s `
0) ∼E;r (t ` 0) and (M̃, Ñ) ∈ E , is reduction-closed and
verifies the conditions on barbs of reduction-closed barbed
congruence. Then, by P lr Q, i.e. (f ` 0)∼{(‘P,‘Q)};r (f ` 0)

with r ⊆ f = fn(P,Q), we have f ` P
�
≈r f ` Q.

We emphasise that a capturing congruence cannot (and
should not) be shown with this method. Omitting ‘ and run
for brevity, we prove this by crafting a counter-example such
that P lr Q but P and Q are not related by a name-capturing
version of

�
≈.

Let P1 = a(X).(X | i(Y).m) | m.ω and Q1 = a(X).(X |
i(Y).Y) |m.ω. We then consider the two processes P = νi.b
〈P1〉 | c〈a〈i〈m〉〉〉 and Q = νi.b〈Q1〉 | c〈a〈i〈m〉〉〉 which are
such that P lr Q for r = {a,m, b, c, ω}. P and Q have been
designed such that P can exhibit barb ω if it receives anything
on private channel i, while Q can exhibit barb ω if it receives
process m on private channel i.

By creating name i and then capturing the public name m
with a context like a〈νm.[]1〉 |a(X).(X |X), it is possible to
reach a state where ω and m1 |m2.ω with private and different
m1 and m2 would be related. However, as only the former
process has barb ω, the equivalence cannot hold. This shows
that comparing processes in a bisimulation environment is not
enough to guarantee name-capturing reduction-closed barbed
congruence.

It is in fact no problem that two processes in a bisimulation
environment are not necessarily related by a name-capturing
version of reduction-closed barbed congruence. Indeed, it is
consistent with our idea that allowing capture of already cre-
ated names is not a good basis for a congruence in languages
with name creation like HOπPn.

Soundness also holds for simulations:

Theorem 3. Let r ⊆ f = fn(P,Q). If (f ` P)�∅;r (f ` Q),
then (f ` P) /r (f ` Q). Respectively, if (f ` 0)�{(‘P,‘Q)};r

(f ` 0), then (f ` P)
�
/r (f ` Q).

The proof is immediate as our soundness proofs for envi-
ronmental bisimulations do not use the symmetry condition
and therefore can automatically be applied to environmental
simulations too.

C. Completeness

Theorem 4. If f ` P ≈r f ` Q with r ⊆ f = fn(P,Q), then
(f ` P)∼∅;r (f ` Q).

Outline of proof: we find an environmental bisimulation X
(up-to context) relating reduction-closed barbed equivalent P
and Q. The trick is to use a parallel product of outputting
processes to represent the environment. Roughly,

(s ` P |
∏

i li[Pi]) XE;r (t ` Q |
∏

i li[Qi])

with {(‘P̃ , ‘Q̃)} ⊆ E and l̃ ∈ r is defined by

(s, g̃ ` P |
∏

j !gj〈‘Pj〉) ≈r,eg (t, g̃ ` Q |
∏

j !gj〈‘Qj〉)

with {(‘P̃ , ‘Q̃)} = E . By using the last clause of reduction-
closed barbed equivalence, one can create processes that will
fetch the necessary (‘P̃ , ‘Q̃) and use them for crafting elements
of the context closure (E ; r)? needed in the input clause. The
spawn clause is satisfied by construction. When accounting for
a reaction like P | l1[P1]

τ−→P | l1[P ′
1], one uses the last clause

of reduction-closed barbed equivalence to create a receiver
l1[g1(X).X], spawns P1 (and Q1) inside this location l1,
mimics the reduction of P1 (and the weak reactions of Q and
Q1 to Q′ and Q′

1), and then passivates the contents of location
l1 to put (‘P ′

1, ‘Q
′
1) immediately in the representation of the

“environment” under fresh name gj+1, giving

s′, g̃ ` P |
∏

j !gj〈‘Pj〉 | !gj+1〈‘P ′
1〉 ≈r,eg

t′, g̃ ` Q′ |
∏

j !gj〈‘Qj〉 | !gj+1〈‘Q′
1〉.

Therefore, processes P | l1[P ′
1] and Q′ | l[Q′

1] are now related
as wanted.

Corollary 2. If f ` P
�
≈r f ` Q with r ⊆ f = fn(P,Q),

then P lr Q.

Outline of proof: by the last clause of reduction-closed barbed
congruence, we know that (f ` P)

�
≈r (f ` Q) implies

(a, f ` a〈P 〉)
�
≈a,r (a, f ` a〈Q〉) for fresh a, which itself

implies (a, f ` a〈P 〉) ≈a,r (a, f ` a〈Q〉). By Theorem 4, we
thus have (a, f ` a〈P 〉)∼∅;a,r (a, f ` a〈Q〉). We then output
to a, get (a, f ` 0) ∼{(‘P,‘Q)};a,r (a, f ` 0), remove a up-to
name creation, and we are done.
We do not know yet whether completeness of simulation holds,
since our current proofs rely on the symmetry conditions of
the relations.

V. BISIMILARITY EXAMPLE

We present an example of equivalence that could not be
proven with previous methods, remotely inspired by MapRe-
duce [3] and abstracting the “reduce” part of it. More precisely,
we show the bisimilarity between distributed left- and right-
fold computations for arbitrary list l, associative function f ,

and initial value i (the identity element of f). With car and
cdr functions that return the head and tail of a list, we define
the “fold servers” as:

L = !fl(f, i, l, k).if null l
then k〈i〉 else νc.fl〈f, f i (car l), cdr l, c〉.c(m).k〈m〉

R = !fr(f, l, i, k).if null l
then k〈i〉 else νc.fr〈f, cdr l, i, c〉.c(m).k〈f (car l) m〉

They are parameterised by (in addition to f , l and i) a channel
k to return their results to clients (although omitted in the
preceding sections, we remind our reader that first-order names
and constants are easily added to the theory of environmental
bisimulation [16]).

We then want to prove equivalent the configurations
a, b,fl ` P and a, b, fr ` Q with public a and b, and where:

P = b(f, l, i, k).(fl〈f, i, l, k〉 | a[L])
Q = b(f, l, i, k).(fr〈f, l, i, k〉 | a[R])

To prove their equivalence, we provide a (strong) bisimulation
X = X1 ∪ X2 ∪ X3 as in Figure 2 (where we use sans-serif
fonts to denote Haskell-like functions). We will henceforth
use the acronyms LHS and RHS for respectively the left-
hand and right-hand sides of the bisimulation, i.e. the tested
configurations. In this particular example, the same pairs
of transitions verify the bisimulation clauses on both LHS
and RHS’s transitions; we will therefore only consider the
transitions of LHS to avoid redundancy. We now analyse
X1, which contains the configurations we want to identify.
First, we observe that the set r in X1 contains at least
the public names of P and Q, as required clause 5 of the
bisimulation. Also, since the environment is empty, clause 4 is
vacuously satisfied. Then, we consider the transitions, starting
with (fl , r ` P)

b(f,i,l,k)−−−−−→ (fl , r ` fl〈f, i, l, k〉 | a[L]), which is

matched by (fr , r ` Q)
b(f,i,l,k)−−−−−→ (fr , r ` fr〈f, l, i, k〉 | a[R])

so that membership to X2 is satisfied (by taking n = 1 and
a1 = a, with up-to environment since ∅ ⊆ {(‘L, ‘R)}). The
name k was added to r in X1 by clause 5 of the bisimulation,
and then input by clause 2.

Then, the elements of X2 must verify the spawn clause since
their environment {(‘L, ‘R)} is not empty; spawning l[L] and
l[R] for some l ∈ r just enlarges the products

∏n
j=1 aj [] by

one element, preserving the membership to X2. Conversely,
they can also do a passivation transition (which is a form of
higher-order output): a pair (‘L, ‘R) is necessarily added to
the environment (to which it already belongs) and the products
shrink by one element; membership to X2 is thus preserved
again. Finally, the reaction of fl with L (resp. fr with R) gives
({(‘L, ‘R)}, r, r fl ,

∏n−1
j=1 aj [L]|an[L|P0], r fr ,

∏n−1
j=1 aj [R]|

an[R | Q0]) with P0 = if null l then k〈i〉 else νc.fl
〈f, f i (car l), cdr l, c〉.c(m).k〈m〉 and Q0 = if null l then k
〈i〉 else νc.fr〈f, cdr l, i, c〉.c(m).k〈f (car l) m〉, which be-
longs to X3 up-to environment since {(‘L, ‘R)} ⊆ E .

We now show that X3 satisfies the clauses of environmental
bisimulation. Because all locations aj in X3 are public and
may thus lead to passivation, all Pj , Qj must be in the

X1 = {(∅, r, r fl , P, r fr , Q)
˛̨
{a, b} ⊆ r, fl , fr 6∈ r}

X2 = {(E , r, r fl , fl〈f, i, l, k〉 |
Qn

j=1 aj [L],

r fr , fr〈f, l, i, k〉 |
Qn

j=1 aj [R])
˛̨

E = {(‘L, ‘R)}, {k, a, b, a1, . . . , an} ⊆ r, fl , fr 6∈ r}
X3 = {(E , r, r fl ec,Q

j aj [Pj], r fr ec,Q
j aj [Qj])

˛̨
E = {(‘L |

Q
h Ah, ‘R |

Q
h Bh)

˛̨
(eA, eB) ∈ Ef,l,i(length l, {k}, r fl fr)},

{k, a, b,ea} ⊆ r, {ec} = fn(E) \ r \ {fl , fr},
(‘ eP , ‘ eQ) ∈ E , fl , fr 6∈ r}

Ef,l,i(0, rep, cre) = {
(if null [] then c0〈f l

d〉
else νc.fl〈f, f f l

d (car []), cdr [], c〉.c(m).c0〈m〉,
if null [] then c0〈i〉

else νc.fr〈f, cdr [], i, c〉.c(m).c0〈f (car []) m〉),
(c0〈f l

d〉, c0〈i〉)
˛̨

c0 ∈ rep, f l
d = fold-left f i l}

Ef,l,i(m, rep, cre) (when m > 0) = {
(if null ld then cm〈vld〉 else νc.fl〈f, vld, cdr ld, c〉.c(o).cm〈o〉,
if null ld then cm〈i〉 else νc.fr〈f, cdr ld, i, c〉.c(o).cm〈f vrd o〉),
(νc.fl〈f, vld, cdr ld, c〉.c(o).cm〈o〉,
νc.fr〈f, cdr ld, i, c〉.c(o).cm〈f vrd o〉),
(fl〈f, vld, cdr ld, cm−1〉.cm−1(o).cm〈o〉,
fr〈f, cdr ld, i, cm−1〉.cm−1(o).cm〈f vrd o〉),
(cm−1(o).cm〈o〉, cm−1(o).cm〈f vrd o〉),
(cm〈f l

d〉, cm〈fr
d 〉), (P, Q)

˛̨
cm ∈ rep, cm−1 ∈ rep′, rep′ ∩ cre = ∅, rep′ finite,
d = (length l) −m, ld = drop d l,
vld = fold-left f i (take d l), vrd = nth d l,
f l
d = fold-left f i l, fr

d = fold-right i f ld,
(P, Q) ∈ Ef,l,i(m− 1, rep′, rep′ ∪ cre)}

Fig. 2. The partitions of the bisimulation X

environment (by clause 3 of the bisimulation); conversely, all
terms from the environment must be spawnable an arbitrary
number of times as located processes (by clause 4). It is
straightforward to verify that X3 satisfies these constraints by
definition. Respect of clause 5 is also immediate to verify.

We then remark that X3 contains only locations aj hosting
elements of E , i.e. the fold servers L and R in parallel with
their related continuations Ah and Bh (if any). Therefore, in
order to analyse the other transitions of elements of X3, we
morally just have to consider the transitions of the elements of
E , i.e. the servers and their continuations. Those continuations
are members of the set Ef,l,i(length l, {k}, r fl fr), where
E is a recursive function parametric in several values (see
Figure 2). Concretely, the fixed parameters are the function f
to fold, the initial list l and the initial value i. The varying
parameters are the number m of elements yet to fold (hence
d = (length l)−m is the current “depth” in the whole fold), a
set rep of channels to return the result of the current recursive
call, and a set cre of already created names.

Let us therefore consider first the transitions of Pd =
if null ld then cm〈vld〉 else . . . and related Qd =
if null ld then cm〈i〉 else . . . in some Em = Ef,l,i(m, rep,
cre). If this is the “last recursive call,” i.e. m = 0, then ld = []
and Pd

τ−→ cm〈f l
d〉 where f l

d = fold-left f i l is the final value
(by definition of left fold), and Qd

τ−→ cm〈i〉 (by definition
too). Since cm〈f l

d〉 and cm〈i〉 are also related by Em, these

transitions preserve membership to X3.
If m > 0 (i.e. the recursive call is not the last one), then the

else branches are taken in both processes, giving P ′
d = νc.fl〈f,

vld, cdr ld, c〉.c(o).cm〈o〉 in LHS and Q′
d = νc.fr〈f, cdr ld, i,

c〉.c(o).cm〈f vrd o〉) in RHS, still preserving membership to
X3 since (P ′

d, Q
′
d) ∈ Em.

Then, P ′
d and Q′

d can both create a name cm−1 to become
P ′′
d = fl〈f, vld, cdr ld, cm−1〉.cm−1(o).cm〈o〉 and Q′′

d = fr〈f,
cdr ld, i, cm−1〉.cm−1(o).cm〈f vrd o〉), provided cm−1 has not
already been created, i.e. that cm−1 is not in cre. But re-
member that, by definition of X3 (that verifies clause 4 of
the bisimulation), continuations P ′

d and Q′
d can be spawned

several times since they belong to E (along with L and R), and
that each copy can thus create its own name cm−1. Therefore,
we must relate several (P ′′

d , Q
′′
d) all with their own fresh cm−1;

the set rep′ exactly contains every such cm−1. Notice that the
names of rep′ are free, allowing the definition of X3 to list
them as {c̃}, the set of names created by the folds.

Now, in order for P ′′
d to do a transition on private name fl ,

it must react with a server L, modelling a recursive call to the
left fold on the rest of the current list. In this case, not only
does P ′′

d reduce to P ′′′
d = cm−1(o).cm〈o〉, but the replication

drawn from L turns into Pd+1 = if null ld+1 then cm−1

〈vld+1〉 else Naturally, Q′′
d follows as well, giving Q′′′

d =
cm−1(o).cm〈f vrd o〉 and Qd+1 = if null ld+1 then cm−1

〈vrd+1〉 else Since (P ′′′
d , Q′′′

d) belongs to Em and
(Pd+1, Qd+1) as well (since Em ⊇ Em−1 = Ef,l,i(m − 1,
rep′, rep′ ∪ cre) by definition), membership to X3 is still
preserved. Notice that any L (and related R) may be used for
the above reaction, even one at a location where some other
continuations already exist. Because the Pd+1 and Qd+1 add
up next to the server they come from, the definition of E in
X3 contains products of arbitrary length

∏
h Ah and

∏
h Bh

in parallel with L and R. Analysis of the transitions of Pd+1

and Qd+1 is the same as that of the transitions of Pd and Qd

and needs no further development.
Then, in order for P ′′′

d to do a transition, it must react on
cm−1 ∈ rep′. By definition, the only processes that can send
on cm−1 are cm−1〈f l

d+1〉 and cm−1〈fr
d+1〉 in Em−1 ⊆ Em.

Then P ′′′
d reacts with cm−1〈f l

d+1〉 and turns into cm〈f l
d〉 (with

f l
d = f l

d+1 = fold-left f i l). Similarly, the process cm−1〈fr
d+1〉

reacts with Q′′′
d which then turns into cm〈f vrd fr

d+1〉, i.e. cm
〈fr

d 〉, again preserving membership to X3.
Finally, the processes cm〈f l

d〉 and cm〈fr
d 〉 may behave

differently depending on where cm comes from. If cm is
private, then they can react with some continuations cm(o).
cm+1〈o〉 and cm(o).cm+1〈f vrd−1

o〉) that are related by
Em+1 = Ef,l,i(m+1, rep′′, cre \rep). Then, cm〈f l

d〉 and cm
〈fr

d 〉 both turn into 0 while the continuations’ continuations are
still related by Em+1, like we showed for Em in the previous
paragraph. (There are no other reactions between elements of
Em and En with m 6= n.) Otherwise, necessarily cm = k by
definition of X3 and thus, by definition of E, the same value
fold-left f i l = fold-right f l i is output to public channel k.

This concludes our proof that elements of X = X1 ∪ X2 ∪
X3 satisfy the clauses of environmental bisimulations (up-to

environment), and thus that a, b,fl ` P and a, b, fr ` Q are
bisimilar with public names a and b.

VI. NON-BISIMILAR EXAMPLES

A. Non-Bisimilarity Due to Different Internal Reactions

In the introduction, we gave an example of perhaps surpris-
ing (but rational) non-bisimilarity between located processes
l[νa.νb.P] and l[νb.νa.P]. A possibly even more surprising
example would be the following:

{l1, ω} ` l1[νa.(a|a.ω)] 6≈{ω,l1} {l1, ω} ` l1[νa.νb.(a.b|a.b.ω)]

To see why these configurations are not bisimilar, we con-
sider the duplication of the located processes after the name
creations; for s = {l1, l2, a, ω}, we have:

s ` l1[a | a.ω] | l2[a | a.ω] 6≈{ω,l1,l2}

s, b ` l1[a.b | a.b.ω] | l2[a.b | a.b.ω]

Consider now the transition of the right-hand side:

s ` l1[a.b |a.b.ω] | l2[a.b |a.b.ω]
τ−→s ` l1[b |a.b.ω] | l2[a.b | b.ω]

To match, the left-hand side may do a weak transition to one
of the six following processes:

l1[ω] | l2[ω] l1[a | a.ω] | l2[ω] l1[ω] | l2[a | a.ω]
l1[a | ω] | l2[a.ω] l1[a.ω] | l2[a | ω] l1[a | a.ω] | l2[a | a.ω]

with created names s. Suppose that the attacker then passivates
l1 on the right-hand side:

s ` l1[b | a.b.ω] | l2[a.b | b.ω]
l1〈‘b|a.b.ω〉−−−−−−−→ s ` l2[a.b | b.ω]

The resulting process is stuck, so because of the symmetry
of bisimulations, the left-hand side must be able to passivate
l1 and become stuck too. The only way to achieve this is

necessarily by doing a transition
l1〈‘a|ω〉
====⇒ l1, l2, a, ω ` l2[a.ω].

The attacker can then passivate the contents of l2 in both sides
of the bisimulation, and be left with processes 0. Now, he can
spawn back what was output during the passivation of l1, and
we thus have:

s ` l1[a | ω] 6≈{ω,l1,l2} s, b ` l1[b | a.b.ω]

Obviously, the right-hand side is stuck, but the left one can
exhibit ω, thus proving that the two processes are not bisimilar.

B. Non-Bisimilarity Due to Different Number of Locations
Used

In Section V, we compared processes that recurse the
same number of times and built bisimulations relating these
processes such that whenever a process uses a location so
does the other. We illustrate now that, in our distributed
setting, the number of locations used does matter to draw some
bisimilarity results.

Let us consider two implementations of the power function
pow(a, b) = ab, one of linear complexity, and the other
of logarithmic complexity, as shown in Figure 3. Suppose
that we want to replace the linear implementation P by the
logarithmic one Q in a distributed system, and to check if

P = !powlin(a, b, k).if b = 0

then k〈1〉 else νc.powlin〈a, b−1, c〉.c(m).k〈a×m〉
Q = !powlog(a, b, k).if b = 0

then k〈1〉 else if b%2 = 0 then powlog〈a×a, b÷2, k〉
else νc.powlog〈a, b−1, c〉.c(m).k〈a×m〉

Fig. 3. Linear and logarithmic power functions

there will be no visible difference. We could model those
systems as l[P] | powlin〈a, b, k〉 and l[Q] | powlog〈a, b, k〉
for integers a, b and public names l, k, and show their
equivalence using our proof technique, trying to build a bisim-
ulation X relating them, starting with (∅, lk, lk powlin , l[P] |
powlin〈a, b, k〉, lk powlog , l[Q] | powlog〈a, b, k〉) ∈ X . We
consider the situation where location l is passivated and
then spawned b times: (∅, lk, lk powlin ,

∏b
i=1 li[P] | powlin

〈a, b, k〉, lk powlog ,
∏b

i=1 li[Q] | powlog〈a, b, k〉) ∈ X . Let us
consider now the state where the linear version has unfolded
all the b recursive calls across l1, . . . , lb, like: l1[P | c1(x).k
〈a×x〉] | l2[P | c2(x).c1〈a×x〉] | . . . | lb[P | cb−1〈1〉]. Similarly,
the logarithmic version should (somehow) follow weakly:
l1[Q | . . .] | l2[Q | . . .] | . . . | lb[Q | . . .]. Suppose now that
the attacker passivates the location l1 that contains c1(x).k
〈a×x〉, so that the left hand-side of the bisimulation can no
longer return its result. Then, by the definition of bisimilarity,
the logarithmic implementation too must not return a value
if l1 is passivated. The attacker may now spawn back the
passivated contents of l1, and then repeat the same passivation
test on each of l2, l3 In the end, we know that more than
log(b) locations were necessary for the recursive calls of the
logarithmic version of the power function, which is impossible
by design since this implementation can do at most log(b)
recursive calls. The two systems thus cannot be bisimilar.

C. Mutual Simulation

Although bisimilarity does not hold, we prove that the
distributed linear power function approximates the logarithmic
one by crafting a simulation relating them. We build the
simulation Y = Y1 ∪ Y2 as in Figure 4, in a manner very
similar to that of Section V. Our explanations below will thus
focus on main differences from Section V. First, we recall
that, because we consider (weak) simulations, we require that
transitions by LHS be (weakly) matched by transitions on
RHS, but not the converse. Thus, in this example, while the
simulation Y needs to keep in LHS all the intermediate states
of the linear power calculation, it suffices to keep in RHS only
the initial and final states of the logarithmic power calculation.

The initial states are related by Y1. As far as intermediate
states are concerned, we decide that the processes of LHS that
can do an observable action (i.e. an output to k) be related to
processes in RHS able to do the same action, so as to guarantee
satisfaction of the output clause of simulation. Therefore, we
define Y2 such that subprocesses of LHS that have k free in
them (i.e. continuations of the initial call to powlin) are related
to k〈ab〉 on RHS (i.e. final state of the call to powlog), and
that other subprocesses of LHS are related to 0 on RHS.

Y1 = {(E , r, r powlin ,
Qn

i li[P] | powlin〈a, b, k〉,
r powlog ,

Qn
i li[Q] | powlog〈a, b, k〉)

˛̨
k,el ∈ r, E ⊆ {(‘P, ‘Q)}}

Y2 = {(E , r,ec r powlin ,
Q

i li[Pi], ed r powlog ,
Q

i li[Qi])
˛̨

E = {(P |
Q

h Ah, Q |
Q

h Bh)
˛̨

(eA, eB) ∈ Ea,b(b, {k}, powlin powlog r)},
(‘ eP , ‘ eQ) ∈ E , k,el ∈ r, ec = fn(E .1) \ r \ {powlin},ed ∩ r \ {powlog} = ∅, |ed| = depth(b),

depth(x) =

8><>:
0 if x = 0

depth(x/2) if x%2 = 0

1+depth(x−1) otherwise}
Ea,b(0, rep, cre) = {
(if 0 = 0 then c0〈1〉 else . . . , R), (c0〈1〉, R) |
c0 ∈ rep, R = c0〈1〉 if b = 0, otherwise R = 0}

Ea,b(m, rep, cre) (when m > 0) = {
(if m = 0 then . . . else νc.powlin〈a,m−1, c〉.c(o).cm〈a×o〉, R),
(νc.powlin〈a,m−1, c〉.c(o).cm〈a×o〉, R),
(powlin〈a,m−1, cm−1〉.cm−1(o).cm〈a×o〉, R),
(cm−1(o).cm〈a×o〉, R), (cm〈am〉, R), (Pm−1, 0)

˛̨
cm ∈ rep, cm−1 ∈ rep′, rep′ ∩ cre = ∅, rep′ finite,
Pm−1 ∈ Ea,b(m−1, rep′, rep′ ∪ cre),
R = cm〈ab〉 if m = b, otherwise R = 0}

Fig. 4. Simulation Y = Y1 ∪ Y2 between linear and logarithmic power
functions

We now show that the set Y = Y1 ∪ Y2 is a weak
environmental simulation. We start with Y1 that relates (for
n = 1 and l1 = l) the processes we want to prove related:
lk powlin ` l[P] | powlin〈a, b, k〉 and lk powlog ` l[Q] | powlog

〈a, b, k〉). Suppose that the client powlin〈a, b, k〉 of LHS reacts
with located server li[P], leaving a process Pb = (if b =
0 then k〈1〉 else νc.powlin〈a, b−1, c〉.c(m).k〈a×m〉) at li.
RHS can follow by reacting weakly (doing all calculations
on the spot) with l[Q], leaving process li[k〈ab〉]. The rests are
related by Y2 up-to environment since {(‘P, ‘Q), (‘P |Pb, ‘Q|k
〈ab〉)} ⊆ E .

Then, if b = 0, Pb reduces to k〈1〉, while RHS’s k
〈ab〉 = k〈1〉 follows weakly by not doing any transition.
The continuations k〈1〉 and k〈1〉 preserve membership to Y2.
Moreover, if LHS’s k〈1〉 outputs 1 to k, then so can RHS’s k
〈1〉 as expected.

Otherwise, if b > 0, Pb can reduce successively to P ′
b = νc.

powlin〈a, b−1, c〉. . . . and to P ′′
b = powlin〈a, b−1, cb〉. In

RHS, k〈ab〉 follows both transitions weakly, still preserving
membership to Y2.

Then P ′′
b can react with a server P : P ′′

b becomes P ′′′
b =

cb−1(o).k〈a×o〉, P becomes P | Pb−1 = P | if (b−1) =
0 then cb−1〈1〉 else νc.powlin〈a, b−2, c〉.c(m).cb−1〈a×m〉,
and k〈ab〉 follows weakly. For example, we have l1[P | P ′′

b] |
l2[P]

τ−→ l1[P | P ′′′
b] | l2[P | Pb−1] in LHS, and l1[Q | k

〈ab〉] | l2[Q]
τ−→ l1[Q | k〈ab〉] | l2[Q | 0] in RHS. It results from

the above that P ′′′
b is related to k〈ab〉, and Pb−1 to 0 since no

process was added in RHS by the weak transition. Membership
to Y2 is still satisfied.

We skip the analysis of transitions of Pb−1, as it similar to
that of transitions of Pb.

If P ′′′
b inputs on cb−1, it becomes P ′′′′

b = k〈ab〉 be-
cause the only output to cb−1 comes from cb−1〈ab−1〉 in

Ea,b(b−1, rep′, rep′ ∪ cre). RHS follows weakly, still giving
k〈ab〉, and preserving membership to Y2. Finally, output of ab

to k by both processes can happen, satisfying the simulation’s
output clause.

This concludes our proof that elements of Y = Y1 ∪ Y2

satisfy the clauses of environmental simulation (up-to en-
vironment), and thus that the distributed linear algorithm
approximates the logarithmic one.

With the same approach, we may easily show that the
linear algorithm simulates the logarithmic one as well (the
previous simulation proof does not depend on the number of
reduction steps on the left-hand side). This means that the
two algorithms simulate each other even though they are not
bisimilar, supporting the usefulness of mutual simulation in
higher-order distribution.

By the same reasoning, the non-bisimilar processes in the
introduction and Section VI-A can also be shown to be
mutually similar.

VII. DISCUSSIONS

We defined HOπPn, the higher-order distributed π-calculus
with passivation and name creation, and developed its equi-
valence and inequivalence theories. Although many of the
inequivalences may have been counter-intuitive, we emphasise
that they are rational in hindsight and reflect the reality of non-
linear higher-order distribution (not necessarily passivation but
also duplication in general; cf. [2]).

Recently studied higher-order distributed process calculi
include the Kell calculus [18], Homer [6] and the higher-order
π-calculus with passivation (HOπP) [8]. They are extensions
of the π-calculus with the communication of processes and
their execution inside locations, and all have name restriction
semantics. Other distributed process calculi such as Am-
bients [1] and Dpi [4] identify name creation and name
restriction semantics, but are not higher-order in our sense
(of passing processes through channels).

Research on the Kell calculus and Homer led to defining
sound and complete context bisimulations [13]. However, they
critically rely on universal quantification on contexts and are
almost as hard as reduction-closed barbed equivalence as
proof methods. Later, Lenglet et al. [8] focused on HOπP,
a calculus simpler than both the Kell calculus and Homer. In
addition to sound and complete context bisimulations, they
provided more practical normal bisimulations [13] that are
sound and complete in the absence of name restriction but are
unsound otherwise. Also for HOπP, Piérard and Sumii defined
a sound but incomplete environmental bisimulation proof
technique [11] with strong constraints (the environments could
not contain any restriction operator nor higher-order inputs).
Even though non-trivial equivalences of processes which could
not be realistically proven with context bisimulations can
be proven with this technique, the constraints have a severe
impact on the variety of processes that can be considered.

The simplicity of HOπPn, notably the transparency of loca-
tions, does not offer enough control over the communications
between processes, and therefore hinders natural modelling of

real systems where processes cannot freely interact with one
another. Such systems can be modelled with non-transparent
locations [18], [6], e.g. locations that only allow communi-
cations between processes from the same level or one level
above/below. Moreover, passivation in HOπPn unifies failure,
migration, and duplication as higher-order outputs, therefore
mixing different behaviours. Even though identifying them
keeps the model simple, their distinction may enable a more
realistic modelling of higher-order distributed systems.

REFERENCES

[1] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures, volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer, 1998.

[2] G. Castagna, J. Vitek, and F. Z. Nardelli. The Seal Calculus. Information
and Computation, 201(1):1–54, 2005.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th conference on Symposium on
Operating Systems Design and Implementation, volume 6, pages 137–
150. USENIX Association, 2004.

[4] M. Hennessy and J. Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 1998.

[5] Hewlett-Packard. Live migration across data centers and disaster tol-
erant virtualization architecture with HP storageworks cluster extension
and Microsoft Hyper-V. http://h20195.www2.hp.com/V2/GetPDF.aspx/
4AA2-6905ENW.pdf.

[6] T. Hildebrandt, J. C. Godskesen, and M. Bundgaard. Bisimulation
congruences for Homer: a calculus of higher-order mobile embedded
resources. Technical Report TR-2004-52, IT University of Copenhagen,
2004.

[7] K. Honda and N. Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 151(2):437–486, 1995.

[8] S. Lenglet, A. Schmitt, and J.-B. Stefani. Normal bisimulations in calculi
with passivation. In Foundations of Software Science and Computational
Structures, volume 5504 of Lecture Notes in Computer Science, pages
257–271. Springer, 2009.

[9] R. Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.

[10] A. Piérard and E. Sumii. Appendix to a higher-order distributed
calculus with name creation. http://www.kb.ecei.tohoku.ac.jp/∼adrien/
pubs/AppendixCreation.pdf.

[11] A. Piérard and E. Sumii. Sound bisimulations for higher-order dis-
tributed process calculus. In Foundations of Software Science and
Computational Structures, volume 6604 of Lecture Notes in Computer
Science, pages 123–137. Springer, 2011.

[12] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[13] D. Sangiorgi. Bisimulation for higher-order process calculi. Information
and Computation, 131:141–178, 1996.

[14] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimula-
tions for higher-order languages. ACM Transactions on Programming
Languages and Systems, 33:5:1–5:69, 2011.

[15] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[16] N. Sato and E. Sumii. The higher-order, call-by-value applied pi-
calculus. In Asian Symposium on Programming Languages and Systems,
volume 5904 of Lecture Notes in Computer Science, pages 311–326.
Springer, 2009.

[17] D. Schmidt and P. Dhawan. Live migration with Xen vir-
tualization software. http://www.dell.com/downloads/global/power/
ps2q06-20050322-Schmidt-OE.pdf.

[18] A. Schmitt and J.-B. Stefani. The Kell calculus: A family of higher-
order distributed process calculi. In Global Computing, volume 3267 of
Lecture Notes in Computer Science, pages 146–178. Springer, 2004.

[19] I. Stark. Names and Higher-Order Functions. PhD thesis, University of
Cambridge, 1994. Also available as Technical Report 363, University
of Cambridge Computer Laboratory.

[20] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing.
Theoretical Computer Science, 375(1-3):169–192, 2007.

[21] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. Journal of the ACM, 54:1–43, 2007.

A Higher-order π-calculus with passivation and name
creation

1 Syntax

The syntax of HOπPn processes P , Q is given by the following grammar:

P,Q ::= 0 | a(X).P | a〈M〉.P | (P | P) | a[P] | νa.P | !P | run(M)
M,N ::= X | ‘P

We define the functions that returns the free names and free variables respec-
tively as:

fn(0) = ∅ fv(0) = ∅
fn(a(X).P) = {a} ∪ fn(P) fv(a(X).P) = fv(P) \ {X}
fn(a〈M〉.P) = {a} ∪ fn(M) ∪ fn(P) fv(a〈M〉.P) = fv(M) ∪ fv(P)
fn(P1 | P2) = fn(P1) ∪ fn(P2) fv(P1 | P2) = fv(P1) ∪ fv(P2)
fn(a[P]) = {a} ∪ fn(P) fv(a[P]) = fv(P)
fn(νa.P) = fn(P) \ {a} fv(νa.P) = fv(P)
fn(!P) = fn(P) fv(!P) = fv(P)
fn(run(M)) = fn(M) fv(run(M)) = fv(M)
fn(X) = ∅ fv(X) = {X}
fn(‘P) = fn(P) fv(‘P) = fv(P)

We conveniently write fn(X,Y, . . . , Z) (resp. fv(X,Y, . . . , Z)) to denote
⋃

S∈{X,Y,...,Z}

fn(S)

(resp.
⋃

S∈{X,Y,...,Z}

fv(S)).

2 Labelled transitions system

Definition A.1. [Configuration]
A configuration s ` P is the pair of a set s of names and a process P such that
fn(P) ⊆ s. We casually write sx or s, x for s ∪ {x} or s ∪ x when x is a name
or a set of names.

The transitions semantics of HOπPn is given by the following labelled transitions
system:

s ` a(X).P
a(M)−−−→ s ` P{M/X}

Ho-In
s ` a〈M〉.P a〈M〉−−−→ s ` P

Ho-Out

s ` P
α−→ s′ ` P ′ (s′ \ s) ∩ fn(Q) = ∅
s ` P |Q α−→ s′ ` P ′ |Q

Par-L

s ` P
α−→ s′ ` P ′ (s′ \ s) ∩ fn(Q) = ∅
s ` Q | P α−→ s′ ` Q | P ′ Par-R

s ` P
a〈M〉−−−→ s ` P ′ s ` Q

a(M)−−−→ s ` Q′

s ` P |Q τ−→ s ` P ′ |Q′ React-L

s ` P
a(M)−−−→ s ` P ′ s ` Q

a〈M〉−−−→ s ` Q′

s ` P |Q τ−→ s ` P ′ |Q′ React-R

s `!P | P α−→ s′ ` P ′

s `!P α−→ s′ ` P ′ Rep
a 6∈ s

s ` νa.P
τ−→ s, a ` P

Create

s ` P
α−→ s′ ` P

s ` a[P]
α−→ s′ ` a[P ′]

Transp
s ` a[P]

a〈‘P 〉−−−→ s ` 0
Passiv

s ` run(‘P)
τ−→ s ` P

Run

with the following function on labels

n(α) =

{
∅ if α = τ

{a} ∪ fn(M) if α = a(M) or α = a〈M〉

and the notation x̃ to denote the sequence x0, x1, . . . xn.

Definition A.2. Structural congruence ≡ is the smallest relation on processes
such that:

Q ≡ P

P ≡ Q
S-Sym

P ≡ P
S-Refl

P ≡ R R ≡ Q

P ≡ Q
S-Trans

P ≡ P | 0S-Empty P1 | (P2 | P3) ≡ (P1 | P2) | P3
S-Assoc

P1 | P2 ≡ P2 | P1
S-Commut

P ≡ Q

νa.P ≡ νa.Q
S-Create

P ≡ Q

a(X).P ≡ a(X).Q
S-In

P1 ≡ Q1 P2 ≡ Q2

a〈‘P1〉.P2 ≡ a〈‘Q1〉.Q2
S-Out

!P ≡ !P | P S-Rep
P ≡ Q

!P ≡ !Q
S-Bang

P1 ≡ Q1 P2 ≡ Q2

P1 | P2 ≡ Q1 |Q2
S-Comp

P ≡ Q

a[P] ≡ a[Q]
S-Loc

P ≡ Q

run(‘P) ≡ run(‘Q)
S-Run

Definition A.3. Structural congruence on labels ≡ is defined by:

τ ≡ τ L-Tau
M ≡ N

a(M) ≡ a(N)
L-In

M ≡ N
a〈M〉 ≡ a〈N〉L-Out

Lemma A.4. [Reduction preserves structural congruence]
If P ≡ Q then

(a) for all α, P ′, s, s′, if s ` P
α−→ s′ ` P ′ then either

i. there are a, M such that if α ≡ a〈M〉 or α ≡ τ , then there are β, Q′

such that s ` Q
β−→ s′ ` Q′, α ≡ β and P ′ ≡ Q′, or

ii. there are a, M such that if α ≡ a(M), then for all β such that α ≡ β,

there is Q′ such that s ` Q
β−→ s′ ` Q′ and P ′ ≡ Q′, and

(b) for all α, Q′, s, s′, if s ` Q
α−→ s′ ` Q′ then either

i. there are a, M such that if α ≡ a〈M〉 or α ≡ τ , then there are β, P ′

such that s ` P
β−→ s ` P ′, α ≡ β and P ′ ≡ Q′, or

ii. there are a, M such that if α ≡ a(M), then for all β such that α ≡ β,

there is P ′ such that s ` P
β−→ s′ ` P ′ and P ′ ≡ Q′.

Proof. By induction on the derivations of P ≡ Q.

B Environmental bisimulations of HOπPn

1 Generalities

Definition B.1. [Contexts]
We define multi-hole contexts for terms C (contexts that have holes for terms)
and multi-hole contexts for processes Cp (contexts that have holes for processes)
as:

Dp ::= X | ‘Cp

Cp ::= [·]i | 0 | a(X).Cp | a〈Dp〉.Cp | (Cp | Cp) | a[Cp] | νa.Cp | !Cp | run(Dp)

D ::= [·]i | X | ‘C
C ::= 0 | a(X).C | a〈D〉.C | (C | C) | a[C] | νa.C | !C | run(D)

Unless explicitly specified otherwise, the word “context” will denote a context for
terms.

Definition B.2. [Context closures]
We write

(E ; r)◦ = {(C[M̃], C[Ñ]) | bn(C) ∩ fn(M̃, Ñ) = ∅, fn(C) ⊆ r, (M̃, Ñ) ∈ E}
(E ; r)? = {(D[M̃], D[Ñ]) | bn(D) ∩ fn(M̃, Ñ) = ∅, fn(D) ⊆ r, (M̃, Ñ) ∈ E}

Definition B.3. [Reduction-closed barbed equivalence]
Reduction-closed barbed equivalence ≈ is the largest binary relation on configu-
rations indexed with a set of names r ⊆ s ∩ t such that when s ` P ≈r t ` Q,

– s ` P
τ−→ s′ ` P ′ implies there are Q′ and t′ such that t ` Q =⇒ t′ ` Q′ and

s′ ` P ′ ≈r t′ ` Q′,
– s ` P ↓µ implies t ` Q ⇓µ if µ or µ is in r,
– the converse of the above two, on Q, and
– for all R such that fn(R)∩((s∪t)\r) = ∅, we have s∪fn(R) ` P |R ≈r∪fn(R)

t ∪ fn(R) ` Q |R.

Definition B.4. [Non-capturing reduction-closed barbed congruence]

Reduction-closed barbed congruence
�
≈ is the largest binary relation on variable-

closed configurations indexed with a set of names r ⊆ s ∩ t such that when

s ` P
�
≈r t ` Q,

– s ` P
τ−→ s′ ` P ′ implies there are Q′ and t′ such that t ` Q =⇒ t′ ` Q′ and

s′ ` P ′ �
≈r t′ ` Q′,

– s ` P ↓µ implies t ` Q ⇓µ if µ or µ is in r,
– the converse of the above two, on Q, and
– for all C context with holes for processes such that fn(C) ∩ ((s ∪ t) \ r) =

bn(C) ∩ fn(P,Q) = ∅, we have s ∪ fn(C) ` C[P]
�
≈r∪fn(C) t ∪ fn(C) ` C[Q].

Note 1. Notice that this definition does not allow capturing names in r (nor s
and t) and is therefore not that of a real congruence.

Definition B.5. [Reduction-closed barbed approximation]
Reduction-closed barbed approximation / is the largest binary relation on con-
figurations indexed with a set of names r ⊆ s∩ t such that when s ` P /r t ` Q,

– s ` P
τ−→ s′ ` P ′ implies there are Q′ and t′ such that t ` Q =⇒ t′ ` Q′ and

s′ ` P ′ /r t′ ` Q′,
– s ` P ↓µ implies t ` Q ⇓µ if µ or µ is in r,
– for all R such that fn(R)∩((s∪t)\r) = ∅, we have s∪fn(R) ` P |R /r∪fn(R)

t ∪ fn(R) ` Q |R.

Definition B.6. [Non-capturing reduction-closed barbed pre-congruence]

Reduction-closed barbed pre-congruence
�
/ is the largest binary relation on variable-

closed configurations indexed with a set of names r ⊆ s ∩ t such that when

s ` P
�
/r t ` Q,

– s ` P
τ−→ s′ ` P ′ implies there are Q′ and t′ such that t ` Q =⇒ t′ ` Q′ and

s′ ` P ′
�
/r t′ ` Q′,

– s ` P ↓µ implies t ` Q ⇓µ if µ or µ is in r,
– for all C context with holes for processes such that fn(C) ∩ ((s ∪ t) \ r) =

bn(C) ∩ fn(P,Q) = ∅, we have s ∪ fn(C) ` C[P]
�
/r∪fn(C) t ∪ fn(C) ` C[Q].

Note 2. Notice that this definition does not allow capturing names in r (nor s
and t) and is therefore not that of a real pre-congruence.

Definition B.7. [Environmental simulation]
X is an environmental simulation if for all (s ` P) XE;r (t ` Q),

1. if s ` P
τ−→ s′ ` P ′ then there is t′ ` Q′ such that t ` Q

τ
=⇒ t′ ` Q′ and

(s′ ` P ′) XE;r (t
′ ` Q′),

2. if s ` P
a(M)−−−→s ` P ′ with a ∈ r, then for all (M,N) ∈ (E ; r)? there is t′ ` Q′

such that t ` Q
a(N)
===⇒ t′ ` Q′ and (s ` P ′) XE;r (t

′ ` Q′),

3. if s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are t′ ` Q′ and N such that

t ` Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′) X(M,N)⊕E;r (t

′ ` Q′),

4. for all l ∈ r and (‘P1, ‘Q1) ∈ E, we have (s ` P | l[P1]) XE;r (t ` Q | l[Q1]),
and

5. for all n 6∈ s ∪ t, we have (s, n ` P) XE;r,n (t, n ` Q).

Definition B.8. [Environmental bisimulation]
X is an environmental bisimulation if for all (s ` P) XE;r (t ` Q),

1. if s ` P
τ−→ s′ ` P ′ then there is t′ ` Q′ such that t ` Q

τ
=⇒ t′ ` Q′ and

(s′ ` P ′) XE;r (t
′ ` Q′),

2. if s ` P
a(M)−−−→s ` P ′ with a ∈ r, then for all (M,N) ∈ (E ; r)? there is t′ ` Q′

such that t ` Q
a(N)
===⇒ t′ ` Q′ and (s ` P ′) XE;r (t

′ ` Q′),

3. if s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are t′ ` Q′ and N such that

t ` Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′) X(M,N)⊕E;r (t

′ ` Q′),

4. for all l ∈ r and (‘P1, ‘Q1) ∈ E, we have (s ` P | l[P1]) XE;r (t ` Q | l[Q1]),
5. for all n 6∈ s ∪ t, we have (s, n ` P) XE;r,n (t, n ` Q), and
6. the converse of the three first clauses, on Q’s transitions.

Definition B.9. [Context closure of an environmental relation]
We define

X ? = {(E , r, s, P, t,Q) | P ≡ P0|P1,
Q ≡ Q0|Q1,
(s, r′ ` P0) XE′;r,r′ (t, r

′ ` Q0),

(P1, Q1) ∈ (E ′; rr′)◦,
E ⊆ (E ′; rr′)?,
r′ ∩ (s ∪ t) = ∅}

Definition B.10. [Environmental simulation up-to context]
X is an environmental simulation up-to context if for all (s ` P) XE;r (t ` Q),

1. if s ` P
τ−→ s′ ` P ′ then there is t′ ` Q′ such that t ` Q

τ
=⇒ t′ ` Q′ and

(s′ ` P ′) X ?
E;r (t

′ ` Q′),

2. if s ` P
a(M)−−−→s ` P ′ with a ∈ r, then for all (M,N) ∈ (E ; r)? there is t′ ` Q′

such that t ` Q
a(N)
===⇒ t′ ` Q′ and (s ` P ′) X ?

E;r (t
′ ` Q′),

3. if s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are t′ ` Q′ and N such that

t ` Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′) X ?

(M,N)⊕E;r (t
′ ` Q′),

4. for all l ∈ r and (‘P1, ‘Q1) ∈ E, we have (s ` P | l[P1]) X ?
E;r (t ` Q | l[Q1]),

and
5. for all n 6∈ s ∪ t, we have (s, n ` P) XE;r,n (t, n ` Q).

Definition B.11. [Environmental bisimulation up-to context]
X is an environmental bisimulation up-to context if for all (s ` P)XE;r (t ` Q),

1. if s ` P
τ−→ s′ ` P ′ then there is t′ ` Q′ such that t ` Q

τ
=⇒ t′ ` Q′ and

(s′ ` P ′) X ?
E;r (t

′ ` Q′),

2. if s ` P
a(M)−−−→s ` P ′ with a ∈ r, then for all (M,N) ∈ (E ; r)? there is t′ ` Q′

such that t ` Q
a(N)
===⇒ t′ ` Q′ and (s ` P ′) X ?

E;r (t
′ ` Q′),

3. if s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are t′ ` Q′ and N such that

t ` Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′) X ?

(M,N)⊕E;r (t
′ ` Q′),

4. for all l ∈ r and (‘P1, ‘Q1) ∈ E, we have (s ` P | l[P1]) X ?
E;r (t ` Q | l[Q1]),

5. for all n 6∈ s ∪ t, we have (s, n ` P) XE;r,n (t, n ` Q), and
6. the converse of the three first clauses, on Q’s transitions.

2 Soundness of environmental bisimulations

Lemma B.12. If (P,Q) ∈ (E ; r)◦ and s ` P
a(M)−−−→ s ` P ′ then for all N there

is Q′ such that t ` Q
a(N)−−−→ t ` Q′ and (P ′, Q′) ∈ ((M,N)⊕E ; r)◦.

Proof. By induction on the transition derivation s ` P
a(M)−−−→ s ` P ′. There are

five cases to check.

1. Case In: C = a(X).C1

We have that s ` P = s ` a(X).C1[M̃]
a(M)−−−→ s ` C1[M̃]{M/X} and that

t ` Q = t ` a(X).C1[Ñ]
a(N)−−−→ t ` C1[Ñ]{N/X}. We are done since we

replace term X by terms M and N , hence (C1[M̃]{M/X}, C1[Ñ]{N/X}) ∈
((M,N)⊕E ; r)◦.

2. Case Par-L: C = C1 | C2

We have that s ` P = s ` C1[M̃] | C2[M̃]
a(M)−−−→ P ′

1 | C2[M̃], i.e. s `
C1[M̃]

a(M)−−−→ s ` P ′
1. By the induction hypothesis t ` C1[Ñ]

a(N)−−−→ t ` Q′
1

and (P ′
1, Q

′
1) ∈ ((M,N)⊕E ; r)◦, from which we derive ((P ′

1 | C2[M̃]), (Q′
1 |

C2[Ñ])) ∈ ((M,N)⊕E ; r)◦ as well as t ` C1[Ñ] | C2[Ñ]
a(N)−−−→ t ` Q′

1 | C2[Ñ].
3. Case Par-R: C = C1 | C2

Similar.
4. Case Transp: C = l[C1]

We have that s ` P = s ` l[C1[M̃]]
a(M)−−−→ s ` l[P ′

1], that is s ` C1[M̃]
a(M)−−−→

s ` P ′
1. By the induction hypothesis, we have that t ` C1[Ñ]

a(N)−−−→ t `
Q′

1 and (P ′
1, Q

′
1) ∈ ((M,N)⊕E ; r)◦, from which we derive (l[P ′

1], l[Q
′
1]) ∈

((M,N)⊕E ; r)◦ as well as t ` l[C1[Ñ]]
a(N)−−−→ t ` l[Q′

1].
5. Case Rep: C = !C1

We have that s ` P = s ` !C1[M̃]
a(M)−−−→ s ` P ′, i.e. s ` !C1[M̃] |C1[M̃]

a(M)−−−→
s ` P ′. By the induction hypothesis, we have that t ` !C1[Ñ] |C1[Ñ]

a(N)−−−→t `
Q′ and (P ′, Q′) ∈ ((M,N)⊕E ; r)◦. Thus t ` !C1[Ñ]

a(N)−−−→ t ` Q′ and still
(P ′, Q′) ∈ ((M,N)⊕E ; r)◦.

Lemma B.13. If (P,Q) ∈ (E ; r)◦ and s ` P
a〈M〉−−−→ s ` P ′ then there are Q′ and

N such that t ` Q
a〈N〉−−−→ t ` Q′, (P ′, Q′) ∈ (E ; r)◦ and (M,N) ∈ (E ; r)?.

Proof. By induction on the transition derivation P
a〈M〉−−−→P ′. There are six cases

to check.

1. Case Output: C = a〈‘C1〉.C2

We have that s ` P = a〈‘C1[M̃]〉.C2[M̃]
a〈‘C1[fM]〉−−−−−−→ s ` C2[M̃] and that

t ` Q1 = a〈‘C1[Ñ]〉.C2[Ñ]
a〈‘C1[eN]〉−−−−−−→ t ` C2[Ñ]. It is immediate to confirm

that (‘C1[M̃], ‘C1[Ñ]) ∈ (E ; r)? and (C2[M̃], C2[Ñ]) ∈ (E ; r)◦ hold.

2. Case Par-L: C = C1 | C2

We have that s ` P = C1[M̃]|C2[M̃]
a〈M〉−−−→s ` P ′

1|C2[M̃], i.e. s ` C1[M̃]
a〈M〉−−−→

s ` P ′
1. By the induction hypothesis, we have that t ` C1[Ñ]

a〈N〉−−−→t ` Q′
1 and

(P ′
1, Q

′
1) ∈ (E ; r)◦ and (M,N) ∈ (E ; r)?. Hence t ` C1[Ñ] | C2[Ñ]

a〈N〉−−−→ t `
Q′

1 | C2[Ñ], and ((P ′
1 | C2[M̃]), (Q′

1 | C2[Ñ])) ∈ (E ; r)◦.
3. Case Par-R: C = C1 | C2

Similar.
4. Case Transp: C = l[C1]

We have that s ` P = l[C1[M̃]]
a〈M〉−−−→s ` l[P ′

1], i.e. s ` C1[M̃]
a〈M〉−−−→s ` P ′

1. By

the induction hypothesis, we have t ` C1[Ñ]
a〈N〉−−−→ t ` Q′

1, (P
′
1, Q

′
1) ∈ (E ; r)◦

and (M,N) ∈ (E ; r)?. From this we derive t ` l[C1[Ñ]]
a〈N〉−−−→ l[Q′

1] and
(l[P ′

1], l[Q
′
1]) ∈ (E ; r)◦ and we are done.

5. Case Passiv: C = l[C1]

We have that s ` P = s ` l[C1[M̃]]
l〈‘C1[fM]〉−−−−−−→0. Immediately, we have t ` Q =

t ` l[C1[Ñ]]
l〈‘C1[eN]〉−−−−−−→ 0 with (‘C1[M̃], ‘C1[Ñ]) ∈ (E ; r)? and (0, 0) ∈ (E ; r)◦.

6. Case Rep: C = !C1

We have that s ` P = s ` !C1[M̃]
a〈M〉−−−→ s ` P ′, i.e. s ` !C1[M̃] |C1[M̃]

a〈M〉−−−→
s ` P ′. By the induction hypothesis, we have t ` !C1[Ñ] |C1[Ñ]

a〈N〉−−−→ t ` Q′,

(M,N) ∈ (E ; r)? and (P ′, Q′) ∈ (E ; r)◦, hence !C1[Ñ]
a〈N〉−−−→ Q′ and we are

done.

Proposition B.14. [Non-interference of names]

1. If s ` P0 | P1
α−→ s′ ` P ′

0 | P1 then for any x, we can assume that s, x `
P0 | P1

α−→ s′, x ` P ′
0 | P1 using implicit α-conversion in s ` P0 | P1.

2. If s ` P0
α
=⇒ s′ ` P ′

0 then for any P1 such that fn(P1) ∩ (s′ \ s), we have

s ` P0 | P1
α
=⇒ s′ ` P ′

0 | P1.

Lemma B.15. [Input and output preserve environmental bisimulation up-to
context]
Let Y be an environmental bisimulation up-to context and X = {(E , r, s, P, t,Q) |
(s ` P) Y?

E;r (t ` Q)}. Then, for all (s ` P) XE;r (t ` Q),

1. if s ` P
a(M)−−−→ s ` P ′ with a in r, then for all (M,N) ∈ (E ; r)? there are Q′,

t′ such that t ` Q
a(N)
===⇒ t′ ` Q′ and (s ` P ′) XE;r (t

′ ` Q′),

2. if s ` P
a〈M〉−−−→ s ` P ′ with a in r, then there are Q′, N , t′ such that t `

Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′) X(M,N)⊕E;r (t

′ ` Q′), and
3. the converse of the above two hold for Q’s transitions too.

Proof. Suppose (s ` P) Y?
E;r (t ` Q), therefore for some P0, P1, Q0, Q1, E ′, r′,

we have P ≡ P0 | P1, Q ≡ Q0 | Q1, r
′ ∩ (s ∪ t) = ∅, E ⊆ (E ′; rr′)?, (s, r′ `

P0) YE′;rr′ (t, r
′ ` Q0) and (P1, Q1) ∈ (E ′; rr′)◦. We are going to analyse all the

possible input/output transitions.

1. Case: Input
There are two subcases for this transition:

(a) Subcase: s ` P0 | P1
a(M)−−−→ s ` P ′

0 | P1

By s ` P0 |P1
a(M)−−−→s ` P ′

0 |P1, we know that we have s ` P0
a(M)−−−→s ` P ′

0,

and therefore s, r′ ` P0
a(M)−−−→ s, r′ ` P ′

0. By E ⊆ (E ′; rr′)?, we have
(E ; r)? ⊆ (E ′; rr′)?, and thus, by (s, r′ ` P0) YE′;rr′ (t, r

′ ` Q0) and

s, r′ ` P0
a(M)−−−→ s, r′ ` P ′

0, we have (i) t, r′ ` Q0
a(N)
===⇒ t′, r′ ` Q′

0 and

(ii) (s, r′ ` P ′
0) Y?

E′;rr′ (t
′, r′ ` Q′

0). (i) tells us that t ` Q0 | Q1
a(N)
===⇒

t′ ` Q′
0 | Q1 ≡ Q′, and (ii) tells us, using the up-to techniques, that

(s ` P ′) Y?
E;r (t

′ ` Q′), hence (s ` P ′) XE;r (t
′ ` Q′).

(b) Subcase: s ` P0 | P1
a(M)−−−→ P0 | P ′

1

By s ` P0 | P1
a(M)−−−→ s ` P0 | P ′

1, we know that we have s ` P1
a(M)−−−→

s ` P ′
1, and therefore that we have s, r′ ` P1

a(M)−−−→ s, r′ ` P ′
1. By

Lemma B.12, we have that (i) t, r′ ` Q1
a(N)−−−→t, r′ ` Q′

1 and (ii) (P ′
1, Q

′
1) ∈

((M,N)⊕E ′; rr′)◦. Since (M,N) ∈ (E ; r)? ⊆ (E ′; rr′)?, (ii) actually im-
plies (P ′

1, Q
′
1) ∈ (E ′; rr′)◦, and thus we have, for Q′ ≡ Q0 | Q′

1, (s `
P ′) Y?

E;r (t ` Q′), that is, (s ` P ′) XE;r (t ` Q′). (i) implies t ` Q0 |

Q1
a(N)−−−→ t ` Q0 |Q′

1, and we are done.
2. Case: Output

There are two cases for this transition:

(a) Subcase: s ` P0 | P1
a〈M〉−−−→ s ` P ′

0 | P1

By s ` P0 |P1
a〈M〉−−−→s ` P ′

0 |P1, we know that we have s ` P0
a〈M〉−−−→s ` P ′

0,

and therefore s, r′ ` P0
a〈M〉−−−→s, r′ ` P ′

0. By (s, r′ ` P0)YE′;rr′ (t, r
′ ` Q0)

and s, r′ ` P0
a〈M〉−−−→ s, r′ ` P ′

0, we have (i) t, r′ ` Q0
a〈N〉
===⇒ t′, r′ ` Q′

0 and

(ii) (s, r′ ` P ′
0)Y?

(M,N)⊕E′;rr′ (t
′, r′ ` Q′

0). (i) tells us that t ` Q0 |Q1
a〈N〉
===⇒

t′ ` Q′
0 |Q1 ≡ Q′, and (ii) tells us, using the up-to techniques and the fact

that (M,N)⊕E ⊆ ((M,N)⊕E ′; rr′)?, that (s ` P ′) Y?
(M,N)⊕E;r (t

′ ` Q′),

hence (s ` P ′) X(M,N)⊕E;r (t
′ ` Q′).

(b) Subcase: s ` P0 | P1
a〈M〉−−−→ P0 | P ′

1

By s ` P0 |P1
a〈M〉−−−→s ` P0 |P ′

1, we know that we have s ` P1
a〈M〉−−−→s ` P ′

1,

and therefore that we have s, r′ ` P1
a〈M〉−−−→ s, r′ ` P ′

1. By Lemma B.12,

we have that (i) t, r′ ` Q1
a〈N〉−−−→ t, r′ ` Q′

1 and (ii) (P ′
1, Q

′
1) ∈ (E ′; rr′)◦

and (M,N) ∈ (E ′; rr′)?. (ii) means that (s ` P ′) Y?
(M,N)⊕E;r (t ` Q′)

for Q′ = Q0 | Q′
1, that is, (s ` P ′) X(M,N)⊕E;r (t ` Q′), and (i) implies

t ` Q0 |Q1
a〈N〉−−−→ t ` Q0 |Q′

1, and we are done.

3. Case: The converse of the above two cases on Q’s transitions.
Similar to clauses 1 and 2.

Definition B.16. For all processes A, B, we write A < B and B > A if there
are Cp and R such that A = Cp[R] and B = Cp[run‘R]. We write P0 ≤ Pn if
P0 < · · · < Pn for some n ≥ 0, and A ≤n B if A = P0 < · · · < Pm = B for
some m ≤ n. We naturally write A ≥ B whenever B ≤ A, and extend ≤ and
≥’s definitions to terms and labels.

We use the metavariables P+ and P− along with P when we mean that P ≤
P+ and that P− ≤ P . (The notations (·)+ and (·)− therefore do not represent
operators.) Similarly, we use the metavariables M+ and M− to represent run-
expansions and run-erasures of term M .

Definition B.17. [run-transition]

We write s ` P
run−−→ s ` P ′ when s ` P

τ−→ s ` P ′ is derived using the rule Run.

Then, we write s ` P0
runn

===⇒ s ` Pn to mean that s ` P0
run−−→ · · · run−−→ s ` Pn, and

s ` P
run
==⇒ ` Q when s ` P

runn

===⇒ ` Q for some n ≥ 0.

Lemma B.18. Let XS = {(E , P,Q) | (P,Q) ∈ S, E ⊆ S}. If (E , P,Q) ∈ X<,
then for any r, s, t

– if s ` P
run−−→ s ` P ′ then

• there is Q′ such that t ` Q
run−−→ t ` Q′ and (E , P ′, Q′) ∈ X<, or

• t ` Q
run−−→ t ` P

run−−→ t ` P ′ and (E , P ′, P ′) ∈ X≤1 with P ′ = Q′,

– if s ` P
τ−→ s, x ` P ′ (not with the Run rule) then there is Q′ such that

t ` Q
run
==⇒ τ−→t, x ` Q′, and (E , P ′, Q′) ∈ X≤,

– if s ` P
a〈M〉−−−→s ` P ′ then there are Q′, M ≤1 N such that t ` Q

run
==⇒ a〈N〉−−−→t `

Q′, and ((M,N)⊕E , P ′, Q′) ∈ X≤,

– if s ` P
a(M)−−−→ s ` P ′ then for all (M,N) ∈ (E ; r)? there is Q′ such that

t ` Q
run
==⇒ a(N)−−−→t ` Q′, and (E , P ′, Q′) ∈ X≤,

– the converse on Q’s transitions (without run pre-steps).

Similarly for > .

Proof. By induction on the derivation transition of s ` P
α−→ s′ ` P ′ (or t `

Q
β−→ t′ ` Q).

– Output

• Case P ’s output
There are two subcases: the context outputs, or some Ri.

∗ Subcase s ` P = Cp[R]
a〈M〉−−−→ s ` P ′ by an output by the context.

We have s ` Q = Cp[run‘R]
a〈N〉−−−→ s ` Q′. We are done as either

P ′ = C ′
p[R] < C ′

p[run‘R] = Q′ and M = N , or P ′ = Q′ and M < N ,
hence ((M,N)⊕E , P ′, Q′) ∈ X≤.

∗ Subcase s ` P = Cp[Ri]
a〈M〉−−−→ s ` Cp[R

′
i] = P ′.

We have s ` Q = Cp[run‘Ri]
run−−→ s ` Cp[Ri]

a〈N〉−−−→ s ` Cp[R
′
i]. We

have that M = N and that P ′ = Q′ hence ((M,N)⊕E , P ′, Q′) ∈ X≤.
• Case Q’s output:

There is only one subcase, as R cannot output for it is guarded.

∗ Subcase s ` Q = Cp[run‘R]
a〈N〉−−−→ s ` P ′ by an output from the

context.

Then s ` P = s ` Cp[‘R]
a〈M〉−−−→s ` Q′. We are done as either P ′ = Q′

andM < N or P ′ < Q′ andM = n, hence ((M,N)⊕E , P ′, Q′) ∈ X≤.
– Reduction

• Case P ’s reduction:
There are four subcases: the context reduces, sends R, receives from R,
or R reduces.
∗ Subcase s ` P = Cp[R]

τ−→ s′ ` P ′ by a reduction by the context.
We can do a case analysis on how the transition is done.
1. Subsubcase run-transition.

We have in fact s ` P = Cp[R]
run−−→ s ` C ′

p[R] and also s ` Q =

Cp[run‘R]
run−−→s ` C ′

p[run‘R]. Therefore, (E , P ′, Q′) ∈ X< ⊆ X≤1
.

2. Subsubcase alloc-transition.
We have in fact s ` P = Cp[R]

τ−→ s′ ` C ′
p[R] and also s ` Q =

Cp[run‘R]
τ−→ s′ ` C ′

p[run‘R]. Therefore, (E , P ′, Q′) ∈ X< ⊆ X≤.
3. Subsubcase other τ -transition.

We have in fact s ` P = Cp[R]
τ−→s ` C ′

p[R̃
′] because it may send

R and duplicate or discard it, or substitute some variable in it for
an other process. Therefore, we have s ` Q = Cp[run‘R]

τ−→ s `
C ′

p[r̃un‘R
′] with the same number n of copies since the same

reaction can be done. We then have P ′ < · · · < Q′ with n “<”,
hence (E , P ′, Q′) ∈ X≤.

∗ Subcase s ` P = Cp[R]
τ−→ s ` C ′

p[R
′{M/X}] by a communication

between the context and R.
Then s ` Q = Cp[run‘R]

run−−→ s ` Cp[R]
τ−→ s ` C ′

p[R
′{N/X}]. Since

M = N has to hold, we have C ′
p[R

′{M/X}] = C ′
p[R

′{N/X}] hence
(E , P ′, Q′) ∈ X≤.

∗ Subcase s ` P = Cp[R]
τ−→ s ` C ′

p[R
′, A] by a communication be-

tween the context and R.
Then s ` Q = Cp[run‘R]

run−−→ s ` Cp[R]
τ−→ s ` C ′

p[R
′, A]. We have

C ′
p[R

′, A] = C ′
p[R

′, A], hence (E , P ′, Q′) ∈ X≤.

∗ Subcase s ` P = Cp[R]
τ−→ s′ ` Cp[R

′] by a reduction of some R.

Then s ` Q = Cp[run‘R]
run−−→ s ` Cp[R]

τ−→ s′ ` Cp[R
′]. We have

Cp[R
′] = Cp[R

′] hence (E , P ′, Q′) ∈ X≤.
• Case Q’s reduction:

There are only two subcases, either the context reduces, or some run
around R is consumed. All the other subcases would imply R, but it is
not in a redex position.

∗ Subcase s ` Q
τ−→ s′ ` Q′ by a reduction from the context. We can

do a case analysis on how the transition was done.
1. Subsubcase run-transition.

We have in fact s ` Q = Cp[run‘R]
run−−→s ` C ′

p[run‘R]. Therefore

s ` P = Cp[R]
run−−→ s ` C ′

p[R] and (E , C ′
p[R], s, C ′

p[run‘R]) ∈ X<.
2. Subsubcase alloc-transition.

Similarly.
3. Subsubcase other τ -transition.

We have in fact s ` Q = Cp[run‘R]
τ−→ s ` C ′

p[r̃un‘R
′] since the

transition may substitute a variable in R for a process. Therefore
we have s ` P = Cp[R

′]
τ−→ s ` C ′

p[R̃
′], and we then have P ′ <

· · · < Q′, hence (E , P ′, Q′) ∈ X≤.

∗ Subcase s ` Q = Cp[run‘R]
run−−→ s ` Cp[R]. We are done since

Q′ = P , hence (E , P,Q′) ∈ X≤1 .
– Input:

• Case P ’s input:
There are two subcases: the context inputs, or R does.

∗ Subcase s ` P = Cp[R]
a(M)−−−→ s ` C ′

p[R
′{M/X}, M̃] by an input by

the context.

Then, for all (M,N) ∈ (<; s)? ⊆ ≤1 , we have s ` Q = Cp[run‘R]
a(N)−−−→

s ` C ′
p[run‘R

′{N/X}, Ñ]. We are done as P ′ = s ` C ′
p[R,R′{M/X}, M̃] <

· · · < C ′
p[run‘R

′{N/X}, Ñ] = Q′ hence (E , P ′, Q′) ∈ X≤.

∗ Subcase s ` P = Cp[R]
a(M)−−−→ s ` Cp[R

′{M/X}] = P ′.

Then, for all (M,N) ∈ (<; s)? ⊆ ≤1 , we have s ` Q = Cp[run‘R]
run−−→

s ` Cp[R]
a(N)−−−→ s ` Cp[R

′{N/X}] = Q′. Since M ≤1 N , we have
Cp[R

′{M/X}] < · · · < Cp[R
′{N/X}] hence (E , P ′, Q′) ∈ X≤.

• Case Q’s input:
There is only one subcase, as R cannot input for it is guarded.

∗ s ` Q = Cp[run‘R]
a(N)−−−→ s ` C ′

p[run‘R
′{N/X}, N] by an input from

the context, and thus for all (M,N) ∈ (<; s)? ⊆ ≤1 , we have

s ` P = s ` Cp[R]
a(M)−−−→ s ` C ′

p[R
′{M/X},M]. We are done as

C ′
p[R

′{M/X},M] < · · · < C ′
p[run‘R

′{N/X}, N], hence (E , P ′, Q′) ∈
X≤.

Corollary B.19. If P < Q and s ` P
run
==⇒ s ` P ′ then s ` Q

run
==⇒ s ` Q′ and

P ′ = Q′ or P ′ < Q′, and conversely.

Proof. By induction on the number of run’s in s ` P
runn

===⇒ s ` P ′, using
Lemma B.18.

Corollary B.20. If P ≤m Q and s ` P
run
==⇒ s ` P ′ then s ` Q

run
==⇒ s ` Q′ and

P ′ ≤n Q′, with n ≤ m and conversely.

Proof. By induction on the number of <’s in P ≤ Q, using Corollary B.19.

Lemma B.21. Suppose P0 ≤ Pm and s ` P0
run
==⇒ α−→s′ ` P ′

0 without using the

Run or React-{L,R} rules for transition
α−→. Then, s ` Pm

run
==⇒ β−→s′ ` P ′

m,
α ≤ β and P ′

0 ≤ P ′
m. And conversely.

Proof. By induction on the number of “<” in ≤.

Direct
–• Case 0

Trivial.
• Case 6= 0

We have s ` P0
run
==⇒ s ` P ′′

0
α−→ s′ ` P ′

0 and P0 ≤ Pm, so we can apply

Corollary B.20 to have s ` Pm
run
==⇒ s ` P ′′

m and P ′′
0 ≤ P ′′

m, that is P ′′
0 <

P ′′
1 < · · · < P ′′

m with at most as many “<”. Then, s ` P ′′
0

α−→s′ ` P ′
0, so, by

Lemma B.18, we have s ` P ′′
1

run
==⇒ γ−→s′ ` P ′

1 with α ≤ γ and P ′
0 ≤ P ′

1. We

can apply the induction hypothesis to s ` P ′′
1

run
==⇒ γ−→s′ ` P ′

1 and P ′′
1 ≤ P ′′

m

to obtain that s ` P ′′
m

run
==⇒ β−→s′ ` P ′

m, α ≤ β and P ′
1 ≤ P ′

m. Therefore,

P ′
0 ≤ P ′

1 ≤ P ′
m, α ≤ γ ≤ β, and s ` Pm

run
==⇒ s ` P ′′

m
run
==⇒ β−→s′ ` P ′

m as
desired.

– Converse
By Corollary B.20, we can get rid of the initial run’s and just consider the

simpler hypothesis P0 ≤ Pm and s ` Pm
β−→ s′ ` P ′

m.
• Case 0

Trivial
• Case 6= 0

By Lemma B.18 and P0 < · · · < Pm−1 < Pm we have that s ` Pm−1
γ−→

s′ ` P ′
m−1 with P ′

m−1 ≤ P ′
m and γ ≤ β. We just call the induction

hypothesis on P0 ≤ Pm−1 and s ` Pm−1
γ−→ s′ ` P ′

m−1 and we obtain as

desired s ` P0
α−→ s′ ` P ′

0, with α ≤ γ ≤ β. and P ′
0 ≤ P ′

m−1 ≤ P ′
m.

Lemma B.22. Suppose P0 ≤ Pm and s ` P0
run
==⇒ τ−→s ` P ′

0 using rule React-

{L,R} for the
τ−→ transition. Then, s ` Pm

run
==⇒ τ−→s ` P ′

m, and P ′
0 ≤ P ′

m. And
conversely

Proof. Using Lemma B.21, considering that P0 communicates a term N .

– We have s ` P0
run
==⇒ τ−→s ` P ′

0, doing a reaction, that is, s ` P0
run
==⇒ a(N)−−−→s ` P0l

for some process N and channel a. So, by Lemma B.21, we have s ` Pm
run
==⇒

s ` Pml
a(N+)−−−−→ · with P0 ≤ Pml. Now, as we also have s ` P0

a〈N〉−−−→ s ` P0r,

by Lemma B.21, we have s ` Pml
run
==⇒ s ` Pmr

a〈N+′
〉−−−−−→ · with P0 ≤ Pmr. As

it happens that Pmr can reduce through the communication of an expansion
of N on channel a, we have s ` Pmr

τ−→ s ` P ′
m with P ′

0 ≤ P ′
m and we are

done.
– Converse

Similarly.

Corollary B.23. The sets X≤ and X≥ are both preserved by input, output and
reduction.

Proof. Consequence of Corollary B.20 and Lemmas B.21 and B.22.

Corollary B.24. For any contexts C and its erasures C−
1 and C−

2 , for any

processes P̃ and Q̃, if s ` C−
1 [P̃]

α−→s, x ` C ′−
1 [P̃] then t ` C−

2 [Q̃]
β
=⇒ t, x ` C ′−

2 [Q̃]
with C ′−

1 and C ′−
2 erasures of C ′, α and β erasures of some γ, and possibly

x = ∅.

Proof. Consequence of Corollary B.23, more precisely of Lemma B.18 focusing
on the cases where the context only does a transition.

Definition B.25. [Minimal transition of run-expanded processes]

Suppose that A ≤ B, s ` A
α−→ s′ ` A′, s ` B

runn

===⇒ β−→s′ ` B′ with α ≤ β and

that A′ ≤ B′. We say that s ` B
runn

===⇒ β−→s′ ` B′ is minimal with respect to

s ` A
α−→ s′ ` A′ if and only if for all s ` B

runm

===⇒ γ−→s′ ` B′′ with A′ ≤ B′′ and
α ≤ γ, we have n ≤ m.

Lemma B.26. [Minimality and run-transition]

Suppose that s ` B
run−−→ s ` B′′ runn−1

====⇒ β−→s′ ` B′ with n > 0 is minimal with

respect to s ` A
α−→s′ ` A′. We have that s ` B′′ runn−1

====⇒ β−→s′ ` B′ too is minimal
with respect to s ` A

α−→ s′ ` A′.

Proof. By reductio ad absurdum. Suppose that s ` B′′ runn−1

====⇒ β−→s′ ` B′ is not
minimal with respect to s ` A

α−→ s′ ` A′. There must be a minimal transition

s ` B′′ runm

===⇒ γ−→s′ ` B′′′ with s ` A′ ≤ s ` B′′′, α ≤ γ, and m < n − 1. Then

we have a derivation s ` B
run−−→ s ` B′′ runm

===⇒ γ−→s′ ` B′′′ of length m + 1 < n
with s ` A′ ≤ s ` B′′′, which contradicts the assumption that s ` B

run−−→ s `
B′′ runn−1

====⇒ β−→s′ ` B′ is minimal.

Lemma B.27. [Minimality and contexts]

For all s ` Q
runn

===⇒ β−→s′ ` Q′ minimal with respect to s ` P
α−→ s′ ` P ′,

– for all evaluation context C and its erasure C−, s ` C[Q]
runn

===⇒ β−→s′ ` C[Q′]

is minimal with respect to s ` C−[P]
α−→ s′ ` C−[P ′],

– if Q = Q0 |Q1, Q
′ = Q′

0 |Q′
1, and P = P0 | P1 with P0 ≤ Q0, P1 ≤ Q1, then

for all l and m, s ` l[Q0] |m[Q1]
runn

===⇒ β−→s′ ` l[Q′
0] |m[Q′

1] is minimal with

respect to s ` l[P0] |m[P1]
α−→ s′ ` l[P ′

0] |m[P ′
1].

Proof. Immediate, as none of the above operations can reduce the number of
run’s that have to be deleted, and as they all preserve membership to ≤.

Definition B.28. [run-erased context closure]
We define the run-erased context closure (E ; r)− of environment E with names
r as ≤ (E ; r)? ≥ , that is {(M,N) | M ≤ A, N ≤ B, (A,B) ∈ (E ; r)?}. Notice
that (E ; r)− may erase run’s inside elements related by E too.

We also write (s ` P) Y−
E;r (t ` Q) if (s ` P ≤) Y?

≤E≥;r (≥ t ` Q) (which

implies Y? ⊆ Y−). In other words (s ` P)Y−
E;r (t ` Q) if P ≡ P0 |P1, Q ≡ Q0 |Q1,

(s, r′ ` P0 ≤) YE′;rr′ (≥ t, r′ ` Q0), (‘P1, ‘Q1) ∈ (E ′; rr′)−, E ⊆ (E ′; rr′)−, and
r′ ∩ (s ∪ t) = ∅.

Corollary B.29. [run-erasure preserves run-erased context closure of environ-
mental bisimulation up-to context]
If (s ` P)Y−

E;r (t ` Q), P− ≤ P , Q− ≤ Q and E− ≤ E then (s ` P−)Y−
E−;r (t `

Q−).

Proof. From transitivity of ≤ and ≥ given by Definition B.16.

Lemma B.30. [Addition of fresh names preserves environmental bisimulation
up-to context and its run-erased context closure]
Let Y be an environmental bisimulation up-to context. If (s ` P) Y?

E;r (t ` Q)

and l 6∈ s ∪ t, then (s, l ` P) Y?
E;l⊕r (t, l ` Q). Similarly, if (s ` P) Y−

E;r (t ` Q)

and l 6∈ s ∪ t, then (s, l ` P) Y−
E;l⊕r (t, l ` Q).

Proof. By simple set arithmetic and use of definitions.

– Case Y?

Given P = P0 | P1, Q = Q0 | Q1 such that (s, x ` P0) YE′;r (t, x ` Q0),
(P1, Q1) ∈ (E ′; rx)◦, x ∩ (s ∪ t) = ∅, and E ⊆ (E ′; rx)?, and assuming l 6= x
(otherwise it is immediate), it holds that
• (s, x ` P0)YE′;l⊕rx (t, x ` Q0) by clause 5 of environmental bisimulation

up-to context,
• (P1, Q1) ∈ (E ′; l⊕r)◦ ⊆ (E ′; l⊕rx)◦,
• E ⊆ (E ′; rx)? ⊆ (E ′; l⊕rx)◦,
• x 6∈ s ∪ t

Therefore, (s ` P) Y?
E;l⊕r (t ` Q) holds.

– Case Y−

We have some P+ ≥ P , Q+ ≥ Q, E+ ≥ E such that (s ` P+)Y?
E+;r (t ` Q+).

Therefore, according to the above case, we have (s ` P+) Y?
E+;l⊕r (t ` Q+),

hence (s ` P) Y−
E;l⊕r (t ` Q) by Definition B.28.

Lemma B.31. [Spawning preserves context closure of environmental bisimu-
lation up-to context]
Let Y be an environmental bisimulation up-to context. For all (s ` P) Y?

E;r (t `
Q), l ∈ r and (‘P2, ‘Q2) ∈ E, we have (s ` P | l[P2]) Y?

E;r (t ` Q | l[Q2]).

Proof. We have P ≡ P0 |P1 and Q ≡ Q0 |Q1, with (s, r′ ` P0)YE′;rr′ (t, r
′ ` Q0),

(P1, Q1) ∈ (E ′; rr′)◦, E ⊆ (E ′; rr′)?, and r′ 6∈ s ∪ t. By (‘P2, ‘Q2) ∈ E , we
have either (‘P2, ‘Q2) ∈ E ′ or (P2, Q2) ∈ (E ′; rr′)◦. In the former case, it holds

that (s, r′ ` P0 | l[P2]) Y?
E′;rr′ (t, r

′ ` Q0 | l[Q2]) by clause 4 of environmental
bisimulation up-to context, hence (s ` P0 | l[P2] |P1)Y?

E;r (t ` Q0 | l[Q2] |Q1) up-
to environment, context and name creation. In the latter case, we immediately
have (P1 | l[P2], Q1 | l[Q2]) ∈ (E ′; rr′)◦, hence (s ` P | l[P2]) Y?

E;r (t ` Q | l[Q2]).

Lemma B.32. [run-transitions of (E ; r)◦]
Suppose that (P1, Q1) = (C[M̃], C[Ñ]) ∈ (E ; r)◦ and that s ` P1

run−−→ s `
P ′
1. Then there is a Q′

1 such that t ` Q1
run−−→ t ` Q′

1 and either (P ′
1, Q

′
1) =

(C ′[M̃], C ′[Ñ]) ∈ (E ; r)◦ or (‘P ′
1, ‘Q

′
1) = (‘Cp[run(M̃

′), A], ‘Cp[run(Ñ
′), B]) ∈

(E ; r)− with (A,B) in redex position (i.e. not under a run, a ν, an a(·) or an

a〈·〉) and (M̃ ′, ‘A) = M̃ , (Ñ ′, ‘B) = Ñ .

Proof. By induction on the transition derivation of s ` P1
run−−→ s ` P1′. The

only case of interest is the Run one, developed below. The others (Par-L, Par-
R,Rep and Transp) are straightforward.

1. Case Run: C = run(C1)
There are two subcases
(a) C1 = ‘C1

We have s ` P1 = s ` run(‘C1[M̃])
run−−→ s ` C1[M̃] and t ` Q1 = t `

run(‘C1[Ñ])
run−−→ t ` C1[Ñ] with (C1[M̃], C2[Ñ]) ∈ (E ; r)◦.

(b) C1 = [·]
We have s ` P1 = run(‘A)

run−−→ s ` A, t ` Q1
run−−→ t ` B with (‘A, ‘B) ∈

E ⊆ (E ; r)− (we can assume that (A,B) 6∈ (E ; r)◦, otherwise we could
have handled this situation in the above subcase) and obviously (A,B)
in redex position.

Lemma B.33. [Create-transitions of (E ; r)◦]
Suppose that (P1, Q1) = (C[M̃], C[Ñ]) ∈ (E ; r)◦ and that s ` P1

τ−→ s, a ` P ′
1

by the Create rule. Then there is a Q′
1 such that t ` Q1

τ−→ t, a ` Q′
1 and

(P ′
1, Q

′
1) = (C ′[M̃], C ′[Ñ]) ∈ (E ; ra)◦.

Proof. By induction on the transition derivation of s ` P1
τ−→ s, a ` P ′

1. The
only case of interest is the Create one, developed below. The others (Par-L,
Par-R, Rep and Transp) are straightforward.

1. Case Create: C = νa.C1

We have s ` P1 = s ` νa.C1[M̃]
τ−→s, a ` C1[M̃] and t ` Q1 = t ` νa.C1[Ñ]

τ−→
t, a ` C1[Ñ] with (C1[M̃], C1[Ñ]) ∈ (E ; ra)◦.

Lemma B.34. [Non-run non-alloc τ -transitions of (E ; r)◦]
Suppose that (P1, Q1) ∈ (E ; r)◦ and that s ` P1

τ−→ s ` P ′
1 is not derived with

Run nor Create. Then there is a Q′
1 such that t ` Q1

τ−→ t ` Q′
1 and (P ′

1, Q
′
1) =

(E ; r)◦.

Proof. By induction on the transition derivation of s ` P1
τ−→ s ` P1′. One case

of interest is the React-L one, developed below. The others (React-R, Par-L,
Par-R, Rep and Transp) are similar or straightforward.

– Case React-L: C = C1 | C2

We have s ` C1[M̃] | C2[M̃]
τ−→ s ` P ′

1 | P ′
2 with s ` C1[M̃]

a〈M〉−−−→ s ` P ′
1

and s ` C2[M̃]
a(M)−−−→ s ` P ′

2 So, by Lemmas B.12 and B.13 we have t `
C1[Ñ]

a〈N〉−−−→ t ` Q′
1 with (P ′

1, Q
′
1) ∈ (E ; r)◦ and (M,N) ∈ (E ; r)?, and t `

C2[Ñ]
a(N)−−−→ t ` Q′

2 with (P ′
2, Q

′
2) ∈ ((M,N)⊕E ; r)◦ = (E ; r)◦. Therefore,

t ` C1[Ñ] | C2[Ñ]
τ−→ t ` Q′

1 |Q′
2 and (P ′

1 | P ′
2, Q

′
1 |Q′

2) ∈ (E ; r)◦.

Lemma B.35. [Reduction and environmental bisimulation up-to context]
Let Y be an environmental bisimulation up-to context. If (s ` P) Y?

E;r (t ` Q)
and s ` P −→ s′ ` P ′ then there is a Q′ such that t ` Q =⇒ t′ ` Q′ and (s′ `
P ′) Y−

E;r (t
′ ` Q′).

Proof. Suppose (s ` P) Y?
E;r (t ` Q), therefore for some P0, P1, Q0, Q1, E ′, r′,

we have P ≡ P0 | P1, Q ≡ Q0 | Q1, r
′ ∩ (s ∪ t) = ∅, E ⊆ (E ′; rr′)?, (s, r′ `

P0) YE′;rr′ (t, r
′ ` Q0) and (P1, Q1) ∈ (E ′; rr′)◦.

We are going to analyse all the possible reduction transitions. We recall that
Y? ⊆ Y−.

1. Case: s ` P
τ−→ s′ ` P ′. We have four cases for the transitions of P0 | P1:

(a) Subcase s, r′ ` P0
τ−→ s′, r′ ` P ′

0

By (s, r′ ` P0) YE′;rr′ (t, r
′ ` Q0), we have that t, r′ ` Q0 =⇒ t′, r′ ` Q′

0

and (s′, r′ ` P ′
0)Y?

E′;rr′ (t
′, r′ ` Q′

0). Therefore, by t, r′ ` Q0 |Q1=⇒ t′, r′ `
Q′

0 |Q1 we have t ` Q0 |Q1 =⇒ t′ ` Q′
0 |Q1 since the created names can

be guaranteed not in fn(Q1), and by up-to context and environment and
name creation, we have (s′ ` P ′

0 | P1) Y?
E;r (t

′ ` Q′
0 |Q1)

(b) Subcase s, r′ ` P1
τ−→ s′, r′ ` P ′

1

There are several cases, depending on the last derivation rule used.

i. Non-run non-alloc transition, s′ = s
By Lemma B.34, we have t, r′ ` Q1

τ−→ t, r′ ` Q′
1 and (P ′

1, Q
′
1) ∈

(E ′; rr′)◦. Therefore, t ` Q1
τ−→t ` Q′

1, hence t ` Q0 |Q1
τ−→t ` Q0 |Q′

1.
Finally, (s′ ` P ′) Y?

E;r (t
′ ` Q′) with t′ = t and we are done.

ii. Create transition, s′ = s, a
By Lemma B.33, we have t, r′ ` Q1

τ−→ t, r′, a ` Q′
1, hence t ` Q0 |

Q1
τ−→ t, a ` Q0 | Q′

1, and (P ′
1, Q

′
1) ∈ (E ; rr′a)◦. By freshness of a,

we can use clause 5 of environmental bisimulation up-to and have
(s, r′, a ` P0) YE′;rr′a (t, r′, a ` Q0) as well as (r′, a) ∩ (s ∪ t) = ∅.
Finally, E ⊆ (E ′; rr′)? ⊆ (E ′; rr′a)?, giving (s′ ` P ′) Y?

E;r (t′ ` Q′)
and we are done.

iii. run transition, s′ = s
By Lemma B.32, we have t, r′ ` Q1

run−−→ t, r′ ` Q′
1 (hence t ` Q0 |

Q1
run−−→ t ` Q0 |Q′

1) and either (P ′
1, Q

′
1) = (C ′[M̃], C ′[Ñ]) ∈ (E ′; rr′)◦

or (‘P ′
1, ‘Q

′
1) = (‘Cp[run(M̃

′), A], ‘Cp[run(Ñ
′), B]) ∈ (E ′; rr′)− with

(‘A, ‘B) ∈ E ′. Therefore, (s ` P ′) Y−
E;r (t ` Q′) and we are done.

(c) Subcase s, r′ ` P0
a〈M〉−−−→ s, r′ ` P ′

0 s, r′ ` P1
a(M)−−−→ s, r′ ` P ′

1

By (s, r′ ` P0) YE′;rr′ (t, r
′ ` Q0) and clause 4 of environmental bisim-

ulation up-to context, we have t, r′ ` Q0
a〈N〉
===⇒ t′, r′ ` Q′

0 and also

(s, r′ ` P ′
0)Y?

(M,N)⊕E′;rr′ (t
′, r′ ` Q′

0). Also, since s, r′ ` P1
a(M)−−−→s, r′ ` P ′

1

we have by Lemma B.12 that t, r′ ` Q1
a(N)−−−→ t, r′ ` Q′

1 and (P ′
1, Q

′
1) ∈

(E ′ ∪ {(M,N)}; rr′)◦.
Decomposing the transitions we know that, for some possibly empty set y

of names, t, r′ ` Q0
τ
=⇒t, r′, y ` Q′′

0

a(N)−−−→t, r′, y ` Q′′′
0

τ
=⇒t′, r′ ` Q′

0. Also, by

t, r′ ` Q1
a(N)−−−→t, r′ ` Q′

1 we have by t, r′, y ` Q1
a(N)−−−→t, r′, y ` Q′

1. Thus,

we have t, r′ ` Q0 |Q1
τ
=⇒ t, r′, y ` Q′′

0 |Q1 by Par-L, t, r′, y ` Q′′
0 |Q1

τ−→
t, r′, yQ′′′

0 |Q′
1 by React-R, and finally t, r′, y ` Q′′′

0 |Q′
1

τ
=⇒t′, r′ ` Q′

0 |Q′
1

by Par-L. We can then therefore derive t ` Q0 |Q1 =⇒ t′ ` Q′
0 |Q′

1.
By (P ′

1, Q
′
1) ∈ (E ′ ∪ {(M,N)}; rr′)◦, we also easily have (P ′

1, Q
′
1) ∈

(E ′ ∪ {(M,N)}; rr′)◦, and we can derive up-to context from (s, r′ `
P ′
0) Y?

(M,N)⊕E′;rr′ (t
′, r′ ` Q′

0) that (s ` P ′
0 | P ′

1) Y?
E;r (t

′ ` Q′
0 |Q′

1).

(d) Subcase s ` P0
a(M)−−−→ s ` P ′

0 s ` P1
a〈M〉−−−→ s ` P ′

1

By s ` P1
a〈M〉−−−→ s ` P ′

1 we have s, r′ ` P1
a〈M〉−−−→ s, r′ ` P ′

1, and then

by Lemma B.13, we have that t, r′ ` Q1
a〈N〉−−−→ t, r′ ` Q′

1 and (M,N) ∈
(E ′; rr′)? as well as (P ′

1, Q
′
1) ∈ (E ′; rr′)◦. By clause 2 of environmental

bisimulation up-to context and the input of P0, we have t, r′ ` Q0
a(N)
===⇒

t′, r′ ` Q′
0 and (P ′

0) Y?
E′;rr′ (Q

′
0).

Again, we can compose the transitions and obtain t, r′ ` Q0 |Q1
τ
=⇒t′, r′ `

Q′
0 |Q′

1 as expected.
By (P ′

1, Q
′
1) ∈ (E ′; rr′)◦, we also have (P ′

1, Q
′
1) ∈ (E ′; rr′)◦, and we can

then derive up-to context from (s, r′ ` P ′
0) Y?

E′;rr′ (t
′, r′ ` Q′

0) that (s `
P ′
0 | P ′

1) Y?
E;r (t

′ ` Q′
0 |Q′

1).
2. Case: t ` Q reduces.

Conversely.

Lemma B.36. [run-expanded output with spawning]
Suppose that (s ` P0 |l[P1])Y?

E;r (t ` Q0 |l[Q1]) for an environmental bisimulation

up-to context Y with l ∈ r and that s ` P1
runn

===⇒ a〈M〉−−−→s ` P ′
1 is minimal with

respect to s ` P−
1

a〈M−〉−−−−→ s ` P ′−
1 . Then t ` Q0 | l[Q1]

a〈N〉
===⇒ t′ ` Q′

0 | l[Q′
1], and

(s ` P0) Y−
(M,N)⊕(‘P ′

1,‘Q
′
1)⊕E;r (t

′ ` Q′
0)

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.15 used twice (once for the output of M and N ,
and then once more for the passivation of P ′

1 and Q′
1) and by the fact that

Y? ⊆ Y−.

– Case n > 0
By Lemma B.35 and Lemma B.26, we have two possible subcases preserving

minimality after the first run-transition of s ` P0 | l[P1]
runn

===⇒ a〈M〉−−−→s `
P0 | l[P ′

1], namely s ` P0 | l[P1]
run−−→ s ` P0 | l[P ′′

1].

• Subcase “still in Y?”
We have t ` Q0 | l[Q1]

τ
=⇒ t′′ ` Q′′

0 | l[Q′′
1] and (s ` P0 | l[P ′′

1]) Y?
E;r (t

′′ `

Q′′
0 | l[Q′′

1]). As s ` P0 | l[P ′′
1]

runn−1

====⇒ a〈M〉−−−→s ` P0 | l[P ′
1] is still minimal

with respect to s ` P−
0 | l[P−

1]
a〈M−〉−−−−→ s ` P−

0 | l[P ′−
1], we can apply the

induction hypothesis and get the desired results.

• Subcase “in Y− \ Y?”

We have t ` Q0 | l[Q1]
run−−→ t ` Q0 | l[Q′′

1] and (s ` P0 | l[P ′′
1]) Y−

E;r (t `
Q′′

0 | l[Q′′
1]), with (P ′′

1 , Q
′′
1) = (Cp[run(M̃), A], Cp[run(Ñ), B]) with (A,B)

in redex position such that (‘A, ‘B) ∈ E ′ and (A,B) 6∈ (E ′; rr′)◦ for some
E ′, r′ such that E ⊆ (E ′; rr′)?, P0 | l[P1] ≡ PA |PB , Q0 | l[Q1] ≡ QA |QB ,
(s, r′ ` PA) YE′;rr′ (t, r

′ ` QA), (PB , QB) ∈ (E ′; rr′)◦, r′ ∩ (s ∪ t) = ∅.

By s ` P−
0 | l[P−

1]
a〈M−〉−−−−→ s ` P−

0 | l[P ′−
1], P1 = Cp[run(M̃), run‘A],

P ′′
1 = Cp[run(M̃), A] and P−

1 ≤ P ′
1, we know that there is a run-

erasure A− ≤ A such that A− is in redex position in P−
1 and that

s, r′ ` A
a〈M〉−−−→ s, r′ ` A′ is minimal with respect to s, r′ ` A− a〈M−〉−−−−→

s, r′ ` A′−. Using Lemma B.30 (to add a fresh name m), and clause 4
of environmental bisimulation up-to context, as well as derived s, r′,m `
A− a〈M−〉−−−−→ s, r′,m ` A′−, we can apply the induction hypothesis to
(s, r′,m ` PA | m[A]) Y?

E′;rr′m (t, r′,m ` QB | m[B]). We obtain that

t, r′,m ` QB |m[B]
a〈N〉
===⇒ t′, r′,m ` Q′

B |m[B′] and that also (s, r′,m `
PA)Y−

(M,N)⊕(‘A′,‘B′)⊕E′;rr′m (t′, r′,m ` Q′
B). From the former, we can de-

rive that t′′ ` Q0|l[Q′′
1]

a〈N〉
===⇒t′ ` Q′

0|l[Q′
1], (with (P ′

1, Q
′
1) = (Cp[run(Ñ), A′],

Cp[run(Ñ), B′])) and from the latter that (s, r′,m ` P0)Y−
(M,N)⊕(‘A′,‘B′)⊕E′;rr′m

(t′, r′,m ` Q′
0) up-to context, (s, r′,m ` P0) Y−

(M,N)⊕(‘P ′
1,‘Q

′
1)⊕E;rr′m

(t′, r′,m ` Q′
0) up to environment, and (s ` P0)Y−

(M,N)⊕(‘P ′
1,‘Q

′
1)⊕E;r (t

′ `
Q′

0) up-to name creation.

Corollary B.37. [run-expanded output]
Suppose that (s ` P0 | P1) Y?

E;r (t ` Q0 |Q1) for an environmental bisimulation
up-to context Y with (s, x ` P0) YE′;rx (t, x ` Q0), (P1, Q1) ∈ (E ′; rx)◦, x ∩ (s ∪

t) = ∅, and that s ` P0 | P1
runn

===⇒ a〈M〉−−−→s ` P ′
0 | P ′

1 is minimal with respect to

s ` P−
0 | P−

1

a〈M−〉−−−−→ s ` P ′−
0 | P ′−

1 . Then t ` Q0 | Q1
a〈N〉
===⇒ t′ ` Q′

0 | Q′
1, and

(s ` P ′
0 | P ′

1) Y−
(M,N)⊕E;r (t

′ ` Q′
0 |Q′

1).

Proof. By induction on n.

– Case n = 0
As in the above Lemma B.36, immediate by Lemma B.15 and the fact that
Y? ⊆ Y−.

– Case n > 0
By Lemma B.35 and Lemma B.26, we have two possible subcases preserving

minimality after the first run-transition of s ` P0 |P1
runn

===⇒ a〈M〉−−−→s ` P ′
0 |P ′

1.

• Subcase “still in Y?”
We have s, r′ ` P0

run−−→ s, r′ ` P ′′
0 , hence t ` Q0

τ
=⇒ t′′ ` Q′′

0 and (s `
P ′′
0) Y?

E′;rr′ (t
′′ ` Q′′

0), and also that s, r′ ` P ′′
0

runn−1

====⇒ a〈M〉−−−→s ` P ′
0 is

minimal with respect to s ` P−
0

a〈M−〉−−−−→ s ` P ′−
0 . Thus, we can apply

the induction hypothesis and get (i) t′′ ` Q′′
0

a〈N〉
===⇒ t′ ` Q′

0 as well as
(ii) (s, r′ ` P ′

0) Y−
(M,N)⊕E′;rr′ (t

′, r′ ` Q′
0). Therefore, by (i) we have

t ` Q0 |Q1
a〈N〉
===⇒ t′ ` Q′

0 |Q1. and by (ii) we have (s ` P ′
0 |P1)Y−

(M,N)⊕E;r
(t′ ` Q′

0 | Q1) up-to environment and name creation for using E and
removing r′, and context for spawning P1 and Q1.

• Subcase “in Y− \ Y?”

We have s, r′ ` P1
run−−→ s, r′ ` P ′

1. Using Lemma B.30 to add a fresh
name l and the fact that (P1, Q1) ∈ (E ′; rr′)◦, we have (s, r′, l ` P0 |
l[P1]) Y?

E;r (t, r
′, l ` Q0 | l[Q1]). As s, r′, l ` P0 | l[P1]

runn

===⇒ a〈M〉−−−→s, r′, l `

P0 | l[P ′
1] is minimal with respect to s, r′, l ` P−

0 | l[P−
1]

a〈M−〉−−−−→ s, r′, l `
P−
0 | l[P ′−

1], we can use Lemma B.36 and have t, r′, l ` Q0 | l[Q1]
a〈N〉
===⇒

t′, r′, l ` Q′
0 | l[Q′

1], hence t ` Q0 |Q1
a〈N〉
===⇒ t′ ` Q′

0 |Q′
1 and also (s, r′, l `

P0)Y−
(M,N)⊕(‘P ′

1,‘Q
′
1)⊕E;rl(t

′, r′, l ` Q′
0), hence (s ` P0 |P ′

1)Y−
(M,N)⊕E;r (t

′ `
Q′

0 |Q′
1) up-to context, environment and name creation.

Corollary B.38. [Output preserves run-erased environmental bisimulation up-
to context]
For any environmental bisimulation up-to context Y, if (s ` P)Y−

E;r (t ` Q) and

s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, then there are Q′, t′ such that t ` Q

a〈N〉
===⇒ t′ ` Q′

and (s ` P ′) Y−
(M,N)⊕E;r (t

′ ` Q′). The converse on Q’s transition holds too.

Proof. By Y−’s definition, we know there are P+, Q+ and E+ such that (s `
P+)Y?

E+;r(t ` Q+). Since s ` P
a〈M〉−−−→s ` P ′, there is a minimal output transition

s ` P+ runn

===⇒ a〈M+〉−−−−→s ` P ′+. By Lemma B.37, we have t ` Q+ a〈N+〉
====⇒ t′ ` Q′+

and (s ` P ′+) Y−
(M+,N+)⊕E+;r (t

′ ` Q′+) which implies by Corollary B.23 that

t ` Q can also weakly do an output transition t ` Q
a〈N〉
===⇒ t′ ` Q′, such that

Q′ ≤ Q′+ and N ≤ N+. By Corollary B.29, as P ′ ≤ P ′+, Q′ ≤ Q′+ and
(M,N)⊕E ≤ (M+, N+)⊕E+, we have (s ` P ′) Y−

(M,N)⊕E;r (t
′ ` Q′) as desired.

Visually, the following diagram holds.

Y−
E;r

s ` P ≤ s ` P ′+ Y?
E+;r t ` Q+ ≥ t ` Q

runn�
wwwwwww

s ` P ′

a〈M〉

?
≤ s ` P ′+

a〈M+〉

?
Y−
(M+,N+)⊕E+;r t′ ` Q′+

a〈N+〉

�

wwwwwwwwwwwwwww
≥ t′ ` Q′

a〈N〉

�

wwwwwwwwwwwwwww

Y−
(M,N)⊕E;r

The converse on Q’s transitions is shown similarly.

Lemma B.39. [run-expanded input]
Suppose that (s ` P)Y?

E;r(t ` Q) for an environmental bisimulation up-to context

Y and that s ` P
runn

===⇒ a(M)−−−→s ` P ′ is minimal with respect to s ` P− a(M−)−−−−→s `
P ′−. Then for all N such that (M,N) ∈ (E ; r)?, t ` Q

a(N)
===⇒ t′ ` Q′, and

(s ` P ′) Y−
E;r (t

′ ` Q′).

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.15 and the fact that Y? ⊆ Y−.

– Case n > 0
By Lemma B.35 and Lemma B.26, we have two possible subcases preserving

minimality after the first run-transition of s ` P
runn

===⇒ a(M)−−−→s ` P ′.
• Subcase s ` P

run−−→ s ` P ′′, t ` Q
τ
=⇒ t′′ ` Q′′, (s ` P ′′) Y?

E;r (t
′′ ` Q′′)

We have that s ` P ′′ runn−1

====⇒ a(M)−−−→s ` P ′ is still minimal, so we can apply
the induction hypothesis, and we are done.

• Subcase s ` P
run−−→s ` P ′′, t ` Q

run−−→t ` Q′′, (s ` P ′′)Y−
E;r (t ` Q′′) with

P ′′ = P0|P1 andQ′′ = Q0|Q1, some E ′ such that (s, r′ ` P0)YE′;rr′ (t, r
′ `

Q0), (P1, Q1) = (Cp[run(M̃), A], Cp[run(Ñ), B]) with (‘A, ‘B) ∈ E and

(A,B) 6∈ (E ′; rr′)◦, (M̃, Ñ) ∈ E ′, (s, r′ ` P0) YE′;rr′ (t, r
′ ` Q0) and

r′ ∩ (s ∪ t) = ∅.
Using Lemma B.30 (to add a fresh l to the know names) and clause 4
of environmental bisimulations up-to context, we have (s, r′, l ` P0 |

l[A])Y?
E′;l⊕rr′ (t, r

′, l ` Q0 | l[B]). Using an argument similar to the one in
Lemma B.36, case 2, subcase 2, we know that we can apply the induction

hypothesis to minimal transition s, r′, l ` P0 | l[A]
runn−1

====⇒ a(M)−−−→s, r′, l `
P0 | l[A′]. We obtain t, r′, l ` Q0 | l[B]

a(N)
===⇒ t′′, r′, l ` Q′′

0 | l[B′′] and
(s, r′, l ` P0 |l[A′])Y−

E′;l⊕rr′ (t
′′, r′, l ` Q′′

0 |l[B′′]). By Corollary B.38, after

an output to channel l, we have (s, r′, l ` P0) Y−
(A′,B′)⊕E′;l⊕rr′ (t

′, r′, l `
Q′

0), hence (s ` P0 | Cp[run(M̃), A′]) Y−
E;r (t

′ ` Q′
0 | Cp[run(Ñ), B′]) up-

to environment, context and name creation. And of course, we do have

t ` Q
a(N)
===⇒ t′ ` Q′

0 | Cp[run(Ñ), B′].

Corollary B.40. [Input preserves run-erased environmental bisimulation up-
to context]
For any environmental bisimulation up-to context Y, if (s ` P) Y−

E;r (t ` Q)

and s ` P
a(M)−−−→ s ` P ′ with a ∈ r, then there are t′, Q′ such that for all

(M,N) ∈ (E ; r)−, t ` Q
a(N)
===⇒ t′ ` Q′ and (s ` P ′) Y−

E;r (t
′ ` Q′). The converse

on t ` Q’s transitions holds too.

Proof. By Y−’s definition, we know there are s ` P+, t ` Q+ and E+ such

that (s ` P+) Y?
E+;r (t ` Q+). Since s ` P

a(M)−−−→ s ` P ′, there is a min-

imal input transition s ` P+ runn

===⇒ a(M+)−−−−→s ` P ′+. By Lemma B.39, we have

t ` Q+ a(N+)
====⇒t ` Q′+ for any (M+, N+) ∈ (E+; r)? and (s ` P ′+)Y−

E+;r (t ` Q′+)
which implies by Corollary B.23 that t ` Q can also weakly do an input tran-

sition t ` Q
a(N)
===⇒ t′ ` Q′ such that Q′ ≤ Q′+ for any N ≤ N+, i.e. for any

(M,N) ∈ (E ; r)−. By Corollary B.29, as P ′ ≤ P ′+, Q′ ≤ Q′+ and E ≤ E+, we
have (s ` P ′) Y−

E;r (t
′ ` Q′) as desired. Visually, the following diagram holds.

Y−
E;r

s ` P ≤ s ` P+ Y?
E+;r t ` Q+ ≥ t ` Q

runn�
wwwwwww

s ` P ′

a(M)

?
≤ s ` P ′+

a(M+)

?
Y−
E+;r t′ ` Q′+

a(N+)

�

wwwwwwwwwwwwwww
≥ t′ ` Q′

a(N)

�

wwwwwwwwwwwwwww

Y−
E;r

The converse on t ` Q’s transitions is shown similarly.

Lemma B.41. [run-expanded reduction for environmental bisimulation up-to
context]
Suppose that (s ` P)Y?

E;r(t ` Q) for an environmental bisimulation up-to context

Y, and that s ` P
runn

===⇒ τ−→s′ ` P ′ is minimal with respect to s ` P− τ−→ s′ ` P ′−,
then t ` Q

τ
=⇒ t′ ` Q′, and (s′ ` P ′) Y−

E;r (t
′ ` Q′).

Proof. By induction on n.

– Case n = 0
Immediate by Lemma B.35.

– Case n > 0
By Lemma B.35 and Lemma B.26, we have two possible subcases preserving

minimality after the first run-transition of s ` P
runn

===⇒ τ−→s ` P ′.
• Subcase s ` P

run−−→ s ` P ′′, t ` Q
τ
=⇒ t′′ ` Q′′, (s ` P ′′) Y?

E;r (t
′′ ` Q′′)

We have that s ` P ′′ runn−1

====⇒ τ−→s ` P ′ is still minimal with respect to
s ` P− τ−→ s ` P ′−, so we can apply the induction hypothesis, and we
are done.

• Subcase s ` P
run−−→ s ` P ′′, t ` Q

run−−→ t ` Q′′, (s ` P ′′) Y−
E;r (t ` Q′′)

hold, and we have P ′′ = P0 |P1 and Q′′ = Q0 |Q1 with (s, r′ ` P0)YE′;rr′

(t, r′ ` Q0), (‘P1, ‘Q1) = (‘Cp[run(M̃), A], ‘Cp[run(Ñ), B]) ∈ (E ′; rr′)−

with (A,B) 6∈ (E ′; rr′)◦, ((M̃ ; ‘A), (Ñ , ‘B)) ∈ E ′, r′ ∩ (s ∪ t) = ∅. Since
we know s, r′ ` P− τ−→ s′, r′ ` P ′− and that s, r′ ` P

runn

===⇒ τ−→s′, r′ ` P ′

is minimal with respect to it, we can infer how P weakly reduces to P ′.
Let us analyse each possibility.

∗ Subsubcase A reacts with P0

Using clause 5 of environmental bisimulation up-to context to add
a new name l to known names, and clause 4 to spawn A, we have
(s, l, r′ ` P0 | l[A]) Y?

E′;rr′l (t, l, r
′ ` Q0 | l[B]). Using an argument

similar to the one in Lemma B.36, case 2, subcase 2, we know that we
can apply the induction hypothesis to minimal transition s, r′, l ` P0 |
l[A]

runn−1

====⇒ τ−→s′, r′, l ` P ′
0|l[A′]. We obtain t, r′, l ` Q0|l[B]

τ
=⇒t′′, r′, l `

Q′′
0 | l[B′′] and (s′, r′, l ` P ′

0 | l[A′]) Y−
E′;rr′l (t

′′, r′, l ` Q′′
0 | l[B′′]).

Therefore, by (s′, r′, l ` P ′
0 | l[A′])Y−

E′;rr′l (t
′′, r′, l ` Q′′

0 | l[B′′]) and by

Corollary B.38, we have (s′, r′, l ` P ′
0) Y−

(‘A′,‘B′)⊕E′;rr′l (t
′, r′, l ` Q′

0)

hence (s′, r′, l ` P ′
0 | Cp[run(M̃), A′]) Y−

(‘A′,‘B′)⊕E′;rr′l (t
′, r′, l ` Q′

0 |
Cp[run(Ñ), B′]) up-to context, (s′ ` P ′

0 | Cp[run(M̃), A′]) Y−
E;r (t

′ `
Q′

0 | Cp[run(Ñ), B′]) up-to environment and name creation. Also,

t, r′, l ` Q′′ τ
=⇒ t′, r′, l ` Q′

0 | Cp[Ñ , B′], holds as well from the above,

hence t ` Q
τ
=⇒ t′ ` Q′

0 | Cp[run(Ñ), B′].
∗ Subsubcase A reduces alone

Similarly, but with P ′
0 = P0.

∗ Subsubcase A reacts with an Ai from ‘Ã = M̃ (or a run-erasure of
it)

Let G = C[‘Ai, M̃
′] (resp. H = C[‘Bi, Ñ

′]) be the process of P1

(resp. Q1) in redex position that contains Ai (resp. Bi) and reacts
with the process containing A according to rule React-R or React-
L. Then there is a process context C ′

p such that Cp[A, run(M̃)] =

C ′
p[A

′, G, run(M̃ ′′)].
By clause 5 of environmental bisimulation up-to context to add a new
name l and clause 4, we have (s, r′, l ` P0 | l[A])Y?

E′;rr′l (t, r
′, l ` Q0 |

l[B]). By Lemma B.30 to add a new namem and by up-to context, we
have (s, r′, l,m ` P0|l[A]|m[G])Y?

E′;m⊕rr′l(t, r
′, l,m ` Q0|l[B]|m[H]).

Then, s, r′, l,m ` P0 | l[A] |m[G]
run
==⇒ τ−→s, r′, l,m ` P0 | l[A′] |m[G′].

Applying the induction hypothesis, we obtain t, r′, l,m ` Q0 | l[B] |
m[H]

τ
=⇒ t′′, r′, l,m ` Q′′

0 | l[B′′] | m[H ′′], as well as (s, r′, l,m ` P0 |
l[A′] |m[G′]) Y−

E′;m⊕rr′l (t
′′, r′, l,m ` Q′

0 | l[B′′] |m[H ′′]).
We can now passivate the contents of l[] and m[] and use up-to con-

text, environment and name creation to get (s ` P0|C ′
p[A

′, G′, run(M̃ ′′)])Y−
E;r

(t′ ` Q′
0 | C ′

p[B
′,H ′, run(Ñ ′′)]). It also follows that t ` Q

τ
=⇒ t′ `

Q′
0 | C ′

p[B
′,H ′, run(Ñ ′′)] as expected.

∗ Subsubcase A outputs and reacts with the context
Let C[M̃ ′] (resp. C[Ñ ′]) be the process of P1 (resp. Q1) in redex
position that reacts with the process containing A according to rule
React-R or React-L. Then there is another context C ′

p such that

Cp[A, run(M̃)] = C ′
p[A,C[M̃ ′], run(M̃ ′′)]. Using clause 5 of environ-

mental bisimulation up-to context to add a new name l and clause 4

to spawn A, we have (s, r′, l ` P0 | l[A]) Y?
E′;rr′l (t, r

′, l ` Q0 | l[B]).
We can now apply Lemma B.37 to simulate A’s output after run-

transitions: s, r′, l ` P0 | l[A]
runn−1

====⇒ a〈M〉−−−→s, r′, l ` P0 | l[A′], and we

obtain t, r′, l ` Q0 | l[B]
a〈N〉
===⇒ t′′, r′, l ` Q′′

0 | l[B′′], and (s, r′, l ` P0 |
l[A′]) Y−

(M,N)⊕E′;rr′l (t
′′, r′, l ` Q′′

0 | l[B′′]). We passivate the contents

of l[] and have (s, r′, l ` P0) Y−
(‘A′,‘B′)⊕(M,N)⊕E′;rr′l (t

′, r′, l ` Q′
0).

By Lemma B.12, we have that s, r′, l ` C[M̃]
a(M)−−−→ s, r′, l ` G and

t′′′, r′, l ` C[Ñ]
a(N)−−−→ t′′′, r′, l ` H with (G,H) ∈ ((M,N)⊕E ′; rr′l)◦

(for some “intermediate” t′′′) such that we have t′′, r′, l ` Q′′
0 | l[B′′] |

C[Ñ]
τ
=⇒ t′′′, r′, l ` Q′′′

0 | l[B′′′] | C[Ñ]
τ−→ t′′′, r′, l ` Q′′′′

0 | l[B′′′′] | H τ
=⇒

t′, r′, l ` Q′
0 | l[B′] |H hence t ` Q0 |Q1

τ
=⇒ t′ ` Q′

0 |Q′
1. From (s, r′, l `

P0)Y−
(‘A′,‘B′)⊕(M,N)⊕E′;rr′l (t

′, r′, l ` Q′
0). we build up-to context, en-

vironment and name creation (s ` P0 | C ′
p[A

′, G, run(M̃)]) Y−
E;r (t

′ `
Q′

0 | Cp[B
′,H, run(Ñ)]).

∗ Subsubcase A inputs and reacts with the context
Suppose the context outputs a process M (resp. N by Lemma B.13)

by means of a process Co[M̃
′] (resp. Co[Ñ

′]). Using clause 5 of en-
vironmental bisimulation up-to context several times to add a new
name l and clause 4 to spawn A, we have (s, r′, l ` P0 | l[A]) Y?

E′;rr′l

(t, r′, l ` Q0 | l[B]). We can now apply Lemma B.39 to trigger A’s
input of M and Q0 | l[B]’s simulation of that input, and we obtain
(s, r′, l ` P0 |l[A′])Y−

E′;rr′l (t
′′, r′, l ` Q′′

0 |l[B′′]). We passivate the con-

tent of l[], obtaining (s, r′, l ` P0)Y−
(‘A′,‘B′)⊕E′;rr′l (t

′, r′, l ` Q′
0). We

remove r′ and l up-to name creation from the known names and then
replaceA′ andB′ up-to context, giving (s ` P0|C ′

p[A
′, run(M̃)])Y−

(‘A′,‘B′)⊕E′;r

(t′ ` Q′
0 | C ′

p[B
′, run(Ñ)]). Finally, up-to environment, we have (s `

P0 | C ′
p[A

′, run(M̃)]) Y−
E;r (t

′ ` Q′
0 | Cp[B

′, run(Ñ)]). The transition

t ` Q0 | Q1
τ
=⇒ t′ ` Q′

0 | Cp[B
′, run(Ñ)] is derived from the above,

composing input t ` Q0 |Q1
τ
=⇒ a(N)−−−→ τ

=⇒ t′ ` Q′
0 |Cp[B

′, run(Ñ)] with
the output from the context.

Corollary B.42. [Reduction preserves run-erased environmental bisimulation
up-to context]
For any environmental bisimulation up-to context Y, if (s ` P) Y−

E;r (t ` Q)

and s ` P
τ−→ s′ ` P ′, then there are t′ and Q′ such that t ` Q

τ
=⇒ t′ ` Q′ and

(s′ ` P ′) Y−
E;r (t

′ ` Q′). The converse on t ` Q’s transitions holds too.

Proof. By Y−’s definition, we know there are s ` P+, t ` Q+ and E+ such that
(s ` P+) Y?

E+;r (t ` Q+). Since s ` P
τ−→ s′ ` P ′, there is a minimal reduction

transition s ` P+ runn

===⇒ τ−→s′ ` P ′+. By Lemma B.41, we have t ` Q+ τ
=⇒ t′ ` Q′+

and (s′ ` P ′+) Y−
E+;r (t

′ ` Q′+) which implies by Corollary B.23 that t ` Q can

also weakly reduce to some t′ ` Q′ such that Q′ ≤ Q′+. By Corollary B.29, as
P ′ ≤ P ′+, Q′ ≤ Q′+ and E ≤ E+, we have (s′ ` P ′) Y−

E;r (t
′ ` Q′) as desired.

Visually, the following diagram holds.

Y−
E;r

s ` P ≤ s ` P+ Y?
E+;r t ` Q+ ≥ t ` Q

runn�
wwwwwww

s′ ` P ′
?

≤ s′ ` P ′+
?

Y−
E+;r t′ ` Q′+

�

wwwwwwwwwwwwwww
≥ t′ ` Q′

�

wwwwwwwwwwwwwww

Y−
E;r

The converse on t ` Q’s transitions is shown similarly.

Theorem B.43. [Soundness of environmental bisimulation up-to context]
If Y is a environmental bisimulation up-to context, then Y− is included in

bisimilarity.

Proof. Let X = {(E , r, s, P, t,Q) | (s ` P) Y−
E;r (t ` Q)} and let us prove that X

verifies each clause of environmental bisimulation.

1. By Corollary B.42, whenever s ` P
τ−→ s′ ` P ′, we have a t′ ` Q′ such that

t ` Q
τ
=⇒ t′ ` Q′ and (s ` P ′) Y−

E;r (t
′ ` Q′), i.e. (s ` P ′) XE;r (t

′ ` Q′).

2. By Corollary B.38, whenever s ` P
a〈M〉−−−→ s ` P ′ with a ∈ r, we have a

t′ ` Q′ such that t ` Q
a〈N〉
===⇒ t′ ` Q′ and (s ` P ′) Y−

(M,N)⊕E;r (t
′ ` Q′), i.e.

(s ` P ′) X(M,N)⊕E;r (t
′ ` Q′).

3. By Corollary B.40, whenever s ` P
a(M)−−−→ s ` P ′ with a ∈ r, we have for all

(M,N) ∈ (E ; r)? a t′ ` Q′ such that t ` Q
a(N)
===⇒t′ ` Q′ with (s ` P ′)Y−

E;r (t
′ `

Q′), i.e. (s ` P ′) XE;r (t
′ ` Q′).

4. By Lemma B.31, we have (s ` P+ | l[P+
1])Y?

E+;r (t ` Q+ | l[Q+
1]) for some (s `

P+) Y?
E+;r (t ` Q+) with P ≤ P+, Q ≤ Q+, E ⊆ ≤ E+ ≥, and (‘P1, ‘Q1) ≤

(‘P+
1 , ‘Q+

1) ∈ E+, whose existence is guaranteed by definition of Y−. Then,
by run-erasure, we have (s ` P | l[P1]) Y−

E;r (t ` Q | l[Q1]).

5. By Lemma B.30, we have for any n not in s∪ t, (s, n ` P)Y−
E;n⊕r (t, n ` Q),

i.e. (s, n ` P) XE;n⊕r (t, n ` Q).
6. Similarly, the converse of the first three clauses holds too.

Theorem B.44. [Reduction-closed Barbed equivalence from environmental
bisimulation]
Let r ⊆ f = fn(P,Q), then if (f ` P) Y−

∅;r (f ` Q) for an environmental
bisimulation up-to context Y, then f ` P ≈r f ` Q.

Proof. We know by Theorem B.43 that Y− is an environmental bisimulation.
We let Z = {(r, s, P, t,Q) | fn(P,Q) ⊆ s ∩ t, r ⊆ s ∩ t, (s ` P) Y−

∅;r (t ` Q)}
and prove that Z is included in ≈.

1. Clause s ` P
τ−→ s′ ` P

As Y− is an environmental bisimulation, by clause 1 of the bisimulation,
there is t′ ` Q′ such that t ` Q =⇒ t′ ` Q′ and (s′ ` P ′) Y−

∅;r (t
′ ` Q′). We

have fn(P ′, Q′) ⊆ s′ ∩ t′ and r ⊆ s′ ∩ t′, henc (r, s′, P ′, t′, Q′) ∈ Z.
2. Clause P ↓µ µ or µ ∈ r

There are two cases depending on µ:
– Case s ` P ↓a

We have that s ` P
a(M)−−−→s ` P ′ for some (M,N) ∈ (∅; r)? and P ′. Since

a ∈ r, by Y− being an environmental bisimulation and clause 2 of the

bisimulation, there is also t′ ` Q′ such that t ` Q
a(N)
===⇒ t′ ` Q′, that is,

t ` Q ⇓a.
– Case s ` P ↓a

We have that s ` P
a〈M〉−−−→s ` P ′ for some M and P ′. Since a ∈ r, by Y−

being an environmental bisimulation and clause 3 of the bisimulation,

there are also N , t′ ` Q′ and such that t ` Q
a〈N〉
===⇒ t′ ` Q′, that is,

t ` Q ⇓a.
3. Clause Converse of 1, 2 on Q

Similar to 1, 2.
4. Clause R a process, fn(R) ∩ ((s ∪ t) \ r) = ∅

Let r′ = fn(R); by appealing to the clause 5 of the bisimulation, since
the names in r′ are either fresh or already in r, we have that (s, r′ `
P)Y−

∅;rr′ (t, r
′ ` Q). Also, (R,R) ∈ (∅; rr′)◦ and thus, using the up-to context

technique, (s, r′ ` P | R) Y−
∅;rr′ (t, r

′ ` Q | R) since (s, r′ ` ·) Y−
E;rr′ (t, r

′ ` ·)
is preserved by parallel composition of processes from (∅; rr′)◦. Therefore,
(rr′, sr′, P |R, tr′, Q |R) ∈ Z.

Conclusion: we showed that Z ⊆ ≈ and as (f ` P) Y−
∅;r (f ` Q) for

r ⊆ f = fn(P,Q) implies (r, f, P, f,Q) ∈ Z, we have that f ` P ≈r f ` Q.

3 Reduction-closed barbed congruence from environmental
bisimulations

Definition B.44. Capturing reduction-closed barbed congruence ∼= is the largest
binary relation on variables configurations indexed by a set of names r ⊆ s ∩ t
such that when s ` P ∼=r t ` Q,

– s ` P
τ−→ s′ ` P ′ implies there are Q′ and t′ such that t ` Q =⇒ t′ ` Q′ and

s′ ` P ′ ∼=r t′ ` Q′,
– s ` P ↓µ implies t ` Q ⇓µ, if µ ∈ r or µ ∈ r,
– the converse of the above two on Q, and
– for all context Cp with holes for process and which can capture names such

that fn(Cp)∩ ((s∪ t)\ r) = ∅, bn(Cp)∩ ((s∪ t)\ r) = ∅, we have s∪ fn(Cp) `
Cp[P] ∼=r,fn(Cp) t ∪ fn(Cp) ` Cp[Q].

Theorem B.45. There exist P , Q, r and a such that {r, a} = fn(P,Q) and
(r, a ` a〈P 〉) Y∅;ra (r, a ` a〈Q〉) but not r, a ` P ∼=ra r, a ` Q.

Proof. We provide such P , Q, r
We let P1x = a(X).(X | i(Y).x) | x.f , let Q1x = a(X).(X | i(Y).Y) | x.f , let

P2x = a〈i〈x〉〉 and Q2x = a〈i〈x〉〉.
We then consider the two processes

P = νi.(b〈P1m〉 | c〈P2m〉) = νi.(b〈a(X).(X | i(Y).m) |m.f〉 | a〈i〈m〉〉)

and

Q = νi.(b〈Q1m〉 | c〈Q2m〉) = νi.(b〈a(X).(X | i(Y).Y) |m.f〉 | a〈i〈m〉〉)

which are such that

fn(a, P,Q) ` a〈P 〉Y∅;fn(a,P,Q)fn(a, P,Q) ` a〈Q〉

We let n = {a, b, c, f,m} the set of there free names, and compare P and Q
under this knowledge:

n ` νi.(b〈P1m〉 | c〈P2m〉) ∼=n n ` νi.(b〈Q1m〉 | c〈Q2m〉)

We first consider a reduction on the left hand-side (lhs) to create the name
i, and let the right hand-side (rhs) follow weakly. We then do a reduction on the
rhs to force the creation of the (other) name i if it had not be done, and let the
lhs as is. We then are guaranteed to have:

n, i ` b〈P1m〉 | c〈P2m〉 ∼=n n, i ` b〈Q1m〉 | c〈Q2m〉

We can now create a context Cp = a〈νm.[]1〉|a(X).(X|X)|g.b.b(X).c.c(Y).(X|
Y) that will allow us to:

– capture the name m,
– duplicate the processes with captured names,

– discard subprocesses and keep others
– have a side of the equivalence always show a barb while the other can never.

n, i, g ` Cp[b〈P1m〉 | c〈P2m〉] ∼=n,g n, i, g ` Cp[b〈Q1m〉 | c〈Q2m〉]
Then, we force the reaction between a and a(X) and immediately after we

create the names x and y. The conditions on the fresh barb g will ensure that we
do not have (weak) uncontrolled reactions. We write C ′

p for g.b.b(X).c.c(Y).(X |
Y) since we lack space.

n, i, g, x, y ` b〈P1x〉|c〈P2x〉|b〈P1y〉|c〈P2y〉|C ′
p
∼=n,g n, i, g, x, y ` b〈Q1x〉|c〈Q2x〉|b〈Q1y〉|c〈Q2y〉|C ′

p

We can now spawn in parallel a process g to remove the guard of C ′
p, and

then in the rhs, consider the reactions that select Q1x and Q2y, discarding the
other subprocesses. The left hand-side will follow, choosing to discard two sub-
processes, keeping two others which we will call P1 (whose ”free private name”
we will call z, whichever of x or y it is) and P2. The fact that P1 and P2 may
weakly continue to react after being sent is not an issue, and we will consider
they did not.

n, i, g, x, y ` P1 | P2
∼=n,g n, i, g, x, y ` Q1x |Q2y

Then, P1 and Q1 may react on channel a, and rhs will follow somehow.

n, i, g, x, y ` i〈x or y〉 | i(Y).z | z.f ∼=n,g n, i, g, x, y ` . . .

Then lhs can react on i, and both z and z.f will react, exhibiting barb f .

n, i, g, x, y ` i〈x or y〉 | i(Y).z | z.f τ−→ n, i, g, x, y ` x | x.f τ−→ n, i, g, x, y ` f ↓f

However, rhs will never be able to exhibit barb f since it will be stuck at

n, i, g, x, y ` i〈x〉 | i(Y).Y | y.f τ−→ n, i, g, x, y ` x | y.f

where x and y cannot react.

Lemma B.46. {(r, s, P, t,Q) | r ⊆ r′, (r′, s, P, t,Q) ∈
�
≈} ∈

�
≈.

Proof. By verifying the clauses of
�
≈.

Lemma B.47. Let Y be the environmental bisimilarity up-to context, and

S = {(r, s, P, t,Q) | P ≤ C[P̃+], Q ≤ C[Q̃+],
fn(P+) ⊆ s0, fn(Q+) ⊆ t0,

(P̃+, Q̃+) ⊆ E ,
r ⊆ r0 ∪ fn(C),
s = s0 ∪ fn(C), t = t0 ∪ fn(C)
fn(C) ∩ ((s ∪ t) \ r0) = ∅,
bn(C) ∩ (s ∪ t) = ∅,
(s0 ` 0) YE;r0 (t0 ` 0)}

for contexts C for processes. We show that for all closed (r, s, P, t,Q) ∈ S, if
s ` P ↓µ and µ or µ is in r, then t ` Q ⇓µ, and that if s ` P −→ s′ ` P ′ then
t ` Q=⇒ t′ ` Q′ for some t′ ` Q′ with (r, s′, P ′, t′, Q′) ∈ S, and conversely.

Proof. By induction on the transition derivation of s ` P
α−→ s′ ` P ′ with

(r, s, P, t,Q) ∈ S. We prove the two properties separately. In both situations,
there is a case analysis on who does the transition: the context’s erasure or some
Pi. By symmetricity, we do not show the converse proofs on Q’s transition; they
are similar. We write run∗‘(P) to mean run‘(. . . (run‘(P)) . . .), and C−

p , C−
q for

two possibly different erasures of the same C.
Barbs: the cases necessary to check for barbs are Ho-In, Ho-Out, Par-R,

Par-L, Rep, Transp, and Passiv.

– Ho-In

• Subcase C−
p [P̃] = a(X).C−

1p[P̃]

If s ` C−
p [P̃] ↓a, we have s ` a(X).C−

1p[P̃]
a(M)−−−→ ·. Thus t ` C−

q [Q̃] = t `

run∗‘(a(X).C−
1q[Q̃])

run
==⇒ t ` a(X).C−

1q[Q̃]
a(N)−−−→ ·, i.e. C−

q [Q̃] ⇓a

• Subcase []i
By (E , r, s, 0, t, 0) ∈ Y, we have (s ` Pi)Y−

∅;r (t ` Qi) up-to environment,
hence by Theorem B.44 t ` Qi ⇓a if s ` Pi ↓a, hence t ` run∗‘Qi ⇓a,
that is t ` C−

p [Q̃] ⇓a.

– Ho-Out
• Subcase C−

p [P̃] = a〈D−
p [P̃]〉.C−

1p[P̃]

If s ` C−
p [P̃] ↓a, we have s ` a〈‘D−

p [P̃]〉.C−
1p[P̃]

a〈‘D−
p [eP]〉

−−−−−−→ ·. Thus, t `

C−
q [Q̃] = t ` run∗‘(a〈‘D−

p [Q̃]〉.C−
1q[Q̃])

run
==⇒t ` a〈‘D−

p [Q̃]〉.C−
1q[Q̃]

a〈‘D−
p [eQ]〉

−−−−−−→
· i.e. t ` C−

q [Q̃] ⇓a

• Subcase []i
By (E , r, s, 0, t, 0) ∈ Y, we have (s ` Pi) Y−

∅;r (t ` Qi), hence t ` Qi ⇓a if

s ` Pi ↓a, hence t ` run∗‘Qi ⇓a, that is t ` C−
p [Q̃] ⇓a.

In all the other cases, this subcase is similar, and we will thus not write
it anymore.

– Passiv
s ` C−

p [P̃] = s ` a[C−
1p[P̃]] ↓a. Trivially t ` a[C−

1q[Q̃]] ↓a, hence t ` C−
q [Q̃] =

t ` run∗‘(a[C−
1q[Q̃]]) ⇓a.

– Par-L
s ` C−

p [P̃] = s ` C−
1p[P̃] | C−

2p[P̃] ↓µ hence s ` C−
1p[P̃] ↓µ. By the induction

hypothesis, t ` C−
1q[Q̃] ⇓µ hence t ` C−

q [Q̃] = t ` run∗‘(C−
1q[Q̃] | C−

2q[Q̃]) ⇓µ.
– Par-R

Similarly.
– Rep

s ` C−
p [P̃] = s ` !C−

1p[P̃] ↓µ, hence s ` !C−
1p[P̃] |C−

1p[P̃] ↓µ. By the induction

hypothesis, t ` !C−
1q[Q̃] |C−

1q[Q̃] ⇓µ, hence t ` C−
q [Q̃] = t ` run∗‘(!C−

1q[Q̃]) ⇓µ.

– Transp
s ` C−

p [P̃] = s ` a[C−
1p[P̃]] ↓µ, hence s ` C−

1p[P̃] ↓µ. By the induction

hypothesis, t ` C−
1q[Q̃] ⇓µ, hence t ` a[C−

1q[Q̃]] ⇓µ, hence t ` C−
q [Q̃] = t `

run∗‘(a[C−
1q[Q̃]]) ⇓µ.

Reductions: the cases necessary to check for reduction closure are Run,
Transp, Par-L, Par-R, Rep, Create, React-L, and React-R.

The Create case is particularly different from the others.

– Create

• s ` C−
p [P̃] = s ` νx.C−

1p[P̃] −→ s, x ` C−
1p[P̃] and t ` C−

q [Q̃] = t `
run∗‘(νx.C−

1q[Q̃])

A similar transition can be taken byQ: t ` C−
q [Q̃] = run∗‘(νx. C−

1q[Q̃])
run
==⇒

t ` νx.C−
1q[Q̃]−→ t, x ` C−

1q[Q̃] (we can choose the same name x for both
creations).
By (s ` 0)Y−

E;r (t ` 0) and freshness of x, we have (s, x ` 0)Y−
E;rx(t, x ` 0)

which implies (r, sx, C−
1p[P̃], tx, C−

1q[Q̃]) ∈ S.
• []i

We have (s ` a[Pi]) Y−
E;r (t ` a[Qi]) and s ` a[Pi] −→ s, x ` a[P ′

i]
a〈‘P ′

i 〉−−−−→

s, x ` 0, so t ` a[Qi]=⇒t′′ ` a[Q′′
i]

a〈‘Q′
i〉====⇒t′ ` 0, and (s, x ` 0)Y−

(‘P ′
i ,‘Q

′
i)⊕E;r

(t′ ` 0), hence (r, sx, P ′
i , t

′, Q′
i) ∈ S. Also, t ` run∗(‘Qi)=⇒t ` Qi=⇒t′ ` Q′

i

and we are done.

– Run

• s ` run(‘C−
1p[P̃])−→ s ` C−

1p[P̃]

We have s ` run(‘C−
1p[P̃]) −→ s ` C−

1p[P̃] and C−
1p[P̃] ≤ C[P̃+]. We still

have C−
q [Q̃] ≤ C[Q̃+], so (r, s, P ′, t, Q) ∈ S and we are done.

• []i

We have (s ` a[Pi])Y−
E;r (t ` a[Qi]) and s ` a[Pi]−→s ` a[P ′

i]
a〈‘P ′

i 〉−−−−→s ` 0,

so t ` a[Qi] =⇒ t′′ ` a[Q′′
i]

a〈‘Q′
i〉====⇒ t′ ` 0, and (s ` 0) Y−

(‘P ′
i ,‘Q

′
i)⊕E;r (t

′ ` 0),

hence (r, s, P ′
i , t

′, Q′
i) ∈ S. Also, t ` run∗(‘Qi)=⇒ t ` Qi =⇒ t′ ` Q′

i and we
are done.

– Transp

• s ` a[C−
1p[P̃]]−→ s′ ` a[R]

We have s ` C−
1p[P̃] −→ s′ ` R, so, by the induction hypothesis t `

C−
1q[Q̃] =⇒ t′ ` S and (r, s′, t′, R, S) ∈ S. Therefore t ` a[C−

1q[Q̃]] =⇒ t′ `
a[S], and (r, s′, a[R], t′, a[S]) ∈ S since the fresh names (t′ \ t) can be
guaranteed different from a.

• []i

We have (s ` a[Pi]) Y−
E;r (t ` a[Qi]), s ` a[Pi]−→ s′ ` a[P ′

i]
a〈‘P ′

i 〉−−−−→ s′ ` 0.

So, t ` a[Qi]=⇒ t′′ ` a[Q′′
i]

a〈‘Q′
i〉====⇒ t′ ` 0, and (s′ ` 0)Y−

(‘P ′
i ,‘Q

′
i)⊕E;r (t

′ ` 0),

hence (r, s′, a[P ′
i], t

′, a[Q′
i]) ∈ S since a can be guaranteed different from

(s′ \ s) and t′ \ t. Also, t ` run∗(‘Qi)=⇒ t ` Qi=⇒ t′ ` Q′
i and we are done.

Again, this subcase always holds similarly, and thus it is not repeated
below.

– Par-L
s ` C−

p [P̃] = s ` C−
1p[P̃] | C−

2p[P̃]−→ s′ ` R | C−
2p[P̃], i.e. s ` C−

1p[P̃]−→ s′ ` R.

So, by the induction hypothesis, t ` C−
1q[Q̃] =⇒ t′ ` S and (r, s′, R, t′, S) ∈ S.

Therefore, t ` run∗‘(C−
q [P̃])=⇒ t′ ` S |C−

2q[Q̃], and also (r, s′, R |C−
2p[P̃], t′, S |

C−
2q[Q̃]) ∈ S.

– Par-R
Similarly

– Rep
s ` C−

p [P̃] = s ` !C−
1p[P̃]−→s′ ` R, hence s ` !C−

1p[P̃]|C−
1p[P̃]−→s′ ` R. By the

induction hypothesis, t ` !C−
1q[Q̃] | C−

1q[Q̃] =⇒ t′ ` S with (r, s′, R, t′, S) ∈ S,
hence, t ` !C−

1q[Q̃] =⇒ t′ ` S, t ` C−
q [Q̃] = t ` run∗‘(!C−

1q[Q̃]) =⇒ t′ ` S, and
still (r, s′, R, t′, S) ∈ S.

– React-L
There are several subcases.

• The two contexts react
s ` C−

p [P̃] = s ` C−
1p[P̃0, P̃1] | C−

2p[P̃2] −→ s ` C ′−
1p [P̃0] | C ′−

2p [P̃2, P̃1]. Of

course, C−
1qcan (weakly) do the same reaction, giving t ` C−

q [Q̃] =⇒ t `
C ′−

1q [Q̃0]|C ′−
2q [Q̃2, Q̃1] and as expected (r, s, C ′−

1p [P̃0]|C ′−
2p [P̃2, P̃1], t, C

′−
1q [Q̃0]|

C ′−
2q [Q̃2, Q̃1]) ∈ S.

• C−
1p[P̃1] sends, Pi in C−

2p[P̃2, Pi] receives.

s ` C−
p [P̃] = s ` C−

1p[P̃1]|C−
2p[P̃2, Pi]−→s ` C ′−

1p [P̃1]|C−
2p[P̃2, P

′
i]. We know

that C−
1q[Q̃] can weakly do the same output transition on some channel o.

Also, we have (s ` a[Pi])Y−
E;r (t ` a[Qi]) and s ` a[Pi]

o−→ s ` a[P ′
i]

a〈‘P ′
i 〉−−−−→

s ` 0 for the same channel o ∈ r. So, t ` a[Qi]
o
=⇒ t′′ ` a[Q′′

i]
a〈‘Q′

i〉====⇒ t′ ` 0

with (s ` 0) Y−
(‘P ′

i ,‘Q
′
i)⊕E;r (t′ ` 0), hence t ` C−

q [Q̃] =⇒ t′ ` C ′−
1q [Q̃1] |

C ′−
2q [Q̃2, Q

′
i] since the input can be done by Qi and since Qi is (weakly) in

redex position, and (r, s, C ′−
1p [P̃1] |C−

2p[P̃2, P
′
i], t

′, C ′−
1q [Q̃1] |C ′−

2q [Q̃2, Q
′
i]) ∈

S.
• C−

2p[P̃2] receives, Pi in C−
1p[P̃1, Pi] sends

s ` C−
p [P̃] = s ` C−

1p[P̃1, Pi] | C−
2p[P̃2] −→ s ` C−

1p[P̃1, P
′
i] | C

′−
2p [P̃2, Pj].

We know that C−
2q[Q̃2] can weakly do the same input transition on some

channel o. Also, we have s ` (a[Pi])Y−
E;r(t ` a[Qi]) and s ` a[Pi]

o〈‘Pj〉−−−−→s `

a[P ′
i]

a〈‘P ′
i 〉−−−−→ s ` 0, so, t ` a[Qi]

o〈‘Qj〉
====⇒ t′′ ` a[Q′′

i]
a〈‘Q′

i〉====⇒ t′ ` 0 with

(s ` 0)Y−
(‘Pj ,‘Qj)⊕E;r(t

′ ` 0), so t ` C−
q [Q̃]=⇒t′ ` C ′−

1q [Q̃1, Q
′
i]|C

′−
2q [Q̃2, Qj],

and (r, s, C−
1p[P̃1, P

′
i] | C

′−
2p [P̃2, Pj], t

′, C ′−
1q [Q̃1, Q

′
i] | C

′−
2q [Q̃2, Qj]) ∈ S.

• Pi in C−
1p[P̃1, Pi] and Pj in C−

2p[P̃2, Pj] react

s ` C−
p [P̃] = s ` C−

1p[P̃1, Pi] | C−
2p[P̃2, Pj]−→ s ` C−

1p[P̃1, P
′
i] | C

−
2p[P̃2, P

′
j].

We have (s, a, b ` a[Pi] | b[Pj]) Y−
E;rab (t, a, b ` a[Qi] | b[Qj]) and s, a, b `

a[Pi] | b[Pj] −→ s, a, b ` a[P ′
i] | b[P ′

j]
a〈‘P ′

i 〉−−−−→
b〈‘P ′

j〉−−−−→s, a, b ` 0, so t, a, b `

a[Qi] | b[Qj]=⇒ t′′, a, b ` a[Q′′
i] | b[Q′′

j]
a〈‘Q′

i〉====⇒
b〈‘Q′

j〉
====⇒t′, a, b ` 0 with (s, a, b `

0)Y−
(‘P ′

j ,‘Q
′
j)⊕(‘P ′

i ,‘Q
′
i)⊕E;rab(t

′, a, b ` 0), hence (s ` 0)Y−
(‘P ′

j ,‘Q
′
j)⊕(‘P ′

i ,‘Q
′
i)⊕E;r

(t′ ` 0) up-to name creation. Therefore, t ` C−
q [Q̃] =⇒ t′ ` C ′−

1q [Q̃1, Q
′
i] |

C ′−
2q [Q̃2, Q

′
j], and (C−

1p[P̃1, P
′
i]|C

−
2p[P̃2, P

′
j], t

′, C ′−
1q [Q̃1, Q

′
i]|C

′−
2q [Q̃2, Q

′
j]) ∈

S
– React-R

Similarly

Corollary B.48. For all P , Q, r and a such that r ⊆ f = fn(P,Q), a 6∈ f \ r,
and (r, a ` a〈P 〉) Y∅;ra (r, a ` a〈Q〉), we have f, a ` P

�
≈ra r, a ` Q.

Proof. By (f, a ` a〈P 〉)Y∅;ra (f, a ` a〈Q〉), we have (f, a ` 0)Y?
{(‘P,‘Q)};ra (f, a `

0), hence (r, s, P, t,Q) ∈ S hence f, a ` P
�
≈r,a f, a ` Q by Lemma B.47.

4 Completeness of environmental bisimulation

Lemma B.49. Run erasure of ≈.

Proof. We show that {(r, s, P, t,Q) | P ≤ P+, Q ≤ Q+, s ` P+ ≈r t ` Q+} ⊆
≈.

– Derived from Corollary B.23.
– Derived from Corollary B.23.
– Conversely.
– Let u = fn(R) \ r. We have s, u ` P+ | R ≈r,u t, u ` Q+ | R by definition of

≈ and P |R ≤ P+ |R as well as Q |R ≤ Q+ |R by definition of ≤.

Lemma B.50. [Completeness and environmental bisimulation]
Consider the set

X = {(Ex, rx, sx, P | a1[P1] | . . . | an[Pn], tx, Q | a1[Q1] | . . . | an[Qn]) |
((‘P1, . . . , ‘Pn), (‘Q1, . . . , ‘Qn)) ⊆ Ex,
(‘̃Pi, ‘̃Qi) = E ,
Ex ⊆ E ,
s ` P |

∏n
i=1 !fi〈‘Pi〉 ≈r t ` Q |

∏n
i=1 !fi〈‘Qi〉,

ãi ⊆ rx,

r = rx ⊕ f̃i ⊕ ex, (⊕ meaning no overlap)

s = sx ⊕ f̃i ⊕ ex,

t = tx ⊕ f̃i ⊕ ex,
rx ⊆ (sx ∩ tx)}.

We show that X is an environmental bisimulation (up-to ≡).

Proof. We check each clause of environmental bisimulation (up-to context) against
X . We may just write

∏
for both

∏n
i=1 !fi〈‘Pi〉 and

∏n
i=1 !fi〈‘Qi〉, and

∏
n+1

when there is an element added to the product. Context makes clear what is
considered.

– Reduction
1. sx ` P | a1[P1] | . . . | an[Pn]

τ−→ s′x ` P ′ | a1[P1] | . . . | an[Pn].

We have s ` P |
∏

≈r t ` Q |
∏

and s ` P |
∏ τ−→s′ ` P ′ |

∏
with

s′x = sx ∪ (s′ \ s).
So, by clause 1 of Definition B.5, for some t′ and Q′, we have t ` Q |∏ τ

=⇒t′ ` Q′ |
∏

and s′ ` P ′ |
∏

≈r t′ ` Q′ |
∏

since the other subprocesses
in

∏
are guarded by a ”fresh” guard fi and thus cannot reduce nor react

with anything.
Therefore, t ` Q

τ
=⇒ t′ ` Q′, hence tx ` Q | a1[Q1] | . . . | an[Qn])

τ
=⇒ t′x `

Q′ | a1[Q1] | . . . | an[Qn] for t
′
x = tx ∪ (t′ \ t). Indeed, since created names

could not be free in E by definition of the LTS (Par-L, Par-R), they
are not free in Ex, and by rx ⊆ (sx ∩ tx) ⊆ (s ∩ t) we know that they
will not clash with rx either. We will henceforth assume this implicitely.
Finally, (Ex, rx, s′x, P |a1[P1] | . . . |an[Pn], t

′
x, Q

′ |a1[Q1] | . . . |an[Qn]) ∈ X .

2. Pi
τ−→ P ′

i .
s ` P |

∏
≈r t ` Q |

∏
so, for some fresh g and for r′ = r + g, by

clause 4 of Definition B.5 we have s, g ` P |
∏

|fi(X).g[runX] ≈r′ t, g `
Q |

∏
|fi(X).g[runX].

Then, we can have a reaction between a copy of fi〈‘Pi〉 drawn from
∏
,

and fi(X), giving s, g ` P |
∏

|fi(X).g[runX]
τ−→ s, g ` P |

∏
|g[run‘Pi].

By clause 1 of Definition B.5, we thus have ta, Qa and Qia such that,
by clause 2 of Definition B.5 and the fact that there is no input barb
on unique fi in LHS as well as the fact that there is an output barb on
unique g, we have t, g ` Q |

∏
|fi(X).g[runX]

τ
=⇒ ta, g ` Qa |

∏
|g[Qia]

and s, g ` P |
∏

|g[run‘Pi] ≈r′ ta, g ` Qa |
∏

|g[Qia].

LHS can now do a run-transition s, g ` P |
∏

|g[run‘Pi]
τ−→s, g ` P |

∏
|g[Pi]

and thus, by clause 1 of Definition B.5, we have tb, Qb and Qib such that
ta, g ` Qa |

∏
|g[Qia]

τ
=⇒ tb, g ` Qb |

∏
|g[Qib] and s, g ` P |

∏
|g[Pi] ≈r′

tb, g ` Qb |
∏

|g[Qib]

Then, we can now do the transition that corresponds to Pi
τ−→ P ′

i : s, g `
P |

∏
|g[Pi]

τ−→ s′, g ` P |
∏

|g[P ′
i] and by clause 1 of Definition B.5 (and

2 on barb g), we have tb, g ` Qb |
∏

|g[Qib]
τ
=⇒ tc, g ` Qc |

∏
|g[Qic] and

s′, g ` P |
∏

|g[P ′
i] ≈r′ tc, g ` Qc |

∏
|g[Qic].

Now, we can use clause 4 of Definition B.5 with known name g and
fresh name fn+1 and have, for ex = g + fn+1 and r′′ = r + ex, s

′, ex `
P |

∏
|g[P ′

i] | g(X).!fn+1〈X〉 ≈r′′ tc, ex ` Qc |
∏

|g[Qic] | g(X).!fn+1〈X〉.
We can have a reaction between g[] and g(): s′, ex ` P |

∏
|g[P ′

i] |
g(X).!fn+1〈X〉 τ−→ s′, ex ` P |

∏
|!fn+1〈‘P ′

i 〉, hence by clause 1 of Defini-
tion B.5, as well as clause 3 on barbs g and clause 2 on barb fn+1, we

have tc, ex ` Qc |
∏

|g[Qic] | g(X).!fn+1〈X〉 τ
=⇒ t′, ex ` Q′ |

∏
|!fn+1〈‘Qid〉

with Qid = Q′
i or run‘Qi, as well as s

′, ex ` P |
∏

|!fn+1〈‘P ′
i 〉 ≈r′′ t

′, ex `
Q′ |

∏
|!fn+1〈‘Qid〉.

If Qid = Q′
i, then we have s′, ex ` P |

∏
n+1 ≈r′′ t′, ex ` Q′ |

∏
n+1. If

Qid = run‘Qi, then Qi was not necessary in the reduction, and we have
s′, ex ` P |

∏
n+1 ≈r′′ t

′, ex ` Q′ |
∏

n+1 by run-erasure of ≈, only turning
Qid = run‘Qi into Qi. This does not affect the transitions done by Q.
As a result from all these transitions notwithstanding the run-erasure,
we have that tx ` Q | a1[Q1] | . . . | ai[Qi] | . . . | an[Qn]

τ
=⇒ t′x ` Q′ | a1[Q1] |

. . . | ai[Q′
i] | . . . | an[Qn] and also (Ex, rx, s′x, P | a1[P1] | . . . | ai[P ′

i] | . . . |
an[Pn], t

′
x, Q

′ | a1[Q1] | . . . | ai[Q′
i] | . . . | an[Qn]) ∈ X .

3. P and Pi react.
Similar to the above case, but with s instead of s′ and sx instead of s′x
(since no name is created by the reaction) and P ′ instead of P after the
reaction.
As a result from all these transitions, we have that tx ` Q | a1[Q1] | . . . |
ai[Qi] | . . . | an[Qn]

τ
=⇒ t′x ` Q′ | a1[Q1] | . . . | ai[Q′

i] | . . . | an[Qn] and also
(Ex, rx, sx, P ′ | a1[P1] | . . . | ai[P ′

i] | . . . | an[Pn], t
′
x, Q

′ | a1[Q1] | . . . | ai[Q′
i] |

. . . | an[Qn]) ∈ X
4. Pi and Pj react.

s ` P |
∏

≈r t ` Q|
∏

so, for some fresh g and h, ex = g+h and r′ = r+ex,
using clause 4 of Definition B.5, we have s, ex ` P |

∏
|fi(X).g[runX] |

fj(X).h[runX] ≈r′ t, ex ` Q |
∏

|fi(X).g[runX] | fj(X).h[runX].

We can have a reaction between (a copy of) !fi〈 〉 and fi(): s, ex ` P |∏
|fi(X).g[runX]|fj(X).h[runX]

τ−→s, ex ` P |
∏

|g[run‘Pi]|fj(X).h[runX].
By clause 1 of Definition B.5, RHS will do a reduction too, and by
clause 3 of Definition B.5 on fi, g and 2 on fj , !fi〈 〉 and fi() will
react too in RHS, while !fj〈 〉 and fj() will stay. In other words:

t, ex ` Q |
∏

|fi(X).g[runX] | fj(X).h[runX]
τ
=⇒ ta, ex ` Qa |

∏
|g[Qia] |

fj(X).h[runX] with s, ex ` P |
∏

|g[run‘Pi] | fj(X).h[runX] ≈r′ ta, ex `
Qa |

∏
|g[Qia] | fj(X).h[runX].

Similarly, with the reaction s, ex ` P |
∏

|g[run‘Pi] | fj(X).h[runX]
τ−→

s, ex ` P |
∏

|g[Pi] | h[run‘Pj] between !fj〈 〉 and fj(), we have ta, ex `
Qa |

∏
|g[Qia] | fj(X).h[runX]

τ
=⇒ tb, ex ` Qb |

∏
|g[Qib] | h[Qjb] with

s, ex ` P |
∏

|g[run‘Pi] | h[run‘Pj] ≈r′ tb, ex ` Qb |
∏

|g[Qib] | h[Qjb].

Then, we can do 2 run transitions which will be weakly followed by
RHS according to clause 1 of Definition B.5, while preserving g[] and
h[] by their uniqueness and clause 3 of Definition B.5, and we obtain

s, ex ` P |
∏

|g[run‘Pi] | h[run‘Pj]
run−−→ run−−→ τ−→ s, ex ` P |

∏
|g[Pi] | h[Pj],

tb, ex ` Qb |
∏

|g[Qib] | h[Qjb]
τ
=⇒ tc, ex ` Qc |

∏
|g[Qic] | h[Qjc] and s, ex `

P |
∏

|g[Pi] | h[Pj] ≈r′ tc, ex ` Qc |
∏

|g[Qic] | h[Qjc].

It is now possible to mimick the reaction of Pi and Pj in X : s, ex `
P |

∏
|g[Pi] | h[Pj]

τ−→ s, ex ` P |
∏

|g[P ′
i] | h[P ′

j] which is matched by

tc, ex ` Qc |
∏

|g[Qic] | h[Qjc]
τ
=⇒ td, ex ` Qd |

∏
|g[Qid] | h[Qjd] such that

s, ex ` P |
∏

|g[P ′
i] | h[P ′

j] ≈r′ td, ex ` Qd |
∏

|g[Qid] | h[Qjd].

Using clause 4 of Definition B.5, we can now spawn another process
with fresh names fn+1 and fn+2 and have, for e′x = ex+fn+1+fn+2 and
r′′ = r+e′x: s, e

′
x ` P |

∏
|g[P ′

i]|h[P ′
j]|g(X).!fn+1〈X〉|h(X).!fn+2〈X〉 ≈r′′

td, e
′
x ` Qd |

∏
|g[Qid] | h[Qjd] | g(X).!fn+1〈X〉 | h(X).!fn+2〈X〉.

We can now do a reaction between g[] and g(), which will be followed (by
clause 1), consuming g[] and g()too but leaving h[] and h() (by clause
3 and uniqueness of each barb on g and h), giving s, e′x ` P |

∏
|g[P ′

i] |
h[P ′

j] | g(X).!fn+1〈X〉 |h(X).!fn+2〈X〉 τ−→ s, e′x ` P |
∏

|h[P ′
j] | !fn+1〈‘P ′

i 〉 |
h(X).!fn+2〈X〉 as well as td, e′x ` Qd |

∏
|g[Qid] |h[Qjd] | g(X).!fn+1〈X〉 |

h(X).!fn+2〈X〉 τ
=⇒ te, e

′
x ` Qe |

∏
|h[Qie] | !fn+1〈‘Qie〉 |h(X).!fn+2〈X〉 and

s, e′x ` P |
∏

|h[P ′
j]|!fn+1〈‘P ′

i 〉|h(X).!fn+2〈X〉 ≈r′′ te, e
′
x ` Qe|

∏
|h[Qie]|

!fn+1〈‘Qie〉 | h(X).!fn+2〈X〉.
Similarly, we can have and follow a reaction between !h[] and h() and
have s, e′x ` P |

∏
|!fn+1〈‘P ′

i 〉 | !fn+2〈‘P ′
j〉 ≈r′′ t

′, e′x ` Q′ |
∏

|!fn+1〈‘Qie〉 |
!fn+2〈‘Qie〉.
As in the previous cases, we have that Qie (resp. Qie) is either run‘Qi or
Q′

i (resp. run‘Qj or Q′
j) and we can use run-erasure if necessary without

interfering with the transitions.

As a result from all these transitions, we have that tx ` Q | a1[Q1] | . . . |
ai[Qi] |aj [Qj] | . . . |an[Qn]

τ
=⇒t′x ` Q′ |a1[Q1] | . . . |ai[Q′

i] |aj [Q′
j] | . . . |an[Qn]

and also (Ex, rx, sx, P |a1[P1] | . . . |ai[P ′
i] |aj [P ′

j] | . . . |an[Pn], t
′
x, Q

′ |a1[Q1] |
. . . | ai[Q′

i] | aj [Q′
j] | . . . | an[Qn]) ∈ X

5. P passivates a[Pi].
s ` P |

∏
≈r t ` Q |

∏
so, for some fresh d, and by clause 4 of Defini-

tion B.5 s, d ` P |
∏

|fi(X).!a〈X〉.d ≈r+d t, d ` Q |
∏

|fi(X).!a〈X〉.d.
Then, we can have a reaction between (a copy of) !fi〈 〉 and fi(): s, d `
P |

∏
|fi(X).!a〈X〉.d τ−→s, d ` P |

∏
|!a〈‘Pi〉.d. By clause 1 of Definition B.5,

RHS can weakly follow: t, d ` Q |
∏

|fi(X).!a〈X〉.d τ
=⇒ ta, d ` Qa |

∏
|Ra

for some Ra (which can only be one of !a〈‘Qi〉.d, or d (since d is fresh
and since clause 3 enforces we consumed fi(X))) and we have s, d `
P |

∏
|!a〈X〉.d ≈r+d ta, d ` Qa |

∏
|Ra.

Then, P can input Pi: s, d ` P |
∏

|!a〈X〉.d τ−→s, d ` P ′ |
∏

|d and, weakly,

we get ta, d ` Qa |
∏

|Ra
τ
=⇒ tb, d ` Qb |

∏
|Rb and s, d ` P ′ |

∏
|d ≈r+d

tb, d ` Qb |
∏

|Rb for some Rb which has still to be one of !a〈‘Qi〉.d or d
because of clause 2 of Definition B.5 on barb d.
We can now spawn with clause 4 a process: s, d ` P ′ |

∏
|d |d ≈r+d tb, d `

Qb |
∏

|Rb | d and have a reaction: s, d ` P |
∏

|d | d τ−→ s, d ` P ′ |
∏

By

clause 1 of Definition B.5, we have tb, d ` Qb |
∏

|Rb | d
τ
=⇒ t′, d ` Q′ |

∏
and s, d ` P ′ |

∏
≈r+d t′, d ` Q′ |

∏
since necessarily by clause 3 of

Definition B.5, there must be no d left in RHS otherwise LHS could not
exhibit the same barb.
This means that Q has weakly been able to input Qi on channel a at

some point, as: Q
τ
=⇒ a(‘Qi)−−−−→ τ

=⇒ Q′. Therefore, we have (Ex, rx, sx, P ′ |
a1[P1] | . . . (|0) | . . . | an[Pn], t

′
x, Q

′′ | a1[Q1] | . . . (|0) | . . . | an[Qn]) ∈ X .
6. Pj passivates ai[Pi].

s ` P |
∏

≈r t ` Q |
∏

so, for some fresh d and g, by clause 4
of Definition B.5, for ex = d + g and r′ = r + ex, we have s, ex `
P |

∏
|fi(X).!a〈X〉.d | fj(X).g[runX] ≈r′ t, ex ` Q |

∏
|fi(X).!a〈X〉.d |

fj(X).g[runX].
Then, we can, as usual do a reaction between !fi〈 〉 and fi() (which is
followed by consuming fi() too in RHS by clause 3 of Definition B.5, but
does not consume fj() for the same reasons), then a reaction between
!fj〈 〉 and fj which is followed, and we get s, ex ` P |

∏
|fi(X).!a〈X〉.d |

fj(X).g[runX]
τ−→ τ−→s, ex ` P |

∏
|!a〈‘Pi〉.d|g[run‘Pj], t, ex ` Q|

∏
|fi(X).!a〈X〉.d|

fj(X).g[runX]
τ
=⇒ τ

=⇒ta, ex ` Qa |
∏

|Ra |g[Qja], and s, ex ` P |
∏

|!a〈‘Pi〉.d|
g[run‘Pj] ≈r′ ta, ex ` Qa |

∏
|Ra | g[Qja] for some Ra in !a〈‘Qi〉.d, d.

Then, we can do a run -transition, weakly followed as usual, to get s, ex `
P |

∏
|!a〈‘Pi〉.d | g[run‘Pj]

run−−→ τ−→s, ex ` P |
∏

|!a〈‘Pi〉.d | g[Pj], ta, ex `
Qa |

∏
|Ra |g[Qja]

τ
=⇒tb, ex ` Qb |

∏
|Rb |g[Qjb], and s, ex ` P |

∏
|!a〈‘Pi〉.d|

g[Pj] ≈r′ tb, ex ` Qb |
∏

|Rb | g[Qjb] for some Rb in !a〈‘Qi〉.d, d.
Then, we can have Pj input ‘Pi: s, ex ` P |

∏
|!a〈‘Pi〉.d | g[Pj]

τ−→ s, ex `
P |

∏
|d|g[P ′

j], hence tb, ex ` Qb |
∏

|Rb |g[Qjb]
τ
=⇒tc, ex ` Qc |

∏
|Rc |g[Qjc]

and s, ex ` P |
∏

|d | g[P ′
j] ≈r′ tc, ex ` Qc |

∏
|Rc | g[Qjc] for some Rc in

!a〈‘Qi〉.d, d because of clause 2 on barb d.
Then, we can remove the d by spawning d and causing a reaction: s, ex `
P |

∏
|d |g[P ′

j] |d ≈r′ tc, ex ` Qc |
∏

|Rc |g[Qjc] |d and then s, ex ` P |
∏

|d |
g[P ′

j] |d
τ−→s, ex ` P |

∏
|g[P ′

j], hence tc, ex ` Qc |
∏

|Rc |g[Qjc] |d
τ
=⇒td, ex `

Qd |
∏

|g[Qjd], and s, ex ` P |
∏

|g[P ′
j] ≈r′ td, ex ` Qd |

∏
|g[Qjd] because

RHS had to consume !a〈‘Qi〉 otherwise LHS could not exhibit barb d.
Now, we spawn another process with fresh fn+1, and for e′x = ex + fn+1

and r′′ = r+ e′x we have s, e′x ` P |
∏

|g[P ′
j] | g(X).!fn+1〈X〉 ≈r′′ td, e

′
x `

Qd |
∏

|g[Qjd] | g(X).!fn+1〈X〉.
And we can do one last reaction which will be followed by the same reac-
tion, and some internal reductions ofQd: s, e

′
x ` P |

∏
|g[P ′

j]|g(X).!fn+1〈X〉 τ−→
s, e′x ` P |

∏
|!fn+1〈‘Pj〉 , td, e

′
x ` Qd |

∏
|g[Qid] | g(X).!fn+1〈X〉 τ

=⇒
t′, e′x ` Q′ |

∏
|!fn+1〈‘Qie〉 with s, e′x ` P |

∏
|!fn+1〈‘Pj〉 ≈r′′ t′, e′x `

Q′ |
∏

|!fn+1〈‘Qie〉 and Qie being either run‘Qj or Q′
j .

There are two possible cases, either Q did the input at some time, or
Qi did it. If Q has done the passivation, as in the above case, proper
transitions exist and membership to X is guaranteed (via erasure of
run‘Qj ’s run if necessary) IfQj has done the passivation, then necessarily
its outer run has been consumed, and there is no need for any erasure.
Again, this shows that the transition could be done by the member of
X , and that we still are in X .

– Outputs

1. P
a〈M〉−−−→ P ′.

so, for fresh g and fn+1, using clause 4 of Definition B.5, for ex = g+fn+1

and r′ = r + ex, we have s, ex ` P |
∏

|a(X).g.!fn+1〈X〉 ≈r′ t, ex `
Q |

∏
|a(X).g.!fn+1〈X〉.

We can have a reaction that consumes a(X): s, ex ` P |
∏

|a(X).g.!fn+1〈X〉 τ−→
s, ex ` P ′|

∏
|g.!fn+1〈M〉, followed weakly: t, ex ` Q|

∏
|a(X).g.!fn+1〈X〉 τ

=⇒
ta, ex ` Qa |

∏
|Ra such that s, ex ` P ′ |

∏
|g.!fn+1〈M〉 ≈r′ ta, ex `

Qa |
∏

|Ra with Ra one of a(X).g.!fn+1〈X〉 or g.!fn+1〈X〉 since clause 2
of Definition B.5 enforces that Ra has barb g.
Then, we can spawn g: s, ex ` P ′|

∏
|g.!fn+1〈M〉|g ≈r′ ta, ex ` Qa|

∏
|Ra|

g and have a reaction to remove g and g: s, ex ` P ′ |
∏

|g.!fn+1〈M〉 | g τ−→
s, ex ` P ′|

∏
|!fn+1〈M〉 which is followed by ta, ex ` Qa|

∏
|Ra|g

τ
=⇒t′, ex `

Q′ |
∏

|R′ such that s, ex ` P ′ |
∏

|!fn+1〈M〉 ≈r′ t
′, ex ` Q′ |

∏
|R′ with

necessarilly R′ = !fn+1〈N〉 since LHS has no barb g left.
This means that Q has weakly been able to output N on channel a at

some point, that is that tx ` Q | a1[Q1] | . . . | an[Qn]
a〈N〉
===⇒ t′x ` Q′ |

a1[Q1] | . . . | an[Qn] and, as it happens, ((M,N)⊕Ex, rx, sx, P ′ | a1[P1] |
. . . | an[Pn], t

′
x, Q

′ | a1[Q1] | . . . | an[Qn]) ∈ X since (M,N) is now in E .
2. Passivation of a[Pi].

Immediate.

3. Pi
a〈M〉−−−→ P ′

i .

For fresh g, using clause 4 of Definition B.5, we have s, g ` P |
∏

|fi(X).g[runX] ≈r+g

t, g ` Q |
∏

|fi(X).g[runX].

We can do a reaction to consume fi() and get s, g ` P |
∏

|fi(X).g[runX]
τ−→

s, g ` P |
∏

|g[run‘Pi], hence t, g ` Q |
∏

|fi(X).g[runX]
τ
=⇒ ta, g `

Qa |
∏

|g[Qia] and s, g ` P |
∏

|g[run‘Pi] ≈r+g ta, g ` Qa |
∏

|g[Qia].

Then, we can remove the run: s, g ` P |
∏

|g[run‘Pi]
run−−→ τ−→s, g ` P |∏

|g[Pi], hence ta, g ` Qa |
∏

|g[Qia]
τ
=⇒ tb, g ` Qb |

∏
|g[Qib] and s, g `

P |
∏

|g[Pi] ≈r+g
τ
=⇒tb, g ` Qb |

∏
|g[Qib].

We can now spawn a receiver on a with fresh names fn+1 and fn+2.
For ex = g + fn+1 + fn+2 and r′ = r + ex, we have: s, ex ` P |∏

|g[Pi] | a(X).g(Y)(!fn+1〈X〉 | !fn+2〈Y 〉) ≈r′ tb, ex ` Qb |
∏

|g[Qib] |
a(X).g(Y)(!fn+1〈X〉 | !fn+2〈Y 〉) for r′ = r + ex, and have LHS react

on a(X): s, ex ` P |
∏

|g[Pi] | a(X).g(Y)(!fn+1〈X〉 | fn+2〈Y 〉) τ−→ s, ex `
P |

∏
|g[P ′

i] | g(Y)(!fn+1〈M〉 | !fn+2〈Y 〉) hence tb, ex ` Qb |
∏

|g[Qib] |
a(X).g(Y)(!fn+1〈X〉 | !fn+2〈Y 〉) τ

=⇒ tc, ex ` Qc |
∏

|g[Qib] |Rc and s, ex `
P |

∏
|g[P ′

i] | g(Y)(!fn+1〈M〉 | !fn+2〈Y 〉) ≈r′ tc, ex ` Qc |
∏

|g[Qib] | Rc

with Rc in a(X).g(Y).(!fn+1〈X〉|!fn+2〈Y 〉) or g(Y).(!fn+1〈N〉|!fn+2〈Y 〉)
because LHS still has barb g.
Then, LHS can react on g: s, ex ` P |

∏
|g[P ′

i]|g(Y)(!fn+1〈M〉|!fn+2〈Y 〉) τ−→
s, ex ` P |

∏
|!fn+1〈M〉 | !fn+2〈‘P ′

i 〉, hence tc, ex ` Qc |
∏

|g[Qib] | Rc
τ
=⇒

t′, ex ` Q′ |
∏

|!fn+1〈N〉 | !fn+2〈‘Qic〉 and s, ex ` P |
∏

|!fn+1〈M〉 |
!fn+2〈‘P ′

i 〉 ≈r′ t′, ex ` Q′ |
∏

|!fn+1〈N〉 | !fn+2〈‘Qic〉 since LHS has no
more barb on g, which enforced the reaction with a(X) in Rc or its
’parent’ at some point.
Again, Qic is either run‘Qi or some Q′

i. If it is run‘Qi, then we can use
run-erasure of ≈ and we are done since it was not used in the transitions.
If not, then its outer has been consumed, and we’re done.
Again, this shows that the transition could be followed by RHS of the
member of X , and that we still are in X .

– Inputs

1. P
a(M)−−−→ P ′.

For some fresh d, and someO such that fn(O) ⊆ rx,O{‘Pa/Xa, . . . , ‘Pb/Xb} =
M , we have s, d ` P |

∏
|fa(Xa).fb(Xb).a〈O〉.d ≈r+d t, d ` Q |∏

|fa(Xa).fb(Xb).a〈O〉.d.
We can do all the reactions on fa(), . . . , fb(), and they’ll be followed by

clauses 2 and 3 on barbs, hence we have s, d ` P |
∏

|fa(Xa).fb(Xb).a〈O〉.d τ−→
. . .

τ−→s, d ` P |
∏

|a〈M〉.d t, d ` Q |
∏

|fa(Xa).fb(Xb).a〈O〉.d τ
=⇒ . . .

τ
=⇒

ta, d ` Qa |
∏

|Ra, s, d ` P |
∏

|a〈M〉.d ≈r+d ta, d ` Qa |
∏

|Ra with Ra

being a〈N〉.d or d by clause 2 on barb d and 3 on fb.

Then, LHS can react on a〈M〉: s, d ` P |
∏

|a〈M〉.d τ−→s, d ` P ′|
∏

|d hence

ta, d ` Qa|
∏

|Ra
τ
=⇒tb, d ` Qb|

∏
|Rb, s, d ` P ′|

∏
|d ≈r+d tb, d ` Qb|

∏
|Rb

with Rb being a〈N〉.d or d by clause 2 on barb d.
By clause 4 of Definition B.5, we can spawn d: s, d ` P ′ |

∏
|d | d ≈r+d

tb, d ` Qb |
∏

|Rb |d and have a reaction: s, d ` P ′ |
∏

|d |d τ−→s, d ` P ′ |
∏

hence tb, d ` Qb |
∏

|Rb | d
τ
=⇒ t′, d ` Q′ |

∏
with s, d ` P ′ |

∏
≈r+d t′, d `

Q′ |
∏

by the clause 3 of Definition B.5 on barb d.
Again, this shows that the transition could be done by the member of
X , and that we still are in X .

2. Pi
a(M)−−−→ P ′

i .
For some fresh d, and someO such that fn(O) ⊆ rx,O{‘Pa/Xa, . . . , ‘Pb/Xb} =
M , we have s, d ` P |

∏
|fa(Xa).fb(Xb).a〈O〉.d ≈r+d t, d ` Q |∏

|fa(Xa).fb(Xb).a〈O〉.d. We can do all the reactions on fa(), . . . , fb(),
and they’ll be followed by clauses 2 and 3 on barbs, hence we have
s, d ` P |

∏
|fa(Xa).fb(Xb).a〈O〉.d τ−→ . . .

τ−→ s, d ` P |
∏

|a〈M〉.d and

t, d ` Q |
∏

|fa(Xa).fb(Xb).a〈O〉.d τ
=⇒ . . .

τ
=⇒ ta, d ` Qa |

∏
|Ra and

s, d ` P |
∏

|a〈M〉.d ≈r+d ta, d ` Qa |
∏

|Ra with Ra being a〈N〉.d or d
by clause 2 on barb d.
We can now spawn with clause 4 of Definition B.5 a process with free
name g, and, for ex = d+ g and r′ = r+ ex, erase the run’s from s, ex `
P |

∏
|a〈M〉.d | fi(X).g[runX] ≈r′ ta, ex ` Qa |

∏
|Ra | fi(X).g[runX] to

get s, ex ` P |
∏

|a〈M〉.d | g[Pi] ≈r′ taa, ex ` Qaa |
∏

|Raa | g[Qia] by
clause 3 of Definition B.5 on barb fi and 2 on g.
Then, LHS can react on a〈M〉: s, ex ` P |

∏
|a〈M〉.d | g[Pi]

τ−→ s, ex ` P |∏
|d|g[P ′

i] hence taa, ex ` Qaa|
∏

|Raa|g[Qiaa]
τ
=⇒tb, ex ` Qb|

∏
|Rb|g[Qib],

and s, ex ` P |
∏

|d | g[P ′
i] ≈r′ tb, ex ` Qb |

∏
|Rb | g[Qib] with Rb being

a〈N〉.d or d by (now) clause 2 (too) on barb d.
By clause 4 of Definition B.5, we can spawn d: s, ex ` P |

∏
|d|g[P ′

i]|d ≈r′

tb, ex ` Qb |
∏

|Rb |g[Qib]|d and have a reaction: s, ex ` P |
∏

|d|d|g[P ′
i]

τ−→
s, ex ` P |

∏
|g[P ′

i] hence tb, ex ` Qb|
∏

|Rb|g[Qib]|d
τ
=⇒tc, ex ` Qc|

∏
|g[Qic]

with s, ex ` P |
∏

|g[P ′
i] ≈r′ tc, ex ` Qc |

∏
|g[Qic] by the clause 3 of

Definition B.5 on barb d, which enforced the reaction on channel a in Rb

(or its parent) in the RHS.
Finally, to put P ′

i and Qic in the environment, we spawn a process with
free name fn+1, and for e′x = ex + fn+1 and r′′ = r+ e′x we have: s, e′x `
P |

∏
|g[P ′

i] | g(X).!fn+1〈X〉 ≈r′′ tc, e
′
x ` Qc |

∏
|g[Qic] | g(X).!fn+1〈X〉

and derive, as expected, s, e′x ` P |
∏

n+1 ≈r′′ tc, e
′
x ` Qc |

∏
n+1 with

the right transitions, using the run-erasure if necessary.
Again, this shows that the transition could be done by the member of
X , and that we still are in X .

– Spawn clause.
Immediate by definition of X .

– Name creation.
We can add any name not in s, t to r (hence not in sx, tx, to rx), so that
they do not clash with other names, by choosing another r.

– Converses of 1, 2 and 3.
Similarly.

Corollary B.51. [Completeness of environmental bisimulation]
If f ` P ≈r f ` Q with r ⊆ f = fn(P,Q), then f ` P ∼∅;r f ` Q.

Proof. From Lemma B.50.

Corollary B.52. [Completeness of environmental bisimulation w.r.t. reduction-
closed barbed congruence]

If f, a ` P
�
≈ra f, a ` Q with r ⊆ f = fn(P,Q), then f, a ` a〈P 〉 ∼∅;ra f, a `

a〈Q〉.

Proof. By f, a ` P
�
≈ra f, a ` Q, we have f, a ` a〈P 〉

�
≈ra f, a ` a〈Q〉, hence

f, a ` a〈P 〉 ≈ra f, a ` a〈Q〉, hence f, a ` a〈P 〉 ∼∅;ra f, a ` a〈Q〉 by Corol-
lary B.51.

Definition B.53. We write P lr Q if (f ` 0)∼{(‘P,‘Q)};r (f ` 0) with r ⊆ f =

fn(P,Q).

Corollary B.54. [Characterisation of reduction-closed barbed congruence]

P lr Q if and only if f ` P
�
≈r f ` Q with r ⊆ f = fn(P,Q).

Proof. (⇒): from B.47.
(⇐): from B.52, and then by output to a.

