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Abstract—We propose a higher semantics for the description
of quantum protocols, which deals with quantum and classical
information in a unified way. Central to our approach is
the modelling of classical data by information transfer to the
environment, and the use of 2-category theory to formalize the
resulting framework.

This 2-categorical semantics has a graphical calculus, the dia-
grams of which correspond exactly to physically-implementable
quantum procedures. Quantum teleportation in its most general
sense is reformulated as the ability to remove correlations be-
tween a quantum system and its environment, and is represented
by an elegant graphical identity. We use this new formalism to
describe two new families of quantum protocols.

Index Terms—quantum computing, category theory, higher
categories

I. INTRODUCTION

A. Overview and background

This work extends the pioneering contribution Categorical
Semantics of Quantum Protocols [2] of Abramsky and Co-
ecke, the first quantum information paper ever accepted for
LiCS. The higher semantics described here adds expressive-
ness: composite expressions correspond exactly to physically-
possible quantum informatic procedures, interference between
difference measurement branches being prevented by the for-
malism. The powerful graphical calculus central to [2] is
extended for our new semantics, and again plays a central
organizing role.

A key insight of Abramsky and Coecke was that quantum
information has a fundamentally topological nature. They also
made clear the relevance of monoidal category theory as the
appropriate formalism for making this precise [1, 2, 3, 4, 10].
The essential idea is that a quantum protocol gives rise to
a flow of quantum information, which may not always be
directed forwards in time, and that the overall effect of carrying
out the protocol can in the simplest cases depend only on the
topology of this flow. We take this topological perspective
further by extending it to the flow of classical information.
This is achieved mathematically by extending the monoidal
category framework to 2-categorical one.

The 2-category 2Hilb in which our semantics is formulated
was initially described by Baez [5], who has also emphasized,
with collaborators, the great potential importance of high-
er-categorical methods for computer science, logic, topology
and physics [6, 7]. This is part of a growing general under-
standing of the deep connections between all of these topics,
with an important role played by higher category theory in

providing the appropriate formal language to work with them.
This background provided crucial motivation and perspective
for the present work.

To give an example of our new scheme, we present the
following diagrammatic equation which represents quantum
teleportation (see Section IV-B for more detail):

= (1)

The left and right sides of this equation rigorously define
particular composites of 2-cells. The shaded region represents
the presence of a nontrivial environment, which records
information about our quantum systems and leads to an
effective quantum ‘branching’. Once teleportation has been
described in this form, it is a matter of pure mathematics
to ascertain whether such a protocol can be physically
implemented — that is, whether a solution to this equation
can actually be found in 2Hilb. Since quantum teleportation
is possible, we know that it can [8].

Our formalism ensures that any topological deformation of
this equation will give a valid protocol, with the details of
the physical implementation depending significantly on which
deformation is chosen. Conventional quantum teleportation
corresponds to one particular deformation.

We might well then consider: are there interesting gener-
alizations of this equation? Do these also have solutions in
2Hilb? These are questions belonging to the realm of abstract
algebra, and are of interest in their own right. The formalism of
this paper ensures that any answers will be directly relevant for
quantum information. We make a first step towards answering
these questions by demonstrating that the following equations
have solutions in 2Hilb:

= = (59,62)

The first of these is a variant of ordinary teleportation: while
that has two stages, traditionally a measurement and a unitary
correction, this new protocol has three. The second equation
represents a certain interaction between a qubit and two



regions of classical data, whose overall effect is for the qubit
to be successfully transmitted.

These two equations represent only a small sample of the
possible protocols which could be written down using this
formalism. There is a large range of possible forms these could
take, and the current state of the art in quantum information
tells us very little about which of these forms give rise to
implementable quantum protocols. We hope that further work
on this question will give us a better understanding of the deep
relationship between quantum information and topology.

B. Relationship to other work

There has been substantial activity in the past few years on the
construction of categorical models encoding the interaction of
quantum and classical data. One main body of work focuses
on taking spaces of mixed states as the fundamental objects,
and completely-positive maps as the appropriate notion of
dynamical evolution. Selinger and others have described an
abstract formalization of this perspective [11, 12, 20] in which
classical and quantum data sit alongside each other, and
Coecke and Perdrix have used this framework to characterize
classical data as a quantum system equipped with a coupling to
an environmental degree of freedom, which is then explicitly
traced out [15]. Our model is different: classical information
is always carried by a joint pure state, in the form of
entanglement between the local system and its environment.
The two approaches can be compared with the Churches of the
Smaller and Larger Hilbert Space, to use phrases which find
frequent informal use in the quantum information community.

On a technical level, our work builds on the results
of Abramsky, Coecke and Pavlovic on categorical quantum
mechanics [2, 4, 13]. Important tools developed as part of
that programme continue to play a central role here, including
classical structures and their modules.

C. Outline of paper

We begin in Section II by describing a simple model for the
transfer of data from quantum systems to their environment.
Section III then describes how this model gives rise to a
2-category 2Hilb in a natural fashion, and introduces our
graphical notation. Quantum teleportation is the focus of
Section IV, and in Section V we describe two new families
of quantum protocols.

II. MODELLING INFORMATION TRANSFER

TO THE ENVIRONMENT

A. Introduction

Our model is built around a quantum system, its dynamics,
its environment, and the interactions between these. When
talking in general terms, we will use S and E to refer to
our system and its environment respectively, and will also let
these symbols stand for their Hilbert spaces of quantum states
where appropriate.

The model does not describe arbitrary interactions between
a system and its environment, but only those which cause
information to be ‘transferred’ in a particularly straightforward

way. Using the terminology of the decoherence programme,
this is comparable to the situation when environmental
interactions select out robust states of a quantum systems,
with classical properties (see [19] for a survey.) This is a
scenario in which the notion of ‘classical data’ extracted by the
environment can most clearly be formalized, and is sufficient
for modelling the projector-valued measurements that play a
central role in quantum information theory.

B. Classical data types

A classical data type is a Hilbert space V equipped with
copying and deleting maps

δ : V V ⊗ V (2)

ε : V C (3)

satisfying associativity, unit, and commutativity laws:

(δ ⊗ idV ) ◦ δ = (idV ⊗ δ) ◦ δ (4)

(ε ⊗ idV ) ◦ δ = idV = (idV ⊗ ε) ◦ δ (5)

swapV,V ◦ δ = δ (6)

Here we make use of the map

swapV,V : V ⊗ V V ⊗ V,

which we define by its action |φ〉⊗|ψ〉 7→ |ψ〉⊗|φ〉 on product
states. A common name for this structure is a commutative
coalgebra (or commutative comonoid).

In our model, we assume that the environment E is
given the structure of a classical data type. Physically,
this is motivated by the idea that the environment stores
certain kinds of information about our quantum system in a
highly redundant manner, yielding these effective copying and
deleting structures.

We will use a graphical notation to describe our algebraic
operations [16, 21]. In this notation vertical lines represent
Hilbert spaces, and vertices represent linear maps. Horizontal
juxtaposition represents the tensor product operation, and ver-
tical juxtaposition represents composition. Using this notation,
our copying and deleting maps have the following form, which
should be read from bottom to top:

(7)

Our axioms (4–6) are then depicted in the following way:

= = = = (8)

This graphical form of the axioms has the advantage of
being more immediately comprehensible than the traditional
algebraic presentation.

We will further require our classical data type to be a
special †-Frobenius algebra, also called a classical structure
by Coecke and Pavlovic [13]. The axioms for this involve the
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adjoints δ† : V ⊗ V V and ε† : C V of our copying
and deleting maps, which are drawn in the following way:

(9)

The classical structure axioms then take the following form:

= = (10)

These axioms ensure that V is finite-dimensional, that δ acts
by copying the elements of some orthonormal basis of V , and
that ε acts by deleting them [14]:

δ : |i〉 7→ |i〉 ⊗ |i〉 (11)

ε : |i〉 7→ 1 (12)

This is a significant restriction, but one which is appropriate
for describing quantum informatic phenomena. It would be
interesting to consider more general classical data types,
especially for modelling continuous data; this would require
dropping the classical structure axioms (10) above.

C. Environmental interactions

We now suppose that our system S and environment E
interact, in such a way that information about the state of
the system is transferred to the environment. To formalize this
notion, we consider linear maps of the form

τ : S E ⊗ S, (13)

having the following graphical representation:

τ

E

S

S

We use a thicker pen to draw the curve representing the
environmental system, so it be easily distinguished.

We now equip our environment E with the structure of a
classical data type (E, δ, ε). We say that τ : S E ⊗ S is
an interaction map if the following axioms hold:

τ

τ

SEE

S

=
τ

SE

S

E

τ

S

S

=

S

S

(14,15)

If τ has these properties, then it can be thought of as
transferring data of type (E, δ, ε) to the environment. This
interpretation arises from the first axiom above: in words,
extracting information twice from S is the same as extracting
it once and copying the result. We also have a non-disturbance

property, thanks to the second axiom: the action of τ can be
undone by a linear map which acts solely on the environmental
degrees of freedom. The axioms we have given here exactly
match the conventional mathematical notion of a comodule for
a comonoid.

We will be interested in the more general situation where
data is transferred to more than one type of environmental
system. Suppose that we have two such interaction maps,
τ : S E⊗S and τ ′ : S E′⊗S, where both E and E′ are
equipped separately with the structure of a classical data type.
Physically, we imagine that these environmental interactions
are occurring in some ‘uncontrollable’ fashion, transferring
data about the system S to both environments arbitrarily often.
The only case in which the resulting information flow is well-
defined will be when τ and τ ′ commute, in the following
sense:

τ

τ ′

SE′ E

S

=

τ ′

τ

SEE′

S

(16)

This commutativity condition can be readily extended to the
situation of more than two interaction maps, in which case all
pairs are required to commute.

An interesting example of an interaction map arises in the
case that the quantum system is the same as the environment.
In this case, we can choose the copying map δ : E E ⊗E
to itself be our interaction map.

Lemma II.1. For a classical data type (E, δ, ε), the map
δ : E E ⊗ E satisfies the axiom of an interaction map.

It is reassuring that this is possible, as it emphasizes that
despite the conceptual split between system and environment
that lies at the heart of this framework, the environment
can itself be treated as a system equipped with a canonical
interaction.

D. Simultaneous interactions

We now consider the possibility that two quantum systems S
and S′ interact simultaneously with the same environmental
system E. In this situation, correlations are induced between
states of the two systems, since if one measures the value of
the environmental classical data type, one obtains a restriction
on the joint state of S ⊗ S′ to those states compatible with
this value.

Suppose that our two environmental interaction maps for
systems S and S′ are

τ : S E ⊗ S

τ ′ : S′ E ⊗ S′

We want to calculate those joint states of S ⊗ S′ which are
consistent, in the sense that they transfer the same classical
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data to the environment under the application of τ or τ ′. We
call this the tensor product of S and S′ with respect to the
environment E, written S ⊗E S′. Suppose that ψ ∈ S ⊗ S′

is such a joint state. Then we can express this consistency
property by the following equation:

τ

SE S′

ψ

= τ ′

S′E

ψ

S

(17)

We wish to find the subspace of S⊗S′ spanned by such states.
Writing this subspace as S ⊗E S′, we can construct it as the
following equalizer:

S ⊗E S′ S ⊗ S′ E ⊗ S ⊗ S′e
τ ⊗ idS′

(swapE,S ⊗ idS′) ◦ (idE ⊗ τ ′)
(18)

We choose the embedding e to be an isometry. The state
space S ⊗E S′ can itself be given a canonical environmental
interaction map, as the following composite:

S⊗ES′ e
S⊗S′ τ⊗idS′

E⊗S⊗S′ idE⊗e†

E⊗(S⊗ES′) (19)

Lemma II.2. The composite (19) satisfies the axioms of an
interaction map.

E. Protected dynamics

The final layer of structure to add to our model is a notion
of dynamics for our quantum systems. Since our systems are
interacting with their environment in an uncontrollable fashion,
the dynamics of our system will only be well-defined if it
commutes with the interaction maps in an appropriate fashion.

Suppose f : S S′ is the linear map representing
dynamical evolution. We assume that our dynamics is local,
and so S and S′ interact with the same family of environments.
We say that f is protected from decoherence, or simply
protected, when the following equation holds:

τ ′

E

f

S

S′

= τ

E

S

f

S′

(20)

We require this to hold for each environment E with which
the systems S and S′ interact.

For a given system, precisely which dynamics are protected
from decoherence will depend on the environmental interac-
tion maps themselves. However, it is possible to set these up in
such a way that any evolution of the system will be protected.

One way is to set the environment to be the trivial classical
data type (C, 1, 1), and the interaction map as the canonical
isomorphism of vector spaces τ : S C ⊗ S. A more
realistic way to ensure arbitrary dynamics are ‘protected’ is

to maintain a nontrivial environmental classical data type
(E, δ, ε), but to choose the ‘system’ Hilbert space to be B⊗S,
where B is a ‘buffer’ system which interacts directly with
the environment and ‘protects’ our true system S of interest.
In this scenario, we require B to be equipped with its own
interaction map τB : B E ⊗ B. The interaction map
τB⊗S : (B⊗S) E ⊗ (B⊗S) is then defined as the tensor
product of τB with the identity on S:

τB

E

B

B

S

S

(21)

The following lemma establishes that this construction is valid.

Lemma II.3. For an interaction map τB : B E ⊗ B, then
τB ⊗ idS : B⊗S E⊗ (B⊗S) is also an interaction map.

We now see that this achieves our goal.

Lemma II.4. For any linear map f : S S′, the composite
idB ⊗ f : B ⊗ S B ⊗ S′ is a protected linear map, with
respect to the interaction maps described in Lemma II.3.

This construction is a good model for a quantum system S
placed inside a box B, which isolates it completely: while
B interacts with the environment, S does not, and quantum
evolution can take place without any information about S
being transmitted to the environment.

F. Controlled operations

We saw in Lemma II.1 that the environment can itself
be viewed as a system equipped with an interaction map.
Using construction (21), we may therefore treat E ⊗ S
itself as a system, for an arbitrary Hilbert space S, with an
interaction map that copies the data stored in E. As we saw
in Lemma II.4, any linear map idE ⊗ f for f : S S is
protected with respect to this interaction.

However, our quantum system as a whole is now E ⊗ S
in this new setting, and it is interesting to ask what the
protected evolutions are of this composite system. Applying
definition (20), they are maps f : E ⊗ S E ⊗ S satisfying
the following equation:

f

E E S

SE

=
f

E E S

SE

(22)

For concreteness, we now suppose that the copying map
associated to E acts by copying a basis of vectors |i〉 ∈ E,
where i ∈ {1, . . . , dim(E)} acts as an index. Then

δ : |i〉 7→ |i〉 ⊗ |i〉

ε : |i〉 7→ 1,
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and we can demonstrate that f is precisely series of controlled
operations: operations on S which depend on the value stored
in E.

Lemma II.5. For a system with Hilbert space E ⊗ S,
classical data type (E, δ, ε) as above, and interaction
map δ ⊗ idS : E ⊗ S E ⊗ E ⊗ S, the protected maps
f : E ⊗ S E ⊗ S have the following form:

f : |i〉 ⊗ |σ〉 7→ |i〉 ⊗ fi(|σ〉) (23)

where |σ〉 is an arbitrary state of S, and fi : S S is an
indexed family of linear maps on S.

We see that protected evolutions of the composite system E⊗S
are precisely controlled operations: operations on S which
depend on the value stored in E.

III. 2-CATEGORICAL QUANTUM INFORMATION

A. Introduction

In this section we will describe how the model of environmen-
tal interaction described in Section II gives the ingredients
for a monoidal 2-category 2Hilb. We will see that the
graphical calculus for this 2-category gives a concise and
comprehensible notation for representing quantum systems,
classical data, and performing measurements and controlled
operations. For an introduction to 2-categories, see [17, 9].

B. Defining the 2-category

We begin the definition of 2Hilb in the following way.
• Objects are classical structures, as defined by equa-

tions (8) and (10).
• 1-morphisms H : (E, δ, ε) (E′, δ′, ε′) are finite-

dimensional Hilbert spaces H equipped with commuting
interaction maps τ : H E⊗H and τ ′ : H E′⊗H ,
as defined by equations (14), (15) and (16).

• 2-morphisms f : H J are protected linear maps, as
defined by equation (20).

• Composition of 1-morphisms is defined as tensor
product with respect to the common environment, as
defined by equation (18):

(E1, δ1, ε1)
H (E2, δ2, ε2)

J (E3, δ3, ε3)

:= (E1, δ1, ε1)
H⊗E2J

(E3, δ3, ε3) (24)

• Composition of 2-morphisms is given by composition
of protected linear maps.

This is not a complete definition of 2Hilb. A significant
missing component is the associator, a family of invertible
2-morphisms which accounts for the fact that given three
composable 1-cells E1

H
E2, E2

J
E3 and E3

K
E4, the

two possible compositions K ◦ (J ◦ H) and (K ◦ J) ◦ H are
not necessarily equal, but only isomorphic.

However, the 2-category we are constructing is closely
related to a full subcategory of Bimod, a 2-category of
wide use and great importance in categorical algebra. Each
of the constructions we make in Section II corresponds more-
or-less directly to ‘reversals’ of constructions used in the

definition of that 2-category: classical data types correspond
to algebras, commuting interaction maps correspond to bimod-
ules, protected linear maps correspond to bimodule homomor-
phisms, and tensor product with respect to the environment
corresponds to bimodule tensor product. As a result of this
correspondence, the fact that our construction gives a well-
defined 2-category follows immediately from the fact that
Bimod does.

C. Graphical calculus

Here we summarize the standard graphical calculus for
working with 2-categories. For a longer discussion, see [18,
Section 2.2]. In fact, 2Hilb is a monoidal 2-category, and
the graphical calculus can be extended to cover this monoidal
structure. While this is an important part of the structure, we
will not need to make use of it in this paper.

The graphical calculus for 2-categories is only a slight gen-
eralization of that for monoidal categories. Just as monoidal
categories are 2-categories with one object, so the graphical
calculus for monoidal categories is a one-object version of the
graphical calculus for 2-categories.

Objects E of our 2-category are represented by regions,
which we distinguish by their shading:

E1 (25)

The 1-morphisms H : E1 E2 of the 2-category are repre-
sented by vertical lines, with the domain of the 1-morphism
on the left-hand side of the line and the codomain on the
right-hand side:

E1 E2

H

(26)

Composition of 1-morphisms is represented by placing the
corresponding vertical lines side-by-side:

E1 E2 E3

H J

(27)

2-morphisms are represented by vertices:

E1 E3

E2

K

H J

f (28)
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In this case the morphism is f : K H⊗E2 J . Composition
of 2-morphisms is represented by stacking vertically:

E1 E4

E3

E2

K M

H L

J
f

g

(29)

D. Quantum measurement

We now describe how quantum measurement works in our
formalism. This was not a topic explicitly dealt with as a part
of Section II, since it is most easily introduced with the help
of the graphical calculus.

We begin by noting that, for any classical data type (H, δ, ε),
the underlying Hilbert space H can be recovered in the
following way. As described at the end of Section II-C, we
can treat a classical data type itself as a quantum system.
In our categorical model, this gives rise to 1-morphisms
H : (C, 1, 1) (H, δ, ε) and H : (H, δ, ε) (C, 1, 1). We
can then form the composite

H ⊗H H ≡ (C, 1, 1) H (H, δ, ε) H (C, 1, 1), (30)

which has the following graphical representation:

C H C

H H

(31)

From now on we will usually drop the label C for the trivial
classical data type, leaving such regions blank. In physical
terms, we have two systems with Hilbert space H , each being
transferring data to the classical data type (H, δ, ε), represented
by the shaded region in the centre of the diagram.

Lemma III.1. The composite (30) is isomorphic to H
equipped with trivial interaction maps, and this isomorphism
is a protected map.

We have therefore have an isomorphism H ' H⊗H H , which
is a 2-cell in our category. We represent it as follows:

H

H

H H

(32)

This 2-cell represents our measurement process.
The fact that this is an isomorphism is crucial to the

interpretation of our formalism. There is no ‘collapse of the
wavefunction’: rather, we introduce a nontrivial environmental
system, to which our quantum systems transfer data via
their interaction maps. In this case, those quantum systems

are the two copies of H which form the left- and right-
hand boundaries of the shaded region. This region is a
‘future information cone’, analogous to a future light cone
in special relativity, in which the result of the measurement
is available. The ‘collapse’ is replaced with the establishment
of correlations between physical systems, in the spirit of the
decoherence programme [19].

E. Controlled operations

As described in Section II-F, we can use our formalism to
describe controlled operations. We now see how that appears
in our graphical notation.

A controlled operation is a protected map of type
f : H ⊗ S H ⊗ S, where we write H for the Hilbert space
of the environment system, and where the system H ⊗ S
carries the interaction map described by equation (21). This
composite is represented in the graphical calculus as the
following composite 1-cell:

H

H S

(33)

A controlled operation is therefore a 2-cell of the following
form:

H

H S

f
(34)

Putting this together with our graphical notation for quantum
measurement, we can describe a scenario where we measure
a quantum system H , and based on the result, perform an
operation on another quantum system S:

H

H

H H

S

S

f

(35)

The interplay between measurement and controlled operations
is of great importance in our framework.

F. Graphical dictionary

In this section we give a complete graphical dictionary of
all the 0-cells, 1-cells and 2-cells which are relevant in our
framework, and the quantum computational phenomena to
which they correspond.

For simplicity, we will only consider the case that the
Hilbert space H of our quantum system is equal to that of
our environment, which measures it in a nondegenerate way.
We suppose the environment is equipped with the classical
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structure (H, δ, ε). For reasons of space, we omit the proofs
that the 1-cells and 2-cells given here satisfy our axioms.

0-cells:

Region coupled to trivial
environment (C, idC, idC) (36)

Region coupled to nontrivial
environment (H, δ, ε) (37)

1-cells: For a 1-cell H : E1 E2, we write [H; τ1; τ2]
to denote the Hilbert space along with its environmental
interaction maps τ1 : H E1⊗H and τ2 : H H⊗E2, in
the manner of Section II-C. In the pictures below, the sources
and targets of each 1-cell can be determined by the 0-cells at
the left-hand and right-hand edges.

The system [H; idH ; idH ] (38)

The system [H; δ; idH ] (39)

The system [H; idH ; δ] (40)

2-cells: For each of our component 2-cells, we give the
source and target 1-cells explicitly. It can be checked that each
linear map given satisfies the protectedness axiom (20), and
so gives rise to a valid 2-cell in 2Hilb. Most of these can be
proven from the classical data type axioms (4–6), but some
also rely on the stronger †-Frobenius axioms.

f

Perform a controlled operation

[H ⊗ S; δ ⊗ idS ; idH⊗S ]
f

[H ⊗ S; δ ⊗ idS ; idH⊗S ]

(41)

Perform a measurement

[H; idH ; idH ]
idH

'

[H ⊗H H = H; idH ; idH ]

(42)

Undo classical correlations

[H ⊗H H = H; idH ; idH ]
idH

'
[H; idH ; idH ]

(43)

Extract a copy of the
classical data

[H; δ; idH ] δ

[H ⊗ H, δ ⊗ idH ; idH⊗H ]

(44)

Compare quantum data
with classical data

[H ⊗ H; δ ⊗ idH ; idH⊗H ]
δ†

[H, δ; idH ]

(45)

Copy classical data

[H; δ; δ] δ

[H ⊗ H; δ ⊗ idH ; idH ⊗ δ]

(46)

Compare classical data

[H ⊗ H; δ ⊗ idH ; idH ⊗ δ]
δ†

[H; δ; δ]

(47)

Create uniform classical data

[C; idC; idC] ε†

[H ⊗H H = H; idH ; idH ]

(48)

Forget classical data

[H ⊗H H = H; idH ; idH ]
ε [C; idC; idC]

(49)

G. Compactness

Just as compactness was a crucial feature of Abramsky’s and
Coecke’s original work on categorical semantics of quantum
protocols [2], the same is true here. In our setting, each
1-cell has an ambidextrous adjoint [18]. Given the graphical
dictionary above, we can represent this by the following family
of graphical equations:

= = (50)

= = (51)

These axioms allow us to topologically deform our identities,
leading to protocols with different physical interpretations.

IV. RESULTS ON QUANTUM TELEPORTATION

A. Conventional teleportation

As a first application of our new formalism, we begin by
describing quantum teleportation of a single qubit [8] in our
framework. The protocol is defined by the following graphical
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identity, where Q = C2 is the state space of a qubit:

Bell

Q

Q⊗Q Q⊗Q Q

U

Bell

=

Bell

Q

Q⊗Q Q⊗Q Q

(52)

On the left-hand side of the equation, a state is prepared, a
measurement is performed, and a controlled operation is then
executed. The right-hand diagram is much simpler: the original
qubit exits at the top-right corner without interacting, and the
classical region is disconnected. To assert that the protocol
works as desired is precisely to claim that these composites
are equal 2-cells in 2Hilb.

We now examine the components of the left-hand diagram
in more detail. Executing the quantum teleportation protocol
begins with a single qubit, and the preparation of a Bell state.
At this stage the systems are isolated from any environmental
interaction, and so the adjoining regions are unshaded to
indicate the trivial data type (C, 1, 1). The next stage requires
a Bell-basis measurement on a 2-qubit system, comprising
the initial qubit and one half of the Bell state which has
been prepared. We represent this using a classical data type
(Q⊗Q, δBell, εBell), referred to simply as ‘Bell’, where δBell

and εBell copy and delete the elements of the Bell basis:

|Bell1〉 = 1√
2

(
|00〉 + |11〉

)
|Bell2〉 = 1√

2

(
|00〉 − |11〉

)

|Bell3〉 = 1√
2

(
|01〉 + |10〉

)
|Bell4〉 = 1√

2

(
|01〉 − |10〉

)

Since these are entangled states, the corresponding measure-
ment vertex cannot be decomposed. The final stage of the
protocol involves performing a controlled unitary operation
on the remaining qubit. In our scheme, this is represented by
a linear map U : Q⊗Q⊗Q Q⊗Q⊗Q which is protected
with respect to the appropriate interaction map, which is
defined as follows:

U = |Bell1〉〈Bell1| ⊗
(
1 0
0 1

)
+ |Bell2〉〈Bell2| ⊗

(
1 0
0 −1

)

+|Bell3〉〈Bell3| ⊗
(
0 1
1 0

)
+ |Bell4〉〈Bell4| ⊗

(
0 1
−1 0

)
(53)

It is a short calculation to demonstrate that this satisfies the
protectedness axiom.

The right-hand diagram represents a scenario in which the
qubit is fully preserved, and classical data is created with a
uniform distribution over the Bell basis states. The topological
disconnection between the qubit and the classical region
indicates that the quantum and classical data is uncorrelated.

B. Generalized teleportation

We now focus on the following question: given a basis of a
multi-partite Hilbert space S ⊗ A, can a measurement in this
basis form part of a generalized teleportation protocol for the
system S, where A is an ancilla system? We suppose that our

experiment takes the following form, generalizing that of the
standard teleportation protocol:

B

S

S⊗X S⊗X

X

S

f

Y

ψ

=

B

S

SS⊗X S⊗X

(54)

Here S represents the quantum system whose state is to
be teleported, and X and Y are ancilla systems which are
prepared in a joint state |ψ〉 ∈ X ⊗ Y . The morphism f
represents a controlled operation. We write ‘B’ for the classical
data type on S⊗X which copies elements of our chosen basis.

We now prove the following theorem. Recall a retraction
for a 2-cell is a left inverse under vertical composition.

Theorem IV.1. A nondegenerate bipartite measurement in a
basis B can form part of a generalized teleportation protocol
of the form (54) iff the following composite 2-cell has a
retraction:

B

SS⊗X

S⊗X X

X (55)

Proof: Suppose the protocol (54) can be carried out. Then we
use compactness to deform it in the following way:

B

SS⊗X

S⊗X

f

S

ψ

X

Y
= B

SS⊗X

S⊗X S

(56)

All unknown quantities have been moved into the same part of
the diagram, and surrounded by a dotted box to emphasize that
they can be treated as a single composite 2-cell. It is clear that
the contents of this box gives a retraction for the composite
described in the hypothesis of the theorem.

We now suppose that the composite of the hypothesis has
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a retraction r. This is exactly the following statement:

B

SS⊗X

S⊗X S

r

X

= B

SS⊗X

S⊗X S

(57)

We see that this has the form of a generalized teleportation
protocol, in the sense of (54), for a particular choice of Y and
ψ, which establishes the theorem. �
For any particular basis B, the composite (55) can be con-
structed, and it is then a matter of calculation to see whether
it has a retraction. In fact, for a Bell basis measurement, the
retraction of the composite (55) has a particularly elegant form,
and the algebraic essence of the conventional teleportation
protocol can be presented in the following minimal way:

Bell = Bell (58)

The methodology of the proof of Theorem IV.1 allows us
to establish the following result.

Theorem IV.2. If a nondegenerate bipartite measurement can
form part of a teleportation procedure, then Bell-type shared
entanglement is sufficient.

Proof: By the previous theorem, if the measurement can form
part of a teleportation procedure, then the composite (55) has
a retraction r. This gives equation (57), which is a generalized
teleportation protocol with Bell-type shared entanglement, as
required. �

V. MORE GENERAL PROTOCOLS

A. Introduction

Our graphical calculus allows us to write down general
quantum informatic procedures in a precise way. Quite easily,
schemes can be written down which do not correspond to
anything described in the literature, and it is in general a
difficult problem to decide whether these procedures can
actually be performed.

For reasons of space, we cannot go into great depth here.
We restrict to consideration of the following two schemes:

= = (59,62)

Remarkably, these two protocols are enabled by the same two-
qubit measurement basis, which is constructed geometrically

via a tetrahedron inscribed within the Bloch sphere. Giving this
basis allows these protocols to be implemented in principle.

B. Three-stage teleportation

We have described how the essence of the ordinary telepor-
tation protocol can be reduced to the equation (58), in its
most minimal form. The two vertices of that diagram refer
to the two stages of conventional teleportation: usually, these
comprise measurement and correction steps. We now consider
three-stage teleportation, defined by the following equation:

= (59)

We omit the label on the shaded region representing the
measurement basis. Different topological deformations of the
identity above cause these stages to manifest themselves in
different ways, as according to the graphical library given in
Section III-F. Here is possible deformation:

= (60)

In this form, the three stages manifest as a single measurement
and two controlled operations. Another deformation gives a
different view:

= (61)

The left-hand side of this equation now represents a protocol
involving 7 identical quantum systems, of which pairs
(2, 3), (4, 5) and (6, 7) are prepared in Bell states. Identical
measurements are then performed on qubit pairs (1, 2),
(3, 4) and (5, 6). The results of these measurements are
then compared, and we postselect for the case where all
measurement outcomes are the same.

C. Interlaced teleportation

Interlaced teleportation is represented by the following iden-
tity:

= (62)

A key novel aspect of this protocol is that it involves two
regions of classical data, which interact in a nontrivial way.
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It is possible that this is the first quantum protocol to be
proposed with this property. The design of this protocol is
rather intricate, but it is the simplest protocol we are aware of
with this property for which an implementation can be found.
Unfortunately, we lack the space here to give more details.

D. Implementation

Describing the abstract form of the protocol is a different mat-
ter to establishing whether it can actually be implemented. For
that, we begin by considering a regular tetrahedron inscribed
within a Bloch sphere, in any position:

|0〉〈0|

|1〉〈1|

(63)

Each point on the Bloch sphere corresponds to a rank-
1 projector on C2, and so the vertices of any such tetra-
hedron give rise to four projectors Pi : C2 C2 with
i ∈ {1, 2, 3, 4}. From each projector we build a unitary oper-
ator Ui := (id − Pi) + ωPi, where ω is a third root of unity.
These projectors form the elements of our measurement basis.

Lemma V.1. The set of unitaries Ui form an orthogonal basis.

We can use this basis to form a 2-qubit measurement vertex,
using the canonical isomorphism B(C2) ' C2⊗C2 given by
the computational basis.

Theorem V.2. The basis Ui provides a solution to the three-
stage teleportation equation (59).

Theorem V.3. The basis Ui provides a solution to the
interlaced teleportation equation (62).
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