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We study controller synthesis problems for finite-state Markov decision processes, where 
the objective is to optimize the expected mean-payoff performance and stability (also 
known as variability in the literature). We argue that the basic notion of expressing the 
stability using the statistical variance of the mean payoff is sometimes insufficient, and 
propose an alternative definition. We show that a strategy ensuring both the expected 
mean payoff and the variance below given bounds requires randomization and memory, 
under both the above definitions. We then show that the problem of finding such a strategy 
can be expressed as a set of constraints.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Markov decision processes (MDPs) are a standard model for stochastic dynamic optimization. Roughly speaking, an MDP 
consists of a finite set of states, where in each state, one of the finitely many actions can be chosen by a controller. For 
every action, there is a fixed probability distribution over the states. The execution begins in some initial state where the 
controller selects an outgoing action, and the system evolves into another state according to the distribution associated with 
the chosen action. Then, another action is chosen by the controller, and so on. A strategy is a recipe for choosing actions. In 
general, a strategy may depend on the execution history (i.e., actions may be chosen differently when revisiting the same 
state) and the choice of actions can be randomized (i.e., the strategy specifies a probability distribution over the available 
actions). Fixing a strategy for the controller makes the behaviour of a given MDP fully probabilistic and determines the 
usual probability space over its runs, i.e., infinite sequences of states and actions.

A fundamental concept of performance and dependability analysis based on MDP models is mean payoff. Let us assume 
that every action is assigned some rational reward, which corresponds to some costs (or gains) caused by the action. The 
mean payoff of a given run is then defined as the long-run average reward per executed action, i.e., the limit of partial aver-
ages computed for longer and longer prefixes of a given run. For every strategy σ , the overall performance (or throughput) 
of the system controlled by σ then corresponds to the expected value of mean payoff, i.e., the expected mean payoff. It is 
well known (see, e.g., [23]) that optimal strategies for minimizing/maximizing the expected mean payoff are positional (i.e., 
deterministic and independent of execution history), and can be computed in polynomial time. However, the quality of ser-
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vices provided by a given system often depends not only on its overall performance, but also on its stability (sometimes also 
called variability). For example, an optimal controller for a live video streaming system may achieve the expected through-
put of approximately 2 MBits/sec. That is, if a user connects to the server many times, he gets 2 Mbits/sec connection on 
average. If an acceptable video quality requires at least 1.8 Mbits/sec, the user is also interested in the likelihood that he 
gets at least 1.8 Mbits/sec. That is, he requires a certain level of overall stability in service quality, which can be measured 
by the variance of the mean payoff, called global variance in this paper. The basic computational question is “given rationals 
u and v, is there a strategy that achieves the expected mean payoff u (or better) and variance v (or better)?”. Since the expected 
mean payoff can be “traded” for smaller global variance, we are also interested in approximating the associated Pareto curve
consisting of all points (u, v) such that (1) there is a strategy achieving the expected mean payoff u and global variance v; 
and (2) no strategy can improve u or v without worsening the other parameter.

The global variance says how much the actual mean payoff of a run tends to deviate from the expected mean payoff. 
However, it does not say anything about the stability of individual runs. To see this, consider again the video streaming 
system example, where we now assume that although the connection is guaranteed to be fast on average, the amount of 
data delivered per second may change substantially along the executed run for example due to a faulty network infras-
tructure. For simplicity, let us suppose that performing one action in the underlying MDP model takes one second, and the 
reward assigned to a given action corresponds to the amount of transferred data. The above scenario can be modelled by 
saying that 6 Mbits are downloaded every third action, and 0 Mbits are downloaded in other time frames. Then the user 
gets 2 Mbits/sec connection almost surely, but since the individual runs are apparently “unstable”, he may still see a lot 
of stuttering in the video stream. As an appropriate measure for the stability of individual runs, we propose local variance, 
which is defined as the long-run average of (ri(ω) − mp(ω))2, where ri(ω) is the reward of the i-th action executed in a 
run ω and mp(ω) is the mean payoff of ω. Hence, local variance says how much the rewards of the actions executed along 
a given run deviate from the mean payoff of the run on average. For example, if the mean payoff of a run is 2 Mbits/sec 
and all of the executed actions deliver 2 Mbits, then the run is “absolutely smooth” and its local variance is zero. The level 
of “local stability” of the whole system (under a given strategy) then corresponds to the expected local variance. The basic 
algorithmic problem for local variance is similar to the one for global variance, i.e., “given rationals u and v, is there a strategy 
that achieves the expected mean payoff u (or better) and the expected local variance v (or better)?”. We are also interested in the 
underlying Pareto curve.

Observe that the global variance and the expected local variance capture different and to a large extent independent
forms of systems’ (in)stability. Even if the global variance is small, the expected local variance may be large, and vice versa.

1.1. The results

Our results are as follows:

1. (Global variance). The global variance problem was considered before in [26], but only under the restriction of memo-
ryless strategies. We first show that in general, randomized memoryless strategies are not sufficient for Pareto optimal 
points for global variance (Example 1). We then establish that 2-memory strategies are sufficient, and that the problem 
of existence of a strategy can be reduced to the problem of finding a solution of a set of non-linear constraints. We 
show that the basic algorithmic problem for global variance is in PSPACE, and the approximate version can be solved in 
pseudo-polynomial time.

2. (Local variance). The local variance problem comes with new conceptual challenges. For example, for unichain MDPs, 
deterministic memoryless strategies are sufficient for global variance, whereas we show (Example 2) that even for 
unichain MDPs both randomization and memory are required for local variance. We establish that 3-memory strategies 
are sufficient for Pareto optimality for local variance, and again give a set of non-linear constraints describing the 
existence of a strategy. We show that the basic algorithmic problem (and hence also the approximate version) is in NP.

3. (Zero variance). Finally, we consider the problem where the variance is optimized to zero (as opposed to a given 
non-negative number in the general case). In this case, we present polynomial-time algorithms to compute the op-
timal mean-payoff that can be ensured with zero variance (if zero variance can be ensured) for both the cases. The 
polynomial-time algorithms for zero variance for mean-payoff objectives is in sharp contrast to the NP-hardness for 
cumulative reward MDPs [19].

To prove the above results, one has to overcome various obstacles. For example, although at multiple places we build on 
the techniques of [13] and [2] which allow us to deal with maximal end components (sometimes called strongly commu-
nicating sets) of an MDP separately, we often need to extend these techniques. Unlike the works [13] and [2] which study 
multiple “independent” objectives, in the case of the global variance any change of value in the expected mean payoff im-
plies a change of value of the variance. Also, since we do not impose any restrictions on the structure of the strategies, we 
cannot even assume that the limits defining the mean payoff and the respective variances exist; this becomes most apparent 
in the case of the local variance, where we need to rely on delicate techniques of selecting runs from which the limits can 
be extracted. Another complication is that while most of the work on multi-objective controller synthesis for MDPs deals 
with linear objective functions, our objective functions are inherently quadratic due to the definition of variance. Finally, 
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Table 1
Summary of the results, where LB and UB denotes lower- and upper-bound, respectively.

Memory size Non-linear constr. 
in encoding

Complexity Approx. 
complexity

Global 2-memory 1 quadratic, PSPACE Pseudo-poly.
LB: Example 1 1 cubic (Corollary 1) (Corollary 2)
UB: Theorem 1 (Theorem 1)

Local LB: 2-memory Several cubic NP NP
(Example 2) (Theorem 2) (Corollary 4)

UB: 3-memory
(Corollary 5)

mean-payoff objectives with global variance was considered in [26], but only for the special class of memoryless strate-
gies. The solution for general strategies is significantly more involved for the following reasons: first, for general strategies 
it is not clear that limits defining the mean-payoff objectives exist; second, upper bounds on memory for general strate-
gies is also not clear; and finally, encoding strategies with memory as optimization problem is far more non-trivial than 
memoryless strategies.

The summary of our results is presented in Table 1. A simple consequence of our results is that the Pareto curves can be 
approximated in pseudo-polynomial time in the case of the global variance, and in exponential time for the local variance.

1.2. Related work

Studying the trade-off between multiple objectives in an MDP has attracted significant attention in the recent years 
(see [1] for an overview). In the formal verification area, MDPs with multiple mean-payoff objectives [2], discounted objec-
tives [9], cumulative reward objectives [17], and multiple ω-regular objectives [13] have been studied. As for the stability 
of a system, the variance-penalized mean-payoff problem (where the mean payoff is penalized by a constant times the 
variance) under memoryless (stationary) strategies was studied in [14]. The mean-payoff variance trade-off problem for 
unichain MDPs was considered in [10], where a solution using quadratic programming was designed; under memoryless 
strategies the problem was considered in [26]. All the above works for mean-payoff variance trade-off consider the global 
variance, and are restricted to memoryless strategies. The problem for general strategies and global variance was not solved 
before. Although restrictions to unichains or memoryless strategies are feasible in some areas, many systems modelled as 
MDPs might require more general approach. For example, a decision of a strategy to shut the system down might make it 
impossible to return the running state again, yielding a non-unichain MDP. Similarly, it is natural to synthesise strategies 
that change their decisions over time.

As regards other types of objectives, no work considers the local variance problem. The (global) variance problem for 
discounted reward MDPs was studied in [25]. The trade-off of expected value and variance of cumulative reward in MDPs 
was studied in [19], showing NP-hardness already for the case where the goal is to achieve zero variance.

A preliminary version of this paper was presented as a conference publication [3]. The present version contains complete 
proofs, and also presents a direct encoding for solving the local variance problem. The conference publication also contained 
a notion of hybrid variance, which for focused presentation is omitted from this article.

2. Preliminaries

We use N, Z, Q, and R to denote the sets of positive integers, integers, rational numbers, and real numbers, respectively. 
Given a set X of elements and x ∈ X , we define Ix : X → {0, 1} to be the indicator function for x, i.e., the function satisfying 
Ix(x′) = 1 if x = x′ , and Ix(x′) = 0 otherwise.

We assume familiarity with basic notions of probability theory, e.g., probability space, random variable, or expected value. 
As usual, a probability distribution over a finite or countable set X is a function f : X → [0, 1] such that 

∑
x∈X f (x) = 1. We 

call f Dirac if f (x) = 1 for some x ∈ X . The set of all distributions over X is denoted by dist(X).
For our purposes, a Markov chain is a triple M = (L, → ,μ) where L is a finite or countably infinite set of locations, 

→ ⊆ L × (0,1] × L is a transition relation such that for each fixed � ∈ L, 
∑

�
x→�′ x = 1, and μ is the initial probability distri-

bution on L. A run in M is an infinite sequence ω = �1�2 . . . of locations such that �i
xi→�i+1 for every i ∈ N. A finite path in 

M is a finite prefix of a run. Each finite path w in M determines the set Cone(w) consisting of all runs that start with w . 
To M we associate the probability space (RunsM , F , P), where RunsM is the set of all runs in M , F is the σ -field generated 
by all Cone(w) for finite paths w , and P is the unique probability measure such that P(Cone(�1, . . . , �k)) = μ(�1) · ∏k−1

i=1 xi , 
where �i

xi→�i+1 for all 1 ≤ i < k (the empty product is equal to 1).

2.1. Markov decision processes

A Markov decision process (MDP) is a tuple G = (S, A, Act, δ) where S is a finite set of states, A is a finite set of actions, 
Act : S → 2A \ {∅} is an action enabledness function that assigns to each state s the set Act(s) of actions enabled at s, and 
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δ : S × A → dist(S) is a probabilistic transition function that given a state s and an action a ∈ Act(s) enabled at s gives a 
probability distribution over the successor states. For notational simplicity, we assume that every action is enabled in exactly 
one state, and we denote this state Src(a); such assumption can be imposed without loss of generality, since any MDP can 
be transformed to this form in polynomial time. Thus, henceforth we will assume that δ : A → dist(S).

A run in G is an infinite alternating sequence of states and actions ω = s1a1s2a2 . . . such that for all i ≥ 1, Src(ai) = si and 
δ(ai)(si+1) > 0. We denote by RunsG the set of all runs in G . A finite path of length k in G is a finite prefix w = s1a1 . . .ak−1sk
of a run, and we use last(w) = sk for the last state of w . Given a run ω ∈ RunsG , we denote by Ai(ω) the i-th action ai
of ω. Given a set F of states (resp. actions), we define Reach(F ) to be the set of all runs that contain a state (resp. action) 
from F .

A pair (T , B) with ∅ 
= T ⊆ S and B ⊆ ⋃
t∈T Act(t) is an end component (or strongly communicating set) of G if (1) for 

all a ∈ B , if δ(a)(s′) > 0 then s′ ∈ T ; and (2) for all s, t ∈ T there is a finite path w = s1a1 . . .ak−1sk such that s1 = s, sk = t , 
and all states and actions that appear in w belong to T and B , respectively. An end component (T , B) is a maximal end 
component (MEC) if it is maximal wrt. pointwise subset ordering. The set of all MECs of G is denoted by M(G). Given an 
end component C = (T , B), we sometimes abuse notation by considering C as the disjoint union of T and B (e.g., we write 
S ∩ C to denote the set T ). For a given C ∈ M(G), we use RC to denote the set of all runs ω = s1a1s2a2 . . . that eventually 
stay in C , i.e., there is k ∈N such that for all k′ ≥ k we have that sk′ , ak′ ∈ C .

An MDP is strongly connected if all its states form a single (maximal) end component. A strongly connected MDP is a 
unichain if for all end components (T , B) we have T = S .

Sometimes we also unify a MEC C with a MDP obtained from G by restricting the set of states and actions to those in C , 
and by restricting Act and δ accordingly.

2.2. Strategies and plays

Intuitively, a strategy (sometimes called policy) in an MDP G is a “recipe” to choose actions. Usually, a strategy is formally 
defined as a function σ : (S A)∗ S → dist(A) that given a finite path w , representing the execution history, gives a probability 
distribution over the actions enabled in last(w). In this paper we adopt a definition which is equivalent to the standard one, 
but more convenient for our purpose. Let M be a finite or countably infinite set of memory elements. A strategy is a triple 
σ = (updσ , nextσ , initσ ), where updσ : A × S × M → dist(M) and nextσ : S × M → dist(A) are memory update and next move
functions, respectively, and initσ is an initial distribution on memory elements. We require that for all (s, m) ∈ S × M, the 
distribution nextσ (s, m) assigns a positive value only to actions enabled at s. The set of all strategies is denoted by � (the 
underlying MDP G will be always clear from the context).

A play of G determined by an initial state s ∈ S and a strategy σ is a Markov chain Gσ
s (or Gσ if s is clear from the 

context) where the set of locations is S ×M × A, the initial distribution μ is positive only on (some) elements of {s} ×M × A
where μ(s, m, a) = initσ (m) · nextσ (s, m)(a), and (t, m, a)

x→ (t′, m′, a′) iff x = δ(a)(t′) · updσ (a, t′, m)(m′) · nextσ (t′, m′)(a′) > 0. 
Hence, Gσ

s starts in a location chosen randomly according to initσ and nextσ . In a current location (t, m, a), the next ac-
tion to be performed is a, hence the probability of entering t′ is δ(a)(t′). The probability of updating the memory to m′
is updσ (a, t′, m)(m′), and the probability of selecting a′ as the next action is nextσ (t′, m′)(a′). Since these choices are inde-
pendent (in the probability theory sense), we obtain the product above. We use Pσ

s for the probability measure induced 
by Gσ

s .
Note that every run in Gσ

s determines a unique run in G . Hence, every notion originally defined for the runs in G can 
also be used for the runs in Gσ

s , and we use this fact implicitly at many places in this paper. For example, we use the 
symbol RC to denote the set of all runs in Gσ

s that eventually stay in C , certain functions originally defined over RunsG are 
interpreted as random variables over the runs in Gσ

s , etc.

2.3. Strategy types

In general, a strategy may use infinite memory, and both updσ and nextσ may use randomization. A strategy σ is 
deterministic if initσ is Dirac and both the memory update and the next move functions give a Dirac distribution for every 
argument. A randomized strategy is a strategy which is not necessarily deterministic. We also classify the strategies according 
to the size of memory they use. Important subclasses are memoryless strategies, in which M is a singleton, n-memory
strategies, in which M has exactly n elements, and finite-memory strategies, in which M is finite.

For a finite-memory strategy σ , a bottom strongly connected component (BSCC) of Gσ
s is a subset of locations 

W ⊆ S × M × A such that for all �1 ∈ W and �2 ∈ S × M × A we have that �2 ∈ W if and only if �2 is reachable from �1. 
We use B(Gσ

s ) for the set of all BSCCs of Gσ
s . Every BSCC W determines a unique end component ({s | (s, m, a) ∈ W },

{a | (s, m, a) ∈ W }), and we sometimes do not distinguish between W and its associated end component.
Let ν be a memoryless randomized strategy on a MEC C and let K be a BSCC of Cν . We say that a strategy μK is induced

by K if

1. μK (s)(a) = ν(s)(a) for all s ∈ K ∩ S and a ∈ K ∩ A
2. in all s ∈ S � (K ∩ S) the strategy μK corresponds to a memoryless deterministic strategy which reaches a state of K

with probability one
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Note that the above definition of induced strategy is independent of the strategy ν: it only depends on the BSCC K , and on 
the way K is reached.

2.4. Global and local variance

Let G = (S, A, Act, δ) be an MDP. A reward function is a function r : A → Q, and we define the mean payoff of a run 
ω ∈ RunsG with respect to r by

mp(ω) = lim sup
n→∞

1

n

n−1∑
i=0

r(Ai(ω)) .

The expected value and variance of mp in Gσ
s are denoted by Eσ

s [mp] and Vσ
s [mp], respectively (recall that Vσ

s [mp] =
Eσ

s

[
(mp −Eσ

s [mp])2
] = Eσ

s

[
mp2

] − Eσ
s [mp]2). Intuitively, Eσ

s [mp] corresponds to the “overall performance” of Gσ
s , and 

Vσ
s [mp] is a measure of “global stability” of Gσ

s indicating how much the mean payoff of runs in Gσ
s tends to deviate 

from Eσ
s [mp] (see Section 1). In the rest of this paper, we refer to Vσ

s [mp] as global variance.
The stability of a given run ω ∈ RunsG (see Section 1) is measured by its local variance defined as follows:

lv(ω) = lim sup
n→∞

1

n

n−1∑
i=0

(
r(Ai(ω)) − mp(ω)

)2

Note that lv(ω) is not really a “variance” in the usual sense of probability theory.1 We call the function lv(ω) “local variance” 
because we find this name suggestive; lv(ω) is the long-run average square of the distance from mp(ω). The expected value 
of lv in Gσ

s is denoted by Eσ
s [lv].

If we need to stress which reward function is being considered, we will write it in the superscript, for example mpr ; in 
particular, by mpIa we will denote the mean payoff with respect to the reward function that returns 1 for a and 0 for other 
actions.

From now on, we restrict ourselves to reward functions which only assign non-negative rewards. This is w.l.o.g., since for 
a reward function r we can define r′ given by r′(a) = r(a) + mina′∈A r(a′) for all a, and under any strategy σ the expected 
mean payoff wrt. r′ is by mina′∈A r(a′) greater than the one wrt. r, and the variances remain unchanged.

2.5. Pareto optimality

A Pareto curve for an initial state s wrt. global variance is the set of points (u, v) such that for all ε > 0 there is a 
strategy σ with (Eσ

s [mp] , Vσ
s [mp]) ≤ (u, v) + (ε, ε), and there is no strategy ζ with (Eζ

s [mp] , Vζ
s [mp]) < (u, v), where ≤

is the standard component-wise ordering. A point (u, v) is a Pareto point if it lies on the Pareto curve. A strategy σ is 
Pareto optimal in s wrt. global variance if (Eσ

s [mp] , Vσ
s [mp]) is a Pareto point. We say that σ achieves (u, v) whenever 

(Eσ
s [mp] , Vσ

s [mp]) ≤ (u, v), and (u, v) is then called achievable.
Similarly, we define a Pareto curve and Pareto optimality of σ wrt. the local variance by replacing Vα

s [mp] with Eα
s [lv].

2.6. Frequency functions

Let C be a MEC. We say that f : C ∩ A → [0, 1] is a frequency function on C if

• ∑
a∈C∩A f (a) = 1

• ∑
a∈C∩A f (a) · δ(a)(s) = ∑

a∈C∩Act(s) f (a) for every s ∈ C ∩ S

Define mp[ f ] := ∑
a∈C∩A f (a) · r(a) and lv[ f ] := ∑

a∈C∩A f (a) · (r(a) − mp[ f ])2.

2.7. The studied problems

In this paper, we study the following basic problems connected to the two stability measures introduced above (below 
V σ

s is either Vσ
s [mp] or Eσ

s [lv]):

• Pareto optimal strategies and their memory. Do Pareto optimal strategies exist for all points on the Pareto curve? Do Pareto 
optimal strategies require memory and randomization in general? Do strategies achieving non-Pareto points require 
memory and randomization in general?

1 By investing some effort, one could perhaps find a random variable X such that lv(ω) is the variance of X , but this question is not really relevant—we 
only use lv as a random variable which measures the level of local stability of runs. One could perhaps study the variance of lv, but this is beyond the scope of 
this paper.
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• Deciding strategy existence. For a given MDP G , an initial state s, a rational reward function r, and a point (u, v) ∈ Q2, 
we ask whether there exists a strategy σ such that (Eσ

s [mp] , V σ
s ) ≤ (u, v).

• Approximation of strategy existence. For a given MDP G , an initial state s, a rational reward function r, a number ε and a 
point (u, v) ∈ Q2, we want to get an algorithm which (a) outputs “yes” if there is a strategy σ such that (Eσ

s [mp] , V σ
s ) ≤

(u − ε, v − ε); (b) outputs “no” if there is no strategy such that (Eσ
s [mp] , V σ

s ) ≤ (u, v).
• Strategy synthesis. For a given MDP G , an initial state s, a rational reward function r, and a point (u, v) ∈ Q2, if there 

exists a strategy σ such that (Eσ
s [mp] , V σ

s ) ≤ (u, v), we wish to compute such strategy. Note that it is not a priori clear 
that σ is finitely representable, and hence we also need to answer the question what type of strategies is needed to 
achieve Pareto optimal points.

Remark 1. If the approximation of strategy existence problem is decidable, we design the following algorithm to approximate 
the Pareto curve up to an arbitrarily small given ε > 0. We compute a finite set of points P ⊆ Q2 such that (1) for every 
Pareto point (u, v) there is (u′, v ′) ∈ P with (|u − u′|, |v − v ′|) ≤ (ε, ε), and (2) for every (u′, v ′) ∈ P there is a Pareto point 
(u, v) such that (|u − u′|, |v − v ′|) ≤ (ε, ε). Let R = maxa∈A |r(a)|. Note that |Eσ

s [mp] | ≤ R and V σ
s ≤ R2 for an arbitrary 

strategy σ . Hence, the set P is computable by a naive algorithm which decides the approximation of strategy existence for 
O(|R|3/ε2) points in the corresponding ε-grid and puts O(|R|2/ε) points into P . The question whether the Pareto curves 
can be approximated more efficiently by sophisticated methods based on deeper analysis of their properties is left for future 
work.

In the rest of this paper, unless specified otherwise, we suppose we work with a fixed MDP G = (S, A, Act, δ), an initial 
state sin , and a reward function r : A →Q.

2.8. Basic properties of MECs and strategies

At several places of this paper we will proceed by analysing MECs separately and then devising results by combining 
the sub-results for each respective MEC. For this purpose, we will use several technical results, which we state in the three 
lemmas below.

Lemma 1 ([11]). Almost all runs eventually end in a MEC, i.e., for all σ and s we have Pσ
s

[⋃
C∈M(G) RC

]
= 1.

Let G be an MDP, and let G ′ be an auxiliary MDP obtained from G by adding a state ds for every state s ∈ S , an action 
as that leads to ds from s, and a self-loop on ds . The following lemma is a direct adaptation of [2, Lemma 3].

Lemma 2 ([2]). Let σ be a strategy for G. Then there is a memoryless strategy σ̄ in G ′ such that Pσ
sin

[RC ] = Pσ̄
sin

[Reach({ds | s ∈ C})]
for all MECs C.

The following lemma will allow us to combine a “transient” strategy for reaching MECs with “recurrent” strategies that 
describe the behaviour in MECs.

Lemma 3. Let � be a distribution on {1, . . . , n} × M(G). Further, let σ and π1, . . . , πn be strategies such that Eπi
t [mp] = E

πi
t′ [mp]

and Eπi
t [lv] = E

πi
t′ [lv] for all 1 ≤ i ≤ n, all C ∈M(G), and all t, t′ ∈ C ∩ S. Then there is a strategy σ ′ such that

Eσ ′
sin

[X] =
∑

C∈M(G)

Eσ
sin

[RC ] ·
n∑

i=1

�(i)(C) ·Eπi
t [X]

for X ∈ {mp, lv}, where t is any state of C (note that the corresponding values are equal for all states of C); and if for all 1 ≤ i ≤ n
almost all runs under πi have the same mean payoff Eπi

t [mp], then also

Vσ ′
sin

[mp] = ( ∑
C∈M(G)

Eσ
sin

[RC ] ·
n∑

i=1

�(i)(C) ·Eπi
t [mp]2 )

− ( ∑
C∈M(G)

Eσ
sin

[RC ] ·
n∑

i=1

�(i)(C) ·Eπi
t [mp]

)2

where t is any state of C. Moreover, σ ′ can be constructed so that its memory is the sum of memory sizes of πi for all 1 ≤ i ≤ n plus 
one.

Proof. We first apply Lemma 2 to σ and obtain a memoryless strategy σ̂ for G ′ above such that Pσ
sin

[RC ] =
Pσ̄

s [Reach({ds | s ∈ C})] for all MECs C . The strategy σ ′ plays according to σ̂ until just before reaching ds for some s

in
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Fig. 1. An MDP witnessing the need for memory and randomization in Pareto optimal strategies for global variance.

contained in a MEC C . Instead of transitioning to ds , the strategy σ ′ starts playing as πi , with probability �(i, C) for the 
MEC C containing s. The required properties follow easily by the law of total expectation and the definition of variance.

Formally, the set of memory elements of σ ′ is the union of the sets of memory elements of all σ̂ , π1, . . . , πn . We use 
min for the single memory element of σ̂ , and Mi for the set of memory elements of πi . The strategy σ ′ is defined by letting 
initσ ′ = initσ̂ = min , and for all for all s ∈ S and a ∈ A and memory elements m:

nextσ ′(s,m)(a)

=
{

nextσ̂ (s,m)(a) + nextσ̂ (s,m)(as) · ∑n
i=1 �(i, C) · πi(s)(a) if m = min

nextπi (s,m)(a) if m ∈ Mi for some 1 ≤ i ≤ n

and

updσ ′(a, s,m)(m′)

=

⎧⎪⎪⎨⎪⎪⎩
updσ̂ (a, s,m)(m′) · nextσ̂ (s,m)(a)

nextσ ′ (s,m)(a)
if m = m′ = min

updπi
(a, s,m)(m′) · nextσ̂ (s,m)(as)·�(i,C)·πi(s)(a)

nextσ ′ (s,m)(a)
if m = min and m′ ∈ Mi

updπi
(a, s,m)(m′) if m ∈ Mi for some 1 ≤ i ≤ n

where πi(s)(a) = ∑
m′∈Mi

initπi (m
′) · nextπi (s, m′)(a) and C is the MEC containing s. �

3. Global variance

In this section we study the global variance problem, which was considered in [26] for memoryless strategies.

Basic open questions. Given the previous results of [26] the following basic questions remained open for the global variance 
problem:

1. Are memoryless strategies sufficient, or are strategies with memory more powerful?
2. If memoryless strategies are not sufficient, then can an upper bound on the memory of strategies be established for 

sufficiency?
3. Is the problem decidable for general strategies?

We start by proving that both memory and randomization are needed even for achieving non-Pareto points; this implies 
that memory and randomization is needed even to approximate the value of Pareto points. Then we show that 2-memory 
strategies are sufficient, which gives a tight bound. We will also establish decidability in PSPACE. Thus our results answer 
all the basic open questions.

Example 1. Consider the MDP of Fig. 1, with the rewards of actions as given next to the action names. Observe that the 
point (4, 2) is achievable by a strategy σ which selects c with probability 4

5 and d with probability 1
5 upon the first visit 

to s3; in every subsequent visit to s3, the strategy σ selects c with probability 1. Hence, σ is a 2-memory randomized 
strategy which stays in MEC C = ({s3}, {c}) with probability

Pσ
s1

[RC ] = Pσ
s1

[Cone(s1as3)] = 1

2
· 4

5
= 2

5
.

Clearly,

Eσ
s1

[mp] = Pσ
s1

[Cone(s1as2)] ·Eσ
s1

[mp | Cone(s1as2)]

+ Pσ
s1

[Cone(s1as3cs3)] ·Eσ
s1

[mp | Cone(s1as3cs3)]

+ Pσ
s1

[Cone(s1as3ds4)] ·Eσ
s1

[mp | Cone(s1as3ds4)]

= 1

2
· 4 + 1

2
· 4

5
· 5 + 1

2
· 1

5
· 0 = 4
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Isin (t) +
∑
a∈A

ya · δ(a)(t) =
∑

a∈Act(t)

ya + yt for all t ∈ S (1)

∑
C∈M(G)

∑
t∈S∩C

yt = 1 (2)

αC ≤ xC ≤ βC for all C ∈M(G) (3)

u ≥
∑

C∈M(G)

xC ·
∑

t∈S∩C

yt (4)

v ≥
( ∑

C∈M(G)

x2
C ·

∑
t∈S∩C

yt

)
−

( ∑
C∈M(G)

xC ·
∑

t∈S∩C

yt

)2
(5)

Fig. 2. The system Lglob .

and similarly

Vσ
s1

[mp] = Eσ
s1

[
mp2

]
−Eσ

s1
[mp]2 = 1

2
· 42 + 1

2
· 4

5
· 52 + 1

2
· 1

5
· 02 − 42 = 2

Further, note that every strategy σ̄ which stays in C with probability x satisfies Eσ̄
s1

[mp] = 1
2 · 4 + x · 5 and Vσ̄

s1
[mp] =

1
2 · 42 + x · 52 − (2 + x · 5)2. For x > 2

5 we get Eσ̄
s1

[mp] > 4, and for x < 2
5 we get Vσ̄

s1
[mp] > 2, so (4, 2) is indeed a Pareto 

point. Every deterministic (resp. memoryless) strategy can end in C with probability either 1
2 or 0, giving Eσ̄

s1
[mp] = 9

2
or Vσ̄

s1
[mp] = 4. So, both memory and randomization are needed to achieve the Pareto point (4, 2) or a non-Pareto point 

(4.1, 2.1).

Interestingly, if the MDP is strongly connected, memoryless deterministic strategies always suffice, because in this case a 
memoryless strategy that minimizes the expected mean payoff immediately gets zero variance. This is in contrast with the 
local variance, where we will show that memory and randomization is required in general already for unichain MDPs. For 
the general case of global variance, the sufficiency of 2-memory strategies is captured by Theorem 1 below.

By using standard linear programming methods (see, e.g., [23]), for every C ∈M(G) we can compute the minimal and the 
maximal expected mean payoff achievable in C , denoted by αC and βC , in polynomial time (since C is strongly connected, 
the choice of the initial state is irrelevant). Thus, we can also compute the system Lglob of Fig. 2 in polynomial time. We 
show the following:

Theorem 1. Let u, v ∈R. The following two statements hold true.

1. If there is a strategy ζ with (Eζ
sin [mp] , Vζ

sin [mp]) ≤ (u, v) then the system Lglob of Fig. 2 has a non-negative solution.
2. If the system Lglob of Fig. 2 has a non-negative solution, then there is a 2-memory strategy σ with (Eσ

sin
[mp] , Vσ

sin
[mp]) ≤ (u, v).

In addition, it is possible to construct σ so that there is a number z such that for all C ∈ M(G) we have Vσ
sin

[mp | RC ] = 0, and 
also have the following: If αC > z, then Eσ

sin
[mp | RC ] = αC ; if βC < z, then Eσ

sin
[mp | RC ] = βC ; otherwise Eσ

sin
[mp | RC ] = z.

Observe that the existence of Pareto optimal strategies follows from the above theorem, since we define points (u, v)

that strategies can achieve by a continuous function from values xC and 
∑

t∈S∩C yt for C ∈M(G) to R2. Because the domain 
is bounded (all xC and 

∑
t∈S∩C yt have minimal and maximal values) and closed (the points of the domain are expressible 

as a projection of feasible solutions of a linear program), it is also compact, and a continuous map of a compact set is 
compact (see, e.g., [24]), and hence closed.

3.1. Proof of Item 1 of Theorem 1 (from strategy to solution of constraints)

Our proof of Theorem 1 combines new techniques with results of [2] and [13]. We start with Item 1. Let ζ be a strategy 
satisfying (Eζ

sin [mp] , Vζ
sin [mp]) ≤ (u, v). The way how ζ determines the values of all yκ , where κ ∈ S ∪ A, is exactly the same 

as in [2], but for clarity we outline the proof here.
Consider the MDP G ′ introduced before Lemma 2. By Lemma 2 there is a strategy ζ ′ for G ′ such that Pζ

sin [RC ] =
P

ζ ′
sin [Reach({ds | s ∈ C})]. Since G ′ satisfies the conditions of [13, Theorem 3.2], we get a solution ȳ to the linear program 

of [13, Figure 3] where for all C we have 
∑

s∈C∩S ȳds = P
ζ
sin [RC ]. This solution gives us a solution to (1)–(2) by yt := ȳdt

for all t ∈ S , and ya := ȳ(s,a) for all a (note that the state s is given uniquely as the state in which a is enabled). Because 
ȳdt = yt , we get that 

∑
t∈C∩S yt = ∑

t∈C∩S ȳdt = P
ζ
sin [RC ].

The value of xC is the conditional expected mean payoff under the condition that a run stays in C , i.e., xC = E
ζ
sin [mp | RC ]. 

Hence, αC ≤ xC ≤ βC , which means that (3) is satisfied. Further, Eζ
s [mp] = ∑

C∈M(G) xC · ∑
t∈S∩C yt by the law of total 
in
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expectation and by Lemma 1, and hence (4) holds. Note that Vζ
s [mp] is not necessarily equal to the right-hand side of (5), 

and hence it is not immediately clear why (5) should hold. Here we need the following lemma.

Lemma 4. Let C ∈ M(G), and let zC ∈ [αC , βC ]. Then there exists a memoryless randomized strategy σzC such that for every state 
t ∈ C ∩ S we have P

σzC
t [mp=zC ] = 1.

Proof. Given a memoryless strategy σ and an action a, we use fσ (a) = Eσ
s

[
limi→∞ 1

i Ia(Ai)
]

for the frequency of action a.

Let σ1 and σ2 be memoryless deterministic strategies that minimize and maximize the expectation, respectively, and 
only yield one BSCC for any initial state. Let σ ′ be arbitrary memoryless randomized strategy that visits every action in C
with nonzero frequency (such strategy clearly exists). We define the strategy σzC as follows. If zC = ∑

a∈C∩A fσ2 (a) · r(a), 
then σzC = σ2, and the result follows by the Ergodic theorem for Markov chains (see, e.g., [21, Theorem 1.10.2]). If zC >∑

a∈C∩A fσ ′ (a) · r(a), then, because also zC <
∑

a∈C∩A fσ2 (a) · r(a), there must be a number p ∈ (0, 1] such that

zC = p ·
( ∑

a∈C∩A

fσ ′(a) · r(a)
)

+ (1 − p) ·
( ∑

a∈C∩A

fσ2(a) · r(a)
)

(6)

We define numbers za = p · fσ ′ (a) + (1 − p) · fσ2 (a) for all a ∈ C ∩ A. Observe that we have, for any s ∈ C∑
a∈C∩A

za · δ(a)(s) =
∑

a∈C∩A

(
p · fσ ′(a) · δ(a)(s) + (1 − p) · fσ2(a) · δ(a)(s)

)
(def of za)

= p ·
( ∑

a∈C∩A

fσ ′(a) · δ(a)(s)
)

+ (1 − p) ·
( ∑

a∈C∩A

fσ2(a) · δ(a)(s)
)

(rearranging)

= p ·
( ∑

a∈Act(s)

fσ ′(a)
)

+ (1 − p) ·
( ∑

a∈Act(s)

fσ2(a)
)

(prop. of frequency functions)

=
∑

a∈Act(s)

(
p · fσ ′(a) + (1 − p) · fσ2(a)

)
(rearranging)

Hence, using [23, Section 9.3] we get a memoryless randomized strategy σzC which for any starting state in C gets the 
expected mean payoff( ∑

a∈C∩A

p · fσ ′(a) · r(a)
)

+
( ∑

a∈C∩A

(1 − p) · fσ2(a) · r(a)
)

= p ·
( ∑

a∈C∩A

fσ ′(a) · r(a)
)

+ (1 − p) ·
( ∑

a∈C∩A

fσ2(a) · r(a)
)

(rearranging)

= zC (by (6))

and because every action has non-zero frequency, by the Ergodic theorem for Markov chains almost every run has the same 
mean payoff. For the case zC <

∑
a∈C∩A fσ ′ (a) · r(a) we proceed similarly, this time combining σ ′ with σ1 instead of σ2. �

Using Lemma 3 and Lemma 4, we can define another strategy ζ ′ from ζ such that for every C ∈ M(G) we have the 
following: (1) the probability of RC in Gζ

s and in Gζ ′
s is the same; (2) almost all runs ω ∈ RC satisfy mp(ω) = xC . This means 

that Eζ
s [mp] = E

ζ ′
s [mp], and we show:

Lemma 5. Vζ
s [mp] ≥V

ζ ′
s [mp].

Proof. Since by law of total variance V(Z) = E(V(Z | Y )) + V(E(Z | Y )) for all random variables Y and Z , we have for 
σ ∈ {ζ, ζ ′}:

Vσ
s [mp] =

( ∑
C∈M(G)

Pσ
s [RC ] ·Vσ

s [mp | RC ]
)

+V(X)

where X is the random variable which to every run of RC assigns Eσ
s [mp | RC ]. Note that the random variables X are equal 

for both ζ and ζ ′ , and so also the second summands in the equation above are equal for ζ and ζ ′ . In the first summand, all 
the values Vζ

s [mp | RC ] are nonnegative, while Vζ ′
s [mp | RC ] are zero. Consequently the variance can only decrease when we 

take ζ instead of ζ ′ . �
Hence, (Eζ ′

s [mp] , Vζ ′
s [mp]) ≤ (u, v), and therefore (1)–(4) also hold if we use ζ ′ instead of ζ to determine the values of 

all variables. Further, the right-hand side of (5) is equal to Vζ ′
s [mp], and hence (5) holds. This completes the proof of Item 1.



T. Brázdil et al. / Journal of Computer and System Sciences 84 (2017) 144–170 153
3.2. Proof of Item 2 of Theorem 1 (from solution of constraints to strategy)

Item 2 of Theorem 1 is proved as follows. Let yκ , where κ ∈ S ∪ A, and xC , where C ∈M(G), be a non-negative solution 
of Lglob . For every C ∈ M(G), we put yC = ∑

t∈S∩C yt . By using [2, Lemma 4.4] (note that (1) and (2) are exactly the 
corresponding constraints in [2]), we construct a finite-memory strategy � such that P�

sin [RC ] = yC . Further, we consider a 
memoryless randomized strategy π which for every MEC C and its state t satisfies Pπ

t [mp=xC ] = 1; such strategy exists by 
Lemma 4. Then using Lemma 3 we obtain a 2-memory strategy σ̂ with (Eσ̂

sin
[mp] , Vσ̂

sin
[mp]) ≤ (u, v).

Finally, we transform σ̂ into another 2-memory strategy σ which satisfies the additional conditions of Item 2 for a 
suitable z. This is achieved by modifying the behaviour of σ̂ in some MECs so that the probability of staying in every 
MEC is preserved, the expected mean payoff is also preserved, and the global variance can only decrease. Here we use the 
following technical lemma.

Lemma 6. Let B be a finite set with distinguished elements b1, . . .bn, b′
1 . . .b′

m ∈ B, let X, Y : B → R be random variables, and let 
d1, . . .dn, d′

1, . . .d′
m ≥ 0 be numbers satisfying the following:

a. For all b /∈ {b1, . . .bn, b′
1 . . .b′

m} we have X(b) = Y (b).
b. There is x such that for all 1 ≤ i ≤ n and 1 ≤ j ≤ m we have Y (bi) ≤ x and Y (b′

j) ≥ x.
c. X(bi) + di = Y (bi) for all 1 ≤ i ≤ n.
d. X(b j) − d′

j = Y (b j) for all 1 ≤ j ≤ m.
e. E(X) = E(Y ).

Then V(X) ≥V(Y ).

Proof. We need to show that E(X2) −E(X)2 ≥ E(Y 2) −E(Y )2 and because the expectations are equal by e. above, it suffices 
to prove that E(Y 2) −E(X2) is non-positive. We have

E(Y 2) −E(X2) =
∑
b∈B

Y (b)2 · P(b) −
∑
b∈B

X(b)2 · P(b) (by def. of expectation)

=
n∑

i=1

Y (bi)
2 · P(bi) +

m∑
j=1

Y (b′
j)

2 · P(b j)

−
n∑

i=1

X(bi)
2 · P(bi) −

m∑
j=1

X(b′
j)

2 · P(b j) (by a.)

=
n∑

i=1

(X(bi) + di)
2 · P(bi) +

m∑
j=1

(X(b′
j) − d′

j)
2 · P(b′

j)

−
n∑

i=1

X(bi)
2 · P(bi) −

m∑
j=1

X(b′
j)

2 · P(b′
j) (by c and d.)

=
n∑

i=1

(2 · di · X(bi) + (di)
2) · P(bi) +

m∑
j=1

(−2 · d′
j · X(b′

j) + (d′
j)

2) · P(b′
j) (by arithmetic operations)

=
n∑

i=1

(2 · X(bi) + di) · di · P(bi) −
m∑

j=1

(2 · X(b′
j) − d′

j) · d′
j · P(b′

j) (by arithmetic operations)

=
n∑

i=1

(X(bi) + Y (bi)) · di · P(bi) −
m∑

j=1

(X(b′
j) + Y (b′

j)) · d′
j · P(b′

j) (by c. and d.)

≤
n∑

i=1

(2 · x) · di · P(bi) −
m∑

j=1

(2 · x) · d′
j · P(b′

j) (by b., c. and d.)

= 2 · x ·
( n∑

i=1

di · P(bi) −
m∑

j=1

d′
j · P(b′

j)
)

(by arithmetic operations)
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To finish the proof, we show that 
∑n

i=1 di · P(bi) − ∑m
j=1 d′

j · P(b′
j) = 0. Indeed, we have:

0 = E(Y ) −E(X) (by e.)

=
∑
b∈B

Y (b) · P(b) −
∑
b∈B

X(b) · P(b) (by definition of expectation)

=
n∑

i=1

(X(bi) + di) · P(bi) +
m∑

j=1

(X(b′
j) − d′

j) · P(b′
j)

−
n∑

i=1

X(bi) · P(bi) −
m∑

j=1

X(b′
j) · P(b′

j) (by a., c and d.)

=
n∑

i=1

di · P(bi) −
m∑

j=1

d′
j · P(b′

j) (by arithmetic operations)

This finishes the proof of the lemma. �
For a number z, we define f (z) := ∑

C∈M(G) yC · γC (z) where

γC (z) =

⎧⎪⎨⎪⎩
βC (z) if z > βC

αC (z) if z < αC

z otherwise

Note that f is a continuous function, and that there is z with f (z) = Eσ̂
sin

[mp]. Lemma 6 shows that the strategy σ defined 
in the same way as σ̂ , but using γC where xC was used, satisfies the required properties.

3.3. Complexity

We can solve the strategy existence problem by encoding the existence of a solution to Lglob as a closed formula � of the 
existential fragment of (R,+,∗,≤). Since � is computable in polynomial time and the existential fragment of (R,+,∗,≤)

is decidable in polynomial space by [4], we obtain the following corollary.

Corollary 1. The problem whether there is a strategy achieving a point (u, v) is in PSPACE.

3.4. Approximation algorithm

In this subsection we show how to obtain a pseudo-polynomial-time approximation algorithm. First note that if we had 
the number z above, we could simplify the system Lglob of Fig. 2 by substituting all xC variables with constants γC (z). Then, 
(3) can be eliminated, (4) becomes a linear constraint, and (5) the only quadratic constraint. Thus, the system Lglob can be 
transformed into a quadratic program Lglob(z) in which the quadratic constraint is negative semi-definite with rank 1, as the 
following lemma proves.

Lemma 7. Let n ∈N and mi ∈ N for every 1 ≤ i ≤ n. For all 1 ≤ i ≤ n and 1 ≤ j ≤ mi , we use 〈i, j〉 to denote the index j + ∑i−1
�=1 m� . 

Consider a function f : Rk → R, where k = ∑n
i=1 mi , of the form

f (�v) =
( n∑

i=1

(
�c 2

i ·
mi∑
j=1

�v〈i, j〉
))

−
( n∑

i=1

(
�ci ·

mi∑
j=1

�v〈i, j〉
))2

where �c ∈ Rn. Then f (�v) can be written as f (�v) = �v T Q �v + �dT �v where Q is a negative semi-definite matrix of rank 1 and �d ∈ Rk. 
Consequently, f (�v) is concave and Q has exactly one eigenvalue.

Proof. Observe that every �u ∈ Rk can be written as

�uT = (�u〈1,1〉, . . . , �u〈1,m1〉, · · · , �u〈n,1〉, . . . , �u〈1,mn〉).
Let Q be k × k matrix where Q 〈i, j〉,〈i′, j′〉 = −(�ci′ · �ci). Then

(Q �v)〈i, j〉 =
n∑

′

mi′∑
′

Q 〈i, j〉,〈i′, j′〉 · �v〈i′, j′〉 = −
n∑

′

mi′∑
′

(�ci′ · �ci) · �v〈i′, j′〉 (7)

i =1 j =1 i =1 j =1
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and consequently

�v T Q �v = −
n∑

i=1

mi∑
j=1

�v〈i, j〉 ·
( n∑

i′=1

mi′∑
j′=1

(�ci′ · �ci)�v〈i′, j′〉
)

(by (7))

= −
n∑

i=1

n∑
i′=1

(�ci · �ci′) ·
mi∑
j=1

�v〈i, j〉 ·
mi′∑
j′=1

�v〈i′, j′〉 (rearranging)

= −
( n∑

i=1

(
�ci ·

mi∑
j=1

�vi, j

))2

(rearranging)

Hence, f (�v) = �v T Q �v + �dT �v , where �d〈i, j〉 = �c 2
i . Let �u ∈ Rk be a (fixed) vector such that �u〈i, j〉 = −�ci . Then the 〈i′, j′〉-th 

column of Q is equal to �ci′ · �u, which means that the rank of Q is 1. The matrix Q is negative semi-definite because 
�v T Q �v ≤ 0 for every �v ∈ Rk . �

Because (5) is of the form given in the statement in Lemma 7, we can approximate Lglob(z) for any given z in polynomial 
time, using results of [28], up to a given 0 < ε < 1. Since we do not know the precise number z, we try different candidates 
z̄, namely we approximate the value (to the precision ε

2 ) of Lglob(z̄) for all numbers z̄ between mina∈A r(a) and maxa∈A r(a)

that are a multiple of τ = ε
8 max{N,1} where N = maxa∈A r(a). If any Lglob(z̄) has a solution lower than u − ε

2 , we output “yes”, 
otherwise we output “no”. The correctness of the algorithm is proved as follows.

Assume there is a strategy σ such that (Eσ
s [mp] , Vσ

s [mp]) ≤ (u − ε, v − ε), and let z be the number from Item 2, and 
let us fix a valuation for the variables yκ where κ ∈ S ∪ A from equations of the system Lglob (see Fig. 2). Let z̄ be a 
number between the minimal and the maximal assigned reward that is a multiple of τ , and which satisfies |z − z̄| < τ . 
Such a number must exist. We show that the system Lglob(z̄) has a solution. The valuation fixed above can be applied to 
the system Lglob(z̄), and we get∣∣∣ ∑

C∈M(G)

γC (z̄) ·
∑

t∈S∩C

yt −
∑

C∈M(G)

γC (z) ·
∑

t∈S∩C

yt

∣∣∣
≤

∑
C∈M(G)

|γC (z̄) − γC (z)| ·
∑

t∈S∩C

yt (by yt ≥ 0)

≤
∑

C∈M(G)

τ ·
∑

t∈S∩C

yt (by |γC (z̄) − γC (z)| < τ )

= τ (by
∑

C∈M(G)

∑
t∈S∩C yt = 1)

and so 
∑

C∈M(G) γC (z̄) ≤ (u − ε) + τ ≤ u.
For variance, let Mz̄ = ∑

C∈M(G) γC (z̄) · ∑t∈S∩C yt and Mz = ∑
C∈M(G) γC (z) · ∑t∈S∩C yt , from the above we have |Mz −

Mz̄| ≤ τ and so( ∑
C∈M(G)

γC (z̄)2 ·
∑

t∈S∩C

yt

)
−

( ∑
C∈M(G)

γC (z̄) ·
∑

t∈S∩C

yt

)2

=
∑

C∈M(G)

(γC (z̄) − Mz̄)
2 ·

∑
t∈S∩C

yt (definition of variance)

≤
∑

C∈M(G)

(|γC (z) − Mz| + |γC (z) − γC (z̄)| + |Mz − Mz̄|
)2 ·

∑
t∈S∩C

yt (reformulating)

≤
∑

C∈M(G)

(|γC (z) − Mz| + 2 · τ )2 ·
∑

t∈S∩C

yt (by |γC (z) − γC (z̄)| ≤ τ and |Mz − Mz̄| ≤ τ )

=
( ∑

C∈M(G)

(
(γC (z) − Mz)

2 ·
∑

t∈S∩C

yt
))

+ (
4 · |γC (z) − Mz| · τ + 4 · τ 2) ·

∑
C∈M(G)

∑
t∈S∩C

yt (rearranging)

= (v − ε) + (
4 · N · τ + 4 · τ 2) ·

∑
t∈S∩C

yt (by Vσ
s [mp] ≤ v − ε and

∑
C∈M(G)

∑
t∈S∩C yt = 1)
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Fig. 3. An MDP showing that Pareto optimal strategies need randomization/memory for the local variance.

≤ (v − ε) + (
ε

2
+ ε2

2
) (def. of τ )

≤ v (arithmetic operations, ε < 1)

Hence we have shown that there is a solution for Lglob(z̄), and so the algorithm returns “yes”.
On the other hand, if there is no strategy such that (Eσ

s [mp] , Vσ
s [mp]) ≤ (u, v), then the algorithm clearly returns “no”. 

We obtain the following corollary.

Corollary 2. The answer to the problem whether there is a strategy achieving a point (u, v) can be approximated in pseudo-polynomial 
time.

Remark 1 and Corollary 2 immediately yield the following result.

Corollary 3. The approximate Pareto curve for global variance can be computed in pseudo-polynomial time.

Note that if we knew the constant z, we would even get that the approximation problem for a point (u, v) can be 
solved in polynomial time (assuming that the number of digits in z is polynomial in the size of the problem instance). 
Unfortunately, our proof of Item 2 does not give a procedure for computing z, and we cannot even conclude that z is rational. 
We conjecture that the constant z can actually be chosen as a rational number with small number of digits (which would 
immediately lower the complexity of strategy existence to NP using the results of [27] for solving negative semi-definite 
quadratic programs).

4. Local variance

In this section we analyse the problem for local variance. As before, we start by showing the lower bounds for memory 
needed by strategies, and then provide an upper bound together with an algorithm computing a Pareto optimal strategy. 
As in the case of global variance, Pareto optimal strategies require both randomization and memory, however, in contrast 
with global variance where for unichain MDPs deterministic memoryless strategies are sufficient we show (in the following 
example) that for local variance both memory and randomization are required even for unichain MDPs.

Example 2. Consider the MDP from Fig. 3 and consider a strategy σ that in the first step in s1 makes a random choice 
uniformly between a and b, and then, whenever the state s1 is revisited, it chooses the action that was chosen in the first 
step. The expected mean payoff under such strategy is

Eσ ′
s1

[mp] = Pσ ′
s1

[Cone(s1as2)] ·Eσ ′
s1

[mp | Cone(s1as2)]

+ Pσ ′
s1

[Cone(s1bs2)] ·Eσ ′
s1

[mp | Cone(s1bs2)]

= 0.5 · 1 + 0.5 · 2 = 1.5

and the expected local variance is

Eσ ′
s1

[lv] = Pσ ′
s1

[Cone(s1as2)] ·Eσ ′
s1

[lv | Cone(s1as2)]

+ Pσ ′
s1

[Cone(s1bs2)] ·Eσ ′
s1

[lv | Cone(s1bs2)]

= 0.5 ·Eσ ′
s1

[lv | Cone(s1as2)] + 0.5 ·Eσ ′
s1

[lv | Cone(s1bs2)]

= 0.5 · (0.5 · (0 −Eσ ′
s1

[mp | Cone(s1as2)])2

+ 0.5 · (2 −Eσ ′
s1

[mp | Cone(s1as2)])2)
+ 0.5 · (2 −Eσ ′

s1
[mp | Cone(s1bs2)])2

= 0.5 · (0.5 · (0 − 1)2 + 0.5 · (2 − 1)2) + 0.5 · (2 − 2)2

= 0.5
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Isin (s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys,1 + ys,2 for all s ∈ S (8)

∑
C∈M(G)

∑
s∈C∩S

ys,1 + ys,2 = 1 (9)

∑
a∈C∩A

xa,i = 1 for all C ∈M(G) (10)

∑
a∈A

xa,i · δ(a)(s) =
∑

a∈Act(s)

xa,i for all s ∈ S and i ∈ {1,2} (11)

zmp,C,i =
∑

a∈C∩A

xa,i · r(a) for all C ∈M(G) and i ∈ {1,2} (12)

zlv,C,i =
∑

a∈C∩A

(xa,i · r(a) − zmp,C,i)
2 for all C ∈M(G) and i∈{1,2} (13)

u ≥
∑

C∈M(G)

∑
i∈{1,2}

(
∑

s∈C∩S

ys,i) · zmp,C,i (14)

v ≥
∑

C∈M(G)

∑
i∈{1,2}

(
∑

s∈C∩S

ys,i) · zlv,C,i (15)

Fig. 4. The set of constraints Lloc for local variance.

We show that the point (1.5, 0.5) cannot be achieved by any memoryless randomized strategy σ ′ . Given x ∈ {a, b, c}, denote 
by f (x) the frequency of the action x under σ ′ , i.e. f (x) = Eσ

s1

[
limi→∞ 1

i Ix(Ai)
]

. Clearly, f (c) = 0.5 and f (b) = 0.5 − f (a). If 

f (a) < 0.2, then the mean payoff Eσ ′
s1

[mp] = 2 · ( f (c) + f (b)) = 2 − 2 f (a) is greater than 1.6. Assume that 0.2 ≤ f (a) ≤ 0.5. 
Then Eσ ′

s1
[mp] ≤ 1.6 but the expected local variance is at least 0.64:

Eσ ′
s1

[lv] = f (a)(0 −Eσ ′
s1

[mp])2 + ( f (b) + f (c))(2 −Eσ ′
s1

[mp])2

= f (a)(−2 + 2 f (a)))2 + (1 − f (a))(2 f (a))2

= 4 f (a) − 8 f (a)2 + 4 f (a)3 + 4 f (a)2 − 4 f (a)3

= 4 f (a) − 4 f (a)2 ≥ 0.64

Insufficiency of deterministic history-dependent strategies is proved using the same equations and the fact that there is only 
one run under such a strategy.

Thus we have shown that memory and randomization are needed to achieve also a non-Pareto point (1.51, 0.51). The 
need of memory and randomization to achieve Pareto points will follow later from the fact that there always exist Pareto 
optimal strategies.

The main result of this section is described in the following theorem.

Theorem 2. There is a strategy ζ satisfying (Eζ
sin [mp] , Eζ

sin [lv]) ≤ (u, v) if and only if the set of constraints from Fig. 4 has a non-
negative solution.

We will prove the theorem in the following two subsections.

4.1. Proof of direction ⇒ of Theorem 2 (from strategy to solution of constraints)

Our proof relies on the fact that any achievable mean payoff and local variance can be extracted as a combination of 
two frequency functions. The idea is formalised in Proposition 1 below, but before proceeding, we prove the following easy 
lemma.

Lemma 8. Let (a1, b1), (a2, b2), . . . , (am, bm) be a sequence of points in R2 and let c1, c2, . . . , cm ∈ (0, 1] be numbers satisfying ∑m
i=1 ci = 1. Then there are two points (ak, bk) and (a�, b�) and a number p ∈ [0, 1] such that

m∑
i=1

ci(ai,bi) ≥ p(ak,bk) + (1 − p)(a�,b�)
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Fig. 5. An illustration for the proof of Lemma 8, with the points of H shown as squares, and C(H) shown as a greyed area.

Proof. Denote by (x, y) the point 
∑m

i=1 ci(ai, bi) and by H the set {(ai, bi) | 1 ≤ i ≤ m}. The convex hull C(H) of H is a 
convex polygon whose vertices are some of the points of H . Consider a point (x′, y) where x′ = min{z | z ≤ x, (z, y) ∈ C(H)}. 
The point (x′, y) lies on the boundary of C(H) and thus, as C(H) is a convex polygon, (x′, y) lies on the line segment 
between two vertices, say (ak, bk), (a�, b�), of C(H). Thus there is p ∈ [0, 1] such that

(x′, y) = p(ak,bk) + (1 − p)(a�,b�) ≤ (x, y) =
m∑

i=1

ci(ai,bi) .

This finishes the proof. For reader’s convenience we illustrate the proof in Fig. 5. �
Let us now proceed with formalising the main essence of the proof.

Proposition 1. Let us fix a MEC C and let ε ≥ 0. There are two frequency functions fε : C ∩ A → [0, 1] and f ′
ε : C ∩ A → [0, 1], and a 

number pε ∈ [0, 1] such that:

pε · (mp[ fε], lv[ fε]) + (1 − pε) · (mp[ f ′
ε], lv[ f ′

ε]) ≤ (E
ζ
sin [mp|RC ] ,Eζ

sin [lv|RC ]) + (ε, ε)

The proposition is proved in two steps, for the first and simpler step, we show that if the proposition holds for ev-
ery ε > 0, then it holds for ε = 0. There is a sequence ε1, ε2, . . . , two functions fC and f ′

C , and pC ∈ [0, 1] such that 
limn→∞ εn = 0, limn→∞ pεn = pC , and as n → ∞:

• fεn converges pointwise to fC
• f ′

εn
converges pointwise to f ′

C

It is easy to show that fC as well as f ′
C are frequency functions. Moreover, as

lim
n→∞(E

ζ
sin [mp | RC ] ,Eζ

sin [lv | RC ]) + (εn, εn) = (E
ζ
sin [mp | RC ] ,Eζ

sin [lv | RC ])

and

lim
n→∞ pεn · (mp[ fεn ], lv[ fεn ]) + (1 − pεn) · (mp[ f ′

εn
], lv[ f ′

εn
])

= pC · (mp[ fC ], lv[ fC ]) + (1 − pC ) · (mp[ f ′
C ], lv[ f ′

C ])
we obtain

pC · (mp[ fC ], lv[ fC ]) + (1 − pC ) · (mp[ f ′
C ], lv[ f ′

C ]) ≤ (E
ζ
sin [mp | RC ] ,Eζ

sin [lv | RC ])

The more involved step of the proof of Proposition 1 is to show that it holds for every ε > 0. We prove this by showing 
that there are runs ω from which we can extract the frequency functions fε and f ′

ε . The selection of runs is rather involved, 
since it is not clear a priori which runs to pick or even how to extract the frequencies from them (note that the naive 
approach of considering the average ratio of taking a given action a does not work, since the averages might not be defined).

Given �, k ∈ Z we denote by A�,k the set of all runs ω ∈ RC such that

(� · ε,k · ε) ≤ (mp(ω), lv(ω)) < (� · ε,k · ε) + (ε, ε)

Note that∑
�,k∈Z

P
ζ
sin

(A�,k | RC ) · (� · ε,k · ε) ≤ (E
ζ
sin [mp | RC ] ,Eζ

sin [lv | RC ])

By Lemma 8, there are �, k, �′, k′ ∈ Z and p ∈ [0, 1] such that Pζ
sin

(A�,k | RC ) > 0 and Pζ
sin

(A�′,k′ | RC ) > 0 and

p · (� · ε,k · ε) + (1 − p) · (�′ · ε,k′ · ε) ≤
∑

�,k∈Z
P

ζ
sin

(A�,k | RC ) · (� · ε,k · ε)

≤ (E
ζ
sin [mp | RC ] ,Eζ

sin [lv | RC ]) (16)
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Let us concentrate on (� · ε, k · ε) and construct a frequency function f on C such that

(mp[ f ], lv[ f ]) ≤ (� · ε,k · ε) + (ε, ε)

Intuitively, we obtain f as a vector of frequencies of individual actions on an appropriately chosen run of RC . Such frequen-
cies determine the average and variance close to � · ε and k · ε, respectively. We have to deal with some technical issues, 
mainly with the fact that the frequencies might not be well-defined for almost all runs (i.e., the corresponding limits might 
not exist). This is solved by a careful choice of subsequences as follows.

Claim 1. For every run ω ∈ RC there is a sequence of numbers T1[ω], T2[ω], . . . such that all the following limits are defined:

lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

r(A j(ω)) = mp(ω) (17)

lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

(r(A j(ω)) − mp(ω))2 ≤ lv(ω) (18)

and for every action a ∈ A there is a number fω(a) such that

lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

Ia(A j(ω)) = fω(a)

Moreover, for almost all runs ω of RC we have that fω is a frequency function on C and that fω determines (mp(ω), lv(ω)), i.e., 
mp(ω) = mp[ fω] and lv(ω) ≥ lv[ fω].

Proof. We start by taking a sequence T ′
1[ω], T ′

2[ω], . . . such that

lim
i→∞

1

T ′
i [ω]

T ′
i [ω]∑
j=1

r(A j(ω)) = mp(ω)

Existence of such a sequence follows from the fact that every sequence of real numbers has a subsequence which converges 
to the lim sup of the original sequence.

Now we extract a subsequence T ′′
1 [ω], T ′′

2 [ω], . . . of T ′
1[ω], T ′

2[ω], . . . such that

lim
i→∞

1

T ′′
i [ω]

T ′′
i [ω]∑
j=1

(r(A j(ω)) − mp(ω))2 ≤ lv(ω) (19)

using the same argument.
Now assuming an order on actions, a1, . . . , am , we define T k

1[ω], T k
2[ω], . . . for 0 ≤ k ≤ m so that T 0

1 [ω], T 0
2 [ω], . . . is the 

sequence T ′′
1 [ω], T ′′

2 [ω], . . . , and every T k+1
1 [ω], T k+1

2 [ω], . . . is a subsequence of T k
1[ω], T k

2[ω], . . . such that the following 
limit exists (and is equal to a number fω(ak+1))

lim
i→∞

1

T k+1
i [ω]

T k+1
i [ω]∑
j=1

Iak+1(A j(ω))

We take T m
1 [ω], T m

2 [ω], . . . to be the desired sequence T1[ω], T2[ω], . . . .
Now we have to prove that fω is a frequency function on C for almost all runs of RC . Clearly, 0 ≤ fω(a) ≤ 1 for all 

a ∈ C ∩ A. Also,∑
a∈C∩A

fω(a) =
∑

a∈C∩A

lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

Ia(A j(ω))

= lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

∑
a∈C∩A

Ia(A j(ω))

= lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

1 = 1
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To prove the third condition from the definition of frequency functions, we use a variant of strong law of large numbers. 
Given a run ω, an action a, a state s and k ≥ 1, define

Na,s
k (ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − δ(a)(s) if a is executed at least i times, and s is visited

immediately after the i-th execution of a;

−δ(a)(s) if a is executed at least i times, and s is not

visited immediately after the i-th execution of a;

0 otherwise (i.e., a is executed at most i − 1 times).

Fix a and s. We show that E(Na,s
i · Na,s

j ) = 0 for i 
= j. W.l.o.g. suppose i > j. We have

E(Na,s
i · Na,s

j ) =
∑

n

E(Na,s
i · Na,s

j | Na,s
j = n) · P(Na,s

j = n)

=
∑

n

n ·E(Na,s
i | Na,s

j = n) · P(Na,s
j = n)

which equals 0 because E(Na,s
i | Na,s

j = n) = 0 for all i > j and n. Hence, we can use [18, Corollary 4] (where we substitute 
�1(0) = 1 and �(i) = 0 for i > 0) and obtain that almost surely the following equality holds:

lim
j→∞

∑ j
k=1 Na,s

k (ω)

j
= 0 (20)

We let N̄a,s
k = Na,s

k + δ(a)(s), and obtain∑
a∈C∩A

fω(a) · δ(a)(s)

=
∑

a∈C∩A

(
lim

i→∞
1

Ti[ω]
Ti [ω]∑
j=1

Ia(A j(ω))
)

· lim
i→∞

1

i

i∑
k=1

N̄a,s
k (ω) (def. of fω , (20) and def. of N̄a,s

k )

=
∑

a∈C∩A

(
lim

i→∞
1

Ti[ω]
Ti [ω]∑
j=1

Ia(A j(ω))
)

· lim
i→∞

1∑Ti [ω]
j=1 Ia(A j(ω))

∑Ti [ω]
j=1 Ia(A j(ω))∑

k=1

N̄a,s
k (ω) (taking subsequence)

=
∑

a∈C∩A

lim
i→∞

1

Ti[ω]

∑Ti [ω]
j=1 Ia(A j(ω))∑

k=1

N̄a,s
k (ω) (property of lim, and arithmetic opers.)

= lim
i→∞

1

Ti[ω]
∑

a∈C∩A

∑Ti [ω]
j=1 Ia(A j(ω))∑

k=1

N̄a,s
k (ω) (splitting by a)

= lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

Is(S j(ω)) (def. of Na,s
k and N̄a,s

k )

= lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

∑
a∈Act(s)

Ia(A j(ω)) (splitting by a)

=
∑

a∈Act(s)

lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

Ia(A j(ω)) (linearity of lim)

=
∑

a∈Act(s)

fω(a) (def of fω)
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Here S j(ω) is the j-th state of ω.

mp(ω) = lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

r(A j(ω))

= lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

∑
a∈C∩A

Ia(A j(ω)) · r(a)

=
∑

a∈C∩A

r(a) · lim
i→∞

1

Ti[ω]
Ti [ω]∑
j=1

Ia(A j(ω))

=
∑

a∈C∩A

r(a) · fω(a)

= mp[ fω]
and replacing r(x) with (r(x) − mp(ω))2 in the derivation, we also get lv(ω) = lv[ fω]. �

Now pick an arbitrary run ω of Ak,� such that fω is a frequency function. Then

(mp[ fω], lv[ fω]) ≤ (mp(ω), lv(ω)) ≤ (� · ε,k · ε) + (ε, ε)

Similarly, for �′, k′ we obtain f ′
ω such that

(mp[ f ′
ω], lv[ f ′

ω]) ≤ (mp(ω), lv(ω)) ≤ (�′ · ε,k′ · ε) + (ε, ε)

This together with (16) from page 158 gives

p · (mp[ fω], lv[ fω]) + (1 − p) · (mp[ f ′
ω], lv[ f ′

ω])
≤ p · ((� · ε,k · ε) + (ε, ε)) + (1 − p) · ((�′ · ε,k′ · ε) + (ε, ε)

)
≤ (E

ζ
sin [mp | RC ] ,Eζ

sin [lv | RC ]) + (ε, ε)

and thus finishes the proof of Proposition 1.
We are now ready to finish the proof of direction ⇒ of Theorem 2. For every MEC C we use Proposition 1 to obtain 

frequency functions f C
1 and f C

2 and a number pC satisfying the conditions of the proposition for ε = 0, and we set the 
value of xa,1 and xa,2 to f C

1 (a) and f C
2 (a), respectively, where C is the MEC containing a. This ensures satisfaction of (10)

and (11).
The values to ya and ys,i are determined by applying the construction very similar to the one from the proof in Sec-

tion 3.1 (page 151). Consider the MDP G ′ introduced before Lemma 2. By Lemma 2 there is a strategy ζ ′ for G ′ such that 
P

ζ
sin [RC ] = P

ζ ′
sin [Reach({ds | s ∈ C})]. Since G ′ satisfies the conditions of [13, Theorem 3.2], we get a solution ȳ to the linear 

program of [13, Figure 3] where for all C we have 
∑

s∈C∩S ȳds = P
ζ
sin [RC ]. This solution gives us a solution to (8)–(9) by 

ya := ȳ(s,a) for all a (note that the state s is given uniquely as the state in which a is enabled), and by yt,1 := ȳdt · pC and 
yt,1 := ȳdt · (1 − pC ) for all t ∈ S , where pC is the number obtained above for MEC C . We further set zmp,C,i and zlv,C,i

to mp[ f C
i ] and lv[ f C

i ], and get that (12) and (13) hold true, and consequently, we get that (14) and (15) are also satisfied, 
because

(u, v) ≥ (E
ζ
sin [mp] ,Eζ

sin [lv]) (property of ζ )

=
∑

C∈M(G)

P
ζ
sin [RC ] · (Eζ

sin [mp | RC ] ,Eζ
sin [lv | RC ]) (law of total expect.)

≥
∑

C∈M(G)

P
ζ
sin [RC ] · (pC · (mp[ f C

1 ], lv[ f C
1 ]) + (1 − pC ) · (mp[ f C

2 ], lv[ f C
2 ])) (def. of f C

i )

=
∑

C∈M(G)

( ∑
s∈C∩S

ȳds

) · (pC · (mp[ f C
1 ], lv[ f C

1 ]) + (1 − pC ) · (mp[ f C
2 ], lv[ f C

2 ])) (def. of ȳds )

=
∑

C∈M(G)

∑
i∈{1,2}

∑
s∈C∩S

ys,i · (mp[ f C
i ], lv[ f C

i ]) (def. of yt,i and rearranging)
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4.2. Proof of direction ⇐ of Theorem 2 (from solution of constraints to strategy)

In order to prove the direction ⇐ of Theorem 2, we first introduce two auxiliary lemmas. The following lemma shows 
how to minimize the mean square deviation (to which our notion of local variance is a special case).

Lemma 9. Let a1, . . . , am ∈R such that 
∑m

i=0 ai = 1, let r1, . . . , rm ∈R and let us consider the following function of one real variable:

V (x) =
m∑

i=1

ai (ri − x)2

Then the function V has a unique minimum in 
∑m

i=1 airi .

Proof. By taking the first derivative of V we obtain

δV

δx
= −2 ·

m∑
i=1

ai (ri − x) = −2 ·
(

m∑
i=1

airi

)
+ 2x

Thus δV
δx (x) = 0 iff x = ∑m

i=1 airi . Moreover, by taking the second derivative we obtain δ2 V
δx2 = 2 > 0, and thus 

∑m
i=1 airi is a 

minimum. �
The following lemma shows that frequencies of actions determine (in some cases) the expected mean payoff as well as 

the expected local variance.

Lemma 10. Let μ be a memoryless strategy and let D be a BSCC of Gμ , and let s be an arbitrary state of D. The following equalities 
hold:

E
μ
s [mp] =

∑
a∈A

r(a) ·Eμ
s

[
mpIa

]
and E

μ
s [lv] =

∑
a∈A

(r(a) −E
μ
s [mp])2 ·Eμ

s

[
mpIa

]
Proof. We have

E
μ
s [mp] = E

μ
s

⎡⎣ lim
i→∞

1

i
·

i∑
j=1

r(A j)

⎤⎦
= E

μ
s

⎡⎣ lim
i→∞

1

i
·

i∑
j=1

∑
a∈A

r(a) · Ia(A j)

⎤⎦
=

∑
a∈A

r(a) ·Eμ
s

⎡⎣ lim
i→∞

1

i
·

i∑
j=1

Ia(A j)

⎤⎦
=

∑
a∈A

r(a) ·Eμ
s

[
mpIa

]
and

E
μ
s [lv] = E

μ
s

⎡⎣ lim
i→∞

1

i
·

i∑
j=1

(r(A j) −E
μ
s [mp])2

⎤⎦
= E

μ
s

⎡⎣ lim
i→∞

1

i
·

i∑
j=1

∑
a∈A

(r(a) −E
μ
s [mp])2 · Ia(A j)

⎤⎦
=

∑
a∈A

(r(a) −E
μ
s [mp])2 ·Eμ

s

⎡⎣ lim
i→∞

1

i
·

i∑
j=1

Ia(A j)

⎤⎦
=

∑
a∈A

(r(a) −E
μ
s [mp])2 ·Eμ

s

[
mpIa

]
where the first equality above holds true because in BSCCs almost all runs have the same frequencies of actions, and so we 
can replace mp with Eμ

s [mp]. �
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We now show that any two frequency functions can be “mimicked” by two memoryless randomized strategies to achieve 
the required expected mean payoff and expected local variance.

Lemma 11. Let C be a MEC, f and f ′ be two frequency functions, and 0 ≤ p ≤ 1 a number. Then there are two memoryless randomized
strategies π and π ′ , each yielding a single BSCC, and a number 0 ≤ d ≤ 1 such that

d · (Eπ
s [mp] ,Eπ

s [lv]) + (1 − d) · (Eπ ′
s [mp] ,Eπ ′

s [lv])

≤ p · (mp[ f ], lv[ f ]) + (1 − p) · (mp[ f ′], lv[ f ′])
for all states s from C.

Proof. We start with defining memoryless strategies κ and κ ′ (which possibly yield several BSCCs) in C as follows: Given 
s ∈ C ∩ S such that 

∑
b∈A(s) f (b) > 0 and a ∈ A(s), we put

κ(s)(a) = f (a) /
∑

b∈A(s)

f (b) and κ ′(s)(a) = f ′(a) /
∑

b∈A(s)

f ′(b)

In the remaining states s the strategy κ (or κ ′) behaves as a memoryless deterministic strategy reaching {s ∈ C ∩ S |∑
b∈Act(s) f (b) > 0} (or {s ∈ C ∩ S | ∑b∈Act(s) f ′(b) > 0}, resp.) with probability one.

Given a BSCC D of Cκ (or D ′ of Cκ ′
), we write f (D) for 

∑
a∈D∩A f (a) (or f ′(D ′) for 

∑
a∈D ′∩A f ′(a)). We have

(mp[ f ], lv[ f ]) =
∑

D∈B(Cκ )

f (D) · ( ∑
a∈D∩A

f (a)

f (D)
· r(a),

∑
a∈D∩A

f (a)

f (D)
· (r(a) − mp[ f ])2) ( f (a) > 0 iff a ∈ D ∩ A)

≥
∑

D∈B(Cκ )

f (D) · ( ∑
a∈D∩A

f (a)

f (D)
· r(a),

∑
a∈D∩A

f (a)

f (D)
· (r(a) −

∑
b∈D∩A

f (b)

f (D)
· r(b))2) (Lemma 9)

=
∑

D∈B(Cκ )

f (D) · (ED(mp),ED(lv)) (Lemma 10, and f (a)
f (D)

= lim
i→∞

1
i Ia(Ai) almost surely)

Here ED(mp) and ED(lv) denote the expected mean payoff and the expected local variance, resp., on almost all runs of either 
Cκ or Cκ ′

initiated in any state of D; note that almost all such runs have the same mean payoff and the local variance due to 
the Ergodic theorem for Markov chains (see, e.g., [21, Theorem 1.10.2]). The last equality follows from Lemma 10 and the fact 
that f (a)/ f (D) = limi→∞ 1

i Ia(Ai) on almost all runs initiated in D . We obtain that p ·(mp[ f ], lv[ f ]) +(1 − p) ·(mp[ f ′], lv[ f ′])
is equal to∑

D∈B(Cκ )

p · f (D) · (ED(mp),ED(lv)) +
∑

D∈B(Cκ ′
)

(1 − p) · f ′(D) · (ED(mp),ED(lv)) (21)

and by Lemma 8, there are two components D, D ′ ∈ B(Cκ ) ∪B(Cκ ′
) and 0 ≤ d ≤ 1 such that

(21) ≥ d · (ED(mp),ED(lv)) + (1 − d) · (ED ′(mp),ED ′(lv))

It is now straightforward to take as π1 and π2 the strategies whose only BSCCs are D and D ′ , respectively. �
Now we can finish the proof of Theorem 2 by showing how a non-negative solution yields a required strategy. First, 

because (8) and (9) are satisfied, we can construct a finite-memory strategy σ such that Pσ
sin

[RC ] = ∑
s∈C ya,1 + ya,2; this 

can be done using the same steps as the construction of the strategy � in the proof of Item 2 of Theorem 1 (note in 
particular that (8) and (9) are the same as (1) and (2), except for the variables yt for t ∈ S being “split” in two variables). 
Further, the solutions to (10) and (11) immediately give us frequency functions fC,i for all MECs C and i ∈ {1, 2}, and these 
functions satisfy mp[ fC,i] = zmp,C,i and lv[ fC,i] = zlv,C,i by (12) and (13). We use Lemma 11 to obtain strategies πC and 
π ′

C , and a number dC for each MEC C from fC,1, fC,2 and the number βC := (
∑

s∈C∩S ys,1)/(
∑

s∈C∩S

∑
i∈{1,2} ys,i), and then 

Lemma 3 to combine σ and all πC and π ′
C into the resulting strategy ζ . We get

E
ζ
s [mp] =

∑
C∈M(G)

P
ζ
sin [RC ] · (Eζ

sin [mp|RC ] ,Eζ
sin [lv|RC ]) (law of tot. expect.)

=
∑

C∈M(G)

Pσ
sin

[RC ] · (dC · (EπC
sin [mp] ,EπC

sin [lv]) + (1 − dC ) · (Eπ ′
C

sin [mp] ,E
π ′

C
sin [lv])

)
(Lemma 3 and def. of ζ )

≤
∑

C∈M(G)

(
∑

s∈C∩S

ys,i) · (βC · (mp[ fC,1], lv[ fC,1]) + (1 − βC ) · (mp[ fC,2], lv[ fC,2])
)

(def. of πC , π ′
C and dC )
i∈{1,2}
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=
∑

C∈M(G)

∑
i∈{1,2}

( ∑
s∈C∩S

ys,i
) · (mp[ fC,i], lv[ fC,i]) (def. of βC and arithmetic opers.)

=
∑

C∈M(G)

∑
i∈{1,2}

( ∑
s∈C∩S

ys,i
) · (zmp,C,i, zlv,C,i) (def. of fC,i)

≤ (u, v) (by (14) and (15))

4.3. Complexity

Let us now turn to complexity-theoretic questions. We will show that in fact the local-variance problem is in NP. We 
prove this by showing that any combination of two frequency functions can be achieved as a combination of two memory-
less deterministic strategies, each yielding one BSCC. We first prove the following claim.

Claim 2. Let C be a MEC and μ a memoryless randomized strategy generating a single BSCC. There are memoryless deterministic 
strategies χ1 , χ2 in C , each generating a single BSCC, and a number 0 ≤ q ≤ 1 such that for all s ∈ C ∩ S

(E
μ
s [mp] ,Eμ

s [lv]) ≥ q · (Eχ1
s [mp] ,Eχ1

s [lv]) + (1 − q) · (Eχ2
s [mp] ,Eχ2

s [lv])

Proof. By [12, Chapter 7, Theorem 2], Eμ
s
[
mpIa

]
is equal to a convex combination of the values Eιi

s
[
mpIa

]
for some mem-

oryless deterministic strategies ι1, . . . , ιm , i.e., there are γ1, . . . , γm > 0 such that 
∑m

i=1 γi = 1 and 
∑m

i=1 γi · Eιi
s
[
mpIa

] =
E

μ
s
[
mpIa

]
. For all 1 ≤ i ≤ m and D ∈ B(C ιi ) denote ιi,D a memoryless deterministic strategy such that ιi,D(s) = ιi(s) on all 

s ∈ D ∩ S , and on other states ιi,D is defined so that D ∩ S is reached with probability 1, independent of the starting state. 
For all a ∈ D ∩ A we have Eιi,D

s
[
mpIa

] = P
ιi
s [Reach(D ∩ S)] ·Eιi

s
[
mpIa

]
, while for a /∈ D ∩ A we have Eιi,D

s
[
mpIa

] = 0. Hence

m∑
i=1

∑
D∈B(C ιi )

γi · Pιi
s [Reach(D ∩ S)] ·Eιi,D

s

[
mpIa

]
= E

μ
s

[
mpIa

]
Since 

∑m
i=1

∑
D∈B(C ιi ) γi · Pιi

s [Reach(D ∩ S)] = 1, we apply Lemma 8 and get two memoryless deterministic single-BSCC 
strategies χ1, χ2 and 0 ≤ q ≤ 1 such that

E
μ
s

[
mpIa

]
= q ·Eχ1

s

[
mpIa

]
+ (1 − q) ·Eχ2

s

[
mpIa

]
which together with Lemma 10 implies that

E
μ
s [mp] =

∑
a∈A

r(a) ·Eμ
s

[
mpIa

]
=

∑
a∈A

r(a) ·
(

q ·Eχ1
s

[
mpIa

]
+ (1 − q) ·Eχ2

s

[
mpIa

])
= q ·

∑
a∈A

r(a) ·Eχ1
s

[
mpIa

]
+ (1 − q) ·

∑
a∈A

r(a) ·Eχ2
s

[
mpIa

]
= q ·Eχ1

s [mp] + (1 − q) ·Eχ2
s [mp]

and

E
μ
s [lv] =

∑
a∈A

(r(a) −E
μ
s [mp])2 ·Eμ

s

[
mpIa

]
=

∑
a∈A

(r(a) −E
μ
s [mp])2 · (q ·Eχ1

s

[
mpIa

]
+ (1 − q) ·Eχ2

s

[
mpIa

]
)

= q ·
∑
a∈A

(r(a) −E
μ
s [mp])2 ·Eχ1

s

[
mpIa

]
+ (1 − q) ·

∑
a∈A

(r(a) −E
μ
s [mp])2 ·Eχ2

s

[
mpIa

]
≥ q ·

∑
a∈A

(r(a) −E
χ1
s [mp])2 ·Eχ1

s

[
mpIa

]
+ (1 − q) ·

∑
a∈A

(r(a) −E
χ2
s [mp])2 ·Eχ2

s

[
mpIa

]
= q ·Eχ1

s [lv] + (1 − q) ·Eχ2
s [lv]
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Here, the first and the last equality follow since μ, χ1, and χ2 have a single BSCC and so almost all runs have the same 
mean payoff. The inequality follows from Lemma 9. �

The following lemma strengthens Lemma 11 by showing that any two frequency functions can be “mimicked” by two 
memoryless deterministic strategies to achieve the required expected mean payoff and expected local variance.

Lemma 12. Let C be a MEC, f and f ′ be two frequency functions, and p ∈ [0, 1] a number. Then there are two memoryless determin-
istic strategies π and π ′ , each yielding a single BSCC, and a number 0 ≤ h ≤ 1 such that for all s ∈ C ∩ S we have

h · (Eπ
s [mp] ,Eπ

s [lv]) + (1−h) · (Eπ ′
s [mp] ,Eπ ′

s [lv])

≤ p · (mp[ f ], lv[ f ]) + (1 − p) · (mp[ f ′], lv[ f ′])

Proof. In what follows we use the following definition: Let ν be a memoryless randomized strategy on a MEC C and let K
be a BSCC of Cν . We say that a strategy μK is induced by K if

1. μK (s)(a) = ν(s)(a) for all s ∈ K ∩ S and a ∈ K ∩ A
2. in all s ∈ S � (K ∩ S) the strategy μK corresponds to a memoryless deterministic strategy which reaches a state of K

with probability one

Note that the above definition is independent of the strategy ν and only depends on the BSCC K .
We first apply Lemma 11 and obtain from f , f ′ and p two memoryless randomized strategies μ, μ′ (each yielding a 

single BSCC) and a number d such that

d · (Eμ
s [mp] ,Eμ

s [lv]) + (1−d) · (Eμ′
s [mp] ,Eμ′

s [lv])

≤ p · (mp[ f ], lv[ f ]) + (1 − p) · (mp[ f ′], lv[ f ′])
Now we show that these strategies may be even deterministic. By Claim 2,

d·(Eμ
s [mp] ,Eμ

s [lv]) + (1 − d) · (Eμ′
s [mp] ,Eμ′

s [lv])

≥ d · q · (Eχ1
s [mp] ,Eχ1

s [lv]) + d · (1 − q) · (Eχ2
s [mp] ,Eχ2

s [lv])

+ (1 − d) · q′ · (Eχ ′
1

s [mp] ,E
χ ′

1
s [lv]) + (1 − d) · (1 − q′) · (Eχ ′

2
s [mp] ,E

χ ′
2

s [lv])

for some memoryless deterministic strategies χ1, χ2, χ ′
1, and χ ′

2 and numbers 0 ≤ q, q′ ≤ 1. Subsequently, by Lemma 8, 
there are π, π ′ ∈ {χ1, χ2, χ ′

1, χ
′
2} and a number h such that

d · (Eμ
s [mp] ,Eμ

s [lv]) + (1−d) · (Eμ′
s [mp] ,Eμ′

s [lv])

≥ h · (Eπ
s [mp] ,Eπ

s [lv]) + (1 − h) · (Eπ ′
s [mp] ,Eπ ′

s [lv])

This finishes the proof. �
The above lemma allows us to design a nondeterministic polynomial time algorithm as follows. Note that for any non-

negative solution to the constrained problem in Fig. 4 the solution to variables xa,1 and xa,2 for any MEC C gives us two 
frequency functions f C

1 and f C
2 given by f C

i (a) = xa,i for all a and i. By the above lemma, there are two memoryless 
deterministic strategies π C

1 and π C
2 and a number qC for each MEC C such that, for any s ∈ C ∩ S:

qC ·EπC
1

s [mp] + (1 − qC ) ·EπC
2

s [mp] ≤ pC · mp[ f C
1 ] + (1 − pC ) · mp[ f C

2 ] (22)

qC ·EπC
1

s [lv] + (1 − qC ) ·EπC
2

s [lv] ≤ pC · lv[ f C
1 ] + (1 − pC ) · lv[ f C

2 ] (23)

where pC = (
∑

t∈C∩S yt,1)/(
∑

t∈C∩S

∑
i∈{1,2} yt,i), and because( ∑

t∈C∩S

∑
i∈{1,2}

y y,i
) · (pC · (mp[ f C

1 ], lv[ f c
1 ]) + (1 − pC ) · (mp[ f C

2 ], lv[ f C
2 ]))

= ( ∑
t∈C∩S

yt,1
) · (mp[ f C

1 ], lv[ f c
1 ]) + ( ∑

t∈C∩S

yt,2
) · (mp[ f C

2 ], lv[ f C
2 ]) (by arithmetic operations)

= ( ∑
t∈C∩S

ya,1
) · (zmp,C,1, zlv,C,1) + ( ∑

t∈C∩S

yt,2
) · (zmp,C,2, zlv,C,2) (by def. of f C

1 and f C
2 )

=
∑

t∈C∩S

∑
i∈{1,2}

yt,i · (zmp,C,i, zlv,C,i) (rearranging)
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we get ∑
C∈M(G)

( ∑
t∈C∩S
i∈{1,2}

yt,i
) · (qC · (EπC

1
s [mp] ,E

πC
1

s [lv]) + (1 − qC ) · (EπC
2

s [mp] ,E
πC

2
s [lv])

)
≤

∑
C∈M(G)

∑
t∈C∩S

∑
i∈{1,2}

yt,i · (zmp,C,i, zlv,C,i) (by (22) and (23), and above inequality)

≤ (u, v) (by (14) and (15))

Hence, if there is a solution to the constraints from Fig. 4, then from (10) and (11) we get frequency functions fC and f ′
C for 

each MEC C . Using Lemma 12 we obtain two memoryless deterministic strategies π C
1 and π C

2 and a number qC satisfying 
the conditions of the lemma, for each MEC C . The strategies π C

1 and π C
2 induce another non-negative solution, bearing the 

symbol ,̂ to the constraints from Fig. 4, in which the ya are preserved from the old solution, ŷs,1 = qC /(ys,1 + ys,2) and 
ŷs,2 = (1 − qC ) · (ys,1 + ys,2) where C is the MEC containing a, x̂a,i = fπi (a) for all a and i ∈ {1, 2}, and ẑmp,C,i and ẑlv,C,i are 
uniquely determined by the values x̂a,i . Then (10)–(15) are satisfied by the properties of π C

1 and π C
2 , and the satisfaction 

of (8) and (9) is preserved because ŷs,1 + ŷs,2 = ys,1 + ys,2.
Now note that the values of z and x are only dependent on π C

1 and π C
2 , and once they are fixed, the remaining con-

straints reduce to a linear program. Hence, to solve the local variance problem in nondeterministic polynomial time it is 
sufficient to guess the memoryless strategies π C

1 and π C
2 , compute the corresponding values to z and x, construct the linear 

program by substituting these values into Lloc , and by solving the linear program verify that our guess of the memoryless 
deterministic strategies was correct. Hence, we get the following corollary.

Corollary 4. The problem of deciding if there is a strategy ζ satisfying the condition (Eζ
sin [mp] , Eζ

sin [lv]) ≤ (u, v) is in NP.

A simple adaptation of our proof also allows us to give an upper bound on the memory needed by a strategy.

Corollary 5. If there is a strategy ζ satisfying (Eζ
sin [mp] , Eζ

sin [lv]) ≤ (u, v) then there is a 3-memory strategy with the same properties.

Proof. The proof is a straightforward modification of the proof of direction ⇐ of Theorem 2 from the end of Subsection 4.2. 
The only difference is that instead of using Lemma 11 to obtain two memoryless randomized strategies for all MECs, we use 
Lemma 12 to obtain two memoryless deterministic strategies πC and π ′

C for each MEC C . We then combine all πC (resp. 
all π ′

C ) to obtain a strategy π (resp. π ′) which in every MEC C behaves as πC (resp. π ′
C ), and use Lemma 3 to combine σ , 

π and π ′ into the resulting strategy. �
Corollary 4 and Remark 1 give the following corollary.

Corollary 6. The approximate Pareto curve for local variance can be computed in exponential time.

5. Zero variance with optimal performance

Now we present polynomial-time algorithms to compute the optimal mean payoff expectation that can be ensured along 
with zero variance. The results are captured in the following theorem.

Theorem 3. The minimal expectation that can be ensured with zero variance can be computed in polynomial time, both for global and 
local variance.

We prove the theorem in the following two subsections.

5.1. Global variance

The basic intuition for zero global variance is that we need to find the minimal number y such that there is an almost-
sure winning strategy to reach the MECs where expectation exactly y can be ensured with zero variance. Relying on 
Lemma 4, we then get that for each MEC such values are described by an interval, which allows us to reduce the problem 
to a series of (polynomially many) almost-sure reachability problems. The complete algorithm is given in Algorithm 1. The 
correctness is proved in the following lemma.

Lemma 13. Given an MDP G = (S, A, Act, δ), a starting state sin, and a reward function r, the following assertions hold:

1. If x is the output of Algorithm 1, then there is a strategy to ensure that the expectation is at most x and the global variance is zero.
2. If there is a strategy to ensure that the expectation u and the global variance is zero, then the output x of Algorithm 1 satisfies that 

x ≤ u.
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Input: An MDP G = (S, A, Act, δ), a starting state sin , and a reward function r
Output: An optimal reward value or NO

1 Compute the MEC decomposition C1, C2, . . . , Cn of G;
2 foreach Ci do
3 αCi := infσ mins∈Ci E

σ
s [mp]; // minimal expectation in Ci

4 βCi := supσ maxs∈Ci E
σ
s [mp]; // maximal expectation in Ci

5 Sort the values αCi in a non-decreasing order �1 ≤ �2 ≤ . . . ≤ �n ;
6 i := 1;
7 while i ≤ n do
8 Ci := {C j | αC j ≤ �i ≤ βC j }; // MECs whose interval contain �i

9 Ai := ⋃
C j∈Ci

C j ; // the union of the MECs in Ci

10 if ∃σ : Pσ
sin

[Reach(Ai)] = 1 then
11 return �i ;
12 i := i + 1;
13 return NO

Algorithm 1: Zero global variance.

Proof. The proof of the first item proceeds as follows. If the output of the algorithm is x, then consider C to be the set of 
MECs whose interval contains x. Let A′ = ⋃

C j∈C C j . By line 10 of the algorithm we have that there exists an almost-sure 
winning strategy for the objective Reach(A′), and by using standard algorithms for MDPs [23,15] there exists a memoryless 
deterministic almost-sure winning strategy σR for the objective. We consider a strategy defined as follows: (i) play σR
until an end-component in C is reached; (ii) once A′ is reached, consider a MEC C j that is reached and switch to the 
memoryless randomized strategy σx of Lemma 4 to ensure that every BSCC obtained in C j by fixing σx has expected 
mean-payoff exactly x (i.e., it ensures expectation x with zero global variance). Since σ is an almost-sure winning strategy 
for the reachability objective to the MECs in C , and once the MECs are reached the strategy σx ensures that every BSCC of 
the Markov chain has expectation exactly x, it follows that the expectation is x and the global variance is zero.

For the proof of the second item, suppose that there is a strategy to ensure that the expectation is u and the 
global variance zero. By Theorem 1 there is a finite-memory strategy σ with the same properties. Let Ĉ = {Ĉ | Ĉ
is a BSCC reachable from s in Gσ

sin
}. Since the global variance is zero and the expectation is u, in every BSCC Ĉ ∈ Ĉ the 

expected mean payoff must be exactly u. Let

C = {C | C is a MEC and there exists Ĉ ∈ Ĉ such that the associated

end component of Ĉ is contained in C}.
For every C ∈ C we have u ∈ [αC , βC ], where [αC , βC ] is the interval of C . Moreover, the strategy σ is also a witness 
almost-sure winning strategy for the reachability objective Reach(A′), where A′ = ⋃

C∈C C . Let α′ = max{αC | C ∈ C}. Since 
for every C ∈ C we have u ∈ [αC , βC ], it follows that α′ ≤ u. Observe that if the algorithm checks the value α′ (say α′ = �i ), 
then the condition at line 10 is true, as A′ ⊆ ⋃

C j∈Ci
C j and σ will be a witness almost-sure winning strategy to reach ⋃

C j∈Ci
C j . Thus the algorithm must return a value at most α′ ≤ u. �

The complexity analysis of Algorithm 1 is as follows: (i) the MEC decomposition at line 1 can be computed in polynomial 
time [7,6]; (ii) the minimal and maximal expectation at lines 3 and 4 can be computed in polynomial time, e.g. using linear 
programming [23]; and (iii) sorting (line 5) can be done in polynomial time, as well as deciding existence of almost-sure 
winning strategies for reachability objectives (line 10) can be achieved in polynomial time [5,8]. It follows that the algorithm 
runs in polynomial time, and we obtain Theorem 3 for global variance.

5.2. Local variance

Given a set of actions X , we denote by Safe(X) the set of runs that never take any action outside of X . As the first step, 
our algorithm for computing optimal expectation under zero variance requires to compute, for all states s, a number γ (s). 
The number γ (s) is the minimum number for which there is a strategy σs that, when initiated in s, only visits actions with 
reward γ (s). This corresponds to the minimal q for which there is a strategy σs such that Pσs

s [Safe({a | r(a) = q}) = 1].
The intuition of the algorithm for zero local variance is that to minimize the expectation with zero local variance, a 

strategy σ needs to reach states s with low γ (s), and then mimic σs . Moreover, σ minimizes the expected value of mp
among all possible behaviours satisfying the above. For this purpose, we define an MDP G from G as follows: For each state 
s such that γ (s) < ∞ we add a state s with a self-loop on it, and we add a new action as that leads from s to s. Further, we 
construct a reward function Mγ which assigns γ (s) to as , and 0 to all other actions. Let F = {as | γ (s) < ∞} be the target set 
of actions. We compute a strategy that minimizes the expected cumulative reward crMγ (i.e., crMγ (s1a1s2 . . .) = ∑∞

j=1 r(a j)), 
and at the same time ensures almost-sure (probability 1) reachability to F in G . Our proofs below show that this minimal 
expected cumulative reward is equal to the minimal expected mean payoff achievable under zero variance in G .

For reader’s convenience, the algorithm that we intuitively described above is formally described as Algorithm 2. In the 
rest of this section we prove correctness of the algorithm, and analyse its complexity. The following lemma is straightfor-
ward.
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Input: An MDP G = (S, A, Act, δ), a starting state sin , and a reward function r
Output: An optimal reward value or NO

1 Sort the values r(a) for a ∈ A in an increasing order q1 < q2 < . . . < qn;
2 foreach s ∈ S do
3 i := 1;
4 γ (s) := ∞;
5 while i ≤ n do
6 Ai := {a | r(a) = qi}; // actions with reward qi

7 if ∃σ with P
σ
s [Safe(Ai)] = 1 then

8 γ (s) := qi ;
9 break; // lowest solution found, exit while-loop

10 i := i + 1;

11 Construct G and Mγ ;

12 x := inf{x | ∃σ in G : Pσ
sin

[Reach(F )]=1 ∧E
σ
sin

[crMγ ]=x}; // inf∅=∞
13 if x = ∞ then return NO else return x;

Algorithm 2: Zero local variance.

Lemma 14. The values γ (s) computed by Algorithm 2 at lines 2–10 are the correct values of γ .

Let u be the minimal expected mean payoff that can be ensured along with zero local variance in G , and let x be the 
value returned by Algorithm 2.

Lemma 15. Given an MDP G = (S, A, Act, δ), a starting state sin, and a reward function r, the following assertions hold:

1. If x is the output of Algorithm 2, then there is a strategy to ensure that the expectation is at most x and the local variance is zero.
2. If there is a strategy to ensure that the expectation u and the local variance is zero, then the output x of Algorithm 2 satisfies that 

x ≤ u.

Proof. For the first item, consider a finite-memory strategy σ in G that satisfies Pσ
sin

[Reach(F )]=1 and Eσ
sin

[Mγ ]=x (it exists 
due to line 7 of the algorithm). We construct a witness strategy σ for zero local variance in G as follows: play as σ until 
the set F is reached, and after F is reached, if a state s′ is reached, switch to the memoryless deterministic strategy σs′ to 
ensure that no reward other than γ (s′) is visited. The strategy σ ensures that every BSCC of the resulting Markov chain 
consists of only one reward value. Hence the local variance is zero. We also have Eσ

sin
[mp] ≤ x, and the desired result follows.

Let us now proceed with the second item of the lemma. By Corollary 5 there is a finite-memory witness strategy σ with 
Eσ

sin
[mp] = u and Eσ

sin
[lv] = 0. Consider the Markov chain Gσ

sin
, and its BSCC C . We establish the following properties:

1. Rewards of all actions in C must be the same. Otherwise the local variance is positive (by the definition of local variance 
and by Ergodic theorem for Markov chains [21, Theorem 1.10.2]).

2. For all states s′ that appear in the BSCC we have γ (s′) ≤ rC , where rC is the reward of the actions in C . Otherwise if 
γ (s′) > rC , playing according the strategy σ in the BSCC from s′ we ensure that only states with reward rC are visited, 
contradicting properties of γ (s).

It follows that in every BSCC C of the Markov chain the reward rC of the BSCC satisfies that rC ≥ γ (s′), for every s′ that 
appears in C . We construct a strategy σ in G as follows: the strategy plays as σ until a BSCC is reached, and as soon as 
a BSCC C is reached at state s′ , the strategy σ chooses the action as′ to proceed to the state s′ securing reward γ (s′) on 
the run. The strategy σ ensures that the cumulative reward in G is at most u, and, because in a finite-state Markov chain a 
BSCC is almost surely reached, also Pσ

sin
[Reach(F )] = 1. By Lemma 14 and by examining lines 11–13 of Algorithm 2 we get 

u ≥ x. �
Let us now analyse the complexity of Algorithm 2. Since safety properties for MDPs can be decided in polynomial time 

(see e.g. [15]), we obtain the computation of γ can be executed in polynomial time. Further, the property on line 12 can be 
checked in polynomial time using [16].

6. Conclusions and future work

We studied two notions of variance for MDPs with mean-payoff objectives: the global (the standard one) and the local 
variance. We established a strategy complexity (i.e., the memory and randomization required) for Pareto optimal strategies, 
and established results for complexity of the problems. For global variance, our results yield PSPACE upper bound for the 
decision problem, and pseudo-polynomial algorithm for approximation. For local variance, we gave an NP upper bound. We 
further showed that the problems of finding the optimal expected mean payoff achievable with zero variance can be solved 
in polynomial time for both global and local variance.
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The main question which we left open is establishing tighter complexity bounds. There are several possible directions in 
achieving this. One might try to prove NP-hardness for either the local or global variance, but this appears to be a difficult 
task requiring novel insights, for the following reasons:

• There are NP-hardness results for variance-restricted cumulative reward [19], but these hold already for zero variance. As 
we have shown in Section 5, the corresponding problems for mean payoff are solvable in polynomial time. This suggest 
that the problems for cumulative reward and mean-payoff reward are substantially different.

• Hardness results of non-convex programming, such as [22,20], do not extend easily to our setting.
◦ The proof of [22] encodes the clique problem in a quadratic program. There are two major obstacles to modifying the 

proof for our setting.
Firstly, the encoding of [22] captures relatively complex relation between variables, expressing a combinatorial prob-
lem. In our encoding almost every variable is bound to a single state, and combinatorial dependencies is not easily 
expressible.
Secondly, in the proof of [22] the intuition of the encoding is that a structure of a given graph is directly encoded 
in variables. Similar approach will fail in our setting, since, for example, any encoding “based on” strongly connected 
graph will trivially yield optimal solution with zero variance (see Lemma 4), for which an optimal satisfiable assign-
ment can be found in polynomial time.

◦ The proofs of [20] use objective functions and constraints which are clearly more complex than what encodings 
permit.

• For problems related to MDPs, NP-hardness proofs typically exploit combinatorial nature of the problem. For the global 
variance, the issue is quite orthogonal, as the complicated computational step is the guess of the number z (see 
page 156), since if z is given in polynomially many bits, then our algorithm for approximation is polynomial.

An alternative step towards establishing better complexity bounds is lowering the complexity of the global-variance 
problem. As we have remarked at the end of Section 3, it would be sufficient to obtain polynomial bound on the size of z
(see page 156). Nevertheless, this appears to be a non-trivial step requiring new insights into the problem.

There are several interesting directions for future work. The first direction would be to close the computational com-
plexity gaps in the problems we study. In this work, we introduce local variance as a measure of stability, which along 
side global variance capture different aspects of stability of a system. Investigating different notions of stability is another 
interesting direction for future work.
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