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Abstract—Metric Temporal Logic (MTL) is a generalisation of
Linear Temporal Logic in which the Until and Since modalities
are annotated with intervals that express metric constraints. A
seminal result of Hirshfeld and Rabinovich shows that over
the reals, first-order logic with binary order relation < and
unary function +1 is strictly more expressive than MTL with
integer constants. Indeed they prove that no temporal logicwhose
modalities are definable by formulas of bounded quantifier depth
can be expressively complete forFO(<,+1). In this paper we
show the surprising result that if we allow unary functions +q,
q ∈ Q, in first-order logic and correspondingly allow rational
constants in MTL, then the two logics have the same expressive
power. This gives the first generalisation of Kamp’s theoremon
the expressive completeness of LTL forFO(<) to the quantitative
setting. The proof of this result involves a generalisationof
Gabbay’s notion of separation.

I. I NTRODUCTION

One of the best-known and most widely studied logics
in specification and verification isLinear Temporal Logic
(LTL): temporal logic with the modalitiesUntil and Since.
For discrete-time systems one considers interpretations of LTL
over the integers(Z, <), and for continuous-time systems one
considers interpretations over the reals(R, <). A celebrated
result of Kamp [1] is that, over both(Z, <) and (R, <), LTL
has the same expressiveness as theMonadic Logic of Order
(FO(<)): first-order logic with binary order relation< and
uninterpreted monadic predicates. Thus we can benefit from
the appealing variable-free syntax and elementary decision
procedures ofLTL, while retaining the expressiveness and
canonicity of first-order logic.

Over the realsFO(<) cannot express metric properties,
such as, “every request is followed by a response within one
time unit”. This motivates the introduction ofMonadic Logic
of Order and Metric (FO(<,+Q)), which augmentsFO(<)
with a family of unary function symbols+q, q ∈ Q. Corre-
spondingly, there have been a variety of proposals of quantita-
tive temporal logics, with modalities definable inFO(<,+Q)
(see, e.g., [2], [3], [4], [5], [6], [7]). Sometimes attention is
restricted toFO(<,+1)—the fragment ofFO(<,+Q) with
only the +1 function—and to temporal logics definable in
this fragment. Typically these temporal logics can be seen as
quantitative extensions ofLTL. However, until now there has
been no fully satisfactory counterpart to Kamp’s theorem in
the quantitative setting.

The best-known quantitative temporal logic isMetric Tem-
poral Logic (MTL), introduced over 20 years ago in [8].MTL

arises by annotating the temporal modalities ofLTL with inter-
vals with rational endpoints, representing metric constraints.
Since theMTL operators are definable inFO(<,+Q), it is
immediate that one can translateMTL into FO(<,+Q). The
main result of this paper shows the converse, thatMTL is
expressively complete forFO(<,+Q).

The generality of allowing rational constants is crucial for
expressive completeness: our translation fromFO(<,+Q) to
MTL does not preserve the granularity of timing constraints.
Indeed, it is known thatMTL with integer constants is not
expressively complete forFO(<,+1). More generally, a sem-
inal result of Hirshfeld and Rabinovich [9, Theorem] asserts
that no temporal logic whose modalities are definable by a
(possibly infinite) set of formulas ofFO(<,+1) of bounded
quantifier depth can be expressively complete forFO(<,+1).
Since the modalities ofMTL are definable by formulas of
quantifier depth two, necessarily anMTL formula equivalent
to a givenFO(<,+1) formula may require rational constants
and itself only be definable inFO(<,+Q).

Two of the key ideas underlying our proof of expressive
completeness areboundednessandseparation. GivenN ∈ N,
anFO(<,+Q) formulaϕ(x) is N -bounded if all quantifiers
are relativised to the interval(x − N, x + N). Exploiting a
normal form forFO(<), due to Gabbay, Pnueli, Shelah and
Stavi [10], we show how to translate boundedFO(<,+Q)
formulas into MTL. Extending this translation to arbitrary
FO(<,+Q) formulas requires an appropriate metric analog
of Gabbay’s notion ofseparation[11].

Gabbay [11] shows that everyLTL formula can be equiv-
alently rewritten as a Boolean combination of formulas, each
of which depends only on the past, present or future. This
seemingly innocuous separation property has several far-
reaching consequences (see the survey of Hodkinson and
Reynolds [12]). In particular, the factLTL has the property is a
key lemma in an inductive translation fromFO(<) to LTL. We
prove an analogous result forMTL: everyMTL formula can be
equivalently rewritten as a Boolean combination of formulas,
each of which is either bounded (i.e., refers to thenear present)
or refers to thedistant futureor distant past. Crucially, while
the distant past and distant future are disjoint, they are both
allowed to overlap with near present, unlike in Gabbay’s result.
We exploit our result in like manner to Gabbay to give an
inductive translation ofFO(<,+Q) to MTL. Here it is vital
that we already have a translation of boundedFO(<,+Q)
formulas toMTL.
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Related Work

A more elaborate quantitative extension ofLTL is Timed
Propositional Temporal Logic (TPTL), which expresses timing
constraints using variables and freeze quantification [4].From
the respective definitions of the logics the following inclusions
in expressiveness are straightforward:

MTL ⊆ TPTL ⊆ FO(<,+Q) . (1)

Bouyer, Chevalier and Markey [13] showed that the inclusion
betweenMTL and TPTL is strict if only future temporal
connectives are considered, confirming a conjecture of [4].
However they left open the case in which both past and future
connectives are allowed. Our main result shows that in this
case the chain of inclusions (1) collapses, resolving this open
question.

In fact, TPTL has already been shown to be expressively
complete forFO(<,+Q) in [14]. Notwithstanding this result,
we regard the result in the present paper as the first fully
satisfactory analog of Kamp’s Theorem forFO(<,+Q). This
is becauseTPTL is a hybrid between first-order logic and tem-
poral logic, featuring variables and quantification in addition
to temporal modalities [15].

The logics considered in this paper are all undecidable.
Adding+1 to FO(<) or ✸=1ϕ (ϕ will be true in exactly one
time unit) toLTL already leads to an undecidable satisfiability
problem over the reals. Intuitively, the source of undecidability
is the ability to expresspunctualmetric constraints, such as
“every request is followed by a response in exactly one time
unit”. The expressiveness of decidable quantitative temporal
logics has also been investigated in [16], [9]. The main results
present a hierarchy of decidable temporal logics withcounting
modalities, and characterise their expressiveness in terms of
fragments ofFO(<,+1). The most basic such logic arises by
adding the modality✸<1ϕ to LTL, expressing thatϕ will be
true within one time unit in the future, and is equivalent in
expressiveness to the logic MITL [17].

Yet another approach to expressive completeness is taken in
our previous work [18]. This paper considers the fragment of
FO(<,+Q) with only the+1 function. Likewise it restricts to
MTL formulas in which intervals have integer endpoints. Re-
call that in this setting expressive completeness fails over un-
bounded domains such as(R, <) and(R≥0, <). However [18]
shows that expressive completeness holds over each bounded
time domain([0, N), <). While some of the ideas from [18]
are used in the present paper, our results differ substantially.
While [18] relies on a bounded time domain, the present paper
considers syntactically bounded formulas on an unbounded
domain. Even the fact thatMTL is expressively complete for
syntactically boundedFO(<,+1) formulas crucially uses the
fact that we allow fractional constants.

II. D EFINITIONS AND MAIN RESULTS

A. First-order logic

Formulas ofMonadic Logic of Order and Metric (FO(<
,+Q)) are first-order formulas over a signature with a binary

relation symbol<, an infinite collection of unary predicate
symbolsP1, P2, . . ., and an infinite family of unary function
symbols+q, q ∈ Q. Formally, the terms ofFO(<,+Q) are
generated by the grammart ::= x | t + q, where x is a
variable andq ∈ Q. Formulas ofFO(<,+Q) are given by
the following syntax:

ϕ ::= true | Pi(t) | t < t | ϕ ∧ ϕ | ¬ϕ | ∃xϕ ,

wherex denotes a variable andt a term.
We consider interpretations ofFO(<,+Q) over the real

line1, R, with the natural interpretations of< and +q. It
follows that a structure forFO(<,+Q) is determined by an
interpretation of the monadic predicates.

Of particular importance isFO(<,+1), the fragment of
FO(<,+Q) that omits all the+q functions except+1. For
simplicity, when considering formulas ofFO(<,+1) we will
often use standard arithmetical notation as a shorthand, for
example,

x− y > 2 ≡ (y + 1) + 1 < x .

B. Metric Temporal Logic

Given a setP of atomic propositions, the formulas of
Metric Temporal Logic (MTL)are built fromP using Boolean
connectives and time-constrained versions of theUntil and
SinceoperatorsU andS as follows:

ϕ ::= true | P | ϕ ∧ ϕ | ¬ϕ | ϕ UI ϕ | ϕ SI ϕ ,

whereP ∈ P and I ⊆ (0,∞) is an interval with endpoints
in Q≥0 ∪ {∞}.

Intuitively, the meaning ofϕ1 UI ϕ2 is thatϕ2 will hold at
some time in the intervalI, and until thenϕ1 holds. More
precisely, the semantics ofMTL are defined as follows. A
signal is a functionf : R→ 2P . Given a signalf andr ∈ R,
we define the satisfaction relationf, r |= ϕ by induction over
ϕ as follows:

• f, r |= p iff p ∈ f(r),
• f, r |= ¬ϕ iff f, r 6|= ϕ,
• f, r |= ϕ1 ∧ ϕ2 iff f, r |= ϕ1 andf, r |= ϕ2,
• f, r |= ϕ1 UI ϕ2 iff there existst > r such thatt−r ∈ I,
f, t |= ϕ2 andf, u |= ϕ1 for all u, r < u < t,

• f, r |= ϕ1 SI ϕ2 iff there existst < r such thatr−t ∈ I,
f, t |= ϕ2 andf, u |= ϕ1 for all u, t < u < r.

LTL can be seen as a restriction ofMTL with only the
interval I = (0,∞). Indeed, if I = (0,∞) then we omit
the annotationI in the corresponding temporal operator since
the constraint is vacuous. We also use arithmetic expressions
to denote intervals. For example, we writeU<3 for U(0,3)

and U=1 for U{1}. We say theUI and SI operators are
boundedif I is bounded, otherwise we say that the operators
areunbounded.

We introduce the derived connectives✸Iϕ := true UI

ϕ (ϕ will be true at some point in intervalI) and -✸Iϕ :=

1 Our results carry over to subintervals ofR, such as the non-negative reals
R≥0.



true SI ϕ (ϕ was true at some point in intervalI in the past).
We also have the dual connectives✷Iϕ := ¬✸I¬ϕ (ϕ will
hold at all times in intervalI in the future) and-✷I := ¬ -✸I¬ϕ
(ϕ was true at all times in intervalI in the past).

C. Expressive Equivalence

Given a setP = {P1, . . . , Pm} of monadic predicates, a
signalf : R→ 2P defines an interpretation of eachPi, where
Pi(r) if and only if Pi ∈ f(r). As observed earlier, this is
sufficient to define the model-theoretic semantics ofFO(<
,+Q), enabling us to relate the semantics ofFO(<,+Q) and
MTL.

Let ϕ(x) be anFO(<,+Q) formula with one free variable
andψ an MTL formula. We sayϕ andψ areequivalentif for
all signalsf andr ∈ R:

f |= ϕ[r]⇐⇒ f, r |= ψ.

Example 1. Consider the following formula, which says that
P will be true at two points within the next time unit:

ϕ(x) := ∃y ∃z ((x < y < z < x+ 1) ∧ P (y) ∧ P (z)) .

It was shown in [9] thatϕ cannot be expressed in MTL using
only integer constants2. To see this, consider the signalf in
which the predicateP is true exactly at the points2n3 , n ∈ N.
It can be shown by induction that for every MTL formulaϕ
with integer constants there existst0 > 0 and a predicate
θ that is either true, false, P , ¬P , or ✸=1P , such that
for all t > t0, f, r |= ϕ iff f, r |= θ. On the other hand,
for 2n ≡ 1 (mod 3), ϕ is continuously true on the interval
(2n−1

3 , 2n3 ) and false on the boundary of the interval.
As observed in [13], we can, however, expressϕ(x) in MTL

by using fractional constants. The idea is to consider three
cases according to whetherP is true twice in the interval
(x, x + 1

2 ], twice in the interval[x+ 1
2 , x+ 1), or once each

in (x, x+ 1
2 ) and (x+ 1

2 , x+1). We are thus led to define the
MTL formula

ϕ† :=✸(0, 1
2
)(P ∧✸(0, 1

2
)P )∨

✸=1( -✸(0, 1
2
)(P ∧ -✸(0, 1

2
)P ))∨

(✸(0, 1
2
)P ∧✸( 1

2
,1)P ) ,

which is equivalent toϕ.

The following is straightforward.

Proposition 2. For every MTL formulaϕ there is an equiva-
lent FO(<,+Q) formulaϕ∗(x).

Our main result is the converse:

Theorem 3. For everyFO(<,+Q) formulaϕ(x) there is an
equivalent MTL formulaϕ†.

As we now explain, by a simple scaling argument it suffices
to prove Theorem 3 in the special case for whichϕ is an
FO(<,+1) formula. Let f be a signal andr ∈ Q>0. We

2In fact [9] did not consider so-calledpunctual operators, i.e., singleton
constraining intervals. But their argument goes throughmutatis mutandis.

define the signalr · f by r · f(s) := f( sr ). Given either an
FO(<,+Q) formulaϕ(x) or anMTL formulaϕ, we say that
the formulaϕr is a scaleof ϕ by r ∈ Q>0, if for all signals
f and alls ∈ R,

f, s |= ϕ ⇐⇒ r · f, rs |= ϕr .

It is straightforward thatFO(<,+Q) andMTL are both closed
under scaling: in each case the required formulaϕr is obtained
by multiplying all constants occurring inϕ by r.

Now we show how to deduce expressive completeness of
MTL for FO(<,+Q) from the fact thatMTL is at least as
expressive as the fragmentFO(<,+1). Given anFO(<,+Q)
formulaϕ(x), pick r such thatϕr is anFO(<,+1) formula
and translateϕr to an equivalentMTL formula ψ. Then
rescalingψ by 1/r, we obtain anMTL formula ψ1/r that is
equivalent to the original formulaϕ.

We will see later that the translation fromFO(<,+1) to
MTL already involves temporal operators whose constraining
intervals have fractional endpoints, as suggested by Example 1.

III. SYNTACTIC SEPARATION OFMTL

In [19], Gabbayet al. showed thatLTL formulas over
Dedekind-complete domains are equivalent to Boolean com-
binations of formulas that depend exclusively on one of the
past, present, or future. We state this result as it applies to
continuous domains (the formulation in the discrete setting is
slightly more straightforward). To state the result we recall
the right-limit modality K+ and left-limit modality K−,
respectively defined as:

K+ϕ := ¬(¬ϕ U true) K−ϕ := ¬(¬ϕ S true) .

The formulaK+ϕ states thatϕ is true arbitrarily close in the
future andK−ϕ asserts thatϕ is true arbitrarily close in the
past.

Theorem 4 ([19]). Over Dedekind-complete domains, every
LTL formula is equivalent to a Boolean combination of:

• atomic formulas,
• formulas of the formϕ1 U ϕ2 such thatϕ1 andϕ2 use

only U andK−,
• formulas of the formϕ1 S ϕ2 such thatϕ1 and ϕ2 use

only S andK+.

Note that the three classes of formulas in Theorem 4 respec-
tively refer to the present, future and past. In this sectionwe
derive an analogous result forMTL. We show that everyMTL
formula can be written as a Boolean combination ofbounded,
distant futureanddistant past formulas. Just as Gabbayet al.
used syntactic forms for future and past representations, our
plan is to use natural forms for bounded, distant future and
distant past formulas. Crucially, the distant future and distant
past are allowed to overlap with the bounded present, unlike
in the result of Gabbayet al.

Given anMTL formulaϕ, we define thefuture-reachfr(ϕ)
andpast-reachpr(ϕ) inductively as follows:

• fr(p) = pr(p) = 0 for all propositionsp,



• fr(true) = pr(true) = 0,
• fr(¬ϕ) = fr (ϕ), pr (¬ϕ) = pr(ϕ),
• fr(ϕ ∧ ψ) = max{fr(ϕ), fr (ψ)},
• pr(ϕ ∧ ψ) = max{pr(ϕ), pr (ψ)},
• If n = inf(I) andm = sup(I):

– fr (ϕ UI ψ) = m+max{fr(ϕ), fr (ψ)},
– pr (ϕ SI ψ) = m+max{pr(ϕ), pr (ψ)},
– fr (ϕ SI ψ) = max{fr(ϕ), fr (ψ)− n},
– pr (ϕ UI ψ) = max{pr(ϕ), pr (ψ)− n}.

Intuitively the future-reach indicates how much of the future is
required to determine the truth of anMTL formula, and like-
wise for the past-reach. Note that ifϕ contains an unbounded
U operator thenfr (ϕ) = ∞ and likewise ifϕ contains an
unboundedS operator,pr (ϕ) =∞.

We say anMTL formula issyntactically separatedif it is a
Boolean combination of the following

• ✸=Nϕ wherepr(ϕ) < N − 1,
• -✸=Nϕ wherefr(ϕ) < N − 1,
• ϕ, where all intervals occurring in temporal operators are

bounded.

We call formulas of the third kind abovebounded. Note that
formulas with no occurrences ofUI andSI are included in
the definition of bounded formulas.

Example 5. Consider the formulaϕ = ✸ -✷(p → -✸=1p).
Thenfr(ϕ) = pr(ϕ) =∞. We define an equivalent separated
formula as follows. First, writeψ = p → -✸=1p. Thenϕ is
equivalent to

-✸=1(ψ ∧ -✷ψ) ∧ -✷(0,1)ψ ∧ ψ

∧
(

(ψ U≤2 ψ) ∨ (✷≤2ψ ∧✸=2(ψ U ψ))
)

.

Theorem 6. Every MTL formula is equivalent to one which
is syntactically separated.

To prove Theorem 6 our strategy is as follows:

Step 1. Remove all unboundedU and S operators from
within the scope of bounded operators.

Step 2. Treating bounded formulas as atoms, apply Theo-
rem 4 to remove unboundedU operators from the
scope of unboundedS operators and vice versa.

Step 3. Divide the top-level unbounded operators into for-
mulas bounded byN and formulas at leastN away
for sufficiently largeN to separate these formulas.
This step may also place unbounded operators within
the scope of bounded operators, but still maintains
the separation of unboundedU and unboundedS
operators. Using Step 1, and observing that this does
not introduce any new unbounded operators, we can
move these unbounded operators to the top level and
recursively apply the division to completely separate
the formula.

Step 0. Translation to Normal Form:We first introduce a
normal form forMTL formulas. In defining this we regardUI ,
SI , ✷I , ✸I , -✷I , and -✸I as primitive operators. Then anMTL
formula is said to be innormal formif the following all hold:

(i) The formula is written using the Boolean operators and
the temporal connectivesU(0,γ), S(0,γ), ✷(0,γ), -✷(0,γ),
whereγ ∈ Q≥0 ∪ {∞}, and✸=q and -✸=q, whereq ∈
Q≥0;

(ii) In any subformulaϕ1 UI ϕ2 or ϕ1 SI ϕ2, the outermost
connective ofϕ1 is not conjunction and the outermost
connective ofϕ2 is not disjunction;

(iii) No temporal operator occurs in the scope of✸=q or -✸=q;
(iv) Negation is only applied to propositional variables and

bounded temporal operators.

We can transform anMTL formula into an equivalent normal
form as follows. To satisfy (i) we eliminate connectivesUI

andSI in which the intervalI does not have left endpoint0
using the equivalences

ϕ U(p,q) ψ ←→ ✷(0,p)ϕ ∧✸=p

(

ϕ ∧ (ϕ U(0,q−p) ψ)
)

ϕ S(p,q) ψ ←→ -✷(0,p)ϕ ∧ -✸=p

(

ϕ ∧ (ϕ S(0,q−p) ψ)
)

and corresponding equivalences for left-closed and right-
closed intervals.

To satisfy (ii) we use the equivalences

ϕ UI (ψ ∨ θ) ←→ (ϕ UI ψ) ∨ (ϕ UI θ)

(ϕ ∧ ψ) UI θ ←→ (ϕ UI θ) ∧ (ψ UI θ)

and their corresponding versions forSI ,

ϕ SI (ψ ∨ θ) ←→ (ϕ SI ψ) ∨ (ϕ SI θ)

(ϕ ∧ ψ) SI θ ←→ (ϕ SI θ) ∧ (ψ SI θ) .

To satisfy (iii) we use the equivalences

✸=q(ϕ ∧ ψ) ←→ ✸=qϕ ∧✸=qψ

✸=q(¬ϕ) ←→ ¬✸=qϕ

✸=q(ϕ UI ψ) ←→ ✸=qϕ UI ✸=qψ

✸=q(ϕ SI ψ) ←→ ✸=qϕ SI ✸=qψ

and the corresponding equivalences for-✸=q to distribute✸=q

and -✸=q across all other operators.
To satisfy (iv) we observe that theK+ andK− operators

can be defined as bounded formulas,viz.

K+(ϕ)↔ ¬(¬ϕ U<1 true) K−(ϕ)↔ ¬(¬ϕ S<1 true) .

Then we use the equivalences

¬(ϕ U ψ) ←→ ✷¬ψ ∨K+(¬ϕ) ∨

(¬ψ U (¬ψ ∧ (¬ϕ ∨K+(¬ϕ))))

¬✷ϕ ←→ true U ¬ϕ

and their corresponding past versions to rewrite any subfor-
mula in which negation is applied to an unbounded temporal
operator.



Step 1. Extracting unbounded Until and Since

Our goal in this subsection is the following lemma.

Lemma 7. Every MTL formulaϕ is equivalent to one in which
no unbounded temporal operator occurs within the scope of a
bounded temporal operator.

The proof of this lemma relies on Proposition 8, whose
proof is straightforward.

Proposition 8. For all q ∈ Q≥0, the following equivalences
and their temporal duals hold over all signals.

(i)

θ U<q

(

(ϕ U ψ) ∧ χ
)

↔

θ U<q

(

(ϕ U<q ψ) ∧ χ
)

∨
(

(

θ U<q (✷<qϕ ∧ χ)
)

∧ ✸=q(ϕ U ψ)

)

(ii)

θ U<q (✷ϕ ∧ χ)

↔
(

θ U<q (✷<qϕ ∧ χ)
)

∧✸=q✷ϕ

(iii)

θ U<q

(

(ϕ S ψ) ∧ χ
)

↔

θ U<q

(

(ϕ S<q ψ) ∧ χ
)

∨
(

(

θ U<q ( -✷<qϕ ∧ χ)
)

∧ ϕ S ψ

)

(iv)

θ U<q ( -✷ϕ ∧ χ)

↔
(

θ U<q ( -✷<qϕ ∧ χ)
)

∧ -✷ϕ

(v)

(

(ϕ U ψ) ∨ χ
)

U<q θ

↔
(

(ϕ U<q ψ) ∨ χ
)

U<q θ ∨
[

(

(ϕ U<q ψ) ∨ χ
)

U<q (✷<qϕ)

∧✸<qθ ∧ ✸=q(ϕ U ψ)
]

(vi)

(

(✷ϕ) ∨ χ
)

U<q θ

↔

χ U<q θ ∨
(

χ U<q (✷<qϕ) ∧ ✸<qθ ∧ ✸=q(✷ϕ)
)

(vii)

(

(ϕ S ψ) ∨ χ
)

U<q θ

↔
(

(ϕ S<q ψ) ∨ χ
)

U<q θ ∨
[

(

-✷<qϕ ∨ (ϕ S<q ψ) ∨ χ
)

U<q θ ∧ (ϕ S ψ)
]

(viii)

(

-✷ϕ ∨ χ
)

U<q θ

↔

χ U<q θ ∨
[

(

( -✷<qϕ ∨ χ) U<q θ
)

∧ -✷ϕ
]

.

Proof of Lemma 7:Define theunbounding depthud(ϕ) of
anMTL formulaϕ to be the modal depth ofϕ, counting only
unbounded temporal operators. Thus we have

ud(ϕ1 UI ϕ2) =

{

max(ud(ϕ1), ud(ϕ2)) I bounded
max(ud(ϕ1), ud(ϕ2)) + 1 otherwise

with similar clauses for the other temporal operators.
Now suppose thatϕ is anMTL formula in normal form in

which some unbounded temporal operator occurs within the
scope of a bounded temporal operator. Then some subformula
of ϕ (or its temporal dual) matches the top side of one of
the equivalences in Proposition 8. Pick such a subformulaψ
with maximum unbounding depthud(ψ) and replace it with
the bottom sideψ′ of the corresponding equivalence. Notice
that all subformulas ofψ′ whose outermost connective is a
bounded temporal operator other than✸=q and -✸=q have
unbounding depth strictly less thanud(ψ). Finally rewriteψ′

to normal form, in particular pushing the newly introduced
✸=q and -✸=q operators inward. Notice that this last step does
not increase the maximum unbounding depth.

This rewriting process must eventually terminate, yielding
a formula in which no unbounded operator remains within the
scope of a bounded operator.

Step 2. Extracting Since from Until and vice-versa

Now suppose we have anMTL formula in which no
unbounded temporal operator occurs within the scope of a
bounded operator. If we replace each bounded subformulaθ
with a new propositionPθ, the resulting formula is now an
LTL formula equivalent to our original formula for suitable
interpretations of thePθ. From Theorem 4 we know that this
formula is equivalent to a Boolean combination of:



• atomic formulas,
• formulas of the formϕ2 U ϕ1 such thatϕ1 andϕ2 use

only U andK−,
• formulas of the formϕ2 S ϕ1 such thatϕ1 andϕ2 use

only S andK+.

Recalling from Step 0 that we can express the operators
K+ and K− using bounded operators, and also replacing
each propositionPθ with its associated bounded formulaθ,
we obtain:

Lemma 9. Every MTL formula is equivalent to a Boolean
combination of:

• bounded formulas,
• formulas that use arbitraryUI but only boundedSI ,
• formulas that use arbitrarySI but only boundedUI

Step 3. Completing the separation

Now suppose we have anMTL formula θ that does not
contain unboundedS. We prove by induction on the number of
unboundedU operators thatθ is equivalent to a syntactically
separated formula. Clearly ifθ contains no unboundedU op-
erators then it is bounded and therefore syntactically separated.
Otherwise, by applying Lemma 7 and observing that it does
not introduce unboundedU operators, we may assume that
θ = ϕ U ψ whereϕ andψ have strictly fewer unbounded
U operators thanθ. As θ does not contain unboundedS
operators,pr(θ) is finite, so chooseN > pr(θ) + 1. Next
we apply the following equivalence

ϕ U ψ ←→ ϕ U<N ψ

∨
(

✷<Nϕ ∧✸=N (ψ ∨ (ϕ ∧ ϕ U ψ))
)

.

Now pr(ψ∨(ϕ∧ϕ U ψ)) = pr(θ) < N−1, and the subfor-
mulasϕ U<N ψ and✷<Nϕ have strictly fewer unboundedU
operators thanθ. So by the induction hypothesis the formula
on the right hand side of the above equivalence is equivalent
to one that is syntactically separated, completing the inductive
step. SimilarlyS formulas that do not contain unboundedU
operators are equivalent to syntactically separated formulas.
Applying these observations to Lemma 9 gives our main result,
which we repeat here for completeness.
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Theorem 0. Every MTL formula is equivalent to a Boolean
combination of:

• ✸=Nϕ wherepr(ϕ) < N − 1,
• -✸=Nϕ wherefr(ϕ) < N − 1, and
• ϕ where all intervals occurring in the temporal operators

are bounded.

IV. EXPRESSIVE COMPLETENESS ON BOUNDED FORMULAS

In this section we show expressive completeness ofMTL for
a fragment ofFO(<,+1) consisting ofbounded formulas, i.e.,
formulasϕ(x) that refer only to a bounded interval aroundx.

Given termst2 andt2, defineBet(t1, t2) to consist ofFO(<
,+1) formulas in which

(i) each subformula∃z ψ has the form∃z ((t1 ≤ z <
t2) ∧ χ), i.e., each quantifier is relativized to the half-
open interval betweent1 (inclusive) andt2 (exclusive);

(ii) in each atomic subformulaP (t) the termt is a bound
occurrence of a variable.

Clauses (i) and (ii) ensure that a formula inBet(t1, t2) only
refers to the values of monadic predicates on points in the half-
open interval[t1, t2). We say that a formulaϕ(x) in Bet(x−
N, x+N) is N -boundedand thatϕ(x) in Bet(x, x+ 1) is a
unit formula.

Observe that in a unit formula the only essential use of
the +1 function is in specifying the range of the quantified
variables. More precisely, we have the following proposition,
where ψ[t/y] denotes the formula obtained by substituting
term t for all free occurrences of variabley in ψ:

Proposition 10. For any unit formulaϕ(x) there is anFO(<)
formula ψ ∈ Bet(x, y) such thatϕ is equivalent toψ[(x +
1)/y].

Proof: We show that all uses of the+1 function in ϕ
other than to specify the range of quantified variables can be
eliminated.

Let u, v be bound variables andk1, k2 ∈ N. Since u, v
range over an open interval of length1 an inequality of the
form u+k1 < v+k2 can be replaced by (i)u < v, if k1 = k2;
(ii) true, if k1 < k2; and (iii) false otherwise. Likewise an
equality of the formu+k1 = v+k2 can be replaced byu = v
if k1 = k2, andfalse otherwise.

The main result of this section is:

Theorem 11. For everyN -bounded formulaϕ(x) there exists
an equivalent MTL formulaϕ†.

In [18] it was shown thatMTL is expressively complete
for FO(<,+1) on bounded domains of the form[0, N).
Theorem 11 is subtly different from that result, which used
the definability of the point0 in a crucial way. In particular,
unlike [18], in the present setting we requireMTL opera-
tors whose constraining intervals have fractional endpoints to
achieve expressive completeness.

The proof of Theorem 11 has the following structure:

Step 1. By introducing extra predicates, we rewrite eachN -
bounded formula as a Boolean combination of unit
formulas and atoms.

Step 2. Using a normal form of Gabbay, Pnueli, Shelah,
and Stavi [10] (see also Hodkinson [20]) we give a
translation of unit formulas toMTL. This step reveals
a connection between the granularity ofMTL and the
quantifier depth of the unit formulas.

Step 3. We complete the translation by removing the new
predicate symbols introduced in Step 1.

Step 1. Translation to unit formulas and atoms

We translate anN -bounded formulaϕ(x) into a formula
ϕ(x) that is a Boolean combination of unit formulas and
atoms.



Let ϕ(x) mention monadic predicatesP1, . . . , Pm. For each
predicatePi we introduce an indexed family of new predicates
P j
i , where−N ≤ j < N . Intuitively, P j

i (y) stands forPi(y+
j). Formally, given a signalf that interprets thePi we define
a signalf that interprets theP j

i by

P j
i ∈ f(r)⇐⇒ Pi ∈ f(r + j)

for all r ∈ R.
Next we define a formulaϕ such thatf, r |= ϕ if and only

if f, r |= ϕ. To obtainϕ we recursively replace every instance
of a subformula

∃y ((x −N ≤ y < x+N) ∧ ψ)

in ϕ by the formula

∃y
(

(x ≤ y < x+1)∧(ψ[(y−N)/y]∨. . .∨ψ[(y+(N−1))/y])
)

.

Having carried out these substitutions, we use simple arith-
metic to rewrite every term inϕ asz+k, wherez is a variable
and k ∈ Z is an integer constant. Every use of monadic
predicates inϕ now has the formPi(z+k), for−N ≤ k < N .
Replace every such predicate byP k

i (z).
After the above operations the resulting formula is a

Boolean combination of unit formulas and atomic formulas.

Step 2. Translating unit formulas to MTL

In the next stage of the proof we show how to translate unit
formulas into equivalentMTL formulas. Critical to this step
is the following definition and lemma from [10]. Lemma 12
is the main technical lemma in the expressive completeness
proof of LTL for FO(<) in [10].

A decomposition formulaδ(x, y) is any formula of the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧

{ϕi(zi) : 0 ≤ i < n}

∧
∧

{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ n}

whereϕi andψi are LTL formulas regarded as unary predi-
cates.

Lemma 12 ([10]). Over any domain with a complete linear
order, everyFO(<) formulaψ(x, y) in Bet(x, y) is equivalent
to a Boolean combination of decomposition formulasδ(x, y).

Recall from Proposition 10 that for any unit formulaθ(x)
there exists anFO(<) formula ψ ∈ Bet(x, y) such that
ψ[(x+1)/y] is equivalent toθ(x). Thus, in light of Lemma 12,
to translate unit formulas toMTL it suffices to consider unit
formulas of the formδ[(x + 1)/y] where δ(x, y) is a a
decomposition formula.

Proposition 13. Let δ(x, y) be a decomposition formula and
consider the unit formulaθ(x) = δ[(x+ 1)/y]. Then there is
an MTL formula equivalent toθ(x).

Proof: We proceed by induction on the numbern of
existential quantifiers inδ(x, y).

Base case:Let δ(x, y) = ϕ(x) ∧ ∀u (x < u < y → ψ(u)),
whereϕ andψ are LTL formulas. Clearly theMTL formula
ϕ ∧✷(0,1)ψ is equivalent toδ[(x + 1)/y].

Inductive case:Let δ(x, y) have the form

x < y ∧ ∃z0 . . . ∃zn (x = z0 < · · · < zn = y)

∧
∧

{ϕi(zi) : 0 ≤ i < n}

∧
∧

{∀u ((zi−1 < u < zi)→ ψi(u)) : 0 < i ≤ n} .

Consider the unit formulaθ(x) := δ[(x+1)/y]. The idea is
to defineMTL formulasαk, βk, 0 ≤ k < 2n, whose disjunc-
tion is equivalent toθ. The definition of these formulas is based
on a case analysis of the values of the existentially quantified
variablesz1, . . . , zn−1 in δ, similar to the idea of Example 1.
To this end, consider the following2n half-open subintervals
of [x, x+1): [x, x+ 1

2n ), [x+
1
2n , x+

2
2n ), . . . , [x+

2n−1
2n , x+1).

We identify three mutually exclusive cases according to the
distribution of thezi among these intervals:

1) {z1, . . . , zn−1} ⊆ [x+ k
2n , x+ k+1

2n ) for somek < n;
2) {z1, . . . , zn−1} ⊆ [x + k

2n , x + k+1
2n ) for somek, n ≤

k < 2n;
3) There existsk, 1 ≤ k < 2n, and l, 1 ≤ l < n− 1, such

that zl < x + k
2n ≤ zl+1 (i.e., z1, . . . , zn−1 are not all

contained in a single interval).

a) Case 1.: Assume thatk < n and consider the
following MTL formula:

αk := ϕ0 ∧ ψ1 U[ k

2n
, k+1

2n
)

(ϕ1 ∧ (ψ2 U(0, 1
2n

)

(ϕ2 ∧ (ψ3 U(0, 1
2n

)

. . .

(ϕn−2 ∧ (ψn−1 U(0, 1
2n

)

(ϕn−1 ∧ ✷(0, 1
2n

)ψn)) · · · )

∧ ✷( k+1

2n
,1)ψn .

By construction, ifαk holds at a pointx then the formulas
ϕ0, ψ1, ϕ1, . . . , ϕn−1, ψn hold in sequence along the interval
[x, x + 1). In particular,ψn holds on the interval starting
at the time that the subformula✷(0, 1

2n
)ψn begins to hold

and extending to timex + 1 ( thanks to the “overlapping”
subformula✷( k+1

2n
,1)ψn). Thusαk implies θ. Conversely, ifθ

holds with the existentially quantified variablesz1, . . . , zn−1

all lying in the interval(x + k
2n , x + k+1

2n ), then clearlyαk

also holds.



b) Case 2.:Suppose thatn ≤ k < 2n and consider the
following MTL formula:

αk := ✸=1

[

ψn S( 2n−k−1

2n
, 2n−k

2n
)

(ϕn−1 ∧ (ψn−1 S(0, 1
2n

)

(ϕn−2 ∧ (ψn−2 S(0, 1
2n

)

. . .

(ϕ2 ∧ (ψ2 S(0, 1
2n

)

(ϕ1 ∧ -✷(0, 1
2n

)ψ1)) · · · )
]

∧ ✷(0, k

2n
)ψ1 ∧ ϕ0 .

The definition ofαk is according to similar principles as in
Case 1. If it holds at a pointx then the sequence of past opera-
tors ensures that the formulasψn, ϕn−1, ψn−1, . . . , ϕ1, ψ1, ϕ0

hold in sequence, backward fromx+1 to x. Thusαk implies
θ. Conversely, ifθ holds with the existentially quantified vari-
ablesz1, . . . , zn−1 all lying in the interval[x+ k

2n , x+
k+1
2n ),

n ≤ k < 2n, then clearlyαk also holds.
c) Case 3.:Suppose thatzl < x + k

2n ≤ zl+1 for some
k, 1 ≤ k < 2n, andl, 1 ≤ l < n− 1.

The idea is, for each choice ofl, to decomposeθ into a
propertyσl holding on the interval[x, x+ k

2n ) and a property
τl holding on the interval[x+ k

2n , x+ 1). We then apply the
induction hypothesis to transformσl andτl to equivalentMTL
formulas. To this end, define

σl(x) :=∃z0 . . . ∃zl+1(x = z0 < · · · < zl+1 = x+ k
2n )

∧
∧

{ϕi(zi) : 0 ≤ i ≤ l}

∧
∧

{∀u((zi−1 < u < zi)→ ψi(u)) : 1 ≤ i ≤ l + 1}

and

τl(x) :=∃zl . . . ∃zn(x = zl < · · · < zn = x+ 2n−k
2n )

∧
∧

{ϕi(zi) : l + 1 ≤ i < n}

∧
∧

{∀u((zi−1 < u < zi)→ ψi(u)) : l < i ≤ n} .

We can turnσl into an equivalentMTL formulaσ∗
l by the

following sequence of transformations: scale by2n
k to obtain a

unit formula, apply the induction hypothesis to transform the
unit formula to an equivalentMTL formula, finally scale the
resultingMTL formula by k

2n . We likewise transformτl into
an equivalentMTL formula τ∗l .

We now define

βk :=
∨

1≤l<n−1

(

σ∗
l ∧✸= k

2n

(

(ψl+1 ∧ τ
∗
l ) ∨ (ϕl+1 ∧ τ

∗
l+1)

)

)

.

From the definition ofσl it is clear thatβk matchesθ on
[x, x + k

2n ). For the remaining interval[x + k
2n , x + 1) we

distinguish between two cases: ifx + k
2n < zl+1, then

✸= k

2n
(ψl+1 ∧ τ

∗
l ) agrees withθ; and if x + k

2n = zl+1 then
✸= k

2n
(ϕl+1 ∧ τ

∗
l+1) agrees withθ. Thusβk implies θ. Con-

versely ifθ holds with the existentially variablesz1, . . . , zn−1

satisfying the conditions of Case 3 then one of the disjuncts,
and henceβk, must hold.

Step 3. Completing the translation

After Step 2 we have anMTL formula equivalent to the
formulaϕ(x) obtained in Step 1. It remains only to eliminate
the extra predicates introduced in Step 1. To this end, for each
predicateP and j ≥ 0, replaceP j by ✸=jP , and forj < 0
replaceP j by -✸=−jP . Finally we obtain anMTL formulaϕ†

equivalent to the originalN -bounded formulaϕ(x).
11

Theorem 0. For everyN -boundedFO(<,+1) formulaϕ(x)
there exists an equivalent MTL formulaϕ†.

V. EXPRESSIVE COMPLETENESS OFMTL

Our next step towards proving the expressive completeness
of MTL is to show that it is able to express all ofFO(<,+1).

Lemma 14. For everyFO(<,+1) formulaϕ(x) there is an
equivalent MTL formulaϕ†.

Proof: The proof is by induction on the quantifier depth
n of ϕ.

Base case,n = 0: All atoms are of the formPi(x), x = x,
x < x, x + 1 = x. We replace these byPi, true, false,
false respectively and obtain anMTL formula which is clearly
equivalent toϕ.

Inductive case:Without loss of generality we may assume
ϕ = ∃y.ψ(x, y), whereψ(x, y) has quantifier depthn−1. We
would like to removex from ψ. To this end we take a disjunc-
tion over all possible choices forγ : {P1(x), . . . Pm(x)} →
{true, false}, and useγ to determine the value ofPi(x) in
each disjunct via the formulaθγ :=

∧m
i=1(Pi(x) ↔ γ(Pi)).

Thus we can equivalently writeϕ in the form
∨

γ

(

θγ(x) ∧ ∃y.ψγ(x, y)
)

, (2)

where the propositionsPi(x) do not appear in theψγ .
Now in eachψγ , x appears only in atoms of the formx = z,

x < z, x > z, x+ 1 = z, x = z + 1 for some variablez. We
next introduce new monadic propositionsP=, P<, P>, P+ and
P−, and replace each of the atoms containingx in ψγ with
the corresponding proposition. That is,x = z becomesP=(z),
x < z becomesP<(z) and so on. This yields a formulaψ′

γ(y)
in which x does not occur, such thatψ′

γ(y) has the same truth
value asψγ(x, y) if the interpretations of the new propositions
are consistent withx. Thus for each value ofx, (2) has the
same truth value as

∨

γ

(θγ(x) ∧ ∃y.ψ
′
γ(y)) . (3)

for suitable intepretations of the new propositions.
By the induction hypothesis, for eachγ there is anMTL

formula θ†γ equivalent toθγ(x), and anMTL formula ψ†
γ

equivalent toψ′
γ(y). Then our original formulaϕ has the same

truth value at each pointx as

ϕ′ :=
∨

γ

(

θ†γ ∧ ( -✸ψ†
γ ∨ ψ

†
γ ∨✸ψ†

γ)
)

for suitable interpretations of{P=, P<, P>, P+, P−}.



By Theorem 6,ϕ′ is equivalent to a Boolean combination
of formulas

(I) ✸=Nθ wherepr(θ) < N − 1,
(II) -✸=Nθ wherefr(θ) < N − 1, and

(III) θ where all intervals occurring in the temporal opera-
tors are bounded.

Now in formulas of type (I) above, we know the intended value
of each of the propositional variablesP=, P<, P>, P+, P−:
they are all false exceptP<, which is true. So we can
replace these propositional atoms bytrue and false as
appropriate and obtain an equivalentMTL formula which does
not mention the new variables. Likewise we know the value
of each of propositional variables in formulas of type (II):
all are false exceptP>, which is true; so we can again
obtain an equivalentMTL formula which does not mention
the new variables. It remains to deal with each of the bounded
formulas,θ. From Proposition 2, there exists a formulaθ∗(x)
in FO(<,+Q), with predicates from{P=, P<, P>, P+, P−},
which is equivalent toθ. It is not difficult to see that as
θ is bounded, there is anN such thatθ∗ is N -bounded.
We now unsubstitute each of the introduced propositional
variables. That is, replace inθ∗(x) all occurrences ofP=(z)
with z = x, all occurrences ofP<(z) with x < z etc. The
result is an equivalent formulaθ+ ∈ FO(<,+Q), which is
still N -bounded as we have not removed any constraints on the
variables ofθ∗. From Theorem 11, it follows that there exists
an MTL formula δ that is equivalent toθ+, i.e., equivalent to
θ.

Finally, recall from Section II-C how a translation from
FO(<,+1) to MTL can be lifted to a translationFO(<,+Q)
to MTL via a simple scaling argument. Thus Lemma 14 entails
our main result:

3

Theorem 0. For everyFO(<,+Q) formulaϕ(x) there is an
equivalent MTL formulaϕ†.

VI. CONCLUSION

In general, the theory of real-time verification lacks the
stability and canonicity of the classical theory, and has tended
to suffer from a proliferation of competing and mismatching
formalisms. Thus it was a pleasant surprise to discover that
MTL is expressively complete for first-order logic, particularly
in view of the extensive literature on the former and the fact
that the latter is a natural yardstick against which to measure
expressiveness.

We are currently investigating the full extent of this result,
including a version forMTL with integer constants, equipped
with counting modalities.
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