
Substructure Temporal Logic

Massimo Benerecetti, Fabio Mogavero, and Aniello Murano
Università degli Studi di Napoli Federico II

Abstract—In formal verification and design, reasoning about
substructures is a crucial aspect for several fundamental
problems, whose solution often requires to select a portion
of the model of interest on which to verify a specific property.

In this paper, we present a new branching-time temporal
logic, called Substructure Temporal Logic (STL∗, for short),
whose distinctive feature is to allow for quantifying over the
possible substructure of a given structure. This logic is obtained
by adding two new operators to CTL∗, whose interpretation
is given relative to the partial order induced by a suitable
substructure relation. STL∗ turns out to be very expressive
and allows to capture in a very natural way many well known
problems, such as module checking, reactive synthesis and
reasoning about games. A formal account of the model theoretic
properties of the new logic and results about (un)decidability
and complexity of related decision problems are also provided.

I. INTRODUCTION

Since the seminal paper by Pnueli [20], temporal logic, a
special kind of modal logic geared towards the description of
the temporal ordering of events, has been established as the
de facto specification language for system verification and
design. Depending on the possible views of the underlying
nature of time, two varieties of temporal logics are mainly
considered in the literature. In linear-time temporal logics,
such as LTL [20], time is considered as an infinite chain of
different time instants, each one having a unique immediate
future moment. Under this view, formulas are interpreted over
linear sequences describing the ongoing behavior of system
computations. Conversely, in branching-time temporal logics,
such as CTL [4], CTL+ [7], and CTL∗ [8], each time instant
may split into several possible immediate future moments
and a suitable pair of operators, the existential and universal
path quantifiers, are used to express properties along some
or all possible temporal branches. Accordingly, formulas of
these logics are interpreted over branching structures, such
as infinite trees, which better characterize nondeterministic
behaviors of incompletely specified deterministic systems.

The success of such a specification framework is due
to a multiplicity of factors, most notably, the ability to
express relevant properties of computational systems and
the discovery of algorithmic methods to solve the principal
decision problems related to system verification and design.
From the standpoint of verification, model checking [4],
[5], [6] is a well-established formal method that allows
to automatically check for global system correctness. In
order to check whether a system satisfies a required property,
we describe its structure through mathematical models like

Kripke structures or labeled transition systems. A more
challenging problem, from the standpoint of design, is
synthesis [3], which is based on the appealing idea of
building a system directly from its specification, instead
of first developing it and then verifying its correctness. The
modern approach to this problem was initiated by Pnueli and
Rosner in [21], who introduced LTL reactive synthesis.

Over the years, an enormous body of work has been
devoted to increase the expressive power of temporal logics,
so as to capture more and more complex system behaviors.
To this aim, two main directions have been followed. The
first one is to extend the semantics of already defined logics,
by changing the interpretation of their syntactic operators.
The second one, instead, is to extend the syntax, by replacing
or introducing new operators. The success of the resulting
extensions often depends upon the ratio between the achieved
gain in expressiveness and the consequent increase in the
complexity of the related decision problems.

One of the most important semantic extensions, which has
proved to be fundamental in practice for the verification
of liveness properties, was the introduction of fairness
constraints into CTL [9]. The resulting semantics restricts the
interpretation of the path quantifiers to range over fair paths
only, in order to rule out unrealistic executions. Another
classic semantic extension was the introduction of module
checking for branching time formulas [15], which corresponds
to model checking in the context of open system analysis.
An open system is modeled as a module interacting with
the environment and its correctness requires that the desired
property holds with respect to all such interactions. In this
case, the entire definition of the modeling relation changes.
Similarly, the reactive synthesis problem can be formulated as
a semantic extension of the concept of synthesis of a model
for a logic formula. While classic synthesis corresponds to
the construction of a witness for the satisfiability, reactive
synthesis further requires that such witness belongs to the
restricted class of models that are coherent with the possible
interactions with the environment.

On the side of syntactic extensions, instead, a first line
of research focuses on logics for the analysis of strategic
ability, in the setting of multi-agent games, such as ATL [1]
and SL [17], [16]. These logics syntactically extend classic
temporal logics, by means of suitable modal operators which
quantify over agent strategies, in order to express properties
about cooperation and competition among agents. In partic-
ular, these modalities allow for a selective quantifications

over those computations that are precisely the result of an
infinite play among the agents. A different line of syntactic
extensions focuses on epistemic and dynamic logics, whose
concern is reasoning about knowledge and its evolution.
Knowledge is usually modeled by a set of modal relations
between information states. These relations are referred to in
the syntax of the logics by means of corresponding modal
operators. Two very interesting examples of this research vein
are represented by the logic of public announcement [10],
[19] and sabotage logic [24], both of which contain operators
able to select and predicate on parts of the model under
exam. These two languages can be also seen as logics about
dynamically changing structures.

Although all described extensions have been introduced
for quite different purposes, they all share a characterizing
common factor: they extend the underlying temporal logic
by means of specific features, which allow to extract and
analyze portions of the model of interest. In other words, these
logics permit to verify specific requirements over particular
substructures either of the original model or of its unwinding.

For example, CTL with fairness allows to predicate on
the substructure of the model unwinding containing only
those paths that are fair w.r.t. a given constraint. Module
checking requires the verification of a given branching-time
temporal formula on all the substructures obtained by a
pruning of possible actions executable by the environment
from the whole interaction module between the system and
the environment. Reactive synthesis deals with the extraction
of a deterministic program as a suitable substructure of the
computation tree modeling the possible dependences between
input and output signals, which satisfies a given specification.
The strategy quantifiers available in almost all logics to
reasoning about multi-agent games essentially extract and
analyze substructures of the game structure that are coherent
with the chosen strategy. Epistemic and dynamic logics,
instead, usually deal with substructures of the multi-modal
model, each containing a subset of the knowledge relations.
In particular, the concept of substructure is a crucial element
in the semantics of the logic of public announcement and
sabotage logic, and it is explicit in the definition of the
interpretations of their characterizing modal operators.

In this paper, we propose and study a new logic, called
substructure temporal logic (STL∗, for short), in which it is
possible to predicate directly over substructures of a model.
In particular, the underlying semantics is defined by means
of a two-layer interpretation, in which a classic temporal
structure K is coupled with a higher-level modal layer. The
elements of the higher-level layer are the substructures of
K and its modal relation coincides with the partial order on
these substructures. The syntactic counterpart is represented
by two new syntactic constructs, called semilattice operators,
provided to switch reasoning between the two different levels.
The semantics of the semilattice operators resembles the
semantics of the classic until and release temporal operators,

except for the fact that it is defined on the lattice induced by
the substructure relation. With more details, each operator
first selects one of the substructures of the original model
and then proceeds by verifying a specified temporal property
on that substructure. In other words, the selection process
performs the shift from the lower semantic layer to the
higher one, while the verification process performs the inverse
shift. In order to have a finer control on what and how
much information of the original structure must be preserved
by the substructures of interest, an additional parameter
of the semilattice operators, called selector parameter, is
provided. This parameter allows to select as elements of
the semilattice precisely those substructures preserving the
desired information.

The resulting logic turns out to be very expressive, allowing
to encode in a uniform way most of the additional features
proposed in the literature to reason about portions of the
original model. In this perspective, the logic can be viewed
as a first step towards providing a unifying framework,
encompassing those previous approaches. Depending upon
the class of structures on which the logic is interpreted,
decision problems for the logic differ in complexity. While
the satisfiability problem for the logic is undecidable when
interpreted over Kripke structures, it becomes decidable in
non-elementary time when interpreted over infinite regular
trees. On the other hand, the model checking problem is
decidable under both interpretations, being decidable in
PSPACE and in non-elementary time, respectively.

Organization: The paper is organized as follows. Sec-
tion II provides some basic definitions and the underlying
semantic framework for the logic. The syntax and the
semantics are presented in Section III, where some basic
properties are discussed as well. Section IV focuses on some
concrete applications, by showing that module checking,
turn-based and concurrent games, and reactive synthesis can
all be captured very naturally within the logic. Sections V
and VI are devoted, instead, to a theoretical account of the
formal properties of the logic. In particular, expressiveness,
succinctness and (un)decidability results for STL∗ and for
some of its fragments are reported and discussed. Finally,
some conclusions and future work are proposed.

II. PRELIMINARIES

Basic definitions: A Kripke structure (KS, for short)
over a finite non-empty set of atomic propositions AP is
a tuple K , 〈AP,W,R, L, w0〉 ∈ KS(AP), where W is an
enumerable non-empty set of worlds, w0 ∈W is a designated
initial world, R ⊆W ×W is a left-total transition relation
such that R∗(w0) = W, i.e., each world is reachable from the
initial one, and L : W 7→ 2AP is a labeling function mapping
each world to the set of atomic propositions true in that world.
By Kw , 〈AP,W′,R ∩ (W′×W′), L�W′ , w〉 we denote the
KS obtained from K by substituting its initial world with
the given one w ∈ W, its set of states with W′ , R∗(w),

and its labeling function with the related restriction to W′.
Observe that there is no loss of generality in requiring the
reachability constraint on the transition relation, due to the
fact that all parts that are not reachable from the initial world
do not affect the satisfiability of a temporal formula.

A track (resp., path) in K is a finite (resp., infinite)
sequence of worlds ρ ∈ Trk ⊆W+ (resp., π ∈ Pth ⊆Wω)
such that (i) fst(ρ) = w0 (resp., fst(π) = w0) and (ii), for all
i ∈ [0, |ρ| − 1[(resp., i ∈ N), it holds that ((ρ)i, (ρ)i+1) ∈ R
(resp., ((π)i, (π)i+1) ∈ R). Intuitively, tracks (resp., paths)
of a KS K are legal sequences of reachable worlds that can
be seen as partial (resp., complete) descriptions of possible
computations of the system modeled by K. Given a track ρ
(resp., path π), we denote by (ρ)≤j and (ρ)≥j (resp., (π)≤j
and (π)≥j) the prefix up to and the suffix from position
j ∈ [0, |ρ|[(resp., j ∈ N).

In the following, we use the name of a KS as subscript
to extract the components from its tuple-structure, i.e., if
K = 〈AP,W,R, L, w0〉, we have WK , W, RK , R,
LK , L, and w0K , w0. Also, we use the same notational
concept to make explicit to which KS the sets Trk and Pth
are related to. Note that, we may omit the subscripts, if the
KS can be identified from the context.

A Kripke tree (KT, for short) over AP is just a KS T ∈
KT(AP) ⊂ KS(AP), where (i) WT ⊆ ∆∗ is a ∆-tree for a
set ∆ of directions, (ii) w0T = ε, and (iii), for all t ∈WT
and d ∈ ∆, it holds that t · d ∈WT iff (t, t · d) ∈ RT .

The unwinding of a KS K ∈ KS(AP) is the unique KT
KU ∈ KT(AP), where (i) WK is the set of its directions,
(ii) its worlds in WKU , {(ρ)≥1 : ρ ∈ TrkK(w0K)} are
the suffixes of the tracks of K starting in the successors of
w0K, (iii) (ρ, ρ · w) ∈ RKU iff (lst(w0K · ρ), w) ∈ RK, and
(iv) there is a surjective function unw : WKU →WK, called
unwinding function, such that (v.i) unw(ρ) = lst(w0K ·ρ) and
(v.ii) L′(ρ) = L(unw(ρ)), for all ρ ∈WKU and w ∈WK.

In Figure 1, we depict a KS K over AP , {•,�,�} and
its unwinding KU , which we use as running example in the
whole paper. Note that we assume all worlds in K to be
labeled by their own shapes. Therefore, AP is the set of KU
directions too. Also, the labeling of all worlds in KU is the
last symbol appearing in their names, except for the root,
whose labeling coincides with that of the initial world of K.

K KU

ε

Figure 1: A KS K and its unwinding KU .

Substructure semilattice: At the base of the semantics
definition of the logic is the concept of ordering between
KSs. Let K,K′ ∈ KS(AP) be two KSs. We say that K is a
superstructure of K′ and K′ is a substructure of K, in symbols
K′ v K, if (i) WK′ ⊆WK, (ii) RK′ ⊆ RK ∩ (WK′ ×WK′),
(iii) LK′ = (LK)�WK′ , and (iv) w0K′ = w0K. Moreover, K
and K′ are comparable if (i) K v K′ or (ii) K′ v K holds,
otherwise they are incomparable. Observe that v represents
a partial order on KSs, whose strict version, denoted by @,
is such that K′ @ K if K′ v K and K′ 6= K.

For a given set of KSs ℵ ⊆ KS(AP) and a KS K ∈ ℵ,
we say that K is minimal in ℵ, or simply minimal in case
ℵ equals to KS(AP), if there is no KS K′ ∈ ℵ such that
K′ @ K. Observe that minimal elements w.r.t. v are just
those KSs for which the only part reachable from the initial
state is either a single lasso or an infinite chain. This implies
that K is minimal iff |PthK| = 1.

In order to identify the particular set of substructures of
interest on which we predicate in the logic, we introduce
the notion of filtering of a KS. Let X ⊆ WK be a subset
of worlds of a given KS K ∈ KS(AP). Then, by FK(X) ,
{K′ ∈ KS(AP) : K′ v K ∧ ∀w ∈ WK′ ∩ X .RK′(w) =
RK(w)} we denote the filtering of K w.r.t. X, i.e., the set of
substructures of K that preserve all edges exiting from worlds
in X. The ordering v on FK(X) induces an upper semilattice
satisfying the following properties: (i) the maximal element
is K; (ii) the minimal elements are exactly those KSs having
a unique edge outgoing from states not in X; (iii) the join
K1 tK2 of two elements K1,K2 ∈ FK(X) is the KS having
set of worlds WK1tK2

, WK1
∪WK2

, transition relation
RK1tK2

, RK1
∪ RK2

, and labeling function LK1tK2
,

(LK)�WK1tK2
. Also, observe that |FK(X)| = ∞ iff one of

the following conditions hold: (i) there is a world w ∈WK
having an infinite number of outgoing edges, i.e., |RK(w)| =
ω or (ii) there are infinitely many worlds with at least two
outgoing edges, i.e., |{w ∈WK : |RK(w)| ≥ 2}| = ω.

K

KBKA KC

KACKAB KBC

Figure 2: The substructure semilattice
FK(∅).

In Figure 2, we
depict the Hasse di-
agram of the finite
semilattice of the sub-
structures in the fil-
tering of K w.r.t. ∅.
In addition, in Fig-
ure 3, we report the
diagrams of the sub-
semilattices obtained
by restricting the or-
der to two smaller fil-

terings. Note that no edge that is the unique outgoing one
from a state (e.g., � in K or • in KBC) can be pruned,
otherwise the left-totality constraint of the transition relation
would be violated. Moreover, by removing only the edge
from • to � in K, we obtain a structure that is not a KS,
as the reachability constraint is violated. Note that KAB

K K

KA KB KC KAB

Figure 3: The two different filterings of K w.r.t. {•} and {�}.

belongs to the filtering FK({�}), since it does not contain the
state �, thus, the defining constraint of FK({�}) is trivially
satisfied.

III. SUBSTRUCTURE TEMPORAL LOGICS

The substructure temporal logic (STL∗, for short) extends
CTL∗ [8] by using two special ternary constructs, ϕ1U[φ]ϕ2

and ϕ1R[φ]ϕ2, called semilattice operators. These constructs
can be informally read, respectively, as “there is a strict sub-
structure satisfying ϕ2 such that all its strict superstructures
satisfy ϕ1” and “all strict substructures satisfy ϕ2 unless
one of their strict superstructures satisfies ϕ1”, where the
formula φ, called selector parameter, specifies the particular
semilattice of substructures on which the quantifications act.
Specifically, this parameter is used to identify on which
worlds of the original model the pruning is forbidden. From
an high level point of view, we can consider these new
operators as a strict version of the until and release temporal
operators acting on substructures and their partial order
instead of linear points in time. As in CTL∗, in STL∗ the
path quantifiers E and A can prefix a linear-time formula
composed by an arbitrary Boolean combination and nesting
of temporal operators X, U, and R.

Syntax: The formal syntax of STL∗ is defined as follows.

Definition III.1 (STL∗ Syntax). STL∗ state (ϕ) and path (ψ)
formulas are built inductively from the set AP according to
the following grammar, where p ∈ AP:

1) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕU[ϕ]ϕ | ϕR[ϕ]ϕ |
Eψ | Aψ;

2) ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ.
Simpler STL+ and STL formulas are obtained by forbid-
ding, respectively, nesting and both nesting and Boolean
combinations of temporal operators, as in CTL+ and CTL.

In the following, as syntactical abbreviations, we use the
Boolean values true t and false f and the simpler temporal
operators eventually Fϕ , tUϕ and globally Gϕ , fRϕ.
We shall define the restricted constructs EX[φ]ϕ , fU[φ]ϕ,
AX[φ]ϕ , tR[φ]ϕ, called immediate substructure operators,
and the operators F[φ]ϕ , tU[φ]ϕ and G[φ]ϕ , fR[φ]ϕ. In
addition, we can derive the reflexive versions of the operators
as follows: ϕ1U[φ]ϕ2 , ϕ2∨(ϕ1∧ϕ1U[φ]ϕ2), ϕ1R[φ]ϕ2 ,
ϕ2 ∧ (ϕ1 ∨ ϕ1R[φ]ϕ2), F[φ]ϕ , ϕ ∨ F[φ]ϕ, and G[φ]ϕ ,
ϕ ∧ G[φ]ϕ. Sometimes, we omit the selector parameter φ,
whenever it equals to f, in all semilattice operators, as well
as in the derived ones later introduced.

By replacing the two constructs ϕU[φ]ϕ and ϕR[φ]ϕ
with the simpler operators F[φ]ϕ and G[φ]ϕ, in Rule 1 of
Definition III.1, we obtain a family of sublogics of STL∗

called weak substructure temporal logics (WSTL∗, WSTL+,
and WSTL, for short).

Semantics: We shall write K |= ϕ to denote that a state
formula ϕ holds in K or, equivalently, K is a model of ϕ.
Moreover, for a path π ∈ PthK and a number k ∈ N, we
write K, π, k |= ψ to indicate that a path formula ψ holds on
π at position k. The semantics of STL∗ formulas, except for
the new lattice operators, is defined as usual for CTL∗ and,
for sake of space, is omitted here. The formal semantics of
ϕ1U[φ]ϕ2 and ϕ1R[φ]ϕ2 follows.

Definition III.2 (STL∗ Semantics). Given a KS K ∈ KS(AP),
for all STL∗ state formulas ϕ1, ϕ2, and φ, it holds that:

1) K |= ϕ1U[φ]ϕ2 if there exists a K′ ∈ SK(φ) such
that K′ |= ϕ2 and, for all strict superstructures K′′ ∈
SK(φ) of K′, it holds that K′′ |= ϕ1;

2) K |= ϕ1R[φ]ϕ2 if, for all K′ ∈ SK(φ), it holds that
K′ |= ϕ2 or there exists a strict superstructure K′′ ∈
SK(φ) of K′ such that K′′ |= ϕ1;

where SK(φ),FK(φ)\{K} and FK(φ),FK({w ∈ WK :
Kw |= φ}) is the set of all K substructures preserving edges
exiting from those worlds on which the formula φ is satisfied.

Observe that, by replacing the set SK(φ) with FK(φ),
in Items 1 and 2 of the previous definition, we obtain the
semantics of reflexive operators ϕ1U[φ]ϕ2 and ϕ1R[φ]ϕ2.

To better understand the intuition behind the introduced
semilattice operators, we present two examples based on the
KS K of Figure 2 and its filtering FK(∅).

K

KBKA |=ϕ1 KC |=ϕ1

KAC |=ϕ2KAB KBC

Figure 4: U semantics.

Consider the formula ϕ1Uϕ2, where ϕ1 , AGEF•, and
ϕ2 , (AGF�) ∧ ((AGF•) ∨ (AFG¬•)). Intuitively, ϕ1 is
true on all KSs containing only paths from whose states it
is possible to reach eventually •, while ϕ2 is verified on
all KSs for which all paths contain infinitely often � and
either all of them also contain infinitely often • or they all
do not. It is easy to see that KAC satisfies ϕ2 and both
KA and KC satisfy ϕ1. Thus, as depicted in Figure 4 (we
highlight the witness by using solid bold lines), we have that
K |= ϕ1Uϕ2. Indeed, there exists a strict substructure (KAC)
of K satisfying ϕ2 such that all its strict superstructures

(KA and KC) satisfy ϕ1. Observe that this is the unique
witness for the required property on K, since the only other
substructure (KBC) satisfying ϕ2 has a strict superstructure
(KB) that does not satisfy ϕ1. Also, note that K 6|= ϕ1U[•]ϕ2

and K 6|= ϕ1U[�]ϕ2, since in the corresponding filterings
FK(•) and FK(�) there is no KS satisfying ϕ2.

K

KB |=ϕ2KA |=ϕ1 KC |=ϕ1,ϕ2

KAC |=ϕ2KAB |=ϕ2 KBC

Figure 5: R semantics.

Consider the formula ϕ1Rϕ2, where ϕ1 , AF� and ϕ2 ,
EGF•. Intuitively, ϕ1 is true on all KSs in which every
path reaches eventually �, while ϕ2 is verified on all KSs
containing a path visiting infinitely often •. It is easy to
see that all KSs in FK(∅) but KBC satisfy ϕ2 and KC also
satisfies ϕ1. Thus, as depicted in Figure 5, we have that K |=
ϕ1Rϕ2. Indeed, the only strict substructure (KBC) of K not
satisfying ϕ2 has a strict superstructure (KC) satisfying ϕ1.

Basic concepts: We say that a formula ϕ is an invariant
for two KSs K1 and K2 whenever K1 |= ϕ iff K2 |= ϕ. For a
given set of KSs ℵ ⊆ KS(AP), we say that ϕ is ℵ-satisfiable
if there is a KS K ∈ ℵ such that K |= ϕ. Furthermore, for
all state formulas ϕ1 and ϕ2, we say that ϕ1 ℵ-implies ϕ2,
in symbols ϕ1 ⇒ℵ ϕ2, if, for all KSs K ∈ ℵ, it holds that
if K |= ϕ1 then K |= ϕ2, i.e., ϕ2 is an ℵ-consequence of
ϕ1. Also, we say that ϕ1 is ℵ-equivalent to ϕ2, in symbols
ϕ1 ≡ℵ ϕ2, if ϕ1 ⇒ℵ ϕ2 and ϕ2 ⇒ℵ ϕ1.

In the remaining part of the work, we use the symbol
STL∗[ℵ] to denote to which set of KSs ℵ ⊆ KS(AP) the
interpretation of formulas has to be restricted to. The notion
of satisfiability and model checking relative to a given class ℵ
are defined in the obvious way. Whenever ℵ coincides with
KS(AP) (resp., KT(AP)) we shall use the corresponding
symbol KS (resp., KT) instead.

Given the similarity between the semilattice operators
and the linear temporal operators, it is worth discussing
what equivalences from classic LTL holds for the new
operators. The first series of equivalences describes the
fixpoint semantics of the reflexive operators: (i) ϕ1U[φ]ϕ2 ≡
ϕ2 ∨ ϕ1 ∧ EX[φ]ϕ1U[φ]ϕ2; (ii) ϕ1R[φ]ϕ2 ≡ ϕ2 ∧ (ϕ1 ∨
AX[φ]ϕ1R[φ]ϕ2); (iii) F[φ]ϕ ≡ ϕ∨EX[φ]F[φ]ϕ; (iv) G[φ]ϕ ≡
ϕ ∧ AX[φ]G[φ]ϕ. The second series describes the relation
between the strict operators and the immediate substructure
operators: (i) ϕ1U[φ]ϕ2 ≡ EX[φ]ϕ1U[φ]ϕ2; (ii) ϕ1R[φ]ϕ2 ≡
AX[φ]ϕ1R[φ]ϕ2; (iii) F[φ]ϕ ≡ EX[φ]F[φ]ϕ; (iv) G[φ]ϕ ≡
AX[φ]G[φ]ϕ. Notice however that, due to the branching

nature of semilattice operators, the classic equivalence
ψ1Rψ2 ≡ Gψ2 ∨ ψ2U(ψ1 ∧ ψ2), linking together the three
LTL temporal operators R, G, and U, lifts neither to R, G, and
U nor to R, G, and U. For instance, consider the formulas
ϕ1 and ϕ2 of the example for Figure 4. It is easy to see that
K |= ϕ1U(ϕ1 ∧ ϕ2), since KAD satisfies ϕ1 too. However,
K 6|= ϕ2Rϕ1, since KB does not satisfy ϕ1. The same holds
for the reflexive version of the two operators. Therefore,
we have that ϕ1R[φ]ϕ2 6≡ G[φ]ϕ2 ∨ ϕ2U[φ](ϕ1 ∧ ϕ2) and
ϕ1R[φ]ϕ2 6≡ G[φ]ϕ2 ∨ ϕ2U[φ](ϕ1 ∧ ϕ2).

Interesting properties: Before moving to discuss the
applications, let us introduce some interesting properties
expressible in STL∗ that cannot, as we shall see later on, be
expressed in CTL∗.

The simplest concept we can describe using STL∗ is the
absolute minimality of a KS K w.r.t. a given specification
ϕ and an assigned selector parameter φ. More formally, we
want to specify the property of K being minimal in the
set {K′ ∈ FK(φ) : K′ |= ϕ}, i.e., that K is the unique
element of its filtering FK(φ) that satisfies ϕ. To express this
concept, we introduce the following construct: Minφ(ϕ) ,
ϕ∧G[φ]¬ϕ. Then, K |= Minφ(ϕ) iff K satisfies ϕ and none
of its substructure does. So, K is minimal w.r.t. ϕ in the
semilattice selected by φ. Note that, if both ϕ and φ belong
to any of the weak sublogics of STL∗, Minφ(ϕ) does as well.

By nesting the minimality construct within the simple
semilattice operators F and G, we can also predicate on
minimal substructures of a given KS. We call this property
relative minimality. In particular, given two formulas ϕ1 and
ϕ2, we can assert the existence of a minimal substructure w.r.t.
ϕ1 that satisfies ϕ2, or that all minimal substructures w.r.t. ϕ1

have to satisfy ϕ2. These concepts can be expressed by the
following constructs: EMinφ(ϕ1, ϕ2) , F[φ](Minφ(ϕ1)∧ϕ2)
and AMinφ(ϕ1, ϕ2) , G[φ](Minφ(ϕ1) → ϕ2). Intuitively,
we have that K |= EMinφ(ϕ1, ϕ2) iff there exists a substruc-
ture K′ of K, which is minimal w.r.t. ϕ1 in the semilattice
selected by φ, such that K′ |= ϕ2. Similarly, we have that
K |= AMinφ(ϕ1, ϕ2) iff for all substructures K′ of K, which
are minimal w.r.t. ϕ1 in the semilattice selected by φ, it
holds that K′ |= ϕ2. Observe that these two constructs are
dual of each other, i.e., ¬EMinφ(ϕ1, ϕ2) ≡ AMinφ(ϕ1,¬ϕ2).
Once again, note that if ϕ1, ϕ2, and φ belong to any of the
weak sublogics of STL∗, the same holds of EMinφ(ϕ1, ϕ2)
and AMinφ(ϕ1, ϕ2).

It is interesting to see that, while it makes sense to speak
about the absolute minimality of a KS in its filtering w.r.t. a
given formula, the symmetric notion of absolute maximality
of a KS in its filtering is a trivial one, as it clearly boils
down to verify the argument formula on the KS itself.

By using the semilattice operators U and R, we can express
the symmetric notion of relative maximality, namely the
existence of a maximal substructure w.r.t. ϕ1 that satisfies
ϕ2, or that all maximal substructures w.r.t. ϕ1 have to
satisfy ϕ2. Such concepts can be expressed by the following

constructs: EMaxφ(ϕ1, ϕ2) , (¬ϕ1)U[φ](ϕ1 ∧ ϕ2) and
AMaxφ(ϕ1, ϕ2) , (ϕ1)R[φ](ϕ1 → ϕ2). Intuitively, we have
that K |= EMaxφ(ϕ1, ϕ2) iff there exists a substructure K′ of
K that is the maximal one satisfying both ϕ1 and ϕ2, since it
does not have any superstructure satisfying ϕ1 too. Similarly,
we have that K |= AMaxφ(ϕ1, ϕ2) iff all substructures K′
of K satisfying ϕ1 either satisfy ϕ2 or have at least one
superstructure that satisfies ϕ1. In the latter case, K′ is not
maximal w.r.t. ϕ1, thus, we do not have to verify any further
requirement on it. Observe that, also in this case, a duality law
holds, i.e., ¬EMaxφ(ϕ1, ϕ2) ≡ AMaxφ(ϕ1,¬ϕ2). Moreover,
note that these two constructs cannot belong to any of the
weak sublogics of STL∗, since they strictly require the use of
U and R. It is important to observe that the semantics of the
latter operators cannot be reformulated using the simpler F
and G, exactly as in the classic case of LTL, where temporal
operators U and R cannot be expressed by F, G, and X, only.

IV. INSPIRING APPLICATIONS

A distinguishing feature of STL∗ is the ability to quantify
over substructures and to express (relative) minimality and
maximality properties. In this section we show how these
features allow to encode in the logic a number of relevant
problems arose in the literature.

Module checking: In open finite-state system model
checking (module checking, for short) [15], we check
whether a system interacting with an external component,
the environment, is correct with respect to a desired behavior.
In this setting, we formally represent the system and its
possible interactions with the environment by a module,
i.e., a KS K = 〈AP,W,R, L, w0〉, where the set of worlds
W , W1 ∪W2 is partitioned into two components: W1

contains all and only the worlds labeled by the ad-hoc atomic
proposition 1 ∈ AP, representing the positions where the sys-
tem is allowed to take a move, i.e., system worlds, while the
environment worlds are those in W2 where the environment
takes moves. Given a module K and a CTL∗ specification
ϕ, the module checking problem is to check whether K
satisfies ϕ no matter how the environment behaves. Let us
consider the unwinding KU of K. Checking whether KU
satisfies ϕ is the usual model-checking problem. On the other
hand, for an open system, KU describes the interaction of
the system with a maximal environment, i.e. an environment
that enables all the external nondeterministic choices. To
take into account all possible behaviors of the environment,
we consider all the trees T obtained from KU by pruning
subtrees whose roots are successors of an environment world.
Then, a module KU satisfies ϕ if all these trees T satisfy ϕ.
The set of these trees coincides with the filtering FKU (1),
which preserves all the system choices. Hence, the module
checking problem can be expressed in WSTL∗ by checking
whether KU satisfies the formula ϕMC(ϕ) , G[1](ϕ).

Turn-based games: The arena of a two-player turn-
based game can be formalized by means of a KS K as above,

where Wi contains all and only the worlds where player i
takes a move, for all i ∈ {1, 2}. Given such a turn-based
arena, the notion of strategy for player i, with i ∈ {1, 2},
is typically defined as a function σi : W∗Wi → W
mapping sequences of worlds ending with one of Wi to
worlds. A strategy σi induces a set of paths (the plays
of the game), namely the outcomes of σi, compatible
with that strategy. Formally, Out(σi) , {π ∈ PthK :
∀j ∈ N . (π)j ∈ Wi → (π)j+1 = σi((π)≤j)}. Intuitively,
the outcomes of a strategy σi of player i are the plays of the
game which agree with σi, while leaving the other player
play according to any one of its possible response strategies.
Finally, given an LTL requirement ψ, we say that a strategy
σi for player i is winning w.r.t. ψ, if all the outcomes of σi
satisfy ψ. The decision problem we consider is, therefore,
to verify whether there exists a winning strategy for one
player, say player 1, w.r.t. ψ. This can be encoded quite
naturally in the WSTL∗ logic, by nesting an existential and
a universal relative minimality constructs. Player 1 has a
winning strategy (resp., memoryless winning strategy) for K
iff KU (resp., K) satisfies the formula ϕTG(ψ) , EMin¬1(t,
AMin1(t,Aψ)). The existential minimal operator EMin¬1

selects a minimal substructure where all possible moves of
Player 2 are preserved. Indeed, the selector ¬1 allows only
for substructures whose worlds non labeled by 1 retain all
the outgoing edges of the original structure in the semilattice
where the operator acts. This corresponds to a strategy of
Player 1, in the sense that the set of paths of the substructure
selected by the operator is exactly the set of outcomes induced
by the strategy. Similarly, the universal minimal operator
AMin1 selects all minimal substructures, which preserve the
choices made by Player 1. This corresponds to selecting,
in turn, all possible strategies that Player 2 can follow in
response to the strategy of Player 1.

Concurrent games: Also in the case of two-player
concurrent games, we can encode the corresponding arenas by
means of KSs. However, the encoding is slightly more com-
plicated, as explained below. Let Ac1 and Ac2 be the sets of
possible actions the two players can take and assume that the
set of atomic propositions AP contains the product Ac1×Ac2,
representing all possible decisions. Then, a concurrent arena
can be formalized as a KS K = 〈AP,W,R, L, w0〉, where, for
each world w ∈W and decision (a1, a2) ∈ Ac1×Ac2, there
is exactly one successor v ∈ R(w) of w with (a1, a2) ∈ L(v).
Observe that the uniqueness of the successor for each decision
is required to encode that the transition function of the
game is deterministic. Given the concurrent arena, a strategy
for player i, with i ∈ {1, 2}, is defined as a function
σi : W+ → Aci mapping sequences of worlds to actions.
Accordingly, the set of outcomes compatible with a strategy
σi is defined as follows: Out(σi) , {π ∈ PthK : ∀j ∈
N . ∃(a1, a2) ∈ L((π)j+1) ∩ (Ac1 ×Ac2) . ai = σi((π)≤j)}.
The concept of winning strategy and the related decision
problem are exactly the same of those ones for the turn-

based case. Now, to encode a quantification of a strategy by
means of a suitable STL∗ formula, we exploit the following
observations. First, a strategy σi identifies a substructure
Tσi of KU having, for each world w ∈ WTσi , only
those successors v ∈ RTσi (w) for which exists a decision
(a1, a2) ∈ L(v)∩(Ac1×Ac2) such that ai = σi(w). Second,
the CTL formula ϕi , AG

∨
ai∈Aci

AX
∨

a3−i∈Ac3−i
(a1, a2),

with i ∈ {1, 2}, requires that, for every world w, there is
an action of player i that allows to reach all its successors.
Clearly, every maximal substructure of KU satisfying ϕi
preserves all the actions of the opponent. So, it corresponds
to a substructure Tσi associated with the strategy σi. As a
consequence, to verify whether there is a winning strategy for
player 1 w.r.t. ψ, we can use a nesting of an existential and a
universal relative maximality constructs. Finally, Player 1 has
a winning strategy (resp., memoryless winning strategy) for K
iff KU (resp., K) satisfies the formula ϕCG(ψ) , EMax(ϕ1,
AMax(ϕ2,Aψ)).

Reactive Synthesis: In the formulation proposed by
Pnueli and Rosner in [21], the reactive synthesis problem
consists of the construction of a deterministic program that
interacts with an environment providing sets of input signals,
of which some are visible and some are hidden to the program
itself. Obviously, this program must respond to the inputs it
can read, the visible ones, with some set of output signals.
In other words, the problem is to synthesize a function
P :

(
2I
)∗ → 2O from finite sequences of (sets of) visible

inputs to (sets of) outputs, if it exists. In addition, P must
be such that the KT TP induced by its interaction with
the environment also satisfies some given CTL∗ (or CTL)
specification ϕ. If I denotes the set of possible visible inputs,
H the set of hidden inputs and O the set of outputs, the
KT TP of a solution program P to the above problem shall
contain worlds labeled with sets of visible inputs Σi ⊆ I and
hidden inputs Σh ⊆ H issued by the environment and sets
of outputs Σo ⊆ O issued by the program P in response to
the inputs received in that world.

To ensure that P behaves like a function, we need to
enforce some additional requirements. Since P cannot read
hidden inputs, given a world of the KT TP and two of its
successors with the same set of visible inputs, but possibly
different hidden inputs, it must be the case that P responds
to them with the same set of outputs.
Condition 1: For all worlds w ∈ WTP and successors
v1, v2 ∈ RTP(w) with L(v1) ∩ I = L(v2) ∩ I, it holds that
L(v1) ∩O = L(v2) ∩O.

However, Condition 1 is not enough to ensure that P is
deterministic, hence a function, as it is still possible to have
multiple copies of the same successor (with the same set
of signals), which may have different future behaviors in
response to the same visible inputs. If this is the case, P
would be non-deterministic (see Figure 6). Therefore, we
must also ensure that any world does not have more than
one successor for each possible signal set.

Condition 2: For all worlds w ∈ WTP and successors
v1, v2 ∈ RTP(w), if L(v1) = L(v2) then v1 = v2.

w0

Σ0
i ,Σ

0
h,Σ

0
o

w1
′

Σ1
i ,Σ

1
h,Σ

1
o

w1
′′

Σ1
i ,Σ

1
h,Σ

1
o

w2
′

Σ2
i ,Σ

2
h,Σ

′2
o

w2
′′

Σ2
i ,Σ

2
h,Σ

′′2
o

Figure 6: Violation of w0 suc-
cessors uniqueness.

The two conditions can
be expressed in WSTL by
means of the following
formulas ϕ1 and ϕ2. For
the sake of readability, we
abuse the notation and write
Σ⊆AP as an abbreviation
for the conjunction of the
atomic propositions in Σ.
Similarly, Σ abbreviates the
conjunction of the negations
of atomic propositions in Σ.

Then, the formula ϕ1 ,AG
∧

Σi⊆I

∨
Σo⊆O G(AX(Σi ∧

I \ Σi) → AX(Σo ∧ O \ Σo)) ensures that Condition 1 is
satisfied in every reachable world of the KT TP. Intuitively,
it requires that, for every set of visible inputs Σi, there is a
set of outputs Σo such that, in all the substructures (selected
in turn by the operator G) of the KT rooted in the current
world, the following holds: if all the successors of that world
contain exactly the inputs in Σi then all of them must contain
exactly the outputs in Σo.

Condition 2 can be expressed, instead, by the formula
ϕ2 , Min(AG

∧
Σ⊆I∪H EX(Σ∧ (I ∪H) \ Σ)). The argument

of Min guarantees that, for all reachable worlds, every set
of inputs is contained in the labeling of some successor. In
addition, the minimality required by the construct ensures
that each such successor is unique w.r.t. that labeling.

Finally, the solution to the synthesis problem can be
encoded as the WSTL∗ (or WSTL) formula ϕRS(ϕ) ,
ϕ ∧ ϕ1 ∧ ϕ2. Indeed, ϕRS(ϕ) is satisfied by a KT T iff
it satisfies the original CTL∗ (or CTL) requirement ϕ together
with the two formulas encoding the conditions above.

V. MODEL-THEORETIC ANALYSIS

Let us now turn our attention to the formal properties of
the logic and concentrate on a model theoretic analysis of the
STL∗ semantics. The formal proofs of the results are omitted
for the lack of space and reported in the extended version.

We first discuss the power of the logic in describing
properties of the underlying semilattice of structures, such
as density and discreteness, that can only be encoded in
very expressive logics, such as MSOL [22] and the graded
µCALCULUS [13], [2].

Density and discreteness: Let us consider the following
STL formula: Denφ , F[φ]t ∧ AX[φ]f. Intuitively, it states
that a given KS has at least one strict substructure in the
semilattice selected by φ (this is required by F[φ]t), but none
of them can be an immediate substructure (this is required by
AX[φ]f), since no KS satisfies f. More formally, K |= Denφ
iff (i) SK(φ) 6= ∅ and (ii), for all K′ ∈ SK(φ), there exists
a K′′ ∈ SK(φ) such that K′ @ K′′ @ K.

As an example, Figure 7 shows the unwinding KUA of
the KS KA in Figure 2, which does satisfy Den. Indeed,
SKUA(f) 6=∅, since (KAB)U ∈SKUA(f), i.e., the infinite path
containing only • is one of the substructures of KUA . Moreover,
for each substructure T ∈SKUA(f) and edge (w, v)∈RKUA\RT
pruned in T , we can always obtain a strict superstructure
T ′ ∈ SKUA(f) of T , where some edge (u, t) ∈ RKUA \RT ′
from u∈R∗KUA(v) is pruned in T ′ instead of (w, v)∈RT ′ .
Note that it is always possible to find, along any path, a
world • with two outgoing edges. By iterating this argument,
it is easy to see that any strict substructure T of KUA has
an infinite chain of superstructures in the restricted filtering
SKUA(f). Consequently, we have that |FKUA(f)| =∞.

The property we describe by means of the Denφ construct
actually corresponds to a weak form of density of an ordered
set. Recall that a set S, ordered by a relation ≤, is dense
in the classical sense iff, for all pairs of elements x, y ∈ S
with x < y, there is a z ∈ S such that x < z < y. In
our framework, this property does not hold for any pair of
substructures in FK(φ), but surely for those ones having the
greater component fixed to K. For instance, given two KSs
K′,K′′ ∈ FK(φ) minimal in this filtering, it holds that their
join K′ t K′′ does not have any substructure K′′′ ∈ FK(φ)
such that K′ @ K′′′ @ K′ t K′′. We can also express the
classic concept of density by means of the formula G[φ]Denφ.
However, as just shown, that formula is not satisfiable,
since the filtering FK(φ) always contains minimal elements,
whose join has immediate substructures. In order to make
such a formula satisfiable, one can change the definition of
substructure by only allowing either a finite or a non-co-finite
number of edge prunings. In this way, the filtering would
not be forced to contain minimal elements. However, the
resulting logic would have a completely different semantics,
with different model-theoretic properties, and we shall not
deal with it in this paper.

Before stating a fundamental result about the density
construct, we need to introduce some preliminary definitions.

A KT B ∈ KT(AP) is binary if its set of states is a
full ∆-tree WB = ∆∗, for a given set of directions ∆ with
cardinality |∆| = 2.

Let K,K′ ∈ KS(AP) be two KSs. Then, K′ is a minor of
K, in symbols K′ 4 K, if there exists an injective embedding
m : WK′ →WK such that, for all w1, w2 ∈WK′ , it holds
that w2 ∈ RK′(w1) iff there is a track ρ ∈ TrkKm(w1)

for
which (i) lst(ρ) = m(w2) and (ii) (ρ)i 6= m(w3), for all
i ∈]0, |ρ| − 1[and w3 ∈ RK′(w1). Observe that the second
item ensures that different outgoing edges from a state in
the minor are mapped onto tracks of the original KS, neither
of which is a prefix of the other. Intuitively, K′ 4 K if
K′ is isomorphic to the KS obtained from a substructure
of K by applying zero or more edge contractions, namely,
by removing step by step an edge while simultaneously
merging its incident worlds. As an example, consider again

the unwinding KUA of Figure 7. KUA has a binary KT B with
∆ , {a, b} as a minor, i.e., B 4 KUA . This is witnessed by the
following embedding m: (i) m(ε) = ε; (ii) for all w ∈ ∆+, it
holds that: m(w · a) , m(w) ·��• and m(w · b) , m(w) · •.
Intuitively, B is isomorphic to the KS obtained by contracting
all pairs of consecutive edges between the states labeled by
�, �, and •. On the contrary, the unwinding KUB of the
same figure does not contain any binary KT as minor, since
each world labeled by • has a successor which leads only to
worlds with a unique successor. Another way to understand
this fact is that it is impossible to embed a binary tree into
a tree with only a countable number of paths.

KU
A KU

B

Figure 7: The KA and KB unwindings KU
A and KU

B (we only
report the labeling of the worlds instead of worlds themselves).

We now have all we need to characterize the class of KSs
satisfying the density constraint.

Theorem V.1 (Density Characterization). For each KS K ∈
KS(AP), it holds that K |= Den iff (i) K is isomorphic to a
KT and (ii) Kw has a binary KT as a minor, for all w ∈WK.

Intuitively, this theorem states that each world of a KS
satisfying Den is the root of a tree substructure embedding
a binary KT.

The operator Denφ also allows us to express discreteness
of the underlying semilattice with the following formula:
Disφ , G[φ]¬Denφ. Intuitively, Disφ states that no substruc-
ture of a given KS satisfies the density constraint. Formally,
we have that K |= Disφ iff, for all substructures K′∈FK(φ),
it holds that either (i) K′ does not admit any strict substructure
in the filtering, i.e., it is minimal in FK(φ), or (ii) no sub-
structure K′′′∈FK(φ) satisfies K′′@K′′′@K′, i.e., there is
an immediate strict substructure K′′ ∈ FK(φ) of K′. As an ex-
ample, Figure 7 shows the unwinding KUB of the KS KB in
Figure 2, which does satisfy Dis. Indeed, any substructure
T ∈SKUB (f) having at least a node w∈WT with |RT (w)|=2
has an immediate strict substructure T ′∈ST (f) such that,
for all u∈WT , it holds that u 6∈WT ′ iff u∈ R∗T (v), where
v∈RT (w) is labeled by �. This means that T and T ′ differ
exactly on the worlds reachable from w passing through v.

Similarly to the density constraint, we can characterize
the discreteness constraint by means of the minor relation.

Theorem V.2 (Discreteness Characterization). For each KS
K ∈ KS(AP), it holds that K |= Dis iff K does not have a
binary KT as a minor.

Observe that there are KSs K ∈ KS(AP) such that neither

K |= Den nor K |= Dis. An example is given by the KT
whose root has KUA and KUB as the only children.

Expressiveness and succinctness: Before proceeding
to discuss further model theoretic properties, expressiveness
and succinctness of STL∗, STL and their weaker fragments,
we need to introduce few additional definitions.

A logic L enjoys the tree (resp., finite) model property if
every satisfiable formula ϕ ∈ L has a KT T (resp., KS K
with |WK| < ω) as model. Moreover, L is invariant under
bisimulation if, for all pairs of bisimilar KSs K1,K2 ∈
KS(AP), it holds that ϕ is an invariant for K1 and K2.
Finally, L is invariant under unwinding if, for every KS
K ∈ KS(AP), it holds that ϕ is an invariant for K and KU .

Two logics L1 and L2 can be compared in terms of their
expressiveness w.r.t. a given class of KSs ℵ ⊆ KS(AP).
Formally, we say that L1 is at least as expressive as L2

w.r.t. ℵ, in symbols L2 ≤ℵ L1, if every formula ϕ2 ∈ L2 is
ℵ-equivalent to some formula ϕ1 ∈ L1. If L2 ≤ℵ L1, but
L1 6≤ℵ L2 then L1 is more expressive than L2 w.r.t. ℵ, in
symbols L2 <ℵ L1.

We can now give some results about the comparison of
STL∗ and its fragments w.r.t. classic temporal logics. In
particular, we start with a theorem about the lack of classic
model-theoretic properties for WSTL[KS].

Theorem V.3 (WSTL[KS] Negative Properties). WSTL[KS]
satisfies the following: (i) it does not enjoy the tree model
property; (ii) it is not invariant under unwinding; (iii) it is
not invariant under bisimulation.

Intuitively, by using the EMin construct, it is possible to
express a property satisfied only by a KS K containing a loop.
Hence, K cannot be a KT and Item (i) follows. Items (ii)
and (iii) are immediate consequences.

CTL is clearly a syntactic fragment of WSTL that is known
to have the tree model property. Thus, the following result is
an immediate consequence of Item (i) of the above theorem.

Corollary V.1 (WSTL[KS] Expressiveness). CTL<KS WSTL.

A deeper result about the impossibility of a finitary
representation of some STL[KS] models directly follows from
the density characterization of Theorem V.1.

Theorem V.4 (STL[KS] Negative Property). STL[KS] does
not enjoy the finite model property.

It is known that Counting CTL∗ (CTL∗+C, for short) [18]
has the finite model property. We recall that this logic is
obtained by adding to CTL∗ the successor counting operator
E≥gXϕ, which is satisfied in a world if this has at least g
different successors satisfying the argument ϕ. Now, since the
density construct has only infinite models, we immediately
derive that it cannot have any KS-equivalent in CTL∗+C.

Theorem V.5 (Density on KSs). There is no CTL∗+C formula
KS-equivalent to Den.

Differently from the KS case, the density construct is
easily expressible in CTL+C interpreted over KTs.

Theorem V.6 (Density on KTs). Den ≡KT AGEFE≥2Xt.

Theorem V.6 follows from the observation that
AGEFE≥2Xt requires that, from every world of a KT, a world
with at least two successors is eventually reached. It is an easy
exercise to show that any such KT embeds a binary KT.

It can be proved that the STL discreteness construct
Dis cannot be expressed in CTL∗+C and, consequently, in
monadic path logic (MPL, for short) [11]. Conversely, one
can show that WSTL∗ is reducible to MPL. However, such
results are far beyond the scope of this paper.

We now turn our attention to WSTL interpreted over KTs.
Invariance under unwinding and the tree model property hold
trivially for KTs. However, by observing that a KT with a
single path is bisimilar to a KT with two paths, assuming the
worlds in the two KT are equally labeled, but that the former
is minimal and the latter is not, we immediately obtain the
the following result.

Theorem V.7 (WSTL[KT] Negative Property). WSTL[KT]
is not invariant under bisimulation.

Since CTL is known to be invariant under bisimulation,
the first item of the following result immediately follows
from the previous theorem. The second item, instead, follows
from the observation that AMin(t, ϕ) verifies ϕ on every path
of the underlying KT. Therefore, for every LTL formula ψ, it
holds that Aψ ≡KT AMin(t, ϕ), where the CTL state formula
ϕ is obtained from ψ by coupling each temporal operator
occurring in it with some path quantifier.

Theorem V.8 (WSTL[KT] Expressiveness). WSTL[KT] satis-
fies the following: (i) CTL <KT WSTL; (ii) LTL <KT WSTL.

Finally, by adapting the classic (linear) reduction proposed
in [11], showing that CTL∗ ≤KT MPL, we can prove that
STL∗ can only express regular languages over trees, namely
the class of languages expressible in MSOL.

Theorem V.9 (STL∗[KT] Regularity). STL∗ ≤KT MSOL.

VI. DECISION PROBLEMS

Depending on the class of models over which the logic
is interpreted, complexity results on the standard decision
problems, namely satisfiability and model checking, differ
significantly. For instance, when interpreted over arbitrary
Kripke structures, satisfiability is undecidable already for
WSTL∗. However, the problem for the full STL∗ remains
decidable, in non-elementary time, when interpreted on
Kripke trees. The situation is somewhat different for the
model checking problem, which is decidable under both
interpretations, though simpler, in PSPACE, for finite Kripke
structures, while much harder, in non-elementary time, for
Kripke trees. The following theorems summarize the results.

Theorem VI.1 (WSTL∗[KS] Undecidable Satisfiability).
WSTL∗[KS] satisfiability problem is highly undecidable, i.e.,
it is Σ1

1-HARD.

Theorem VI.1 follows from a reduction from the recur-
rent domino problem [12], which is known to be highly
undecidable and, in particular, Σ1

1-COMPLETE, i.e., not even
computably enumerable. A recurrent tiling system can be
embedded into a model of a particular WSTL∗ formula, which
is satisfiable iff the tiling system allows for an admissible
tiling.

Theorem VI.2 (STL∗[KS] Decidable Model Checking).
STL∗[KS] model-checking problem is decidable in PSPACE
w.r.t. both the size of the STL∗ formula ϕ and the finite KS
model K.

Theorem VI.2 follows by showing a brute-force recursive
algorithm that checks in PSPACE whether a finite KS model
K satisfies an STL∗ formula ϕ.

Theorem VI.3 (STL∗[KT] Decision Problem Complexity).
STL∗[KT] satisfiability and model-checking problems have a
(k + 1)-EXPTIME formula complexity w.r.t. the alternation
k of semilattice operators in the STL∗ formula ϕ. The latter
problem has a PTIME data complexity w.r.t. the size of the
finite KS K ∈ KS(AP) encoding the KT model KU .

Theorem VI.3 follows from an automata-theoretic ap-
proach in which we reduce both decision problems to the
emptiness problem of a suitable alternating parity tree
automaton [14]. Due to the operations of projection required
by the extraction of substructure, which induce at any
alternation an exponential blow-up, the overall size of the
required automaton is non-elementary in the size of the
formula, while it is only polynomial in the size of the model,
if it is involved in the construction. Thus, together with the
complexity of the automata non-emptiness calculation [14],
we obtain the required complexity.

Theorem VI.4 (STL∗[KT] Decision Problem Hardness).
STL∗[KT] satisfiability and model-checking problems are
k-EXPSPACE-HARD w.r.t. the alternation k of semilattice
operators in the STL∗ formula ψ. The latter problem is
PTIME-HARD w.r.t. the size of the finite KS K ∈ KS(AP)
encoding the KT model KU .

In Theorem VI.4, the formula complexity for both the
problems follows by a linear reduction from the QPTL satis-
fiability problem [23], in which each existential (universal)
propositional quantification is translated into the EMax (resp.,
AMax) construct. The PTIME hardness follows by a reduction
from the reachability problem on And-Or graphs.

VII. CONCLUSION

Reasoning about substructures has proved to be a crucial
aspect for a number of problems in formal system verification

and design. The solutions of many fundamental problems
addressed in the literature share the need of selecting a portion
of the model of interest and then verify on that portion a spec-
ification requirement. This is the case for decision problems
like module checking, turn-based games, concurrent games,
reactive synthesis, and many others. The typical approach
to these problems has been to define ad-hoc extensions of
temporal logics, tailored to the specific problem.

In this paper we have taken a different stance, attempting
to define a unifying temporal framework to reason about
substructures. To this aim, we have defined a “two-layer
semantics”, where the standard temporal layer is coupled
with an upper layer of partially ordered substructures. We
have then introduced and studied Substructure Temporal
Logic (STL∗, for short), a branching-time temporal-logic
obtained by simply adding to CTL∗ two operators used to
select suitable substructures from the upper layer.

The resulting logic turns out to be very powerful and
versatile. It strictly subsumes CTL∗ and can embed in a
natural and elegant way several classical decision problems,
including those mentioned above. We have also investigated
the classical decision problems for STL∗, w.r.t. both Kripke
structures and infinite regular trees. While satisfiability is
undecidable when interpreted over Kripke structures, it is
decidable in non-elementary time when interpreted over
infinite regular trees. On the other hand, the model checking
problem is decidable under both interpretations, in PSPACE
and in non-elementary time, respectively.

Future work may proceed along various directions. While,
for the sake of space, we had to confine the analysis of STL∗

properties to its expressiveness with respect to “standard”
temporal logics only, a deeper comparison is in order with
respect both to very expressive logics like MPL, and to
popular related logical frameworks like, for instance, ATL,
Strategy Logic and Sabotage Logic. Some of these analysis
are currently underway, along with the study of succinctness
properties, suggesting, e.g., an exponential gain of STL with
respect to CTL. We also plan to study variants of STL∗. In
particular, it would be of special interest to consider a version
of STL∗ where the ordering between substructures is induced
by the minor ordering 4, instead of v.

REFERENCES

[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time
Temporal Logic. JACM, 49(5):672–713, 2002.

[2] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The
Complexity of Enriched Mu-Calculi. LMCS, 4(3):1–27, 2008.

[3] A. Church. Logic, Arithmetics, and Automata. In ICM’62,
pages 23–35, 1963.

[4] E.M. Clarke and E.A. Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal
Logic. In LP’81, LNCS 131, pages 52–71. Springer, 1981.

[5] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Veri-
fication of Finite-State Concurrent Systems Using Temporal
Logic Specifications. TOPLAS, 8(2):244–263, 1986.

[6] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.
MIT Press, 2002.

[7] E.A. Emerson and J.Y. Halpern. Decision Procedures and
Expressiveness in the Temporal Logic of Branching Time.
JCSS, 30(1):1–24, 1985.

[8] E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not
Never” Revisited: On Branching Versus Linear Time. JACM,
33(1):151–178, 1986.

[9] E.A. Emerson and C.-L. Lei. Temporal Reasoning Under
Generalized Fairness Constraints. In 86, LNCS 210, pages
267–278. Springer, 1986.

[10] J. Gerbrandy and W. Groeneveld. Reasoning About Informa-
tion Change. JLLI, 6(2):147–169, 1997.

[11] T. Hafer and W. Thomas. Computation Tree Logic CTL* and
Path Quantifiers in the Monadic Theory of the Binary Tree.
In ICALP’87, LNCS 267, pages 269–279. Springer, 1987.

[12] D. Harel. A Simple Highly Undecidable Domino Problem. In
LCC’84, 1984.

[13] O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity
of the Graded µ-Calculus. In CADE’02, LNCS 2392, pages
423–437. Springer, 2002.

[14] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata
Theoretic Approach to Branching-Time Model Checking.
JACM, 47(2):312–360, 2000.

[15] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking.
IC, 164(2):322–344, 2001.

[16] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. What
Makes ATL* Decidable? A Decidable Fragment of Strategy
Logic. In CONCUR’12, LNCS 7454, pages 193–208. Springer,
2012.

[17] F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About
Strategies. In FSTTCS’10, LIPIcs 8, pages 133–144, 2010.

[18] F. Moller and A.M. Rabinovich. Counting on CTL*: On the
Expressive Power of Monadic Path Logic. IC, 184(1):147–159,
2003.

[19] J.A. Plaza. Logics of Public Communications. Synthese,
158(2):165–179, 2007.

[20] A. Pnueli. The Temporal Logic of Programs. In FOCS’77,
pages 46–57, 1977.

[21] A. Pnueli and R. Rosner. On the Synthesis of a Reactive
Module. In POPL’89, pages 179–190. Association for
Computing Machinery, 1989.

[22] M.O. Rabin. Decidability of Second-Order Theories and
Automata on Infinite Trees. TAMS, 141:1–35, 1969.

[23] A.P. Sistla, M.Y. Vardi, and P. Wolper. The Complementation
Problem for Büchi Automata with Applications to Temporal
Logic. TCS, 49:217–237, 1987.

[24] J. van Benthem. An Essay on Sabotage and Obstruction. In
05, LNCS 2605, pages 268–276. Springer, 2005.

APPENDIX

A. Mathematical Notation

In this short reference appendix, we report the classical
mathematical notation and some common definitions that are
used along the whole work.

Classic objects: We consider N as the set of natural
numbers and [m,n] , {k ∈ N : m ≤ k ≤ n}, [m,n[, {k ∈
N : m ≤ k < n},]m,n] , {k ∈ N : m < k ≤ n}, and
]m,n[, {k ∈ N : m < k < n} as its interval subsets, with
m ∈ N and n ∈ N̂ , N ∪ {ω}, where ω is the numerable
infinity, i.e., the least infinite ordinal. Given a set X of
objects, we denote by |X| ∈ N̂ ∪ {∞} the cardinality of X,
i.e., the number of its elements, where ∞ represents a more
than countable cardinality, and by 2X , {Y : Y ⊆ X} the
powerset of X, i.e., the set of all its subsets.

Relations: By R ⊆ X×Y we denote a relation between
the domain dom(R) , X and codomain cod(R) , Y, whose
range is indicated by rng(R) , {y ∈ Y : ∃x ∈ X. (x, y) ∈
R}. We use R−1 , {(y, x) ∈ Y × X : (x, y) ∈ R} to
represent the inverse of R itself. Moreover, by S ◦ R, with
R ⊆ X × Y and S ⊆ Y × Z, we denote the composition
of R with S , i.e., the relation S ◦ R , {(x, z) ∈ X × Z
: ∃y ∈ Y. (x, y) ∈ R ∧ (y, z) ∈ S}. We also use Rn ,
Rn−1 ◦ R, with n ∈ [1, ω[, to indicate the n-iteration of
R ⊆ X × Y, where Y ⊆ X and R0 , {(y, y) : y ∈ Y} is
the identity on Y. With R+ ,

⋃<ω
n=1 R

n and R∗ , R+∪R0

we denote, respectively, the transitive and reflexive-transitive
closure of R. Finally, for an equivalence relation R ⊆ X×X
on X, we represent with (X/R) , {[x]R : x ∈ X}, where
[x]R , {x′ ∈ X : (x, x′) ∈ R}, the quotient set of X w.r.t.
R, i.e., the set of all related equivalence classes [·]R.

Functions: We use the symbol YX ⊆ 2X×Y to denote
the set of total functions f from X to Y, i.e., the relations
f ⊆ X×Y such that for all x ∈ dom(f) there is exactly one
element y ∈ cod(f) such that (x, y) ∈ f. Often, we write f :
X→ Y and f : X ⇀ Y to indicate, respectively, f ∈ YX and
f ∈

⋃
X′⊆X YX′ . Regarding the latter, note that we consider

f as a partial function from X to Y, where dom(f) ⊆ X
contains all and only the elements for which f is defined.
Given a set Z, by f�Z , f∩ (Z×Y) we denote the restriction
of f to the set X ∩ Z, i.e., the function f�Z : X ∩ Z ⇀ Y
such that, for all x ∈ dom(f)∩Z, it holds that f�Z(x) = f(x).
Moreover, with ∅ we indicate a generic empty function,
i.e., a function with empty domain. Note that X ∩ Z = ∅
implies f�Z = ∅. Finally, for two partial functions f, g : X ⇀
Y, we use f d g and f e g to represent, respectively, the
union and intersection of these functions defined as follows:
dom(f d g) , dom(f) ∪ dom(g) \ {x ∈ dom(f) ∩ dom(g)
: f(x) 6= g(x)}, dom(f e g) , {x ∈ dom(f) ∩ dom(g) :
f(x) = g(x)}, (f d g)(x) = f(x) for x ∈ dom(f d g) ∩
dom(f), (f d g)(x) = g(x) for x ∈ dom(f d g) ∩ dom(g),
and (f e g)(x) = f(x) for x ∈ dom(f e g).

Words: By Xn, with n ∈ N, we denote the set of all
n-tuples of elements from X, by X∗ ,

⋃<ω
n=0 Xn the set of

finite words on the alphabet X, by X+ , X∗ \ {ε} the set
of non-empty words, and by Xω the set of infinite words,
where, as usual, ε ∈ X∗ is the empty word. The length of a
word w ∈ X∞ , X∗ ∪Xω is represented with |w| ∈ N̂. By
(w)i we indicate the i-th letter of the finite word w ∈ X∗,
with i ∈ [0, |w|[. Furthermore, by fst(w) , (w)0 (resp.,
lst(w) , (w)|w|−1), we denote the first (resp., last) letter of
w. In addition, by (w)≤i (resp., (w)>i), we indicate the prefix
up to (resp., suffix after) the letter of index i of w, i.e., the
finite word built by the first i+1 (resp., last |w|−i−1) letters
(w)0, . . . , (w)i (resp., (w)i+1, . . . , (w)|w|−1). We also set,
(w)<0 , ε, (w)<i , (w)≤i−1, (w)≥0 , w, and (w)≥i ,
(w)>i−1, for i ∈ [1, |w|[. Mutatis mutandis, the notations
of i-th letter, first, prefix, and suffix apply to infinite words
too. Finally, by pfx(w1, w2) ∈ X∞ we denote the maximal
common prefix of two different words w1, w2 ∈ X∞, i.e.,
the finite word w ∈ X∗ for which there are two words
w′1, w

′
2 ∈ X∞ such that w1 = w · w′1, w2 = w · w′2, and

fst(w′1) 6= fst(w′2). By convention, we set pfx(w,w) , w.
Trees: For a set ∆ of objects, called directions, a ∆-tree

is a set T ⊆ ∆∗ closed under prefix, i.e., if t · d ∈ T, with
d ∈ ∆, then also t ∈ T. We say that it is complete if it holds
that t · d′ ∈ T whenever t · d ∈ T, for all d′ < d, where
<⊆ ∆×∆ is an a priori fixed strict total order on the set
of directions that is clear from the context. Moreover, it is
full if T = ∆∗. The elements of T are called nodes and the
empty word ε is the root of T. For every t ∈ T and d ∈ ∆,
the node t · d ∈ T is a successor of t in T. The tree is
b-bounded if the maximal number b of its successor nodes is
finite, i.e., b = maxt∈T |{t · d ∈ T : d ∈ ∆}| < ω. A branch
of the tree is an infinite word w ∈ ∆ω such that (w)≤i ∈ T,
for all i ∈ N. For a finite set Σ of objects, called symbols, a
Σ-labeled ∆-tree is a quadruple 〈Σ,∆,T, v〉, where T is a
∆-tree and v : T→ Σ is a labeling function. When ∆ and Σ
are clear from the context, we call 〈T, v〉 simply a (labeled)
tree.

B. Proofs of Section V

This appendix is for reviewing purposes only. In case of
acceptance, it will be published in an accompanying technical
report.

Density and discreteness:

Lemma A.1 (Binary Minor Characterization). For each KS
K ∈ KS(AP), it holds that, for all w ∈ WK, there are
v ∈ R∗K(w) and u1, u2 ∈ RK(v) such that u1 6= u2 iff Kw
has a binary KT as a minor, for all w ∈WK.

Proof: [Only if] Suppose that, for every w ∈WK, there
are v ∈ R∗K(w) and u1, u2 ∈ RK(v) such that u1 6= u2. It is
immediate to see that there exist two functions F : WK →
WK and M : WK ×∆→WK, with ∆ , {a, b}, such that
(i) F(w) ∈ R∗K(w), (ii) M(w, a),M(w, b) ∈ RK(F(w)), and

(iii) M(w, a) 6= M(w, b). Now, let B be a binary KT with
direction set ∆. We want to show that, for all w ∈ WK,
it holds that B 4 Kw. To do this, consider the following
injective embedding mw : WB →WKw : (i) mw(ε) , w; (ii)
mw(t · a) , M(mw(t), a); (iii) mw(t · b) , M(mw(t), b). It
is easy to see that mw satisfies the defining constraints of
the minor relation. Consequently, B 4 Kw.

[If] Suppose that, for every w ∈WK, it holds that B 4 Kw,
for some binary KT B having w.l.o.g. the set of directions
∆ = {a, b}. Thus, there exists an injective embedding mw :
WB →WKw satisfying the defining constraints of the minor
relation. Consequently, there are two tracks ρa, ρb ∈ TrkTw
with lst(ρa) = m(a) and lst(ρb) = m(b) such that (ρa)ia 6=
m(b) and (ρb)ib 6= m(a), for all ia ∈ [0, |ρa|−1[and ib ∈ [0,
|ρb| − 1[. Now, let j ∈ [0,min{|ρa|, |ρb|} − 1[be the first
index in which the two tracks diverge, i.e., (ρa)≤j = (ρb)≤j
and (ρa)j+1 6= (ρb)j+1. The existence of such an index is
ensured by the previous properties on ρa and ρb. Then, it
is immediate to see that u1 = (ρa)j+1, u2 = (ρb)j+1, and
v , (ρa)j satisfy the thesis.

Theorem V.1 (Density Characterization). For each KS K ∈
KS(AP), it holds that K |= Den iff (i) K is isomorphic to a
KT and (ii) Kw has a binary KT as a minor, for all worlds
w ∈WK.

Proof: [If] Suppose that K is isomorphic to a KT and, for
all worlds w ∈WK, that Kw has a binary KT B as a minor,
where w.l.o.g. its set of directions is ∆ = {a, b}. Therefore,
there is an injective embedding mw : WB →WKw satisfying
the defining constraints of the minor relation, with m(ε) = w.
As first thing, it is immediate to see that SK(f) 6= ∅. Now,
let K′ ∈ SK(f). Since K is isomorphic to a KT, there exists
a v ∈WK \WK′ such that R∗K(v)∩WK′ = ∅. Moreover, by
definition of minor, we have that R∗K(mv(a)),R∗K(mv(b)) ⊂
R∗K(mv(ε)) = R∗K(v) and R∗K(mv(a)) ∩ R∗K(mv(b)) = ∅.
At this point, let W′ , WK \ R∗K(mv(b)). It is easy to
see that WK′ ⊂ W′ ⊂ WK. Furthermore, R′ , RK ∩
(W′ ×W′) is a left-total relation such that R′∗(w0K) =
W′. Consequently, there exists a strict substructure K′′ ∈
SK(f) such that WK′′ = W′. Hence, K′ @ K′′ @ K. So,
by definition of the density constraint Den, we have that
K |= Den.

[Only if] Suppose that K |= Den. As first thing, K needs
to be isomorphic to a KT. Indeed, assume the converse by
contradiction. Thus, there exists a world w ∈WK and two
edges (v1, w), (v2, w) ∈ RK such that v1 6= v2. Now, let ρ ∈
TrkK be a track such that lst(ρ) = v1. Then, there is an index
j ∈ [0, |ρ|[such that |RK((ρ)j)| = 2 and |RK((ρ)i)| = 1, for
all i ∈]j, |ρ|[. At this point, let W′ ,WK\{(ρ)i : i ∈]j, |ρ|[}.
It is easy to see that R′ , (RK ∩ (W′ ×W′)) \ {(v1, w)}
is a left-total relation such that R′∗(w0K) = W′. Hence,
K′ = 〈AP,W′,R′, L�W′ , w0K〉 is a KS which is also a strict
substructure of K in SK(f). However, K′ does not have any
strict superstructure K′′ ∈ SK(f). Indeed, if WK′′ \WK′ 6= ∅,

there exists some u ∈ {(ρ)i : i ∈]j, |ρ|[} such that u ∈
WK′′ \WK′ . Now, due to the constraints on the transition
relation of a KS, we necessarily have WK′′ \WK′ = {(ρ)i :
i ∈]j, |ρ|[}. Otherwise, we have that RK′′ \RK′ = {(v1, w)}.
Hence, K′′ = K, contradicting that K′′ ∈ SK(f).

Now, it remains to show that, for all w ∈ WK, it holds
that B 4 Kw, for a binary KT B having as set of directions
∆ = {a, b}. This fact follows directly from Lemma A.1 after
proving that, for all w ∈ WK, there are v ∈ R∗K(w) and
u1, u2 ∈ RK(v) such that u1 6= u2. Suppose by contradiction
that there is a world w ∈ WK such that |RK(v)| = 1, for
every v ∈ R∗K(w), and let ρ ∈ TrkK be the track such
that lst(ρ) = w. Since K |= Den, it holds that SK(f) 6= ∅.
Therefore, there exists an index i ∈ [0, |ρ| − 1[such that
|RK((ρ)i)| > 1 and |RK((ρ)j)| = 1, for all j ∈]i, |ρ|[.
Now, let W′ , WK \ R∗K((ρ)i+1). Since K is isomorphic
to a KT, it is easy to see that R′ , RK ∩ (W′ × W′)
is a left-total relation such that R′∗(w0K) = W′. Hence,
K′ = 〈AP,W′,R′, L�W′ , w0K〉 is a KT which is also a strict
substructure of K in SK(f). However, K′ does not have any
strict superstructure K′′ ∈ SK(f). Indeed, if WK′′ \WK′ 6= ∅,
there exists some u ∈ R∗K((ρ)i+1) such that u ∈WK′′ \WK′ .
Now, due to the constraints on the transition relation of a
KS, we necessarily have WK′′ \WK′ = R∗K((ρ)i+1). Hence,
K′′ = K, contradicting that K′′ ∈ SK(f).

Theorem V.2 (Discreteness Characterization). For each KS
K ∈ KS(AP), it holds that K |= Dis iff K does not have a
binary KT as a minor.

Proof: [If] Suppose that K 6|= Dis. Then, there exists
a substructure K′ ∈ FK(∅) such that K′ |= Den. Therefore,
by Theorem V.1, we have that K′ has a binary KT B as a
minor. Now, it is immediate to see that, given three KSs
K1, K2, and K3, with K1 4 K2 and K2 v K3, it holds that
K1 4 K3. Consequently, we have that B 4 K.

[Only if] Suppose that B 4 K, for some binary KT B
having w.l.o.g. the set of directions ∆ = {a, b}. Then, there
exists an injective embedding m : WB →WK satisfying the
defining constraints of the minor relation, with m(ε) = w0K.
In particular, for all t ∈WB, there are two tracks ρta, ρ

t
b ∈

TrkKm(t)
such that lst(ρta) = m(t · a), lst(ρtb) = m(t · b).

Now, let jt ∈ [0,min{|ρta|, |ρtb|} − 1[be the last index
in which the two tracks diverge, i.e., (ρta)jt = (ρtb)jt and
(ρta)i 6= (ρtb)i, for all i ∈]jt,min{|ρta|, |ρtb|}−1[. In addition,
set W′ ,

⋃
t∈WB

{(ρta)i : i ∈ [0, |ρta|[} ∪ {(ρtb)i : i ∈]jt,

|ρtb|[}. It is not hard to see that R′ ,
⋃
t∈WB

{((ρta)i, (ρ
t
a)i+1)

: i ∈ [0, |ρta| − 1[} ∪ {((ρtb)i, (ρtb)i+1) : i ∈]jt, |ρtb| − 1[} is
a left-total relation such that R′∗(w0K) = W′. Moreover, if
(v1, w), (v2, w) ∈ R′ then v1 = v2. Therefore, there exists a
substructure K′ v K, with WK′ = W′, that is isomorphic to
a KT T having B as a minor. At this point, by Theorem V.1,
in order to prove that K′ |= Den and, consequently, that
K 6|= Dis, we have only to show that K′w has B as a minor,
for all w ∈ WK′ . By the construction of K′, for each of

its worlds w ∈WK′ , it surely exists a tw ∈WB such that
m(tw) ∈ R∗K′(w). So, let mw : WB →WK′w be the injective
embedding defined as follows: mw(t) , m(tw · t). Now, it
is easy to see that mw satisfies the defining constraints of
the minor relation. Therefore, B 4 K′w.

Expressiveness and succinctness:

Theorem V.3 (WSTL[KS] Negative Properties). WSTL[KS]
satisfies the following: (i) it does not enjoy the tree model
property; (ii) it is not invariant under unwinding; (iii) it is
not invariant under bisimulation.

Proof: [Item i] Consider the WSTL formula ϕ =
EMin(ϕ1, ϕ2), with ϕ1 , EX(• ∧ ϕ2) and ϕ2 , EX�. It
is easy to see that ϕ is satisfied by the KS K of Figure 2,
since the KS KA of the same figure, which is minimal w.r.t.
ϕ1, also satisfies ϕ2. Now, suppose by contradiction that
there exists a KT T such that T |= ϕ. Then, there exists a
substructure T ′ v T minimal w.r.t. ϕ1 such that T ′ |= ϕ2.
However, such a substructure necessarily has a unique edge
outgoing from the root, which also leads to a state labeled by
•. Consequently, T ′ 6|= ϕ2, which is impossible. Thus, we
have that WSTL[KS] does not enjoy the tree model property.

[Items ii & iii] Consider again the formula ϕ and the KS
K of the previous item. We know that K |= ϕ but KU 6|= ϕ.
Consequently, ϕ is not an invariant for K and KU , which
implies that WSTL[KS] is not invariant under unwinding.
Moreover, K and KU are also bisimilar. Therefore, ϕ is not
an invariant for two bisimilar structures, which implies that
WSTL[KS] is not invariant under bisimulation.

Theorem V.4 (STL[KS] Negative Property). STL[KS] does
not enjoy the finite model property.

Proof: Consider the density construct Den. By Theo-
rem V.1, we know that it is satisfied on a binary KT. Moreover,
by the same theorem, we derive that every KS K satisfying
Den needs to contain a binary KT as a minor. Consequently,
K necessarily has an infinite number of worlds, which implies
that Den has only infinite models.

Theorem V.6 (Density on KTs). Den ≡KT AGEFE≥2Xt.

Proof: [Den ⇒KT AGEFE≥2Xt] Consider a KT T such
that T |= Den. Then, by Theorem V.1, for every w ∈WT ,
it holds that Tw has a binary KT as a minor. Now, by
Lemma A.1, we have that, for all w ∈ WT , there are
v ∈ R∗T (w) and u1, u2 ∈ RT (v) with u1 6= u2. Then,
it is immediate to see that Tv |= E≥2Xt, which implies
Tw |= EFE≥2Xt. Hence, T |= AGEFE≥2Xt.

[AGEFE≥2Xt⇒KT Den] Consider a KT T such that T |=
AGEFE≥2Xt. It is easy to see that, for all w ∈WT , there is
v ∈ R∗T (w) such that Tv |= E≥2Xt. Consequently, there are
u1, u2 ∈ RT (v) with u1 6= u2 and so, by Lemma A.1, Kw
has a binary KT as a minor, for all w ∈ WK. Hence, the
conclusion immediately follows from Theorem V.1.

Theorem V.8 (WSTL[KT] Expressiveness). WSTL[KT] satis-
fies the following: (i) CTL <KT WSTL; (ii) LTL <KT WSTL.

Proof: [Item ii] First, recall that CTL 6≤KS LTL.
Clearly, since CTL ≤KS WSTL, we immediately obtain that
WSTL 6≤KS LTL and, so, WSTL 6≤KT LTL. Thus, it is only
left to prove LTL ≤KT WSTL. To do this, we show that
Aψ ≡KT AMin(t, ϕ), for every LTL formula ψ, where the CTL
state formula ϕ is obtained from ψ by coupling each temporal
operator occurring in it with some path quantifier. Now, it
is easy to see that, fixed a KT T , for every path π ∈ PthT ,
there is a minimal KT T ′π ∈ FT (∅) such that PthT ′π = {π},
and vice-versa. This is due to the fact that a minimal structure
in FT (∅) can only be an infinite chain of worlds. Therefore,
π |= ψ iff T ′π |= ϕ. By definition, T |= AMin(t, ϕ) iff
T ′ |= ϕ, for all minimal KTs T ′ ∈ FT (∅). Consequently,
T |= Aψ iff T |= AMin(t, ϕ).

Theorem V.9 (STL∗[KT] Regularity). STL∗ ≤KT MSOL.

Proof: To prove the statement, we provide a linear
translation from STL∗ to MSOL, by means of two functions
Γs : STL∗ × SVar × FVar → MSOL and Γp : LTL(STL∗) ×
SVar × SVar × FVar → MSOL define below, where SVar
and FVar are the sets of second- and first-order variable.
Such a translation extends the classic reduction CTL∗ ≤KT

MPL proposed in [11]. In particular, by an easy but long
induction on the structure of the formula, it is possible to
prove that, for every STL∗ formula ϕ, it holds that T |=STL∗ ϕ
iff T |=MSOL ∃T.∃x.Mod(T, x) ∧ Γs(ϕ, T, x), where Mod(T,
x) , ∀y.y ∈ T ∧ x ≤ y. Before defining Γs and Γp, we
have to introduce the following simple constructs.
• x ≤ y , (x < y) ∨ (x = y).
• xl y , (x < y) ∧ (¬∃z . x < z ∧ z < y).
• Path(T, P, x) is the conjunction of the following for-

mulas:
– x ∈ P ;
– ∀y ∈ P . x ≤ y ∧ y ∈ T ;
– ∀y ∈ P . ∃z ∈ P . y l z;
– ∀y ∈ P . ∀z ∈ P . y ≤ z ∨ z ≤ y.

• SubTreeφ(T, T ′, x) is the conjunction of the following
formulas:

– x ∈ T ′;
– ∀y ∈ T ′ . x ≤ y ∧ y ∈ T ;
– ∀y ∈ T ′ . ∃z ∈ T ′ . y l z;
– ∃y ∈ T . x < y ∧ ¬y ∈ T ′;
– ∀y ∈ T ′ . φ(y)→ ∀z ∈ T . y l z → z ∈ T ′.

We are now able to define the state formula translation Γs.
1) Γs(p, T, x) , p(x).
2) a) Γs(¬ϕ, T, x) , ¬Γs(ϕ, T, x);

b) Γs(ϕ1∧ϕ2, T, x),Γs(ϕ1, T, x)∧Γs(ϕ2, T, x);
c) Γs(ϕ1∨ϕ2, T, x),Γs(ϕ1, T, x)∨Γs(ϕ2, T, x).

3) a) Γs(ϕ1U[φ]ϕ2, T, x) , ∃T ′.SubTreeφ′(y)(T, T
′,

x)∧Γs(ϕ2, T
′, x)∧∀T ′′.SubTreeφ′(y)(T, T

′′, x)∧
SubTreeφ′(y)(T

′′, T ′, x)→Γs(ϕ1, T
′′, x);

b) Γs(ϕ1R[φ]ϕ2, T, x) , ∀T ′.SubTreeφ′(y)(T, T
′,

x) → Γs(ϕ2, T
′, x) ∨ ∃T ′′.SubTreeφ′(y)(T, T

′′,
x) ∧ SubTreeφ′(y)(T

′′, T ′, x) ∧ Γs(ϕ1, T
′′, x);

where φ′(y) , Γs(φ, T, y).
4) a) Γs(Eψ, T, x) , ∃P .Path(T, P, x)∧Γp(ψ, T, P,

x);
b) Γs(Aψ, T, x) , ∀P . Path(T, P, x) → Γp(ψ, T,

P, x).
Finally, we define the path formula translation Γp.

5) Γp(ϕ, T, P, x) , Γs(ϕ, T, x).
6) a) Γp(¬ψ, T, P, x) , ¬Γp(ψ, T, P, x);

b) Γp(ψ1 ∧ψ2, T, P, x) , Γp(ψ1, T, P, x)∧Γp(ψ2,
T, P, x);

c) Γp(ψ1 ∨ψ2, T, P, x) , Γp(ψ1, T, P, x)∨Γp(ψ2,
T, P, x).

7) a) Γp(Xψ, T, P, x) , ∃y . y ∈ P ∧xl y ∧Γp(ψ, T,
P, y);

b) Γp(ψ1Uψ2, T, P, x) , ∃y . y ∈ P ∧ x ≤ y ∧
Γp(ψ2, T, P, y) ∧ ∀z . x ≤ z ∧ z < y → Γp(ψ1,
T, P, z);

c) Γp(ψ1Rψ2, T, P, x) , ∀y . y ∈ P ∧ x ≤ y →
Γp(ψ2, T, P, y)∨ ∃z . x ≤ z ∧ z < y ∧ Γp(ψ1, T,
P, z).

C. Proofs of Section VI

Results on KSs:

Theorem VI.1 (WSTL∗[KS] Undecidable Satisfiability).
WSTL∗[KS] satisfiability problem is highly undecidable, i.e.,
it is Σ1

1-HARD.

Proof: To prove the undecidability of the satisfiability
problem, we provide a reduction from the recurrent domino
problem, which has been shown to be highly undecidable
and, in particular, Σ1

1-COMPLETE, i.e., not even computably
enumerable [12]. We achieve the task by describing how
a given recurrent tiling system can be embedded into a
model of a particular WSTL∗ formula, which is satisfiable
iff the tiling system allows for an admissible tiling. The
difficult part of the proof is the construction of a satisfiable
WSTL∗ formula ϕgrd having only models Kgrd in which
it is possible to embed the infinite grid N × N, i.e., such
that they have the infinite square grid graph as a minor.
The remaining part of the reduction can be easily done by
using CTL formulas only, in a way that is similar to the one
explained in the undecidability proof of CTL with minimal
model quantifier 1. Therefore, in the rest of the proof, we
focus on the construction of ϕgrd only. It is important to

1F. Mogavero and A. Murano. Branching-Time Temporal Logics with
Minimal Model Quantifiers. In DLT’09, LNCS 77 5583, pages 396-409.
Springer, 2009.

observe that our formula ϕgrd is significantly different from
the corresponding one used in 1, since we restrict to total
structures only.

To distinguish between the four vertexes of each square
of the grid, we label all Kgrd worlds with the atomic
propositions a and b. For the sake of clarity, we name
every one of the four possible labelings by means of the
Boolean formulas 0 , ¬a ∧ ¬b, 1 , ¬a ∧ b, 2 , a ∧ ¬b,
and 3 , a ∧ b, called from now one colors. Moreover,
a necessary condition for Kgrd to embed the grid as a
minor is the existence of an infinite number of worlds
having at least two successors. We use the additional atomic
proposition c, called flag, to this purpose and require that
every world satisfies ϕflg , EXc ∧ EX¬c. As explained
later, the flag is also used to distinguish between the four
squares having a given common vertex. In order to encode a
square structure, we need to identify a path in Kgrd passing
trough its four vertexes, whose first four worlds cover the
colors 0, 1, 2, and 3 in cyclic increasing order modulo
four. This is ensured by requiring every world to satisfy
ϕnum ,

∧3
i=0 i → AX((i + 1) mod 4), which intuitively

asserts that, if a world is colored by i ∈ [0, 3], all its
successors are colored by (i+ 1) mod 4. Observe that this
formula also ensures that all cycles in Kgrd have length
multiple of four (see Figure 8).

At this point, to build the four squares of the grid having
a given common vertex w of Kgrd, we need to identify four
tracks starting and ending in w of length five, which, from
now on, we call 4-tracks, since they corresponds to four
adjacent edges in the underlying graph. To every 4-track,
a notion of parity is also associated, which accounts for
whether the number of occurrences of the flag c in its first
four worlds is even or not. The formula ϕnum already
guaranties that every 4-track from w reaches a world with
the same coloring as w itself. For example, if w is the central
node of the KS Kgrd of Figure 8, there are other eight
worlds with the same color reachable from w through some
4-track. To tell the four 4-tracks leading to w apart from the
other ones, we we exploit the following observation. For
every world w, there are sixteen 4-tracks starting from w,
eight of which end in a world with the same flag as w itself.
The latter ones can be further split in two groups, one of
which contains only 4-tracks of even parity. For this reason,
we encode a grid in which the 4-tracks leading from w to w
have even parity. The following auxiliary CTL∗ path formula
ψpth ,

∨
([0,[1,[2,[3)∈P([0∧X([1∧X([2∧X([3∧X[0)))), with

P , {(¬c,¬c,¬c,¬c), (¬c,¬c, c, c), (¬c, c,¬c, c), (¬c, c,
c,¬c), (c,¬c,¬c, c), (c,¬c, c,¬c), (c, c,¬c,¬c), (c, c, c, c)},
precisely characterizes the 4-tracks with even parity that start
and end with the same flag. To enforce that such 4-tracks
actually start and end in the same world w, we need to require
on w itself the following formula: ϕcyc ,

∧
[∈{c,¬c}Gϕ[cyc,

where ϕ[cyc , E(ψpth ∧ X[∧ X4EX¬[) → EX¬[. Indeed,

suppose by contradiction that there is a path π ∈ PthKw ,
with Kw, π, 0 |= ψpth ∧ X[∧ X4EX¬[, that does not close
the cycle on w after 4 steps, i.e., (π)4 6= (π)0 = w. Now,
let K′ ∈ SKw(f) be one of the minimal substructures
of Kw such that π ∈ PthK′ . It is immediate to see that
K′ |= E(ψpth ∧X[∧X4EX¬[). However, K′ 6|= EX¬[, since
there is just one v ∈ WK such that RK′(w) = {v} and
Kv |= [. This latter fact is due to the fact we require EX¬[
on (π)4 in K′ but not on w = (π)0 6= (π)4.

At this point, requiring ϕflg , ϕnum, and ϕcyc on all worlds
of Kgrd simply amounts to require the formula AG(ϕflg ∧
ϕnum ∧ ϕcyc) to be satisfied by Kgrd. Notice however that
this formula is also satisfied on the quatrefoil KS partially
depicted in Figure 9, where the central world has more than
one successor and predecessor with the same flag. To discard
the KSs of that form, we need to enforce uniqueness of
[-successors and [-predecessor, for each flag [∈ {c,¬c}.

For the uniqueness of [-successors, it suffices to require
the formula Gϕ[suc, where ϕ[suc , ϕ

[
s → EXϕflg and ϕ[s ,

EX([∧ EXc) ∧ EX([∧ EX¬c), ensure Indeed, suppose by
contradiction that there are two [-successors. Due to ϕflg,
both have at least two successors, one satisfying c and the
other one ¬c. Consequently, the lattice operator G is able
to select a minimal substructure w.r.t. ϕ[s containing exactly
two [-successors, one reaching only c and the other one only
¬c. However, such a substructure does not satisfy EXϕflg.
For this reason, we set ϕsuc ,

∧
[∈{c,¬c}Gϕ[suc. Similarly,

the formula ϕpre ,
∧
[∈{c,¬c}Gϕ[pre, where ϕ[pre , ϕ

[
p →

EX3ϕflg and ϕ[p , E(ψpth∧X3([∧EXc))∧E(ψpth∧X3([∧
EX¬c)), ensure the uniqueness of [-predecessors.

We can finally conclude that the WSTL∗ formula ϕgrd ,
AG(ϕflg ∧ϕnum ∧ϕcyc ∧ϕsuc ∧ϕpre) has precisely the KS
Kgrd of Figure 8 as model.

0,¬c 1,¬c 0, c 1, c 0,¬c

3, c 2, c 3,¬c 2,¬c 3, c

0, c 1, c 0,¬c 1,¬c 0, c

3,¬c 2,¬c 3, c 2, c 3,¬c

0,¬c 1,¬c 0, c 1, c 0,¬c

Figure 8: WSTL∗[KS] undecidability (Kgrd).

Theorem VI.2 (STL∗[KS] Decidable Model Checking).
STL∗[KS] model-checking problem is decidable in PSPACE
w.r.t. both the size of the STL∗ formula ϕ and the finite KS
model K.

2, c 2,¬c

3,¬c 3,¬c

1, c 1,¬c

0,¬c

1, c 1,¬c

3, c 3, c

2,¬c 2, c

Figure 9: A quatrefoil KS.

Proof: The proof proceeds by induction on the nesting
of semilattice operators. The base case is immediate, due
to the fact that ϕ is actually a CTL∗ formula, for which it
is known that the model-checking problem is decidable in
PSPACE w.r.t. the size of ϕ and in LOGSPACE w.r.t. the
size of K [14]. For the inductive case, suppose that the
statement is true for all STL∗ formulas with nesting less than
or equal to n ∈ N. W.l.o.g., we just consider the case in
which ϕ = ϕ1U[φ]ϕ2 has nesting equal to n+ 1, since the
remaining cases are immediate consequence of this one. This
implies that ϕ1, ϕ2, and φ have nesting of at most n. At
this point, the verification procedure for K |= ϕ is split in
the following phases.

1) Identification of the subset W′ ⊆WK such that w ∈
W′ iff Kw |= φ, for all w ∈WK.

2) Guess of the substructure K′ ∈ FK(W′).
3) Check for K′ |= ϕ2.
4) Guess of the substructure K′′ ∈ FK(W′) such that
K′ @ K′′.

5) Check for K′′ 6|= ϕ1.

Since, by the inductive hypothesis, all phases can be executed
by a nondeterministic Turing machine linearly-bounded in
both the size of the formula ϕ and of the model K, and since
PSPACE = NPSPACE, the thesis follows for ϕ too.

Results on KTs:

Theorem VI.3 (STL∗[KT] Decision Problem Complexity).
STL∗[KT] satisfiability and model-checking problems have a
(k + 1)-EXPTIME formula complexity w.r.t. the alternation
k of semilattice operators in the STL∗ formula ϕ. The latter
problem has a PTIME data complexity w.r.t. the size of the
finite KS K ∈ KS(AP) encoding the KT model KU .

Proof: Similarly to the case of CTL∗, the proof proceeds
by first constructing an alternating parity tree automaton
(APT, for short) Aϕ for the STL∗ formula ϕ and then by
verifying the emptiness of the one-letter automaton obtained
by the product of Aϕ with the KS K. To build the APT Aϕ,
we use the following inductive procedure on the structure of
the formula ϕ. Observe that Aϕ, in addition to the description
of the KT KU , reads a labeling identifying the substructure
U of KU on which to verify ϕ. In the base case, ϕ is a CTL∗

formula. Therefore, we set Aϕ to be the classic alternating

hesitant automaton described in [14]. For the inductive case,
consider w.l.o.g. ϕ = ϕ1U[φ]ϕ2 and suppose to have already
built the APTs Aϕ1 , Aϕ2 , and Aφ. By using the APTs
Aϕ1 and Aφ, via a projection operation, we construct an
automaton A′ϕ1

verifying the formula ϕ1 on all substructures
U ′′ ∈ FU (φ) of the U that has been read in input, which
are superstructures of the other one U ′ identified by the
additional labeling. Then, by making the product of A′ϕ1

with Aϕ2 and projecting out the labeling identifying the
substructure U ′, we obtain the desired automaton Aϕ for
ϕ. Observe that, due to the projection operations, the latter
automaton has size non-elementary in the alternation of the
semilattice operators contained in ϕ.

Theorem VI.4 (STL∗[KT] Decision Problem Hardness).
STL∗[KT] satisfiability and model-checking problems are k-
EXPSPACE-HARD w.r.t. the alternation k of the STL∗ formula
ψ. Moreover, the latter problem is PTIME-HARD w.r.t. the
size of the finite KS K ∈ KS(AP) encoding the KT model
KU .

Proof: To prove the hardness results w.r.t. the formula
complexity for both the model checking and satisfiability of
STL∗, we make a linear reduction from QPTL satisfiability
problem [23], which is known to be k-EXPSPACE-HARD in
the alternation alt(ψ) of the QPTL formula ψ.

Let us first consider the case of the model-checking
problem. Assume AP = {p1, . . . , pn} to be the set of all
atomic propositions occurring in ψ and, for a given fresh
element >, set AP> , AP ∪ {>}. The idea is to reduce the
satisfiability of ψ to the model checking of a suitable STL∗

formula ψ̃ against the KS KMC over AP> of Figure 10,
in which each pair of worlds w>i and w⊥i , for i ∈ [1, n],
encodes the truth values, true and false, of the corresponding
proposition pi. The initial world w0, used to reach such
worlds, also allows to encode the linear structure of QPTL
models. Observe that it is the unique world satisfying the
Boolean formula [,

∧
p∈AP ¬p. Moreover, every subset of

worlds w`i , with ` ∈ {>,⊥}, containing exactly one between
w>i and w⊥i , for each i ∈ [1, n], corresponds to a possible
assignment for the propositions in AP. Now, in order to
encode an existential quantifier ∃pi we need to select a single
truth value for each time instant and, so, a single successor
between w>i and w⊥i . The formula [i , EG([∧ ¬ϕi), with
ϕi , EX(pi∧>)∧EX(pi∧¬>), for each i ∈ [1, n], ensures
that every world of the KT KUMC satisfying [has at most
one successor for each proposition pi encoding its truth
value. However, the maximal substructure of KUMC satisfying
[i surely have at least one of these successors. Therefore,
the construct EMax([i, ϕ) select a maximal substructure of
KUMC w.r.t. [i which must also satisfy the formula ϕ and
whose worlds satisfying [have a single successor encoding
a possibly different truth value of the atomic proposition pi.
In a similar way, the construct AMax([i, ϕ) can be used to
encode the universal quantification ∀pi. We can now define

the following translation function ·̃ : QPTL → STL∗.

• ∃̃pi . ψ′ , EMax([i, ψ̃′).
• ∀̃pi . ψ′ , AMax([i, ψ̃′).
• ψ̃′ , E(G[∧ψ′′), for the LTL formula ψ′, where ψ′′ ,
ψ′[pi/EX(pi ∧ >)|i ∈ [1, n]] is obtained from ψ′ by
replacing each atomic proposition pi ∈ AP occurring in
it with the CTL formula EX(pi ∧ >).

It is easy to observe that |ψ̃| = O(|ψ|) and alt(ψ̃) = alt(ψ).
Intuitively, this translation replace each propositional quantifi-
cation by a suitable choice of a subtree of KUMC . Moreover,
the verification of the truth value of a proposition pi, for a
given instant of the time, is done by checking the existence
of a successor of such an instant that is labeled with both pi
and the auxiliary symbol >. At this point, an easy induction
on the structure of the formula ψ allows to prove that ψ is
satisfiable iff KUMC |= ψ̃. Hence, the thesis for the model-
checking problem follows.

Let now consider the case of the satisfiability problem. To
make the reduction, we check for the satisfiability of the STL∗

formula ϕK ∧ ψ̃, where ϕK is used to characterize the KTs
of the same form of tree structure TSat depicted in Figure 11,
which corresponds to the unwindings of KSs that equals to
KMC except, possibly, for the self loops on the worlds w`i ,
with ` ∈ {>,⊥}. First, we have to ensure that all ϕK models
contain a spine globally satisfying [, whose worlds have two
successors for each proposition pi, one labeled by > and
the other one not. This can be easily achieved by using
the CTL formula ϕspn , [∧ AG([→ (EX[∧

∧n
i=1 ϕi)),

where ϕi is the same formula used above for the hardness
of model-checking problem. Moreover, to enforce that the
flow of time is linear, we have to impose uniqueness of
that spine. This can be ensured by means of the WSTL
formula ϕmin , G((AG[) → Min(t)). Therefore, we set
ϕK , ϕspn ∧ϕmin. At this point, again by induction on the
structure of the formula ψ, it is possible to prove that ψ is
satisfiable iff ϕK∧ψ̃ is. Hence, the thesis for the satisfiability
problem follows.

Finally, to prove the PTIME hardness of the model
checking w.r.t. the size of the finite encoding of the model,
we simply make a reduction from the reachability problem
on And-Or graphs 2. In particular, we check the formula
EMinOr(t, AMinAnd(t,EFp)) against the unwinding of the
KS KG obtained from the And-Or graph G, in which the
reachability target is identified with the proposition p and
each And (resp., Or) node is represented by a world labeled
by the proposition And (resp., Or).

2N. Immerman. Number of Quantifiers is Better Than Number of Tape
Cells. JCSS, 22(3):384-406, 1981.

w0

∅

w>1
{p1,>}

w⊥1
{p1}

· · · · · ·w>n
{pn,>}

w⊥n
{pn}

Figure 10: STL∗[KT] model checking hardness (KMC).

∅

{p1,>} {p1}· · · · · ·{pn,>} {pn}

∅

{p1,>} {p1}· · · · · ·{pn,>} {pn}

∅

{p1,>} {p1}· · · · · ·{pn,>} {pn}

Figure 11: STL∗[KT] satisfiability hardness (TSat).

