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Abstract—Any two-way finite state automaton is equivalent of relations. For instance, deterministic transducersabways
to some one-way finite state automaton. This well-known resti  functional. In this paper, we are interested in transdutters
shown by Rabin and Scott and independently by Shepherdson, define functions, but that can be non-deterministic.

states that two-way finite state automata (even non-determistic) As f t ta. th di head of t d
characterize the class of regular languages. It is also knaw S lor automata, the reading head Ob transaucers can

that this result does not extend to finite string transductims: Move one-way (left-to-right) or two-wayOne-way) finite
(deterministic) two-way finite state transducers strictly extend state transducerbave been extensively studied [5]] [6]. Non-

the expressive power of (functional) one-way transducersin  deterministic (even functional) one-way transducex$T9
particular deterministic two-way transducers capture exectly the strictly extend the expressive power of deterministic ors-

class of MSO-transductions of finite strings. t d FT9. b det . I ¢
In this paper, we address the following definability problem ~ ans ucersiFTs), because non-determinism allows one to

given a function defined by a two-way finite state transduceris it ~€xpress local transformations that depend on propertiéiseof
definable by a one-way finite state transducer? By extending& future of the input string.

bin and Scott’s proof to transductions, we show that this prdlem Two-way finite state transducemrefine regular transfor-
is dec[dable. Our procedure builds a one-way transducer, y\nhh mations that are beyond the expressive power of one-way
is equivalent to the two-way transducer, whenever one exist . . .
transducerd [7]. They can for instance reverse an inpurtgstri
|. INTRODUCTION swap two substrings or copy a substring. The transductions

In formal language theory, the importance of a class gefined by two-way transducers have been characterized by

languages is often supported by the number and the diveré?ﬂ?er logical and computational models. Introduced by €our

of its characterizations. One of the most famous exampleG€!le; monadic second-order definable transductions ans-r
the class of regular languages of finite strings, which mjo)formatlons from graphs to graphs defined with the logic MSO

for instance, computational (automata), algebraic (Sfita [8]. Engelfriet and Hoogeboom have shown that the monadic

congruence) and logical (monadic second order (MSO) logi€cond-order definable functions are exactly the functions
with one successor) characterizations. The study of regufigfiinable by deterministic two-way finite state transducers
languages has been very influential and several geneiatizat (2DFT9 when the graphs are restricted to finite strings [9].

have been established. Among the most notable ones are R§&ently, Alur andCerny have characteriz&?DFT-definable
extensions to infinite strings][1] and tre&s [2]. On finitérggs, transductions by a deterministic one-way model cadigeiam-

it is well-known that both deterministic and non-deterrsiini N9 String transducer§10] and shown how they can be applied

finite state automata define regular languages. It is alsb wdp the Verification of list-processing programs|[11]. Stéy
known that the expressive power of finite state automata dowdnd fransducers extemFTswith a finite set of output string
not increase when the reading head can move left and rigftiiables. At each step, their content can be reset or ugtigte

even in presence of non-determinism. The latter class iwhknotither prepending or appending a finite string, or the cdnten
as non-deterministitwo-way finite state automatnd it is no ©f another variable, in a copyless manner. ExtendiD§Ts
more powerful than (one-way) finite state automata. Thefpro§ith non-determinism does not increase their expressiwepo
of this result was first shown in the seminal paper of Rabifen they define functions: non-deterministic two-way énit
and Scott[[3], and independently by Shepherdson [4]. state transdugerQK\IFTs that are functional define exactly the
The picture of automata models over finite strings chang€@Ss Of functions definable BDFTs[9], [12]. To summarize,
substantially when, instead of languages, sttiagsductions there is a strict hierarchy l_:)etwea’FT—, functionalNFT- and
i.e. relations from strings to strings, are considefdnsduc- 2PFT-definable transductions. _
ers generalize automata as they are equipped with a one-way>€Veral important problems are known to be decidable
output tape. At each step they read an input symbol, they dQh One-way transducers. Thenctionality problem forNFT,
append several symbols to the output tape. Their transitiffcidable in PTime [13]/[14], asks whether a giveRT is
systems can be either deterministic or non-determinitioc- functional. Thedeterminizabilityproblem, also decidable in

tional transducers are transducers that define functions instéadme [13], [14], asks whether a given functiodFT can
be determinized, i.e. definessabsequentialunction. Subse-

This work has been partly supported by the project ECSPEReliby  quential functions are those functions that can be defined by
the french agency for research (ANR-09-JCJC-0069), by tgegt SOSP

funded by the CNRS, and by the Faculty of Sciences of UniyeRaris-Est DFTs equipped with an additional output function from final
Creéteil. states to finite strings, which is used to append a last string
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to the output when the computation terminates successfullyable for2NFTs it is also decidable, given 2NFT, whether
some final state. Over strings that always end with a uniqthe transduction it defines is definable by a functioN&IT.
end marker, subsequential functions are exactly the fonsti Another corollary of Theorefn 1 and the fact that functiotyali
definable byDFTs For 2NFTs the functionality problem is of 2NFTsand determinizability oNFTsare both decidable is
known to be decidableé [16]. Therefore the determinizapilithe following theorem:

problem is also decidable f@&NFTs since functionaPNFTs o i

and 2DFTshave the same expressive power. In the same lifd€orem 2. For all 2NFTs T, it is decidable whether the
of research, we address a definability problem in this papBpnsduction defined by" is a subsequential function.

In particular we answer the fundamental questionN§fT- A practical application of this result lies in the static
definability of transductions defined by functior2MFTs analysis of memory requirements for evaluating (textual an
Theorem 1. For all functional 2NFTsT, it is decidable functional) document transformations in a streaming fashi

whether the transduction defined Byis definable by an NFT. In this scenario, the input string is received as a leftighir
stream. When the input stream is huge, it should not be éntire

The proof of Theoreni]1 extends the proof of Rabin angaded in memory but rather processed on-the-fly. Similarly
Scott [3] from automata to transdud%r?:h_e original proof of  the output string should not be stored in memory but produced
Rabin and Scott is based on the following observation aboit 5 stream. The remaining amount of memory needed to
the runs of two-way automata. Their shapes have a nestiggyate the transformation characterizes its streanpages
structure: they are composed of many zigzags, each zigzgfinplexity. Streamableransformations are those transforma-
being itself composed of simpler zigzags. Basic zigzags &fgns for which the required memory is bounded by a constant,
called--motions as their shapes look likeZa Rabin and Scott and therefore is independent on the length of the inputistrea
prove that for automata, it is always possible to replace a |t js known that streamable transformations correspond to
motion by a single pass. Then from a two-way automaton yansformations definable by subsequential (functioN&Ys
it is possible to construct an equivalent two-way automa#on [1g]. The streamababilityproblem asks, given a transforma-
(called the squeeze of) which is simpler in the following tion defined by some transducer, whether it is streamable.
sense: accepting runs éf are those ofd in which somez-  Therefore for transformations defined by functiondFTs
motions have been replaced by single pass runs. Last, tR@samability coincides with determinizability, and iscitiable
argud that after a number of applications of this constructiogy pTime [15], [14]. Theorenf]2 is a generalization of this
that depends only on the number of statesioievery zigzag |atter result to regular transformations, i.e. transfdiors
can be removed, yielding an equivalent one-way automatogefined by functionaPNFTs MSO transducers or streaming

The extension to2NFTs faces the following additional string transducers [10]. Other streamability problemsehav
difficulty: it is not always possible to replacezamotion of a peen studied for XML validation [19],120], XML queries
transducer by a single pass. Intuitively, this is due to et f [21] and XML transformations [18]. However the XML tree

that 2NFTs are strictly more expressive tha¥FTs As our ransformations of [[18] are incomparable with the regular
aim is to decide when aNFT 7' is NFT-definable, we need gtring transformations studied in this paper.

to prove that theNFT-definability of T implies that of every
2-motion of T, to be able to apply the squeeze constructioﬁ.elated work Most of the related work has already been

The main technical contribution of this paper is thus thelgtu mentioned. To the be;t Of, our knowledge, it is the first result
of the NFT-definability of z-motions of transducers. We shov\fhat addresses a definability problem between two-way and

that this problem is decidable, and identify a charactéiima °"€"Wa&y transducers. In[22], two-way transducers with@ tw

which allows one to prove that thMFT-definability of T way output tape are introduced with a special output policy:
implies that of every:-motion of T each time a cell at position of the input tape is processed,

This characterization expresses requirements about the d{}e OutPutis written in the cell at positiarof the output tape.
put strings produced along loops atmotions. We show With that restriction, it is shown that two-way and one-way

that when z-motions areNFT-definable, the output stringstransducersl‘QFTs) define the same class of functions.[In][23],

produced by the three passes on a loop are not arbitrary, Bt "eSult of Rabin and Scott, and Shepherdson, is extended t
conjugates. This allows us to give a precise characteoizai two-way autqmata with multiplicities. In this context, tweay
the form of these output strings. We show that it is decidabftomata strictly extend one-way automata.
to check whether all outputs words have this form. Last, w@rganization of the paper Section[l introduces necessary
present how to use this characterization to simulaté&&f- preliminary definitions. In SectidnlIl, we describe the geal
definablez-motion by a single pass. decision procedure for testingFT-definability of functional
Applications By Theorenil and since functionality is decid2NFTs We introduce z-motion transductions induced by
2NFTsand show that theiNFT-definability is necessary. The
shepherdson[]4] and then Vardi[17] proposed arguably €mpbn- decidability of this necessary condition as well as the troias
structions_ for automata. It is however not clear to us howxerd these tion from z-motion transducers tNFTsare the most technical
constructions to transducers. . .
2To our knowledge, there is no published proof of this reghlis we prove results of this paper and are the SUbJeCt of Sedfion IV. We
it in this paper as we use it for transducers. finally discuss side results and further questions in Seffio



[l. ONE-WAY AND TwO-WAY FINITE STATE MACHINES  language of @NFA A, denoted byL(A), is the set of words
u such that there exists an accepting run4obn .

A non-deterministic (one-way) finite state automatifA)
is a2NFA such thatA C Q x ¥ x @ x {+1}, therefore we
will often see A as a subset of) x ¥ x Q. Any 2NFA is
effectively equivalent to alNFA. It was first proved by Rabin
and Scott, and independently by Shepherdson [3], [4].
Transducers Non-deterministic two-way finite state transduc-
ers (2NFT9 over ¥ extend NFAs with a one-way left-to-
right output tape. They are defined @NFAs except that
the transition relationA is extended with outputsA C
Q XX xX*xQ x{-1,41}. If a transition(q, a,v,q’,m)
is fired on a lettem, the wordv is appended to the right of
the output tape and the transducer goes to staté/log we
assume that for ap,q € Q, a € X andm € {+1, -1}, there
exists at most one € ¥* such that(p, a,v,q,m) € A. We
also denotey by out(p, a, g, m).

A run of a 2NFTsis a run of its underlying automaton,
Lemma 1 ([24]). Let u,v € ¥*. If there existsn > 0 such i.e. the 2NFAs obtained by ignoring the output. A rup
that «™ andv™ have a common factor of length at leggt+ may be simultaneously a run on a wordand on a word
|| — ged(Jul, [v]), thenp(u) ~ u(v). u’ # u. However, when the underlying input word is given,
there is a unique sequence of transitions associated with
p. Given a2NFT T, an input wordu € X* and a run
p = (p1,%1) ... (Pm,im) Of T on u, the output ofp on w,

) ) . . o denoted byout“(p), is the word obtained by concatenating
Xis a r(_elatlonR C X" x X% Its domain IS d‘?”‘?ted by the outputs of the transitions followed hy i.e. out*(p) =
dom(R), i.e.dom(R) = {u | v, (u,v) € R}, while its image . o . o

. X ) out(p1, uli1], p2,i2—i1) - - - OUL(Prn—1, Ulim—1], P, b —tm—1)-
{v | 3u, (u,v) € R} is denoted byimg(R). A transduction ¢ " ‘contains  a  single configuration, we let
R is functionalif it is a function.

Words, Languages and TransductionsGiven a finite alpha-
bet 33, we denote by:* the set of finite words oveE, and
by e the empty word. The length of a word € ¥* is its
number of symbols, denoted By|. For alli € {1,...,|ul},
we denote byu[i] the i-th letter ofu. Givenl < i < j < |ul,
we denote by[i..j] the worduliu[i+1] .. .u[j] and byu][j..i]
the wordul[j]ulj — 1]...u[i]. We say that € ¥* is afactor
of u if there existuy, us € ¥* such thatu = ujvus. By @ we
denote themirror of u, i.e. the word of lengthu| such that
uli] = ufju| =i+ 1] for all 1 < i < ul.

The primitive root of v € ¥* is the shortest word such
thatu = v* for some integek > 1, and is denoted by (u).
Two wordsw and v are conjugates denoted by~, if there
existz,y € ¥* such thatu = zy andv = yx, i.e. u can be
obtained fromw by a cyclic permutation. Note that is an
equivalence relation. We will use this fundamental lemma:

Note that if u(u) ~ w(v), then there exist,y € ¥* such
thatu € (zy)* andv € (yz)*.
A languageover ¥ is a setl, C X*. A transductionover

out“(p) = e. When the underlying input worde is
Automata A non-deterministic two-way finite state automaelear from the context, we may omit the exponent
torl (2NFA) over a finite alphabet” is a tuple A = 4. The transduction defined by’ is the relation

(Q,q, F,A) where Q is a finite set of statesgo € Q is R(T) = {(u,out“(p)) | pis an accepting run of onu}.
the initial state,F” C @ is a set of final states, anfl is the We may often just writé” when it is clear from the context.
transition relation, of type\ C Q x ¥ x @ x {+1,—1}.Itis A 2NFT T is functional if the transduction it defines is
deterministicif for all (p,a) € @ x X, there is at most one functional. The class of functiona2?NFTs is denoted by
pair (¢,m) € Q x {+1,—1} such that(p,a,q,m) € A. In f2NFT. In this paper, we mainly focus of2NFTs The
order to see how words are evaluated Ayit is convenient domain of 7' is defined asdom(7) = dom(R(T)). The
to see the input as a right-infinite input tape containing thgmain dom(7) is a regular language that can be defined
word (starting at the first cell) followed by blank symbolspy the 2NFA obtained by projecting away the output part of
Initially the head ofA is on the first cell in statg, (the cell the transitions off’, called theunderlying input automatan
at position1). When A reads an input symbol, depending o\ deterministic two-way finite state transduc@DFT) is a
the transitions in, its head moves to the left(1) if the head 2NFT whose underlying input automaton is deterministic.
was not in the first cell, or to the right{1) and changes its Note that2DF Tsare always functional, as there is at most one
state.A stops as soon as it reaches a blank symbol (therefeigcepting run per input word. Aon-deterministic (one-way)
at the right of the input word), and the word is accepted if thinite state transduce(NFT) is a 2NFT whose underlying
current state is final. automaton is arNFAL. It is deterministic (writtenDFT) if
A configurationof A is a pair (¢,7) € @ x (N — {0}) the underlying automaton is @FA.

whereg is a state and is a position on the input tape. A We say that two transducef§ 7’ are equivalent, denoted
run p of A is a finite sequence of configurations. The rupy 7 = 7”, whenever they define the same transduction, i.e.
p = (p1,i1) ... (Pm,im) IS @ run on an input word: € ¥*  R(T) = R(T"). For all transducer classe€ we say that a
of lengthn if p1 = qo, i1 = 1, i, < n + 1, and for all transductionk? C ©* x ©* is C-definable if there exist§'eC
ke{l,....,m—1}, 1<y <nand(pk, ulir], pr+1,ik+1 —  such thatR=R(T). Given two classe§, C’ of transducers, and
ix) € A. It is acceptingif i, = n+ 1 andp,, € F. The

4This definition implies that there is ne-transitions that can produce

SWe follow the definition of Vardi[[17], but without stay tratiens. This outputs, which may cause the image of an input word to be anitifi
is without loss of generality though. language. Thos&lFTsare sometimes callegkal-time in the literature.



a transducet” € C, we say thafl is (effectively)C’-definable Given a runp of the 2NFA A on some wordu of length
if one can construct an equivalent transdutée C'. n, a pair of positions(s, j) is aloopf in p if (1)1 <i<
The (C, C’)-definability problentakes as input a transducerj < n, (it) CS(p,i) = CS(p,j) and (ii7) u[i] = u[j]. Let
T € C and asks to decide wheth€ris C’-definable. If so, one u; = u[l..(i — 1)], uzs = uli..(j — 1)] andug = u[j..n]. If
may want to construct an equivalent transddgee C’. Inthis  (4,5) is a loop inp andu € L(A), thenu; (uz)*us € L(A)
paper, we prove thaf2NFT, NFT)-definability is decidable. for all k>0. We say that a looi, j) is emptyif ¢ = j, in this
It is known that whether alNFT T is functional can be case we havei, = . The notions of crossing sequence and
decided in PTime [13]. The class of functio# Tsis denoted loop carry over to transducers through their underlyinguinp
by fNFT. FunctionalNFTs are strictly more expressive thanautomata.

DFTs For instance, the function that maps any warde Given a2NFT T, N € N and a runp of T' on a word
{a,b}* to al*! if u[|u|]] = a, and tobl"l otherwise, iSfNFT- of lengthn, p is said to beN-crossing if [CS(p,i)] < N
definable but noDFT-definable. This result does not hold forfor all < € {1,...,n}. The transducef is finite-crossingif
2NFTs functional2NFTsand2DFTsdefine the same class ofthere existsV € N such that for al(u, v) € R(T), there is an
transductions (Theorem 22 ofl [9]). acceptingN-crossing rurp onwu such thabut(p) = v. In that
Examples Let ¥ = {a,b} and# ¢ ¥, and consider the case/[ is said to beV-crossing. It is easy to see thaffifis N-
transductions crossing, then for al{u,v) € R(T) there is an accepting run
“ p onw such thatout(p) = v and no states repeat in G5
1) Ro={(u,a™) | ue X ullul] = a} foralli e {1,..., |u|§. )Indeed, if some statgrepeats ianirLe

g gl -~ }8;’3# )#|ﬂu#€) |Zu ’;%ﬁ@ b}U Ro CS(p, i), then it is possible to pump the subrun between the
2= b ) ; two occurrences of on CSp,i). This subrun has an empty
Ry is DFT-definable: it suffices to replace eacrbutput, otherwis&” would not be functional.

letter by « and to accept only if the last letter - _
is a. Therefore it can be defined by theDFT Proposition 1. Any f2NFT with)V states isN-crossing.

To=({qa> B} @, 190} {(q2, ¥, 0, q) | 2,y € X}). [1l. FROM TWO-WAY TO ONE-WAY TRANSDUCERS

R, is iNFT-definable but not DFT-definable: In this section, we prove the main result of this paper, i.e.

similarly as before we can define DFT T; = o i
({as 2o} s {06} { (s 1, b py) | 2, € B} that defines the the decidability of(f2NFT, NFT)-definability.

transduction{ (u, b*) | u € T, u[|u|] = b}, and construct an A. Rabin and Scott's Construction for Automata
NFT T as follows: its initial state is some fresh statg and The proof of Theorerfil1 relies on the same ideas as Rabin
when readingz € X the first time, it non-deterministically and Scott's construction for automata [3]. It is based on the
goes toTy or T by taking the transition(po,z,a,q.) OF following key observation: Any accepting run is made of
(po,z,b,p,), and proceeds in eithef, or 7j. Even if B many zigzags, and those zigzags are organized by a nesting
is functional, it is notDFT-definable, as the transformatiomierarchy; zigzag patterns may be composed of simpler gigza
depends on the property of the last letter, which can bgtterns. The simplest zigzags of the hierarchy are thaste th
arbitrarily far away from the beginning of the string. do not nest any other zigzag: they are calieghotions. Rabin

R is 2DFT-definable: it suffices to go to the end of theand Scott described a procedure that removes those zigzags
word by producinge each time a letter is read, to go baclpy jterating a construction that removesnotions.
to the beginning while copying each input letter, and return A one-step sequenigan indexed sequenee= ay, ..., a,
to the end without outputting anything, and to accept. Hengg positions such that; € {1,2...,m}, a1 = 1, a, = m,
it is defined byT> = ({qo,4q1,42,43,4r}, 90, {qr}, 52) where and|a;, — a;| = 1.The sequence is N-crossingif for all
statesyi, g2, g3 denote passes, anglis made of the transitions ;; ¢ {1,2...,m} we have|{i | a; = z}| < N. The reversals
(q0,#,€,q1,+1), (q1,2€X,€,q1,+1) (during the first pass, of s are the indexes < r; < ry < --- < r; < n such that
move to the right),(q1,#,€, g2, —1), (g2,2€%,2,¢2,—1), q, 11 = a,,_;. In the sequel we let, = 1 andr;; = n.
(q2, #, #, a3, +1), (g3, 2€X, €, g3, +1), (g3, #, #, a5, +1). A z-motionz in s is a subsequeneg, a. 1, . . . ay such that
Crossing Sequences, Loops and Finite-Crossi®iNFTs The there isO < ¢ <l with r;_y <e <7 < rip1 < f < 10,
notion of crossing sequence is a useful notion in the thebry@ada. = a,, ., anday = a,,. We may denote by the pair of
two-way automata 4],/ [25], that allows one to pump runs dgeversals(r;,r;;1). E.g. the sequences = 1,2,3,2,1,2,3
two-way automata. Given2NFA A, a wordu € ¥* and arun andz; = 4,3,2, 3,4, 3,2 arez-motions. Theshapeof a runp
p of A onu, the crossing sequencat positioni, denoted by is defined as the second projectiongfwritten shape(p). A
CS(p, i) is given by the sequence of staigsuch that(q,i) runp is az-motion runif shape(p) is az-motion. When there
occurs inp. The order of the sequence is given by the ordés no ambiguity,z-motion runs are just calleg-motions.
in which the pairs of the forniq, ) occur inp. E.g. if p = If T is a2NFA it is possible to construct a new automaton
(q1,1)(q2,2) (g3, 1)(q4,2)(gs, 1) (g6, 2)(q7, 3) then CSp,1) = denoted bysqueeze(T') such that, for all accepting rumpsof T'

,C 2) = and C3p, 3) = ¢7. We write C
919395 S(p, ) 929496 $p, ) & $p) 50Observe that we include the input letter in the notion of loafe use this

the Squence qsv 1)7 T CS(p, |u| + 1)' . to avoid technical difficulties due to backward transitigméich do not read
Crossing sequences allow one to define the loops of a rti. local symbol, but its successor).



run of 7'
T4
e V2 T3 w2
q2 za T
o V1 T1 w1

0 > i1 J1 iz J2
U Fig. 2. Output decomposition in properfy.
run of Ty = squeeze(T) C Lr (s, a4) B. Extension to transducers: overview
Rl a2) < The construction used to show decidability OfFT-
: D definability of 2NFT follows the same ideas as Rabin and
ds Scott’'s construction. The main difference relies in thengra
I formation of the local transducers defined bynotion runs
run of Ty = squeeze? (T) g8 (that we callZNFT9 into NFTs Our procedure is built over
L, (a5, 46) - ~ a ZNFT-to-NFT procedure. It is seen as a black-box in this
a7 section, but is the subject of the next section.
U Compared to two-way automata, one faces an extra diffi-
culty caused by the fact th&NFTs (and ZNFT9 are not
run of T = squeeze’ (T) Lz, (a7, 4s) always NFT-definable. Therefore one defines a necessary
condition that has to be tested each time we want to apply
Fig. 1. Zigzags removal by applications @fuceze. squeeze. Let us consider again Figl 1 whé&his a2NFT. One

on some input word;, there exists a “simpler” accepting rundefines fromT' thg transductions indl_Jced by locaimotion
of squeeze(T) on u, obtained fromp by replacing some:- runs from a starting statg, to an ending state,, and show

motions by one-way runs that simulate three passes in paraifat those local transductions must RET-definable. _
It is illustrated by Fig[JL. For instance at the first step,r¢he Once this necessary condition is satisfied, the constmctio
are two z-motions fromg; to ¢o and fromgs to ¢, respec- Sdueeze can be applied and works as for Rabln and Scott’s
tively. Applying squeeze(T') consists in non-deterministically Construction: the new transducefueeze(T') simulatesI” and
guessing those-motions and simulating them by one-wayhon-deterministically may guess that the next zigzagrof
runs. This is done by th&lFA Rr(q1,q) and Ry(gs,qs) IS @z-Mmotion run from some statg; to some state, and
respectively. Depending on whether thenotions enter from thus can be simulated by a run of SomNET Ry (q1,q2) Or

the left or the rightz-motions are replaced by runs MFAs L7(q1,¢2), depending on whether it enters from the left or the
Rr(.,.) (that read the input backwardly) okr(.,.) , as right. Thensqueeze(T) switches toRr(q1, ¢2) (if it entered

illustrated by the second iteration efiueeze on Fig.[1. from the right) and onc&r (g1, ¢2) reaches an accepting state,

An N-crossing rurp can be simplified into a one-way run't May come back to its normal mode.

after a constant number of applicationssqfieeze. This result

is unpublished so we prove it in this paper. In particular, we
show that ifp is N-crossing, then its zigzag nesting depth --motion transducers are defined lIRNFTs except that
decreases afte¥ steps. Moreover, ip is N-crossing, then its they must definefunctions and to be accepting, a run on
zigzag nesting depth is also bounded Ny Therefore after g word of lengthn must be of the formp.(qs,n + 1)
N? applications ofsqueeze, p is transformed into a simple where p is a z-motion run andg; is an accepting state.
one-way run. It is sufficient to prove those results at thellevNote that it implies thatshape(p) is always of the form
of integer sequences. In particular, one can defineeze(s) 1,....n,n—1,...,1,...,n. The class of-motion transducers
the set of sequences obtained from a one-step sequende denoted byZNFTs Note thatz-motion transducers are
by replacingsome z-motions of s by strictly increasing or incomparable witf2NFTs Indeed,z-motion transducers can
decreasing subsequences. The following is formalized agéfine the transduction € ©* — 7, which is notf2NFT-
shown in Appendix: definable as there are no end markers.

Lemma 2. Let s be an N-crossing one-step sequence ovey Let T € ZNFT and p = (p,1)...(Pn,7)
{1,...,m}. Then1,2,... . mis in squeeze™" (s). gn—1,n=1)...(q1,1)(r2,2) ... (rns1,m + 1) be a run
of T on a word of lengthn. We letgq, = p, andr; = ¢1
At the automata level, it is known that for all words and define the following shortcuts: far < ¢ < j < n,
accepted by @2NFA T with N states, there exists alV- outi[i,j] = out((p;,4)...(p;,5)), and outsli,j] =
crossing accepting run on. Therefore it suffices to apply out((g;,7) ... (g:,%)) andouts[i, j] = out((r4,%)...(rj, 7)),
squeeze N2 times to 7. One gets an equivaler@NFA T* andouts[i,n + 1] = out((r;,4) ... (rn1,n + 1)).
from which the backward transitions can be removed while We characterize thRFT-definability of aZNFT by a prop-
preserving equivalence with*, and soT". erty that we prove to be decidable. Intuitively, this prdper

z-motion transducers



requires that the outputs produced by loops can be produddeT-definable. For that purpose, it is crucial in Definitigh 2

by a single forward pass:

Definition 1 (P-property) Let 7" be a ZNFT. We say that

satisfies the propert, denoted byl" = P, if for all words

u € dom(T'), for all accepting runsp on u, and for all pairs

of loops (i1,71) and (iz, j2) of p such thatj; < iy, there

exist 81, B2, B3, Ba, Bs € ¥*, f,g : N> = ¥* and constants
c1,¢y, ca, ¢y > 0 such thatey, ca # 0 and for all k1, ks > 0,

m N2 N2, oM. M 2
fka, k2)zov] mw? vowsy® xavg xavyg wswsy® xeg(k1, k2)

= B185 Ba By Bs

wheren; = kic; + ¢, i € {1,2}, and, z;'s, v;'s and w;s are
words defined as depicted in Flg. 2.

The following key lemma is proved in Sectién]IV.

Lemma 3. LetT € ZNFT.T = P iff T is NFT-definable.
Moreover,P is decidable and ifl" = P, one can (effectively)
construct an equivalent NFT.

Definition 2 (z-motion transductions induced by faNFT).
Let T = (Q,qo0, F,A) be a f2NFT andgi,q2 € Q. The
transductionLr (g1, g2) (resp. Rr(q1,¢2)) is defined as the
set of pairs(uz, v2) such that there exist € X*, two positions
i1 < iy (resp.is < i1), an accepting rurp of 7' on u which
can be decomposed as= p1(q1,%1)p2(ge,i2)p3 such that
Ug = U[’Ll .. ’LQ] and

e (q1,11)p2(go,i2) iS @ z-motion run

o out((q1,i1)p2(q2,i2)) = vo

to make sure that the-motion (¢1,i1)p2(g2,i2) can be
embedded into a global accepting run ©f Without that
restriction, it might be the case thAt(q1, ¢2) or Rr(q1,g2)

is not NFT-definable although th@NFT T is. Indeed, the
domain of L1 (g1, g2) or Rr(q1,g2) would be too permissive
and accept words that would be otherwise rejected by other
passes of global runs of. This is another difficulty when
lifting Rabin and Scott's proof to transducers, as for auttan

the context in which a-motion occurs is not important.

D. Decision procedure and proof of Theoréin 1

We show that the constructiomueeze(T) can be applied
if the following necessary condition is satisfied.

Lemma 4. If T is NFT-definable, then so are the transductions
Rr(q1,q2) and Lp(q1,q2) for all states ¢1,g2. Moreover,

it is decidable whether the transductiom®r(q1,¢2) and
Lr1(q1,q2) are NFT-definable.

Sketch of proof: We have seen in Lemnid 3 thhiFT-
definability of anZNFT is characterized by Properfy. Let
Z € ZNFT that definesCr(q1,¢2) for somegqy, g2, we thus
sketch the proof thaZ = P.

Consider two loops(i1,j1), (i2,j2) of a run p of Z
on some wordu, as in the premises of Propery. They
induce a decomposition of; as u U UU3U4U5 With
Uy = u[z’l ce g1 — 1] andu4 = u[ig e jo — 1] By definition
of the transductionCr(q1,g2), any word indom(Z) can be
extended into a word idom(7T'). By hypothesisT is NFT-

z-motions can be of two forms: either they start from thdefinable, thus there exists an equivalbitT 7”. As T” has
left and end to the right, or start from the right and end to thitely many states, it is possible, by iterating the lo6fas ;1)
left. In order to avoid considering these two cases each, tinghd (is, j2), to identify an input word of the form

we introduce the notatio that denotes the mirror &F: it is
T where the moves-1 are replaced by-1 and the moves-1

by +1. Moreover, the wayl' reads the input tape is slightly

modified: it starts in positiom and a run is accepting if it

reaches positior) in some accepting state. All the notion
defined for2NFTscarry over to their mirrors. In particular,

(u,v) € R(T) iff (w,v) € R(T). The z-motion transductions
Rr(gi,q2) and L1(q1,q2) are symmetric in the following
senseRr(q1,q2) = L7(q1,q2) andLr(q1, q2) = Ry(q1, q2)-

Proposition 2. The transduction®R+(q1,¢2) and L1 (g1, g2)
are ZNFT-definable.

Proof: We only consider the casér(qi,g2), the other
case being solved by using the equaliBr(q1,q2)
L7(q1,92). We first construct fromI" a ZNFT Z/.(q1, g2)

/ / /
/ ¢l ch ¢ ’
u' = augug'us?usPusuy uut usa

and a runp’ of T” on this word which has two loops on the

gnput subwords.5? andwu?. It is then easy to conclude. m

Construction of squeeze(T') Assuming that the necessary
condition is satisfied, we now explain how to construct
the f2NFT squeeze(T). By hypothesis, the transductions
Lr1(q1,q2) and Rr(q1,q2) are NFT-definable for allg, ¢-

by NFT Lr(q1,q2) and Rr(qi1,q2) respectively (they exist
by Propositiof 2 and Lemnid 3). As already said before, the
main idea to definesqueeze(T') is to non-deterministically
(but repeatedly) appl¥.r(q1,q2), Rr(q1,q2), or T, for some
q1,q2 € Q. However when applyind?r(q1, ¢2), the head of
squeeze(T') should move from the right to the left, so that we

which is like T" but its initial state isy;, and it can move to an have to mirror the transitions d®r (g1, g2).

accepting state whenever it is 4. HoweverZZ.(¢1, ¢2) may

The transducesqueeze(T') has two modesZ-mode orT-

define input/output pairgus,v2) that cannot be embeddedmode. InT-mode, it works ag" until it non-deterministically
into some paif(u,v) € R(T) as required by the definition of decides that the next zigzag iszamotion from some state
Lr1(q1,q2). Based on Shepherdson’s construction, we modify to some stateg,. Then it goes inZ-mode and runs
Z(q1,g2) in order to take this constraint into account. The.r(q1,q2) or Rr(q1,g2), in which transitions to an accepting

full proof is in Appendix. ]
In the next subsection, we show th&r(q1,92) and
L71(q1,q2) must necessarily b&FT-definable forT to be

state have been replaced by transitions frgnin 7', so that
squeeze(T') returns in T-mode. From those transitions we
also add transitions from the initial states bf(g2,¢3) and



TEP=>T=T TEeEP=>T =T" w

T € ZNFT T’ € eZNFT T" € INFT QL 2
= T e )
J [ 4
Fig. 3. FromzZNFT to NFT. w ¢ T

—_— . Fig. 4. Decomposition of the output according to Pro /
Rr(q2,q3) forall g3 € Q, in casesqueeze(T') guesses that the 9 P P 9 PRy

nextz-motion starts immediately at the end of the previeus

motion. We detail the construction sfuceze(T) in Appendix. ©' % 85U = Urtzusuats wherewuy = uli ... (j1 —1)] and

ug = uliy . .. (j2 — 1)), with uyub* uzut?us € dom(7”) for all
Proposition 3. Let T € f2NFT such thatl" is NFT-definable. %, &, > 0.
Thensqueeze(T') is defined and equivalent . As T is equivalent taI” and has finitely many states, there

Let T e f2NFT. If T is NFT-definable, then the operatoreXiSt it_erations of the loops on, and uy which constitu_te
squeeze can be iterated o’ while preserving equivalence!00PS in I on powers ofu; and u,. Formally, there exist
with T, by the latter proposition. By PropositidhZL is N- Negersdy, e1, hy, da, ez, hy With e, €5 > 0 such thatl’ has
crossing, and therefore, based on Lerfiina 2, it suffices ttéer® U ON the input wordiu uy uy' uy ' usuy®uy®us*us which
squeeze N? times to remove all zigzags from accepting run§ONtains & loop on the input subwords' andu;’.
of T, as stated by the following lemma: We conclude easily by using the fact tat= P. =

. . As a consequence, we obtain that Propéttis a necessary
Lemma 5. Let T be a f2NFT withN states. IfT" is fNFT-  ~ndition for NFT-definability.

definable, themqueeze™” (T) is defined and equivalent B, . .
and moreover, for al(u,v) € R(T), there exists an acceptingbemma 7. LetT € ZNFT. IfT"is NFT-definable, thef" = P.
run p of sqmeezeN2 (T") on u such thatout(p) = v and p is

- Proof: Let 77 be anNFT equivalent toT'. It is easy to
made of forward transitions only.

turn T’ into aZNFT T that performs two additional backward
Proof of Theorem[1 In order to decide whether @NFT 7 and forward passes which outputConsider two loopsiy, j1)

is NFT-definable, it suffices to test whethequeeze can be and(ji,j2) in a run of 7, and let us write the output of this
applied N2 times. More precisely, it suffices to s&; to 7", run as depicted on Fifl 2. These loops are also loog’of
i to 0, and, whileT} satisfies the necessary condition (whicland thus we can defing, (resp.3:, £s, f4 and 3s) as xg

is decidable by Lemm@l 4) and< N2, to increase and set (resp.vi, z1, w1 andzz), and f, g as the constant mappings
T; to squeeze(T;_1). If the procedure exits the loops beforeequal toe. HenceT” |= P, and we conclude by Lemnia am
reaching N2, then T is not NFT-definable, otherwise it is

NFT-definable by theNFT obtained by removing fromfy> B. From ZNFT toeZNFT

allits backward transitions. The goal is to devise a procedure that tests whether the

IV. FROM ELEMENTARY ZIGZAGS TOLINES first and second passes (forward and backward) of the run
This section is devoted to the proof of Lemria 3 th an be done with a single forward pass, and constructs an

characterizedNFT-definableZNFT by the propertyP and FT_that realizes _this si_ngle forward pass. Then, in order to
states its decidability. Moreover, we give ZNFT-to-NFT obtain aneZNFT, it suffices to replace the first pass of
construction wherP is satisfied by the latterNFT and add a backward pass that just comes

We first prove that Propertf is a necessary condition forbﬁCk to thz beginning of theE\(/;/\loFrEjr anddoutputallhthitlme._
NFT-definability. To prove the converse, we proceed in twg € procedure constructs & , and tests whether It is

steps. First, we define a procedure that tests whether a gi\(;&wvalent t‘ﬂf- It Is based on the following key property
ZNFT T is equivalent to ZNFT that does not output anythingt_h"’lt characterizes the forr_n O.f the output words of the two
on its backward pass (calle@NFT), and then define anotherirst passes of angNFT satisfyingP. Intuitively, when these
procedure that tests whether the laENFT is equivalent to words are Ip_ng enough, they can be decomposed as words
an NFT. We show that it is always true whenevér = P. whose primitive roots are conjugate.
This approach is depicted in Fig. 3. The two steps are simil@efinition 3 (P;-property) LetT € ZNFT withm states, and
therefore we mainly focus on the first step. let (u,v) € R(T) whereu has lengthn. Let K = 2.0.m.|3|
A. PropertyP is a necessary condition whereo = max{|v| | (p,a,v,q,m) € A}. The pair (u,v)
. satisfies the property;, denoted by(u,v) &= P4, if for all
We show that Propert only depends on transductions. accepting runsy on u, there exist a positiod < ¢ < n and

Lemma 6. LetT,T'cZNFT. fT=P andT=T" thenT’=P. w,w’,t1,t2,13 € ¥* such thatv € wt;t5t3w’ and:

Proof: Consider two loop$ii, j1), (i2,j2) as in Property outs[1,/] = w outs[1,£] = t3 outy[l, n]outs[l, n]Et t]
P in arun ofT” on some word:. They induce a decompositionouts[1,n + 1] = w’ [t;| <2K,Vie{1,2,3}



L T 9 ! fashion while simulating the forward and backward passes in
% ’ ’ o ) Pr=an parallel and by guessing non-deterministically the positi.
© p1p2 i Pj Pn—1 In addition, the output mechanism @ exploits the special
o v1 form of v: the idea is to output powers of while simulating
S ® e e & o o o o e e s o o e the two first passes.
g u[l]u?] ulll ulil uln] First, let us describe how” simulates the forward and
loop backward passes in parallel during the first forward pass. It
uli] = uls], @i = 45, pi = p;

guesses both the state of the backward pass, and the current
symbol (this is needed as the symbol read by the backward
) o ) ) o transition is the next symbol). The first statg') guessed for
This decomposition is depicted in Fid. #.satisfies property o packward pass needs to be stored, as the last (forward)
Py, denotedl” = Py, if all (u,v) € R(T) satisfy it. pass should start from*. The transducer can go from state
Proposition 4. Let T € ZNFT. If T = P, thenT = P,. (p,q,0) to state(p’, ¢', o’) if the current symbol i and there
) . is a (forward) transition(p,o,z,p’,+1) and a (backward)
Proof: e If |outy[1, n —1]| < K, then clearly, it suffices yansition ¢/, o’ y, ¢, —1). Therefore ifQ is the set of states
to takel = n, t1 = oute[n—1,n], ta = €, t5 = outz[0,n—1], of 7 77 yses, on the first pass, elements@f< Q x ¥ in
w= Outl[lv”] andw’ = outs[1,n + 1]. . its states. The transduc@t can non-deterministically decide
o Otherwise,|outs[1,n — 1]| > K. Thereforeu is of length {5 perform the backward and non-producing backward pass
2.m” |¥] at least and there exists a (non-empty) Idap) in  whenever it is in some statg, ¢, o) and the current symbol
p- We can always choose this loop such thatts[1,i]| < K is 5. This indeed happens precisely when the forward and
and1 < |outs[i, j]| < K (see Lemma_16 in Appendix). backward passes are in the same sjatéthe current symbol
The loop partitions the input and output words into fags not the last of the input word, then the whole runTsfis
tors that are depicted in Figl 5 (only the two first passeft a »-motion and therefore it is not accepting.

Fig. 5. Decomposition of the two first passes of-motion run with loop.

are depicted). Formally, lett = ujusus such thatus =  Second, we describe how thENFT 77, with the guess of
ui...(j=1)]. Let g = outs[l,4], vi = outa[i,jl, z1 = ¢ ¢, 5, verifies during its first forward pass that the output
out:[j, njouts[j, n], v2 = outsli,j], z2 = out1[1,d], 3 = has the expected form, and how it produces this output. Burin
outs[l,i], v3 = outs[i,j] and x4 = outs[j,n + 1]. I the first pass7’ can be in two modes: In mode(before the

particular, we havejz;| < K, 1 < [ < K and guesy), T" verifies that the output on the simulated backward
ToU1T V22223044 € T'(u). Since (i, ) is a loop we also pass ig; and proceeds gE in the first forward pass (it outputs
getzoviaivszaxzvizy € T(urugug) for all k > 0. We then what T outputs on the forward pass). Modestarts when the
distinguish two cases: guess! has been made. In this modg, first outputst; and
1) If v; # €. We can apply Propert} by taking the second then verifies that the output of the forward/backward rumfro
loop empty. We get that for ak > 0 and to positior? is of the formt,t;. It can be done by using
kodc  ketd ketc’ % pointers ont; andts. There are two cases (guessedBYy:
F(R)zovi™ 210" wawsvs™ wag(k) = B15 B eithert; ends during the forward pass or during the backward
where f,g: N — X, ¢ € Nug, ¢ € N, and By, B2, 83 € . Pass (using notations of Hig.4, eithgris a prefix ofz, or z
Since the above equality holds for @l> 0, we can apply IS & prefix oft).
Lemmall and we get(v;) ~ u(B2) and u(Ba) ~ p(vs), and In the first cgseT’ needs a pointer oty to make sure that
thereforepu(vy) ~ p(vs). So there exist,y € $* such that the output ofl’ in _the forward pass starts with. It also needs
vy € (zy)* andvy € (yz)*. One can show (see Lemrha] 172 Pointer oniy, initially at the end oft, to make sure that the
in Appendix) thatvyz1vs € z(yz)*. Then it suffices to take output of 7" on the simulated backward pass is a suffixpf
(=i, w=mg, t1 =, t» = yr andts = xs. (the pointer moves backward, coming back to the last positio
2) The second casen( = ) is more complicated as it of to whenever it reaches the first position @f). Once the
requires to use the full Properf, using two non-empty loops. verificat_ion ontll i_s dqne,T’ start§, by using a pointer initi.ally
First, we distinguish two cases whethent; [j,n]| < K or at the first posmo_n intsy, tq verify that the output ofl" in
not. For the latter case, we identify a second loop and thBif forward pass is a prefix @f. Once the forward and the

apply PropertyP. Details can be found in the Appendix m Simulated backward passes merge, the two pointers arust
be at the same position, otherwise the run is rejected.

Construction of an eZNFT from a ZNFT We construct an  During this verification;]” also has to output a power 6f
eZNFT T from a ZNFT T such thatR(T’) = {(u,v) € (remind that it has already outptit). However the transitions
R(T) | (u,v) = P1}. Intuitively, the main idea is to perform of 7" may not output exactly ong,, nor a power ofts, but
the two first passes in a single forward pass, followed byay cutt, before its end. Therefor€’ needs another pointer
a non-producing backward pass, and the final third passhigo know where it is into. Initially this pointer is at the first
exactly asT does. Therefore]’ guesses the words;,t2 position oft; (h = 1). Suppose thaf” simulatesT using
and t; and makes sure that the outputis indeed of the the (forward) transition(p, o, z,p’,+1) and the (backward)
form characterized byP,. This can be done in a one-waytransition(¢’,o’,y, ¢, —1). If this step occurs before the end

—



) w . . . .
< 3K X if for all accepting runsp on u, there exist two positions

N - 1<t <ty <nandw,w,t,ts,t3 € X* such that:

: v vive € t1tits
¢ ‘ outl[l,fl] =w |tl| <3.K, Vie {1,2,3}
v outs[le,n + 1] = w’ louty[l2,n]| < 3.K
. / outl[él,n]out3[1,€2] S tltstg |out3[1,€1]| <3.K
>
v < 3K . e . . -
A ) This decomposition is depicted in Fid. B’ satisfies property
Fig. 6. Decomposition of the output according to PropéPty. P, denotedl” = P, if all (u,v) € R(T’) satisfy it.

The proof of the following proposition uses the same
structure and techniques as that of Proposifibn 4. Using a
(long) case analysis, we identify loops in runs, and apply
PropertyP to show that output words have the expected form.

of ¢1, thenT’ outputsty[h...(h + |y|)] (t5 is the infinite
concatenation of,), and the pointeh is updated ta + ((h+
ly| —1) mod |t]). Otherwisel” outputsts [k ... (h+|z|+]|y|)]
andh is updated tol + ((h + |z| + |y| — 1) mod |t2]).

The second case (whéff guesses that; ends during the Proposition 6. Let 7" € eZNFT. If T’ = P, thenT’ |= Ps.

backward pass) is similal’ has to guess exactly the position . P
in the output where; ends. On the first pass it verifies that We can now sketch the construction of 8FT T™ which

. : . p
the output is a prefix of;, and on the simulated backward c09"NIZ€S the subrelation 87 defined as{(u, v) € R(T") |

pass, it checks that the output is a suffixt§f(and outputs (u,v) |= P»}. Again, the construction is rather similar and
' . . . uses the same techniques to thafldfstarting fromT.
as manyt, as necessary, like before), until the endtpfis yo . )
The transducef” simulates, in a single forward pass,

guessed to occur. From that moment it enters a verificatign , !
mode on both passes. ﬂ1e three passes df’. Hence it also checks that the run

: . Lo of the ZNFT 7" it simulates is az-motion run, which is a
The main property of this construction is that no wron

output words are produced K, due to the verification and gemantw restriction of accepting runs 8NFTs The fNFT

1! H
the way the output words are produced, i.e. for(allv) € chngZ?n gluelstsaﬁiopojletlszr?s %Zdﬁé@ar;d alljr?deg tggedewrgfddses
R(T"), we have(u,v) € R(T). gy g »t2 andis,

for outs[1, ¢1] andout, [¢2, n], which are all of bounded length
Proposition 5. Let T € ZNFT. R(T) = {(u,v) € (see Property?;). The output ofl”’ is produced according to
R(T) | (u,v) EP1}. the mode, using pointers to check the guesses, similafly.to
Lemma 8. LetT € ZNFT. If T = P, thenT is equivalent to If all the guesses happ(_en to b.e verified, It outputs the
) ! . correct output word, otherwise the input word is rejected. A
the eZNFT T'. Moreover, the latter is decidable. L : . )
a consequencel” recognizes a subrelation @ and thus
Proof: If T = P, then by Proposition]4l’ = P;. checking the equivalence @ andT” amounts to checking
Therefore by Proposition] &' and 7" are equivalent. the equivalence of their domains (as the two transducers are
We know thatR(7T") C R(T'), and sincel’ and7” are both functional), which is decidable. From Propositidn 6 we get:

functional, they are equivalent iffom(7") C dom(7”). Both , , L .
domains can be defined WyFAs ThoseNFAs simulate the Lemma 9. Le/t/T € eZNFT. IfT" |= P, thenT S equ_lvalent
. t(% the fNFTT". Moreover, the latter property is decidable.
three passes in parallel and make sure that those passes defin
a z-motion. Therefore testing the equivalence ®fand 7" proof of Lemmal3.LemmdY states thatf is NFT-definable,
amounts to test the equivalence of tNEAs B thenT |= P. Conversely, ifl’ = P, then by Lemma&ls, the first
C. FromeZNFET to NET construction outputs an equivalet¥NFT T". By Lemma[diz
we haveT’” = P. By Lemma[9, the second construction
We have seen how to go fromZNFT to aneZNFT. We o ,ihyts an equivalemiFT 7. Thereforel” is NFT-definable
now briefly sketch how to go from atZNFT to a (functional) by T". In order to decide whethef' = P, it suffices to
NFT. Given aneZNFT 7", we define arfNFT T" such that congtructr”, check thatl” and T’ are equi\;alent and then
T" andT” are equivalent as soon &8 (= P. The ideas are constryct7” and check whethef” and 7 are equivalent.

very similar to the previous construction therefore we do ng problems are decidable by Lemfda 8 &hd 9.
give all the details here.
We exhibit a property on the form of output words produced V. DISCUSSION

by an eZNFT that verifies P. Intuitively, apart from the Complexity The procedure to  decide(f2NFT, NFT)-

beginning of the first pass, and the end of the second pass; Ii. piexity i b A ’
definability is non-elementary exponential time and space.

the two passes produce long enou_gh outputs, then.th.G.SGtSUtTHis is due to theZNFT-to-NFT construction which outputs

can be decomposed so as to exhibit conjugate primitive TO%R NFT of doubly exponential size. Indeed, the first step of

Definition 4 (P»-property) Let 77 € ¢ZNFT with m states, this construction transforms any¥NFT with » states into

and let (u,v) € R(T') whereu has lengthn. Let K = an eZNFT with at least|S|*"’I®| states, as theZNFT has

20m3|3| where o = maz{|v| | (p,a,v,q,m) € A}. The to guess words of lengthon?|3|, whereo is the maximal

pair (u,v) satisfies the propertf,, denoted byu,v) = P2, length of an output word of a transition. TRENFT-to-NFT



construction also outputs an exponentially bigger transedu and Julien Tierny for interesting discussions.

Therefore thesqueeze operation outputs a transducer which
is doubly exponentially larger. Since this operation hagdo
iterated N2 times in the worst case, wherg is the number 0
of states of the initiaf2NFT, this leads to a non-elementary
procedure. On the other hand, the best lower bound we have
for this problem is PSpace (by a simple proof that reduce[%]
the emptiness problem of the intersectionnoDFAs s given

in Appendix).

Succinctnesdt is already known tha2DFAsare exponentially
more succinct tharNFAs [26]. Therefore this result carries
over to transducers, already for transducers defining igent [4]
relations on some particular domains. However we show here
a stronger result: the succinctnes2dfFTsalso comes from [5]
the transduction part and not only from the domain part. Wé!
can indeed exhibit a family oNFT-definable transductions 7,
(R,)n that can be defined b@DFTsthat are exponentially
more succinct than their smallest equival®&®T, and such
that the family of language&lom(R,,)),, does not show an (8]
exponential blow up betwee2DFAsand NFAs [9]

For all n > 0, we defineR,, whose domain is the set of
words#u# for all u € {a,b}* of lengthn, and the transduc- [10]
tion is the mirror transduction, i.&2,, (#u#) = #u#.

Clearly, R,, is definable by @2DFT with O(n) states that

. [11]

counts up ta the length of the input word by a forward pass,
and then mirrors it by a backward pass. It is also definable fy]
an NFT with O(2™) states: theNFT guesses a words of
lengthn (so it requiresD(2") states), outputs its reverse, anéls]
then verifies that the guess was correct. It is easy to prate th
any NFT defining R,, needs at leas?™ states by a pumping [14]
argument. On the other hand, the domairRgfcan be defined
by a DFA with O(n) states that counts the length of the inputs)
word up ton. Note that the alphabet does not dependion

Further Questions We have shown that(f2NFT,NFT)- [16]
definability is decidable, however with a non-elementary-pr
cedure. We would like to characterize precisely the comifylex [17]
of this problem. Our procedure works for functior2MFTs
which are equivalent t®DFTs Therefore we could have
done our proof directly fo2DFTs However (functional) non- (18]
determinism was added with no cost in the proof so we rather
did it in this more general setting. The extension of our itesu[19]
to relations instead of functions is still open.

Our proof is an adaptation of the proof of Rabin angbo]
Scott [3] to transducers. Alternative constructions basad
the proofs of Shepherdsonl [4] or Vardi [17], and alternativg,
models such as streaming string transducers [10] or MSO
transformations [8],19], could lead to better complexigults
or refined results. In particular, we believe that our resate 22]
highly related to the problem of minimizing the number of23]
variables in a streaming string transducer.

Finally, we plan to study extensions of our results to inéinit
string tranformations, defined for instance by streamin@gt [25]
transducers [27], and to tree transformations, following o
initial motivation from XML applications. 26

AcknowledgementsWe warmly thank Sebastian Maneth
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APPENDIXA
COMPLEMENTS TOSECTION[T

A. Iterative z-motions removal (proof of Lemnid 2)

We define the crossing number of the positioan €
{1,...,m} as the numbeKi | a; = x}|. Hence the sequence
s is K-crossing if all its positions: € {1,2...,m} have a
crossing number less or equal than

We say that twoz-motionsz; = (7, 7i41), 22 = (75, 7j+1)
are consecutiveresp.positionally disjoint if ;7 =7 + 2, resp.
max(ay,, ar,,,) < min(a,;,a,,,,) (Or max(a,;,ar;,,) <
min(a,,, ar,,)). Moreover we say that; andz, aredisjoint
if they are not consecutive or if they are positionally diisjo

Equivalently, thez-motions z; = ag,,ar,+1,...,ar, and
29 = Gy, Alg+1,- - -, 0k, are disjoint if and only ifky < k3
or ky < k.

Lemma 10. If s is K-crossing, then for allzy, 29,..., 2

consecutivez-motions, for alli < ¢t — K, z; and z;.x are
positionally disjoint.

Proof: Let j € {1,...,1} such that:y = (rj,7j41), 22 =
(rj+2,7j43),... and, wlog, assumei,, < a,,,,. As a
consequence of the definition afmotions, consecutive-
motions form a stair, that is, we hawe, ,, < Araign) and
S If z; and z;. i are not positionally
disjoint, all z; for i < k < i+ K share the leftmost position
of z;, i.e. they share,. ,,_, . Therefores is not K-crossing.

[ |
We say that a position is in betweenthe positionsy and
z whenevery < x < z or z < z < y. We say that the pair of
reversals (or a-motion) (r, s) is nestedinto the pair(r’, s")
if a, anda, are in betweem,, anda,.

Lemma 11. Let (r;,7;), with i < j, be a pair of reversals
andz = (r,7’) be az-motion. Ifa, is in between,, anda,,,
andr € {riy1,7j41}, Or if a, is in between,, anda,,, and
r’ € {r;_1,rj—1}, thenz is nested in(r;, r;).

Proof: Suppose that = (r;_2,r;—1) (the other cases are
proved similarly). Wlog assume,, < a,,, SO by hypothesis
we havea,; <a,,_, < a,,. Then, as a consequence of basic
properties of reversalg,., , < a,, , (becausei,, , < a;,).
Moreover as(r;_2,r;—1) iS a z-motion we haves,, , < a,.
Therefore we have the inequalities:, < a,,_, < a,,_, <

ar,, which means that is nested in(r;, r;). [ |
The one-step sequeneéis obtained froms = ay, ..., a,

by removing thez-motionz = ay,, ..., ar, also defined by its

reversals ag = (r;,ri41), if 8 =a1,...,ar,,Apyt1,-- -, An.

Note that the sequenc is a one-step sequence becasise
one and becausg, = ay,. The sequencg has exactly 2 less
reversals thas and each reversal afnot in z corresponds to
one of the reversals of, eachz-motionz’ = (rj,rj;1) of s
such that;, r; .1 ¢ {r;, 41} is also az-motion ins” (up to
an index shift). Note also that positionally disjoistmotions
in s are still positionally disjoint ins’.

We define the functiosqueeze(s) as the function that asso-
ciates to a one-step sequencéhe set of one-step sequences



that can be obtained from by removing some pairwise
disjoint z-motions ofs.

We say that a sef of z-motions ofs is consistentf no two
z-motions of Z share a reversal, that is, (if,r'), (s,s') € Z,
thenr, 7’ # s andr,r’ # s’. The consistent set is maximal
if it is not strictly contained into any other consistent sét
z-motions of s.

K-crossing, therefore the property we just proved implied th
s; for i > K has noz-motion, that iss; = 1,2,...,m.
By Lemmal[12,K applications ofsqueeze are sufficient to
remove a consistent set efmotions, thereford,2,...,m is

in squeezeX” (s). [ |

B. Proof of Propositioh 2

A crossing sequenceis repetition-freeif each state occurs
at most once irs. If Q is the set of states of, we denote by
CS(Q) the set of repetition-free crossing sequencesl of

Based on Shepherdson’s construction, it is possible to
construct a one-way automaton whose states are sequences
of states, such that any rum of A maps to the sequence
of crossing sequences @f and conversely any sequence of
crossing sequences of this automaton maps to a rud.of
This automaton may have infinitely many states, but it is
well-known it is sufficient to consider repetition-free ssing

Lemma 12. Let s be a K-crossing one-step sequence.Af
is a consistent set of-motions ofs then there is some’ €
squeeze’ (s) that contains noz-motion of Z.

Proof: Let Z = {z1,22,...}, where thez-motion are
ordered, i.e., ifz; = (r,r + 1) and z;11 = (s,s + 1) then
r+1 < s. We definesp = s, and, for all0 < 1 < K, s; is
obtained froms;_; by removingz;, z; 1k, z;12K - . .. Clearly
Si41 € squeeze'T1(s) if z;4;x andz;4j i are disjoint ins;.
We consider two cases. Eithey, jx and z;;; x belong to
a sequence of-motions in Z that are consecutive im, in

sequences of states only [25].
that case we can apply Lemrhal 10 which shows that they are ) )
disjoint. Otherwisez;,;x and z,;x do not belong to such Lémma 13 ([23]). For all 2NFAs A with set of states), it

a sequence of-motions in Z, that is, there exists a reversalS POssible to construct an equivalent NEAS(A) whose set

r that does not appear in anymotion of Z and which is ©f States iSUS(Q), and such that for all accepting runs of

between the second reversalgf ;x and the first reversal of CS(A) onu, th/ere exists an accepting rynof A on u such

zi+j i, but then they cannot be consecutivesin(they are that C'S(p) = p'.

also separated by in s'), so, by definition, they are disjoint. _emma 14. Let A be a 2NFA with set of state§, and
B 4,0 € Q. Let M, ,, be the language of words, such

Proof of Lemma2: Let s; = s, and for alli > 1, let
Z; be a maximal consistent set efmotions ofs;, and s;;
be the one-step sequence obtained frgnby removingZ;.

We show that each-motion z in Z; has one of its positions

whose crossing i is at leasti + ¢’ wherei’ is the crossing

that there exists a word € L(A), an accepting rurp of A
on u such thatp = p1 (ql,il)pQ(QQ,ig)pg and Uy = u[zlzg]

ThenM,, 4, is regular.

Proof: Given two sequences of states and so, the

of the corresponding (some shift might be applied) position 12nguageAcc;, 5, is defined as the set of words, € X

si+1. This trivially holds fors; = s, so suppose it holds for
and let us show it also holds far+ 1. Let v}, 75, ..., 7}, be
the reversals og;, let z = (7’1’-,,1";-,) be az-motion in Z; 4

such that there exist a word € >*, two positionsi; < i
such thatus = uli;..i2], and an accepting rup on u
such thatCS(p,i1) = s1 and CS(p,i2) = s2. In other

(recall that we abuse notation and refer to the reversas,of WOrdS, s: is accessible froms, by u. It is easy to Sh?W
using the reversals of; though there is a shift of index for that for all s1, s,, there exists repetition-free sequenegss,
some of them). AsZ; is maximal, > is not az-motion ins;, Such thatdce,, 5, = Accy, . Therefore one can consider

2

so there is &-motion 2’ = (r},7},,) € Z; such that one of repetition-free sequences only. We have seen (Lemiha 113) tha
the following holds: one can c_onstruct ahlFA whose states are the repetition-
y . o free crossing sequences of the runs7af An easy reacha-
« k=d+1ork=j+1anda, isin betweers,, and bility analysis of thisNFA allows one to construct ahNFA
s , . Ay, 4, Whose states are repetition-free crossing sequences of

e k=1i"—2anda, isin betweem, andaré/ T and such thatM,, ,, = U{Accs, s, | @1 € $1.2 €
Intuitively the above property states that one of thmotions, sz, s1,s2 are repetition-frep ]
Z', in Z; must prevent to be az-motion in s;, that is, 2’ is Proof: The transductiorCr(q1,¢2) is a function, other-
somehow 'in’ z. In each of these two cases we can apphlyise T would not be functional.
LemmalIl which states that is nested inz. By induction We define an intermediatENFT Z/.(¢1,¢2) that mimics
hypothesis, one of the position of has a crossing numberT but starts initially in the statg; and whenever it reaches
in s of at leasti + 4/, wherei’ is the crossing number of thethe state g, it non-deterministically decides to go to a
corresponding position ik 1. AS s, is obtained froms;;  fresh accepting state/;. Formally, Zj(q1,¢2) = (Q U
after removingz, we havei’ > 1+:” where:” is the crossing {di}a,{qy}, A7) where A" = AU {(g2,a,¢,¢;,+1) | a €
number of the corresponding position #,>. So we have ¥}. Clearly, to any accepting run of/.(¢1,¢2) on a word
proved that the crossing number of this position is at leagt € X* corresponds a-motion run of T’ on us of the form
(i4+1)+4". 05 = (q1,1)p2(ge, luz|) and conversely. However’.(q1, ¢2)

To conclude, as is K-crossing, all positions are at mostis too permissive as it does not check thatan be embedded



into a global accepting run @f. We now show how to restrict can be decomposed as follows:
the domain ofZ/.(¢1, ¢2) to take this further constraint into R Y
account. u(k1, ko) = oy g, ur g g ug uguy uytuy USAL. ko

By a simple adaptation of Shepherdson’s construction (sgh the property thaty’ contains two loops on the input
Lemma[14), the languag¥/,, ,, of wordsu, such that there subwordsus? anduff.
existsu € dom(T) and an accepting rup of. T_on u such To conclude, we let3; (resp. B2, B3, f1, fs) be the
that p = p1(q1,11)p2(g2,i2)ps and uy = EL[“--Z?]- can be oyput produced by’ on the input subword; us' (resp.us’,
defined by arNFA A4,, ,,.The transduceZr(q1,q2) is finally  c; ¢/ ¢ ¢

. ) . N wuslusuyt, ug’, u,tus), and f(kq, ko) (resp.g(kq, ko)) be the
defined asz/,(q1, ¢2) where during the third and last pass, 'Batpzt4prod4uceé b;o)’ on tr{e( i?\pjt)s(ubvforgéy(lkl 2)3) (resp.
also checks that the input word is M, 4, by running4,, ¢, o) ’
in parallel via a product construction. kvska /s

Let us briefly explain why this construction is correct.

Suppose thafus,v) € Zr(qi,q2). We haveuy € M, ,,, D. Definition ofsqueeze(T)
therefore there exist € ¥* and two positiong; < i, such We let Lr(q,q2) = (Qu%2, ¢1% Faaz A92) and
that uy = uliy..io], and an accepting rup of T" of the J "y — (P pl92 Gana: Ta192) for all g1, gz € Q.
form p1(q1,71)p2(g2,i2)ps. The subrun(qu,in)p2(g2,i2) 18 We let squeeze(T) = (Q',Q), F’, A’) and show formally
not necessaril_y a-motion, and it does not necessarily output§ow to construct it. For more convenience here we assume
v. However since(uz, v) € Zr(q1,q2), we also have that that squeeze(T') can have a set of initial states. It will be
(u2,v) € ZL(q1,q2), and therefore there exists z-amotion easy to transform it into a (usua®NFT. We letQ’ = Q &
run p’ of T from ¢; to g2 onus. One can therefore substitut%{qu,q%qu,qz la1,q2 € Q} Q) = {qo}U{gd® | q1, ¢z €
(q1,i1)p2(g2, i2) DY p” in p (Modulo a shift of the positions 1 (% | q1,q2 € Q}, F' = F and A is the least set
occurring in ), and one gets a new rup = p1p'p2. The  gaiisfying for allgr, g2 € Q:
run v is still an accepting run of" on u, and therefore Awly Adia2 C A
(u2,v) € L7(q1,92). The converse is easy by applying the v 71,42€Q =7 e .

o Y(p,a,v,q1,m)EA, (p,a,v,ql"", m)eA’;

definitions. | e Vg €  Fu®, Y(paovqg+l) € Abd
V(q2,a,v’,q3,m) € A, (p,a,vv’,q3,m) € A’
C. Proof of Lemmal4 e Vg € F™2. V(pavg+l) € AW®,
V(q2,a,v’',q3,m) € A, for al ¢ € Q,
Proof: As in the proof of Proposition] 2, we consider only  (p, a, v/, 3%, m) € A’
the transduction€r(q1,q2), the other case being solved by « V¢ ¢  F®%, VY(pa,v,q,+1) € A9,
using the equalityRr(q1,q2) = L7(q1,q2). Let Z € ZNFT Vas € Q, Y(q®,a,v',¢;m) € A | [
that definesCr(q¢1, g2) for someg, g» and suppose thdf is (p,a,vv’,q',m) € A
NFT-definable. By Lemm@l3 we have to show tlal= P. Let and similarly:
u € dom(Z) of lengthn andp = (p1,1). .. (pn., n)(qn-1,n— .l raa C A
... (q.l, 1)(r2,2) e (?ﬂn+1,n+ 1) an accepting ruq o Qn . v(%f,ev?ql,m)e& (p, a, v, pi®  m)eA;
u. Let (i1, 71) and(iz, j2) be two loops o such thatj; < is. v, c Gz, y( —1) c 1.2
These loops induce a decomposition of the input words © , ' p’a’v’,q’ ) '
U = ULUUIU4US with Ug = u[il..jl — 1] andu4 = u[ig..jg — V(Q27 %Y ,qg,m) €A, (p7 @ vV, g3, m) €A
1), . Vg E/ G, Y(p,a,v,q,—1) € ranez,
As (i1,71) and (i, j») are loops inp, for any ki, ky > 0, (V;qz, Z;}) ;Jgf,’qT%) GEA/ A foral g @
we haveuiu§'usuf?us € dom(Z). By definition of the Vq7 s 0 Gz Y av,q—1) € o
transductionLr (g1, ¢2), any word indom(Z) can be ex- Vgs € Q, V(qu’q'S,a,v':q;, n’l)’ c Awas qu,qgj
tended into a word irdom(7"). Thus, for anyk;, k2 > 0,
there existsay, k,,a), 5, € X* such thatu(ki, ks) =
akl,k2u1U§1U3uizu5a;¢17k2 € dom(T). E. Proof of Propositio 13
In addition, by assumptior]’ is NFT-definable and thus Proof: Since squeeze(T) containsT as a subtrans-
there exists atNFT 77 such thatl’ = T’. We consider such ducer, we haveR(T) C R(squeeze(T)). Let us show that
an NFT 7', and denote byN its number of states. Let us R(squeeze(T)) C R(T). Let (u,v) € R(squeeze(T)). There-
considerky = ko = N + 1. There exists an accepting runfore there exists an accepting runof squeeze(7') on u that
p’ of T’ on the wordu(k;, k2). Consider the state in which outputsv. We are going to construct an accepting run7of
is this run just before theé-th iteration of the wordus, for on « that outputsv, this can be done by induction on the
1€{1,...,k1}. Asky = N + 1, two of these states must benumber of timesp goes inZ-mode. If it never does sq is
equal. A similar reasoning can be done for the powers of thecepting run ofl’ and we are done. Otherwise suppose that
word u4. As a consequence, there exist constants; > 0 p goes at least once i#-mode for somey, g2 € Q. Note
with ¢ € {1, 2,3} such thatca, ¢, > 0 and the wordu(k1, k2) that the setA’ consists ofA, the setsA?? andI'”¢ for all

(pa,vv',¢',m) € A



p,q € Q, and new transitions of three kinds (of the formi < |U(ulip..(jo — 1)][¢*..(j* — 1)])| < (|A] + 1).M, from
(p,a,vv’, gz, m), (p,a,vv’, ¢¢> %, m) and (p,a,vv’,¢’,m) in  which we can conclude by taking= i* +ip — 1 andj =
the definition). Consider the first use of such a transitiogn  j* + iy — 1 (note that(i, j) € L(u)).
p. One can decompogeas pipatps Wherep, is in T-mode,  This shows items(2) and (3) of the Lemma. Again by
p2 in Z-mode, and assume thait is a forward run on a factor jnquction on lu| and by using(i), we prove the lemma.
ug of u (the case of a backward run is symmetric). If [ul = 0 or |u/ = 1, then the implication obviously
Let us inspect the case whete= (p,a,vv’,q3,m). The holds, Otherwise assume thab(u)| > (JA| + 1).M. By
other two cases (depending on the form ®fare proved (;) there exists(ki, k2) € L(u) that satisfies2) and (3). If
similarly. Suppose thap < Q9. Then it means that W (u[l..(ky — 1)])| < (JA| +1).M we are done, otherwise by
(ug,v) € L1(q1,92), and therefore one can easily reconstrugiquction hypothesis, there exists], ) € L(u[l..(ky — 1)])

a z-motion run p, of T" on uy from ¢, to g, that outputsv.  \hich satisfieg1), (2) and(3), from which we can conclude.
Then by definition ofA’, we know that there exists a transition -

from ¢ to g3 that produces’. By induction we can also

transformps into a runpj of T' that ends in an accepting statd. emma 16. Let T € ZNFT with m states. Leto be the
and outputs the same word. Therefpel (¢2, a,v’, g3, m)ps  maximal length of an output word in a transition @f and
is an accepting run of’ on u that outputs the same word asK = 2.0.m3.|%|. Let p be a run on a wordu of length

p. Therefore(u,v) € R(T). |
APPENDIXB
COMPLEMENTS TOSECTION[V]
A. Technical results

Lemma 15. Let 3, T", A be three finite alphabetsl a mor-
phism fromI" to ¥* and ® a morphism fromI" to A. Let
M = maz{|¥(v)| | v € T}. For all words v € T,

if |T(u)] > (JA] + 1).M, then there exist two positions

1 < k1 < ke <|ul such thai:
1) [W(u[L..(ky — D])] < (A] +1).M
2) 1< [W(ulkr..(ks — D)) < (JA] +1).M
3) ®(ulka]) = ®(ulk2)).

Proof: Let L(u) be the set ofloops that are strictly
contained inu, i.e. L(u) = {(4,j) | 1 <i < j < |ul, (i #
V(G # |u]), ®ui) O(ulf])}. We first show the
following by induction on|ul:

{ [ (u)| > (A +1).M
(4) =
A6, 7) € L(u), 1< [W(uli-g])| < (JA] +1).M

If |u] = 0 (resp.|u| = 1) then |¥(u)| = 0 (resp.|¥(u) <

n. We write p as the sequencéi,1)...(pn,n)(¢n_1,n —
1)...(q1,1)(r2,2) ... (rn41,m + 1) and letg, = p, and
r1 = q. Letl < k < ¢ < n such that|outs[k, f]| > K.
There exists a looj, j) in p such thatt <i < j < ¢ and

1) |outs[k,i]| < K
2) 1 < |outss, ]| < K.

Proof: We show this result by using Lemrhal 15.

We consider the alphabek® x X, where A denotes the
set of transitions ofl’. Given a triple of transitiond
((se, ae,ue, s))1<e<3), and a lettew € 3, we define the map-
pings¥ and® as¥(f,a) = uz and®(6,a) = (s1, s2, 3, a).
Then, we associate to the rgnconsidered between positions
k and/, a word over this alphabet of length- %, indexed from
k to ¢ — 1, and defined ag = (o )k<m<e—1, Whereo,, is
composed of the three transitions used respectively toayo fr
configuration(p,,, m) to configuration(p,,+1, m + 1), from
configuration(¢,,+1, m + 1) to configuration(g,,, m), and
from configuration(r,,, m) to configuration(r,,+1,m + 1),
and of the letter|m).

Using these definitions, we hav®(n) = outq[k, (], and,
foranyk < m < {—1, ®(ox) = (pk, ¢k, rx, u[k]). Then it

M) and therefore the above implication is obviously satisfieduffices to apply Lemmia’l5 to get the result. [ ]

Otherwise suppose théat| > 0 and |¥(u)| > (JA| + 1).M.
Therefore we havi:| > |[A|+1 > 2, and|u[2..|u]]| > |A[, and
so by the pigeon-hole principle there exist two positiors j
in w[2..|u|] such that®(u[i]) = ®(u[j]), so thatL(u) # @.
Suppose that for alli, j) € L(u), ¥(ufi..(j—1)]) = €. If we
remove maximally fromy all the factors of. from position: to
position(j—1) for all (i, j) € L(u), one obtains a word such
that L(v) = @ and|¥(v)| = |¥(u)| > (JA|+1).M. Moreover
|v] <|A|+ 1 sinceL(v) = @, but this contradict$¥ (v)| >
(A +1).M by definition of M. SinceL(u) # @, we get the
existence 0f(ig, jo) € L(u) such that¥ (ulig..(jo — 1)]) # e.

Lemma 17. Let z,y,z,t € ¥* such thatx # ¢ andy # e.

Suppose that for all > 0, xy2* is a prefix oft~. Then there
existsay, ag € ¥* such thatr € (anan)*, 2z € (a2ap)* and
zyz € aq(agan)*.

Proof: By Lemmadu(z) ~ u(t) andu(z) ~ u(t), there-
fore u(x) ~ p(z), i.e. there existsyy, as with z € (ayan)*
and z € (azaq)*. Moreover asz® is a prefix oft~ for all
i >0, clearly u(t) = p(z) = araa.

Now let zyz = (aiaz2)*a a prefix of (aaz2)” and let us

If [ (ulip..(jo — 1)])| < (JA]+1).M we are done. Otherwise, Show thato = a;. So suppose:s = a; (the other case when

since |ulio..(jo — 1)]| < |ul, by induction hypothesis we getc1 = a is proved similarly). Therefore = (axa;)®

the existence of a paifi*, j*) € L(ulio..(jo — 1)]) such that

8In this Lemma, ifk; = 1 then we letu[l..(k; — 1)] = ¢

(a2aB)® but alsozyz = (ayaz)*a implies that: = (Basa)®.
Sofasa = asaf which meansy; as is not primitive if 5 £ e.
[ ]



B. Proof of Proposition 4

Proof: e If Jouts[1,n — 1]| < K, then clearly, it suffices
to takel = n, t; = oute[n—1,n|, to = ¢, t3 = outs[0,n —1],
w = outy[1,n] andw’ = outs[l,n + 1].
e Otherwise,|outs[1,n — 1]| > K. Thereforeu is of length
2.m3.|3| at least and there exists necessarily a (non-empty)
loop (7,4) in p. We can always choose this loop such that
louto[1,4]] < K and1 < |outss, j]] < K (see Lemma16).

The loop partitions the input and output words into factors
that are depicted in Fid.]5 (only the two first passes are de-
picted). Formally, let: = ujuqug such thatus = ulfi..(j—1)].
Let zg = outy[1,4], v1 = outq[i, j], 1 = outy[j, n]outs[], n],
vy = outqli,j], x2 = outy[l,i], z3 = outs[l,i], v =
outs[i, j] andzs = outs[j, n+1]. In particular, we havérs| <
K, 1< |va] < K andzgvixivaxexsvaxy € T(u). Since(i, j)
is a loop we also getovfrivlzersvhey € T(uiubus) for
all £ > 0.

We then distinguish two cases:

1) If v; # e. We can apply Propert® by taking the second
loop empty. We get that for alt > 0

/ ’ /
f(k)xovfc+c Ilv§C+c I2$30§C+C xa9(k) = 515553

wheref,g: N — ¥* ¢ € Ny, ¢ € N, andfy, 2,83 €

b)

w121 22w2 2302 € z(yx)*. Recall that by the choice
of the loop(r, s) we have|zy| < K. We can thus
definel = i, w = x9, t1 = 202, t2 = yx and
t3 = x5 to obtain the result.
The last case is whefy;| = Jouti[j,n]| < K.
We consider the length aj, = outs[j, n]. First
observe that if we havig| < K then we are done.
Indeed, we can definé= j, t; = y1, t2 = y2 and
t3 = vaxs. Itis routine to verify that the conditions
of PropertyP; are fulfilled.
We thus suppose thaj,| > K. In this case, we can
as before identify a loofr, s) in the runp such that
r > j,outa[s,n] < K andl < outs[r, s] < K. We
do not give the details, but one can apply Property
P to the two loopg(4, j) and(r, s) and use the fact
thatoutz [z, j] # € andoutz|r, s] # € to prove that
p(outa[i, j]) ~ p(outs[r, s]). Then, there exist, y
such thabuts[r, s] € (xy)* andouts]i, j] € (yx)*
from which we deduce thatuts[i, s] € (zy)*=.
Finally, we let ¢ = 4, w = x9, t1 =
outy[i, nloute[s,n], t2 = xy andt3 = zx tO
obtain the result.

[

¥*. Since the above equality holds for &l> 0, we C. FromeZNFT to NFT

can apply Lemmall and we get(v;) ~ u(82) and
1(B2) ~ p(ve), and thereforgqu(vy) ~ u(v2). So there
existz,y € ¥* such thatv; € (xy)* andvy € (yz)*.
By Lemmal1Yy, we obtain thatjzive € z(yz)*. Then
it suffices to takel = i, w = xg, t1 = z, to = yz and
t3 = x5 to conclude the proof.

2) Otherwise, we have; = . We decompose; asz; =
y1y2 wherey; = outq[j, n] andys = outs[j, n].
We again distinguish two cases:

a) We first consider the case whefy|
lout1[4,n]| > K. In this case, we can as before
decompose the input word[j..n| to identify a
loop. More precisely, there exists a lo¢p s) in
p such thatr > j, |outy[j,r]] < K and1 <
|outy[r, s]| < K. This loop gives a decomposition
of uz asugusug . We will then apply Propert to
the two loopg(7, j) and(r, s). The loop(r, s) gives
a decomposition of; aszow; 21, Y2 8Szowsz3 and
x4 aSzqwszs. By PropertyP, there exist wordg;,
i€{l,...,5},andecy, ), co, cb, f, g such that, for
all ki, ko >0,

[ k1, k2)zov* zow(? 21 20w z309" 22
k k
x3vq' zgwy’ 259 (k1, k2) = B165" B3 B4 Bs

wheren; = k;c;+c, i € {1,2}. Recall thatw, # ¢
and vy # e. As a consequence, we can, using

We state the following Lemma whose proof is similar to
that of Lemmd_16:

Lemma 18. Let T € ZNFT with m states. Leto the
maximal length of an output word in a transition @f and
K = 2.0m>.|%|. Let p be a run on a wordu of length
n. We write p as the sequencép,1)...(pn,n)(¢n_1,n —
D...(q1,1)(r2,2) ... (rne1,n + 1) and let ¢, = p, and
r1 = ¢q1. Let two indicesl < i < j < n. Then, we have:

1) if Jouts[i, j]| > K, there exists a loogk,, k2) in p with

i < k1 < ko < j such that

a) |0ut3[i,k1]| <K
b) 1 S |0ut3[k1,k2]| S K

2) if Jouts[i, j]| > K, there exists a loogk;, k2) in p with
1 < k1 < ko < j such that

a) |outs[kz, j]| < K
b) 1 S |0ut3[k1,k2]| S K

3) if Joutq[¢, j]| > K, there exists a loogk;, k2) in p with
1 < k1 < ko < j such that

a) |0ut1[i,k1]| <K
b) 1 S |0ut1[k1,k2]| S K

4) if Joutq[4, j]| > K, there exists a loofky, k2) in p with
1 < k1 < ko < j such that

a) |outy[ky, j]| < K
b) 1 S |0ut1[k1,k2]| S K

sufficiently large values of; and k. and applying Proof of Proposition[§

Lemmal, prove that(w;) ~ w(B4), thatu(ve) ~
1(Bs), and thus deduce that(w;) ~ p(v2).
Therefore there exist,y such thatv, € (yz)*

Proof: We letT = (Q,qo, F,A) and K = 2.0.m3.|3|.
Recall that asl” € ¢ZNFT, we haveouts[1,n] = e.
Let us define the positiod as the largest positive integer

and w; € (xy)* from which we deduce that less than or equal to such thatout,[¢, n] = e.



/—/H /—/H
outs > outs >
T2 F € z w’ b to # € t3
t1 = ab
outy w T # € € outy € a €
%/_/
<K
1 ki =14 ko L =15 n 1 k1 =4, ko { =1y n
Fig. 7. Decomposition of the output for case 1.1) Fig. 8. Decomposition of the output for case 1.2)
<K <K

We first observe that ifouts[1, ¢]| < K, then we are done, out, - N

by consideringl; = ¢, = ¢. Indeed, we then considesr = T2 7€ = = = w’
outl[l,ﬁ], w' = outg[é,n—i— 1], t1 = outg[l,ﬁ], andty = ts = ts

€. w € xT € €
Thus, we now suppose that we hajwats[1,¢]] > K. In " N = g

this case, we can apply Lemina 18, cagethere exists a loop 1 k=0 ko s K i 2 b=ty n

(kl,kg) such that|out3[1,k1]| <K and1 < |0ut3[k1, k2]| <

K. Fig. 9. Decomposition of the output for case 1.3)

We again distinguish two cases:
Case |: |outs[ks, ¢]] < K. For this case, we again distinguish

three cases, depending on the valuewf [k;, k2] and on the the output words. Formally, we apply Lemind 18 as we
length of [out [ko, £]] < K: did before, except that we are interested in the output
1) if we haveout;[ki, k] # e. We will prove that the produced i_n the firs_t pass of th#NFT, and not in that
output wordout [k, n]outs[1, £] has the expected form produced in the third pass. We thus apply caseof
(t:t5t3). Therefore we use th@-property on the loop Lemma[I8. We can thus exhibit a lodp, j>) with
(k1, k) with an additional empty loop. We define: ka < ji < jo < £—1 such thatiout, [k», ju]| < K and
1 < Jouty [j1, jo]| < K.
w = outy[l,k] We are now ready to prove that the output word
z1 = outy [ki, ko] outq[k1, n]outs[1, ] has the expected form,(3ts). To
y = outy[ko, nJouts[1, k] this aim, we define:
i s wo=ulbk 1w oLy
w' = outz[l,n + 1] uy =ulky, k1] & = OUtl[Iflaj_l]
ug = U[km]l —1] 21 = outy[j1, jo
PropertyP entails that there existy, 82, 83, f, g, ¢, ¢ ug =ulj1,j72—1] y = outy[ja, njouts|l, k1]
such that, for allt > 0, us =uljo,f—1] xy = oubslk, ko]
PRt yaket g (k) = 6,058y B
As we havexr; # ¢, andzy # ¢, this entails, thanks z3 = outs[ja, /]
to the fundamental lemma (Lemmia 1), thatz,) ~ w' = outs[l,n + 1]

u(xa). Let ty be p(x1). We can writets = 2120 and
u(xza) = z921. As a consequence, we obtain thatxo

is of the form¢.z; by Lemmal[ll. We can thus set
t1 =€, t3 = 21.2, /1 = k1 and/y = £. It is routine to
verify that wordsw, w’, t1, t2, t3 verify the conditions of
‘Pa-property.

This case is depicted on Figure 7.

2) if we haveout;[k1, k2] = € and |outy[ko, /]| < K.
We will show that the result is easy. Indeed, consider
él = kl, 82 = é, tl = outl[kl,n]outg[l,kl], tg =
outs[ky, k2], andts = outs[ks, £]. It is routine to verify
that all the requirements d®,-property are met.

As (k1, ko) and(j1, j2) are loops, we can apply Property
P. Using the fundamental lemma, we can deduce that
w(z1) ~ u(xe), using a reasoning similar to that of the
proof of Propositio 4. Thus, we can set= u(x1), and
write to = ajag such thatu(xs) = asay, from which
we deduceriyzs € tia; (Lemmally). Finally, we let
2 = 212223, 3 = a1 2, lh =k andég = /. The reader
can verify that all the requirements @-property are
met.

This case is depicted on Figdre 9.

Case Il: we have|outs[ke, f]] > K. We distinguish three
This case is depicted on FigUre 8. cases, according to the length of the wardk, [k, ¢], and

3) last, if we haveout: [k1, ko] = ¢ and|outy [ko, £]] > K. © the_ value ofout, [ky, k2: S
In this case, we will have to identify a loop in this part 1) if we havelout;[k2, ]| < K, we distinguish two cases:
([k2, ¢]) of the input word, to prove the expected form of a) We first consider the case whent [k1, k2] = €.



<K w’ OR
[ N— <K <K e
outs N A — 75 ¢
# e outs >
# €
<K
w € - ~ € <K
out; + e # € — €
outq
1 ki =401 =42 ko l n ; .
1 k1 = £y k2 J1 J2 = L2 ¢ n
Fig. 10. Decomposition of the output, case 1l.1).a) ) .
Fig. 12. Decomposition of the output for case 11.2).a) and b)
<K w’
e K
t >
outs iy outs # € # € .
<K e conjugate--...
w # € e N € th e
outy > w € # € €
outq
%/—/ H—/
1 ki = £ ko = £o ¢ n <K <K
1 k1 = £y k2 J1 J2 =42 ¢ n
Fig. 11. Decomposition of the output for case 11.1).b) . »
Fig. 13. Decomposition of the output for case I.3)@)t3[j1, j2] # €
In this case, we can simply defife = /> = k1, . . . .
and verify that the conditions of thB»-property wordpcotrrr:bgnatorlcsl; b};C showing, lésmg Fhe Prop-
are met. This case is depicted on Figré 10. ery o 6}2“(011 1l 125 2]) ~ plouty[j, j2]) ~
b) The second case is whemt, [k, ko] # €. This plouts[ky, ko]) ~ p(outs[p1, p2]).

case is easy as we can show thétut, [k1, k2]) ~
p(outs[ky, k2]), and deduce the expected form for
the output words, by setting, = k. This case is
depicted on Figure11.

2) if we have|out[ks, ¢]| > K andout,[k1, k2] # €. AS
loutq [k2, £]| > K, we can apply Lemma’l8, cadg, to
identify a loop (j1, j2) such thatjouts[jz2,¢]| < K and
1 < |outy[j1,j2]| < K. In this case, we sey = k; and
ly = jo.

There are three cases, according dets[jq,j2] and
outs[kz, j1:
a) We first consider the case whemts[ji,j2] #

e. In this case, using Property?, we can

show that pi(outy [k, ka2]) ~ p(outi[ji, ja]) ~

,u(out3[k1,k2]) ~ ,U,(Outg,[jl,jg]). This allows to

prove the expected form of the output words.

Second, we suppose thaitts[ji, j2] = € and that

outs[ks,j1] < K. In this case, we can use the

word ¢5 to cover the output worduts[k2, j1]. Last,
using a reasoning on word combinatorics, we can
prove thaty(out [k1, ko)) ~ p(outifjr,ja]) ~
u(outs[k1, k2]) and conclude.

Cases a) and b) are depicted on Fidurk 12.

Last, we consider the caseuts[ji,j2] = ¢

and outs[ks,j1] > K. By LemmallB, case

2), there exists a loop(pi,p2) included in

the interval [kq, j1] such that|outs[p2,j1]] <

K and 1 < |outg[pr,po]| < K. We claim

that the result holds. The only difficult prop-

erty is the fact the output word has the ex-
pected form £ t5t3). This can be proven using

b)

3) last, if we haveout [ke, ¢]| > K andouty[ky, k2] = €.
We first let¢; = k1. As we havelouty [ks, £]| > K, we
can apply LemmB18, casg, to identify a loop(j1, j2)
included in the intervalks, £) such thatout [kz, j1]| <
K and1 < |outi[j1,42]] < K. We distinguish two
cases:

a) if Jouty[j2,¢]] < K. We definely = j,. We
consider the value abuts|j1, jo.
If we have outs[j1,j2] # ¢ then we can
conclude. Indeed, using word combinatorics, we
can provep(outy[ji, j2]) ~ p(outs[ki, ko]) ~
p(outs[ji1, j2]) and prove that the output word
outq [k1, nJouts[1, j2] has the expected form. This
case is depicted on Figure]13.
Otherwise, we haveuts[j1, jo] = €. For this case
we distinguish two cases:

i) if outs[ke,j1] < K: we can conclude directly.
Indeed, it is easy to show thatouty [j1, j2|) ~
M(Outg[kl,kg]). The word Outg[kg,jg] is not
necessarily conjugated with the previous words,
but its length is less thaR™ by hypothesis, thus
we can use the words to handle this part of
the output. This case is depicted on Figuré 14.
if outslks,s1] > K: we will apply Lemmé1B,
case2), to identify a loop(p1, p2) included in
the interval(k2, j1) such thatouts[ps, j1]| <

K and1 < |outs[p1,p2]|] < K. Then we can
prove thatu(out: [j1, ja]) ~ p(outs[ki, ka]) ~
u(outs[pr, p2]) and conclude.

if Joutq[j2,f]] > K. We can apply Lemma-18,
cased), to identify a loop(p1, p2) included in the

b)



A s =0 . t algo cover$>u_t1[€2, @] orout?,[l,ﬁl], or everouts[¢y, fo]. It

outs > manipulates pointers in the different words of bounded tieng
t3 w’ it has guessed to verify the form of the output, and to produce
4 the correct output, as we did in the constructioriZdf
outy w € # € € A C
PPENDIX
K , <K LOWERBOUND
1 k1 = £y k2 J1 J2 =42 ¢ n

Lemma 19. (2DFT, NFT)-definability is PSpace-Hard.

Fig. 14. Decomposition of the output for case 11.3).a).i)

following transduction (wherg# ¢ X):
interval (jz, £) such thajout, [pe, ¢]| < K and1 <

louty[p1, p2]| < K. In the sequel, we lef bep, T @ v — { undefined otherwise.
and/¢; be k;. We leta = outs[p, po] ando’ =

outs[ji1, j2]
We distinguish five cases:

i) if a # ¢ we conclude easily by show
reverseu.

Proof: Considern DFAs A4,..., A,. Let us define the
T if u= #ul#UQ# andus € mz L(Al)

. The situation is depicted on Figurel 15. Clearly,T is definable by DFT. It suffices to first perform
n back and forth non-producing passes oo determine
~whetheruy € (), L(4;), and then a last backward pass to

'n(%uttha[zﬂ(gl]l;lghgggt'[“ ”(0]1;t1[p1’p2]) ~ Then,T is NFT-definable iffdom(T) = 0 iff (), L(A;) =
plouts{hy, k2]) ~ plouts|ps, p2]). 0. Indeed, if dom(T) = @ then T is obviously NFT-

i) if @ = e and |outs[je,p1]] > K: we can
identify a loop inp, included in the interval
[42,p1], such thatouts is non-empty on this
loop. We can then derive the result.

i) if a = ¢ J|outs[je,p1]] < K and
o # ¢ then we can show that
plouty[ji, jo])  ~  ploutapr,p2])  ~
ploutslkr, ko])  ~  p(outs[jr, jo]), and
conclude as the outpututs[ja, p2] has length
less thanK (t;3 can be defined so as to cover
these words).

iv) if @ = ¢, |outs[ja,p1]] < K, & = ¢ and
louts[k2,71]|] > K, we can identify a loop
inside the interval[ks, j1]. This loop can be
used to prove the result, as we know that the
length of the wordbuts[j1, p2] is less thank.

v) else,i.e.if a = ¢, |outs[ja,p1]]| < K, o' = ¢
and|outs[ks, j1]| < K, then we are done &g
can be defined asuts[ka, po).

would be the reverse operation. Contradiction.

Construction of 7" from T’

We provide here some additional details for the definition
of the NFT T” from the eZNFT T".

First, the transducel” should, in a single forward pass,
simulate the three passes (forward, backward, and forward)
of T'. Therefore it maintains a triple of states B6f and the
current symbol.

Second, it uses three modes: before the guess of position
{1, between positiong; and/,, and after positiorfs.

Third, it should guess the words of bounded lentjtht,
andts, and two additional words andy of bounded length
(< 3.K) which intuitively correspond to wordsuts[1, ¢1] and
outy[¢2,n] (see propertyPs).

Last, it verifies in the different modes that the output
has the expected form, and produces in a forward manner
the overall output word. Therefore it distinguishes betwee
different cases, whethey is a prefix ofout; [¢1, ¢2] or whether

definable. Otherwise, there exisis € (), L(4;), and there-
fore #X*#us# C dom(T). If T is NFT-definable, then so



— # € — —
outz
outy v < 7 e 7 <
%/—/ H_/
<K <K
1 ki=41 ka2 Ji J2 P1 p2 =42

Fig. 15. Decomposition of the output for case 11.3).b)
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