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Abstract—Any two-way finite state automaton is equivalent
to some one-way finite state automaton. This well-known result,
shown by Rabin and Scott and independently by Shepherdson,
states that two-way finite state automata (even non-deterministic)
characterize the class of regular languages. It is also known
that this result does not extend to finite string transductions:
(deterministic) two-way finite state transducers strictly extend
the expressive power of (functional) one-way transducers.In
particular deterministic two-way transducers capture exactly the
class of MSO-transductions of finite strings.

In this paper, we address the following definability problem:
given a function defined by a two-way finite state transducer,is it
definable by a one-way finite state transducer? By extending Ra-
bin and Scott’s proof to transductions, we show that this problem
is decidable. Our procedure builds a one-way transducer, which
is equivalent to the two-way transducer, whenever one exists.

I. I NTRODUCTION

In formal language theory, the importance of a class of
languages is often supported by the number and the diversity
of its characterizations. One of the most famous example is
the class of regular languages of finite strings, which enjoys,
for instance, computational (automata), algebraic (syntactic
congruence) and logical (monadic second order (MSO) logic
with one successor) characterizations. The study of regular
languages has been very influential and several generalizations
have been established. Among the most notable ones are the
extensions to infinite strings [1] and trees [2]. On finite strings,
it is well-known that both deterministic and non-deterministic
finite state automata define regular languages. It is also well-
known that the expressive power of finite state automata does
not increase when the reading head can move left and right,
even in presence of non-determinism. The latter class is known
as non-deterministictwo-way finite state automataand it is no
more powerful than (one-way) finite state automata. The proof
of this result was first shown in the seminal paper of Rabin
and Scott [3], and independently by Shepherdson [4].

The picture of automata models over finite strings changes
substantially when, instead of languages, stringtransductions,
i.e. relations from strings to strings, are considered.Transduc-
ers generalize automata as they are equipped with a one-way
output tape. At each step they read an input symbol, they can
append several symbols to the output tape. Their transition
systems can be either deterministic or non-deterministic.Func-
tional transducers are transducers that define functions instead
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of relations. For instance, deterministic transducers arealways
functional. In this paper, we are interested in transducersthat
define functions, but that can be non-deterministic.

As for automata, the reading head of transducers can
move one-way (left-to-right) or two-way.(One-way) finite
state transducershave been extensively studied [5], [6]. Non-
deterministic (even functional) one-way transducers (NFTs)
strictly extend the expressive power of deterministic one-way
transducers (DFTs), because non-determinism allows one to
express local transformations that depend on properties ofthe
future of the input string.

Two-way finite state transducersdefine regular transfor-
mations that are beyond the expressive power of one-way
transducers [7]. They can for instance reverse an input string,
swap two substrings or copy a substring. The transductions
defined by two-way transducers have been characterized by
other logical and computational models. Introduced by Cour-
celle, monadic second-order definable transductions are trans-
formations from graphs to graphs defined with the logic MSO
[8]. Engelfriet and Hoogeboom have shown that the monadic
second-order definable functions are exactly the functions
definable by deterministic two-way finite state transducers
(2DFTs) when the graphs are restricted to finite strings [9].
Recently, Alur andČerný have characterized2DFT-definable
transductions by a deterministic one-way model calledstream-
ing string transducers[10] and shown how they can be applied
to the verification of list-processing programs [11]. Streaming
string transducers extendDFTswith a finite set of output string
variables. At each step, their content can be reset or updated by
either prepending or appending a finite string, or the content
of another variable, in a copyless manner. Extending2DFTs
with non-determinism does not increase their expressive power
when they define functions: non-deterministic two-way finite
state transducers (2NFTs) that are functional define exactly the
class of functions definable by2DFTs[9], [12]. To summarize,
there is a strict hierarchy betweenDFT-, functionalNFT- and
2DFT-definable transductions.

Several important problems are known to be decidable
for one-way transducers. Thefunctionalityproblem forNFT,
decidable in PTime [13], [14], asks whether a givenNFT is
functional. Thedeterminizabilityproblem, also decidable in
PTime [15], [14], asks whether a given functionalNFT can
be determinized, i.e. defines asubsequentialfunction. Subse-
quential functions are those functions that can be defined by
DFTs equipped with an additional output function from final
states to finite strings, which is used to append a last string
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to the output when the computation terminates successfullyin
some final state. Over strings that always end with a unique
end marker, subsequential functions are exactly the functions
definable byDFTs. For 2NFTs, the functionality problem is
known to be decidable [16]. Therefore the determinizability
problem is also decidable for2NFTs, since functional2NFTs
and2DFTshave the same expressive power. In the same line
of research, we address a definability problem in this paper.
In particular we answer the fundamental question ofNFT-
definability of transductions defined by functional2NFTs.

Theorem 1. For all functional 2NFTsT , it is decidable
whether the transduction defined byT is definable by an NFT.

The proof of Theorem 1 extends the proof of Rabin and
Scott [3] from automata to transducers1. The original proof of
Rabin and Scott is based on the following observation about
the runs of two-way automata. Their shapes have a nesting
structure: they are composed of many zigzags, each zigzag
being itself composed of simpler zigzags. Basic zigzags are
calledz-motions as their shapes look like aZ. Rabin and Scott
prove that for automata, it is always possible to replace az-
motion by a single pass. Then from a two-way automatonA
it is possible to construct an equivalent two-way automatonB
(called the squeeze ofA) which is simpler in the following
sense: accepting runs ofB are those ofA in which somez-
motions have been replaced by single pass runs. Last, they
argue2 that after a number of applications of this construction
that depends only on the number of states ofA, every zigzag
can be removed, yielding an equivalent one-way automaton.

The extension to2NFTs faces the following additional
difficulty: it is not always possible to replace az-motion of a
transducer by a single pass. Intuitively, this is due to the fact
that 2NFTs are strictly more expressive thanNFTs. As our
aim is to decide when a2NFT T is NFT-definable, we need
to prove that theNFT-definability of T implies that of every
z-motion of T , to be able to apply the squeeze construction.
The main technical contribution of this paper is thus the study
of theNFT-definability ofz-motions of transducers. We show
that this problem is decidable, and identify a characterization
which allows one to prove that theNFT-definability of T
implies that of everyz-motion ofT .

This characterization expresses requirements about the out-
put strings produced along loops ofz-motions. We show
that whenz-motions areNFT-definable, the output strings
produced by the three passes on a loop are not arbitrary, but
conjugates. This allows us to give a precise characterization of
the form of these output strings. We show that it is decidable
to check whether all outputs words have this form. Last, we
present how to use this characterization to simulate anNFT-
definablez-motion by a single pass.

Applications By Theorem 1 and since functionality is decid-

1Shepherdson [4] and then Vardi [17] proposed arguably simpler con-
structions for automata. It is however not clear to us how to extend these
constructions to transducers.

2To our knowledge, there is no published proof of this result,thus we prove
it in this paper as we use it for transducers.

able for 2NFTs, it is also decidable, given a2NFT, whether
the transduction it defines is definable by a functionalNFT.
Another corollary of Theorem 1 and the fact that functionality
of 2NFTsand determinizability ofNFTsare both decidable is
the following theorem:

Theorem 2. For all 2NFTs T , it is decidable whether the
transduction defined byT is a subsequential function.

A practical application of this result lies in the static
analysis of memory requirements for evaluating (textual and
functional) document transformations in a streaming fashion.
In this scenario, the input string is received as a left-to-right
stream. When the input stream is huge, it should not be entirely
loaded in memory but rather processed on-the-fly. Similarly,
the output string should not be stored in memory but produced
as a stream. The remaining amount of memory needed to
evaluate the transformation characterizes its streaming space
complexity.Streamabletransformations are those transforma-
tions for which the required memory is bounded by a constant,
and therefore is independent on the length of the input stream.
It is known that streamable transformations correspond to
transformations definable by subsequential (functional)NFTs
[18]. The streamababilityproblem asks, given a transforma-
tion defined by some transducer, whether it is streamable.
Therefore for transformations defined by functionalNFTs,
streamability coincides with determinizability, and is decidable
in PTime [15], [14]. Theorem 2 is a generalization of this
latter result to regular transformations, i.e. transformations
defined by functional2NFTs, MSO transducers or streaming
string transducers [10]. Other streamability problems have
been studied for XML validation [19], [20], XML queries
[21] and XML transformations [18]. However the XML tree
transformations of [18] are incomparable with the regular
string transformations studied in this paper.

Related work Most of the related work has already been
mentioned. To the best of our knowledge, it is the first result
that addresses a definability problem between two-way and
one-way transducers. In [22], two-way transducers with a two-
way output tape are introduced with a special output policy:
each time a cell at positioni of the input tape is processed,
the output is written in the cell at positioni of the output tape.
With that restriction, it is shown that two-way and one-way
transducers (NFTs) define the same class of functions. In [23],
the result of Rabin and Scott, and Shepherdson, is extended to
two-way automata with multiplicities. In this context, two-way
automata strictly extend one-way automata.

Organization of the paper Section II introduces necessary
preliminary definitions. In Section III, we describe the general
decision procedure for testingNFT-definability of functional
2NFTs. We introduce z-motion transductions induced by
2NFTsand show that theirNFT-definability is necessary. The
decidability of this necessary condition as well as the construc-
tion from z-motion transducers toNFTsare the most technical
results of this paper and are the subject of Section IV. We
finally discuss side results and further questions in Section V.



II. ONE-WAY AND TWO-WAY FINITE STATE MACHINES

Words, Languages and TransductionsGiven a finite alpha-
bet Σ, we denote byΣ∗ the set of finite words overΣ, and
by ǫ the empty word. The length of a wordu ∈ Σ∗ is its
number of symbols, denoted by|u|. For all i ∈ {1, . . . , |u|},
we denote byu[i] the i-th letter ofu. Given1 ≤ i ≤ j ≤ |u|,
we denote byu[i..j] the wordu[i]u[i+1] . . . u[j] and byu[j..i]
the wordu[j]u[j − 1] . . . u[i]. We say thatv ∈ Σ∗ is a factor
of u if there existu1, u2 ∈ Σ∗ such thatu = u1vu2. By u we
denote themirror of u, i.e. the word of length|u| such that
u[i] = u[|u| − i+ 1] for all 1 ≤ i ≤ |u|.

The primitive root of u ∈ Σ∗ is the shortest wordv such
that u = vk for some integerk ≥ 1, and is denoted byµ(u).
Two wordsu and v are conjugates, denoted by∼, if there
exist x, y ∈ Σ∗ such thatu = xy and v = yx, i.e. u can be
obtained fromv by a cyclic permutation. Note that∼ is an
equivalence relation. We will use this fundamental lemma:

Lemma 1 ([24]). Let u, v ∈ Σ∗. If there existsn ≥ 0 such
that un andvn have a common factor of length at least|u|+
|v| − gcd(|u|, |v|), thenµ(u) ∼ µ(v).

Note that ifµ(u) ∼ µ(v), then there existx, y ∈ Σ∗ such
that u ∈ (xy)∗ andv ∈ (yx)∗.

A languageover Σ is a setL ⊆ Σ∗. A transductionover
Σ is a relationR ⊆ Σ∗ × Σ∗. Its domain is denoted by
dom(R), i.e.dom(R) = {u | ∃v, (u, v) ∈ R}, while its image
{v | ∃u, (u, v) ∈ R} is denoted byimg(R). A transduction
R is functional if it is a function.

Automata A non-deterministic two-way finite state automa-
ton3 (2NFA) over a finite alphabetΣ is a tuple A =
(Q, q0, F,∆) where Q is a finite set of states,q0 ∈ Q is
the initial state,F ⊆ Q is a set of final states, and∆ is the
transition relation, of type∆ ⊆ Q×Σ×Q× {+1,−1}. It is
deterministicif for all (p, a) ∈ Q × Σ, there is at most one
pair (q,m) ∈ Q × {+1,−1} such that(p, a, q,m) ∈ ∆. In
order to see how words are evaluated byA, it is convenient
to see the input as a right-infinite input tape containing the
word (starting at the first cell) followed by blank symbols.
Initially the head ofA is on the first cell in stateq0 (the cell
at position1). WhenA reads an input symbol, depending on
the transitions in∆, its head moves to the left (−1) if the head
was not in the first cell, or to the right (+1) and changes its
state.A stops as soon as it reaches a blank symbol (therefore
at the right of the input word), and the word is accepted if the
current state is final.

A configurationof A is a pair (q, i) ∈ Q × (N − {0})
where q is a state andi is a position on the input tape. A
run ρ of A is a finite sequence of configurations. The run
ρ = (p1, i1) . . . (pm, im) is a run on an input wordu ∈ Σ∗

of length n if p1 = q0, i1 = 1, im ≤ n + 1, and for all
k ∈ {1, . . . ,m− 1}, 1 ≤ ik ≤ n and (pk, u[ik], pk+1, ik+1 −
ik) ∈ ∆. It is acceptingif im = n + 1 and pm ∈ F . The

3We follow the definition of Vardi [17], but without stay transitions. This
is without loss of generality though.

language of a2NFAA, denoted byL(A), is the set of words
u such that there exists an accepting run ofA on u.

A non-deterministic (one-way) finite state automaton(NFA)
is a 2NFA such that∆ ⊆ Q × Σ × Q × {+1}, therefore we
will often see∆ as a subset ofQ × Σ × Q. Any 2NFA is
effectively equivalent to anNFA. It was first proved by Rabin
and Scott, and independently by Shepherdson [3], [4].
Transducers Non-deterministic two-way finite state transduc-
ers (2NFTs) over Σ extend NFAs with a one-way left-to-
right output tape. They are defined as2NFAs except that
the transition relation∆ is extended with outputs:∆ ⊆
Q × Σ × Σ∗ × Q × {−1,+1}. If a transition(q, a, v, q′,m)
is fired on a lettera, the wordv is appended to the right of
the output tape and the transducer goes to stateq′. Wlog we
assume that for allp, q ∈ Q, a ∈ Σ andm ∈ {+1,−1}, there
exists at most onev ∈ Σ∗ such that(p, a, v, q,m) ∈ ∆. We
also denotev by out(p, a, q,m).

A run of a 2NFTs is a run of its underlying automaton,
i.e. the 2NFAs obtained by ignoring the output. A runρ
may be simultaneously a run on a wordu and on a word
u′ 6= u. However, when the underlying input word is given,
there is a unique sequence of transitions associated with
ρ. Given a 2NFT T , an input wordu ∈ Σ∗ and a run
ρ = (p1, i1) . . . (pm, im) of T on u, the output ofρ on u,
denoted byoutu(ρ), is the word obtained by concatenating
the outputs of the transitions followed byρ, i.e. outu(ρ) =
out(p1, u[i1], p2, i2−i1) · · · out(pm−1, u[im−1], pm, im−im−1).
If ρ contains a single configuration, we let
outu(ρ) = ǫ. When the underlying input wordu is
clear from the context, we may omit the exponent
u. The transduction defined byT is the relation
R(T ) = {(u, outu(ρ)) | ρ is an accepting run ofT on u}.
We may often just writeT when it is clear from the context.
A 2NFT T is functional if the transduction it defines is
functional. The class of functional2NFTs is denoted by
f2NFT. In this paper, we mainly focus onf2NFTs. The
domain of T is defined asdom(T ) = dom(R(T )). The
domain dom(T ) is a regular language that can be defined
by the 2NFA obtained by projecting away the output part of
the transitions ofT , called theunderlying input automaton.
A deterministic two-way finite state transducer(2DFT) is a
2NFT whose underlying input automaton is deterministic.
Note that2DFTsare always functional, as there is at most one
accepting run per input word. Anon-deterministic (one-way)
finite state transducer(NFT) is a 2NFT whose underlying
automaton is anNFA4. It is deterministic (writtenDFT) if
the underlying automaton is aDFA.

We say that two transducersT, T ′ are equivalent, denoted
by T ≡ T ′, whenever they define the same transduction, i.e.
R(T ) = R(T ′). For all transducer classesC, we say that a
transductionR ⊆ Σ∗ × Σ∗ is C-definable if there existsT∈C
such thatR=R(T ). Given two classesC, C′ of transducers, and

4This definition implies that there is noǫ-transitions that can produce
outputs, which may cause the image of an input word to be an infinite
language. ThoseNFTsare sometimes calledreal-time in the literature.



a transducerT ∈ C, we say thatT is (effectively)C′-definable
if one can construct an equivalent transducerT ′ ∈ C′.

The (C, C′)-definability problemtakes as input a transducer
T ∈ C and asks to decide whetherT is C′-definable. If so, one
may want to construct an equivalent transducerT ′ ∈ C′. In this
paper, we prove that(f2NFT,NFT)-definability is decidable.

It is known that whether anNFT T is functional can be
decided in PTime [13]. The class of functionalNFTsis denoted
by fNFT. FunctionalNFTs are strictly more expressive than
DFTs. For instance, the function that maps any wordu ∈
{a, b}+ to a|u| if u[|u|] = a, and tob|u| otherwise, isfNFT-
definable but notDFT-definable. This result does not hold for
2NFTs: functional2NFTsand2DFTsdefine the same class of
transductions (Theorem 22 of [9]).

Examples Let Σ = {a, b} and # 6∈ Σ, and consider the
transductions

1) R0 = {(u, a|u|) | u ∈ Σ+, u[|u|] = a}
2) R1 = {(u, b|u|) | u ∈ Σ+, u[|u|] = b} ∪R0

3) R2 = {(#u#,#u#) | u ∈ Σ∗}.

R0 is DFT-definable: it suffices to replace each
letter by a and to accept only if the last letter
is a. Therefore it can be defined by theDFT
T0=({qa, qb}, qb, {qa}, {(qx, y, a, qy) | x, y ∈ Σ}).
R1 is fNFT-definable but not DFT-definable:

similarly as before we can define aDFT T ′
0 =

({pa, pb}, pa, {pb}, {(px, y, b, py) | x, y ∈ Σ}) that defines the
transduction{(u, b|u|) | u ∈ Σ+, u[|u|] = b}, and construct an
NFT T1 as follows: its initial state is some fresh statep0, and
when readingx ∈ Σ the first time, it non-deterministically
goes toT0 or T ′

0 by taking the transition(p0, x, a, qx) or
(p0, x, b, px), and proceeds in eitherT0 or T ′

0. Even if R1

is functional, it is notDFT-definable, as the transformation
depends on the property of the last letter, which can be
arbitrarily far away from the beginning of the string.
R2 is 2DFT-definable: it suffices to go to the end of the

word by producingǫ each time a letter is read, to go back
to the beginning while copying each input letter, and return
to the end without outputting anything, and to accept. Hence
it is defined byT2 = ({q0, q1, q2, q3, qf}, q0, {qf}, δ2) where
statesq1, q2, q3 denote passes, andδ2 is made of the transitions
(q0,#, ǫ, q1,+1), (q1, x∈Σ, ǫ, q1,+1) (during the first pass,
move to the right),(q1,#, ǫ, q2,−1), (q2, x∈Σ, x, q2,−1),
(q2,#,#, q3,+1), (q3, x∈Σ, ǫ, q3,+1), (q3,#,#, qf ,+1).

Crossing Sequences, Loops and Finite-Crossing2NFTs The
notion of crossing sequence is a useful notion in the theory of
two-way automata [4], [25], that allows one to pump runs of
two-way automata. Given a2NFAA, a wordu ∈ Σ∗ and a run
ρ of A on u, the crossing sequenceat positioni, denoted by
CS(ρ, i) is given by the sequence of statesq such that(q, i)
occurs inρ. The order of the sequence is given by the order
in which the pairs of the form(q, i) occur in ρ. E.g. if ρ =
(q1, 1)(q2, 2)(q3, 1)(q4, 2)(q5, 1)(q6, 2)(q7, 3) then CS(ρ, 1) =
q1q3q5, CS(ρ, 2) = q2q4q6 and CS(ρ, 3) = q7. We write CS(ρ)
the sequence CS(ρ, 1), . . . ,CS(ρ, |u|+ 1).

Crossing sequences allow one to define the loops of a run.

Given a runρ of the 2NFA A on some wordu of length
n, a pair of positions(i, j) is a loop 5 in ρ if (i) 1 ≤ i ≤
j ≤ n, (ii) CS(ρ, i) = CS(ρ, j) and (iii) u[i] = u[j]. Let
u1 = u[1..(i − 1)], u2 = u[i..(j − 1)] and u3 = u[j..n]. If
(i, j) is a loop inρ andu ∈ L(A), thenu1(u2)

ku3 ∈ L(A)
for all k≥0. We say that a loop(i, j) is emptyif i = j, in this
case we haveu2 = ε. The notions of crossing sequence and
loop carry over to transducers through their underlying input
automata.

Given a 2NFT T , N ∈ N and a runρ of T on a word
of length n, ρ is said to beN -crossing if |CS(ρ, i)| ≤ N
for all i ∈ {1, . . . , n}. The transducerT is finite-crossingif
there existsN ∈ N such that for all(u, v) ∈ R(T ), there is an
acceptingN -crossing runρ onu such thatout(ρ) = v. In that
case,T is said to beN -crossing. It is easy to see that ifT isN -
crossing, then for all(u, v) ∈ R(T ) there is an accepting run
ρ on u such thatout(ρ) = v and no states repeat in CS(ρ, i)
for all i ∈ {1, . . . , |u|}. Indeed, if some stateq repeats in some
CS(ρ, i), then it is possible to pump the subrun between the
two occurrences ofq on CS(ρ, i). This subrun has an empty
output, otherwiseT would not be functional.

Proposition 1. Any f2NFT withN states isN -crossing.

III. F ROM TWO-WAY TO ONE-WAY TRANSDUCERS

In this section, we prove the main result of this paper, i.e.
the decidability of(f2NFT,NFT)-definability.

A. Rabin and Scott’s Construction for Automata

The proof of Theorem 1 relies on the same ideas as Rabin
and Scott’s construction for automata [3]. It is based on the
following key observation: Any accepting run is made of
many zigzags, and those zigzags are organized by a nesting
hierarchy: zigzag patterns may be composed of simpler zigzag
patterns. The simplest zigzags of the hierarchy are those that
do not nest any other zigzag: they are calledz-motions. Rabin
and Scott described a procedure that removes those zigzags
by iterating a construction that removesz-motions.

A one-step sequenceis an indexed sequences = a1, . . . , an
of positions such thatai ∈ {1, 2 . . . ,m}, a1 = 1, an = m,
and |ai+1 − ai| = 1.The sequences is N -crossingif for all
x ∈ {1, 2 . . . ,m} we have|{i | ai = x}| ≤ N . The reversals
of s are the indexes1 < r1 < r2 < · · · < rl < n such that
ari+1 = ari−1. In the sequel we letr0 = 1 andrl+1 = n.

A z-motionz in s is a subsequenceae, ae+1, . . . af such that
there is0 < i < l with ri−1 ≤ e < ri < ri+1 < f ≤ ri+2,
andae = ari+1 andaf = ari . We may denotez by the pair of
reversals(ri, ri+1). E.g. the sequencesz1 = 1, 2, 3, 2, 1, 2, 3
andz2 = 4, 3, 2, 3, 4, 3, 2 arez-motions. Theshapeof a runρ
is defined as the second projection ofρ, written shape(ρ). A
run ρ is az-motion runif shape(ρ) is az-motion. When there
is no ambiguity,z-motion runs are just calledz-motions.

If T is a 2NFA, it is possible to construct a new automaton
denoted bysqueeze(T ) such that, for all accepting runsρ of T

5Observe that we include the input letter in the notion of loop. We use this
to avoid technical difficulties due to backward transitions(which do not read
the local symbol, but its successor).
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Fig. 1. Zigzags removal by applications ofsqueeze.

on some input wordu, there exists a “simpler” accepting run
of squeeze(T ) on u, obtained fromρ by replacing somez-
motions by one-way runs that simulate three passes in parallel.
It is illustrated by Fig. 1. For instance at the first step, there
are two z-motions fromq1 to q2 and fromq3 to q4 respec-
tively. Applying squeeze(T ) consists in non-deterministically
guessing thosez-motions and simulating them by one-way
runs. This is done by theNFA RT (q1, q2) and RT (q3, q4)
respectively. Depending on whether thez-motions enter from
the left or the right,z-motions are replaced by runs ofNFAs
RT (., .) (that read the input backwardly) orLT (., .) , as
illustrated by the second iteration ofsqueeze on Fig. 1.

An N -crossing runρ can be simplified into a one-way run
after a constant number of applications ofsqueeze. This result
is unpublished so we prove it in this paper. In particular, we
show that if ρ is N -crossing, then its zigzag nesting depth
decreases afterN steps. Moreover, ifρ is N -crossing, then its
zigzag nesting depth is also bounded byN . Therefore after
N2 applications ofsqueeze, ρ is transformed into a simple
one-way run. It is sufficient to prove those results at the level
of integer sequences. In particular, one can definesqueeze(s)
the set of sequences obtained from a one-step sequences
by replacingsomez-motions of s by strictly increasing or
decreasing subsequences. The following is formalized and
shown in Appendix:

Lemma 2. Let s be anN -crossing one-step sequence over
{1, . . . ,m}. Then1, 2, . . . ,m is in squeezeN

2

(s).

At the automata level, it is known that for all wordsu
accepted by a2NFA T with N states, there exists anN -
crossing accepting run onu. Therefore it suffices to apply
squeeze N2 times to T . One gets an equivalent2NFA T ∗

from which the backward transitions can be removed while
preserving equivalence withT ∗, and soT .

•

i1 j1 i2 j2

x0 v1 x1 w1

x2

x4
v2 x3 w2

v3 x5 w3 x6

Fig. 2. Output decomposition in propertyP .

B. Extension to transducers: overview

The construction used to show decidability ofNFT-
definability of f2NFT follows the same ideas as Rabin and
Scott’s construction. The main difference relies in the trans-
formation of the local transducers defined byz-motion runs
(that we callZNFTs) into NFTs. Our procedure is built over
a ZNFT-to-NFT procedure. It is seen as a black-box in this
section, but is the subject of the next section.

Compared to two-way automata, one faces an extra diffi-
culty caused by the fact that2NFTs (and ZNFTs) are not
always NFT-definable. Therefore one defines a necessary
condition that has to be tested each time we want to apply
squeeze. Let us consider again Fig. 1 whenT is a2NFT. One
defines fromT the transductions induced by localz-motion
runs from a starting stateq1 to an ending stateq2, and show
that those local transductions must beNFT-definable.

Once this necessary condition is satisfied, the construction
squeeze can be applied and works as for Rabin and Scott’s
construction: the new transducersqueeze(T ) simulatesT and
non-deterministically may guess that the next zigzag ofT
is a z-motion run from some stateq1 to some stateq2, and
thus can be simulated by a run of someNFT RT (q1, q2) or
LT (q1, q2), depending on whether it enters from the left or the
right. Thensqueeze(T ) switches toRT (q1, q2) (if it entered
from the right) and onceRT (q1, q2) reaches an accepting state,
it may come back to its normal mode.

C. z-motion transducers

z-motion transducers are defined like2NFTs except that
they must definefunctions and to be accepting, a run on
a word of lengthn must be of the formρ.(qf , n + 1)
where ρ is a z-motion run andqf is an accepting state.
Note that it implies thatshape(ρ) is always of the form
1, . . . , n, n−1, . . . , 1, . . . , n. The class ofz-motion transducers
is denoted byZNFTs. Note that z-motion transducers are
incomparable withf2NFTs. Indeed,z-motion transducers can
define the transductionu ∈ Σ∗ 7→ u, which is not f2NFT-
definable as there are no end markers.

Let T ∈ ZNFT and ρ = (p1, 1) . . . (pn, n)
(qn−1, n−1) . . . (q1, 1)(r2, 2) . . . (rn+1, n + 1) be a run
of T on a word of lengthn. We let qn = pn and r1 = q1
and define the following shortcuts: for1 ≤ i ≤ j ≤ n,
out1[i, j] = out((pi, i) . . . (pj , j)), and out2[i, j] =
out((qj , j) . . . (qi, i)) and out3[i, j] = out((ri, i) . . . (rj , j)),
andout3[i, n+ 1] = out((ri, i) . . . (rn+1, n+ 1)).

We characterize theNFT-definability of aZNFT by a prop-
erty that we prove to be decidable. Intuitively, this property



requires that the outputs produced by loops can be produced
by a single forward pass:

Definition 1 (P-property). Let T be a ZNFT. We say thatT
satisfies the propertyP , denoted byT |= P , if for all words
u ∈ dom(T ), for all accepting runsρ on u, and for all pairs
of loops (i1, j1) and (i2, j2) of ρ such thatj1 ≤ i2, there
exist β1, β2, β3, β4, β5 ∈ Σ∗, f, g : N2 → Σ∗ and constants
c1, c

′
1, c2, c

′
2 ≥ 0 such thatc1, c2 6= 0 and for all k1, k2 ≥ 0,

f(k1, k2)x0v
η1

1 x1w
η2

1 x2w
η2

2 x3v
η1

2 x4v
η1

3 x5w
η2

3 x6g(k1, k2)

= β1β
k1
2 β3β

k2
4 β5

whereηi = kici + c′i, i ∈ {1, 2}, and,xi’s, vi’s andw′
is are

words defined as depicted in Fig. 2.

The following key lemma is proved in Section IV.

Lemma 3. Let T ∈ ZNFT. T |= P iff T is NFT-definable.
Moreover,P is decidable and ifT |= P , one can (effectively)
construct an equivalent NFT.

Definition 2 (z-motion transductions induced by af2NFT).
Let T = (Q, q0, F,∆) be a f2NFT andq1, q2 ∈ Q. The
transductionLT (q1, q2) (resp.RT (q1, q2)) is defined as the
set of pairs(u2, v2) such that there existu ∈ Σ∗, two positions
i1 < i2 (resp. i2 < i1), an accepting runρ of T on u which
can be decomposed asρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 such that
u2 = u[i1 . . . i2] and

• (q1, i1)ρ2(q2, i2) is a z-motion run
• out((q1, i1)ρ2(q2, i2)) = v2

z-motions can be of two forms: either they start from the
left and end to the right, or start from the right and end to the
left. In order to avoid considering these two cases each time,
we introduce the notationT that denotes the mirror ofT : it is
T where the moves+1 are replaced by−1 and the moves−1
by +1. Moreover, the wayT reads the input tape is slightly
modified: it starts in positionn and a run is accepting if it
reaches position0 in some accepting state. All the notions
defined for2NFTs carry over to their mirrors. In particular,
(u, v) ∈ R(T ) iff (u, v) ∈ R(T ). The z-motion transductions
RT (q1, q2) and LT (q1, q2) are symmetric in the following
sense:RT (q1, q2) = LT (q1, q2) andLT (q1, q2) = RT (q1, q2).

Proposition 2. The transductionsRT (q1, q2) andLT (q1, q2)
are ZNFT-definable.

Proof: We only consider the caseLT (q1, q2), the other
case being solved by using the equalityRT (q1, q2) =
LT (q1, q2). We first construct fromT a ZNFT Z ′

T (q1, q2)
which is likeT but its initial state isq1, and it can move to an
accepting state whenever it is inq2. HoweverZ ′

T (q1, q2) may
define input/output pairs(u2, v2) that cannot be embedded
into some pair(u, v) ∈ R(T ) as required by the definition of
LT (q1, q2). Based on Shepherdson’s construction, we modify
Z ′
T (q1, q2) in order to take this constraint into account. The

full proof is in Appendix.
In the next subsection, we show thatRT (q1, q2) and

LT (q1, q2) must necessarily beNFT-definable forT to be

NFT-definable. For that purpose, it is crucial in Definition 2
to make sure that thez-motion (q1, i1)ρ2(q2, i2) can be
embedded into a global accepting run ofT . Without that
restriction, it might be the case thatLT (q1, q2) or RT (q1, q2)
is not NFT-definable although the2NFT T is. Indeed, the
domain ofLT (q1, q2) or RT (q1, q2) would be too permissive
and accept words that would be otherwise rejected by other
passes of global runs ofT . This is another difficulty when
lifting Rabin and Scott’s proof to transducers, as for automata,
the context in which az-motion occurs is not important.

D. Decision procedure and proof of Theorem 1

We show that the constructionsqueeze(T ) can be applied
if the following necessary condition is satisfied.

Lemma 4. If T is NFT-definable, then so are the transductions
RT (q1, q2) and LT (q1, q2) for all states q1, q2. Moreover,
it is decidable whether the transductionsRT (q1, q2) and
LT (q1, q2) are NFT-definable.

Sketch of proof: We have seen in Lemma 3 thatNFT-
definability of anZNFT is characterized by PropertyP . Let
Z ∈ ZNFT that definesLT (q1, q2) for someq1, q2, we thus
sketch the proof thatZ |= P .

Consider two loops(i1, j1), (i2, j2) of a run ρ of Z
on some wordu, as in the premises of PropertyP . They
induce a decomposition ofu as u = u1u2u3u4u5 with
u2 = u[i1 . . . j1 − 1] andu4 = u[i2 . . . j2 − 1]. By definition
of the transductionLT (q1, q2), any word indom(Z) can be
extended into a word indom(T ). By hypothesis,T is NFT-
definable, thus there exists an equivalentNFT T ′. As T ′ has
finitely many states, it is possible, by iterating the loops(i1, j1)
and (i2, j2), to identify an input word of the form

u′ = αu1u
c1
2 uc2

2 uc3
2 u3u

c′1
4 u

c′2
4 u

c′3
4 u5α

′

and a runρ′ of T ′ on this word which has two loops on the
input subwordsuc2

2 anduc′2
4 . It is then easy to conclude.

Construction of squeeze(T ) Assuming that the necessary
condition is satisfied, we now explain how to construct
the f2NFT squeeze(T ). By hypothesis, the transductions
LT (q1, q2) and RT (q1, q2) are NFT-definable for allq1, q2
by NFT LT (q1, q2) and RT (q1, q2) respectively (they exist
by Proposition 2 and Lemma 3). As already said before, the
main idea to definesqueeze(T ) is to non-deterministically
(but repeatedly) applyLT (q1, q2), RT (q1, q2), or T , for some
q1, q2 ∈ Q. However when applyingRT (q1, q2), the head of
squeeze(T ) should move from the right to the left, so that we
have to mirror the transitions ofRT (q1, q2).

The transducersqueeze(T ) has two modes,Z-mode orT-
mode. InT-mode, it works asT until it non-deterministically
decides that the next zigzag is az-motion from some state
q1 to some stateq2. Then it goes inZ-mode and runs
LT (q1, q2) or RT (q1, q2), in which transitions to an accepting
state have been replaced by transitions fromq2 in T , so that
squeeze(T ) returns in T-mode. From those transitions we
also add transitions from the initial states ofLT (q2, q3) and



T ∈ ZNFT T ′ ∈ ǫZNFT T ′′ ∈ fNFT

T |= P ⇒ T ≡ T
′

T
′ |= P ⇒ T

′ ≡ T
′′

ǫ

Fig. 3. FromZNFT to NFT.

RT (q2, q3) for all q3 ∈ Q, in casesqueeze(T ) guesses that the
nextz-motion starts immediately at the end of the previousz-
motion. We detail the construction ofsqueeze(T ) in Appendix.

Proposition 3. Let T ∈ f2NFT such thatT is NFT-definable.
Thensqueeze(T ) is defined and equivalent toT .

Let T ∈ f2NFT. If T is NFT-definable, then the operator
squeeze can be iterated onT while preserving equivalence
with T , by the latter proposition. By Proposition 1T is N -
crossing, and therefore, based on Lemma 2, it suffices to iterate
squeeze N2 times to remove all zigzags from accepting runs
of T , as stated by the following lemma:

Lemma 5. Let T be a f2NFT withN states. IfT is fNFT-
definable, thensqueezeN

2

(T ) is defined and equivalent toT ,
and moreover, for all(u, v) ∈ R(T ), there exists an accepting
run ρ of squeezeN

2

(T ) on u such thatout(ρ) = v and ρ is
made of forward transitions only.

Proof of Theorem 1 In order to decide whether af2NFT T
is NFT-definable, it suffices to test whethersqueeze can be
appliedN2 times. More precisely, it suffices to setT0 to T ,
i to 0, and, whileTi satisfies the necessary condition (which
is decidable by Lemma 4) andi ≤ N2, to increasei and set
Ti to squeeze(Ti−1). If the procedure exits the loops before
reachingN2, then T is not NFT-definable, otherwise it is
NFT-definable by theNFT obtained by removing fromTN2

all its backward transitions.

IV. FROM ELEMENTARY ZIGZAGS TO L INES

This section is devoted to the proof of Lemma 3 that
characterizesNFT-definableZNFT by the propertyP and
states its decidability. Moreover, we give aZNFT-to-NFT
construction whenP is satisfied.

We first prove that PropertyP is a necessary condition for
NFT-definability. To prove the converse, we proceed in two
steps. First, we define a procedure that tests whether a given
ZNFT T is equivalent to aZNFT that does not output anything
on its backward pass (calledǫZNFT), and then define another
procedure that tests whether the latterZNFT is equivalent to
an NFT. We show that it is always true wheneverT |= P .
This approach is depicted in Fig. 3. The two steps are similar,
therefore we mainly focus on the first step.

A. PropertyP is a necessary condition

We show that PropertyP only depends on transductions.

Lemma 6. Let T, T ′∈ZNFT. IfT |=P andT≡T ′ thenT ′|=P .

Proof: Consider two loops(i1, j1), (i2, j2) as in Property
P in a run ofT ′ on some wordu. They induce a decomposition

•

ℓw x

t3 y

w′

xy ∈ t1t
∗

2

Fig. 4. Decomposition of the output according to PropertyP1.

of u as u = u1u2u3u4u5 whereu2 = u[i1 . . . (j1 − 1)] and
u4 = u[i2 . . . (j2−1)], with u1u

k1

2 u3u
k2

4 u5 ∈ dom(T ′) for all
k1, k2 ≥ 0.

As T is equivalent toT ′ and has finitely many states, there
exist iterations of the loops onu2 and u4 which constitute
loops in T on powers ofu2 and u4. Formally, there exist
integersd1, e1, h1, d2, e2, h2 with e1, e2 > 0 such thatT has
a runρ on the input wordu1u

d1
2 ue1

2 uh1
2 u3u

d2
4 ue2

4 uh2
4 u5 which

contains a loop on the input subwordsue1
2 andue2

4 .
We conclude easily by using the fact thatT |= P .
As a consequence, we obtain that PropertyP is a necessary

condition forNFT-definability.

Lemma 7. LetT ∈ ZNFT. IfT is NFT-definable, thenT |= P .

Proof: Let T ′ be anNFT equivalent toT . It is easy to
turnT ′ into aZNFTT ′′ that performs two additional backward
and forward passes which outputε. Consider two loops(i1, j1)
and(j1, j2) in a run ofT ′′, and let us write the output of this
run as depicted on Fig. 2. These loops are also loops ofT ′,
and thus we can defineβ1 (resp.β2, β3, β4 and β5) as x0

(resp.v1, x1, w1 andx2), andf, g as the constant mappings
equal toǫ. HenceT ′′ |= P , and we conclude by Lemma 6.

B. From ZNFT toǫZNFT

The goal is to devise a procedure that tests whether the
first and second passes (forward and backward) of the run
can be done with a single forward pass, and constructs an
NFT that realizes this single forward pass. Then, in order to
obtain anǫZNFT, it suffices to replace the first pass ofT
by the latterNFT and add a backward pass that just comes
back to the beginning of the word and outputsǫ all the time.
The procedure constructs anǫZNFT, and tests whether it is
equivalent toT . It is based on the following key property
that characterizes the form of the output words of the two
first passes of anyZNFT satisfyingP . Intuitively, when these
words are long enough, they can be decomposed as words
whose primitive roots are conjugate.

Definition 3 (P1-property). LetT ∈ ZNFT withm states, and
let (u, v) ∈ R(T ) whereu has lengthn. Let K = 2.o.m3.|Σ|
where o = max{|v| | (p, a, v, q,m) ∈ ∆}. The pair (u, v)
satisfies the propertyP1, denoted by(u, v) |= P1, if for all
accepting runsρ on u, there exist a position1 ≤ ℓ ≤ n and
w,w′, t1, t2, t3 ∈ Σ∗ such thatv ∈ wt1t

∗
2t3w

′ and:

out1[1, ℓ] = w out2[1, ℓ] = t3 out1[ℓ, n]out2[ℓ, n]∈t1t∗2
out3[1, n+ 1] = w′ |ti| ≤ 2K, ∀i ∈ {1, 2, 3}
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t

p1 p2 pi pj pn−1

q1 q2 qi qj qn−1

pn=qn

ou
tp

ut

loop
u[i] = u[j], qi = qj , pi = pj

x0 v1

x1
v2x2

Fig. 5. Decomposition of the two first passes of az-motion run with loop.

This decomposition is depicted in Fig. 4.T satisfies property
P1, denotedT |= P1, if all (u, v) ∈ R(T ) satisfy it.

Proposition 4. Let T ∈ ZNFT. If T |= P , thenT |= P1.

Proof: • If |out2[1, n− 1]| ≤ K, then clearly, it suffices
to takeℓ = n, t1 = out2[n−1, n], t2 = ε, t3 = out2[0, n−1],
w = out1[1, n] andw′ = out3[1, n+ 1].
• Otherwise,|out2[1, n − 1]| > K. Thereforeu is of length
2.m3.|Σ| at least and there exists a (non-empty) loop(i, j) in
ρ. We can always choose this loop such that|out2[1, i]| ≤ K
and1 ≤ |out2[i, j]| ≤ K (see Lemma 16 in Appendix).

The loop partitions the input and output words into fac-
tors that are depicted in Fig. 5 (only the two first passes
are depicted). Formally, letu = u1u2u3 such thatu2 =
u[i . . . (j−1)]. Let x0 = out1[1, i], v1 = out1[i, j], x1 =
out1[j, n]out2[j, n], v2 = out2[i, j], x2 = out1[1, i], x3 =
out3[1, i], v3 = out3[i, j] and x4 = out3[j, n + 1]. In
particular, we have|x2| ≤ K, 1 ≤ |v2| ≤ K and
x0v1x1v2x2x3v4x4 ∈ T (u). Since (i, j) is a loop we also
get x0v

k
1x1v

k
2x2x3v

k
3x4 ∈ T (u1u

k
2u3) for all k ≥ 0. We then

distinguish two cases:
1) If v1 6= ǫ. We can apply PropertyP by taking the second

loop empty. We get that for allk ≥ 0

f(k)x0v
kc+c′

1 x1v
kc+c′

2 x2x3v
kc+c′

3 x4g(k) = β1β
k
2β3

wheref, g : N → Σ∗, c ∈ N>0, c′ ∈ N, andβ1, β2, β3 ∈ Σ∗.
Since the above equality holds for allk ≥ 0, we can apply
Lemma 1 and we getµ(v1) ∼ µ(β2) andµ(β2) ∼ µ(v2), and
thereforeµ(v1) ∼ µ(v2). So there existx, y ∈ Σ∗ such that
v1 ∈ (xy)∗ and v2 ∈ (yx)∗. One can show (see Lemma 17
in Appendix) thatv1x1v2 ∈ x(yx)∗. Then it suffices to take
ℓ = i, w = x0, t1 = x, t2 = yx and t3 = x2.

2) The second case (v1 = ǫ) is more complicated as it
requires to use the full PropertyP , using two non-empty loops.
First, we distinguish two cases whether|out1[j, n]| ≤ K or
not. For the latter case, we identify a second loop and then
apply PropertyP . Details can be found in the Appendix B.

Construction of an ǫZNFT from a ZNFT We construct an
ǫZNFT T ′ from a ZNFT T such thatR(T ′) = {(u, v) ∈
R(T ) | (u, v) |= P1}. Intuitively, the main idea is to perform
the two first passes in a single forward pass, followed by
a non-producing backward pass, and the final third pass is
exactly asT does. Therefore,T ′ guesses the wordst1, t2
and t3 and makes sure that the outputv is indeed of the
form characterized byP1. This can be done in a one-way

fashion while simulating the forward and backward passes in
parallel and by guessing non-deterministically the position ℓ.
In addition, the output mechanism ofT ′ exploits the special
form of v: the idea is to output powers oft2 while simulating
the two first passes.

First, let us describe howT ′ simulates the forward and
backward passes in parallel during the first forward pass. It
guesses both the state of the backward pass, and the current
symbol (this is needed as the symbol read by the backward
transition is the next symbol). The first state (q∗) guessed for
the backward pass needs to be stored, as the last (forward)
pass should start fromq∗. The transducer can go from state
(p, q, σ) to state(p′, q′, σ′) if the current symbol isσ and there
is a (forward) transition(p, σ, x, p′,+1) and a (backward)
transition(q′, σ′, y, q,−1). Therefore ifQ is the set of states
of T , T ′ uses, on the first pass, elements ofQ × Q × Σ in
its states. The transducerT ′ can non-deterministically decide
to perform the backward and non-producing backward pass
whenever it is in some state(q, q, σ) and the current symbol
is σ. This indeed happens precisely when the forward and
backward passes are in the same stateq. If the current symbol
is not the last of the input word, then the whole run ofT ′ is
not az-motion and therefore it is not accepting.

Second, we describe how theǫZNFT T ′, with the guess of
t1, t2, t3, verifies during its first forward pass that the output
has the expected form, and how it produces this output. During
the first pass,T ′ can be in two modes: In mode1 (before the
guessℓ), T ′ verifies that the output on the simulated backward
pass ist3 and proceeds asT in the first forward pass (it outputs
whatT outputs on the forward pass). Mode2 starts when the
guessℓ has been made. In this mode,T ′ first outputst1 and
then verifies that the output of the forward/backward run from
and to positionℓ is of the formt1t

∗
2. It can be done by using

pointers ont1 and t2. There are two cases (guessed byT ′):
eithert1 ends during the forward pass or during the backward
pass (using notations of Fig.4, eithert1 is a prefix ofx, or x
is a prefix oft1).

In the first case,T ′ needs a pointer ont1 to make sure that
the output ofT in the forward pass starts witht1. It also needs
a pointer ont2, initially at the end oft2, to make sure that the
output ofT on the simulated backward pass is a suffix oft∗2
(the pointer moves backward, coming back to the last position
of t2 whenever it reaches the first position oft2). Once the
verification ont1 is done,T ′ starts, by using a pointer initially
at the first position int2, to verify that the output ofT in
the forward pass is a prefix oft∗2. Once the forward and the
simulated backward passes merge, the two pointers ont2 must
be at the same position, otherwise the run is rejected.

During this verification,T ′ also has to output a power oft2
(remind that it has already outputt1). However the transitions
of T may not output exactly onet2, nor a power oft2, but
may cutt2 before its end. ThereforeT ′ needs another pointer
h to know where it is int2. Initially this pointer is at the first
position of t2 (h = 1). Suppose thatT ′ simulatesT using
the (forward) transition(p, σ, x, p′,+1) and the (backward)
transition(q′, σ′, y, q,−1). If this step occurs before the end
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Fig. 6. Decomposition of the output according to PropertyP2.

of t1, then T ′ outputstω2 [h . . . (h + |y|)] (tω2 is the infinite
concatenation oft2), and the pointerh is updated to1+((h+
|y|−1)mod |t2|). Otherwise,T ′ outputstω2 [h . . . (h+|x|+|y|)]
andh is updated to1 + ((h+ |x|+ |y| − 1) mod |t2|).

The second case (whenT ′ guesses thatt1 ends during the
backward pass) is similar.T ′ has to guess exactly the position
in the output wheret1 ends. On the first pass it verifies that
the output is a prefix oft1, and on the simulated backward
pass, it checks that the output is a suffix oft∗2 (and outputs
as manyt2 as necessary, like before), until the end oft1 is
guessed to occur. From that moment it enters a verification
mode on both passes.

The main property of this construction is that no wrong
output words are produced byT ′, due to the verification and
the way the output words are produced, i.e. for all(u, v) ∈
R(T ′), we have(u, v) ∈ R(T ).

Proposition 5. Let T ∈ ZNFT. R(T ′) = {(u, v) ∈
R(T ) | (u, v) |= P1}.

Lemma 8. Let T ∈ ZNFT. If T |= P , thenT is equivalent to
the ǫZNFT T ′. Moreover, the latter is decidable.

Proof: If T |= P , then by Proposition 4,T |= P1.
Therefore by Proposition 5,T andT ′ are equivalent.

We know thatR(T ′) ⊆ R(T ), and sinceT andT ′ are both
functional, they are equivalent iffdom(T ) ⊆ dom(T ′). Both
domains can be defined byNFAs. ThoseNFAs simulate the
three passes in parallel and make sure that those passes define
a z-motion. Therefore testing the equivalence ofT and T ′

amounts to test the equivalence of twoNFAs.

C. From ǫZNFT to NFT

We have seen how to go from aZNFT to an ǫZNFT. We
now briefly sketch how to go from anǫZNFT to a (functional)
NFT. Given anǫZNFT T ′, we define anfNFT T ′′ such that
T ′ andT ′′ are equivalent as soon asT ′ |= P . The ideas are
very similar to the previous construction therefore we do not
give all the details here.

We exhibit a property on the form of output words produced
by an ǫZNFT that verifies P . Intuitively, apart from the
beginning of the first pass, and the end of the second pass, if
the two passes produce long enough outputs, then these outputs
can be decomposed so as to exhibit conjugate primitive roots.

Definition 4 (P2-property). Let T ′ ∈ ǫZNFT with m states,
and let (u, v) ∈ R(T ′) where u has lengthn. Let K =
2om3|Σ| where o = max{|v| | (p, a, v, q,m) ∈ ∆}. The
pair (u, v) satisfies the propertyP2, denoted by(u, v) |= P2,

if for all accepting runsρ on u, there exist two positions
1 ≤ ℓ1 ≤ ℓ2 ≤ n andw,w′, t1, t2, t3 ∈ Σ∗ such that:

out1[1, ℓ1] = w |ti| ≤ 3.K, ∀i ∈ {1, 2, 3}
out3[ℓ2, n+ 1] = w′ |out1[ℓ2, n]| ≤ 3.K
out1[ℓ1, n]out3[1, ℓ2] ∈ t1t

∗
2t3 |out3[1, ℓ1]| ≤ 3.K

This decomposition is depicted in Fig. 6.T ′ satisfies property
P2, denotedT |= P2, if all (u, v) ∈ R(T ′) satisfy it.

The proof of the following proposition uses the same
structure and techniques as that of Proposition 4. Using a
(long) case analysis, we identify loops in runs, and apply
PropertyP to show that output words have the expected form.

Proposition 6. Let T ′ ∈ ǫZNFT. If T ′ |= P , thenT ′ |= P2.

We can now sketch the construction of anfNFT T ′′ which
recognizes the subrelation ofT ′ defined as{(u, v) ∈ R(T ′) |
(u, v) |= P2}. Again, the construction is rather similar and
uses the same techniques to that ofT ′ starting fromT .

The transducerT ′′ simulates, in a single forward pass,
the three passes ofT ′. Hence it also checks that the run
of the ZNFT T ′ it simulates is az-motion run, which is a
semantic restriction of accepting runs ofZNFTs. The fNFT
T ′′ also guesses positionsℓ1 and ℓ2, and uses three modes
accordingly. It also guesses the wordst1, t2 andt3, and words
for out3[1, ℓ1] andout1[ℓ2, n], which are all of bounded length
(see PropertyP2). The output ofT ′′ is produced according to
the mode, using pointers to check the guesses, similarly toT ′.

If all the guesses happen to be verified, it outputs the
correct output word, otherwise the input word is rejected. As
a consequence,T ′′ recognizes a subrelation ofT ′ and thus
checking the equivalence ofT ′ andT ′′ amounts to checking
the equivalence of their domains (as the two transducers are
functional), which is decidable. From Proposition 6 we get:

Lemma 9. Let T ′ ∈ ǫZNFT. IfT ′ |= P , thenT ′ is equivalent
to the fNFTT ′′. Moreover, the latter property is decidable.

Proof of Lemma 3.Lemma 7 states that ifT is NFT-definable,
thenT |= P . Conversely, ifT |= P , then by Lemma 8, the first
construction outputs an equivalentǫZNFT T ′. By Lemma 6,
we haveT ′ |= P . By Lemma 9, the second construction
outputs an equivalentNFT T ′′. ThereforeT is NFT-definable
by T ′′. In order to decide whetherT |= P , it suffices to
constructT ′, check thatT and T ′ are equivalent, and then
constructT ′′ and check whetherT ′ and T ′′ are equivalent.
Both problems are decidable by Lemma 8 and 9.

V. D ISCUSSION

Complexity The procedure to decide(f2NFT,NFT)-
definability is non-elementary exponential time and space.
This is due to theZNFT-to-NFT construction which outputs
an NFT of doubly exponential size. Indeed, the first step of
this construction transforms anyZNFT with n states into
an ǫZNFT with at least|Σ|4on

3|Σ| states, as theǫZNFT has
to guess words of length4on3|Σ|, whereo is the maximal
length of an output word of a transition. TheǫZNFT-to-NFT



construction also outputs an exponentially bigger transducer.
Therefore thesqueeze operation outputs a transducer which
is doubly exponentially larger. Since this operation has tobe
iteratedN2 times in the worst case, whereN is the number
of states of the initialf2NFT, this leads to a non-elementary
procedure. On the other hand, the best lower bound we have
for this problem is PSpace (by a simple proof that reduces
the emptiness problem of the intersection ofn DFAs is given
in Appendix).

SuccinctnessIt is already known that2DFAsare exponentially
more succinct thanNFAs [26]. Therefore this result carries
over to transducers, already for transducers defining identity
relations on some particular domains. However we show here
a stronger result: the succinctness of2NFTsalso comes from
the transduction part and not only from the domain part. We
can indeed exhibit a family ofNFT-definable transductions
(Rn)n that can be defined by2DFTs that are exponentially
more succinct than their smallest equivalentNFT, and such
that the family of languages(dom(Rn))n does not show an
exponential blow up between2DFAsandNFAs.

For all n ≥ 0, we defineRn whose domain is the set of
words#u# for all u ∈ {a, b}∗ of lengthn, and the transduc-
tion is the mirror transduction, i.e.Rn(#u#) = #u#.

Clearly,Rn is definable by a2DFT with O(n) states that
counts up ton the length of the input word by a forward pass,
and then mirrors it by a backward pass. It is also definable by
an NFT with O(2n) states: theNFT guesses a wordu of
lengthn (so it requiresO(2n) states), outputs its reverse, and
then verifies that the guess was correct. It is easy to prove that
any NFT definingRn needs at least2n states by a pumping
argument. On the other hand, the domain ofRn can be defined
by a DFA with O(n) states that counts the length of the input
word up ton. Note that the alphabet does not depend onn.

Further Questions We have shown that(f2NFT,NFT)-
definability is decidable, however with a non-elementary pro-
cedure. We would like to characterize precisely the complexity
of this problem. Our procedure works for functional2NFTs,
which are equivalent to2DFTs. Therefore we could have
done our proof directly for2DFTs. However (functional) non-
determinism was added with no cost in the proof so we rather
did it in this more general setting. The extension of our results
to relations instead of functions is still open.

Our proof is an adaptation of the proof of Rabin and
Scott [3] to transducers. Alternative constructions basedon
the proofs of Shepherdson [4] or Vardi [17], and alternative
models such as streaming string transducers [10] or MSO
transformations [8], [9], could lead to better complexity results
or refined results. In particular, we believe that our results are
highly related to the problem of minimizing the number of
variables in a streaming string transducer.

Finally, we plan to study extensions of our results to infinite
string tranformations, defined for instance by streaming string
transducers [27], and to tree transformations, following our
initial motivation from XML applications.
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APPENDIX A
COMPLEMENTS TOSECTION III

A. Iterativez-motions removal (proof of Lemma 2)

We define the crossing number of the positionx ∈
{1, . . . ,m} as the number|{i | ai = x}|. Hence the sequence
s is K-crossing if all its positionsx ∈ {1, 2 . . . ,m} have a
crossing number less or equal thanK.

We say that twoz-motionsz1 = (ri, ri+1), z2 = (rj , rj+1)
areconsecutive, resp.positionally disjoint, if j = i + 2, resp.
max(ari , ari+1) < min(arj , arj+1) (or max(arj , arj+1) <
min(ari , ari+1)). Moreover we say thatz1 andz2 aredisjoint
if they are not consecutive or if they are positionally disjoint.
Equivalently, thez-motions z1 = ak1 , ak1+1, . . . , ak2 and
z2 = ak3 , ak3+1, . . . , ak4 are disjoint if and only ifk2 < k3
or k4 < k1.

Lemma 10. If s is K-crossing, then for allz1, z2, . . . , zt
consecutivez-motions, for all i ≤ t − K, zi and zi+K are
positionally disjoint.

Proof: Let j ∈ {1, . . . , l} such thatz1 = (rj , rj+1), z2 =
(rj+2, rj+3), . . . and, wlog, assumearj < arj+1 . As a
consequence of the definition ofz-motions, consecutivez-
motions form a stair, that is, we havearj+2i ≤ arj+2(i+1)

and
arj+2i+1 ≤ arj+2(i+1)+1

. If zi and zi+K are not positionally
disjoint, all zk for i ≤ k ≤ i +K share the leftmost position
of zi, i.e. they sharearj+2(i−1)

. Therefores is notK-crossing.

We say that a positionx is in betweenthe positionsy and
z whenevery ≤ x ≤ z or z ≤ x ≤ y. We say that the pair of
reversals (or az-motion) (r, s) is nestedinto the pair(r′, s′)
if ar andas are in betweenar′ andas′ .

Lemma 11. Let (ri, rj), with i < j, be a pair of reversals
andz = (r, r′) be az-motion. Ifar is in betweenari andarj ,
andr ∈ {ri+1, rj+1}, or if ar′ is in betweenari andarj , and
r′ ∈ {ri−1, rj−1}, thenz is nested in(ri, rj).

Proof: Suppose thatz = (ri−2, ri−1) (the other cases are
proved similarly). Wlog assumearj ≤ ari , so by hypothesis
we havearj ≤ ari−1 ≤ ari . Then, as a consequence of basic
properties of reversals,ari−1 ≤ ari−2 (becauseari−1 ≤ ari ).
Moreover as(ri−2, ri−1) is a z-motion we haveari−2 ≤ ari .
Therefore we have the inequalities:arj ≤ ari−1 ≤ ari−2 ≤
ari , which means thatz is nested in(ri, rj).

The one-step sequences′ is obtained froms = a1, . . . , an
by removing thez-motionz = ak1 , . . . , ak2 also defined by its
reversals asz = (ri, ri+1), if s′ = a1, . . . , ari , ak2+1, . . . , an.
Note that the sequences′ is a one-step sequence becauses is
one and becauseari = ak2 . The sequences′ has exactly 2 less
reversals thans and each reversal ofs not in z corresponds to
one of the reversals ofs′, eachz-motion z′ = (rj , rj+1) of s
such thatrj , rj+1 /∈ {ri, ri+1} is also az-motion in s′ (up to
an index shift). Note also that positionally disjointz-motions
in s are still positionally disjoint ins′.

We define the functionsqueeze(s) as the function that asso-
ciates to a one-step sequences the set of one-step sequences



that can be obtained froms by removing some pairwise
disjoint z-motions ofs.

We say that a setZ of z-motions ofs is consistentif no two
z-motions ofZ share a reversal, that is, if(r, r′), (s, s′) ∈ Z,
thenr, r′ 6= s andr, r′ 6= s′. The consistent setZ is maximal
if it is not strictly contained into any other consistent setof
z-motions ofs.

Lemma 12. Let s be aK-crossing one-step sequence. IfZ
is a consistent set ofz-motions ofs then there is somes′ ∈
squeezeK(s) that contains noz-motion ofZ.

Proof: Let Z = {z1, z2, . . . }, where thez-motion are
ordered, i.e., ifzi = (r, r + 1) and zi+1 = (s, s + 1) then
r + 1 < s. We defines0 = s, and, for all0 < i ≤ K, si is
obtained fromsi−1 by removingzi, zi+K , zi+2K . . . . Clearly
si+1 ∈ squeezei+1(s) if zi+jK andzi+j′K are disjoint insi.
We consider two cases. Eitherzi+jK and zi+j′K belong to
a sequence ofz-motions inZ that are consecutive ins, in
that case we can apply Lemma 10 which shows that they are
disjoint. Otherwise,zi+jK andzi+j′K do not belong to such
a sequence ofz-motions inZ, that is, there exists a reversal
r that does not appear in anyz-motion of Z and which is
between the second reversal ofzi+jK and the first reversal of
zi+j′K , but then they cannot be consecutive ins′ (they are
also separated byr in s′), so, by definition, they are disjoint.

Proof of Lemma 2: Let s1 = s, and for all i ≥ 1, let
Zi be a maximal consistent set ofz-motions ofsi, andsi+1

be the one-step sequence obtained fromsi by removingZi.
We show that eachz-motion z in Zi has one of its positions
whose crossing ins is at leasti + i′ wherei′ is the crossing
of the corresponding (some shift might be applied) positionin
si+1. This trivially holds fors1 = s, so suppose it holds fori
and let us show it also holds fori + 1. Let r′1, r

′
2, . . . , r

′
l′ be

the reversals ofsi, let z = (r′i′ , r
′
j′) be az-motion in Zi+1

(recall that we abuse notation and refer to the reversals ofsi+1

using the reversals ofsi though there is a shift of index for
some of them). AsZi is maximal,z is not az-motion in si,
so there is az-motion z′ = (r′k, r

′
k+1) ∈ Zi such that one of

the following holds:

• k = i′ + 1 or k = j′ + 1 andar′
k

is in betweenar′
i′

and
ar′

j′

• k = i′ − 2 andar′
k+1

is in betweenar′
i′

andar′
j′

Intuitively the above property states that one of thez-motions,
z′, in Zi must preventz to be az-motion in si, that is,z′ is
somehow ’in’ z. In each of these two cases we can apply
Lemma 11 which states thatz′ is nested inz. By induction
hypothesis, one of the position ofz′ has a crossing number
in s of at leasti + i′, wherei′ is the crossing number of the
corresponding position insi+1. As si+2 is obtained fromsi+1

after removingz, we havei′ ≥ 1+ i′′ wherei′′ is the crossing
number of the corresponding position insi+2. So we have
proved that the crossing number of this position is at least
(i+ 1) + i′′.

To conclude, ass is K-crossing, all positions are at most

K-crossing, therefore the property we just proved implies that
si for i > K has noz-motion, that issi = 1, 2, . . . ,m.
By Lemma 12,K applications ofsqueeze are sufficient to
remove a consistent set ofz-motions, therefore1, 2, . . . ,m is
in squeezeK

2

(s).

B. Proof of Proposition 2

A crossing sequences is repetition-freeif each state occurs
at most once ins. If Q is the set of states ofA, we denote by
CS(Q) the set of repetition-free crossing sequences ofA.

Based on Shepherdson’s construction, it is possible to
construct a one-way automaton whose states are sequences
of states, such that any runρ of A maps to the sequence
of crossing sequences ofρ, and conversely any sequence of
crossing sequences of this automaton maps to a run ofA.
This automaton may have infinitely many states, but it is
well-known it is sufficient to consider repetition-free crossing
sequences of states only [25].

Lemma 13 ([25]). For all 2NFAsA with set of statesQ, it
is possible to construct an equivalent NFACS(A) whose set
of states isCS(Q), and such that for all accepting runsρ′ of
CS(A) on u, there exists an accepting runρ of A on u such
that CS(ρ) = ρ′.

Lemma 14. Let A be a 2NFA with set of statesQ, and
q1, q2 ∈ Q. Let Mq1,q2 be the language of wordsu2 such
that there exists a wordu ∈ L(A), an accepting runρ of A
on u such thatρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 and u2 = u[i1..i2].
ThenMq1,q2 is regular.

Proof: Given two sequences of statess1 and s2, the
languageAccs1,s2 is defined as the set of wordsu2 ∈ Σ∗

such that there exist a wordu ∈ Σ∗, two positionsi1 ≤ i2
such thatu2 = u[i1..i2], and an accepting runρ on u
such thatCS(ρ, i1) = s1 and CS(ρ, i2) = s2. In other
words, s2 is accessible froms1 by u2. It is easy to show
that for all s1, s2, there exists repetition-free sequencess′1, s

′
2

such thatAccs1,s2 = Accs′1,s′2 . Therefore one can consider
repetition-free sequences only. We have seen (Lemma 13) that
one can construct anNFA whose states are the repetition-
free crossing sequences of the runs ofT . An easy reacha-
bility analysis of thisNFA allows one to construct anNFA
Aq1,q2 whose states are repetition-free crossing sequences of
T and such thatMq1,q2 =

⋃

{Accs1,s2 | q1 ∈ s1, q2 ∈
s2, s1, s2 are repetition-free}.

Proof: The transductionLT (q1, q2) is a function, other-
wise T would not be functional.

We define an intermediateZNFT Z ′
T (q1, q2) that mimics

T but starts initially in the stateq1 and whenever it reaches
the state q2, it non-deterministically decides to go to a
fresh accepting stateq′f . Formally, Z ′

T (q1, q2) = (Q ∪
{q′f}, q1, {q

′
f},∆

′) where∆′ = ∆ ∪ {(q2, a, ǫ, q
′
f ,+1) | a ∈

Σ}. Clearly, to any accepting run ofZ ′
T (q1, q2) on a word

u2 ∈ Σ∗ corresponds az-motion run ofT on u2 of the form
ρ′2 = (q1, 1)ρ2(q2, |u2|) and conversely. HoweverZ ′

T (q1, q2)
is too permissive as it does not check thatρ′2 can be embedded



into a global accepting run ofT . We now show how to restrict
the domain ofZ ′

T (q1, q2) to take this further constraint into
account.

By a simple adaptation of Shepherdson’s construction (see
Lemma 14), the languageMq1,q2 of wordsu2 such that there
existsu ∈ dom(T ) and an accepting runρ of T on u such
that ρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 and u2 = u[i1..i2], can be
defined by anNFA Aq1,q2 .The transducerZT (q1, q2) is finally
defined asZ ′

T (q1, q2) where during the third and last pass, it
also checks that the input word is inMq1,q2 by runningAq1,q2

in parallel via a product construction.
Let us briefly explain why this construction is correct.

Suppose that(u2, v) ∈ ZT (q1, q2). We haveu2 ∈ Mq1,q2 ,
therefore there existu ∈ Σ∗ and two positionsi1 < i2 such
that u2 = u[i1..i2], and an accepting runρ of T of the
form ρ1(q1, i1)ρ2(q2, i2)ρ3. The subrun(q1, i1)ρ2(q2, i2) is
not necessarily az-motion, and it does not necessarily outputs
v. However since(u2, v) ∈ ZT (q1, q2), we also have that
(u2, v) ∈ Z ′

T (q1, q2), and therefore there exists az-motion
run ρ′ of T from q1 to q2 on u2. One can therefore substitute
(q1, i1)ρ2(q2, i2) by ρ′ in ρ (modulo a shift of the positions
occurring in ρ′), and one gets a new runγ = ρ1ρ

′ρ2. The
run γ is still an accepting run ofT on u, and therefore
(u2, v) ∈ LT (q1, q2). The converse is easy by applying the
definitions.

C. Proof of Lemma 4

Proof: As in the proof of Proposition 2, we consider only
the transductionsLT (q1, q2), the other case being solved by
using the equalityRT (q1, q2) = LT (q1, q2). Let Z ∈ ZNFT
that definesLT (q1, q2) for someq1, q2 and suppose thatT is
NFT-definable. By Lemma 3 we have to show thatZ |= P . Let
u ∈ dom(Z) of lengthn andρ = (p1, 1) . . . (pn, n)(qn−1, n−
1) . . . (q1, 1)(r2, 2) . . . (rn+1, n+1) an accepting run ofZ on
u. Let (i1, j1) and(i2, j2) be two loops ofρ such thatj1 ≤ i2.
These loops induce a decomposition of the input wordu as
u = u1u2u3u4u5 with u2 = u[i1..j1 − 1] andu4 = u[i2..j2 −
1].

As (i1, j1) and (i2, j2) are loops inρ, for any k1, k2 ≥ 0,
we haveu1u

k1
2 u3u

k2
4 u5 ∈ dom(Z). By definition of the

transductionLT (q1, q2), any word in dom(Z) can be ex-
tended into a word indom(T ). Thus, for anyk1, k2 ≥ 0,
there existsαk1,k2 , α

′
k1,k2

∈ Σ∗ such that u(k1, k2) =

αk1,k2u1u
k1
2 u3u

k2
4 u5α

′
k1,k2

∈ dom(T ).
In addition, by assumption,T is NFT-definable and thus

there exists anNFT T ′ such thatT ≡ T ′. We consider such
an NFT T ′, and denote byN its number of states. Let us
considerk1 = k2 = N + 1. There exists an accepting run
ρ′ of T ′ on the wordu(k1, k2). Consider the state in which
is this run just before thei-th iteration of the wordu2, for
i ∈ {1, . . . , k1}. As k1 = N + 1, two of these states must be
equal. A similar reasoning can be done for the powers of the
word u4. As a consequence, there exist constantsci, c

′
i ≥ 0

with i ∈ {1, 2, 3} such thatc2, c′2 > 0 and the wordu(k1, k2)

can be decomposed as follows:

u(k1, k2) = αk1,k2u1u
c1
2 uc2

2 uc3
2 u3u

c′1
4 u

c′2
4 u

c′3
4 u5α

′
k1,k2

with the property thatρ′ contains two loops on the input
subwordsuc2

2 anduc′2
4 .

To conclude, we letβ1 (resp. β2, β3, β4, β5) be the
output produced byρ′ on the input subwordu1u

c1
2 (resp.uc2

2 ,
uc3
2 u3u

c′1
4 , uc′2

4 , uc′3
4 u5), andf(k1, k2) (resp.g(k1, k2)) be the

output produced byρ′ on the input subwordα(k1, k2) (resp.
α′
k1,k2

).

D. Definition ofsqueeze(T )

We let LT (q1, q2) = (Qq1,q2 , qq1,q20 , F q1,q2 ,∆q1,q2) and
RT (q1, q2) = (P q1,q2 , pq1,q20 , Gq1,q2 ,Γq1,q2) for all q1, q2 ∈ Q.

We let squeeze(T ) = (Q′, Q′
0, F

′,∆′) and show formally
how to construct it. For more convenience here we assume
that squeeze(T ) can have a set of initial states. It will be
easy to transform it into a (usual)2NFT. We let Q′ = Q ⊎
⊎

{Qq1,q2⊎P q1,q2 | q1, q2 ∈ Q}, Q′
0 = {q0}∪{q

q1,q2
0 | q1, q2 ∈

Q} ∪ {pq1,q20 | q1, q2 ∈ Q}, F ′ = F and∆′ is the least set
satisfying for allq1, q2 ∈ Q:

• ∆ ⊎
⊎

q1,q2∈Q ∆q1,q2 ⊆ ∆′;
• ∀(p, a, v, q1,m)∈∆, (p, a, v, qq1,q20 ,m)∈∆′;
• ∀q ∈ F q1,q2 , ∀(p, a, v, q,+1) ∈ ∆q1,q2 ,

∀(q2, a, v
′, q3,m) ∈ ∆, (p, a, vv′, q3,m) ∈ ∆′

• ∀q ∈ F q1,q2 , ∀(p, a, v, q,+1) ∈ ∆q1,q2 ,
∀(q2, a, v′, q3,m) ∈ ∆, for all q4 ∈ Q,
(p, a, vv′, qq3,q40 ,m) ∈ ∆′

• ∀q ∈ F q1,q2 , ∀(p, a, v, q,+1) ∈ ∆q1,q2 ,
∀q3 ∈ Q, ∀(qq2,q30 , a, v′, q′,m) ∈ ∆q2,q3 ∪ Γq2,q3 ,
(p, a, vv′, q′,m) ∈ ∆′

and similarly:

•
⊎

q1,q2∈Q Γq1,q2 ⊆ ∆′;
• ∀(p, a, v, q1,m)∈∆, (p, a, v, pq1,q20 ,m)∈∆′;
• ∀q ∈ Gq1,q2 , ∀(p, a, v, q,−1) ∈ Γq1,q2 ,

∀(q2, a, v′, q3,m) ∈ ∆, (p, a, vv′, q3,m) ∈ ∆′

• ∀q ∈ Gq1,q2 , ∀(p, a, v, q,−1) ∈ Γq1,q2 ,
∀(q2, a, v′, q3,m) ∈ ∆, for all q4 ∈ Q,
(p, a, vv′, qq3,q40 ,m) ∈ ∆′

• ∀q ∈ Gq1,q2 , ∀(p, a, v, q,−1) ∈ Γq1,q2 ,
∀q3 ∈ Q, ∀(qq2,q30 , a, v′, q′,m) ∈ ∆q2,q3 ∪ Γq2,q3 ,
(p, a, vv′, q′,m) ∈ ∆′

E. Proof of Proposition 3

Proof: Since squeeze(T ) contains T as a subtrans-
ducer, we haveR(T ) ⊆ R(squeeze(T )). Let us show that
R(squeeze(T )) ⊆ R(T ). Let (u, v) ∈ R(squeeze(T )). There-
fore there exists an accepting runρ of squeeze(T ) on u that
outputsv. We are going to construct an accepting run ofT
on u that outputsv, this can be done by induction on the
number of timesρ goes inZ-mode. If it never does so,ρ is
accepting run ofT and we are done. Otherwise suppose that
ρ goes at least once inZ-mode for someq1, q2 ∈ Q. Note
that the set∆′ consists of∆, the sets∆p,q andΓp,q for all



p, q ∈ Q, and new transitions of three kinds (of the form
(p, a, vv′, q3,m), (p, a, vv′, qq3,q40 ,m) and (p, a, vv′, q′,m) in
the definition). Consider the first use of such a transitiont in
ρ. One can decomposeρ asρ1ρ2tρ3 whereρ1 is in T-mode,
ρ2 in Z-mode, and assume thatρ2t is a forward run on a factor
u2 of u (the case of a backward run is symmetric).

Let us inspect the case wheret = (p, a, vv′, q3,m). The
other two cases (depending on the form oft) are proved
similarly. Suppose thatp ∈ Qq1,q2 . Then it means that
(u2, v) ∈ LT (q1, q2), and therefore one can easily reconstruct
a z-motion runρ′2 of T on u2 from q1 to q2 that outputsv.
Then by definition of∆′, we know that there exists a transition
from q2 to q3 that producesv′. By induction we can also
transformρ3 into a runρ′3 of T that ends in an accepting state
and outputs the same word. Thereforeρ′1ρ

′
2(q2, a, v

′, q3,m)ρ′3
is an accepting run ofT on u that outputs the same word as
ρ. Therefore(u, v) ∈ R(T ).

APPENDIX B
COMPLEMENTS TOSECTION IV

A. Technical results

Lemma 15. Let Σ,Γ,Λ be three finite alphabets,Ψ a mor-
phism fromΓ to Σ∗ and Φ a morphism fromΓ to Λ. Let
M = max{|Ψ(γ)| | γ ∈ Γ}. For all words u ∈ Γ∗,
if |Ψ(u)| > (|Λ| + 1).M , then there exist two positions
1 ≤ k1 < k2 ≤ |u| such that6:

1) |Ψ(u[1..(k1 − 1)])| ≤ (|Λ|+ 1).M
2) 1 ≤ |Ψ(u[k1..(k2 − 1)])| ≤ (|Λ|+ 1).M
3) Φ(u[k1]) = Φ(u[k2]).

Proof: Let L(u) be the set ofloops that are strictly
contained inu, i.e. L(u) = {(i, j) | 1 ≤ i < j ≤ |u|, (i 6=
1) ∨ (j 6= |u|), Φ(u[i]) = Φ(u[j])}. We first show the
following by induction on|u|:

(i)







|Ψ(u)| > (|Λ|+ 1).M
=⇒

∃(i, j) ∈ L(u), 1 ≤ |Ψ(u[i..j])| ≤ (|Λ|+ 1).M

If |u| = 0 (resp. |u| = 1) then |Ψ(u)| = 0 (resp. |Ψ(u) ≤
M ) and therefore the above implication is obviously satisfied.
Otherwise suppose that|u| > 0 and |Ψ(u)| > (|Λ| + 1).M .
Therefore we have|u| > |Λ|+1 ≥ 2, and|u[2..|u|]| > |Λ|, and
so by the pigeon-hole principle there exist two positionsi < j
in u[2..|u|] such thatΦ(u[i]) = Φ(u[j]), so thatL(u) 6= ∅.

Suppose that for all(i, j) ∈ L(u), Ψ(u[i..(j−1)]) = ǫ. If we
remove maximally fromu all the factors ofu from positioni to
position(j−1) for all (i, j) ∈ L(u), one obtains a wordv such
thatL(v) = ∅ and|Ψ(v)| = |Ψ(u)| > (|Λ|+1).M . Moreover
|v| ≤ |Λ| + 1 sinceL(v) = ∅, but this contradicts|Ψ(v)| >
(|Λ|+1).M by definition ofM . SinceL(u) 6= ∅, we get the
existence of(i0, j0) ∈ L(u) such thatΨ(u[i0..(j0 − 1)]) 6= ǫ.
If |Ψ(u[i0..(j0− 1)])| ≤ (|Λ|+1).M we are done. Otherwise,
since |u[i0..(j0 − 1)]| < |u|, by induction hypothesis we get
the existence of a pair(i∗, j∗) ∈ L(u[i0..(j0 − 1)]) such that

6In this Lemma, ifk1 = 1 then we letu[1..(k1 − 1)] = ǫ

1 ≤ |Ψ(u[i0..(j0 − 1)][i∗..(j∗ − 1)])| ≤ (|Λ| + 1).M , from
which we can conclude by takingi = i∗ + i0 − 1 and j =
j∗ + i0 − 1 (note that(i, j) ∈ L(u)).

This shows items(2) and (3) of the Lemma. Again by
induction on |u| and by using(i), we prove the lemma.
If |u| = 0 or |u| = 1, then the implication obviously
holds. Otherwise assume that|Ψ(u)| > (|Λ| + 1).M . By
(i) there exists(k1, k2) ∈ L(u) that satisfies(2) and (3). If
|Ψ(u[1..(k1 − 1)])| ≤ (|Λ|+ 1).M we are done, otherwise by
induction hypothesis, there exists(k′1, k

′
2) ∈ L(u[1..(k1− 1)])

which satisfies(1), (2) and(3), from which we can conclude.

Lemma 16. Let T ∈ ZNFT with m states. Leto be the
maximal length of an output word in a transition ofT and
K = 2.o.m3.|Σ|. Let ρ be a run on a wordu of length
n. We write ρ as the sequence(p1, 1) . . . (pn, n)(qn−1, n −
1) . . . (q1, 1)(r2, 2) . . . (rn+1, n + 1) and let qn = pn and
r1 = q1. Let 1 ≤ k < ℓ ≤ n such that|out2[k, ℓ]| > K.
There exists a loop(i, j) in ρ such thatk ≤ i < j ≤ ℓ and

1) |out2[k, i]| ≤ K
2) 1 ≤ |out2[i, j]| ≤ K.

Proof: We show this result by using Lemma 15.

We consider the alphabet∆3 × Σ, where∆ denotes the
set of transitions ofT . Given a triple of transitionsθ =
((sℓ, aℓ, uℓ, s

′
ℓ)1≤ℓ≤3), and a lettera ∈ Σ, we define the map-

pingsΨ andΦ asΨ(θ, a) = u2 andΦ(θ, a) = (s1, s2, s3, a).
Then, we associate to the runρ, considered between positions
k andℓ, a word over this alphabet of lengthℓ−k, indexed from
k to ℓ − 1, and defined asη = (σm)k≤m≤ℓ−1, whereσm is
composed of the three transitions used respectively to go from
configuration(pm,m) to configuration(pm+1,m + 1), from
configuration(qm+1,m + 1) to configuration(qm,m), and
from configuration(rm,m) to configuration(rm+1,m + 1),
and of the letteru[m].

Using these definitions, we haveΨ(η) = out2[k, ℓ], and,
for any k ≤ m ≤ ℓ − 1, Φ(σk) = (pk, qk, rk, u[k]). Then it
suffices to apply Lemma 15 to get the result.

Lemma 17. Let x, y, z, t ∈ Σ∗ such thatx 6= ǫ and y 6= ǫ.
Suppose that for alli ≥ 0, xiyzi is a prefix oftω. Then there
existsα1, α2 ∈ Σ∗ such thatx ∈ (α1α2)

∗, z ∈ (α2α1)
∗ and

xyz ∈ α1(α2α1)
∗.

Proof: By Lemma 1µ(x) ∼ µ(t) andµ(z) ∼ µ(t), there-
fore µ(x) ∼ µ(z), i.e. there existsα1, α2 with x ∈ (α1α2)

∗

and z ∈ (α2α1)
∗. Moreover asxi is a prefix of tω for all

i > 0, clearlyµ(t) = µ(x) = α1α2.

Now let xyz = (α1α2)
kα a prefix of (α1α2)

ω and let us
show thatα = α1. So supposeαβ = α1 (the other case when
α1β = α is proved similarly). Thereforez = (α2α1)

a =
(α2αβ)

a but alsoxyz = (α1α2)
kα implies thatz = (βα2α)

a.
Soβα2α = α2αβ which meansα1α2 is not primitive ifβ 6= ǫ.



B. Proof of Proposition 4

Proof: • If |out2[1, n− 1]| ≤ K, then clearly, it suffices
to takeℓ = n, t1 = out2[n−1, n], t2 = ε, t3 = out2[0, n−1],
w = out1[1, n] andw′ = out3[1, n+ 1].
• Otherwise,|out2[1, n − 1]| > K. Thereforeu is of length
2.m3.|Σ| at least and there exists necessarily a (non-empty)
loop (i, j) in ρ. We can always choose this loop such that
|out2[1, i]| ≤ K and1 ≤ |out2[i, j]| ≤ K (see Lemma 16).

The loop partitions the input and output words into factors
that are depicted in Fig. 5 (only the two first passes are de-
picted). Formally, letu = u1u2u3 such thatu2 = u[i..(j−1)].
Let x0 = out1[1, i], v1 = out1[i, j], x1 = out1[j, n]out2[j, n],
v2 = out2[i, j], x2 = out1[1, i], x3 = out3[1, i], v3 =
out3[i, j] andx4 = out3[j, n+1]. In particular, we have|x2| ≤
K, 1 ≤ |v2| ≤ K andx0v1x1v2x2x3v4x4 ∈ T (u). Since(i, j)
is a loop we also getx0v

k
1x1v

k
2x2x3v

k
3x4 ∈ T (u1u

k
2u3) for

all k ≥ 0.
We then distinguish two cases:

1) If v1 6= ǫ. We can apply PropertyP by taking the second
loop empty. We get that for allk ≥ 0

f(k)x0v
kc+c′

1 x1v
kc+c′

2 x2x3v
kc+c′

3 x4g(k) = β1β
k
2β3

wheref, g : N → Σ∗, c ∈ N>0, c′ ∈ N, andβ1, β2, β3 ∈
Σ∗. Since the above equality holds for allk ≥ 0, we
can apply Lemma 1 and we getµ(v1) ∼ µ(β2) and
µ(β2) ∼ µ(v2), and thereforeµ(v1) ∼ µ(v2). So there
exist x, y ∈ Σ∗ such thatv1 ∈ (xy)∗ and v2 ∈ (yx)∗.
By Lemma 17, we obtain thatv1x1v2 ∈ x(yx)∗. Then
it suffices to takeℓ = i, w = x0, t1 = x, t2 = yx and
t3 = x2 to conclude the proof.

2) Otherwise, we havev1 = ǫ. We decomposex1 asx1 =
y1y2 wherey1 = out1[j, n] andy2 = out2[j, n].
We again distinguish two cases:

a) We first consider the case when|y1| =
|out1[j, n]| > K. In this case, we can as before
decompose the input wordu[j..n] to identify a
loop. More precisely, there exists a loop(r, s) in
ρ such thatr ≥ j, |out1[j, r]| < K and 1 ≤
|out1[r, s]| ≤ K. This loop gives a decomposition
of u3 asu4u5u6 . We will then apply PropertyP to
the two loops(i, j) and(r, s). The loop(r, s) gives
a decomposition ofy1 asz0w1z1, y2 asz2w2z3 and
x4 asz4w3z5. By PropertyP , there exist wordsβi,
i ∈ {1, . . . , 5}, andc1, c′1, c2, c

′
2, f, g such that, for

all k1, k2 ≥ 0,

f(k1, k2)x0v
η1

1 z0w
η2

1 z1z2w
η2

2 z3v
η1

2 x2

x3v
η1

3 z4w
η2

3 z5g(k1, k2) = β1β
k1
2 β3β

k2
4 β5

whereηi = kici+c′i, i ∈ {1, 2}. Recall thatw1 6= ε
and v2 6= ε. As a consequence, we can, using
sufficiently large values ofk1 andk2 and applying
Lemma 1, prove thatµ(w1) ∼ µ(β4), thatµ(v2) ∼
µ(β4), and thus deduce thatµ(w1) ∼ µ(v2).
Therefore there existx, y such thatv2 ∈ (yx)∗

and w1 ∈ (xy)∗ from which we deduce that

w1z1z2w2z3v2 ∈ x(yx)∗. Recall that by the choice
of the loop(r, s) we have|z0| ≤ K. We can thus
define ℓ = i, w = x0, t1 = z0x, t2 = yx and
t3 = x2 to obtain the result.

b) The last case is when|y1| = |out1[j, n]| ≤ K.
We consider the length ofy2 = out2[j, n]. First
observe that if we have|y2| ≤ K then we are done.
Indeed, we can defineℓ = j, t1 = y1, t2 = y2 and
t3 = v2x2. It is routine to verify that the conditions
of PropertyP1 are fulfilled.
We thus suppose that|y2| > K. In this case, we can
as before identify a loop(r, s) in the runρ such that
r ≥ j, out2[s, n] ≤ K and1 ≤ out2[r, s] ≤ K. We
do not give the details, but one can apply Property
P to the two loops(i, j) and(r, s) and use the fact
that out2[i, j] 6= ε andout2[r, s] 6= ε to prove that
µ(out2[i, j]) ∼ µ(out2[r, s]). Then, there existx, y
such thatout2[r, s] ∈ (xy)∗ andout2[i, j] ∈ (yx)∗

from which we deduce thatout2[i, s] ∈ (xy)∗x.
Finally, we let ℓ = i, w = x0, t1 =
out1[i, n]out2[s, n], t2 = xy and t3 = xx2 to
obtain the result.

C. From ǫZNFT to NFT

We state the following Lemma whose proof is similar to
that of Lemma 16:

Lemma 18. Let T ∈ ZNFT with m states. Leto the
maximal length of an output word in a transition ofT and
K = 2.o.m3.|Σ|. Let ρ be a run on a wordu of length
n. We write ρ as the sequence(p1, 1) . . . (pn, n)(qn−1, n −
1) . . . (q1, 1)(r2, 2) . . . (rn+1, n + 1) and let qn = pn and
r1 = q1. Let two indices1 ≤ i ≤ j ≤ n. Then, we have:

1) if |out3[i, j]| > K, there exists a loop(k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out3[i, k1]| ≤ K
b) 1 ≤ |out3[k1, k2]| ≤ K

2) if |out3[i, j]| > K, there exists a loop(k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out3[k2, j]| ≤ K
b) 1 ≤ |out3[k1, k2]| ≤ K

3) if |out1[i, j]| > K, there exists a loop(k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out1[i, k1]| ≤ K
b) 1 ≤ |out1[k1, k2]| ≤ K

4) if |out1[i, j]| > K, there exists a loop(k1, k2) in ρ with
i ≤ k1 < k2 ≤ j such that

a) |out1[k2, j]| ≤ K
b) 1 ≤ |out1[k1, k2]| ≤ K

Proof of Proposition 6
Proof: We let T = (Q, q0, F,∆) andK = 2.o.m3.|Σ|.

Recall that asT ′ ∈ ǫZNFT, we haveout2[1, n] = ǫ.
Let us define the positionℓ as the largest positive integer

less than or equal ton such thatout1[ℓ, n] = ǫ.



out1

out3

1 k1 = ℓ1 k2 ℓ = ℓ2 n

≤ K

x2 6= ǫ z w′

≤ K

w x1 6= ǫ ǫ

Fig. 7. Decomposition of the output for case I.1)

We first observe that if|out3[1, ℓ]| ≤ K, then we are done,
by consideringℓ1 = ℓ2 = ℓ. Indeed, we then considerw =
out1[1, ℓ], w′ = out3[ℓ, n+1], t1 = out3[1, ℓ], andt2 = t3 =
ǫ.

Thus, we now suppose that we have|out3[1, ℓ]| > K. In
this case, we can apply Lemma 18, case1): there exists a loop
(k1, k2) such that|out3[1, k1]| ≤ K and1 ≤ |out3[k1, k2]| ≤
K.

We again distinguish two cases:
Case I: |out3[k2, ℓ]| ≤ K. For this case, we again distinguish
three cases, depending on the value ofout1[k1, k2] and on the
length of |out1[k2, ℓ]| ≤ K:

1) if we haveout1[k1, k2] 6= ǫ. We will prove that the
output wordout1[k1, n]out3[1, ℓ] has the expected form
(t1t∗2t3). Therefore we use theP-property on the loop
(k1, k2) with an additional empty loop. We define:

w = out1[1, k1]
x1 = out1[k1, k2]
y = out1[k2, n]out3[1, k1]
x2 = out3[k1, k2]
z = out3[k2, ℓ]
w′ = out3[ℓ, n+ 1]

PropertyP entails that there existβ1, β2, β3, f, g, c, c
′

such that, for allk ≥ 0,

f(k)wxkc+c′

1 yxkc+c′

2 zw′g(k) = β1β
k
2β3

As we havex1 6= ǫ, and x2 6= ǫ, this entails, thanks
to the fundamental lemma (Lemma 1), thatµ(x1) ∼
µ(x2). Let t2 be µ(x1). We can writet2 = z1z2 and
µ(x2) = z2z1. As a consequence, we obtain thatx1yx2

is of the form t∗2.z1 by Lemma 17. We can thus set
t1 = ǫ, t3 = z1.z, ℓ1 = k1 and ℓ2 = ℓ. It is routine to
verify that wordsw,w′, t1, t2, t3 verify the conditions of
P2-property.
This case is depicted on Figure 7.

2) if we have out1[k1, k2] = ǫ and |out1[k2, ℓ]| ≤ K.
We will show that the result is easy. Indeed, consider
ℓ1 = k1, ℓ2 = ℓ, t1 = out1[k1, n]out3[1, k1], t2 =
out3[k1, k2], andt3 = out3[k2, ℓ]. It is routine to verify
that all the requirements ofP2-property are met.
This case is depicted on Figure 8.

3) last, if we haveout1[k1, k2] = ǫ and |out1[k2, ℓ]| > K.
In this case, we will have to identify a loop in this part
([k2, ℓ]) of the input word, to prove the expected form of

out1

out3

1 k1 = ℓ1 k2 ℓ = ℓ2 n

≤ K

b t2 6= ǫ t3

≤ K

ǫ a

≤ K

ǫ

t1 = ab

Fig. 8. Decomposition of the output for case I.2)

out1

out3

1 k1 = ℓ1 k2 j1 j2 ℓ = ℓ2 n

t3

≤ K

x2 6= ǫ z1 z2 z3 w′

≤ K

t1
w ǫ x1 6= ǫ ǫ

≤ K

Fig. 9. Decomposition of the output for case I.3)

the output words. Formally, we apply Lemma 18 as we
did before, except that we are interested in the output
produced in the first pass of theZNFT, and not in that
produced in the third pass. We thus apply case3) of
Lemma 18. We can thus exhibit a loop(j1, j2) with
k2 ≤ j1 < j2 ≤ ℓ− 1 such that|out1[k2, j1]| ≤ K and
1 ≤ |out1[j1, j2]| ≤ K.
We are now ready to prove that the output word
out1[k1, n]out3[1, ℓ] has the expected form (t1t∗2t3). To
this aim, we define:

u1 = u[1, k1 − 1] w = out1[1, k1]
u2 = u[k1, k2 − 1] t1 = out1[k1, j1]
u3 = u[k2, j1 − 1] x1 = out1[j1, j2]
u4 = u[j1, j2 − 1] y = out1[j2, n]out3[1, k1]
u5 = u[j2, ℓ− 1] x2 = out3[k1, k2]
u6 = u[ℓ, n] z1 = out3[k2, j1]

z2 = out3[j1, j2]
z3 = out3[j2, ℓ]
w′ = out3[ℓ, n+ 1]

As (k1, k2) and(j1, j2) are loops, we can apply Property
P . Using the fundamental lemma, we can deduce that
µ(x1) ∼ µ(x2), using a reasoning similar to that of the
proof of Proposition 4. Thus, we can sett2 = µ(x1), and
write t2 = α1α2 such thatµ(x2) = α2α1, from which
we deducex1yx2 ∈ t∗2α1 (Lemma 17). Finally, we let
z = z1z2z3, t3 = α1z, ℓ1 = k1 and ℓ2 = ℓ. The reader
can verify that all the requirements ofP2-property are
met.
This case is depicted on Figure 9.

Case II: we have |out3[k2, ℓ]| > K. We distinguish three
cases, according to the length of the wordout1[k2, ℓ], and
to the value ofout1[k1, k2]:

1) if we have|out1[k2, ℓ]| ≤ K, we distinguish two cases:

a) We first consider the case whenout1[k1, k2] = ǫ.



out1

out3
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Fig. 10. Decomposition of the output, case II.1).a)
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≤ K

6= ǫ

w′
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≤ K

ǫ

Fig. 11. Decomposition of the output for case II.1).b)

In this case, we can simply defineℓ1 = ℓ2 = k1,
and verify that the conditions of theP2-property
are met. This case is depicted on Figure 10.

b) The second case is whenout1[k1, k2] 6= ǫ. This
case is easy as we can show thatµ(out1[k1, k2]) ∼
µ(out3[k1, k2]), and deduce the expected form for
the output words, by settingℓ2 = k2. This case is
depicted on Figure 11.

2) if we have|out1[k2, ℓ]| > K and out1[k1, k2] 6= ǫ. As
|out1[k2, ℓ]| > K, we can apply Lemma 18, case4), to
identify a loop(j1, j2) such that|out1[j2, ℓ]| ≤ K and
1 ≤ |out1[j1, j2]| ≤ K. In this case, we setℓ1 = k1 and
ℓ2 = j2.
There are three cases, according toout3[j1, j2] and
out3[k2, j1]:

a) We first consider the case whenout3[j1, j2] 6=
ǫ. In this case, using PropertyP , we can
show thatµ(out1[k1, k2]) ∼ µ(out1[j1, j2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[j1, j2]). This allows to
prove the expected form of the output words.

b) Second, we suppose thatout3[j1, j2] = ǫ and that
out3[k2, j1] ≤ K. In this case, we can use the
word t3 to cover the output wordout3[k2, j1]. Last,
using a reasoning on word combinatorics, we can
prove thatµ(out1[k1, k2]) ∼ µ(out1[j1, j2]) ∼
µ(out3[k1, k2]) and conclude.
Cases a) and b) are depicted on Figure 12.

c) Last, we consider the caseout3[j1, j2] = ǫ
and out3[k2, j1] > K. By Lemma 18, case
2), there exists a loop(p1, p2) included in
the interval [k2, j1] such that |out3[p2, j1]| ≤
K and 1 ≤ |out3[p1, p2]| ≤ K. We claim
that the result holds. The only difficult prop-
erty is the fact the output word has the ex-
pected form (t1t∗2t3). This can be proven using

out1

out3

1 k1 = ℓ1 k2 j1 j2 = ℓ2 ℓ n

≤ K

6= ǫ

≤ K

6= ǫ

6= ǫ 6= ǫ ǫ

≤ K

OR

Fig. 12. Decomposition of the output for case II.2).a) and b)
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≤ K

6= ǫ 6= ǫ

w ǫ

≤ K

6= ǫ ǫ

t1

≤ K

conjugate

Fig. 13. Decomposition of the output for case II.3).a),out3[j1, j2] 6= ǫ

word combinatorics, by showing, using the Prop-
erty P , that µ(out1[k1, k2]) ∼ µ(out1[j1, j2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[p1, p2]).

3) last, if we have|out1[k2, ℓ]| > K andout1[k1, k2] = ǫ.
We first let ℓ1 = k1. As we have|out1[k2, ℓ]| > K, we
can apply Lemma 18, case3), to identify a loop(j1, j2)
included in the interval(k2, ℓ) such that|out1[k2, j1]| ≤
K and 1 ≤ |out1[j1, j2]| ≤ K. We distinguish two
cases:

a) if |out1[j2, ℓ]| ≤ K. We define ℓ2 = j2. We
consider the value ofout3[j1, j2].
If we have out3[j1, j2] 6= ǫ, then we can
conclude. Indeed, using word combinatorics, we
can proveµ(out1[j1, j2]) ∼ µ(out3[k1, k2]) ∼
µ(out3[j1, j2]) and prove that the output word
out1[k1, n]out3[1, j2] has the expected form. This
case is depicted on Figure 13.
Otherwise, we haveout3[j1, j2] = ǫ. For this case
we distinguish two cases:

i) if out3[k2, j1] ≤ K: we can conclude directly.
Indeed, it is easy to show thatµ(out1[j1, j2]) ∼
µ(out3[k1, k2]). The word out3[k2, j2] is not
necessarily conjugated with the previous words,
but its length is less thanK by hypothesis, thus
we can use the wordt3 to handle this part of
the output. This case is depicted on Figure 14.

ii) if out3[k2, j1] > K: we will apply Lemma 18,
case2), to identify a loop(p1, p2) included in
the interval(k2, j1) such that|out3[p2, j1]| ≤
K and 1 ≤ |out3[p1, p2]| ≤ K. Then we can
prove thatµ(out1[j1, j2]) ∼ µ(out3[k1, k2]) ∼
µ(out3[p1, p2]) and conclude.

b) if |out1[j2, ℓ]| > K. We can apply Lemma 18,
case4), to identify a loop(p1, p2) included in the
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Fig. 14. Decomposition of the output for case II.3).a).i)

interval(j2, ℓ) such that|out1[p2, ℓ]| ≤ K and1 ≤
|out1[p1, p2]| ≤ K. In the sequel, we letℓ2 be p2
and ℓ1 be k1. We let α = out3[p1, p2] andα′ =
out3[j1, j2]. The situation is depicted on Figure 15.
We distinguish five cases:
i) if α 6= ǫ, we conclude easily by show-

ing that µ(out1[j1, j2]) ∼ µ(out1[p1, p2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[p1, p2]).

ii) if α = ǫ and |out3[j2, p1]| > K: we can
identify a loop in ρ, included in the interval
[j2, p1], such thatout3 is non-empty on this
loop. We can then derive the result.

iii) if α = ǫ, |out3[j2, p1]| ≤ K and
α′ 6= ǫ, then we can show that
µ(out1[j1, j2]) ∼ µ(out1[p1, p2]) ∼
µ(out3[k1, k2]) ∼ µ(out3[j1, j2]), and
conclude as the outputout3[j2, p2] has length
less thanK (t3 can be defined so as to cover
these words).

iv) if α = ǫ, |out3[j2, p1]| ≤ K, α′ = ǫ and
|out3[k2, j1]| > K, we can identify a loop
inside the interval[k2, j1]. This loop can be
used to prove the result, as we know that the
length of the wordout3[j1, p2] is less thanK.

v) else, i.e. if α = ǫ, |out3[j2, p1]| ≤ K, α′ = ǫ
and |out3[k2, j1]| ≤ K, then we are done ast3
can be defined asout3[k2, p2].

Construction of T ′′ from T ′

We provide here some additional details for the definition
of the NFT T ′′ from the ǫZNFT T ′.

First, the transducerT ′′ should, in a single forward pass,
simulate the three passes (forward, backward, and forward)
of T ′. Therefore it maintains a triple of states ofT ′ and the
current symbol.

Second, it uses three modes: before the guess of position
ℓ1, between positionsℓ1 andℓ2, and after positionℓ2.

Third, it should guess the words of bounded lengtht1, t2
and t3, and two additional wordsx andy of bounded length
(≤ 3.K) which intuitively correspond to wordsout3[1, ℓ1] and
out1[ℓ2, n] (see propertyP2).

Last, it verifies in the different modes that the output
has the expected form, and produces in a forward manner
the overall output word. Therefore it distinguishes between
different cases, whethert1 is a prefix ofout1[ℓ1, ℓ2] or whether

t1 also coversout1[ℓ2, n] or out3[1, ℓ1], or evenout3[ℓ1, ℓ2]. It
manipulates pointers in the different words of bounded length
it has guessed to verify the form of the output, and to produce
the correct output, as we did in the construction ofT ′.

APPENDIX C
LOWER BOUND

Lemma 19. (2DFT, NFT)-definability is PSpace-Hard.

Proof: Considern DFAs A1, . . . , An. Let us define the
following transduction (where# 6∈ Σ):

T : u 7→

{

u1 if u = #u1#u2# andu2 ∈
⋂

i L(Ai)
undefined otherwise.

Clearly,T is definable by a2DFT. It suffices to first perform
n back and forth non-producing passes onu to determine
whetheru2 ∈

⋂

i L(Ai), and then a last backward pass to
reverseu1.

Then,T is NFT-definable iffdom(T ) = ∅ iff
⋂

i L(Ai) =
∅. Indeed, if dom(T ) = ∅ then T is obviously NFT-
definable. Otherwise, there existsu2 ∈

⋂

i L(Ai), and there-
fore #Σ∗#u2# ⊆ dom(T ). If T is NFT-definable, then so
would be the reverse operation. Contradiction.
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Fig. 15. Decomposition of the output for case II.3).b)
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