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Abstract

We solve a problem, stated in [CGP10a], showing that Sticky Datalog∃,
defined in the cited paper as an element of the Datalog± project, has the
Finite Controllability property. In order to do that, we develop a tech-
nique, which we believe can have further applications, of approximating
Chase(T ,D), for a database instance D and a set of tuple generating
dependencies and Datalog rules T , by an infinite sequence of finite struc-
tures, all of them being models of T and D.

1 Introduction

Tuple generating dependencies (TGDs), recently also known as Datalog∃ rules,
are studied in various areas, from database theory to description logics and in
various contexts. The context we are interested in here is computing certain
answers to queries in the situation when some semantical information about
the database is known (in the form of theory T , consisting of TGDs), but the
knowledge of the database facts is limited, so that the known set of facts D does
not necessarily satisfy the dependencies of T .

It is easy to see that query answering in presence of TGDs is undecidable. As
usually in such situations many sorts of syntactic restrictions on the dependen-
cies are considered, which imply decidability while keeping as much expressive
power as possible. Recent new interest in such restricted logics comes from the
Datalog± project, led by Georg Gottlob, whose aim is translating concepts and
proof techniques from database theory to description logics and bridging an ap-
parent gap in expressive power between database query languages and description
logics (DLs) as ontology languages, extending the well-known Datalog language
in order to embed DLs [?].

From the point of view of Datalog± and of this paper, the interesting logics
are:

∗This is the full version of an extended abstract published in the LICS 2013 proceedings
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Linear Datalog∃ programs. They consist of TGDs which, as the body, have a
single atomic formula, and this formula is joinless – each variable in the body
occurs there only once. Let us note that allowing variable repetitions in the
heads does not change the Finite Controllability status of a program, as we
can always remember the equalities as part of the relation name, so we w.l.o.g.
assume that such repetitions are not allowed (see Section 5 for much more about
this issue). The Joinless Logic we consider in this paper is a generalization
of Linear Datalog∃, in the sense that we no longer restrict the body of the rule
to be a single atom, but we still demand that each variable occurs in the body
only once1

Guarded Datalog∃ is an extension of Linear Datalog∃. A TGD is guarded if
it has an atom, in the body, containing all the variables that occur anywhere
else in the body. Clearly, Linear Datalog∃ programs are guarded, as they only
have one atom in the body.

Sticky Datalog∃ is a logic introduced in [CGP10a] and then extended in
[CGP10b] as Sticky-Join Datalog∃. Theory T is Sticky, if some positions in
the predicates from the signature of T can be marked as ”immortal” in such a
way that the following conditions are satisfied:

• If some variable occurs in at least one immortal position in the body of
a rule from T then the same variable must occur in an immortal position
in the atom being the head of the same rule.

• If some variable occurs more than once in the body of a rule from T then
this variable must occur in an immortal position in the atom being the
head of the same rule.

The above definition of Sticky Datalog∃ is a slightly different wording2 of
(equivalent, when restricted to single-head TGDs) Definition 1 from [CGP10a],
and resembles what in the paper [CGP10b] is called ”the sticky-join property”
(see Section 5.1 in [CGP10b]). Actually, both Theorem 2 of our paper and
its proof hold for any possible logic having the sticky-join property, which in-
cludes Sticky Datalog∃ and Sticky-Join Datalog∃ (which is a version defined in
[CGP10b]). In fact, the difference between the two logics can only be seen if
repeated variables in the heads of the rules are allowed and, as we said before,
from the point of view of Finite Controllability we can disallow them w.l.o.g..

Apart from decidability, the properties of such logics which are considered
desirable and receive a lot of attention are:

1The term ”Joinless Logic” was used in [CGP10a] (Theorem B.2 there) to denote logic
which is not really joinless – a variable may occur more than once there, but only in one atom
in the body. It is however very easy to see that any TGD can be simulated by one TGD and
one Datalog rule, which are ”joinless” in this sense. Unlike [CGP10a], when we say ”joinless”
we really mean ”joinless”.

2 Both the definitions of Sticky Datalog∃ involve comparing the set J of positions where
joins occur with the set V of positions where variables are allowed to vanish. In [CGP10a]
authors have chosen to state the condition in the language of pullback of V by by the rules of
T while we prefer to think in terms of pushforward of J by the rules of T .
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Bounded Derivation Depth property (BDD). A set T of TGDs has the
bounded derivation depth property if for each UCQ Ψ there is a constant
kΨ ∈ N, such that for each database instance D if Chase(T ,D) |= Ψ then
ChasekΨ(T ,D) |= Ψ. The BDD property turns out to be equivalent to positive
existential first order rewriteability :

Theorem 1 T has the BDD property if and only if for each UCQ Ψ there exist
a UCQ Φ such that for each database instance D (finite or not) it holds that
Chase(T ,D) |= Ψ if and only if D |= Φ.

This theorem is stated in [?], not as an equivalence however, but only as the
”only if” implication – if a theory is BDD then queries are rewritable as UCQs.
We believe that the proof of the ”if” implication is folklore, but let us include it
here, for sake of completeness:

Fix a theory T and assume that query Ψ is rewritable. Let Φ = φ1∨φ2 . . .∨
φm be the rewriting, where each φi is a conjunctive query. For each φi let Mi

be the canonical structure of φi. Clearly, for each i we have Mi |= Φ so also
for each i there is Chase(T ,Mi) |= Ψ. Let ki be a natural number such that
Chaseki(T ,Mi) |= Ψ. Now define kΨ as max{ki : 1 ≤ i ≤ m}. It is now easy to
see that, for any D, it holds that if Chase(T ,D) |= Ψ then ChasekΨ(T ,D) |= Ψ.
�

Finite Controllability (FC). A set T of TGDs has the finite controllability
property if for each UCQ Ψ and each database instance D if Chase(T ,D) 6|= Ψ
then there exists a finite structure M such that M |= T ,D but M 6|= Ψ.

A logic is said to be FC (or BDD) if each T in this logic is FC (BDD). A
triple T , D, Ψ such that Chase(T ,D) 6|= Ψ but for each finite structure M if
M |= T ,D then also M |= Ψ will be called a counterexample for FC. It is
usually quite easy to see whether a given logic is BDD and it is usually very
hard to see whether it is FC.

Previous works. The query answering problem for Linear Datalog∃ (or rather
for Inclusion Dependencies, which happens to be the same notion as Linear
Datalog∃) was shown to be decidable (and PSPACE-complete) in [JK84]. The
problem which was left open in [JK84] was finite controllability – since we mainly
consider finite databases, we are not quite happy with the answer that ”yes, there
exists a database D̄, such that D̄ |= T ,D,¬Ψ” if all counterexamples D̄ for Ψ
we can produce are infinite. This problem was solved by Rosati [Ros06], who
proved, by a complicated argument, that IDs (Linear Datalog∃) have the finite
controllability property. His result was improved in [BGO10] where FC is shown
for Guarded Datalog∃.

Sticky Datalog∃ was introduced in [CGP10a], where it was also shown to have
the BDD property and where the question of the FC property of this logic was
stated as an open problem. The argument, given in [CGP10a], motivating the
study of Sticky Datalog∃ is that it can express assertions having compositions
of roles in the body, which are inherently non-guarded. Sticky sets of TGDs
can express constraints and rules involving joins. We are convinced that the
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overwhelming number of real-life situations involving such constraints can be
effectively modeled by sticky sets of TGDs. Of course, since query-answering
with TGDs involving joins is undecidable in general, we somehow needed to
restrict the interaction of TGDs, when joins are used. But we believe that the
restriction imposed by stickiness is a very mild one. Only rather contorted TGDs
that seem not to occur too often in real life violate it. For example, each singleton
multivalued dependency (MVD) is sticky, as are many realistic sets of MVDs
[CGP10a].

Our contribution. We show two finite controllability results. Probably the
more important of them is:

Theorem 2 Sticky Datalog∃ is FC.

But this is merely a corollary to a theorem that we consider the main technical
achievement of this paper:

Theorem 3 Joinless Logic is FC.

To prove Theorem 3 we propose a technique, which we think is quite elegant3,
and relies on two main ideas. One is that we carefully trace the relations (we
call them ”family patterns”) between pairs of elements of Chase which are ever
involved in one atom. The second idea is to consider an infinite sequence of
equivalence relations, defined by the types of families which the elements (and
their ancestors) are members of, and construct an infinite sequence of models as
the quotient structures of these equivalence relations. This leads to a sequence
of finite models, that, in a sense, ”converges” to Chase.

What concerns the Joinless Logic as such, we prefer not to make exaggerated
claims about its importance. We see it just as a mathematical tool – the Chase
resulting from a Joinless theory is a huge and very complicated structure, much
more complex than the bounded tree-width Chase resulting from guarded (or
Linear) TGDs, and the ability to control it can give insight into chases generated
by logics enjoying better practical motivation – Theorem 2 serves here as a
good example. But still Theorem 3 is a very strong generalization of the result
of Rosati about Linear Datalog∃, which itself was viewed as well motivated,
while the technique we develop in order to prove it is powerful enough to give,
as a by-product, an easier proof of the finite controllability result for sets of
guarded TGDs [BGO10]. It also appears that rules with Cartesian products,
even joinless, can be seen as interesting from some sort of practical point of
view, motivated by Description Logics (where they would be called ”concept
products”). After all, ”All Elephants are Bigger than All Mice” [RKH08].

Open problem: BDD/FC conjecture. Does the BDD property always
imply FC? In the proof of Theorem 2 we do not seem to use much much more
than just Theorem 3 and the fact that Sticky Datalog∃ is BDD. In our parallel

3This is just our opinion. The reader has of course the right to have his own.
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paper [GM13] we show that each theory over a binary signature which is BDD
is also FC. We also explain there why the full conjecture is not so easy to prove.

Outline of the paper. Next section is devoted to preliminaries. Basic concepts
are explained there and notations are introduced.

In Section 3 we prove Theorem 2, assuming Theorem 3.
The proof of Theorem 3, which is the main technical contribution of this

paper, is presented in Sections 4–15.

2 Preliminaries

Most of the notions and notations in this paper are standard for mathematical
logic and database theory. In particular, if φ is a formula, Ψ is a set of formulas
and M is a structure, then by M |= φ we mean that φ is true in M and by
M |= Ψ we mean that each formula in Ψ is true in M. By Ψ |= φ we mean that
for each structure M such that M |= Ψ there is also M |= φ.

Let us remind the reader that a tuple generating dependency (TGD), or a
Datalog∃ rule (or just ”rule”) is a formula of the form

∀x̄ (Φ(x̄) ⇒ ∃y Q(y, ȳ))

where Φ is a conjunction of atoms (a conjunctive query without existential
quantifiers), Q is a relation symbol, x̄, ȳ are tuples of variables and ȳ ⊆ x̄. The
universal quantifier in front of the formula is usually omitted. Notice that w.l.o.g
we only consider single-head TGD, which means that there is always only one
atom in the head (i.e. right hand side) of a rule. By a theory we mean a finite
set consisting of some TGDs and some Datalog rules (which are TGDs without
the existential quantifier in the head).

For a theory T and a database instance D the structure Chase(T ,D) is
defined in the standard way, and by Chasei(T ,D) we mean the structure being
the i-th stage of the fixpoint procedure leading to Chase(T ,D).

More precisely, we define Chase0(T ,D) = D. Once Chasei(T ,D) is defined,
we define Chasei+1(T ,D) as the superstructure of Chasei(T ,D) being the result
of the following procedure:

for each rule Φ(x̄) ⇒ ∃y Q(y, ȳ) from T and for each valuation ρ map-
ping variables in x̄ to elements of Chasei(T ,D) such that Chasei(T ,D) |=
Φ(ρ(x̄)) but there is no b such that Chasei(T ,D) |= Q(b, ρ(ȳ)), we add to
Chasei+1(T ,D) a new element b and the atomic fact Q(b, ρ(ȳ));

similarly, for each Datalog rule from T and for each relevant valuation an
atomic fact is added to Chasei+1(T ,D) if it was not yet there.

Then Chase(T ,D) is defined as the union of all Chasei(T ,D) for i ∈ N.
We often write Chase(T ) (or Chase) instead of Chase(T ,D) when D (and T )
can be easily guessed from the context. Notice that when we say ”we add b to
Chasei+1(T ,D)” we think of relational structures as the mathematicians do – as
of a set of elements. But when we say ”add an atomic fact to Chasei+1(T ,D)”
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then we see a structure in the way consistent with the database tradition – as
a set of facts. We will feel free to use both conventions, depending on which is
more convenient at the moment.

Notice that the chase procedure as we define it above is standard (lazy)
chase. Unlike oblivious chase, which is also often considered in database theory,
standard chase adds new elements (and atoms which involve them) only when
they are needed, that is when the body of some rule is satisfied for some valuation
but the head of this rule is not. The choice of standard chase has an implication
that will later be useful: the standard chase procedure is idempotent, which
means that Chase(T ,D) = Chase(T , Chase(T ,D)).

Clearly, we have Chase(T ,D) |= D, T , but there is no reason to think that
Chasei(T ,D) |= T for any i ∈ N. Since Chase(T ,D) is a ”free structure”, it is
well known, and very easy to see, that for any query Φ (being a union of positive
conjunctive queries, or UCQ; remember that all queries we consider in this
paper are positive) D, T |= Φ, if and only if Chase(T ,D) |= Φ.

A remark about notations. For any syntactic object X by V ar(X) we will
mean the set of all the variables in X .

Letters P , Q and R will denote predicates or atoms of variables. Letters
A,B,C,D will denote atoms of elements of Chase. PP will be used for par-
enthood predicates (which are a special sort of predicates in our proof) and
sometimes also for parenthood atoms.

To denote elements of Chase we will use a, b, c, d, while i, j, k will be positions
in atoms or other small numbers.

F,G will be family orderings, and γ and δ will be functions occurring in the
family patterns – something we develop in Section 6 and use extensively then.

For an atom B = Q(b1, b2...bk) (where b1, b2...bk are constants in Chase) we
define a notation B(i) = bi. The same applies for atoms of variables.

The letter M is always used to define a relational structure (usually a finite
one). D is also used in this context, usually as the initial database instance on
which chase is run.

Ψ and Φ are formulae, often unions of conjunctive queries. The characters φ,
ψ and β are used to denote conjunctive queries (or just conjunctions of atoms).

When we say ”conjunctive query”, or UCQ, we usually mean a boolean con-
junctive query or boolean UCQ. This in particular applies (w.l.o.g.) to the
definitions of FC and BDD. In order to keep the notation as light as possible,
when talking about boolean CQs we often omit the existential quantifiers in
front.

3 From Joinless Logic to Sticky Datalog∃

This Section is devoted to the proof of Theorem 2 (assuming Theorem 3).
For a sticky theory T let T0 be the subset of T that consists of all the joinless

rules in T .
A pair D, T , where D is a database instance, will be called weakly saturated

if D |= T0. So if D, T is weakly saturated then each new element in Chase(D, T )
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must have some (sticky) join in its derivation and, in consequence each atom of
Chase(T ,D) is either an atom of D or it contains some constant from D in a
marked position. This is because (if D, T is weakly saturated) the only way for
T to derive any atoms which are not in D is to use some rule with the sticky
join, which requires immortalizing one of the arguments

Suppose now that Sticky Datalog∃ is not FC and we will consider counterex-
amples T ,D,Φ for FC with sticky T . By ”arity” of T we will mean the maximal
arity of atoms in the heads of the rules of T . We will call a counterexample
T ,D,Φ minimal if the arity of T is smallest possible.

We are going to prove two Lemmas:

Lemma 4 Suppose a triple T ,D,Φ is a minimal counterexample for FC. Then
the the pair D, T is not weakly saturated.

Lemma 5 Let T , D, Φ be a counterexample for FC. There is a finite database
instance D

′ such that the pair D
′, T is weakly saturated and the triple T , D′, Φ

is also a counterexample for FC.

Notice that proof of Theorem 2 will be finished once the two above lemmas
are proved. This is because the assumption that a minimal counterexample
exists will lead to a contradiction: by Lemma 5 we will be able to get a minimal
weakly saturated counterexample – something that is ruled out by Lemma 4.

Theorem 3 will be used to prove Lemma 5.

Proof of Lemma 4: Let T , D, Φ be a counterexample for FC, with l being the
arity of T . Suppose the pair D, T was weakly saturated. We will construct a
new sticky theory TD of arity at most l − 1, over a new signature ΣD and a
new query ΦD, such that the triple TD, ∅, ΦD is also a counterexample for FC.
This will contradict the assumption that l was minimal possible, and thus end
the proof of the Lemma.

Let us start from the definition of ΣD. For a predicate Q ∈ Σ, of arity j,
and for a partial function γ : {1, 2, . . . j} → D let Qγ be a new predicate, of
arity j − |Dom(γ)|. ΣD will be the set of all possible predicates Qγ , where Q
and γ are as above. Since we did not assume that γ is non-empty we have that
Σ ⊆ ΣD (we identify Q with Q∅).

To denote the predicates from ΣD we are going to use the notational con-
vention that will now be described by an example. If Q(_,_,_) is a ternary
predicate from Σ, γ = {〈2, c〉} and γ′ = {〈1, c〉, 〈3, a〉} then Qγ will be denoted
as Q(_, c,_) and Qγ′ will be denoted as Q(c,_, a). Notice that the a and c
in Q(_, c,_) and Q(c,_, a) are no longer understood to be constants being
arguments of the predicate. They are now part of the name of the predicate.
Notice that |Dom(γ)| = 1 and indeed Q(_, c,_) is a binary relation, while
|Dom(γ′)| = 2 and Q(c,_, a) is a unary relation.

As we are never going to use the constants from D as arguments in atoms over
relations from ΣD, the above notational convention does not lead to confusion
as long as we only talk about atoms over ΣD. But atoms over ΣD can easily
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be confused with atoms over Σ with constants from D as arguments. And this
confusion is exactly what we want!

If ρ is a total function then Qρ is an arity zero predicate. In particular each
atom of the database instance D (over Σ) can be read as a zero arity predicate
over ΣD.

We are now going to define TD.
For a rule T from T by a constantification4 of T we will mean a formula σ(T ),

where σ is a mapping that assigns constants from D to some of the variables from
V ar(T ), in such a way that for at least one variable x ∈ Dom(σ) this x appears
in a marked position in T (we mean here the marking of immortal positions,
from the definition of Sticky Datalog∃). For example Q(c, y, z) ⇒ ∃w Q(c, z, w)
(where c ∈ D) is a constantification of Q(x, y, z) ⇒ ∃w Q(x, z, w) if position 1
is marked in Q. Clearly, a constantification of a rule from T is (or ”can be seen
as”) a rule over ΣD.

Let now theory TD over ΣD consist of all the facts from D (which now are, as
we mentioned before, zero arity facts) and all the possible constantifications of
rules from T . It is not hard to see that TD is also sticky (hint: mark as immortal
the same positions as in T ), and that the arity of TD is at most l − 1.

Let now C be the set of all atoms of Chase(T ,D) (in the standard notation)
and let C1 be the set of all atoms of Chase(TD, ∅) (written using the above
notational convention).

The assumption that the pair D, T is weakly saturated implies now:

Observation 6 C = C1.

For the proof of the Observation recall that each atom of Chase(T ,D) is
either an atom of D or it contains some constant from D in a marked position.
This is because (as D, T is weakly saturated) the only way for T to derive
any atoms which are not in D is to use some rule with the sticky join, which
requires immortalizing one of the arguments. And, when restricted to atoms
which contain some constant from D in a marked position, the theories T and
TD derive exactly the same atoms. �

Now let us define ΦD as the disjunction of all possible queries σ(Φ), where σ
is a mapping that assigns constants from D to some of the variables from V ar(Φ)
By distributivity, if Φ was a UCQ then also ΦD is a UCQ. And Chase(T ,D) |= Φ
if and only if Chase(T ,D) |= ΦD, which, by the above Observation, is equiv-
alent to Chase(TD, ∅) |= ΦD. Since we assumed that the triple T , D, Φ is a
counterexample for FC, this implies that Chase(TD, ∅) 6|= ΦD.

In order to prove that TD, ∅, ΦD is a counterexample for FC we still need
to show that for each finite structure M over ΣD there is M |= ΦD. So suppose
there was a finite M such that M |= TD and M 6|= ΦD. Define a new finite model
MD as a structure over Σ, containing all the elements of M and all the elements

4Our constantification trick is not claimed to be any sort of novelty – see for example
Constantification technique is by no means new. See for example the comment after Theorem
12.5.2 in [?]
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of D, and all the atoms true in M . Of course the atoms true in M were over
the signature ΣD, but to define MD we read them as atoms over Σ. It is easy
to see that MD |= T and MD 6|= Φ, which is however impossible as the triple T ,
D, Φ was a counterexample for FC. �

Proof of Lemma 5: Since Sticky Datalog∃ enjoys the BDD property, we know
that there exists a positive FO rewriting of Ψ, which is such a UCQ Ψ̄ that for
each database instance M (finite or not) it holds that M |= Ψ̄ if and only if
Chase(M, T ) |= Ψ.

Clearly, Chase(Chase(D, T0), T ) = Chase(D, T ). So Chase(D, T0) 6|= Ψ̄ (as
Chase(D, T ) 6|= Ψ).

Since T0 is joinless, we know, from Theorem 3, that there exists a finite
structure D

′ such that D
′ |= T0,D but D

′ 6|= Ψ̄. Notice that the pair T , D′ is
weakly saturated.

Since D
′ 6|= Ψ̄, using again the fact that Ψ̄ is the FO rewriting of Ψ, we get

Chase(D′, T ) 6|= Ψ. It remains to be shown that for each finite structure M , if
M |= D

′, T then M |= Ψ. But, since D
′ |= D, the structure M is a model of D

and we assumed that M |= Ψ holds for each finite model of D and T . �

4 Assumption a contrario and the structure of

the proof

Sections 4 – 15 are devoted to the proof of Theorem 3.

It is an a contrario proof so we assume now that there exists a counterex-
ample TC , DC , ΦC for FC, with TC being a joinless theory.

In Sections 5 and 6 we explain that it can be assumed w.l.o.g. that the
counterexample satisfies some additional assumptions.

The additional assumptions from Section 5 concern trivial simplifications of
TC and DC . One of them is that DC is the ∅.

The assumptions from Section 6 however can hardly be seen as simplifi-
cations and are one of the main ideas of the whole proof. We define family
patterns there, and show that it can be assumed w.l.o.g. that TC respects the
family patterns and that this assumption is a useful tool giving some insight
into the structure of Chase.

Then, in Sections 7 – 15 we show that if TC and ΦC satisfy the assumptions
from Sections 5 and 6, then the triple TC , ∅, ΦC cannot be a counterexample.
We lack language to discuss it yet, so the general architecture of this part of the
proof will be described in Section 7.

5 Some trivial simplifications

Nothing deep is going to happen here. We are just cleaning our desk before the
real work starts. Our feelings will not be hurt if the reader chooses to read only
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Lemma 7, first 3 lines of subsection 5.3, first 10 lines of subsection 5.4 and the
very short subsection 5.5, and skip the rest of this Section.

5.1 Empty D

Lemma 7 There exists a counterexample T , ∅,Φ for FC.

Proof: Suppose the active domain of DC is {d1, d2, . . . dm} Add a new relation
symbol D of arity m to the signature of TC . Let T consist of all the rules of
TC , of the rule:

⇒ ∃x1, x2 . . . xm D(x1, x2, . . . xm)

and of one Datalog rule:

D(x1, x2, . . . xm) ⇒ R(xi1 , xi2 . . . xik)

for each atom R(di1 , di2 . . . dik) true in DC .
Then clearly T , ∅, Φ is a counterexample for FC. �

From now on we assume, w.l.o.g. that the triple TC , ∅, ΦC is a counterex-
ample for FC.

5.2 Handy lemma

In this and the next Sections we are going to ”normalize” theory TC . This will
be done in several steps. The general idea of each of those steps will be that
the predicates of TC will be ”annotated”, so that the name of predicate will
carry some additional information. This will lead to a new signature and a new
theory, and in each case we will prove a ”simplifying lemma” saying that the
new theory (together with some new query, and with empty database) is still a
counterexample for FC.

In this subsection we present a technical lemma which is a workhorse ex-
ploited in the proofs of all the simplifying lemmas in Sections 5 and 6.

Definition 8 For an atomic formula Q = R(t̄) over a signature Σ we define
Q|Σ to be R.

In other words Q|Σ is the predicate symbol of Q.

Definition 9 Let æ be a function from the set of all atoms over some signature
ΣA to the set of all atoms over signature Σ. We will say that æ is annotation
erasing if:

(i) ∀C,C′ C|Σ = C′
|Σ ⇒ æ(C)|ΣA

= æ(C′)|ΣA

(ii) ∀P ∈ ΣA ∀i ∃j ∀C C|ΣA
= P ⇒ C(j) = æ(C)(i)

(iii) ∀P ∈ ΣA ∀i ∃j ∀C C|ΣA
= P ⇒ C(i) = æ(C)(j)

10



(iv) æ is onto.

For an annotation erasing æ and any formula (or any structure) X by æ(X)
we mean the formula (structure) being the result of replacing each atom Q in X
by æ(Q).

See that the above definition requires æ to be ”data blind”: Condition (i) says
that the predicate symbol of the atom being the output of æ must only depend
on the predicate symbol of the input. Conditions (ii) and (iii) say that all æ is
allowed to do is to copy data to the new atom, without really reading them,
without inventing new data and without forgetting anything. It can however
change the order of arguments, and possibly create, in the output relation, many
columns being a copy of a given column in the input. Notice that the domain of
æ is the set of all atoms – both ground atoms and atoms containing variables.

Observation 10 If æ is annotation erasing and h is a valuation of variables
then the equality æ ◦ h = h ◦ æ holds. �

Definition 11 Let æ be annotation erasing.

(i) The preimage of an atom C under æ is defined as the disjunction æ−1(C) =∨
æ(B)=C B.

(ii) The preimage of a CQ Φ = ∃x̄
∧
i Ci(x̄) under æ is defined as the UCQ

æ−1(Φ) = ∃x̄
∧
i æ−1(Ci(x̄)).

(iii) The preimage of a UCQ Φ =
∨
iΦi under æ the UCQ is defined as

æ−1(Φ) =
∨
i æ−1(Φi).

Notice that correctness of the above definition follows from condition (iii) of
Definition 9 – since æ is not allowed to forget an argument, the preimage-image
of an atom is always finite.

Lemma 12 For a conjunctive query Φ and annotation erasing æ the query
æ(æ−1(Φ)) is equivalent to Φ.

Proof: Because æ−1 is applied to each atom separately, it is enough to show
that, for an atom C, æ(æ−1(C)) is equivalent to C. By definition we have

æ(æ−1(C)) = æ(
∨

æ(B)=C

B) =
∨

æ(B)=C

æ(B) =
∨

æ(B)=C

C = C

The first equality is a direct application of Definition 11(i). The second
equality is a direct application of Definition 11(iii). In the last equality we
used the fact, that for each atom C there exists at least one atom B such that
æ(B) = C. But this follows from Definition 9 (iv).
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Definition 13 For a given theory T over a signature Σ, and an annotation
erasing æ, a theory TA over a signature ΣA is called an æ-annotation of T if
for each rule Φ ⇒ Q in T (resp. Φ ⇒ ∃zQ in T ) and each conjunction of
atoms Φ′ such that æ(Φ′) = Φ there exists exactly one rule Φ′ ⇒ Q′ in TA
(resp. Φ′ ⇒ ∃zQ′ in TA) such that æ(Q′) = Q.

The sense of the definition is that the new theory contains annotated versions
of the rules of the old theory. There is exactly one new rule for each possible
annotation of atoms in the body of an old rule.

Lemma 14 If TA is an æ-annotation of T then Chase(T , ∅) = æ(Chase(TA, ∅)).

Proof: By induction one can easily show that Chasei(T , ∅) = æ(Chasei(TA, ∅)).
The induction step follows directly from Definition 13. Notice that for the ⊇
inclusion the phrase “exactly one” in Definition 13 is crucial. �

Lemma 15 For an annotation erasing æ and a CQ Φ, if M |= Φ then æ(M) |=
æ(Φ).

Proof: Let h be a valuation of V ar(Φ) which shows that M |= Φ. In other
words, the image of Φ under h is a substructure of M i.e. h(Φ) ⊆ M . Hence,
æ(h(Φ)) ⊆ æ(M). By Observation 10 we get æ◦h = h◦æ, so h(æ(Φ)) ⊆ æ(M).
Therefore æ(M) |= æ(Φ). �

Lemma 16 (Handy Lemma) If the triple T , ∅,Φ is a counterexample to FC
and TA is an æ-annotation of T , then the triple TA, ∅,æ−1(Φ) is also a coun-
terexample for FC.

Proof: Suppose Chase(T , ∅) 6|= Φ. Lemma 14 states that Chase(T , ∅) =
æ(Chase(TA, ∅)) and Lemma 12 states that Φ = æ(æ−1(Φ)), so by contra-
position of Lemma 15 we get Chase(TA, ∅) 6|= æ−1(Φ).

Let M be an arbitrary finite model of TA. We need to show that M |=
æ−1(Φ). Because TA is an annotation of T , we have that æ(M) is a model of
T . Hence, æ(M) |= Φ – this is because (T , ∅,Φ) is a counterexample to FC, so
Φ must be satisfied in each finite model of T .

Let Φ0 = ∃x̄ Ψ(x̄) be a disjunct of Φ which is true in æ(M). There exists
h - a valuation of the variables x̄ - such that h(Ψ(x̄)) ⊆ æ(M). This inclusion
implies that there exists a subset M0 of M (we see M as a set of atoms now)
such that h(Ψ(x̄)) = æ(M0).

Now we claim that M0 |= æ−1(Φ). Of course when we prove this claim then
the proof of Handy Lemma will be finished. But, by definition of preimage we
have that æ−1(Φ0) logically implies æ−1(Φ), so it will be enough to notice that
M0 |= æ−1(Φ0). Again using definition of preimage (and distributivity) we see
that æ−1(Φ0) is a disjunction of all possible CQs ∃x̄Ψ0 such that æ(Ψ0) = Ψ.
And M0 is a homomorphic image of one such Ψ0. �
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5.3 Strongly joinless theories

We will call a joinless theory T strongly joinless if heads of all the rules of T
are joinless, which means that if T is a rule from T then each variable occurs
in the head of T at most once.

Lemma 17 There exists a counterexample TA, ∅, ΦA for FC with strongly join-
less TA.

Proof :
Annotations. For a natural number k by a k-annotation we will mean any
set of equalities of the form i = j for 1 ≤ i, j ≤ k which is closed under logical
consequence. For k-annotations α1 and α2 by α1∧α2 we will mean the smallest
annotation containing α1 and α2. For a k-annotation α by index of α we will
mean the number of equivalence classes that α naturally splits {1, 2, . . . k} into.

The signature of TA. Let Σ be the signature of TC . The signature ΣA of TA
will consist of one predicate Rα for each k-ary predicate R ∈ Σ and for each
k-annotation α. The arity of Rα equals to the index of α. The following nota-
tional convention will apply: Atoms of Rα will be written as Rα(X1, X2, . . . Xk)
with Xi being equal to Xj whenever i = j is in α. For example if k = 3
then R2=3(a, b, b) is an atom of the binary relation R2=3 while the expression
R2=3(x, x, y) is a (♥) syntax error .

Theory TA. Now we are ready to define theory TA. For each (joinless) rule of
TC :

T R(x1, x2 . . . xk), P (y1, y2 . . . ym) ⇒ ∃z Q(v1, v2, . . . vl)

where each of vi is either z or one of the xi or one of the yi, and for each
k-annotation α and each m-annotation β, theory TA will contain the rule:

Tα,β Rα(X1, X2 . . . Xk), Pβ(Y1, Y2 . . . Ym) ⇒ ∃z Qγ(V1, V2, . . . Vl)

where:

–Xi = Xj if i = j is in α and Yi = Yj if i = j is in β;
– Vi=Xj if vi = xj , Vi=Yj if vi = yj, and Vi=Vj if vi = vj ;
– i = j is in γ if and only if Vi = Vj .

Notice that the rule Tα,β is strongly joinless – arity of Qγ is equal to
the index of γ and is equal to the number of different variables in the atom
Qγ(V1, V2, . . . Vl).

To keep the notation as simple as possible we defined Tα,β for a TGD with
two atoms in the body. But of course the same must be done for all rules of TC ,
including Datalog rules.

Annotation erasing. Now æ is defined as an operation that maps atoms over
signature ΣA to atoms over Σ, in the most natural way one could imagine – by
erasing the annotation.

It is easy to notice that æ is indeed an annotation erasing, as defined by
Definition 9, and that TA satisfies the assumptions of Handy Lemma. So, we
can use Handy Lemma to finish the proof of of Lemma 18. �
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From now on we will assume, w.l.o.g. that the triple TC , ∅,ΦC is a strongly
joinless counterexample for FC.

5.4 Almost clean theories

We will call a strongly joinless theory T almost clean if each rule from T is
either a Datalog rule of the form:

(♣1) Q(x̄) ⇒ Q′(x̄i), where by x̄i we mean the tuple x̄ with i-th element removed

or a TGD of the form:

(♣2) Q0(x̄0) ∧Q1(x̄1) ⇒ ∃y Q(y, x̄0, x̄1)

Condition (♣ 2) does not rule out Q1 to be empty, so in particular a rule
of the form Q0(x̄0) ⇒ ∃y Q(y, x̄0) is also allowed. The important part, of both
conditions, is that the variables in the head occur in exactly the same order as
the variables in the body.

Lemma 18 There exists a counterexample TA, ∅, ΦA for FC with TA being
almost clean.

Proof: It is trivial to see that TC , ∅,ΦC can w.l.o.g. be assumed to contain only
TGDs with at most two atoms in the body (the left hand side) and of Datalog
rules that project exactly one element. The slightly more non-trivial part is to
show that the ordering condition can also be satisfied.
The signature of TA. Let Σ be the signature of TC . The signature ΣA of TA
will consist of one predicate Rα for each k-ary predicate R ∈ Σ and for each
k-permutation π : {1, . . . k} → {1, . . . k}. The arity of Rπ is equal to the arity
of R.
Annotation erasing æ is defined as æ(Qπ(x1, x2, . . . xk) = Q(π(x̄)), where
π(x̄) = (xπ(1), . . . xπ(k)). Clearly, this operation satisfies the requirements of
Definition 9.
Theory TA. For each Datalog rule T of theory TC , of the form Q(x̄) ⇒
Q′(πT (x̄

i)), with Q of some arity k, and for each k-permutation π let there
be a rule Tπ in TC , of the form Qπ(x̄) ⇒ Q′

π′(x̄i), where π′ is the unique permu-
tation such that T equals, up to the renaming of variables, to æ(Tπ). In similar
manner we construct one rule for each TGD in TC and each possible annotation
of the predicates in the body of this rule. Then use Handy Lemma to finish the
proof. �

5.5 Clean theories and clean counterexamples

An almost clean theory T will be called clean if:
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• the signature of T is a union of two disjoint sets: parenthood predicates
(or PPs), occurring in the heads of rules of the form (♣ 2), and projection
predicates, occurring in the heads of rules of the form (♣ 1);

• for each projection predicate Q there is a parenthood predicate Q′ such
that Q(t̄) ⇒ ∃t Q′(t, t̄) and Q′(t, t̄) ⇒ Q(t̄) are rules of T .

We will call a UCQ (or a CQ) Φ clean if only the parenthood predicates
appear in Φ. A triple T , ∅, Φ is clean if T and Φ are clean. Using Lemma 18 it
is very easy to show that:

Lemma 19 There exists a clean counterexample T , ∅, Φ for FC. �

6 On the importance of family values

Let T be a clean theory, as defined in Section 5. From now on we will always
have D = ∅. Since the context is clear we will simply write Chase instead of
Chase(T , ∅).

In this Section we will imagine Chase as the humankind. Generations after
generations of elements are being born (by the TGDs) and then projected out
(by the Datalog rules). And atoms are like families, as you are going to see. Let
l be the maximal predicate arity in the signature of T .

6.1 A fairy tale

In the next subsection we define family patterns. This is a crucial tool in our
analysis of the structure of Chase, but a complicated one. So before we present
the technical definitions, the reader is invited to join us for an informal visit to
a planet far far away, where very strict rules apply concerning family dinners.

First of all, the participants of a family dinner must always be all the an-
cestors of some person A (who may be alive or dead at the moment) who are
currently alive. The word ”ancestor” is understood in the reflexive sense, which
means that A must also participate, if she is still alive. A group of people that
are allowed to dine together will be called ”family”.

Due to some curse no family on this planet can ever have more than l mem-
bers. Notice that the families, as we defined them, are not pairwise disjoint.
Adam, Eve and Cain were a family. Adam, Eve and Abel were a family, and
after Abel’s death (but not before) Adam and Eve were still a family. But there
was never a family including both Cain and Abel.

During a dinner all the participants sit behind a long table, always in the
same order. When someone is sadly projected out, then the surviving family
members shift (so that there is no empty space left), but the order remains the
same.

Two families can sometimes have a baby together. One peculiarity is that
all the ancestors of A who were alive when A was born are considered parents
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of A. When two families have a baby A together then, according to the above
rule, they are allowed to dine together. Here is how they are seated during such
dinner: A sits first from the left, then all the people from the mother family,
in the order they used during their dinners, and then all the people from the
father family, also in the order they used during their dinners.

Now imagine being the Police who enforce the rules. You come and just see
a row of people behind the table, with no apparent structure at all. This is
why a rule was introduced requiring that each family posts information about
their family ordering on their web page. Family ordering is the binary relation
(actually a partial order), on elements {1, 2, . . . k} (where k is the cardinality of
the family) containing all the (descendant, ancestor) pairs. Notice that people
are identified here with the places they occupy when dining. Since k ≤ l there
are only finitely many possible family orderings.

Another aspect of the family life that is strictly codified is the way people
address their parents (ancestors). When a newborn A dines, for the first time,
with all her parents (i.e. living ancestors) she learns to call the person B sitting
on the chair i as simply i. Then, as time goes by, some of A’s ancestors are
projected out, new people are being born, but A and B may still dine together,
in different configurations. And A will always address B as i.

The function that maps each (descendant, ancestor) pair (C,D) of a family
to a number (not greater than l) used by C to address D is also posted on
the family web page. Together with the family ordering they form the family
pattern. Notice that there are only finitely many possible family patterns.

Remark about incest. There is nothing in the rules of the planet that
would forbid non-disjoint families to have a baby together. Actually there is
nothing in the rules that would require that mother family and father family
are different (which some humans may see as strange). And when two non-
disjoint families have a baby then there is a person who plays more than one
role – he is a member of the mother family and of the father family at the same
time. Such person has two (or more) chairs behind the family table, and the
way he is addressed by his descendants depends on the chair he currently sits
on. Notice that the family ordering is defined as a partial order of chairs rather
than people and it is blind to the fact that two chairs are occupied by the same
person and thus it is always a tree-like ordering – each two descendants of a
given element are always comparable.

Back to the example. As we said, Cain, Eve and Adam were a family.
The family pattern was F, δ where the ordering F consisted of two pairs: 2 <F 1
and 3 <F 1 and δ was defined as δ(1, 2) = 2 and δ(1, 3) = 3.

Also Awan, Eve and Adam were a family. And the family pattern was the
same F, δ as before.

Then Awan and Cain had a child together, named Enoch. When Enoch was
born Adam and Eve were still alive, so the five people were one family. But
there were seven chairs behind the table they needed to dine together. First
chair for Enoch, 2nd for Awan, 3rd for Eve, 4th for Adam, 5th for Cain, 6th
again for Eve and 7th again for Adam. The new family pattern was G, γ where
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G consisted of the pairs i <G 1, for each 2 ≤ i ≤ 7 and of the pairs 3 <G 2,
4 <G 2, 6 <G 5 and 7 <G 5. What concerns γ, we had γ(1, i) = i, for each
2 ≤ i ≤ 7, and – for example – γ(5, 7) = δ(1, 3) = 3, as the way Cain was calling
Adam did not change after Enoch was born.

6.2 Family patterns and how they change over time

Let us now formalize our fairy tale:

Definition 20 By a (k-ary) family ordering we mean any tree-like partial order,
whose set of vertices is {1, 2, . . . k} where k ≤ l. By a tree-like partial order we
mean that each two elements greater than any given one are comparable. If a
family ordering is a tree then 1 is the root (the greatest element) of this tree.

If a family ordering is a tree, the root of the tree is the youngest family
member5.

But – as we explained above – the family ordering alone is not everything
we want to know about a family. Alice dining only with her granny form the
same ordering as Alice dining with her mother, but they do not form the same
family pattern:

Definition 21 A (k-ary) family pattern is a pair F, δ, where F is a (k-ary)
family ordering and δ is a function assigning a number, from the set {1, 2, . . . l},
to each pair j, i of elements of F such that i <F j, where <F is the ordering
relation on F (i is an ancestor of j).

Clearly, once the maximal arity l is fixed, the set of all possible family
patterns is finite.

Now imagine there had been a family of k people with the family pattern F, δ.
But then, at some point of time, the person who sat on chair i was projected out.
The surviving family members still dine together, and their new family pattern
is of course a function of F, δ and of i. Call the new pattern6 projecti(F, δ) We
will never really need to compute projecti(F, δ), but maybe it is helpful to see
that it is indeed possible:

Observation 22 Suppose projecti(F, δ) = G, γ. For a natural number 1 ≤ j ≤
k let g(j) = j if j < i and g(j) = j − 1 otherwise. Then j <F j′ if and only if
g(j) <G g(j

′) and, whenever j <F j
′ then δ(j, j′) = γ(g(j), g(j′))

In a similar manner we can imagine two families, one consisting of k people,
with the family pattern F, δ, and another one with k′ people, and with the
family pattern F ′, δ′, having a baby together. Then, together with the baby,
they form a new family, of 1 + k+ k′ people, and the family pattern of the new
family is a function of F, δ and F ′, δ′. Call the new pattern baby(F, δ;F ′, δ′).
Again, this is not really needed but we can compute baby(F, δ;F ′, δ′):

5 Mnemonic hint: the one is smaller whose date of birth is a smaller number.
6If you are not happy with this definition, then treat Observation 22 as a definition. The

same applies to Observation 23.
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Observation 23 Suppose baby(F, δ;F ′, δ′) = G, γ. Then:

(a) i <G j ⇔ (j = 1 ∧ i > 1) ∨
(i− 1 <F j − 1 ∧ 1 < i, j ≤ k + 1) ∨
(i− k − 1 <F ′ j − k − 1 ∧ k + 1 < i, j ≤ k + k′ + 1)

(b) If j = 1 and 1 < i ≤ k + k′ + 1 then γ(j, i) = i.
If 1 < j, i ≤ k + 1 then γ(i, j) = δ(i− 1, j − 1).
If k + 1 < j, i ≤ k + k′ + 1 then γ(i, j) = δ′(i− k − 1, j − k − 1).

Condition (a) says that the birth of the new child does not change the
ancestor relation in the family, except from the fact that each of the members
of the two families is now also this child’s ancestor. The meaning of condition
(b) is that the newborn child learns how to address his ancestors: it addresses
them by their positions at the family table, as it sees it at the moment of its
birth. The child’s birth does not change the way his ancestors are addressing
each other.

6.3 Back to the Chase

Definition 24 A clean theory T respects family patterns if:

1. Each relation Q of arity k in the signature of T contains, as a part of its
name (as a subscript) a k-ary family pattern.

2. If RF,δ(x̄) ⇒ PG,γ(x̄
i) is a Datalog rule of T then G, γ =projecti(F, δ)

(the meaning of x̄i is as defined in subsection 5.4).

3. If RF,δ(x̄) ∧ R′
F ′,δ′(x̄

′) ⇒ ∃y PG,γ(y, x̄, x̄′) is a TGD of T then we have
G, γ=baby(F, δ;F ′, δ′)

Lemma 25 There exists a clean counterexample TA, ∅, ΦA, with TA respecting
family patterns.

Proof: Let TC , ∅, ΦC be any clean counterexample, over some signature Σ. Let
ΣA consist of one arity k predicate QF,δ for each arity k predicate Q in Σ and
each k-ary family pattern F, δ.

Now for each Datalog rule R(x̄) ⇒ P (x̄i) in TC and for each family pattern
F, δ of arity equal to the arity of R, let RF,δ(x̄) ⇒ PG,γ(x̄

i) be a rule in TC ,
where G, γ =projecti(F, δ).

Similarly, for each TGD R(x̄) ∧ R′(x̄′) ⇒ ∃y P (y, x̄, x̄′) in TC and for each
pair of family patterns F, δ, F ′, δ′, of arities equal to the arities of R, R′ re-
spectively, let RF,δ(x̄) ∧ R′

F ′,δ′(x̄
′) ⇒ ∃y PG,γ(y, x̄, x̄′) be a rule in TC , where

G, γ =baby(F, δ;F ′, δ′). Define the function æ as – literally – removing the
annotations. Use Handy Lemma to finish the proof. �
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From now on we assume that

T is a fixed clean theory which respects family patterns.

Before we end this Section let us study some properties of Chase(T , ∅). The
following Lemma is an obvious consequence of the assumption that T is clean
and of freeness of the Chase:

Lemma 26 For each element a of Chase there exists exactly one parenthood
predicate atom A = PP (a, ā) such that Chase |= A. It will be called the par-
enthood atom of a, and the elements of ā will be called parents of a.

Notice that we use the word ”parents” (here and always in the future) to
denote all the ancestors of a who were present when a was born. So it it is
perfectly normal in our scenario that a and b are parents of c while a is a parent
of b.

Definition 27 For two elements a, b of Chase we will say that a and b are
0-equivalent (denoted a ≡0 b) if the parenthood atoms of a and b are atoms of
the same predicate.

Suppose a ≡0 b, and A and B are parenthood atoms of a and b (resp.).
Then, for each i, the pair of elements A(i) and B(i) will be called respective
parents of the pair of elements a and b. For tuples a1,a2, . . . as and b1,b2, . . . bs
by a1,a2, . . . as ≡0 b1,b2, . . . bs we mean that ai ≡0 bi for all 1 ≤ i ≤ s.

Since the family pattern is part of the name of the predicate, when we say
”the same predicate” in Definition 27 we of course mean that the family patterns
are also equal.

The next lemma says, using our running metaphor, that the person an ele-
ment a of Chase calls its granny does not change during its lifetime. Moreover,
the way a’s father calls a’s granny also remains unchanged:

Lemma 28 Suppose Chase |= B,C, for B = QF,δ(b̄) and C = PPG,γ(a, ā).
Suppose also that a = B(i) and j, j′ <F i. Then:

1. B(j) is a parent of a;

2. B(j) = C(δ(i, j));

3. j <F j
′ if and only if δ(i, j) <G δ(i, j

′);

4. if j <F j
′ then δ(j′, j) = γ(δ(i, j′), δ(i, j)).

The proof of the lemma is easy induction on the structure of Chase, and we
leave it for the reader as an exercise. Actually, the only possibly non-trivial part
of this exercise is to remember what the notations mean. So let us come to your
help. The assumption that a = B(i) means that a is somewhere (position i’th)
in atom B. The assumption that j <F i means that in family B the element
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in position j, call it c, is (according to the family pattern of this family) an
ancestor of a. Now trace the history (or ”derivation in Chase”) of the family
(or ”of atom”) B back to a’s birth, and notice that each step of the derivation
preserves the properties claimed by the Lemma. The last is because we assume
that T respects the family patterns.

Now we have something slightly more complicated. The following lemma,
which will be critically important in Section 15, is where the power of family
patterns is seen:

Definition 29 For a family ordering F and a set I of positions in F we define
the set PY (I) of positions in F as

⋂
i∈I{j ∈ F : ¬(j ≤F i)}.

PY (I) (which reads ”possibly younger”) is exactly the set of family members
who potentially can be younger than each of the elements of I. Of course the set
PY depends on the ordering F , but we do not make it explicit in the notation
as the context is always clear.

Lemma 30 (About the Future) Let Chase |= A for some A = PPF,δ(a, ā).
Suppose I = {i1, i2, . . . is} is a set of pairwise <F -incomparable positions in
F and let b1, b2, . . . bs be equal to A(i1), A(i2), . . . A(is) respectively. Suppose
d1, d2, . . . ds is another tuple of elements of Chase such that b1, b2, . . . bs ≡0

d1, d2, . . . ds. Then there exists an atom C = PPF,δ(c, c̄), such that:

(i) Chase |= C;

(ii) d1, d2, . . . ds equal C(i1), C(i2), . . . C(is) respectively;

(iii) if j ∈ PY (I) then A(j) ≡0 C(j);

Lemma 30 says that the potential of forming atoms in Chase only depends on
the ≡0 equivalence class of elements (and tuples of independent elements), not on
the elements themselves. If b1, b2, . . . bs and d1, d2, . . . ds are 0-equivalent tuples
of elements and b1, b2, . . . bs appear in some atom A in Chase (at independent
positions) then there exists an atom C, somewhere in Chase, which not only
has d1, d2, . . . ds in the same positions, but also is as similar to A as one could
dream of: everything that happens in the future of some bi in A is 0-equivalent
to the respective future of the respective di in C.

Before we prove Lemma 30, as one more exercise let us show that it follows
easily from Lemma 28 that if j 6∈ PY (I) then the elements A(j) and C(j) are
respective parents of some bk and dk:

Lemma 31 If ik ∈ I and j <F ik then A(j) and C(j) are respective parents of
bk and dk (where the notations are like in Lemma 30). �

Proof of Lemma 31. Let A′ be the parenthood atom of bk and let C′ be the
parenthood atom of dk. Of course A′ and C′ are atoms of the same predicate, as
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we assumed that bk ≡0 dk. Then, by Lemma 28.2. we have A(j) = A′(δ(ik, j))
and C(j) = C′(δ(ik, j)), where δ is as in Lemma 30. �

Remember that the fact that b ≡0 d does not imply that the respective
parents of b and d are 0-equivalent.

Proof of Lemma 30. The intuition is that we will trace the genealogy of atom
A, as deep to the past as we see families containing one of the bi. If we go many
enough generations back in time we will see, for each i, the family in which bi
was born. Since we assume that b1, b2, . . . bs ≡0 d1, d2, . . . ds we can find, for
each i, another atom, somewhere in Chase, of the same predicate (including
family pattern), which gave birth to di. Now we can tell the families where di
were born: ”mimic the behavior of the parenthood atoms of bi”. And they can
do it, because the rules are joinless, which implies that all atoms of the same
predicate are equally able to participate in derivations.

To be more precise, we consider (a fragment of) the derivation tree of the
atom A in Chase, which we will call D. Verticies of D will be atoms of Chase,
with A being the root. D is defined by induction, together with an equivalence
relation sv (as ”same variable”) on the set of all positions in the atoms of D, and
with the set of painted positions:

• Atom A is the root of D (and thus an inner node of D). Positions
i1, i2, . . . is in A are painted.

• Suppose an atom B = QG,γ(e, ē) is a node of D with some non-root
position painted7. Suppose B′ = Q′

G′,γ′(ē1) and B′′ = Q′′
G′′,γ′′(ē2) are

such two atoms, true in Chase, that B was derived in Chase, from B′ and
B′′, by a single use of the rule: X ′ ∧X ′′ ⇒ ∃x X , where X ′ = Q′

G′,γ′(x̄1),
X ′′ = Q′′

G′′,γ′′(x̄2) and X = QG,γ(x, x̄). Then B′ and B′′ are nodes of D,
and children of B.

If X(i) = X ′(j) (or X ′′(j)), which means that the variables on position i
in X and on position j in X ′ (or X ′′) are equal, then the pair of positions
i in B and j in B′ (or B′′) is added to the relation sv (and sv is always
extended to be an equivalence). A position in B′ or B′′ is painted if it is
sv with some previously painted position.

The case when B was derived by a projection rule X ′ ⇒ X is handled
analogously8.

• A node of D with no painted positions is a leaf, called an unpainted leaf.
A node which is a PP atom, and whose only painted position is its root
is a leaf of D, called a painted leaf. All other nodes of D are inner nodes.

7Recall that the root of a parenthood atom is its position 1 – the root of the family ordering,
which is a tree. An atom which is not a PP-atom may or may not not be a tree and thus it
is possible for it to contain only non-root positions.

8Notice that B while for B being PP-atoms we can always identify unique pair B′, B′′ in
Chase that led to B in one derivation step, this is not always the case if B is a result of a
projection. In such case we take B′ to be any atom of Chase which led to creation of B.
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The idea here is that we trace the derivation of A back to the parenthood
atoms of the elements bi. The way we formulated it was a bit complicated, but
we could not simply write ”an atom is a leaf of D if it does not contain any of
b1, b2, . . . bs”. This was due to the fact, that b’s can occur in the derivation not
only in meaningful positions – the positions that lead to i’s in A, but also in
non-meaningful ones, not connected, by the rules of T , to any of the i’s in A.

Now, once we have D, we construct another derivation D′, with the under-
lying tree isomorphic to D, defined as follows:

• If B is an unpainted leaf of D then h(B) = B is the respective leaf of D′.

• If B is a painted leaf of D, which means that B is the parenthood atom
of some bi, and if E is the parenthood atom of di then h(B) = E is the
respective leaf of D′ (see Observations 32–34 if you feel an argument is
needed here).

• If B is an inner node of D, being a result of applying some rule T from
T to atoms B′ and B′′ (or just to B′, if T was a projection) and if we
already know h(B′) and h(B′′) then let h(B) be the result of applying the
rule T to the atoms h(B′) and h(B′′).

Clearly, D′ is also a part of Chase and h(B) is always an atom of the same
predicate as B. Notice however that if T was not joinless, the last step of the
construction would not always be possible in Chase.

Now, the atom h(A) in the root of D′ is going to be the C from the Lemma.
What remains to be proved is that it indeed satisfies conditions (ii) and (iii)
from the Lemma.

It easily follows from the construction that:

Observation 32 If B, B′ are atoms of D and the pair of positions i in B and
j in B′ is in sv then B(i) = B′(j).

Notice also that, since T is joinless, which means that a variable in the head
of a rule occurs in at most one atom in the body of this rule, we have:

Observation 33 For an atom B in D and position i in B, the set of nodes of
D which contain some position being sv to position i in B is a directed path in
D.

Since, for a B in D we add children of B to D as long as B has some non-root
position painted, it follows from the construction that:

Observation 34 For each position ij ∈ I there is exactly one leaf B of D such
that root of B and position ij in atom A are sv .

Condition (ii). First of all notice that, as D′ is isomorphic to D, the relation
sv can be in a natural way seen as a relation on positions in D′ (positions i in
h(B) and j in h(B′) are sv iff positions i in B and j in B′ are), and that
Observations 32– 34 still hold true (with A replaced by C in Observation 34).
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For ij ∈ I consider the leaf B of D such that root of B and position ij in
atom A are sv . By Observation 32 we haveB(1) = A(ij). Then, by construction
of D′ we have (h(B))(1) = dj , and, since Observation 32 remains true in D′, we
have C(ij) = dj , as needed.

Condition (iii). Let j be a position in PY (I) in A. Observation 33 says
that atoms of D which contain some position being sv to position j in A form a
directed path in D. A is one end of this path. Let B be the other end. There
are two possibilities: either B is unpainted leaf of D or it is an inner node.

If B is an inner node, then B is the parenthood atom of A(j). Then h(B) is
also the parenthood atom of some element and B(1) ≡0 (h(B))(1). But we know
that position 1 in h(B) and position j in C are sv , so we have (h(B))(1) = C(j),
what needed to be proved.

If B is unpainted leaf of D then let i be the position in B which is sv to
position j in A. Using the definition of h(B) for the case of unpainted leaves we
have A(j) = B(i) = (h(B))(i) = C(j). �

7 General scheme of the proof. The first little

trick

In the following Sections 7– 15 we show that a clean triple T , ∅, Ψ, where T
respects the family patterns, is never a counterexample for FC.

We will construct, for our theory T , an infinite sequence of finite struc-
tures {Mn}n∈N, which will ”converge” to Chase. The following property will be
satisfied:

Property 35 (i) Mn |= T for each n ∈ N.

(ii) For each UCQ Ψ and each n ∈ N if Mn 6|= Ψ then Mn+1 6|= Ψ.

Assume – till the end of this section – that a sequence {Mn}n∈N, satisfying
Property 35 (i), (ii) is constructed. Then:

Definition 36 A formula Φ will be called M-true if Mn |= Φ for each n ∈ N.

Lemma 37 (First Little Trick) If Φ is an M-true UCQ then there exists a
disjunct of Φ which is M-true.

Proof: By Property 35 (ii) all queries true in Mn+1 are also true in Mn. Since
Φ is true in each Mn, some disjunct from Φ must be true infinitely often, and
therefore in each Mn. �

The rest of the paper is organized as follows: In Section 9 the sequence
Mn is defined. In Section 10 we present our Second Little Trick, which not only
is the main engine of the proof of The Normal Form Lemma but also the main
technical idea of the whole paper.
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In the very short Section 11 a trivial case of cycled queries (whatever it
means) is considered. In Section 12 we finally define a normal form of a con-
junctive query and explain the main idea of the proof of:

Lemma 38 (The Normal Form Lemma) For each clean M-true CQ φ there
exist a clean CQ β in the normal form such that:

(∗) β is M-true and
(∗∗) Chase |= (β ⇒ φ).

In Sections 13 and 14 we continue the proof of the Normal Form Lemma.
Finally, in Section 15 we prove:

Lemma 39 (The Lifting Lemma) If a clean CQ β is in the normal form
and M0 |= β then Chase |= β.

Assuming existence of a sequence {Mn}n∈N, satisfying Property 35, and
assuming Lemmas 38 and 39 we can now present:

The main body of the proof of Theorem 3:

Suppose a clean triple T , ∅, Ψ, where T respects the family patterns, is a coun-
terexample for FC. This means there is no finite model satisfying T and not sat-
isfying Ψ, so in particular Ψ is M-true. Let φ be an M-true disjunct of Ψ (which
must exist due to the First Little Trick). Since T , ∅, Ψ is a counterexample
for FC we know that Chase(T , ∅) = Chase 6|= Ψ, so in particular Chase 6|= φ.
Let β be the normal form of φ as described in the Normal Form Lemma. We
know from (*) that β is M-true, so in particular M0 |= β. The Lifting Lemma
tells us that Chase |= β. But, by (**), we have that Chase |= (β ⇒ φ), so also
Chase |= φ. Contradiction. �

The proof above was a high-level one. We neither bothered to know what
the structures Mn are, nor what the normal form could actually be. It was
enough for us to know that they are tailored for Lemmas 38 and 39 to be true.
The real work begins now.

8 Aside: a philosophical remark

We feel we need to address an issue raised by one of the reviewers of our LICS
submission, and explain the connections between our structures Mn and the
finite structures from [Ros06] and [BGO10].

The general idea both here and in [Ros06] and [BGO10] is that a finite
structure constructed by identification of terms which have the same top n
levels, for some natural n, can be used to approximate the Herbrand universe
with respect to the properties of elements which only depend on the recent
history of those elements.
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This general idea is natural, by no means new, and it was reinvented many
times by many authors. We know it from [Mar95] (and its journal version
[MP03]), but it is already present, in some sense, in [JK84].

The devil is not in the general idea here, but in the details. The procedure
in [Ros06] and [BGO10] is the following:

• start from some database instance D;

• give a name to each Skolem function resulting from Skolemization of the
TGDs in T ;

• fix n and a constant cn to denote the branch stubs;

• consider the (finite) universe Un of the terms of depth up to n over the
defined signature (the constants are cn and the constants from D);

• define T ′ by replacing each TGD in T by a PROLOG rule in the natural
way; run the program T ′ on Un to get a model Ūn of T .

In this way, the resulting structure is always a model of T . But the cost
is that the Ūn are very complicated and hard to analyze. In particular it is
not even clear which atoms are true in Ūn, so it is very hard to lift a valuation
satisfying a query in Ūn to Chase(D, T ). This is – if we understand it correctly
– the main source of complications in [Ros06] and [BGO10].

Our way is very much different. We:

• first run T on D to get Chase(D, T );

• then construct, for given n, the structure Mn identifying elements of
Chase(D, T ) which have the same history, up to level n.

In consequence, not for each T we can be sure that our structure Mn is a
model of T . But there are two important properties that we get for free, which
are not shared by the structures Ūn above:

• Mn is a homomorphic image of Mn+1. This is a crucial property for the
normalization step that we call second little trick.

• The only way of being an atom in Mn is to be an atom in Chase(D, T )
before. This makes lifting easy.

The two above properties make us think that the structures Mn do not just
approximate the Chase. They converge to it.

9 The canonical models Mn

Proving that a theory is FC is about building finite models. And finally, in this
section we build them. Actually we define an infinite sequence of finite models
Mn, which will “converge” to Chase.
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Definition 40 By 1-history of an element a ∈ Chase (denoted as H1(a) ) we
mean the set consisting all the parents of a. By the n+ 1-history of a we mean
the set Hn+1(a) =

⋃
b∈H1(a)H

n(b) ∪ {b}.

Consider now an infinite well-ordered set of colors. For each natural number
k we need to define the k-coloring of Chase:

Definition 41 The k-coloring is the coloring of elements of Chase, such that
each element of Chase has the smallest color not used in its k-history.

Definition 42 For two elements a, b of Chase and for n ∈ N by a ≃n0 b we
mean that a ≡0 b and a and b have the same n-color. By a ≃nk+1 b we mean
that a ≃n0 b and that a′ ≃nk b

′ for each pair a′, b′ of respective parents of a, b.

To see what a ≃nn b means imagine that each element of Chase keeps the
record of its family history. It knows its n-color and the name of the predicate
it was born with, the n-colors of its parents and the names of the predicates
its parents were born with9. And so on, n generations back. Equivalence ≃nn
identifies elements of Chase if and only if the records they keep are equal.

Definition 43 For a natural n ≥ 1 we define two elements a, b ∈ Chase to be
n-equivalent (denoted as a ≡n b) if a ≃kk b for each k ≤ n and if a′ ≡k b′ for
each pair a′, b′ of respective parents of a, b and each k < n.

The reader should not feel too much confused by the colors here. They will
only be needed to deal with one trivial case, in Section 11. Everywhere else all
that needs to be remembered is:

Observation 44 The relation ≡n is an equivalence relation of finite index. If
a ≡n+1 b then:

• parenthood atoms of a and b are atoms of the same predicate;

• a ≡n b;

• whenever a′ and b′ are respective parents of a and b then a ≡n b;

Proof of the Observation is by a straightforward application of Definition 42
and Definition 43.

Now the next definition hardly comes as a surprise:

Definition 45 Let Mn be the relational structure whose set of elements is
Chase/≡n, and such that Mn |= R([a1], . . . , [an]) if and only if there are b1, . . . , bn ∈
Chase such that b1 ∈ [a1], . . . , bn ∈ [an] and Chase |= R(b1, . . . , bn).

9Remember that a ≡0 b means that parenthood atoms of a and b are atoms of the same
predicate.
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In other words, the relations in Mn are defined in the natural way, as
minimal with respect to inclusion relations such that the quotient mapping
qn : Chase −→ Mn is a homomorphism. If you find Definition 45 complicated,
please skip Lemma 46 and go first to Definition 47 and Lemma 48 – we hope
they will shed some light.

Since being (n + 1)-equivalent implies being n-equivalent (Observation 44)
the structure Mn is, for each natural n, a homomorphic image of Mn+1, and
this implies that the sequence of structures {Mn}n∈N satisfies Property 35 (ii).
It is also easy to see that it satisfies Property 35 (i):

Lemma 46 Mn |= T for each n ∈ N.

Proof: To keep notations as light as possible imagine a rule T from T of the form
P (x1, x2) ∧ Q(y1, y2) ⇒ ∃z R(z, x1, x2, y1, y2) (the argument is exactly the same
for any TGD, and even simpler for a plain Datalog rule). Suppose that atoms
P ([c1]≡n

, [c2]≡n
) and Q([c3]≡n

, [c4]≡n
) are true in Mn. We need to show that

there is an element [e]≡n
∈ Mn such that R([e]≡n

, [c1]≡n
, [c2]≡n

, [c3]≡n
, [c4]≡n

)
is also true in Mn.

By definition ofMn there exist elements a1, . . . a4 of Chase such that ai ≡n ci
for each i ∈ {1, . . .4} and that the atoms P (a1, a2) and Q(a3, a4) are true in
Chase. But – since Chase is a model of T – this means that there is an element
e of Chase such that the atom R(e, a1, a2, a3, a4) is also true in Chase. This
however implies that R([e]≡n

, [a1]≡n
, [a2]≡n

, [a3]≡n
, [a4]≡n

) is true in Mn, which
is exactly what we needed to prove. �

Notice that joinlessness of T was a crucial assumption here. Suppose the
body of T had the form P (x, v) ∧ Q(y, v) and atoms P ([c1]≡n

, [c]≡n
) and

Q([c2]≡n
, [c]≡n

) were true in Mn. This still would imply existence of atoms
A1 = P (a1, a) and A2 = Q(a2, a

′), both true in Chase, and such that a1 ≡n c1,
a2 ≡n c2 and a ≡n a′ ≡n c. But a and a′ would not need to be equal, and so
rule T could not be applied to A1 and A2 in Chase. This remark explains why
– in order to prove Finite Controllability of Sticky Datalog∃ – we first reduced
the problem to Finite Controllability for Joinless Logic.

Let us also remark that it easy to see that if T is a theory in Guarded
Datalog∃ then Lemma 46 remains true. This is why our technique can be
directly applied to show the FC property for Guarded Datalog∃. Actually, proof
in this case is much easier than in the in the case of the Joinless Logic, as the
technical details of the proof of Lemma 38 significantly simplify.

Definition 47 For a conjunctive query φ let Occ(φ) be the set of all variable
occurrences in φ. More precisely, Occ(φ) =

⋃
R∈φ({1, 2 . . . arity(R)} × {R}).

An n-evaluation of φ is a function f : Occ(φ) → Chase assigning, to each
atom R from φ and each position i in R, an element f(i, R) ∈ Chase, in such
a way that:

(*) for each pair of atoms R,R′ in φ if R(i) = R′(i′) then f(i, R) ≡n f(i′, R′).

(**) for each atom R in φ it holds that Chase |= f(R).
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Where by f(R) we mean the atomic formula resulting from replacing, in R,
each R(i) (which is a variable) by f(i, R) (which is an element of Chase).

It is easy to notice that:

Lemma 48 Mn |= φ if and only if there exists an n-evaluation of φ. �

See how simple it is: in order to analyze the behavior of queries in the
structures Mn we do not need to imagine these complicated finite structures
at all! The only structure we need to think about is Chase, together with the
equivalence relation ≡n. Imagine a CQ φ written in the following way. First
there is a conjunction of atoms, and each variable occurs in this conjunction
at most once. Then there is a conjunction of equalities between variables. Of
course every CQ can be written like this. Now, let φ′ be φ with each equality
symbol replaced by ≡n. What Lemma 48 really says is that there is no need to
ever imagine Mn, because Mn |= φ if and only if Chase |= φ′.

To see Lemma 48 in action let us now prove the following two lemmas. We
will need them at some point in the future:

Lemma 49 Consider an M-true conjunctive query φ = PP ∧R∧ψ, where PP
is a parenthood atom of some variable x (which means that PP (1) = x), and
where R = QF,δ(w̄) and R(i) = x. Let j <F i be a position in R. Then the
position δ(i, j) exists in the atom PP .

Notice that if we assumed that φ is true in Chase then the claim of the
Lemma would follow from Lemma 28 (well, actually it would be Lemma 28
then, modulo obvious rewritings): we are already used to the fact that if an
atom R is true in Chase, and there is an argument a in R which calls another
argument b ”granny”, then bmust occur on the granny position in the parenthood
atom PP of a.

It is not however immediately clear why the weaker assumption, that φ is
just M-true would be sufficient.

Proof of Lemma 49: We know that φ is M-true, so also M0 |= φ. Lemma 48
tells us that there exists a 0-valuation f of φ, which means that the atoms
f(PP ), f(R) and f(P ), for each atom P in ψ, are all true in Chase and f is
such that each two different occurrences of the same variable in φ are mapped
on 0-equivalent elements of Chase. So consider the atoms f(PP ) and f(R)
in Chase. Define (f(PP ))(1) = a and (f(R))(i) = a′. Since PP (1) = x and
R(i) = x we have that a ≡0 a

′. Consider the parenthood atom A of a′ in Chase.
By Lemma 28 we have that position δ(i, j) exists in A. And since a ≡0 a

′ we
have that A and PP are atoms of the same predicate, so position δ(i, j) must
also exist in PP . �

Lemma 50 Let ψ be an M-true query and let PF,δ and RG,γ be atoms in ψ.
Suppose x = P (1) = R(j), for some variable x and some position j in R.
Suppose also that positions j′ and j′′ in R are such that j′ <G j′′ <G j. Let i′
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and i′′ be such positions in P that i′ = γ(j, j′) and i′′ = γ(j, j′′). Then i′ <F i
′′

and δ(i′′, i′) = γ(j′′, j′)

Notice that positions i′ and i′′ exist in P due to Lemma 49.

Proof: The query ψ is M-true. So consider a 0-evaluation f of ψ. Let aP =
f(1, P ) and aR = f(j, R). Of course aP ≡0 aR. Let also CP = f(P ), CR = f(R)
and let C be the parenthood atom of aR in Chase. Of course CP and C are
atoms of the same predicate (because aP ≡0 aR).

Now use Lemma 28 for a = aR, to show that i′ <F i
′′ and δ(i′′, i′) = γ(j′′, j′)

hold in C. This of course implies that they also hold in CP . �

10 The second little trick

As we said in Section 7, for each M-true CQ φ we will construct its ”normal form”
β. The following lemma describes a single step of the normalization process. Its
proof relies on what we find to be the nicest technical idea of this paper10, so
please try to have fun:

Lemma 51 (Second Little Trick) Consider an M-true conjunctive query φ =
P ∧R∧ψ, where P is a parenthood atom of some variable x (which means that
P (1) = x), and where R = QF,δ(w̄) and R(i) = x.

Let σ be a unification, which for every position j <F i in R identifies the
variable R(j) with the variable P (δ(i, j)) (which exists, due to Lemma 49). Then
σ(φ) is also M-true.

Clearly, σ(φ) is more constrained than φ, so whatever structure M we con-
sider it holds that M |= (σ(φ) ⇒ φ) (this observation has something to do with
condition (**) of the Normal Form Lemma).

Notice however that, despite the fact that σ(φ) appears to be more con-
strained, we also have: Chase |= (φ ⇒ σ(φ)). This follows from Lemma 28,
which says that each element – call it b – of Chase has a unique tuple of parents,
and whenever b = R(i) for some atom R the element R(j) (with j <F i, where
F , δ are the family pattern of R) must be the same as the element in position
δ(i, j) in the parenthood atom of b.

This implies that every satisfying valuation of φ in Chasemust substitute the
same element for the variables R(j) and P (δ(i, j)) anyway, and so the unification
from the Lemma does not really lead to more constraints.

But the situation in the structures Mn is different. Lemma 28 is not valid
there, as elements of Mn can have more than one tuple of parents. This is
because when we identify two n-equivalent elements of Chase each of them
comes with its own parents, and we cannot be sure that the respective parents
will also be n-equivalent, and thus identified. What we know however is that
the respective parents will be at least (n− 1)-equivalent. And this turns out to
be sufficient for:

10And explains why the structures Mn are defined as they are.
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Proof of Lemma 51: We want to show that for each natural n the query σ(φ)
is true in Mn. Fix n ∈ N. We know that φ is M-true, so Mn+1 |= φ.

Suppose f is an (n + 1)-evaluation of φ. The lemma will be proved if we
can show that the same function f is also an n-evaluation of σ(φ). Of course
condition (**) of Definition 47 is still satisfied, as it neither depends on n nor
on the equalities between the variables. Also condition (*) is satisfied for the
pairs of variables that were already equal in φ. What remains to be proved is
that condition (*) holds true also for pairs of variables unified by σ. In other
words, we need to show that f(P (δ(i, j)), P ) ≡n f(R(j), R) for each position
j <F i in R.

But we know that f(P (1), P ) ≡n+1 f(R(i), R). This is because the variables
P (1) and R(i) are equal (to x), so f , being an (n + 1)-evaluation, must map
them to elements of Chase which are (n+ 1)-equivalent. Since f satisfies con-
dition (**) of Definition 47, we know (by Lemma 28) that f(P (δ(i, j)), P ) and
f(R(j), R) are respective parents of f(P (1), P ) and f(R(i), R). Now, to end
the proof, use the fact that respective parents of (n+ 1)-equivalent elements of
Chase are n-equivalent. �

11 The ordering →φ and cycled queries

We are already used to the fact that each atom comes with an ordering (”family
ordering”) of its arguments. Now we will extend the (family) ordering on posi-
tions of individual atoms to the ordering on variables of conjunctive query the
atoms form. Then we will study the new ordering very carefully.

Let us recall that a CQ is clean if it only contains atoms of parenthood
predicates. It is also good to remember that if QF,δ is a parenthood predicate
then (the ordering defined by) F is a tree and that position 1 is always the root
of this tree.

Definition 52 Let φ be a clean CQ.
By →φ we mean the smallest transitive (but not necessarily reflexive) relation

such that for each x, y ∈ V ar(φ) if there is an atom P = QF,δ(t̄) in φ and
positions i, j in F , such that P (i) = y, P (j) = x and i <F j, then x→φy.

A CQ φ is non-cycled if →φ is a partial order11 on V ar(φ) (which in par-
ticular means that it is antisymmetric). Otherwise it is cycled.

Clearly, if φ is cycled then Chase 6|= φ. But it is also not hard to see that:

Lemma 53 If φ is a cycled query consisting of k atoms, then Mk+1 6|= φ. So a
cycled query is never M -true.

Proof: Let sequence of atoms R1, . . . Rj−1 for j ≤ k be a witness of the fact that
Φ ic cycled. It means that there exist a sequence of variables x1, . . . xj such that
xi is a parent of xi+1 in atom Ri and x1 = xj .

11 When x→φy then we think that y is smaller than x. Mnemonic hint: the arrowhead of
→ looks like >.
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Suppose that φ is true in Mk (and therefore in Mj). Let f be a j-evaluation
of φ. From f we can extract two sequences a1, . . . , aj−1 and b2, . . . , bj such that

• ai is a parent of bi+1 in Chase

• ∀1<i<j ai ≡j bi

• a1 ≡j bj

By abusing the notation a bit we could just say that ai = f(xi, Ri) and bi+1 =
f(xi+1, Ri).

Observation 54 There exists a sequence c1, . . . , cj of elements of Chase such
that

• ci is a parent of ci+1 in Chase

• ∀i<j ci ≃
j
i ai

• cj = bj

Notice that once the Observation is proved, the proof of Lemma 53 will be
finished: this is because it follows from the Observation that c1 ≃j1 a1 ≡j bj = cj ,
which means that c1 has the same j-color as cj . But this leads to a contradiction
since c1 is in a j-history of cj , and this is exactly what is prohibited by Definition
41.
Proof of Observation: This sequence will be constructed by induction. Let
cj = bj and cj−1 = aj−1.

Suppose that ci+1 has been defined. Since ci+1 ≃ji+1 ai+1 ≡j bi+1 we have

ci+1 ≃ji+1 bi+1. Because ai is a parent of bi+1, there must exist a respective

parent ci of ci+1 such that ci ≃
j
i ai. �

This was fortunately the last time we needed to think about colors.
It follows from Lemma 53 that in the proof of the Normal Form Lemma

(Lemma 38) we only need to consider non-cycled queries.

12 Non-cycled queries and the normal form

Now please be ready for the most technical part of the paper. Let φ be an non-
cycled and M-true CQ and let →φ be the partial order on V ar(φ), as defined
in the previous section.

Definition 55 Call a variable x ∈ V ar(φ) important if x = P (1) for some
atom12 P in φ. Otherwise x is called ordinary.

12Do not forget that only parenthood atoms appear in queries
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So the important variables are the ones we know a lot about – we know all
their parents by name.

Let us remind the reader that the notation PY was introduced in Definition
29.

Definition 56 • For an atom P = QF,δ(t̄) of φ let I(P ) denote the set of
such non-root positions i in P that the variable P (i) is important and that
for each j 6= 1 if i <F j then P (j) is ordinary.

• For an atom P of φ define top.pos(P ) = PY (I(P )). Let top.pos(φ) ⊆
Occ(φ) be the set of such variable positions (i, P ) that i ∈ top.pos(P ).

• For an atom P of φ let top.var(P ) = {P (j) : j ∈ top.pos(P )}. A variable
y ∈ V ar(φ) is a top variable if y ∈ top.var(P ) for some atom P of φ.

In other words top.pos(φ) is the set of positions in the atoms of φ, which
are, in a certain sense ”close to the roots” of the respective atoms – there are
no important variables between this position and the root of the atom. The set
top.var(P ) is a set of variables – these variables that occur in one of the ”top
positions” of P .

Now we can define the normal form of a conjunctive query:

Definition 57 A CQ φ is in the normal form if:

Ideological condition: If P is an atom in φ which is a parenthood atom of
an important variable x, if R = QF,δ(t̄) is another atom in φ, such that
R(i) = x, and if j is a position in R such that j <F i, then R(j) =
P (δ(i, j)).

Technical condition: Each variable from V ar(φ) occurs in at most one posi-
tion in top.pos(φ).

Notice that it follows from the Ideological Condition, that an important
variable x of a query φ in the normal form can be in the root position in only
one atom of φ (a query is a set of atoms, so equal atoms count as one). In order
to see that suppose that there are two such atoms, P and R. Since φ is assumed
to be M -true, P and R must be atoms of the same predicate. Now apply the
Ideological Condition to P and R and see that it follows that variables in the
same positions in P and R must be equal, so P and R are in fact one atom.
Call this unique atom having x in the root position PPx.

Since the root positions are the only positions of important variables which
are in top.pos(φ) this means that the Technical Condition for the important
variables is implied by the Ideological Condition.

Notice also that the Ideological Condition is the condition from Lemma 51.
So one can imagine now, how we are going to prove Lemma 38 – we will start
from the query φ (or from something similar – actually it is not going to be
exactly φ) and perform the unifications from Lemma 51 on it, as long as possible.
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The main difficulty in the proof of Lemma 38 is to make sure that the final result
of such a unification procedure indeed satisfies the Technical Condition for the
ordinary variables, which will be very much needed (in Section 15) for the proof
of the Lifting Lemma.

For the (mostly boring and syntactical) details of the proof of Lemma 38 see
the next two sections.

As it turns out, the assumption that an M-true query φ is in the normal form,
or even that it satisfies the Ideological Condition alone, implies a lot about the
ordering →φ:

Definition 58 Let y, y′ ∈ V ar(φ). We will call y′ a successor of y if y′→φy
and there is no such z ∈ V ar(φ) that y′→φz and z→φy.

Lemma 59 Let φ be an non-cycled M-true query satisfying the Ideological Con-
dition. Then:

A. Every variable in V ar(φ) is a top variable.

B. If an ordinary variable y′ is a successor of an ordinary variable y then
there is an atom PPx such that y, y′ ∈ top.var(PPx). If an important
variable x is a successor of an ordinary variable y then y ∈ top.var(PPx).

Proof of A: Suppose there is a variable y ∈ V ar(φ) which is not a top variable.
Let z be a minimal, with respect to the ordering →φ, important variable such
that y ∈ V ar(PPz). Let <F , δ be the family pattern of PPz.

We know that y 6∈ top.var(PPz), so there must be an important variable
x ∈ V ar(PPz) such that x 6= z and i <F j, where PPz(i) = y and PPz(j) = x.
But this means, since φ satisfies the Ideological Condition, that y occurs in the
atom PPx (in position δ(j, i)), which contradicts the minimality of z.

Notice that we silently used Lemma 49 here, and this is where the assumption
that φ is M-true was needed.

Proof of B: If y′ (ordinary or important) is a successor of y then, by the definition
of →φ, there must be an atom PPx, with the family ordering <F , and positions
i, i′ in PPx, such that i <F i′, PPx(i) = y, PPx(i

′) = y′. Notice also that, if
i and i′ are as above, there is no position j satisfying i <F j <F i′ – this is
because the variable PPx(j) would be between y and y′ in the ordering →φ.
Let x be a minimal, with respect to the ordering →φ variable such that PPx
satisfies the above requirements. Now, use the argument from the proof of claim
A. to show that i is a top position in PPx. �

Lemma 60 Let φ be an non-cycled M-true query in the normal form. Then:

A. Each ordinary variable has exactly one successor.

B. Suppose y ∈ top.var(PPx), the variable z is important and z→φy. Then
z→φx.
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Proof of Lemma 60. Claim A. follows directly from Lemma 59B and from the
Technical Condition. Claim B. follows directly from A. �

Now all the notions appearing in the Normal Form Lemma and in the Lifting
Lemma are defined and what remains to be done is proving the two Lemmas.
The next two sections are devoted to the proof of Lemma 38. But once you
know the main idea, which is performing the unifications from the Second Little
Trick as long as needed/possible, the proof is hardly exciting. Then, in the
last section of the paper, the Lifting Lemma (Lemma 39) is proved, and this is
where the rabbit is pulled out of the hat. So maybe it is not a bad idea to skip
Sections 13 and 14 and jump directly to Section 15.

13 Proof of Lemma 38. Part one: the normal

form of φ.

In this Section we consider some fixed M-true CQ φ and construct a CQ β being
the normal form of φ, as specified by Lemma 38 and Definition 57.

The definition of β itself (Definition 65) is quite natural and not very com-
plicated. The really technical part begins right after Definition 65, where we
prove that the defined query is indeed the normal form of φ. There are no deep
ideas there, we just need to carefully analyze the consequences of the unifica-
tions resulting from applications of the Second Little Trick, and such analysis
is, by its nature, a very syntactic thing.

notational conventions. The typical situation in this part of the paper will
be that we will consider some fixed CQ θ, and restrict attention only to queries
being equality variants of θ. By this we mean queries that can be obtained from
θ by renaming some of the occurrences of variables.

We need a convenient language for this scenario, so let us start from defining
such a language.

Equality variants of θ only differ by the names of the variables, and they all
have the same set of positions. We will imagine that θ is a conjunction of some
atoms P lFl,δl

, with l ∈ V for some set V , and we will denote by P the set of all
positions in θ (which is a disjoint union of the sets of positions in the atoms).
By saying ”let i ∈ P” we can now address a position directly, without specifying
in which of the atoms of θ it is located. The cost to pay is that no longer we
can use 1 for the name of the position in the root of the atom, so by root(i) we
will mean that i ∈ P is a position in the root of some P l. By Pξ(i) (or just
P(i) when the context is clear) we will mean the variable in position i ∈ P in
the equality variant ξ of θ.

Let ≺ be the disjoint union of all relations <Fl
, so that by i ≺ j, for i, j ∈ P ,

we mean that positions i and j are in the same atom P l, for some l, and i <Fl
j.

Similarly, let δ be the disjoint union of all the functions δl.
It will be also convenient to have a notation ∆(i, i, j′, j′) for the formula

root(i) ∧ δ(i, i′) = δ(j, j′).
In other words (for those who do not like our new language) ∆(i, i, j′, j′)
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means that there are l and l′ such that i is the position in the root of P l, i′ is
a position in P l, j and j′ are positions in P l

′

, and δl(i, i
′) = δl′(j, j

′).
Since the objects defined in this subsection (P , ∆, ≺, δ) depend on our

current choice of θ, they only have meaning in the contexts where θ is defined.
See how conveniently the Ideological Condition from Definition 57 can now

be expressed:

(♥) for each i, i′, j, j′ ∈ P , if ∆(i, i′, j, j′) and P(i) = P(j) then P(i′) = P(j′).

The unification procedure. For a query ψ let u(ψ) be a result of:
The unification procedure:
fix θ as ψ;

/∗ So that the above notations apply ∗/
ξ := ψ
while there exist: i, j, i′, j′ ∈ P such that ∆(i, i′, j, j′), Pξ(i) = Pξ(j) and
Pξ(i′) 6= Pξ(j′)
do
{
replace all occurrences of Pξ(j′) in ξ by Pξ(i′)
(in other words ξ := ξ[Pξ(j′)/Pξ(i′)]);
}
forget that θ was ψ;

/∗ So that we can use θ somewhere else ∗/
remove the repeating atoms from ξ;
return ξ as u(ψ);
end of the unification procedure.

What this procedure does is exactly checking if the Ideological Condition
is satisfied in ξ, and if it isn’t, unifying the variables that violate the Ideolog-
ical Condition, using the Second Little Trick. Clearly, the procedure always
terminates and u(ψ) always satisfies the Ideological Condition. We also know,
from Lemma 51, that if ψ is M-true then u(ψ) also is. It is also obvious that
Chase |= (u(ψ) ⇒ ψ).

We are however not claiming that u(ψ) is always the normal form of ψ. This
is because there is no reason for the Technical Condition to be satisfied in u(ψ).
One could for example easily take ψ to be a query which already satisfies the
Ideological Condition (so that u(ψ) = ψ) but not the Technical Condition.

The unification procedure is nondeterministic – at each step it nondetermin-
istically selects, for the unification, a pair of variables. But:

Lemma 61 The result of the unification procedure – the u(ψ) – is unique for
ψ, in the sense that it does not depend on the nondeterministic choices made by
the procedure.

Proof: Since the set of positions P is fixed, a query ξ can be identified with its
equality relation =ξ on the set of positions (this relation says that the variables
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in two positions are equal in ξ). What the unification procedure does is com-
puting the fixpoint of some Datalog program. The relations ∆ and =ψ are the
input predicates of this program while =u(ψ) is its output predicate. The rules
of the program are the condition (♥) above, and the reflexivity, symmetricity
and transitivity axioms for =u(ψ). And of course the fixpoint of a Datalog pro-
gram does not depend on the order of execution. �

elevating the importance of the variables. As we said, u(ψ) is not
always in the normal form, as it may not satisfy the Technical Condition. The
Technical Condition concerns the ordinary variables, and the reason why ψ may
not satisfy it is that there may be some unwelcome equalities between ordinary
variables in ψ. Our way towards the solution of the problem is to elevate the
(potentially) misbehaving ordinary variables to the position of importance, so
that they are allowed more.

Definition 62 For a query ψ by a closure of ψ we will mean any query of the
form ψ ∧

∧
x∈V arord(ψ)

R(x, x̄) where V arord(ψ) is the set of all the ordinary
variables of ψ, R is any parenthood predicate and x̄ is a tuple of fresh variables.

It is now straightforward to see that:

Lemma 63 if ψ′ is any closure of ψ then:

• if x ∈ V ar(ψ) then x is important in ψ′;

• each ordinary variable in ψ′ occurs in ψ′ only once;

• Chase |= (ψ′ ⇒ ψ);

• ψ′ satisfies the Technical Conditions (although not necessarily the Ideolog-
ical Condition).

It is also not hard to show that:

Lemma 64 If ψ is M-true then there exists an M-true ψ′ being a closure of ψ.

Proof: For each n ∈ N if Mn |= ψ then also Mn |= ψ for some closure ψ′ of ψ.
This is because each element of Mn is a child in some parenthood atom valid in
Mn.

Since there are only finitely many possible closures of ψ, if ψ is M-true, then
there is a closure ψ′ which is true in Mn for infinitely many numbers n. Now
use the argument from the First Little Trick. �

From now on, for an M -true conjunctive query ψ by c(ψ) we will denote an
M-true closure of ψ.

the query β – the normal form of φ. We are finally ready to name the
query β which is the normal form of φ:
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Definition 65 β = u(c(φ)).

Lemma 66 1. β is M-true;

2. Chase |= (β ⇒ φ);

3. β satisfies the Ideological Condition;

4. β satisfies the Technical Condition.

Claims 1)–3) follow immediately from the construction. But Claim 4) is not
obvious at all, it needs a proof, and this proof, while not really complicated,
is unfortunately not going to be short. Notice however that once Lemma 66 is
proved then of course also the proof of Lemma 38 will be finished.

14 Proof of Lemma 38. Part two: proof of Lemma

66.4.

What remains to be done to show that β is indeed the normal form of φ is
proving that it satisfies the Technical Condition. The main proof technique is
a patient syntactical analysis of the unifications that led to β.

Let now θ – the query with respect to which the notations are defined in
the beginning of the previous Section – be equal to β. And this is not going to
change any more.

Before we show Lemma 66 let us try to imagine how β looks like. There are
two kinds of atoms in β. One are those that originated in φ. Now they contain
only important variables. Second kind are the atoms that were originally added
to φ when c(φ) was created. They may contain ordinary variables, but also,
after all the unifications on c(φ) they contain some important variables in non-
root positions.

Proof of Lemma 66.4. Please allocate memory for two more equality variants of
β. They will be called β0 and βwu (as ”weakly unified”), which will at the end
turn out to actually be equal to β.

We need to do something strange now. Due to a reason that will be explained
later, we need to destroy the structure of β, to some extend, and then to rebuild
it again:

Definition 67 Let β0 be the result of substituting a fresh variable for each oc-
currence of an ordinary variable in β.

Of course β0 is not simply c(φ). The unifying procedure run on c(φ) a)
unified some of the fresh variables in the new atoms of c(φ) with the variables
from V ar(φ)), and b) unified some of these fresh variables with other fresh
variables. The query β0 is the result of undoing the unifications from b), but
not from a) .
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Lemma 68 u(β0) = β;

This is because β = u(c(φ)) is more unified than β0 and β0 is more unified
than c(φ). Use the datalog fixpoint argument from the proof of Lemma 61. �

Clearly, β0 satisfies the Technical Condition.
Now we are going to run a version of the unification procedure on β0, which

will lead us to a new query βwu. The query βwu is in fact β, but this is a
secret yet. In this new unification procedure the pairs of variables to be unified,
will be carefully hand-picked in the correct order and nothing will be left to
nondeterminism. Thanks to that we will be able to make sure that the Technical
Condition keeps being satisfied. One of course could ask here why did we bother
to define β first, if then we run another unification procedure on β0 anyway?
And the answer is, that we only can know the correct order once we know β!
So we need to know β, constructed in any way, to be able to construct β again
in the careful way.

Notice that whatever our order of the execution of the unification procedure
is going to be, we will never unify any important variable with any other variable
(important or ordinary). If x is an important variable in β then it is also
important in β0 and for each i ∈ P we have that Pβ(i) = x if and only if
Pβ0

(i) = x. This observation leads to a series of definitions:

Definition 69 Call a position j ∈ P ordinary, if the variable Pβ0
(j) is ordinary

(or – equivalently – if the variable Pβ(j) is ordinary). Otherwise j is impor-
tant. Let Pord and Pimp denote, respectively, the sets of ordinary and important
positions.

Definition 70 For an ordinary position j ∈ P denote by nearest.pos(j) the
smallest, with respect to the ordering ≺, important position i in P such that
j ≺ i. By nearest.var(j) denote the variable P(nearest.pos(j)).

In other words nearest.pos(j) is the first important position on the path
from j to the root of the atom where j is located, and nearest.var(j) is the
name of the important variable that lives there.

Definition 71
For an important variable x let layer(x) = {j ∈ Pord : nearest.var(j) = x}.

Of course:

Lemma 72 The sets layer(x), for x ∈ V arimp(β), form a partition of Pord (by
which we mean that they are pairwise disjoint and that their union equals Pord).

Let us also remind that an ordinary position j is a top position if root(nearest.pos(j))
(this is Definition 56 in our new language).
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Now we are ready for:

The weak unification procedure:
ξ := β0;
to-be-considered := V arimp(β0)

while to-be-considered6= ∅
do:
{ /∗ ♦ ∗/
Let x be a minimal, with respect to the ordering →β , variable in the set to-be-
considered;
/∗ See! Here is where we need to know β. ∗/

Let i ∈ P be such that P(i) = x and root(i);
/∗ We took the position in the root of the atom PP x. ∗/

For each non-top position j′ such that j′ ∈ layer(x),
and for each i′ such that ∆(i, i′, nearest.pos(j′), j′)
substitute the variable P(j′) in ξ by the variable P(i′);
/∗ Call the above the ”unification step” ∗/

Remove the variable x from to-be-considered;
}
Return ξ as βwu.
end of the procedure.

Let us try to explain the substitution step of the procedure.
Once x is fixed (which is one of the →β minimal variables not yet considered)

we look for all possible positions j′ ∈ Pord, such that the if we started, in j′,
a path (in the ordering ≺) towards the root of the atom where j′ is located,
the first important position on this path would be some non-root position j =
nearest.pos(j′), and the variable there would be x.

Then we ask j: ”how do you call j′ ?”. And we get some answer ”δ(j, j′)”.
So we ask i: ”whom do you call δ(j, j′) ?”. And we get some answer ”i′”. Then
we say: ”So, since the variables in i and j are equal, the Ideological Condition
wants the variables in i′ and j′ to unify. From now on the one in j′ will adopt
the name of the one in i′”.

Of course unification means more than just renaming the variable in j′. We
need to rename all the occurrences of P(j′) in the current ξ. But the trick is
that:

Lemma 73 Each time the control passes the point marked with ♦, if x ∈ to-
be-considered and j ∈ layer(x) then P(j) is a fresh variable (which means that
it only occurs once in ξ).

Proof: There are two ways for a variable to lose its freshness. One is to be copied
somewhere, which means being the i′ from the unification step, the other is to be
substituted with another variable, which means being the j′ from the unification
step.
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But notice that each non-top position in P is exactly once the j′ from the
unification step, and right after that the variable nearest.var(j′) is removed
from the set to-be-considered. Notice also, that each position that, at some point
of time, had already been the i′ of the unification step, must be a position in
some atom PP z, with z not being in the set to-be-considered any more (because
in the unification step we take the names for the variables from the atom having
the currently considered variable x in the root). And if k ∈ layer(x) and x ∈
to-be-considered then k is a position in the atom PP z for some z such that
z→βx, which implies that z ∈ to-be-considered. �

The meaning of the last lemma is that the substitution in the unification
step is just a renaming of one variable occurrence – the one in j′. It does
not propagate, in the sense that it does not force any other renamings. This
means that there is just one chance for a position, during the execution of the
procedure, to have its variable changed – when this position is the j′ from the
unification step. Since only non-top positions are ever the j′, the next lemma
follows:

Lemma 74 If j is a top position in P then Pβ0
(j) = Pβwu

(j)

Lemma 74 implies that the query βwu satisfies the Technical Condition. But
we still cannot be sure that it also satisfies the Ideological Condition. While
the while loop from the original unification procedure (from Section 13) really
checks for the premise of the Ideological Condition and, if this premise holds, it
performs the unifications, and does it as long as needed, the loop in the weak
unification procedure only performs some hand-picked unifications. We need
one more lemma to improve our understanding of how the query βwu looks like:

Lemma 75 If, at some point of the execution of the weak unification procedure,
the variables in positions i′ and j′ were unified (i.e. the variable from i′ was
copied to j′) then they remain equal in βwu

Proof: As we said before, the variable in each position can only be changed once
by the weak unification procedure. So the variable in j′ will not be changed
any more. We need to make sure that the variable in i′ will not be changed
after it was copied to j′. Suppose the variable x was being considered when
the variables in positions i′ and j′ were unified. This means that either i′ is
a top position in PPx (which means, as we observed before, that the variable
there can never be changed) or i′ ∈ layer(z) for some z such that x→βz. But
this means that at the moment of the unification z is no longer in the set to-be-
considered, and so the variable in i′ was already substituted, and it never will
again. �

Now the last lemma we need to show in order to finish the proof of Lemma
66:

Lemma 76 The query βwu satisfies the Ideological Condition. In consequence,
βwu = β.

40



Proof: We know from Lemma 75 that βwu is weakly unified, which means that
if i, i′, j, j′ are positions in P such that ∆(i, i′j, j′), if Pβwu

(i) = Pβwu
(j), and if

j = nearest.pos(j′) then Pβwu
(i′) = Pβwu

(j′).
What we need to show is that the Ideological Condition holds, that is if

i, i′, j, j′ are positions in P such that ∆(i, i′j, j′), if Pβwu
(i) = Pβwu

(j), then
Pβwu

(i′) = Pβwu
(j′).

Suppose that the above is not true and let x be a minimal, with respect to
the ordering →β , important variable such that there exist positions i, i′, j, j′ in
P such that ∆(i, i′j, j′) and Pβwu

(i) = Pβwu
(j) but Pβwu

(i′) 6= Pβwu
(j′).

Let y be an important variable such that j′ ∈ layer(y), and let kj =
nearest.pos(j′) (so that Pβwu

(kj) = y). Of course it cannot be that kj = j,
as this would contradict the assumption that βwu was weakly unified. So we
have j′ ≺ kj ≺ j.

Let ki ≺ i be such position that δ(i, ki) = δ(j, kj). From Lemma 50 we know
that i′ ≺ ki and δ(ki, i

′) = δ(kj , j
′).

Notice that δ(i, ki) = δ(j, kj) implies that Pβ(ki) = Pβ(kj). This is because
the variables in i and j are equal in β and β satisfies the Ideological Condition.
But Pβ(ki) = Pβ(kj) = y is an important variable, so we have that Pβwu

(ki) =
Pβwu

(kj) = y.
Let now k ∈ P be such that root(k) and Pβwu

(k) = y. Such k must exist
because each important variable is a root somewhere. Let k′ be such that
δ(k, k′) = δ(kj , j

′) (and thus also δ(k, k′) = δ(ki, i
′)).

Since x→βy, by the minimality of x we now get that Pβwu
(k′) = Pβwu

(j′)
and Pβwu

(k′) = Pβwu
(i′). Contradiction. �

This ends the proof of Lemma 66 and of Lemma 38.

15 Proof of the Lifting Lemma

In this section we show what remains to be shown: that if M0 |= ψ and ψ is in
the normal form then also Chase |= ψ.

As we remember from Section 9, M0 |= ψ means that there exists a 0-
evaluation of ψ. Such a 0-evaluation is a function assigning to each variable
occurrence in ψ an element of Chase in such a way that the atoms in ψ map
into atoms true in Chase and (different occurrences of) equal variables map to
0-equivalent elements of Chase. Chase |= ψ means almost the same, the only
difference is that equal variables map to equal elements of Chase, not just to
0-equivalent.

Definition 77 A 0-evaluation f is faithful with respect to a set S ⊆ V ar(ψ) if
for each pair of atoms R,P in ψ such that V ar(R), V ar(P ) ⊆ S if R(i) = P (i′)
then f(i, R) = f(i′, P )

If f is faithful with respect to S then for an atomR in ψ, such that V ar(R) ⊆
S, and for z = R(i), we write f(z) instead of f(i, R).
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Being faithful with respect to S means to look, inside S like a real valuation
of a ψ in Chase. Clearly Chase |= ψ if and only if there exists a 0-evaluation
faithful with respect to V ar(ψ). On the other hand, since M0 |= ψ, we know
that there exists a 0-evaluation faithful with respect to ∅. We are going to
gradually modify this 0-evaluation to make it more and more faithful, until we
get one faithful with respect to V ar(ψ).

The sets S we will be interested in are ideals in V ar(ψ):

Definition 78 Subset S ⊆ V ar(ψ) is an important ideal if:

1. If x ∈ S and x→ψy then also y ∈ S.

2. All maximal elements of S are important variables.

From now on let S be an important ideal and let x ∈ V ar(ψ) be a minimal im-
portant variable not in S. Let PPx = QF,δ(x, x̄) be, as usually, the parenthood
atom of x in ψ. Let S′ be the important ideal generated by x and S.

Lemma 79 1. If R is an atom in ψ such that V ar(R) ⊆ S′ but V ar(R) 6⊆ S
then R = PPx.

2. S′ \ S = top.var(PPx)

Proof: 1) Each atom in ψ is the PP atom of some important variable. If R is
the PP atom of some y ∈ S then V ar(R) ⊆ S. If R is the PP atom of some
y 6∈ S′ then of course V ar(R) 6⊆ S′. And x is the only important variable in
S′ \ S.

2) This follows easily from Lemmas 59 and 60. Let us show, for example,
that top.var(PPx) ⊆ S′ \ S. Of course top.var(PPx) ⊆ S′ so what we need to
show is that top.var(PPx)∩S = ∅. Let y ∈ top.var(PPx). Suppose y ∈ S. This
would mean that there exists an important z ∈ S such that z→ψy. But, by
Lemma 60, this would imply that z→ψx, which is a contradiction. The proof
of the other inclusion is left as an easy exercise. �

We will need the following easy observation about local (restricted to one
atom only) modifications of 0-evaluations:

Definition 80 Suppose f is a 0-evaluation, f ′ : Occ(ψ) → Chase is any func-
tion, and P is an atom in ψ. We say that f ′ is P -similar to f if:

• f ′(i, R) = f(i, R) for each atom R 6= P , and each position i in R;

• Chase |= f ′(P )

• f ′(i, P ) ≡0 f(i, P ) for each position i in P .

Lemma 81 If f is a 0-evaluation and f ′ is P -similar to f then f ′ is also a
0-evaluation. �
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Let S, S′ and x be as above. In view of Lemma 79 1) and Lemma 81, due
to an induction argument, in order to prove Lemma 39, it now only remains to
show:

Lemma 82 Let f a 0-evaluation faithful with respect to S. Then there exists a
0-evaluation f ′, PPx-similar to f and faithful with respect to S′.

Proof: First we of course define f ′(i, R) = f(i, R) for each atom R 6= PPx, and
each position i in R, so the first condition of Definition 80 is satisfied.

We will now define f ′(PPx). Then we will notice that the second and third
conditions from Definition 80 hold, so f ′ is indeed a 0-evaluation. Finally we
will see that f ′ is faithful with respect to S′.

Let I(PPx) = {i1, i2 . . . is}, where I(PPx) is the set of maximal important
non-root positions, as in Definition 56. Let y1, y2, . . . ys be the important vari-
ables in positions i1, i2 . . . is in PPx (the variables may repeat, this does not
bother us). For each 1 ≤ j ≤ s let dj = f(yj) (notice that this definition makes
sense, because yj ∈ S for each j) and let bj = f(ij, PPx).

Clearly, since f is an evaluation, we have bj ≡0 dj for all j. But it means
that we are now in the situation of Lemma About the Future (Lemma 30),
where A = f(PPx).

So let C be as in Lemma 30. For any position j ∈ top.pos(PPx) define
f ′(j, PPx) as C(j). Notice, that we can be sure (thanks to Lemma 30) that
f ′(j, PPx) ≡0 f(j, PPx).

Let now j be a position in PPx which is not in top.pos(PPx). That means
that the variable z = PPx(j) is in S. Define f ′(j, PPx) as f(z). The condition
f ′(j, PPx) ≡0 f(j, PPx) now holds trivially, since f was a 0-evaluation.

We defined a function f ′, which satisfies the first and the third condition
from Definition 80. Now we need to check that Chase |= f ′(PPx). We know
that Chase |= C, so this part of proof would be finished if we could show
that f ′(PPx) = C. Of course by the definition of f ′ the atoms f ′(PPx) and
C have equal elements of Chase in the root and in all the positions in the
set top.pos(PPx). But this is not that clear what happens in the remaining
positions. Surprisingly, this is the crucial moment, the one we spent long pages
preparing for. The full power of the normal form and family patterns is going
to be used in the next 8 lines:

Consider two positions in PPx: i ∈ {i1, i2 . . . is} and j <F i. Let z = P (j)
and let y be the variable in position i. Since y is important, its parenthood
atom, PPy, is in ψ.

Since ψ is in the normal form, we know, by the Ideological Condition, that
PPy(δ(i, j)) = z. Since we defined f ′(j, PPx) to be f(z), we get f ′(j, PPx) =
f(δ(i, j), PPy). What we want to show is that f ′(j, PPx) = C(j). But this now
follows directly from Lemma 28.

In order to finish the proof of the Lemma we still need to notice that f ′ is S′-
faithful. The atoms described by Definition 77 are now all the atoms that were
already contained in S, and one new atom PPx. If PPx(j) was in S we defined
f(j, PPx) as f(PPx(j)), so we did not spoil anything. The only problem could
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be with the values assigned to positions in PPx with variables from S′ \S. But,
by the Technical Condition each of these variables occurs in PPx only once, so
the condition from Definition 77 is trivially satisfied. �
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