
ar
X

iv
:1

30
4.

41
59

v1
 [

cs
.L

O
]

 1
5

A
pr

 2
01

3

Abstract machines for game semantics, revisited∗

Olle Fredriksson and Dan R. Ghica

University of Birmingham, UK

October 31, 2018

Abstract

We define new abstract machines for game semantics which correspond
to networks of conventional computers, and can be used as an intermedi-
ate representation for compilation targeting distributed systems. This is
achieved in two steps. First we introduce the HRAM, a Heap and Register

Abstract Machine, an abstraction of a conventional computer, which can
be structured into HRAM nets, an abstract point-to-point network model.
HRAMs are multi-threaded and subsume communication by tokens (cf.
IAM) or jumps. Game Abstract Machines (GAM), are HRAMs with ad-
ditional structure at the interface level, but no special operational capabil-
ities. We show that GAMs cannot be naively composed, but composition
must be mediated using appropriate HRAM combinators. HRAMs are
flexible enough to allow the representation of game models for languages
with state (non-innocent games) or concurrency (non-alternating games).
We illustrate the potential of this technique by implementing a toy dis-
tributed compiler for ICA, a higher-order programming language with
shared state concurrency, thus significantly extending our previous dis-
tributed PCF compiler. We show that compilation is sound and memory-
safe, i.e. no (distributed or local) garbage collection is necessary.

1 Introduction

One of the most profound discoveries in theoretical computer science is the
fact that logical and computational phenomena can be subsumed by relatively
simple communication protocols. This understanding came independently from
Girard’s work on the Geometry of Interaction (GOI) [16] and Milner’s work on
process calculi [22], and had a profound influence on the subsequent development
of game semantics (see [12] for a historical survey). Of the three, game semantics
proved to be particularly effective at producing precise mathematical models for
a large variety of programming languages, solving a long-standing open problem
concerning higher-order sequential computation [1, 19].

∗An extended abstract of this paper is due to appear in the Twenty-Eighth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), June 25-28, 2013, New
Orleans, USA.

1

http://arxiv.org/abs/1304.4159v1

One of the most appealing features of game semantics is that it has a dual
denotational and operational character. By denotational we mean that it is
compositionally defined on the syntax and by operational we mean that it can
be effectively presented and can form a basis for compilation [13]. This feature
was apparent from the earliest presentations of game semantics [18] and is not
very surprising, although the operational aspects are less perspicuous than in in-
terpretations based on process calculi or GOI, which quickly found applications
in compiler [21] or interpreter [2] development and optimisation.

An important development, which provided essential inspiration for this work,
was the introduction of the Pointer Abstract Machine (PAM) and the Inter-
action Abstract Machine (IAM), which sought to fully restore the operational
intuitions of game semantics [5] by relating them to two kinds of abstract ma-
chines, one based on term rewriting (PAM) and one based on networks of au-
tomata (IAM) profoundly inspired by GOI. A further optimisation of IAM, the
Jumping Abstract Machine (JAM) was introduced subsequently to avoid the
overheads of the IAM [6].

Contribution In this paper we are developing the line of work on the PAM,
IAM, and JAM, in order to define new abstract machines which correspond
more closely to networks of conventional computers and can be used as an in-
termediate representation for compilation targeting distributed systems. This
is achieved in two steps. First we introduce the HRAM, a Heap and Regis-
ter Abstract Machine, an abstraction of a conventional computer, which can be
structured into HRAM nets, an abstract point-to-point network model. HRAMs
are multi-threaded and subsume communication by tokens (cf. IAM) or jumps.
GAMs, Game Abstract Machines, are HRAMs with additional structure at the
interface level, but no special operational capabilities. We show that GAMs can-
not be naively composed, but composition must be mediated using appropriate
HRAM combinators. Starting from a formulation of game semantics in the nom-
inal model [9] has two benefits. First, pointer manipulation requires no encoding
or decoding, as in integer-based representations, but exploits the HRAM ability
to create locally fresh names. Second, token size is constant as only names are
passed around; the computational history of a token is stored by the HRAM
rather than passing it around (cf. IAM). HRAMs are also flexible enough to
allow the representation of game models for languages with state (non-innocent
games) or concurrency (non-alternating games). We illustrate the potential of
this technique by implementing a compiler targeting distributed systems for
ICA, a higher-order programming language with shared state concurrency [14],
thus significantly extending our previous distributed PCF compiler [8]. We show
that compilation is sound and memory-safe, i.e. no (distributed or local) garbage
collection is necessary.1

Other related and relevant work The operational intuitions of GOI were
originally confined to the sequential setting, but more recent work on Ludics
showed how they can be applied to concurrency [7] through an abstract treat-
ment not immediately applicable to our needs. Whereas our work takes the
IAM/JAM as the starting point, developing abstract machines akin to the PAM

1Available from http://veritygos.org/gams.

2

http://veritygos.org/gams

revealed interesting syntactic and operational connections between game se-
mantics and Böhm trees [4]. The connection between game semantics, syntactic
recursion schemes and automata also had several interesting applications to ver-
ifying higher-order computation (see e.g. [24]). Finally, the connection between
game semantics and operational semantics can be made more directly by elid-
ing all the semantic structure in the game and reducing them to a very simple
communication mechanism between a program and its environment, which is
useful in understanding hostile opponents and verifying security properties [15].

2 Simple nets

In this section we introduce a class of basic abstract machines for manipulating
heap structures, which also have primitives for communications and control.
They represent a natural intermediate stage for compilation to machine lan-
guage, and will be used as such in Sec. 4. The machines can naturally be
organised into communication networks which give an abstract representation
of distributed systems. We find it formally convenient to work in a nominal
model in order to avoid the difficulties caused by concrete encoding of game
structures, especially justification pointers, as integers. We assume a certain
familiarity from the reader with basic nominal concepts. The interested reader
is referred to the literature ([10] is a starting point).

2.1 Heap and register abstract machines (HRAM)

We fix a set of port names (A) and a set of pointer names (P) as disjoint

sets of atoms. Let L
∆
= {O,P} be the set of polarities of a port. To main-

tain an analogy with game semantics from the beginning, port names corre-
spond to game-semantic moves and input/output polarities correspond to op-
ponent/proponent. A port structure is a tuple (l, a) ∈ Port = L×A. An interface
A ∈ Pfin(Port) is a set of port structures such that all port names are unique,
i.e. ∀p = (l, a), p′ = (l′, a′) ∈ A, if a = a′ then p = p′. Let the support of an

interface be sup(A)
∆
= {a | (l, a) ∈ A}, its set of port names.

The tensor of two interfaces is defined as A ⊗ B
∆
= A ∪ B, where sup(A) ∩

sup(B) = ∅. The dual of an interface is defined as A∗ ∆
= {p∗ | p ∈ A} where

(l, a)∗
∆
= (l∗, a), O∗ ∆

= P and P∗ ∆
= O. An arrow interface is defined in terms of

tensor and dual, A⇒ B
∆
= A∗ ⊗B.

We introduce notation for opponent ports of an interface A(O) ∆
= {(O, a) ∈ A}.

The player ports of an interface A(P) is defined analogously. The set of all
interfaces is denoted by I. We say that two interfaces have the same shape if
they are equivariant, i.e. there is a permutation π : A → A such that {π · p |

p ∈ A1} = A2, and we write π ⊢ A1 =A A2, where π · (l, a)
∆
= (l, π(a)) is

the permutation action of π. We may only write A1 =A A2 if π is obvious or
unimportant.

Let the set of data D be ∅ ∈ 1, pointer names a ∈ P or integers n ∈ Z. Let

3

the set of instructions Instr be as below, where i, j, k ∈ N + 1 (which permits
ignoring results and allocating “null” data).

• i← new j, k allocates a new pointer in the heap and populates it with the
values stored in registers j and k, storing the pointer in register i.

• i, j ← get k reads the tuple pointed at by the name in the register k and
stores it in registers i and j.

• update i, j writes the value stored in register j to the second component
of the value pointed to by the name in register i.

• free i releases the memory pointed to by the name in the register i and
resets the register.

• flip i, j flips the values of registers i and j.

• i← set j sets register i to value j.

Let code fragments C be C ::= Instr ; C | ifzero N C C | spark a | end. The port
names occurring in the code fragment are sup ∈ C → Pfin(A), defined in the
obvious way (only the spark a instruction can contribute names). An ifzero i
instruction will branch according to the value stored in register i. A spark a
will either jump to a or send a message to a, depending on whether a is a local
port or not.

An engine is an interface together with a port map, E = (A,P) ∈ I×(sup(A(O))→
C) such that for each code fragment c ∈ cod P and each port name a ∈ sup(c),
(P, a) ∈ A, meaning that ports that are “sparked” must be output ports of the
interface A. The set of all engines is E .

Engines have threads and shared heap. All threads have a fixed number of
registers r, which is a global constant. For the language ICA we will need four
registers, but languages with more kinds of pointers in the game model, e.g.
control pointers [20], may need and use more registers.

A thread is a tuple t = (c, d) ∈ T = C × Dr: a code fragment and an r-tuple of
data register values.

An engine configuration is a tuple k = (t, h) ∈ K = Pfin(T)× (P ⇀ P × D): a
set of threads and a heap that maps pointer names to pairs of pointer names
and data items.

A pair consisting of an engine configuration and an engine will be written using
the notation k : E ∈ K × E . Define the function initial ∈ E → K × E as

initial (E)
∆
= (∅, ∅) : E for an engine E. This function pairs the engine up with

an engine configuration consisting of no threads and an empty heap.

HRAMs communicate using messages, each consisting of a port name and a
vector of data items of size rm: m = (x, d) ∈ M = A× Drm . The constant rm
specifies the size of the messages in the network, and has to fulfil rm ≤ r. For
a set X ⊆ A, define MX = X × Drm , the subset of M whose port names are
limited to those of X .

We specify the operational semantics of an engine E = (A,P) as a transition

relation −
−
−−→
E,χ

− ⊆ K×({•}∪(L×M))×K. The relation is either labelled with

4

• — a silent transition — or a polarised message — an observable transition.
The messages will be constructed simply from the first rm registers of a thread,
meaning that on certain actions part of the register contents become observable
in the transition relation.

To aid readability, we use the following shorthands:

• n −−→
E,χ

n′ means n
•
−−→
E,χ

n′ (silent transitions).

• n
(a,d)
−−−→
E,χ

n′ means n
(P,(a,d))
−−−−−−→

E,χ
n′ (output transitions).

• n
(a,d)

•

−−−−→
E,χ

n′ means n
(O,(a,d))
−−−−−−→

E,χ
n′ (input transitions).

We use the notation d for n-tuples of registers and then di for the (zero-based)

i-th component of d, and d∅
∆
= ∅. For updating a register, we use d[i := d]

∆
=

(d0, · · · , di−1, d, di+1, · · · , dn−1) and d[∅ := d]
∆
= d.

To construct messages from the register contents of a thread, we use the func-
tions msg ∈ Dr → Drm , which takes the first rm components of its input, and

regs ∈ Drm → Dr, which pads its input with ∅ at the end (i.e. regs(d)
∆
=

(d0, . . . , drm−1, ∅, . . .)).

The network connectivity is specified by the function χ, which will be described
in more detail in the next sub-section. For a port name a, χ(a) can be read as
“the port that a is connected to”. The full operational rules for HRAMs are
given in Fig. 2.1. The interesting rule is that for spark because it depends on
whether the port where the next computation is “sparked” is local or not. If
the port is local then spark makes a jump, and if the port is non-local then it
produces an output token and the current thread of execution is terminated,
similar to the IAM.

2.2 HRAM nets

A well-formed HRAM net S ∈ S is a set of engines, a function over port names
specifying what ports are connected, and an external interface, S = (E,χ,A),
where E ∈ E , A ∈ I, and χ is a bijection between the net’s output and input

port names. Specifically, χ has to be in sup(A(O) ⊗A
(P)

E
)→ sup(A(P) ⊗A

(O)

E
),

where AE = ⊗{A | (A,P) ∈ E}.

Fig. 2 shows a diagram of an HRAM net with two HRAMs (interfaces A,A′, two
ports each), each with two running threads (ti, t

′
i) with local registers (di, d

′
i)

and shared heaps (h, h′). Two of the HRAM ports are connected and two are
part of the global interface B.

The function χ gives the net connectivity. It being in sup(A(O) ⊗ A
(P)

E
) →

sup(A(P)⊗A
(O)

E
) means that it maps each input port name of the net’s interface

and output port name of the net’s engines to either an output port name of the
net’s interface or an input port name of one of its engines. Since it is a bijection,

5

((i← new j, k; C, d)∪ t, h) −−→
E,χ

((C, d[i := p])∪ t, h∪{p 7→ (dj , dk)}) if p /∈ sup(h)

((i, j ← get k; C, d) ∪ t, h ∪ {dk 7→ (d, d′)}) −−→
E,χ

((C, d[i := d][j := d′]) ∪ t, h ∪ {dk 7→ (d, d′)})

((update i, j; C, d) ∪ t, h ∪ {di 7→ (d, d′)}) −−→
E,χ

((C, d[i := d][j := d′]) ∪ t, h ∪ {di 7→ (d, dj)})

((free i; C, d) ∪ t, h ∪ {di 7→ (d, d′)}) −−→
E,χ

((C, d[i := ∅]) ∪ t, h)

((flip i, j; C, d) ∪ t, h) −−→
E,χ

((C, d[i := dj][j := dj]) ∪ t, h)

((i← set j; C, d) ∪ t, h) −−→
E,χ

((C, d[i := j]) ∪ t, h)

((ifzero i c1 c2; C, d[i := 0]) ∪ t, h) −−→
E,χ

((c1, d[i := ∅]) ∪ t, h)

((ifzero i c1 c2; C, d[i := n+ 1]) ∪ t, h) −−→
E,χ

((c2, d[i := ∅]) ∪ t, h)

((spark a, d) ∪ t, h)
(χ(a),msg(d))
−−−−−−−−−→

E,χ
(t, h) if (O, χ(a)) /∈ A

((spark a, d) ∪ t, h) −−→
E,χ

((P (χ(a)), regs(msg(d))) ∪ t, h) if (O, χ(a)) ∈ A

(t, h)
(a,d)

•

−−−−→
E,χ

((P (a), regs(d)) ∪ t, h) if (O, a) ∈ A

((end, d) ∪ t, h) −−→
E,χ

(t, h)

Figure 1: Operational semantics of HRAMs

h′

d′1 d′2 d′3 d′4

t′1 t′2

B

A′

d1 d2 d3 d4

h

t1 t2

A

Figure 2: Example HRAM net

6

e −−→
E,χ

e′

(e : E ∪ e : E,m) −→ (e′ : E ∪ e : E,m)

e
m
−−→
E,χ

e′

(e : E ∪ e : E,m) −→ (e′ : E ∪ e : E, {m} ⊎m)

e
m•

−−→
E,χ

e′

(e : E ∪ e : E, {m} ⊎m) −→ (e′ : E ∪ e : E,m)

(P, a) ∈ A

(e : E, {(a, d)} ⊎m)
(a,d)
−−−→ (e : E,m)

(O, a) ∈ A

(e : E,m)
(a,d)

•

−−−−→ (e : E, {(χ(a), d)} ⊎m)

Figure 3: Operational semantics of HRAM nets

each port name (and thus port) is connected to exactly one other port name,
so the abstract network model we are using is point-to-point.

For an engine e = (A,P), we define a singleton net with e as its sole engine as
singleton(e) = ({e}, χ, A′), where A′ is an interface such that χ ⊢ A =A A′ and
χ is given by:

χ(a)
∆
= π(a) if a ∈ sup(A(P))

χ(a)
∆
= π−1(a) if a ∈ sup(A′(O)

)

A net configuration is a set of tuples of engine configurations and engines and a
multiset of pending messages: n = (e : E,m) ∈ N = Pfin(K×E)×Msetfin(M).

Define the function initial ∈ S → N as initial (E,χ,A)
∆
= ({initial (E) | E ∈

E}, ∅), a net configuration with only initial engines and no pending messages.

The operational semantics of a net S = (E,χ,A) is specified as a transition

relation −
−
−→ − ⊆ N × ({•} ∪ (L ×Msup(A))) × N . The semantics is given

in the style of the Chemical Abstract Machine (CHAM) [3], where HRAMs
are “molecules” and the pending messages of the HRAM net is the “solution”.
HRAM inputs (outputs) are to (from) the set of pending messages. Silent
transitions of any HRAM are silent transitions of the net. The rules are given
in Fig. 2.2.

7

2.3 Semantics of HRAM nets

We define List[A] for a set A to be finite sequences of elements from A, and
use s::s′ for concatenation. A trace for a net (E,χ,A) is a finite sequence of
messages with polarity: s ∈ List[L ×Msup(A)]. Write α ∈ L ×Msup(A) for
single polarised messages. We use the same notational convention as before to
identify inputs (−•).

For a trace s = α1::α2:: · · · ::αn, define
s
−→ to be the following composition of

relations on net configurations:
α1−→−→∗ α2−→−→∗ · · ·

αn−−→, where −→∗ is the reflexive
transitive closure of −→, i.e. any number of silent steps are allowed in between
those that are observable.

Write tracesA for the set List[L ×Msup(A)]. The denotation JSK ⊆ tracesA of

a net S = (E,χ,A) is the set of traces of observable transitions reachable from
the initial net configuration initial (S) using the transition relation:

JSK
∆
= {s ∈ tracesA | ∃n.initial (S)

s
−→ n}

The denotation of a net includes the empty trace and is prefix-closed by con-
struction.

As with interfaces, we are not interested in the actual port names occurring
in a trace, so we define equivariance for sets of traces. Let S1 ⊆ tracesA1

and
S2 ⊆ tracesA2

for A1, A2 ∈ I. S1 =A S2 if and only if there is a permutation

π ∈ A→ A such that {π ·s | s ∈ S1} = S2, where π ·ǫ
∆
= ǫ and π ·(s::(l, (a, d)))

∆
=

(π · s)::(l, (π(x), d)).

Define the deletion operation s−A which removes from a trace all elements
(l, (x, d)) if x ∈ sup(A) and define the interleaving of sets of traces S1 ⊆ tracesA

and S2 ⊆ tracesB as S1 ⊗ S2
∆
= {s | s ∈ tracesA⊗B ∧ s−B ∈ S1 ∧ s−A ∈ S2}.

Define the composition of the sets of traces S1 ⊆ tracesA⇒B and S2 ⊆ tracesB′⇒C

with π ⊢ B =A B′ as the usual synchronisation and hiding in trace semantics:

S1;S2
∆
= {s−B | s ∈ tracesA⊗B⊗C ∧ s−C ∈ S1 ∧ π · s∗B−A ∈ S2}

(where s∗B is s where the messages from B have reversed polarity.)

Two nets, f = (Ef , χf , If) and g = (Eg, χg, Ig) are said to be structurally
equivalent if they are graph-isomorphic, i.e. π · Ef = Eg, π ⊢ If =A Ig and
χg ◦ π = π ◦ χf .

Theorem 2.1. If S1 and S2 are structurally equivalent nets, then JS1K =A JS2K.

Proof. A straightforward induction on the trace length, in both directions.

2.4 HRAM nets as a category

In this sub-section we will show that HRAM nets form a symmetric compact-
closed category. This establishes that our definitions are sensible and that
HRAM nets are equal up to topological isomorphisms. This result also shows
that the structure of HRAM nets is very loose.

8

The category, called HRAMnet , is defined as follows:

• Objects are interfaces A ∈ Pfin(Port) identified up to A-equivalence.

• Amorphism f : A→ B is a well-formed net on the form (E,χ,A⇒ B), for
some E and χ. We will identify morphisms that have the same denotation,
i.e. if JfK =A JgK then f = g (in the category).

• The identity morphism for an object A is

idA
∆
= (∅, χ, A⇒ A′)

for an A′ such that π ⊢ A =A A′ and

χ(a)
∆
= π(a) if a ∈ sup(A∗(O))

χ(a)
∆
= π−1(a) if a ∈ sup(A′(O)

).

Note that A ⇒ A′ = A∗ ∪ A′. This means that the identity is pure
connectivity.

• Composition of two morphisms f = (Ef , χf , A ⇒ B) : A → B and
g = (Eg, χg, B

′ ⇒ C) : B′ → C, such that π ⊢ B =A B′, is

f ; g = (Ef ∪Eg, χf ;g, A⇒ C) : A→ C

where

χf ;g(a)
∆
= χf (a) if a ∈ sup(A∗(O) ⊗ I

(P)
f) ∧ χf (a) /∈ sup(B)

χf ;g(a)
∆
= χg(a) if a ∈ sup(C(O) ⊗ I(P)

g) ∧ χg(a) /∈ sup(B′)

χf ;g(a)
∆
= χg(π(χf (a))) if a ∈ sup(A∗(O) ⊗ I

(P)
f) ∧ χf (a) ∈ sup(B)

χf ;g(a)
∆
= χf (π

−1(χg(a))) if a ∈ sup(C(O) ⊗ I(P)
g) ∧ χg(a) ∈ sup(B′)

and

If
∆
= ⊗{A | (A,P) ∈ Ef}

Ig
∆
= ⊗{A | (A,P) ∈ Eg}.

Note We identify HRAMs with interfaces of the same shape in the category,
which means that our objects and morphisms are in reality unions of equivariant
sets. In defining the operations of our category we use representatives for these
sets, and require that the representatives are chosen such that their sets of
port names are disjoint (but same-shaped when the operation calls for it). The
composition operation may appear to be partial because of this requirement,
but we can always find equivariant representatives that fulfil it.

It is possible to find other representations of interfaces that do not rely on
equivariance. For instance, an interface could simply be two natural numbers
— the number of input and output ports. Another possibility would be to make
the tensor the disjoint union operator. Both of these would, however, lead
to a lot of bureaucracy relating to injection functions to make sure that port
connections are routed correctly. Our formulation, while seemingly complex,
leads to very little bureaucracy, and is easy to implement.

9

Proposition 2.2. HRAMnet is a category.

Proof. • Composition is well-defined, i.e. it preserves well-formedness.

Let f = (Ef , χf , A⇒ B) : A→ B and g = (Eg, χg, B
′ ⇒ C) : B′ → C

be morphisms such that π ⊢ B =A B′, and their composition f ; g =
(Ef ∪Eg, χ, A⇒ C) : A→ C be as in the definition of composition. To
prove that this is well-formed, we need to show that

χ ∈ sup((A⇒ C)(O) ⊗ I
(P)
fg)→ sup((A⇒ C)(P) ⊗ I

(O)
fg) =

sup(A∗(O) ⊗ C(O) ⊗ I
(P)
f ⊗ I(P)

g)→ sup(A∗(P) ⊗ C(O) ⊗ I
(O)
f ⊗ I(O)

g)

where Ifg = ⊗{A | (A,P) ∈ Ef ∪ Eg}, and that it is a bijection.

We are given that

χf ∈ sup(A∗(O) ⊗B(O) ⊗ I
(P)
f)→ sup(A∗(P) ⊗B(P) ⊗ I

(O)
f)

χg ∈ sup(B′∗(O)
⊗ C(O) ⊗ I(P)

g)→ sup(B′∗(P)
⊗ C(P) ⊗ I(O)

g)

π ∈ sup(B)→ sup(B′)

are bijections.

It is relatively easy to see that the domains specified in the clauses of
the definition of χ are mutually disjoint sets and that their union is the
domain that we are after.

Since χ is defined in clauses each of which defined using either χf or χg

and/or π (which are bijections with disjoint domains and codomains), it is
enough to show that the set of port names that χf is applied to in clause
1 and 4 are disjoint, and similarly for χg in clause 2 and 3:

– In clause 4, we have χg(a) ∈ sup(B′), and so π−1(χg(a)) ∈ sup(B),

which is disjoint from sup(A∗(O) ⊗ I
(P)
f) in clause 1.

– In clause 3, we have χf (a) ∈ sup(B), and so π(χf (a)) ∈ sup(B′),

which is disjoint from sup(C(O) ⊗ I
(P)
g) in clause 2.

• Composition is associative.

Let

f = (Ef , χf , A⇒ B) : A→ B,

g = (Eg, χg, B
′ ⇒ C) : B′ → C, and

h = (Eh, χh, C
′ ⇒ D) : C′ → D

be nets such that π1 ⊢ B =A B′ and π2 ⊢ C =A C′. Then we have:

(f ; g);h = (Ef ∪ Eg ∪ Eh, χ(f ;g);h, A⇒ D)

and
f ; (g;h) = (Ef ∪ Eg ∪ Eh, χf ;(g;h), A⇒ D)

according to the definition of composition. We need to show that χ(f ;g);h =
χf ;(g;h), which implies that (f ; g);h = f ; (g;h).

10

We do this by expanding the definitions, simplified using the following
auxiliary function:

connect(c, A)(a)
∆
= a if a /∈ sup(A)

connect(c, A)(a)
∆
= c(a) if a ∈ sup(A)

f ; g = (Ef ∪ Eg, χf ;g, A⇒ C) and g;h = (Eg ∪ Eh, χg;h, B
′ ⇒ D) where

χf ;g(a)
∆
= connect(χg ◦ π1, B)(χf (a)) if a ∈ sup(A∗(O) ⊗ I

(P)
f)

χf ;g(a)
∆
= connect(χf ◦ π

−1
1 , B′)(χg(a)) if a ∈ sup(C(O) ⊗ I(P)

g)

χg;h(a)
∆
= connect(χh ◦ π2, C)(χg(a)) if a ∈ sup(B′∗(O)

⊗ I(P)
g)

χg;h(a)
∆
= connect(χg ◦ π

−1
2 , C′)(χh(a)) if a ∈ sup(D(O) ⊗ I

(P)
h)

Now χ(f ;g);h and χf ;(g;h) are defined as follows:

χ(f ;g);h(a)
∆
= connect(χh ◦ π2, C)(χf ;g(a)) if a ∈ sup(A∗(O) ⊗ I

(P)
f ;g)

χ(f ;g);h(a)
∆
= connect(χf ;g ◦ π

−1
2 , C′)(χh(a)) if a ∈ sup(D(O) ⊗ I

(P)
h)

χf ;(g;h)(a)
∆
= connect(χg;h ◦ π1, B)(χf (a)) if a ∈ sup(A∗(O) ⊗ I

(P)
f)

χf ;(g;h)(a)
∆
= connect(χf ◦ π

−1
1 , B′)(χg;h(a)) if a ∈ sup(D(O) ⊗ I

(P)
g;h)

One way to see that these two bijective functions are equal is to view them
as case trees, and consider every case. There are 13 such cases to consider,
out of which three are not possible.

We show three cases:

1. If a ∈ sup(A∗(O) ⊗ I
(P)
f), χf (a) /∈ sup(B), and χf (a) /∈ sup(C), then

χ(f ;g);h(a)

=connect(χh ◦ π2, C)(χf ;g(a))

=connect(χh ◦ π2, C)(χf (a))

=χf (a)

and

χf ;(g;h)(a)

=connect(χg;h ◦ π1, B)(χf (a))

=χf (a)

and thus equal.

2. Consider the case where a ∈ sup(A∗(O) ⊗ I
(P)
f), χf (a) /∈ sup(B),

and χf (a) ∈ sup(C). This case is not possible, since sup(C) is not a

subset of the codomain of χf (a), which is sup(A∗(P) ⊗B(P) ⊗ I
(O)
f).

11

3. If a ∈ sup(D(O) ⊗ I
(P)
h), χh(a) ∈ sup(C′), π−1

2 (χh(a)) ∈ sup(C(O) ⊗

I
(P)
g), and χg(π

−1
2 (χh(a))) ∈ sup(B′), then

χ(f ;g);h(a)

=connect(χf ;g ◦ π
−1
2 , C′)(χh(a))

=χf ;g(π
−1
2 (χh(a)))

=connect(χf ◦ π
−1
1 , B′)(χg(π

−1
2 (χh(a))))

=χf (π
−1
1 (χg(π

−1
2 (χh(a)))))

and

χf ;(g;h)(a)

=connect(χf ◦ π
−1
1 , B′)(χg;h(a))

=connect(χf ◦ π
−1
1 , B′)(connect(χg ◦ π

−1
2 , C′)(χh(a)))

=connect(χf ◦ π
−1
1 , B′)(χg(π

−1
2 (χh(a))))

=χf (π
−1
1 (χg(π

−1
2 (χh(a)))))

and thus equal.

The other cases are done similarly.

• idA is well-formed. For any interface A,

idA
∆
= (∅, χ, A⇒ A′)

for an A′ such that π ⊢ A =A A′ and

χ(a)
∆
= π(a) if a ∈ sup(A∗(O))

χ(a)
∆
= π−1(a) if a ∈ sup(A′(O)

.)

according to the definition.

We need to show that χ is a bijection:

χ ∈ sup((A⇒ A′)(O))→ sup((A⇒ A′)(P))

= sup(A∗(O) ∪ A′(O)
)→ sup(A∗(P) ∪ A′(P)

)

This is true since π is a bijection in sup(A)→ sup(A′).

• idA is an identity. For any morphism f : A→ B we observe that idA; f
is structurally equivalent to f , so by Theorem 2.1, JidA; fK =A JfK.

The case for f ; idB is similar.

We will now show that HRAMnet is a symmetric monoidal category:

• The tensor product of two objects A,B, A ⊗ B has already been de-
fined. We define the tensor of two morphisms f = (Ef , χf , A ⇒ B), g =
(Eg, χg, C ⇒ D) as f ⊗ g = (Ef ∪ Eg, χf ⊗ χg, A⊗ C ⇒ B ⊗D).

12

• The unit object is the empty interface, ∅.

• Since A⊗ (B ⊗ C) = A ∪ B ∪ C = (A ⊗B) ⊗ C we define the associator

αA,B,C
∆
= idA⊗B⊗C with the obvious inverse.

• Similarly, since ∅ ⊗ A = ∅ ∪ A = A = A ∪ ∅ = A ⊗ ∅, we define the left

unitor λA
∆
= idA and the right unitor ρA

∆
= idA.

• Since A ⊗ B = A ∪ B = B ∪ A = B ⊗ A we define the commutativity

constraint γA,B
∆
= idA⊗B.

Proposition 2.3. HRAMnet is a symmetric monoidal category.

Proof. • The tensor product is well-defined, i.e. for two morphisms f, g, f⊗g
is a well-formed net. This is easy to see since f and g are well-formed.

• The tensor product is a bifunctor:

– idA⊗ idB = (∅, χ1⊗χ2, A⊗B ⇒ A′⊗B′) = idA⊗B by the definition
of idA⊗B.

– (f ; g)⊗(h; i) = f⊗h; g⊗i by the definition of composition and tensor
on morphisms.

• The coherence conditions of the natural isomorphisms are trivial since the
isomorphisms amount to identities.

Next we show that HRAMnet is a compact-closed category:

• We have already defined the dual A∗ of an object A.

• Since ∅ ⇒ (A∗ ⊗ A′) = ∅∗ ∪ (A∗ ∪ A′) = A ⇒ A′ we can define the unit

ηA
∆
= idA and since A ⊗ A′∗ ⇒ ∅ = (A ∪ A′∗)∗ ∪ ∅ = A∗ ∪ A′ = A ⇒ A′

we can define the counit εA
∆
= idA.

This leads us directly to the following result — what we set out to show:

Proposition 2.4. HRAMnet is a symmetric compact-closed category.

The following two theorems can be proved by induction on the trace length,
and provide a connection between the HRAMnet tensor and composition and
trace interleaving and composition.

Theorem 2.5. If f : A → B and g : C → D are morphisms of HRAMnet

then Jf ⊗ gK = JfK⊗ JgK.

Theorem 2.6. If f : A→ B and g : B′ → C are morphisms of HRAMnet

such that π ⊢ B =A B′ then Jf ; gK = JfK; JgK.

The following result explicates how communicating HRAMs can be combined
into a single machine, where the intercommunication is done with jumping
rather than message passing, in a sound way:

13

Theorem 2.7. If E1 = (A1, P1) and E2 = (A2, P2) are engines and S =
({E1, E2}, χ, A) is a net, then E12 = (A1 ⊗ A2, P1 ∪ P2) is an engine, S′ =
({E12}, χ, A) is a net and JSK ⊆ JS′K.

Proof. We show that for any trace s, s ∈ JSK implies s ∈ JS′K by induction on
the length of the trace.

Hypothesis. If s ∈ JSK and thus initial(S)
s
−→ ({(t1, h1) : E1, (t2, h2) : E2},m)

for some sets of threads t1 and t2, heaps h1 and h2, and a multiset of
messages m, then initial (S′)

s
−→ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) : E12},mp) where

tp is a set of threads and mp is a multiset of messages such that:

1. each t ∈ tp is on the form t = (spark a, d) with χ(a) ∈ sup(A1⊗A2),
and

2. m = mp ⊎ {(χ(a),msg(d)) | (spark a, d) ∈ tp}.

Intuitively, the net where E1 and E2 have been combined into one engine
will not have pending messages (in m) for communications between E1

and E2, but it can match the behaviour of such messages by threads that
are just about to spark.

Base case. Since any net can take zero steps, the case when s = ǫ is trivial.

Inductive step. If s = s′::α and the hypothesis holds for s′, then we have

initial (S)
s′

−→ ({(t1, h1) : E1, (t2, h2) : E2},m)

−→∗ α
−→ ({(t

′
1, h

′
1) : E1, (t

′
2, h

′
2) : E2},m

′)

initial (S′)
s′

−→ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) : E12},mp)

with tp and m′ as in the hypothesis. We first show that S′ can match the
silent steps that S performs, by induction on the number of steps, using
the same induction hypothesis as above:

Base case. Trivial.

Inductive step. Assume that we have

initial (S)
s′

−→−→∗ ({(t1, h1) : E1, (t2, h2) : E2},m)

initial (S′)
s′

−→−→∗ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) : E12},mp)

Such that the induction hypothesis holds. We need to show that any
step

({(t1, h1) : E1, (t2, h2) : E2},m) −→

({(t
′
1, h

′
1) : E1, (t

′
2, h

′
2) : E2},m

′)

can be matched by (any number of) silent steps of the S′ configura-
tion, such that the induction hypothesis still holds.

• A thread of S performs a silent step. This is trivial, since the
threads of the engine configuration of S′ includes all threads of
the configurations of S, and its heap is the union of those of S.

14

• A thread of S does an internal engine send step. Since t1∪ t2∪ tp
includes all threads of the S configuration, and for the port name
a in question χ(a) ∈ A1 ∪A2 = A1⊗A2, this can be matched by
the configuration of S′ such that the induction hypothesis still
holds.

• A thread S does an external engine send. This means that there
is a thread t ∈ t1 ∪ t2 on the form t = (spark a, d), which after
the step will be removed, adding the message (χ(a),msg(d)) to
its multiset of messages, i.e. m′ = m ⊎ {(χ(a),msg(d))}.
If χ(a) ∈ A1 ∪A2, then the configuration S′ can take zero steps,
and thus include t in the set of threads ready to spark. The in-
duction hypothesis still holds, since m′ = m⊎{(χ(a),msg(d))} =
mp ⊎ {(χ(a),msg(d)) | (spark a, d) ∈ tp} ⊎ {(χ(a),msg(d))} =
mp ⊎ {(χ(a),msg(d)) | (spark a, d) ∈ tp ∪ {t}}.
If χ(a) ∈ I, then the configuration of S′ can match the step of
S, removing the thread t from also its set of threads. It is easy
to see that the induction hypothesis holds also in this case.

• An engine of S receives a message. This means that m =
{(a, d)}⊎m′ for a message such that the port (O, a) ∈ A1∪A2 =
A1 ⊗ A2. Then either (a, d) is in mp or in {(χ(a),msg(d)) |
(spark a, d) ∈ tp}. If it is the former, E12 can receive the message
and start a thread equal to that started in the configuration of

S. If it is the latter, there is a thread t = (spark χ−1(a), d
′
) ∈ tp

with d = msg(d
′
) that can first take a send m step, adding it to

the multiset of pending messages of the configuration of S′, and
then it can be received as in S.

Next we show that the α step can be matched: Assume that we have

initial (S)
s′

−→−→∗ ({(t1, h1) : E1, (t2, h2) : E2},m)

initial (S′)
s′

−→−→∗ ({(t1 ∪ t2 ∪ tp, h1 ∪ h2) : E12},mp)

Such that the induction hypothesis holds. We need to show that for any
α, a step

({(t1, h1) : E1, (t2, h2) : E2},m)
α
−→ ({(t

′
1, h

′
1) : E1, (t

′
2, h

′
2) : E2},m

′)

can be matched by the S′ configuration, such that the induction hypothesis
still holds. We have two cases:

• The configuration of S performs a send step. That is m = {m} ⊎m′

for an m = (a, d) such that (P, a) ∈ A. Since sup(A) is disjoint from
sup(A1 ∪ A2), the message is also in mp, so the configuration of S′

can match the step.

• The configuration of S performs a receive step. This case is easy, as
S and S′ have the same interface A.

15

We define a family of projection HRAM nets Πi,A1⊗···⊗An
: A1⊗· · ·⊗An → Ai

by first constructing a family of “sinks” !A : A → I
∆
= singleton((A ⇒ I, P))

where I = ∅ and P (a) = end for each a in its domain and then defining e.g.

Π1,A⊗B : A⊗B → A
∆
= idA⊗!B.

3 Game nets for ICA

The structure of a HRAMnet token is determined by the number of registers r
and the message size rm, which are globally fixed. To implement game-semantic
machines we require four message components: a port name, two pointer names,
and a data fragment, meaning that rm = 3. We choose r = 4, to get an
additional register for temporary thread values to work with. From this point
on, messages in nets and traces will be restricted to this form.

The message structure is intended to capture the structure of a move when game
semantics is expressed in the nominal model. The port name is the move, the
first name is the “point” whereas the second name is the “butt” of a justification
arrow, and the data is the value of the move. This direct and abstract encoding
of the justification pointer as names is quite different to that used in PAM and
in other GOI-based token machines. In PAM the pointer is represented by a
sequence of integers encoding the hereditary justification of the move, which
is a snap-shot of the computational causal history of the move, just like in
GOI-based machines. Such encodings have an immediate negative consequence,
as tokens can become impractically large in complex computations, especially
involving recursion. Large tokens entail not only significant communication
overheads but also the computational overheads of decoding their structure. A
subtler negative consequence of such an encoding is that it makes supporting
the semantic structures required to interpret state and concurrency needlessly
complicated and inefficient. The nominal representation is simple and compact,
and efficiently exploits local machine memory (heap) in a way that previous
abstract machines, of a “functional” nature, do not.

The price that we pay is a failure of compositionality, which we will illustrate
shortly. The rest of the section will show how compositionality can be restored
without substantially changing the HRAM framework. If in HRAM nets com-
positionality is “plug-and-play”, as apparent from its compact-closed structure,
Game Abstract Machine (GAM) composition must be mediated by a family of
operators which are themselves HRAMs.

In this simple motivating example it is assumed that the reader is familiar with
game semantics, and several of the notions to be introduced formally in the next
sub-sections are anticipated. We trust that this will be not confusing.

Let S be a HRAM representing the game semantic model for the successor
operation S : int→ int. The HRAM net in Fig. 4 represents a (failed) attempt
to construct an interpretation for the term x : int ⊢ S(S(x)) : int in a context
C[−int] : int. This is the standard way of composing GOI-like machines.

The labels along the edges of the HRAM net trace a token (a, p0, p1, d) sent by
the context C[−] in order to evaluate the term. We elide a and d, which are
irrelevant, to keep the diagram uncluttered. The token is received by S and

16

✛

✲

✛

✛ S

(p2, p3)

S

C[−]

(p0, p1)(p1, p2)

Figure 4: Non-locality of names in HRAM composition

propagated to the other S HRAM, this time with tokens (p1, p2). This trace
of events (p0, p1)::(p1, p2) corresponds to the existence of a justification pointer
from the second action to the first in the game model. The essential correctness
invariant for a well-formed trace representing a game-semantic play is that each
token consists of a known name and a fresh name (if locally created, or unknown
if externally created). However, the second S machine will respond with (p2, p3)
to (p1, p2), leading to a situation where C[−] receives a token formed from two
unknown tokens.

In game semantics, the composition of (p0, p1)::(p1, p2) with (p1, p2)::(p2, p3)
should lead to (p0, p1)::(p1, p3), as justification pointers are “extended” so that
they never point into a move hidden through composition. This is precisely what
the composition operator, a specialised HRAM, will be designed to achieve.

3.1 Game abstract machines (GAM) and nets

Definition 3.1. We define a game interface (cf. arena) as a tuple A =
(A, qstA, iniA,⊢A) where

• A ∈ I is an interface. For game interfaces A,B,C we will write A,B,C
and so on for their underlying interfaces.

• The set of ports is partitioned into a subset of question port names qstA
and one of answer port names ansA, qstA ⊎ ansA = sup(A).

• The set of initial port names iniA is a subset of the O-labelled question
ports.

• The enabling relation ⊢A relates question port names to non-initial port
names such that if a ⊢A a′ for port names a ∈ qstA with (l, a) ∈ A and
a′ ∈ sup(A) \ iniA with (l′, a′) ∈ A, then l 6= l′.

For notational consistency, write oppA

∆
= sup(A(O)) and propA

∆
= sup(A(P)).

Call the set of all game interfaces IG. Game interfaces are equivariant, π ⊢
A =A B, if and only if π ⊢ A =A B, {π(a) | a ∈ qstA} = qstB, {π(a) | a ∈
iniA} = iniB and {(π(a), π(a′)) | a ⊢A a′} = ⊢B.

Definition 3.2. For game interfaces (with disjoint sets of port names) A and
B, we define:

A⊗B
∆
= (A⊗B, qstA∪qstB, iniA∪iniB,⊢A ∪ ⊢B)

A⇒ B
∆
= (A⇒ B, qstA∪qstB, iniB,⊢A ∪ ⊢B ∪(iniB × iniA)).

17

A GAM net is a tuple G = (S,A) ∈ S × IG consisting of a net and a game
interface such that S = (E,χ,A), i.e. the interface of the game net is the
same as that of the game interface. The denotational semantics of a GAM net

G = (S,A) is just that of the underlying HRAM net: JGK
∆
= JSK.

3.2 Game traces

To be able to use game semantics as the specification for game nets we define
the usual legality conditions on traces, following [9].

Definition 3.3. The coabstracted and free pointers cp and fp ∈ traces→ P(P)
are:

cp(ǫ)
∆
= ∅

cp(s::(l, (a, p, p′, d)))
∆
= cp(s) ∪ {p′}

fp(ǫ)
∆
= ∅

fp(s::(l, (a, p, p′, d))
∆
= fp(s) ∪ ({p} \ cp(s))

The pointers of a trace ptrs(s) = cp(s) ∪ fp(s).

Definition 3.4. Define enabledA ∈ tracesA → P(sup(A) × P) inductively as
follows:

enabledA(ǫ)
∆
= ∅

enabledA(s::(l, (a, p, p
′, d)))

∆
= enabledA(s) ∪ {(a

′, p′) | a ⊢A a′}

Definition 3.5. We define the following relations over traces:

• Write s′ ≤ s if and only if there is a trace s1 such that s′::s1 = s, i.e. s′

is a prefix of s.

• Write s′ ≤ s if and only if there are traces s1, s2 such that s1::s
′::s2 = s,

i.e. s′ is a segment of s.

Definition 3.6. For an arena A and a trace s ∈ tracesA, we define the following
legality conditions:

• s has unique pointers when s′::(l, (a, p, p′, d)) ≤ s implies p′ /∈ ptrs(s′).

• s is correctly labelled when (l, (a, p, p′, d)) ⊆ s implies a ∈ sup(A(l)).

• s is justified when s′::(l, (a, p, p′, d)) ≤ s and a /∈ iniA implies (a, p) ∈
enabledA(s

′).

• s is well-opened when s′::(l, (a, p, p′, d)) ≤ s implies a ∈ iniA and s′ = ǫ.

• s is strictly scoped when (l, (a, p, p′, d))::s′ ⊆ s with a ∈ ansA implies
p /∈ fp(s′).

18

• s is strictly nested when (l1, (a1, p, p
′, d1))::s

′::(l2, (a2, p
′, p′′, d2))::

s′′::(l3, (a3, p
′, p′′′, d3)) ⊆ s implies (l4, (a4, p

′′,−, d4)) ⊆ s′′ for port names
a1, a2 ∈ qstA and a3, a4 ∈ ansA.

• s is alternating when (l1,m1)::(l2,m2) ⊆ s implies l1 6= l2.

Definition 3.7. We say that a question message α = (l, (a, p, p′, d)) (a ∈ qstA)
is pending in a trace s = s1::α::s2 if and only if there is no answer α′ =
(l′, (a′, p′, p′′, d′)) ⊆ s2 (a′ ∈ ansA), i.e. the question has not been answered.

Write PA for the subset of tracesA consisting of the traces that have unique
pointers, are correctly labelled, justified, strictly scoped and strictly nested.

For a set of traces P , write P alt for the subset consisting of only alternating
traces, and P st (for single-threaded) for the subset consisting of only well-opened
traces.

Definition 3.8. If s ∈ traces and X ⊆ P, define the hereditarily justified trace
s ↾ X, where inductively (s′, X ′) = s ↾ X:

ǫ ↾ X
∆
= (ǫ,X)

s::(l, (a, p, p′, d)) ↾ X
∆
= (s′::(l, (a, p, p′, d)), B ∪ {p′}) if p ∈ X ′

s::(l, (a, p, p′, d)) ↾ X
∆
= (s′, B) if p /∈ X ′

Write s ↾ X for s′ when s ↾ X = (s′, X ′) when it is convenient.

3.3 Copycat

The quintessential game-semantic behaviour is that of the copy-cat strategy, as
it appears in various guises in the representation of all structural morphisms of
any category of strategies. A copy-cat not only replicates the behaviour of its
Opponent in terms of moves, but also in terms of justification structures. Be-
cause of this, the copy-cat strategy needs to be either history-sensitive (stateful)
or the justification information needs to be carried along with the token. We
take the former approach, in contrast to IAM and other GOI-inspired machines.

Consider the identity (or copycat) strategy on com ⇒ com, where com is a
two-move arena (one question, one answer). A typical play may look as in Fig. 5.
The full lines represent justification pointers, and the trace (play) is represented
nominally as

(r4, p0, p1)::(r2, p1, p2)::(r1, p2, p3)::(r3, p1, p4)::(d3, p4) · · ·

To preserve the justification structure, a copycat engine only needs to store
“copycat links”, which are shown as dashed lines in the diagram between ques-
tion moves. In this instance, for an input on r4, a heap value mapping a freshly
created p2 (the pointer to r2) to p1 (the pointer from r4) is added.

The reason for mapping p2 to p1 becomes clear when the engine later gets an
input on r1 with pointers p2 and p3. It can then replicate the move to r3, but

19

(com1 com2) (com3 com4)

rO4

rP2

rO1

rP3

dO3

dP1

dO2

dP4

⇒ → ⇒

Figure 5: A typical play for copycat

using p1 as a justifier. By following the p2 pointer in the heap it gets p1 so it
can produce (r3, p1, p4), where p4 is a fresh heap value mapping to p3. When
receiving an answer, i.e. a d move, the copycat link can be dereferenced and
then discarded from the heap.

The following HRAM macro-instructions are useful in defining copy-cat ma-
chines to, respectively, handle the pointers in an initial question, a non-initial
question and an answer:

cci
∆
= flip 0, 1; 1← new 0, 3

ccq
∆
= 1← new 1, 3; 0, 3← get 0

cca
∆
= flip 0, 1; 0, 3← get1; free 1

For game interfaces A and A′ such that π ⊢ A =A A′, we define a generalised
copycat engine as CCC,π,A = (A⇒ A′, P), where:

P
∆
= {q2 7→ C; spark q1 | q2 ∈ iniA′ ∧ q1 = π−1(q2)}

∪ {q2 7→ ccq; spark q1 | q2 ∈ (oppA′ ∩ qstA′) \ iniA′ ∧ q1 = π−1(q2)}

∪ {a2 7→ cca; spark a1 | a2 ∈ oppA′ ∩ ansA′ ∧ a1 = π−1(a2)}

∪ {q1 7→ ccq; spark q2 | q1 ∈ oppA ∩ qstA ∧ q2 = π(q1)}

∪ {a1 7→ cca; spark a2 | a1 ∈ oppA ∩ ansA ∧ a2 = π(a1)}

This copycat engine is parametrised with an initial instruction C, which is run
when receiving an initial question. The engine for an ordinary copycat, i.e. the
identity of games, is CCcci,π,A. By slight abuse of notation, write CCA for the
singleton copycat game net (singleton(CCcci,π,A),A⇒ π · A).

Following [9], we define a partial order ≤ over polarities, L, as O ≤ O,O ≤
P,P ≤ P and a preorder 4 over traces from PA to be the least reflexive and
transitive such that if l1 ≤ l2 then

s1::(l1, (a1, p1, p
′
1, d1))::(l2, (a2, p2, p

′
2, d2))::s2

4 s1::(l2, (a2, p2, p
′
2, d2))::(l1, (a1, p1, p

′
1, d1))::s2,

20

where p′1 6= p2. A set of traces S ⊆ PA is saturated if and only if, for s, s′ ∈ PA,
s′ 4 s and s ∈ S implies s′ ∈ S. If S ⊆ PA is a set of traces, let sat(S) be the
smallest saturated set of traces that contains S.

The usual definition of the copycat strategy (in the alternating and single-
threaded setting) as a set of traces is

ccst,alt
A,A′

∆
= {s ∈ P st,alt

A⇒A′ | ∀s
′ ≤even s. s′

∗
↾ A =AP s′ ↾ A′}

Definition 3.9. A set of traces S1 is P-closed with respect to a set of traces
S2 if and only if s′ ∈ S1 ∩ S2 and s = s′::(P, (a, p, p′, d)) ∈ S1 implies s ∈ S2.

The intuition of P-closure is that if the trace s′ is “legal” according to S2, then
any outputs that can occur after s′ in S1 are also legal.

Definition 3.10. We say that a GAM net f implements a set of traces S if
and only if S ⊆ JfK and JfK is P-closed with respect to S.

This is the form of the statements of correctness for game nets that we want; it
certifies that the net f can accommodate all traces in S and, furthermore, that
it only produces legal outputs when given valid inputs.

The main result of this section establishes the correctness of the GAM for copy-
cat.

Theorem 3.11. CCπ,A implements ccA,π·A.

This is a direct corollary of the Lem. 3.13,3.16,3.17, 3.18, and 3.22 given below.

Lemma 3.12. If n1 = (e : E,m) and n′
1 = (e′ : E,m′) are net configurations

of a net f = (E,χ,A), and n1
(x)
−−→ n′

1 ((x) ∈ {•}∪(L×Msup(A)) then n2
(x)
−−→ n′

2

where n2 = (e : E,m ⊎ {m}) and n′
2 = (e′ : E,m′ ⊎ {m}).

Proof. By cases on (x):

• If (x) = •, then e : E = {e : E} ∪ e0 : E0, e
(y)
−−→
E,χ

e′ for some (y),

e′ : E = {e′ : E} ∪ e′0 : E0. We have three cases for (y):

– If (y) = •, then e −−→
E,χ

e′ and m′ = m. Then we also have n2 = ({e :

E} ∪ e0 : E0,m ⊎ {m}) −→ ({e′ : E} ∪ e′0 : E0,m ⊎ {m}) = n′
2.

– If (y) = (P,m′), then e
m′

−−→
E,χ

e′ and m′ = {m′} ∪m. Then we also

have n2 = ({e : E}∪e0 : E0,m⊎{m}) −→ ({e′ : E}∪e′0 : E0, {m′}⊎
m ⊎ {m}) = n′

2.

– If (y) = (O,m′), then e
m′

−−→
E,χ

e′ and m = {m′} ⊎ m′. Then we

also have n2 = ({e : E} ∪ e0 : E0, {m′} ⊎ m′ ⊎ {m}) −→ ({e′ :
E} ∪ e′0 : E0,m

′ ⊎ {m}) = n′
2.

• If (x) = (P,m′), then e′ : E = e : E and m = {m′} ⊎m′. Then we also

have n2 = (e : E, {m′} ⊎m′ ⊎ {m})
m′

−−→ (e : E,m′ ⊎ {m}) = n′
2.

21

• If (x) = (O,m′), where m′ = (a, p, p′, d) then e′ : E = e : E and m′ =

{(χ(a), p, p′, d)} ⊎ m. Then we also have n2 = (e : E,m ⊎ {m})
m′

−−→
(e : E, {(χ(a), p, p′, d)} ⊎m ⊎ {m}) = n′

2.

Lemma 3.13. If f is a net and s a trace, then

1. s = s1::(l,m1)::(O,m)::s2 ∈ JfK with witness initial(f)
s
−→ n implies s′ =

s1::(O,m)::(l,m1)::s2 ∈ JfK with initial(f)
s′

−→ n and

2. s = s1::(P,m)::(l,m1)::s2 ∈ JfK with witness initial(f)
s
−→ n implies s′ =

s1::(l,m1)::(P,m)::s2 ∈ JfK with initial(f)
s′

−→ n.

A special case of this theorem is that if G = (f,A) and, for a set of traces
S ⊆ PA, S ⊆ JGK holds, then sat(S) ⊆ JGK.

Proof. 1. s = s1::(l,m1)::(O,m)::s2 ∈ JfK means that

initial (f)
s1−→

(x)
−−→

∗

n1
(l,m1)
−−−−→ n2

(y)
−−→

∗
(O,m)
−−−−→ n3

(z)
−−→

∗
s2−→ n4

for net configurations n1, n2, n3, n4. For clarity, we take (x), (y), (z) to be
“names” for the silent transitions. We show that there exist n′

2 and (y′)
such that

initial (f)
s1−→

(x)
−−→

∗

n1
(O,m)
−−−−→

(l,m1)
−−−−→ n′

2

(y′)
−−→

∗

n3
(z)
−−→

s2−→ n

by induction on the length of
(y)
−−→

∗

:

• Base case. If
(y)
−−→

∗

is the identity relation, then assume

n1
(l,m1)
−−−−→ n2

(O,m)
−−−−→ n3

Let n1 = (e1 : E,m1), n2 = (e2 : E,m2), m = (a, p, p′, d), and
m′ = (χ(a), p, p′, d). Then n3 = (e2 : E, {m′}⊎m2) by the definition

of −→. Since (O, a) ∈ I, n1
(O,m)
−−−−→ (e1 : E, {m′} ⊎m1). Also, since

n1
(l,m1)
−−−−→ n2 we have (e1 : E, {m′}⊎m2)

(l,m1)
−−−−→ n3 by Lemma 3.12.

Composing the relations, we get

n1
(O,m)
−−−−→

(l,m1)
−−−−→ n3

which completes the base case.

• Inductive step. If
(y)
−−→

∗

=
(y0)
−−→

∗
•
−→ such that for any n′

3

n1
(l,m1)
−−−−→ n2

(y0)
−−→

∗
(O,m)
−−−−→ n′

3

implies that there exist n′
2 and (y′0) with

n1
(O,m)
−−−−→

(l,m1)
−−−−→ n′

2

(y′

0
)

−−→
∗

n′
3

22

then assume

n1
(l,m1)
−−−−→ n2

(y0)
−−→

∗

ny0

•
−→ ny

(O,m)
−−−−→ n3

Let ny0
= (ey0

: E,my0
), ny = (ey : E,my), m = (a, p, p′, d), and

m′ = (χ(a), p, p′, d). Then n3 = (ey : E, {m′}⊎my) by the definition

of −→. Since (O, a) ∈ I, ny0

(O,m)
−−−−→ (ey0

: E, {m′} ⊎ my0
). Also,

since ny0

•
−→ ny we have (ey0

: E, {m′}⊎my0
)

•
−→ n3 by Lemma 3.12.

Composing the relations, we get

n1
(l,m1)
−−−−→ n2

(y0)
−−→

∗

ny0

(O,m)
−−−−→ (ey0

: E, {m′} ⊎my0
)

•
−→ n3

Applying the hypothesis, we finally get

n1
(O,m)
−−−−→

(l,m1)
−−−−→ n′

2

(y′

0
)

−−→
∗

•
−→ n3

which completes the first part of the proof.

2. s = s1::(P,m)::(l,m1)::s2 ∈ JfK means that

initial (f)
s1−→

(x)
−−→

∗

n1
(P,m)
−−−−→ n2

(y)
−−→

∗
(l,m1)
−−−−→ n3

(z)
−−→

∗
s2−→ n4

for net configurations n1, n2, n3, n4 and (x), (y), (z) names for the silent
transitions. We show that there exist (y′) and n′

2 such that

initial (f)
s1−→

(x)
−−→

∗

n1
(y′)
−−→

∗

n′
2

(l,m1)
−−−−→

(P,m)
−−−−→ n3

(z)
−−→

∗
s2−→ n

by induction on the length of
(y)
−−→

∗

:

• Base case. If
(y)
−−→

∗

is the identity relation, then assume

n1
(P,m)
−−−−→ n2

(l,m1)
−−−−→ n3

Let n2 = (e2 : E,m2), n3 = (e3 : E,m3), m = (a, p, p′, d) Then
n1 = (e2 : E, {m} ⊎m2) by the definition of −→. Since (P, a) ∈ I,

(e3 : E, {m} ⊎ m3)
(P,m)
−−−−→ n3. Also, since n2

(l,m1)
−−−−→ n3 we have

n1
(l,m1)
−−−−→ (e3 : E, {m} ⊎m3) by Lemma 3.12. Composing the rela-

tions, we get

n1
(l,m1)
−−−−→

(P,m)
−−−−→ n3

which completes the base case.

• Inductive step. If
(y)
−−→

∗

=
•
−→

(y0)
−−→

∗

such that for any n′
1

n′
1

(P,m)
−−−−→

(y0)
−−→

∗

n2
(l,m1)
−−−−→ n3

implies that there exist n′
2 and (y′0) with

n′
1

(y′

0
)

−−→
∗

n′
2

(l,m1)
−−−−→

(P,m)
−−−−→ n3

23

then assume

n1
(P,m)
−−−−→ nm

•
−→ ny

(y0)
−−→

∗

n2
(l,m1)
−−−−→ n3

Let nm = (em : E,mm), ny = (ey : E,my), and m = (a, p, p′, d).
Then n1 = (em : E, {m}⊎mm) by the definition of−→. Since (P, a) ∈

I, (ey : E, {m} ⊎ my)
(P,m)
−−−−→ ny. Also, since nm

•
−→ ny we have

n1
•
−→ (ey : E, {m} ⊎my) by Lemma 3.12. Composing the relations,

we get

n1
•
−→ (ey : E, {m} ⊎my)

(P,m)
−−−−→ ny

(y0)
−−→

∗

n2
(l,m1)
−−−−→ n3

Applying the hypothesis, we finally get

n1
•
−→

(y′

0
)

−−→
∗

n′
2

(l,m1)
−−−−→

(P,m)
−−−−→ n3

which completes the proof.

Lemma 3.14. If s, s′ ∈ PA and s′ 4 s, then

1. enabled(s) = enabled(s′),

2. cp(s) = cp(s′), and

3. fp(s) = fp(s′).

Proof. Induction on 4. The base case is trivial. Consider the case where s =
s1::α2::α1::s2 and s′ = s1::α1::α2::s2. Let α1 = (l, (a1, p1, p

′
1, d1)) and α2 =

(l, (a2, p2, p
′
2, d2)).

1. Induction on the length of s2. In the base case, we have (by associativity
of ∪): enabled(s1::α2::α1) = enabled(s1) ∪ {(a, p′2) | a2 ⊢A a} ∪ {(a, p′1) |
a1 ⊢A a} = enabled(s1) ∪ {(a, p′1) | a1 ⊢A a} ∪ {(a, p′2) | a2 ⊢A a}.

2. Induction on the length of s2 as in 1.

3. Induction on the length of s2. In the base case, we have (since by the def.
of 4, p1 6= p′2 and p2 6= p′1):

fp(s1::α2::α1) =

fp(s1::α2) ∪ ({p1} \ cp(s1::α2)) =

fp(s1) ∪ ({p2} \ cp(s1)) ∪ ({p1} \ (cp(s1) ∪ {p
′
2})) =

fp(s1) ∪ ({p2} \ (cp(s1) ∪ {p
′
1})) ∪ ({p1} \ cp(s1)) =

fp(s1) ∪ ({p1} \ cp(s1)) ∪ ({p2} \ (cp(s1) ∪ {p
′
1})) =

fp(s1::α1) ∪ ({p2} \ cp(s1::α1)) =

fp(s1::α1::α2)

24

Lemma 3.15. Let S ⊆ PA be a saturated set of traces. If s, s′ ∈ S are traces
such that s′ 4 s and s::α ∈ S, then s′::α ∈ S.

Proof. Induction on 4. The base case is trivial. We show the case of a single
swapping. If s′ 4 s, we have s = s1::α2::α1::s2 and s′ = s1::α1::α2::s2 for some
s1, s2, α1, α2. Obviously, s′::α 4 s::α.

We have to show that if s::α ∈ PA, then s′::α ∈ PA. We have to show that s′::α
fulfils the legality conditions imposed by PA:

• It is easy to see that s′::α has unique pointers and is correctly labelled.

• s′::α is justified since enabled(s) = enabled(s′) by Lemma 3.14.

• To see that s′::α strictly scoped, consider the (“worst”) case when

(l, (a, p, p′, d))::s3::α ⊆ s′::α and a ∈ ansA

(i.e. we pick the segment that goes right up to the end of the trace). We
consider the different possibilities of the position of this answer message:

– If (l, (a, p, p′, d)) ⊆ s1, then let s′4 = (l, (a, p, p′, d))::s′1::α1::α2::s2::α ⊆
s′::α and s4 = (l, (a, p, p′, d))::s′1::α2::α1::s2::α. We also know that
p /∈ fp(s4) as s::α ∈ PA. Now, since s′4 4 s4, we have fp(s4) = fp(s′4)
by Lemma 3.14 and thus also p /∈ fp(s′4).

– If (l, (a, p, p′, d)) = α2. We know that p /∈ fp(s2::α) by s::α ∈ PA.
Since s′ ∈ PA we have p /∈ fp(α1) and can so conclude that p /∈
fp(α1::s2::α).

– If (l, (a, p, p′, d)) = α1 or (l, (a, p, p′, d)) ⊆ s2, p /∈ fp(s2::α) follows
immediately from s ∈ PA.

– If (l, (a, p, p′, d)) = α, p /∈ fp(ǫ) = ∅ is trivially true.

• To see that s′::α is strictly nested, assume

(l1, (a1, p, p
′, d1))::s1::(l2, (a2, p

′, p′′, d2))::s2::(l3, (a3, p
′, p′′′, d3)) ⊆ s′::α

for port names a1, a2 ∈ qstA and a3 ∈ ansA. We have to show that this
implies (l4, (a4, p

′′,−, d4)) ⊆ s2, for a port name a4 ∈ ansA. We proceed
by considering the possible positions of the last message in the segment:

– If (l3, (a3, p
′, p′′′, d3)) ⊆ s′, then the proof is immediate, by s′ ∈ PA

being strictly nested.

– If (l3, (a3, p
′, p′′′, d3)) = α we use the fact that s::α ∈ PA is strictly

nested. We assume that the implication (using the same names) as
above holds but instead for s::α, and show that any swappings that
can have occurred in s′ that reorder the a1, a2, a4 moves would render
s′ illegal:

∗ If a2 was moved before a1, then s′ would not be justified.

∗ If a4 was moved before a2, then s′ would not be justified.

As the order is preserved, this shows that the swappings must be
done in a way such that the implication holds for s′::α.

25

Lemma 3.16. For any game net f = (S,A) and trace s ∈ PA, s ∈ JfK if and
only if ∀p ∈ fp(s).s ↾ {p} ∈ JfK.

Lemma 3.17. ccst,alt
A,π·A ⊆ JCCπ,AK.

Proof. For convenience, let (f,A ⇒ A′) = CCπ,A,A′ , S1 = ccst,alt
A,A′ and S2 = JfK.

We show that s ∈ S1 implies s ∈ S2, by induction on the length of s:

• Hypothesis. If s has even length, then initial (f)
s
−→ ({(∅, h) : E}, ∅) and

h is exactly (nothing more than) a copycat heap for s over A ⇒ A′. In
other words, there are no threads running and no pending messages and
the heap is precisely specified.

• Base case. Trivial.

• Inductive step. At any point in the execution of the configuration of f , an
O-labelled message can be received, so that case is rather uninteresting.
Since the trace s is alternating, we consider two messages in each step:

Assume s = s′::(O, (a1, p1, p
′
1, d1))::(P, (a2, p2, p

′
2, d2)) ∈ S1 and that s′ ∈

S2. From the definition of cc we know that a2 = π̃A(a1), p2 = π̃P(p1),
p′2 = π̃P(p2), and d1 = d2.

We are given that initial (f)
s
−→

′
({(∅, h) : E}, ∅) as in the hypothesis.

We have five cases for the port name a1. We show the first three, as the
others are similar. In each case our single engine will receive a message
and start a thread:

– If a1 ∈ iniA′ , then (since s is justified) p2 = p′1 and (by the definition
of π′

A
) a2 = π−1

A
(a1). The engine runs the first clause of the copycat

definition, and chooses to create the pointer p2 and then performs a
send operation. We thus get:

initial (f)
s
−→ ({(∅, h ∪ {p′2 7→ p′1})}, ∅)

It can easily be verified that the hypothesis holds for this new state.

– If a1 ∈ (oppA′ ∩ qstA′) \ iniA′ , then a2 = π−1
A

(a1). Since s is justified
and strictly nested, there is a message (P, (a3, p3, p1, d3)) ⊆ s′ that
is pending.

By the hypothesis there is a message (O, (π′
A
(a3), p4, p

′
4, d4)) ⊆ s′

with h(p1) = p′4, which means that the ccq instruction can be run,
yielding the following:

initial (f)
s
−→ ({(∅, h ∪ {p′2 7→ p′1})}, ∅)

The hypothesis can easily be verified also in this new state.

– If a1 ∈ oppA′ ∩ ansA′ , then a2 = π−1
A

(a1). Since s is justified and
strictly nested, there is a prefix s1::(P, (a3, p3, p1, d3)) ≤ s′ whose last
message is a pending question. By the hypothesis s1 is then on the
form s1 = s2::(O, (π′

A
(a3), π̃P(p3), π̃P(p1), d4)) with h = h′ ∪ {p1 7→

26

π̃P(p1)}, which means that the cca instruction can be run, yielding
the following:

initial (f)
s
−→ ({(∅, h′)}, ∅)

The hypothesis is still true; the a3 question is no longer pending and
its pointer is removed from the heap (notice that p2 = π̃P(p1)).

Theorem 3.18. If s = s1::o::s2 ∈ ccA,A′ and p * s2, then s::p ∈ ccA,A′ , where
o = (O, (a, p, p′, d)) and p = (P, (π̃A(a), π̃P(p), π̃P(p

′), d)) (i.e. the “copy” of o).

Proof. By induction on 4.

• Base case. This means that s = s1::o::s2 ∈ ccalt
A,A′ . But since p * s2 and

by the definition of the alternating copycat, s2 = ǫ. It is easy to check
that s::p ∈ ccalt

A,A′ and that it is legal.

• Inductive step. Assume s 4 s′ for an s′ ∈ PA⇒A′ such that s′::p ∈ ccA,A′ .
By Lemma 3.15, s::p ∈ ccA,A′ .

Definition 3.19. Define the multiset of messages that a net configuration n is

ready to immediately send as ready(n)
∆
= {(P,m) | ∃n′. n −→∗ (P,m)

−−−−→ n′}.

Definition 3.20. If s is a trace, h is a heap, A is a game interface, and πP is
a permutation over P, we say that h is a copycat heap for s over A if and only
if:

For every pending P-question from A in s, i.e. (P, (a, p, p′, d)) ⊆ s (a ∈ qstA),
h(p′) = (π̃P(p

′), ∅).

Lemma 3.21. If s ∈ cc is a trace such that initial(CC)
s
−→ n, then the following

holds:

1. If n −→∗ n′ then ready(n) = ready(n′).

2. If n −→∗ (P,m)
−−−−→ n′, then ready(n) = ready(n′) ∪ {(P,m)}.

As we are only interested in what is observable, the trace s is thus equivalent
to one where silent steps are only taken in one go by one thread right before
outputs.

Proof. 1. For convenience, we give the composition of silent steps a name,

n
(x)
−−→

∗

n′. We proceed by induction on the length of (x):

• Base case. Immediate.

• Inductive step. If n −→
(x′)
−−→

∗

n′, we analyse the first silent step, which
means that a thread t of the engine in the net takes a step:

27

– In the cases where an instruction that does not change or depend
on the heap is run, the step cannot affect ready(n).

– In the case where the instruction is in {cci, ccq, exi, exq}, we
note that the heap is not changed, but merely extended with a
fresh mapping which can not have appeared earlier in the trace.

– If the instruction is cca, since the trace s is strictly nested by
assumption, the input message that this message stems from
occurs in a position in the trace where it would later be illegal
to mention the deallocated pointer again.

2. Immediate.

Theorem 3.22. If s ∈ ccst is a trace such that initial(CC)
s
−→ n for an n =

({(t, h) : E},m), then there exists a permutation πP over P such that the
following holds:

1. The heap h is a copycat heap for s over A⇒ A
′.

2. The set of messages that n can immediately send, ready(n), is exactly the
set of messages p such that s = s1::o::s2 and p * s2 where the form of o
and p is o = (O, (a, p, p′, d)) and p = (P, (π̃A(a), π̃P(p), π̃P(p

′), d)) (i.e. the
“copy” of o).

Proof. Induction on the length of s. The base case is immediate.

We need to show that if the theorem holds for a trace s, then it also holds
for s::α. We thus assume that there exists a permutation πP such that the
hypothesis holds for s and that initial (CC)

s
−→ n −→∗ α

−→ n′.

1. If α = (P, (π̃A(a), π̃P(p), π̃P(p
′), d)) then by (2) there must be a message

o = (O, (a, p, p′, d)) such that s = s1::o::s2 and α ∈ ready(n). Since we
“chose” πP such that p can only be gotten from the thread spawned by
o, we can proceed by cases as we did Theorem 3.17 to see that the heap
structure is correct in each case.

2. • If α = (P, (π̃A(a), π̃P(p), π̃P(p
′), d)) then by (2) there must be a mes-

sage o = (O, (a, p, p′, d)) such that s = s1::o::s2 and α ∈ ready(n).
By Lemma 3.21, ready(n) = ready(n′) ∪ {α}. We can easily verify
that (2) holds for n′.

• If α = (O, (a, p1, p
′
1, d)), then we can proceed as in Theorem 3.17 to

see that a message p = (P, (π̃A(a), p2, p
′
2, d)) ∈ ready(n′). We then

simply construct our extended permutation such that the hypothesis
holds.

28

3.4 Composition

The definition of composition in Hyland-Ong games [19] is eerily similar to our
definition of trace composition, so we might expect HRAM net composition to
correspond to it. That is, however, only superficially true: the nominal setting
that we are using [9] brings to light what happens to the justification pointers
in composition.

If A is an interface, s ∈ tracesA and X ⊆ sup(A), we define the reindexing
deletion operator s ⇂ X as follows, where (s′, ρ) = s ⇂ X inductively:

ǫ ⇂ X
∆
= (ǫ, id)

s::(l, (a, p, p′, d)) ⇂ X
∆
= (s′::(l, (a, ρ(p), p′, d)), ρ) if a /∈ X

s::(l, (a, p, p′, d)) ⇂ X
∆
= (s′, ρ ∪ {p′ 7→ ρ(p)}) if a ∈ X

We write s ⇂ X for s′ when s ⇂ X = (s′, ρ) in the following definition:

Definition 3.23. The game composition of the sets of traces S1 ⊆ tracesA⇒B

and S2 ⊆ tracesB′⇒C with π ⊢ B =A B′ is

S1;G S2
∆
= {s ⇂ B | s ∈ tracesA⊗B⊗C ∧ s ⇂ C ∈ S1 ∧ π · s∗B ⇂ A ∈ S2}

Clearly we have S1;S2 6= S1;G S2 for sets of traces S1 and S2, which reinforces
the practical problem in the beginning of this section.

Composition is constructed out of three copycat-like behaviours, as sketched in
Fig. 6 for a typical play at some types A,B and C. As a trace in the nominal
model, this is:

(q6, p0, p1)::(q4, p1, p2)::(q3, p2, p3)::

(q2, p1, p4)::(q1, p4, p5)::(q5, p1, p6)::(a5, p6)::

(a1, p5)::(a2, p4)::(a3, p3)::(a4, p2)::(a6, p1)

We see that this almost corresponds to three interleaved copycats as described
above; between A,B,C and A′, B′, C′. There is, however, a small difference:
The move q1, if it were to blindly follow the recipe of a copycat, would derefer-
ence the pointer p4, yielding p3, and so incorrectly make the move q5 justified
by q3, whereas it really should be justified by q6 as in the diagram. This is
precisely the problem explained at the beginning of this section.

To make a pointer extension, when the B-initial move q3 is performed, it should
map p4 not only to p3, but also to the pointer that p2 points to, which is p1
(the dotted line in the diagram). When the A-initial move q1 is performed, it
has access to both of these pointers that p4 maps to, and can correctly make
the q5 move by associating it with pointers p1 and a fresh p6.

Let A′, B′, and C′ be game interfaces such that πA ⊢ A =A A′, πB ⊢ B =A B′,

29

(A B) (B′ C) (A′ C′)

qO6

qP4

qO3

qP2

qO1

qP5

aO5

aP1

aO2

aP3

aO4

aP6

⇒ ⊗ ⇒ → ⇒

Figure 6: Composition from copycat

πC ⊢ C =A C′, and

(A′ ⇒ A,PA) = CCexq,π
−1

A
,A′

(B ⇒ B′, PB) = CCexi,πB,B

(C ⇒ C′, PC) = CCcci,πC,C, where

exi
∆
= 0, 3← get 0; 1← new 1, 0

exq
∆
= ∅, 0← get 0; 1← new 1, 3

Then the game composition operator KA,B,C is:

KA,B,C
∆
= ((A⇒ B)⊗ (B′ ⇒ C)⇒ (A′ ⇒ C′), PA ∪ PB ∪ PC).

Using the game composition operator K we can define GAM-net composition
using HRAMnet compact closed combinators. Let f : A ⇒ B, g : B ⇒ C be
GAM-nets. Then their composition is defined as

f ;GAM g
∆
= Λ−1

A (ΛA(f)⊗ ΛB(g));KA,B,C)),where

ΛA(f : A→ B)
∆
= (ηA; (idA∗ ⊗ f)) : I → A∗ ⊗B

Λ−1
A (f : I → A⊗ B)

∆
= ((idA ⊗ f); (εA ⊗ idB)) : A→ B.

Composition is represented diagrammatically as in Fig. 7. Note the comparison
with the naive composition from Fig. 4. HRAMs f and g are not plugged in di-
rectly, although the interfaces match. Composition is mediated by the operator
K, which preserves the locality of freshly generated names, exchanging non-local
pointer names with local pointer names and storing the mapping between the
two as copy-cat links, indicated diagrammatically by dotted lines in K.

30

✲

✛

✲

✛

✲

✲ ✲

✲

✛

g

f

K

B

A

B

C C

A

η

η

ε

Figure 7: Composing GAMs using the K HRAM

Theorem 3.24. If f : A→ B and g : B′ → C are game nets such that
πB ⊢ B =A B′, f implements Sf ⊆ PA⇒B, and g implements Sg ⊆ PB′⇒C,
then f ;GAM g implements (Sf ;G Sg).

Definition 3.25. If s is a trace, h is a heap, A is a game interface, and πP is
a permutation over P, we say that h is an extended copycat heap for s over A

if and only if:

1. For every pending P-question non-initial in A in s, i.e. (P, (a, p, p′, d)) ⊆
s (a ∈ qstA \ iniA), h(p

′) = (π̃P(p
′), ∅).

2. For every pending P-question initial in A in s and its justifying move,
i.e. (O, (a1, p1, p, d1))::s

′::(P, (a2, p, p2, d2)) ⊆ s (a2 ∈ iniA), h(p2) =
(π̃P(p2), π̃P(p1)).

Theorem 3.26. If f : A→ B and g : B′ → C are game nets such that
πB ⊢ B =A B′, f implements Sf ⊆ PA⇒B, and g implements Sg ⊆ PB′⇒C,
then (Sf ;G Sg)

st,alt ⊆AP Jf ;GAM gK = JΛ−1
A (ΛA(f)⊗ ΛB′(g);KA,B,C)K.

Proof. We show that s′ ∈ (Sf ;G Sg)
st,alt implies that there exists a πP such

that πA,C · πP · s′ ∈ Jf ;GAM gK = JΛ−1
A (ΛA(f) ⊗ ΛB′(g);KA,B,C)K = JΛA(f)K ⊗

JΛB′(g)K; JKA,B,CK. Recall the definition of game composition:

Sf ;G Sg
∆
= {s ⇂ B | s ∈ tracesA⊗B⊗C ∧ s ⇂ C ∈ Sf ∧ πB · s

∗B ⇂ A ∈ Sg}

We proceed by induction on the length of such an s:

• Hypothesis. There exists an sK such that initial (KA,B,C)
sK−−→ n where

n = ({(∅, h) : E}, ∅) and h is exactly (nothing more than) the union of a
copycat heap for sK over A′ ⇒ A, a copycat heap for sK over C⇒ C′ and
an extended copycat heap for sK over B⇒ B′.

31

Let

sf
∆
= s ⇂ C

sg
∆
= πB · s

∗B ⇂ A

sf ;g
∆
= s ⇂ B

sKf
∆
= sK−A

′, B′, C, C′, the part of sK relating to f

sKg
∆
= sK−A,A

′, B, C′, the part of sK relating to g

sKf ;g
∆
= sK−A,B,B′, C, the part of sK relating to the whole game net.

We require that sK fulfils s∗Kf = sf , s
∗
Kg = sg, and sKf ;g = πA,C · πP ·

sf ;g. Note that sKf ;g is the trace of f ;GAM g, by the definition of trace
composition.

• Base case. Immediate.

• Inductive step. Assume s = s′::α and that the hypothesis holds for s′ and
some π′

P
and s′K . We proceed by cases on the α message:

– If α = (O, (a, p, p′, d)), we have three cases:

∗ If a ∈ sup(A), intuitively this means that we are getting a
message from outside the K engine, and need to propagate it
through K to f . We construct sK and πP, such that sK =
s′K ::(O, (πA(a), π̃P(p), π̃P(p

′), d))::α∗, by further sub-cases on a
(πP will be determined by steps of the K configuration):

· a ∈ iniA cannot be the case because an initial message in
A must be justified by an initial (O-message) in C, and so
must be a P-message.

· If a ∈ (qstA \ iniA) ∪ ansA, this means that s′ ⇂ C::α =
(s′::α) ⇂ C as the message must be justified by a message
from A. As f is O-closed s ⇂ C ∈ JΛA(f)K. This trace can be
stepped to by n′ just like how it was done in Theorem 3.17.
We can verify that the parts of the hypothesis not in that
theorem hold – in particular for this case we have sKf =
s′Kf ::α

∗, so indeed s∗Kf = sf as required.

∗ a ∈ sup(B):
Intuitively this means that g is sending a message to f , which
has to go through K. We construct sK and πP, such that sK =
s′K ::(O, (a, π̃P(p), π̃P(p

′), d))::πB · α∗, by further sub-cases on a
(πP will be determined by steps of the K configuration):

· If a ∈ iniB, there must be a pending P-message from C

justifying α in s′, i.e. (P, (a0, p0, π̃P(p), d0)) ⊆ s′ and then
by Definition 3.20 h(π̃P(p)) = (p, ∅) (as π̃P is its own inverse).
This means that (running the exi instruction) we get:

n′ (O,(πB(a),π̃P(p),π̃P(p
′),d))

−−−−−−−−−−−−−−−−−→−→∗ α∗

−−→

({(∅, h ∪ {p′ 7→ (π̃P(p
′), p)}) : E}, ∅) =n

32

Now πB ·α∗ is a new pending P-question in the trace that is
initial in B⇒ B′, but our new heap mapping fulfils clause
(2) of Definition 3.25 as required.

· If a ∈ (qstB \ iniB) ∪ ansB, this is similar to the A case
(note that the extended copycat only differs from the ordi-
nary copycat for initial messages).

∗ If a ∈ sup(C).
Intuitively this means that we are getting a message from outside
the K engine, and need to propagate it through K to g. We
construct sK and πP, such that:

sK = s′K ::(O, (πC(a), π̃P(p), π̃P(p
′), d))::α∗

In this case, the code that we will run is just that of CC, so we
can proceed like in Theorem 3.17, easily verifying our additional
assumptions.

– If α = (P, (a, p, p′, d)), we have three cases:

∗ If a ∈ sup(A), intuitively this means that we get a message from
f and need to propagate it through K to the outside. By further
sub-cases on a, we construct sK and πP, such that:

sK = s′K ::α∗::(P, (πA(a), π̃P(p), π̃P(p
′), d))

The pointer permutation πP will be determined by steps of the
K configuration.

· If a ∈ iniA, then α must be justified in s′ by a pending and
initial P-question from B by the definition of A⇒ B which
must in turn be justified by a pending and initial O-question
from C by the definition of B ⇒ C. In s′K , we have (since
s′Kf ;g = πA,C · πP · s′f ;g)

s′K = s1::(O, (aC′ , p0, pC′ , dC′))::s2::(P, (aB, pC′ , p, dC′))::s3

This means that clause (2) in Definition 3.25 applies, such
that h(p) = (π̃P(p), π̃P(p0)) and that (running the exq in-
struction) we get:

n′ α∗

−−→−→∗ (P,(πA(a),π̃P(p),π̃P(p
′),d))

−−−−−−−−−−−−−−−−−→

({(∅, h ∪ {π̃P(p
′) 7→ (p′, d)}) : E}, ∅) =n

Clause (1) of Definition 3.25 applies to these new messages
and trivially holds.

· When a ∈ (qstA \ iniA) ∪ ansA, the code that we will run is
just that of CC, so we can proceed like in Theorem 3.17, also
verifying our additional assumptions.

∗ If a ∈ sup(B), intuitively this means that f is sending a message
to g, which has to go through K.

· a ∈ iniB cannot be the case for a P-message.

33

· When a ∈ (qstB \ iniB)∪ ansB, the code that we will run is
just that of CC, so we can proceed like in Theorem 3.17, also
verifying our additional assumptions.

∗ If a ∈ sup(C), intuitively this means that we get a message from
g and need to propagate it through K to the outside.

· a ∈ iniC cannot be the case for a P-message.

· When a ∈ (qstC \ iniC) ∪ ansC, the code that we will run is
just that of CC, so we can proceed like in Theorem 3.17, also
verifying our additional assumptions.

Lemma 3.27. If f : A→ B and g : B′ → C are game nets such that πB ⊢
B =A B′, f implements Sf ⊆ PA⇒B, and g implements Sg ⊆ PB′⇒C, then
J(f ;GAM g)K is P-closed with respect to (Sf ;G Sg).

Proof. Similar to Theorems 3.22 and 3.26. We identify the set ready(n) with
“uncopied” messages of a K net configuration n and show that these are legal
according to the game composition. Then we show by induction that, assuming
a heap as in Theorem 3.26, the ready(n) set is precisely those messages.

3.5 Diagonal

For game interfaces A1,A2,A3 and permutations πij such that πij ⊢ Ai =A Aj

for i 6= j ∈ {1, 2, 3}, we define the family of diagonal engines as:

δπ12,π13,A = (A1 ⇒ A2 ⊗A3, P1 ⊗ P2 ⊗ P3)

where, for i ∈ {2, 3},

P1
∆
= {q1 7→ ccq; ifzero 3 (spark q2) (spark q3)

| q1 ∈ oppA1
∩ qstA1

∧ q2 = π12(q1) ∧ q3 = π13(q1)}

∪ {a1 7→ cca; ifzero 3 (spark a2) (spark a3)

| a1 ∈ oppA1
∩ ansA1

∧ a2 = π12(a1) ∧ a3 = π13(a1)}

Pi
∆
= {qi 7→ 3← set (i− 2); cci; spark q1 | qi ∈ iniAi

∧ q1 = π−1
1i (qi)}

∪ {qi 7→ ccq; spark q1 | qi ∈ (oppAi
∩ qstAi

) \ iniAi
∧ q1 = π−1

1i (qi)}

∪ {ai 7→ cca; spark a1 | ai ∈ oppAi
∩ ansAi

∧ a1 = π−1
1i (ai)}.

The diagonal is almost identical to the copycat, except that an integer value of
0 or 1 is associated, in the heap, with the name of each message arriving on the
A2 and A3 interfaces (hence the set statements, to be used for routing back
messages arriving on A1 using ifzero statements). By abuse of notation, we
also write δ for the net singleton(δ).

Lemma 3.28. The δ net is the diagonal net, i.e. Jδπ12,π23,A; ΠiK = JCCπi,AK.

Proof. We show that s ∈ Jδπ12,π23
; Π1K implies s ∈ JCCπ12,A1,A2

K and the converse
(the Π2 case is analogous), by induction on the trace length. There is a simple

34

relationship between the heap structures of the respective net configurations
— they have the same structure but the diagonal stores additional integers for
identifying what “side” a move comes from.

3.6 Fixpoint

We define a family of GAMs FixA with interfaces (A1 ⇒ A2)⇒ A3 where there
exist permutations πi,j such that πi,j ⊢ Ai =A Aj for i 6= j ∈ {1, 2, 3}. The
fixpoint engine is defined as Fixπ12,π13,A = Λ−1

A (δπ12,π13,A).

Let fixπ12,π13,A
: (A ⇒ π12 · A) ⇒ π13 · A be the game-semantic strategy for

fixpoint in Hyland-Ong games [19, p. 364].

Theorem 3.29. Fixπ12,π13,A implements fixπ12,π13,A
.

The proof of this is immediate considering the three cases of moves from the
definition of the game-semantic strategy. It is interesting to note here that we
“force” a HRAM with interface A1 ⇒ A2⊗A3 into a GAM with game interface
(A3 ⇒ A1) ⇒ A2, which has underlying interface (A3 ⇒ A1) ⇒ A2. In the
HRAMnet category, which is symmetric compact-closed, the two interfaces
are isomorphic (with A∗

1 ⊗A2 ⊗ A3), but as game interfaces they are not. It is
rather surprising that we can reuse our diagonal GAMs in such brutal fashion:
in the game interface for fixpoint there is a reversed enabling relation between
A3 and A1. The reason why this still leads to legal plays only is because the onus
of producing the justification pointers in the initial move for A3 lies with the
Opponent, which cannot exploit the fact that the diagonal is “wired illegally”.
It only sees the fixpoint interface and must play accordingly. It is fair to say
that that fixpoint interface is more restrictive to the Opponent than the diagonal
interface, because the diagonal interface allows extra behaviours, e.g. sending
initial messages in A3, which are no longer legal.

3.7 Other ICA constants

A GAM net for an integer literal n can be defined using the following engine
(whose interface corresponds to the ICA exp type).

litn
∆
= ({(O, q), (P, a)}, P), where

P
∆
= {q 7→ flip 0, 1; 1← set ∅; 2← set n; spark a}

We see that upon getting an input question on port q, this engine will respond
with a legal answer containing n as its value (register 2).

The conditional at type exp can be defined using the following engine, with the

35

convention that {(O, qi), (P, ai)} = expi.

if
∆
=(exp1 ⇒ exp2 ⇒ exp3 ⇒ exp4, P), where

P
∆
={q4 7→ cci; spark q1,

a1 7→ cca; flip 0, 1; cci; ifzero 2 (spark q3) (spark q2),

a2 7→ cca; spark a4,

a3 7→ cca; spark a4}

We can also define primitive operations, e.g. + : exp⇒ exp⇒ exp, in a similar
manner. An interesting engine is that for newvar :

newvar
∆
=((exp1 ⊗ (exp2 ⇒ com3)⇒ exp4)⇒ exp5, P)

P
∆
={q5 7→ 3← set 0; cci; spark q4,

q1 7→ ∅, 2← get 0; flip 0, 1; 1← set ∅; spark a1,

q3 7→ flip 0, 1; 1← new 0, 1; spark q2,

a2 7→ ∅, 3← get 0; update 3 2; cca; spark a3,

a4 7→ cca; spark a5}

We see that we store the variable in the second component of the justification
pointer that justifies q4, so that it can be accessed in subsequent requests. A
slight problem is that moves in exp2 will actually not be justified by this pointer
which we remedy in the q3 case, by storing a pointer to the pointer with the
variable as the second component of the justifier of q2, which means that we
can access and update the variable in a2.

We can easily extend the HRAMs with new instructions to interpret parallel
execution and semaphores, but we omit them from the current presentation.

4 Seamless distributed compilation for ICA

4.1 The language ICA

ICA is PCF extended with constants to facilitate local effects. Its ground
types are expressions and commands (exp, com), with the type of assignable

variables desugared as var
∆
= exp× (exp→ com). Dereferencing and assignment

are desugared as the first, respectively second, projections from the type of
assignable variables. The local variable binder is new : (var→ com)→ com.

ICA also has a type of split binary semaphores sem
∆
= com× com, with the

first and second projections corresponding to set, get, respectively (see [14] for
the full definition, including the game-semantic model).

In this section we give a compilation method for ICA into GAM nets. The
compilation is compositional on the syntax and it uses the constructs of the
previous section. ICA types are compiled into GAM interfaces which correspond
to their game-semantic arenas in the obvious way. We will use A,B, . . . to refer
to an ICA type and to the GAM interface. Sec. 3 has already developed all
the infrastructure needed to interpret the constants of ICA (Sec. 3.7), including

36

Kδ

M ′

eval

M

Γ

K ′

B

Figure 8: GAM net for application

fixpoint (Sec. 3.6). Given an ICA type judgment Γ ⊢ M : A with Γ a list of
variable-type assignments xi : Ai, M a term and A a type, a GAM implementing
it GM is defined compositionally on the syntax as follows:

GΓ⊢MM ′ :A = δπ1,π2,Γ;GAM (GΓ⊢M :A→B ⊗GΓ⊢M ′:B);GAM evalA,B

GΓ⊢λx:A.M :A→B = ΛA(GΓ,x:A⊢M :B)

Gx:A,Γ⊢x:A = ΠGA;CCA,π ,

Where evalA,B
∆
= Λ−1

B (CCA⇒B,π) for a suitably chosen port renaming π and
ΠGA and ΠG1 and ΠG2 are HRAMs with signatures ΠGi = (A1 ⊗A2 ⇒ A3, Pi)
such that they copycat between A3 and Ai and ignore Aj 6=i. The interpretation
of function application, which is the most complex, is shown diagrammatically
in Fig. 8. The copycat connections are shown using dashed lines.

Theorem 4.1. If M is an ICA term, GM is the GAM implementing it and σM

its game-semantic strategy then GM implements σM .

The correctness of compilation follows directly from the correctness of the indi-
vidual GAM nets and the correctness of GAM composition ;GAM .

4.2 Prototype implementation

Following the recipe in the previous section we can produce an implementation
of any ICA term as a GAM net. GAMs are just special-purpose HRAMs, with
no special operations. HRAMs, in turn, can easily be implemented on any con-
ventional computer with the usual store, control and communication facilities. A
GAM net is also just a special-purpose HRAM net, which is a powerful abstrac-
tion of communication processes, as it subsumes through the spark instruction
communication between processes (threads) on the same physical machine or
located on distinct physical machines and communicating via a point-to-point
network. We have built a prototype compiler based on GAMs by implement-
ing them in C, managing processes using standard UNIX threads and physical
network distribution using MPI [17].2

2Download with source code from http://veritygos.org/gams .

37

http://veritygos.org/gams

M ′

M

Γ B

@

Figure 9: Optimised GAM net for application

The actual distribution is achieved using light pragma-like code annotations. In
order to execute a program at node A but delegate one computation to node B
and another computation to node C we simply annotate an ICA program with
node names, e.g.:

{new x. x := {f(x)}@B + {g(x)}@C; !x}@A

Note that this gives node B, via function f , read-write access to memory location
x which is located at node A. Accessing non-local resources is possible, albeit
possibly expensive.

Several facts make the compilation process quite remarkable:

• It is seamless (in the sense of [8]), allowing distributed compilation where
communication is never explicit but always realised through function calls.

• It is flexible, allowing any syntactic sub-term to be located at any desig-
nated physical location, with no impact on the semantics of the program.
The access of non-local resources is always possible, albeit possibly at a
cost (latency, bandwidth, etc.).

• It is dynamic, allowing the relocation of GAMs to different physical nodes
at run time. This can be done with extremely low overhead if the GAM
heap is empty.

• It does not require any form of garbage collection, even on local nodes,
although the language combines (ground) state, higher-order functions
and concurrency. This is because a pointer associated with a pointer is
not needed if and only if the question is answered; then it can be safely
deallocated.

The current implementation does not perform any optimisations, and the result-
ing code is inefficient. Looking at the implementation of application in Fig. 8 it
is quite clear that a message entering the GAM net via port A needs to undergo
four pointer renamings before reaching the GAM for M . This is the cost we
pay for compositionality. However, the particular configuration for application
can be significantly simplified using standard peephole optimisation, and we

38

can reach the much simpler, still correct implementation in Fig. 9. Here the
functionality of the two compositions, the diagonal, and the eval GAMs have
been combined and optimised into a single GAM, requiring only one pointer re-
naming before reaching M . Other optimisations can be introduced to simplify
GAM nets, in particular to obviate the need for the use of composition GAMs
K, for example by showing that composition of first-order closed terms (such
as those used for most constants) can be done directly.

5 Conclusions, further work

In a previous paper we have argued that distributed and heterogeneous pro-
gramming would benefit from the existence of architecture-agnostic, seamless
compilation methods for conventional programming languages which can allow
the programmer to focus on solving algorithmic problems without being over-
whelmed by the minutiae of driving complex computational systems [8]. In
loc. cit. we give such a compiler for PCF, based directly on the Geometry
of Interaction. In this paper we show how Game Semantics can be expressed
operationally using abstract machines very similar to networked conventional
computers, a further development of the IAM/JAM game machines. We be-
lieve any programming language with a semantic model expressed as Hyland-
Ong-style pointer games [19] can be readily represented using GAMs and then
compiled to a variety of platforms such as MPI. Even more promising is the
possible leveraging of more powerful infrastructure for distributed computing
that can mask much of the complexities of distributed programming, such as
fault-tolerance [23].

The compositional nature of the compiler is very important because it gives
rise to a very general notion of foreign-function interface, expressible both as
control and as communication, which allows a program to interface with other
programs, in a syntax-independent way (see [13] for a discussion), opening the
door to the seamless development of heterogeneous open systems in a distributed
setting.

We believe we have established a solid foundational platform on which to build
realistic seamless distributed compilers. Further work is needed in optimising
the output of the compiler which is currently, as discussed, inefficient. The
sources of inefficiency in this compiler are not just the generation of heavy-duty
plumbing, but also the possibly unwise assignment of computation to nodes,
requiring excessive network communication. Previous work in game semantics
for resource usage can be naturally adapted to the operational setting of the
GAMs and facilitate the automation of optimised task assignment [11].

References

[1] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF.
Inf. Comput., 163(2):409–470, 2000.

[2] N. Benton. Embedded interpreters. J. Funct. Program., 15(4):503–542,
2005.

39

[3] G. Berry and G. Boudol. The Chemical Abstract Machine. In Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages, San Francisco, California, USA, January 1990,
pages 81–94. ACM Press, 1990.

[4] P.-L. Curien and H. Herbelin. Abstract machines for dialogue games.
CoRR, abs/0706.2544, 2007.

[5] V. Danos, H. Herbelin, and L. Regnier. Game Semantics & Abstract Ma-
chines. In Proceedings, 11th Annual IEEE Symposium on Logic in Com-
puter Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages
394–405. IEEE Computer Society, 1996.

[6] V. Danos and L. Regnier. Reversible, Irreversible and Optimal lambda-
Machines. Theor. Comput. Sci., 227(1-2):79–97, 1999.

[7] C. Faggian and F. Maurel. Ludics Nets, a game Model of Concurrent
Interaction. In 20th IEEE Symposium on Logic in Computer Science (LICS
2005), 26-29 June 2005, Chicago, IL, USA, Proceedings, pages 376–385.
IEEE Computer Society, 2005.

[8] O. Fredriksson and D. R. Ghica. Seamless distributed computing from the
geometry of interaction. In Trustworthy Global Computing, 2012. forth-
coming.

[9] M. Gabbay and D. R. Ghica. Game Semantics in the Nominal Model.
Electr. Notes Theor. Comput. Sci., 286:173–189, 2012.

[10] M. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual IEEE Symposium on Logic in Computer Science,
Trento, Italy, July 2-5, 1999, pages 214–224. IEEE Computer Society, 1999.

[11] D. R. Ghica. Slot games: a quantitative model of computation. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14, 2005, pages 85–97. ACM, 2005.

[12] D. R. Ghica. Applications of Game Semantics: From Program Analysis to
Hardware Synthesis. In Proceedings of the 24th Annual IEEE Symposium
on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles,
CA, USA, pages 17–26. IEEE Computer Society, 2009.

[13] D. R. Ghica. Function interface models for hardware compilation. In 9th
IEEE/ACM International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011, pages
131–142. IEEE, 2011.

[14] D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained con-
currency. Ann. Pure Appl. Logic, 151(2-3):89–114, 2008.

[15] D. R. Ghica and N. Tzevelekos. A System-Level Game Semantics. Electr.
Notes Theor. Comput. Sci., 286:191–211, 2012.

[16] J.-Y. Girard. Geometry of interaction 1: Interpretation of System F. Stud-
ies in Logic and the Foundations of Mathematics, 127:221–260, 1989.

40

[17] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel pro-
gramming with the message passing interface, volume 1. MIT press, 1999.

[18] J. M. E. Hyland and C.-H. L. Ong. Pi-Calculus, Dialogue Games and PCF.
In FPCA, pages 96–107, 1995.

[19] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I, II, and
III. Inf. Comput., 163(2):285–408, 2000.

[20] J. Laird. Exceptions, Continuations and Macro-expressiveness. In Program-
ming Languages and Systems, 11th European Symposium on Programming,
ESOP 2002, held as Part of the Joint European Conference on Theory and
Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002,
Proceedings, pages 133–146. Springer, 2002.

[21] I. Mackie. The Geometry of Interaction Machine. In Conference Record
of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Francisco, California, USA, January 23-25,
1995, pages 198–208. ACM Press, 1995.

[22] R. Milner. Functions as Processes. In Automata, Languages and Pro-
gramming, 17th International Colloquium, ICALP90, Warwick University,
England, July 16-20, 1990, Proceedings, pages 167–180. Springer, 1990.

[23] D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy,
and S. Hand. Ciel: a universal execution engine for distributed data-flow
computing. 2011.

[24] C.-H. L. Ong. Verification of Higher-Order Computation: A Game-
Semantic Approach. In Programming Languages and Systems, 17th Euro-
pean Symposium on Programming, ESOP 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 299–306.
Springer, 2008.

41

	1 Introduction
	2 Simple nets
	2.1 Heap and register abstract machines (HRAM)
	2.2 HRAM nets
	2.3 Semantics of HRAM nets
	2.4 HRAM nets as a category

	3 Game nets for ICA
	3.1 Game abstract machines (GAM) and nets
	3.2 Game traces
	3.3 Copycat
	3.4 Composition
	3.5 Diagonal
	3.6 Fixpoint
	3.7 Other ICA constants

	4 Seamless distributed compilation for ICA
	4.1 The language ICA
	4.2 Prototype implementation

	5 Conclusions, further work

