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Abstract

A first-order conditional logic is considered, with semantics given by a variant
of ε-semantics [Adams 1975; Goldszmidt and Pearl 1992], where ϕ → ψ means
that Pr(ψ | ϕ) approaches 1 super-polynomially—faster than any inverse polyno-
mial. This type of convergence is needed for reasoning about security protocols.
A complete axiomatization is provided for this semantics, and it is shown how
a qualitative proof of the correctness of a security protocol can be automatically
converted to a quantitative proof appropriate for reasoning about concrete security.

1 Introduction
Security protocols, such as key-exchange and key-management protocols, are short,
but notoriously difficult to prove correct. Flaws have been found in numerous pro-
tocols, ranging from the the 802.11 Wired Equivalent Privacy (WEP) protocol used
to protect link-layer communications from eavesdropping and other attacks [Borisov,
Goldberg, and Wagner 2001] to standards and proposed standards for Secure Socket
Layer [Wagner and Schneier 1996; Mitchell, Shmatikov, and Stern 1998] to Kerberos
[Bella and Paulson 1998]. Not surprisingly, a great deal of effort has been devoted to
proving the correctness of such protocols. There are two largely disjoint approaches.
The first essentially ignores the details of cryptography by assuming perfect cryptogra-
phy (i.e., nothing encrypted can ever be decrypted without the encryption key) and an
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adversary that controls the network. By ignoring the cryptography, it is possible to give
a more qualitative proof of correctness, using logics designed for reasoning about secu-
rity protocols. Indeed, this approach has enabled axiomatic proofs of correctness and
model checking of proofs (see, for example, [Mitchell, Mitchell, and Stern 1997; Paul-
son 1994]). The second approach applies the tools of modern cryptography to proving
correctness, using more quantitative arguments. Typically it is shown that, given some
security parameter k (where k may be, for example, the length of the key used) an
adversary whose running time is polynomial in k has a negligible probability of break-
ing the security, where “negligible” means “less than any inverse polynomial function
of k” (see, for example, [Bellare, Canetti, and Krawczyk 1998; Goldreich 2001]).
There has been recent work on bridging the gap between these two approaches, with
the goal of constructing a logic that can allow reasoning about quantitative aspects of
security protocols while still being amenable to mechanization. This line of research
started with the work of Abadi and Rogaway [2000]. More recently, Datta et al. [2005]
showed that by giving a somewhat nonstandard semantics to their first-order Protocol
Composition Logic [Datta, Derek, Mitchell, and Roy 2007], it was possible to reason
about many features of the computational model. In this logic, an “implication” of the
form ϕ ⊃ B is interpreted as, roughly speaking, the probability of B given ϕ is high.
For example, a statement like secret encrypted ⊃ adversary does not
decrypt the secret says “with high probability, if the secret is encrypted, the
adversary does not decrypt it”. While the need for such statements should be clear,
the probabilistic interpretation used is somewhat unnatural, and no axiomatization is
provided by Datta et al. [2005] for the ⊃ operator (although some sound axioms are
given that use it).

The interpretation of ⊃ is quite reminiscent of one of the interpretations of → in
conditional logic, where ϕ → ψ can be interpreted as “typically, if ϕ then ψ” [Kraus,
Lehmann, and Magidor 1990]. Indeed, one semantics given to→, called ε-semantics
[Adams 1975; Goldszmidt and Pearl 1992], is very close in spirit to that used in [Datta,
Derek, Mitchell, Shmatikov, and Turuani 2005]; this is particularly true for the for-
mulation of ε-semantics given by Goldszmidt, Morris, and Pearl [1993]. In this for-
mulation, a formula ϕ → ψ is evaluated with respect to a sequence (Pr1,Pr2, . . .)
of probability measures (probability sequence, for short): it is true if, roughly speak-
ing, limn→∞ Prn(ψ | ϕ) = 1 (where Prk(ψ | ϕ) is taken to be 1 if Prk(ϕ) = 1).
This formulation is not quite strong enough for some security-related purposes, where
the standard is super-polynomial convergence, that is, convergence faster than any
inverse polynomial. To capture such convergence, we can take ϕ → ψ to be true
with respect to this probability sequence if, for all polynomials p, there exists n∗

such that, for all n ≥ n∗, Prn(ψ | ϕ) ≥ 1 − 1/p(n). (Note that this implies that
limn→∞ Prn(ψ | ϕ) = 1.) In a companion paper [Datta, Halpern, Mitchell, Roy, and
Sen 2015], it is shown that reinterpreting→ in this way gives an elegant, powerful vari-
ant of the logic considered in [Datta, Derek, Mitchell, Shmatikov, and Turuani 2005],
which can be used to reason about security protocols of interest.

While it is already a pleasant surprise that conditional logic provides such a clean
approach to reasoning about security, using conditional logic has two further significant
advantages, which are the subject of this paper. The first is that, as I show here, the
well-known complete axiomatization of conditional logic with respect to ε-semantics
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continues to be sound and complete with respect to the super-polynomial semantics
for →; thus, the axioms form a basis for automated proofs. The second is that the
use of conditional logic allows for a clean transition from qualitative to quantitative
arguments. To explain these points, I need to briefly recall some well-known results
from the literature.

As is well known, the KLM properties [Kraus, Lehmann, and Magidor 1990] (see
Section 2) provide a sound and complete axiomatization for reasoning about→ formu-
las with respect to ε-semantics [Geffner 1992]. More precisely, if ∆ is a collection of
formulas of the form ϕ′ → ψ′, then ∆ (ε-)entails ϕ → ψ (that is, for every probabil-
ity sequence P , if every formula in ∆ is true in P according to ε semantics, then so is
ϕ→ ψ), then ϕ→ ψ is provable from ∆ using the KLM properties. This result applies
only when ∆ is a collection of→ formulas. ∆ cannot include negations or disjunctions
of→ formulas. Conditional logic extends the KLM framework by allowing Boolean
combinations of→ statements. A sound and complete axiomatization of propositional
conditional logic with semantics given by what are called preferential structures was
given by Burgess [1981]; Friedman and Halpern [2001] proved it was also sound and
complete for ε-semantics.

Propositional conditional logic does not suffice for reasoning about security. The
logic of [Datta, Derek, Mitchell, Shmatikov, and Turuani 2005] is first-order; quan-
tification is needed to capture important properties of security protocols. A sound and
complete axiomatization for the language of first-order conditional logic, denoted LC ,
with respect to ε-semantics is given by Friedman, Halpern, and Koller [2000]. The
first major result of this paper shows that a conditional logic formula ϕ is satisfiable in
some model M with respect to ε-semantics iff it is satisfiable in some model M ′ with
respect to the super-polynomial semantics. It follows that all the completeness results
for ε-semantics apply without change to the super-polynomial semantics.

I then consider the language L0
C which essentially consists of universal→ formu-

las, that is, formulas of the form ∀x1 . . . ∀xn(ϕ → ψ), where ϕ and ψ are first-order
formulas. As in the KLM framework, there are no nested → formulas or negated →
formulas. The second major result of this paper is to provide a sound and complete
axiomatization that extends the KLM properties for reasoning about when a collection
of formulas in L0

C entails a formula in L0
C .

It might seem strange to be interested in an axiomatization for L0
C when there

is already a sound and complete axiomatization for the full language LC . However,
L0
C has some significant advantages. In reasoning about concrete security, asymptotic

complexity results do not suffice; more detailed information about security guaran-
tees is needed. For example, we may want to prove that an SSL server that supports
1,000,000 sessions using 1024 bit keys has a probability of 0.999999 of providing the
desired service without being compromised. I show how to convert a qualitative proof
of security in the language L0

C , which provides only asymptotic guarantees, to a quan-
titative proof. Moreover, the conversion shows exactly how strong the assumptions
have to be in order to get the desired 0.999999 level of security. More generally, the
proof shows that, given a qualitative proof of a property and ε, we can compute a δ in
polynomial time from the proof itself such that if the assumptions in the proof all hold
with probability at least 1− δ, then the conclusion holds with probability at least 1− ε.
Such a conversion is not possible with LC . This conversion justifies reasoning at the
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qualitative level. A qualitative proof can be constructed without worrying about the
details of the numbers, and then automatically converted to a quantitative proof for the
desired level of security.

There has been work on formal proof techniques for concrete cryptography [Blanchet
2006; Barthe, Grégoire, and Zanella-Béguelin 2009; Barthe, Grégoire, Heraud, and
Zanella-Béguelin 2011]. However, it has largely focused on relational techniques
where security is proved via game-based reductions, similar to traditional cryptographic
proofs. The kind of transition from qualitative to quantitative reasoning that is my fo-
cus here has not been investigated. Perhaps even closer to this paper is that of Bana,
Hasebe, and Okada [2013]. They also have an operator → that can be viewed as at-
tempting to capture qualitatively some probabilistic aspects of reasoning about security.
I discuss their work in more detail in Section 4.

In the next section, I review the syntax and semantics of conditional logic, with
an emphasis on ε-semantics, and show how it can be modified to deal with the super-
polynomial convergence that is more appropriate for reasoning about security. In Sec-
tion 3, I provide axioms and inference rules for both qualitative and quantitative rea-
soning. I conclude in Section 4 with some discussion of the usefulness of this logic for
reasoning about security.

2 First-Order Conditional Logic
I review the syntax and semantics of first-order conditional logic here. It is straightfor-
ward to specialize all the definitions and results to the propositional case, so I do not
discuss the propositional case further.

The syntax of first-order conditional logic is straightforward. Fix a finite first-order
vocabulary T consisting, as usual, of function symbols, predicate symbols, and con-
stants. Starting with atomic formulas (i.e., closed quantifier-free first-order formulas)
over the vocabulary T , more complicated formulas are formed by closing off under
the standard truth-functional connectives (i.e., ∧ ,∨, ¬, and ⇒), first-order quantifi-
cation, and the binary modal operator →. Thus, a typical formula is ∀x(P (x) →
∃y(Q(x, y) → R(y))). Let LC(T ) be the resulting language. Let Lfo(T ) be the pure
first-order fragment of LC(T ), consisting of→-free formulas. Let L0

C(T ) consist of
all formulas in LC(T ) of the form ∀x1 . . . ∀xn(ϕ→ ψ), where ϕ and ψ are in Lfo . (I
henceforth omit the T unless it is necessary for clarity.) Note that L0

C does not include
negations of → formulas or conjunctions of → formulas. While not having conjunc-
tions does not really impair the expressive power of L0

C (since we will be interested in
sets of L0

C formulas, where a set can be identified with the conjunction of the formulas
in the set), the lack of negation does.

I give two semantics to formulas inLC(T ). In both semantics, the truth of formulas
is defined with respect to PS structures. A PS structure is a tuple M = (D,W, π,P),
where D is a domain, W is a set of worlds, π is an interpretation, which associates
with each predicate symbol (resp., function symbol, constant) in T and world w ∈ W
a predicate (resp., function, domain element) of the right arity, and P = (Pr1,Pr2, . . .)
is a probability sequence, where each probability measure Prn in the sequence is a
probability measure on W . I assume for ease of exposition that all subsets of W are
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measurable with respect to each probability measure Prn in the sequence. (I discuss
below how this assumption can be weakened considerably.) As usual, a valuation V
associates with each variable x an element V (x) ∈ D.

Given a valuation V and structure M = (D,W, π,P), the semantics of ∧, ¬, ⇒,
and ∀ is completely standard. In particular, the truth of a first-order formula in Lfo in
a world w ∈ W , written (M,V,w) |= ϕ, is determined as usual. For ϕ ∈ LC , let
[[ϕ]]M,V = {w ∈ W : (M,V,w) |= ϕ}. If ϕ is a closed formula, so that its truth does
not depend on the valuation, I occasionally write [[ϕ]]M rather than [[ϕ]]M,V . I write
(M,V ) |= ϕ if (M,V,w) |= ϕ for all worlds w. The truth of an→ formula does not
depend on the world, but only on the structure M and valuation V . Define

(M,V,w) |= ϕ→ ψ if lim
n→∞

Prn([[ψ]]M,V | [[ϕ]]M,V ) = 1,

where Prn([[ψ]]M,V | [[ϕ]]M,V ) is taken to be 1 if Prn([[ϕ]]M,V ) = 0. (I could have
written (M,V ) |= ϕ → ψ, since the truth of ϕ → ψ is independent of the world w; I
occasionally do this below.)

If W is infinite, the assumption that every subset of W is measurable is a very
strong one. Suppose instead that there is a fixed σ-algebra F of measurable sets that is
the domain of all the probability measures Prn in the sequence. All that is needed in
the semantics above is that [[ϕ]]M,V is measurable (i.e., [[ϕ]]M,V ∈ F) for every formula
ϕ and valuation V . I now give a condition sufficient to guarantee this.

As usual, the set of terms over the vocabulary T is defined inductively. A variable
x is a term, a constant c ∈ T is a term, and if f ∈ T is a k-ary function symbol and
t1, . . . , tk are terms, then f(t1, . . . , tk) is a term. An atomic expression over T has the
form either (a) P (t1, . . . , tk), where P ∈ T is a k-ary predicate symbol and t1, . . . , tk
are terms over T , (b) f(t1, . . . , tk) = tk+1, where f ∈ T is a k-ary predicate symbol
and t1, . . . , tk+1 are terms over T , or (c) t1 = t2, where t1 and t2 are terms over T .
I claim that if the domain D is finite or countably infinite and for all valuations V
and atomic expressions A, [[A]]M,V is measurable, then [[ϕ]]M,V is measurable for all
formulas ϕ in the language and valuations V . The claim follows by a straightforward
induction on the structure of formulas. For a formula ϕ of the form ∀xϕ′, observe that
[[∀xϕ′]]M,V = ∩d∈D[[ϕ′]]M,Vd

, where Vd is the valuation that agrees with V except
that Vd(x) = d. Since D is countable and F is closed under countable intersection, it
follows that [[∀xϕ′]]M,V ∈ F . If ϕ has the form ϕ′ → ψ, note that [[ϕ′ → ψ]]M,V is
either ∅ or W , since it is independent of the world, so [[ϕ′ → ψ]] must be measurable.
All other cases in the induction argument are straightforward.

I also consider an alternative semantics that gives super-polynomial convergence.

(M,V,w) |= sp ϕ→ ψ if, for all k, there exists some n∗ ≥ 0 such that, for all n ≥ n∗,
Prn([[ψ]]M,V | [[ϕ]]M,V ) ≥ 1− 1

nk .

Note that if (M,V,w) |= sp ϕ→ ψ and p(n) is a polynomial whose leading coefficient
is positive, then Prn([[ψ]]M,V | [[ϕ]]M,V ) ≥ 1− 1

p(n) for sufficiently large n.
As usual, I write M |= ϕ if (M,V ) |= ϕ for all valuations V , and M |= ϕ if

M |= ϕ for all PS structures in a setM, and similarly with |= replaced by |= sp .
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3 Axioms for qualitative and quantitative reasoning
In this section, I start by showing that qualitative reasoning for both |= and |= sp is
characterized by the same axiom system. I then provide a complete axiomatization for
L0
C . Finally, I consider quantitative conditional logic. In the axioms, it is convenient

to use Nϕ as an abbreviation for ¬ϕ→ false . Note that if ϕ is a closed formula, then
M |= Nϕ iff there exists n∗ such that, for all n ≥ n∗, Prn([[false]]M | [[¬ϕ]]M ) ≥ 1/2.
Since [[false]]M = ∅, this can happen only if Pr([[¬ϕ]]M ) = 0 for all n ≥ n∗, or
equivalently, Prn([[ϕ]]M ) = 1 for all n ≥ n∗, and similarly with |= replaced by |= sp .
Thus, Nϕ can be read as saying “ϕ is almost surely eventually true”.

3.1 Qualitative Reasoning
As was mentioned in the introduction, Friedman, Halpern, and Koller [2000] provide
a complete axiomatization AXC for LC with respect to |=. For security applications, a
generalization of their result is needed, where it is possible to restrict to models where
all worlds satisfy a particular first-order theory Λ. We can think of Λ as describing first-
order properties of the security protocol being analyzed. Formally, Λ is just a (possibly
infinite) set of first-order formulas.

Let `Λ denote provability in first-order logic given the formulas in the theory Λ.
Let AXΛ

C consist of the following axioms and rules:

Λ-AX. ϕ, if ϕ ∈ Lfo and `Λ ϕ.

C0. All substitution instances of propositional tautologies.

C1. ϕ→ ϕ.

C2. ((ϕ→ ψ1) ∧ (ϕ→ ψ2))⇒ (ϕ→ (ψ1 ∧ ψ2)).

C3. ((ϕ1 → ψ) ∧ (ϕ2 → ψ))⇒ ((ϕ1 ∨ ϕ2)→ ψ).

C4. ((ϕ1 → ϕ2) ∧ (ϕ1 → ψ))⇒ ((ϕ1 ∧ ϕ2)→ ψ).

C5. [(ϕ→ ψ)⇒ N(ϕ→ ψ)] ∧ [¬(ϕ→ ψ)⇒ N¬(ϕ→ ψ)].

C6. ¬(true → false).

F1. ∀xϕ ⇒ ϕ[x/t], where t is substitutable for x in the sense discussed below and
ϕ[x/t] is the result of substituting t for all free occurrences of x in ϕ (see [En-
derton 1972] for a formal definition).

F2. ∀x(ϕ⇒ ψ)⇒ (∀xϕ⇒ ∀xψ).

F3. ϕ⇒ ∀xϕ if x does not occur free in ϕ.

F4. x = y ⇒ (ϕ1 ⇒ ϕ2), where ϕ1 is quantifier-free and ϕ2 is obtained from ϕ1 by
replacing zero or more occurrences of x in ϕ1 by y.

F5. x 6= y ⇒ N(x 6= y).
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MP. From ϕ and ϕ⇒ ψ infer ψ.

Gen. From ϕ infer ∀xϕ.

R1. From ϕ1 ⇔ ϕ2 infer ϕ1 → ψ ⇔ ϕ2 → ψ.

R2. From ψ1 ⇒ ψ2 infer ϕ→ ψ1 ⇒ ϕ→ ψ2.

The axiom system AXC of [Friedman, Halpern, and Koller 2000] does not have
Λ-AX (this is needed to incorporate the theory Λ) and includes an axiom x = x that
follows from Λ-AX; otherwise, the axiom systems are identical. As observed in
[Friedman, Halpern, and Koller 2000], the “positive” version of F5, x = y ⇒ N(x =
y), is also sound. It is not included in the axiomatization because it is provable from
the other axioms.

I now briefly discuss the axioms. Λ-AX just says that any first-order formula prov-
able in Λ ia also provable in AXΛ

C . The notion of “substitution instance of a propo-
sitional tautology” in C0 means that we start with a propositional tautology, and then
uniformly replace each instance of a propositional variable by a formula in LC(T ).
For example, ∀x, y(P (x)→ Q(y))∨¬∀x, y(P (x)→ Q(y)) is a substitution instance
of the propositional tautology p∨¬p, where ∀x, y(P (x)→ Q(y)) is substituted for p.

C1 has been called reflexivity; it says, for example, that birds are typically birds. C2
is called the and rule; it says, for example, that if birds typically fly and birds typically
have wings, then birds typically both fly and have wings. C3 is the or rule; it says,
for example, that if birds typically fly and insects typically fly, that something that is
either a bird or an insect typically flies. C4 is cautious monotonicity; it says that if birds
typically fly and birds typically have wings, then flying birds typically have wings. Full
monotonicity would say that if birds typically have wings then red birds have wings or,
more generally, (ϕ → ψ) ⇒ ((ϕ ∧ ϕ′) → ψ), for an arbitrary ϕ′. This is not sound
(although the analogue is sound if we replace→ by⇒). R1 is left logical equivalence;
it says that if we replace the left-hand side of a → formula by a provably equivalent
formula, the resulting → formula is equivalent to the original formula. Again, the
stronger version (that if we replace the left-hand side by a stronger formula we get
a formula weaker than the original) does not hold; this is just full monotonicity. R2
is right weakening; it says that if we replace the right-hand side of a → formula by
a weaker formula, the resulting → formula is weaker than the original formula. The
axioms and rules C1–C4, R1, and R2 characterize the core properties of →, and will
essentially reappear in system P, discussed below.

C5 encodes the fact that the truth of ϕ→ ψ depends only on the world; if it is true
at some world, it is true at all worlds (and hence holds with probability 1). This lets us
handle nested occurrence of→. C6 is clearly a trivial consequence of the probabilistic
semantics.

To understand the notion of “substitutable” in F1, observe that a term t with free
variables that might be captured by some quantifiers in ϕ cannot be substituted for x;
for example, while ∀x∃y(x 6= y) is true as long as the domain has at least two ele-
ments, the result of substituting y for x is ∃y(y 6= y), which is surely false. In the case
of first-order logic, it suffices to define “substitutable” so as to make sure this does not
happen (see [Enderton 1972] for details). However, in modal logics such as this one,
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more care must be taken. In general, terms cannot be substituted for universally quan-
tified variables in a modal context, since terms are not in general rigid; that is, they can
have different interpretations in different worlds. To understand the impact of this, con-
sider the formula ∀x(¬NP (x)) ⇒ ¬NP (c) (where P is a unary predicate and c is a
constant). This formula is not valid in PS structures. For example, consider a PS struc-
ture M = (D,W, π,P), where W = {w1, w2}, D = {d1, d2}, P = (Pr1,Pr2, . . .)
is such that Prn gives positive probability to both w1 and w2, and π is such that in
world w1, P (d1) holds, P (d2) does not, and c is interpreted as d1, while in world w2,
P (d2) holds, P (d1) does not, and c is interpreted as d2. Then it is easy to see that
NP (c) holds in both worlds, but NP (x) does not hold, no matter how x is interpreted.
It follows that M |= NP (c) and M |= ∀x(¬NP (x)). Thus, if ϕ is a formula that has
occurrences of→, then the only terms that are considered substitutable for x in ϕ are
other variables.

The fact that variables are rigid is what makes F5 sound: if x 6= y in some world
given some valuation V , then x 6= y in all worlds given valuation V , and hence holds
with probability 1. F2, F3, F4, MP, and Gen are standard axioms and rules of first-order
logic, and apply to modal logic as well.

I want to show that AXΛ
C is also sound and complete for the |= sp semantics. The

key step in doing that is to show that a formula is satisfiable with respect to the |=
semantics iff it is satisfiable with respect to the |= sp semantics.

Theorem 3.1: If M = (D,W, π,P) is a PS structure such that D is countable, then
there exists a probability sequence P ′ such that, for all valuations V , (M,V ) |= ϕ iff
(M ′, V ) |= sp ϕ, where M ′ = (D,W, π,P ′).

Proof: Suppose that M = (D,W, π,P), where D = {d1, d2, . . .} (D may be finite),
and P = (Pr1,Pr2, . . .). Suppose that the set of variables is {x1, x2, . . .}. (I am
implicitly assuming that the set of variables is countable, as is standard.) Define a
valuation V to be constant at k if V (xm) = d1 for all m ≥ k; a valuation V is
eventually constant if V is constant at k for some k. Clearly there are only countably
many eventually constant valuations. Let L+ be an enumeration of pairs of the form
(ϕ → ψ, V ) such that V is eventually constant and (M,V ) |= ϕ → ψ; let L− =
((ϕ1 → ψ1, V1), (ϕ2 → ψ2, V2), . . .) be an enumeration of pairs of the form (ϕ →
ψ, V ) such that V is eventually constant and (M,V ) |= ¬(ϕ → ψ), where each pair
appears in the enumeration L− infinitely often. There exists a function f : IN → IN
such that for all n, if n′ > f(n), then Prn′([[ψ]]M,V | [[ϕ]]M,V ) ≥ 1− 1/nn for all the
first n pairs (ϕ→ ψ, V ) ∈ L+. Similarly, there exists a function g that maps elements
in the enumeration L− to IN such that if (ϕ → ψ, V ) is in L−, then g(ϕ → ψ, V )
is the least integer k such that, for infinitely many indices h, we have Prh([[ψ]]M,V |
[[ϕ]]M,V ) < 1 − 1/k. (There must be such an integer k, since limh→∞ Prh([[ψ]]M,V |
[[ϕ]]M,V ) 6= 1.)

I now construct a subsequence P ′ = (Pr′1,Pr′2, . . .) of P by taking Pr′n = PrN ,
where, if (ϕ → ψ, V ) is the nth element of L−, then N is the least integer greater
than f(n) such that Pr′N ([[ψ]]M,V | [[ϕ]]M,V ) < 1 − 1/g(ϕ → ψ, V ). Let M ′ =
(D,W, π,P ′). I now prove that (M,V ) |= ϕ iff (M ′, V ) |= sp ϕ for all valuations V
and formulas ϕ ∈ LC by a straightforward induction on the structure of ϕ. If ϕ is an
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atomic formula, this is immediate, since M and M ′ differ only in their probability se-
quences. All cases but the one where ϕ has the form ϕ′ → ψ′ follow immediately from
the induction hypothesis. If ϕ has the form ϕ′ → ψ′, suppose that the free variables
in ϕ′ → ψ′ are contained in {x1, . . . , xk}. Given V , let V ′ be an eventually constant
valuation such that V (xi) = V ′(xi) for i = 1, . . . , k. Clearly, for all distributions
Pr on W , we have Pr([[ψ]]M,V | [[ϕ]]M,V ) = Pr([[ψ]]M,V ′ | [[ϕ]]M,V ′), and similarly
with M replaced by M ′. First suppose that (M,V ) |= ϕ′ → ψ′. Thus, we must
have (M,V ′) |= ϕ′ → ψ′, so (ϕ′ → ψ′, V ′) is in L+. Suppose that (ϕ′ → ψ′, V ′)
is the N th pair in L+. The construction guarantees that for all n ≥ N , we have
Pr′n([[ψ]]M,V ′ | [[ϕ]]M,V ′) ≥ 1 − 1/nn. It follows that (M ′, V ′) |= sp ϕ′ → ψ′, and
thus (M ′, V ) |= sp ϕ′ → ψ′.

Next suppose that (M,V ) |= ¬(ϕ′ → ψ′). Thus, (M,V ′) |= ¬(ϕ′ → ψ′),
so the pair (ϕ′ → ψ′, V ′) appears infinitely often in the enumeration L−. For each
index h such that this pair appears in position h in L−, by construction, we have that
Pr′h([[ψ′]]M ′,V ′ | [[ϕ′]]M ′,V ′) < 1− 1/g(ϕ′ → ψ′, V ′). Hence, (M ′, V ′) |= sp ¬(ϕ′ →
ψ′), so (M ′, V ) |= sp ¬(ϕ′ → ψ′), as desired.1

Let PS(Λ) consist of all PS structures M such that every world in M satisfies Λ.

Theorem 3.2: AXΛ
C is a sound and complete axiomatization for PS(Λ) with respect to

both |= and |= sp . That is, the following are equivalent for all formulas in LC(T ):

(a) AXΛ
C ` ϕ;

(b) PS(Λ) |= ϕ;

(c) PS(Λ) |= sp ϕ.

Proof: The equivalence of parts (a) and (b) for the case that Λ = ∅ is proved in
Theorem 5.2 of [Friedman, Halpern, and Koller 2000]. The same proof shows that the
result holds for arbitrary Λ. To show that (a) implies (c), I must show that all the axioms
are valid, and that the rules of inference preserve validity. This is straightforward for
all the axioms and rules other than C2, C3, C4, and C5. I consider each of these axioms
in turn.

For C2, suppose that M = (D,W, π, (Pr1,Pr2, . . .)) is a PS structure such that
M |= sp ϕ → ψ1 and M |= sp ϕ→ ψ2. Since M |= sp ϕ → ψi, i = 1, 2, given a
positive polynomial p, there exists n∗1, n

∗
2 ≥ 0 such that, for all n ≥ n∗i , Prn([[ψi]]M,V |

[[ϕ]]M,V ) ≥ 1 − 1/2p(n), for i = 1, 2. For all n ≥ max(n∗1, n
∗
2), Prn([[¬ψi]]M,V |

[[ϕ]]M,V ) ≤ 1/2p(n). Thus, for n ≥ max(n∗1, n
∗
2),

Prn([[ψ1 ∧ ψ2]]M,V | [[ϕ]]M,V )
≥ 1− (Prn([[¬ψ1]]M,V | [[ϕ]]M,V ) + Prn([[¬ψ2]]M,V | [[ϕ]]M,V ))
≥ 1− 1

2p(n) −
1

2p(n)

= 1− 1
p(n) .

1Exactly the same argument shows that there exists a probability sequenceP ′ such that, for all valuations
V , (M,V ) |= ϕ iff (M ′, V ) |= ex ϕ, where M ′ = (D,W, π,P ′) and |= ex considers exponential
convergence for→; that is, (M,V,w) |= ex ϕ→ ψ if, for all c, there exists some n∗ ≥ 0 such that, for all
n ≥ n∗, Prn([[ψ]]M,V | [[ϕ]]M,V ) ≥ 1− 1

2cn . I have focused on super-polynomial rather than exponential
convergence here since that is what is considered in the security literature.
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For C3, note that

Pr(A | B1 ∪B2)
= Pr((A ∩B1 ∪A ∩B2) | B1 ∪B2)
= Pr(A ∩B1 | B1 ∪B2) + Pr(A ∩B2 | B1 ∪B2)− Pr(A ∩B1 ∩B2 | B1 ∪B2)
= Pr(A | B1)× Pr(B1 | B1 ∪B2) + Pr(A | B2)× Pr(B2 | B1 ∪B2)− Pr(A ∩B1 ∩B2 | B1 ∪B2).

(1)
Now suppose that M |= sp ϕ1 → ψ and M |= sp ϕ2 → ψ. Given a positive poly-
nomial p, as in the case of C2, there exist n∗1 and n∗2 such that, for all n ≥ n∗i ,
Prn([[ψ]]M,V | [[ϕ1]]M,V ) ≥ 1 − 1/2p(n), for i = 1, 2. It easily follows from (1)
that if n ≥ max(n∗1, n

∗
2), then

Prn([[ψ]]M,V | [[ϕ1 ∨ ϕ2]]M,V )
≥ (1− 1

2p(n) )Prn([[ϕ1]]M,V | [[ϕ1 ∨ ϕ2]]M,V ) + (1− 1
2p(n) )Prn([[ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )

−Prn([[ψ ∧ ϕ1 ∧ ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )
≥ (1− 1

2p(n) )Prn([[ϕ1]]M,V | [[ϕ1 ∨ ϕ2]]M,V ) + (1− 1
2p(n) )Prn([[ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )

−Prn([[ϕ1 ∧ ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )
≥ (1− 1

2p(n) )[Prn([[ϕ1]]M,V | [[ϕ1 ∨ ϕ2]]M,V ) + Prn([[ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )

−Prn([[ϕ1 ∧ ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )]− 1
2p(n)Prn([[ϕ1 ∧ ϕ2]]M,V | [[ϕ1 ∨ ϕ2]]M,V )

≥ (1− 1
2p(n) )− 1

2p(n)

= 1− 1
p(n) .

For C4, note that

Pr(A1 | A2 ∩B) = Pr(A1 ∩A2 | B)/Pr(A2 | B) ≥ Pr(A2 ∩A2 | B),

so the argument follows essentially the same lines as that for C2.
Finally, the validity of C5 follows easily from the fact that the truth of a formula of

the form ϕ → ψ or ¬(ϕ → ψ) is independent of the world, and depends only on the
probability sequence.

Finally, I must show that (c) implies (b). Suppose not. Then there exists a formula
ϕ such that PS(Λ) |= sp ϕ but PS(Λ) 6 |=ϕ. Thus, there exists M ∈ PS(Λ) and
valuation V such that (M,V ) 6 |=ϕ. The proof in [Friedman, Halpern, and Koller 2000]
shows that if a formula is satisfiable with respect to |= at all, then it is satisfiable
in a structure in PS(Λ) with a countable domain. Thus, without loss of generality,
M has a countable domain. But then it immediately follows from Theorem 3.1 that
PS(Λ) 6 |= spϕ.2

I next completely characterize reasoning in L0
C . (Recall that L0

C consists of all
formulas of the form ∀x1 . . . ∀xn(ϕ → ψ), where ϕ and ψ are first-order formulas.)
More precisely, I characterize when one formula in L0

C can be derived from other

2An easy extension of this argument shows that conditions (a), (b), and (c) of Theorem 3.2 are also
equivalent to PS(Λ) |= ex ϕ. The argument that the axioms are sound for the |= ex semantics is similar in
spirit to that above showing that they are sound for the |= sp semantics; this shows that AXΛ

C ` ϕ implies
PS(Λ) |= ex ϕ. The fact that PS(Λ) |= ex ϕ is equivalent to PS(Λ) |= ϕ follows from the observation
in the previous footnote that Theorem 3.1 also holds for the |= ex semantics.

10



formulas in L0
C , given a first-order theory. I first consider the fragment L−C of L0

C

consisting of all formulas of the form ϕ → ψ where ϕ and ψ are closed first-order
formulas. Thus, L−C does not allow → formulas to be universally quantified. I start
by giving a sound and complete axiomatization for expressions of the form ∆ ↪→ ϕ,
where ϕ is a formula in L−C and ∆ is a set of formulas in L−C . I allow ∆ to be infinite
here (this seems more consistent with the usage in [Kraus, Lehmann, and Magidor
1990]), but all the results hold without change if ∆ is restricted to being finite. (I
make comments along the way about the changes needed if ∆ is restricted to being
finite.) (M,V ) |= ∆ ↪→ ϕ if (M,V ) |= ϕ′ for every formula ϕ′ ∈ ∆ implies that
(M,V ) |= ϕ. If ∆ is finite, then (M,V ) |= ∆ ↪→ ϕ iff (M,V ) |= (∧ϕ′∈∆ϕ

′) ⇒ ϕ.
Thus, if ∆ is finite, the ∆ ↪→ ϕ is expressible in LC ; I allow the slightly greater
generality of infinite sets to be able to relate the results of this paper to earlier work. I
write PS(Λ) |= ∆ ↪→ ϕ if (M,V ) |= ∆ ↪→ ϕ for all PS structures M and valuations
V .

Consider the following axioms:

LLE. {ϕ1 → ψ} ↪→ (ϕ2 → ψ) if `Λ ϕ1 ⇔ ϕ2 (left logical equivalence).

RW. {ϕ→ ψ1} ↪→ (ϕ→ ψ2) if `Λ ψ1 ⇒ ψ2 (right weakening).

REF. ∅ ↪→ (ϕ→ ϕ) (reflexivity).

AND. {ϕ→ ψ1, ϕ→ ψ2} ↪→ (ϕ→ (ψ1 ∧ ψ2)).

OR. {ϕ1 → ψ,ϕ2 → ψ} ↪→ ((ϕ1 ∨ ϕ2)→ ψ).

CM. {ϕ1 → ϕ2, ϕ1 → ψ} ↪→ ((ϕ1 ∧ ϕ2)→ ψ) (cautious monotonicity).

TRIV. ∆ ↪→ ϕ if ϕ ∈ ∆ (trivial)

We have one rule of inference:

TRANS. From ∆ ↪→ ψ for all ψ ∈ ∆′ and ∆′ ↪→ ϕ infer ∆ ↪→ ϕ (transitivity).

This collection of rules has been called system PΛ [Kraus, Lehmann, and Magidor
1990] or the KLM properties.3 The rules are obvious analogues of axioms in AXΛ

C . In
particular, LLE is the analogue of R1; and RW is the analogue of R2; REF, AND, and
OR are just restatements of C2, C3, and C4, respectively, in this notation;

Note that even if ∆ and Λ are infinite, since all the rules are in fact finitary, we
have `Λ ∆ ↪→ ϕ iff there is a finite set Λ′ ⊆ Λ and a finite set ∆′ ⊆ ∆ such that
`Λ′ ∆′ ↪→ ϕ. For the completeness result, I make an innocuous technical restriction:
I assume that the vocabulary T includes a countably infinite set of constants and there

3The standard presentation of system PΛ is somewhat different from that given here. For one thing, Λ
is not usually mentioned explicitly; I mention it here to make the dependence on Λ clear. For another, the
set ∆ is typically not included as part of the rule, but is put on the left-hand side of `, so what I am calling
an axiom is typically viewed as an inference rule; for example, AND is usually written as “from ϕ → ψ1

and ϕ → ψ2 infer ϕ → (ψ1 ∧ ψ2)”. Finally, the axiom TRIV and the rule TRANS are not usually given
explicitly, but are built into how inference works in PΛ. However, it is easy to see that what I have done
here is equivalent to the standard approach.
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are (as usual) countably many variables, and for every formula ∆ ↪→ ϕ, there are
infinitely many constants and variables that do not appear in ∆.4

The following result is well known.

Theorem 3.3: [Kraus, Lehmann, and Magidor 1990] If ∆ ∪ {ϕ} ⊆ L−C , then PΛ `
∆ ↪→ ϕ iff PS(Λ) |= ∆ ↪→ ϕ.

I want to extend this result from L−C to L0
C ; thus, I now want to allow ∆ ∪ {ϕ} ⊆

L0
C . I actually extend a little further to allow first-order formulas, so ∆ ∪ {ϕ} ⊆
Lfo ∪L0

C . In addition, I want the axiomatization to be sound and complete for the |= sp

semantics as well as the |= semantics, so as to make it more applicable to reasoning
about security protocols.

To get a complete axiomatization, I still need to use the axioms and rules of PΛ,
but now I need (special cases of) a few other axioms and rules in AXΛ

C modified to deal
with this language:

C6+. {true→ false} ↪→ false .

F1+. {∀xϕ} ↪→ ϕ[x/t] if t is substitutable for x in ϕ.

F4+. {x = y, ϕ1} ↪→ ϕ2, where ϕ1 is quantifier-free and ϕ2 is obtained from ϕ1 by
replacing zero or more occurrences of x in ϕ1 by y.

F5+. {x 6= y} ↪→ N(x 6= y).

IMP. ∆ ↪→ ϕ if ∆ ∪ {ϕ} ⊆ Lfo , ∆ is finite, and `Λ ∧ψ∈∆ψ ⇒ ϕ (implication).

Gen+. If z is a variable that does not appear free in ∆, then (a) if ϕ ∈ Lfo , then
from ∆ ∪ {ϕ[x/z]} ↪→ ψ infer ∆ ∪ {∃xϕ} ↪→ ψ; (b) from ∆ ↪→ ϕ[x/z] infer
∆ ↪→ ∀xϕ.

Of course, C6+, F4+ and F5+ are just C6, F4, and F5 restated using ↪→, F1+ is
just a special case of F1 (restated using ↪→), IMP is a special case of Λ-AX, and Gen+

can be viewed as a special case of Gen. (It is not hard to show that it follows from
Gen if ∆ is finite.) Since I now allow first-order formulas, whose truth depends on the
world, I take (M,V,w) |= ∆ ↪→ ϕ if (M,V,w) |= ϕ′ for all formulas ϕ′ ∈ ∆ implies
(M,V,w) |= ϕ. I now write PS(Λ) |= ∆ ↪→ ϕ if (M,V,w) |= ∆ ↪→ ϕ for all PS
structures M and valuations V .

Let P+
Λ be the axiom system consisting of the axioms and rules of PΛ together with

C6+, F1+, F4+, F5+, IMP, and Gen+. I write P+
Λ ` ∆ ↪→ ϕ if there is a derivation

from P+
Λ whose last line in ∆ ↪→ ϕ.

Theorem 3.4: If ∆ ∪ {ϕ} ⊆ L0
C ∪ Lfo , then the following are equivalent:

(a) P+
Λ ` ∆ ↪→ ϕ;

4The assumption holds trivially if ∆ is restricted to being a finite set, as long as the set of constants and
variables is infinite. Even if ∆ can be infinite, we can always add countably infinite fresh constants to T
and rename variables, so this restriction is innocuous. The assumption is used in the proof of Theorem 3.4
below, where at one point I need to assume that there infinitely many “fresh” constants and variables that do
not appear in ∆ or ϕ. A similar assumption arises in the proof of Theorem 3.3 .
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(b) PS(Λ) |= ∆ ↪→ ϕ;

(c) PS(Λ) |= sp ∆ ↪→ ϕ.

Proof: The fact that (a) implies (c) follows from the proof of Theorem 3.2, since all the
axioms and rules in P+

Λ are essentially (special cases of) axioms and rules in AXΛ
C . The

fact that (c) implies (b) follows just as in the proof of Theorem 3.2, using Theorem 3.1.
Thus, it remains to show that (b) implies (a). As usual, for completeness, it suffices to
show that if P+

Λ 6 `∆ ↪→ ϕ, then there is a structure M ∈ PS(Λ), a valuation V , and a
world w such that (M,V,w) |= ∆ and (M,V,w) |= ¬ϕ; roughly speaking, this says
that if ∆ ↪→ ϕ is not provable in P+

Λ , then its negation is satisfiable.
The proof is quite similar in spirit to the completeness proof for AXΛ

C given in
[Friedman, Halpern, and Koller 2000], but there are some subtleties involved in dealing
with the restricted language. Specifically, the proof in [Friedman, Halpern, and Koller
2000] uses a Henkin-style argument, using maximal consistent sets C of formulas.
Because we work here with formulas of the form ∆ ↪→ ϕ, we must redefine maximal
consistent sets appropriately.

A set ∆′ of formulas in Lfo ∪ L0
C is P+

Λ -consistent if there is no finite subset ∆′′

of ∆′ such that `Λ ∆′′ ↪→ false . If T ∗ is a vocabulary and Y is a set of constants and
variables, then a maximal P+

Λ -(T ∗ ∪ Y)–consistent set of formulas is a P+
Λ -consistent

set ∆′ of formulas that use only symbols in T ∗∪Y such that if ψ is a formula that uses
only symbols in T ∗ ∪ Y , then ∆′ ∪ {ψ} is not P+

Λ -consistent. ∆′ is T ∗-Y–good if (1)
∆′ is a maximal Λ–(T ∗ ∪ Y)-consistent set of formulas, (2) ∃xψ ∈ ∆′ ∩ Lfo implies
¬ψ[x/y] ∈ ∆′ for some y ∈ Y , (3) if ∀xϕ ∈ ∆′ then ϕ[x/y] ∈ ∆′ for all y ∈ Y ,
and (4) if y = y′ (resp., y 6= y′) is in ∆ for y, y′ ∈ Y , then so is N(y = y′) (resp.,
N(y 6= y′)).5

Let C be a countably infinite set of constants not in ∆ or ϕ such that there are
countably many constants in T not in C, ∆, or ϕ. (Our technical assumption ensures
that such a sets C exists.)

Lemma 3.5: If P+
Λ 6 `∆ ↪→ ϕ, then there exists a C-good set ∆∗ ⊇ ∆ such that

P+
Λ 6 `∆∗ ↪→ ϕ∗, where ϕ∗ = ϕ if ϕ ∈ Lfo and ϕ∗ = ϕ′[x1/c1, . . . , xk/ck] if ϕ has

the form ∀x1 . . . ∀xkϕ′, where ϕ′ is quantifier-free and c1, . . . , ck are constants in C.6

Once Lemma 3.5 is proved, the rest of the argument follows essentially the same
lines as that of [Friedman, Halpern, and Koller 2000], so I just briefly outline the ar-
gument here. For each c ∈ C, let [c] = {c′ : c = c′ ∈ ∆∗}. We construct a model
M = (D,W, π,P) where D = {[c] : c ∈ C}, W consists of all the C-good sets ∆′

such that ∆′ ∩ L0
C = ∆∗ ∩ L0

C (so that worlds are C-good sets), and π is such that, for
all ∆′ ∈ W , we have π(c,∆′) = [c] and, for each atomic formula ψ, (M,∆′) |= ψ
iff ψ ∈ ∆′. This is consistent, since all sets ∆′ in W agree on formulas of the form
N(c = c′) and N(c 6= c′), and hence (since ∆′ is C-good) on formulas of the form

5This is an adaptation of the definition of C-good given in [Friedman, Halpern, and Koller 2000], where
the notion was applied to sets of formulas in LC and a set C of constants.

6If the set ∆ is restricted to being finite in formulas of the form ∆ ↪→ ψ, then we replace the require-
ment P+

Λ 6 `∆∗ ↪→ ϕ∗ by P+
Λ 6 `∆′′ ↪→ ϕ∗ for all finite ∆′′ ⊆ ∆∗. Analogous changes must be made

throughout the proof.
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c = c and c 6= c′; thus, the formula c = c′ is in ∆′ iff π(c′,∆′) = π(c′,∆′) = [c].
As shown in [Friedman, Halpern, and Koller 2000], it is possible to define a sequence
P of probability measures such that M |= ψ iff ψ ∈ ∆∗ for all quantifier-free closed
formulas ψ ∈ ∆∗∩L0

C (note that if ψ ∈ ∆∗∩L0
C , then ψ ∈ ∆′∩L0

C for all ∆′ ∈W ),
and, if ϕ has the form ∀x1 . . . ∀xkϕ′, then (M,∆∗) |= ¬(ϕ′[x1/c1, . . . , x1/ck]). This
gives us the desired model.

So, to complete the proof of Theorem 3.4, it remains to prove Lemma 3.5. To do
this, I construct ∆∗ in stages. Starting with ∆, at each stage I add more and more
formulas until I get a set ∆∗ that is C-good. Let X be the set of variables that appear in
∆ and ϕ, and let Y be a countably infinite set of variables not in ∆ or ϕ such that there
are countably many variables not in Y , ∆, or ϕ. (Again, our assumptions guarantee
that such a set Y exists.) If ϕ ∈ L0

C , suppose that ϕ = ∀x1 . . . ∀xkϕ′. For convenience
suppose that Y has the form {y1, . . . , yk, z1, z2, z3, . . .}. (If ϕ ∈ Lfo , then we can
just take Y = {z1, z2, z3, . . .}.) Let ϕ+ = ϕ if ϕ ∈ Lfo and ϕ[x1/y1, . . . , xk/yk]
otherwise. Clearly

P+
Λ 6 `∆ ↪→ ϕ+. (2)

This is immediate if ϕ ∈ Lfo , since in that case ϕ+ = ϕ. And if ϕ has the form
∀x1 . . . ∀xkϕ′ and P+

Λ`∆ ↪→ ϕ′[x1/y1, . . . , xk/yk], then it follows from Gen+(b)
that P+

Λ`∆ ↪→ ϕ, contradicting our assumption.
Let σ1, σ2, . . . be an enumeration of formulas in Lfo ∪ L0

C over the vocabulary T
whose only (free or bound) variables are in Y . We define a sequence of set ∆0,∆1, . . .
inductively. Let ∆0 = ∆. Suppose that ∆1, . . . ,∆m have been defined. Let ∃xψ
be the (m + 1)st existential first-order formula in the enumeration. Let ∆m+1 =
∆m ∪ {∃xψ ⇒ ψ[x/zm+1]} and let ∆+ = ∪m∆m. I claim that

P+
Λ 6 `∆+ ↪→ ϕ+. (3)

If not, since P+
Λ 6 `∆ ↪→ ϕ, there must exist some m such that P+

Λ 6 `∆m ↪→ ϕ
and P+

Λ ` ∆m+1 ↪→ ϕ. Since ∆m+1 = ∆m ∪ {∃xψ ⇒ ψ[x/zm+1]} and, by
construction, zm+1 does not appear in ∆m or ϕ, it follows from Gen+(a) that P+

Λ 6
`∆m ∪ {∃x(∃xψ ⇒ ψ)} ↪→ ϕ. It is easy to see that ∃x(∃xψ ⇒ ψ) is a valid first-
order formula. Thus, by IMP, P+

Λ ` ∅ ↪→ ∃x(∃xψ ⇒ ψ). It thus follows from TRANS
that P+

Λ ` ∆m ↪→ ϕ, a contradiction.
I next construct a sequence ∆+

0 ,∆
+
1 , . . . inductively, by taking ∆+

0 = ∆0, and
taking ∆+

m+1 = ∆+
m ∪ {σm+1} if P+

Λ 6 `∆+
m ∪ {σm} ↪→ ϕ and ∆+

m+1 = ∆+
m

otherwise. Let ∆† = ∪m∆+
m. It is clear from the construction that P+

Λ 6 `∆+
m ↪→ ϕ+

for all m; thus,
P+

Λ 6 `∆† ↪→ ϕ+. (4)

Several other properties of ∆† must be noted. First, the construction guarantees that if
a first-order formula of the form ∃xψ is in ∆†, then ψ[x/y] ∈ ∆† for some y ∈ Y . It
easily follows from F1+ that if ∀xϕ ∈ ∆† then ϕ[x/y] ∈ ∆† for all y ∈ Y . Moreover,
it follows from F5+ that if y 6= y′ ∈ ∆† for y, y′ ∈ Y then N(y 6= y′) ∈ ∆†.
Finally, it is easy to see that if x = y ∈ ∆†, then N(x = y) ∈ ∆†. (Proof: first
observe that P+

Λ ` ∅ ↪→ (false → false) by REF and `Λ x 6= x ⇔ false , so
P+

Λ ` ∅ ↪→ (x 6= x) → false , by LLE. Recall that, by definition, (x 6= x) →
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false = N(x = x). By F4+, P+
Λ ` {N(x = x), x = y} ↪→ N(x = y). By

TRANS, P+
Λ ` {x = y} ↪→ N(x = y). It easily follows that if x = y ∈ ∆†, then

N(x = y) ∈ ∆†.)
Let ∆∗ be the result of replacing all occurrences of yj in ∆† by cj , for j = 1, . . . , k

and replacing all occurrences of zj in ∆† by dj for j = 1, 2, 3, . . .; similarly, let ϕ∗ be
the result of replacing all occurrences (if any) of yj in ϕ+ by cj . It is easy to see that
∆∗ is C-good, and that P+

Λ 6 `∆∗ ↪→ ϕ∗ (if this is not the case, then it is immediate
that (4) does not hold either). This completes the proof of Lemma 3.5 and, with it, the
proof of Theorem 3.4.

3.2 Quantitative Reasoning
The super-polynomial semantics just talks about asymptotic complexity. It says that for
all k, the conclusion will hold with probability greater than 1 − 1/nk for sufficiently
large n, provided that the assumptions hold with sufficiently high probability, where
n can be, for example, the security parameter. While this asymptotic complexity cer-
tainly gives insight into the security of a protocol, in practice, a system designer wants
to achieve a certain level of security, and needs to know, for example, how large to take
the keys in order to achieve this. In this section, I provide a more quantitative seman-
tics appropriate for such reasoning, and relate it to the more qualitative “asymptotic”
semantics.

The syntax of the quantitative language, which is denoted LC,q, is just like that of
the qualitative language, except that, instead of formulas of the form ϕ→ ψ, there are
formulas of the form ϕ →r ψ, where r is a real number in [0, 1]. The semantics of
such a formula is straightforward:

(M,V ) |= ϕ→r ψ if there exists some n∗ ≥ 0 such that for all n ≥ n∗, Prn([[ψ]]M,V | [[ϕ]]M,V ) ≥ 1− r.

LetL0
C,q be the obvious analogue ofL0

C , consisting of all formulas of the form ∀x1 . . . ∀xn(ϕ→r

ψ), where ϕ and ψ are first-order formulas.
Because L0

C,q does not really consider limiting probability, it would be straightfor-
ward to give it semantics using a single probability measure Pr. That is, if a model M
involves just a single distribution Pr rather than a sequence (Pr1,Pr2, . . .) , then we
could take (M,V) |= ϕ→r ψ if Pr([[ψ]]M,V | [[ϕ]]M,V ) ≥ 1− r. Indeed, that is essen-
tially the semantics used in [Datta, Halpern, Mitchell, Roy, and Sen 2015], where the
focus is on quantitative security. I continue to use a sequence of probability measures
here, since my goal is to relate quantitative proofs to qualitative proofs.

That said, it is not hard to show that the same formulas are valid for the language
L0
C,q whether we consider a single probability measure or a sequence of probability

measures in the semantics. This makes L0
C,q closer to other approaches that have used

probability and classical implication. A recent example is the work of Atserias and
Balcázar [2015]. They consider formulas of the form X → Y , where X and Y are
sets of attributes, and can be identified with conjunctions of primitive propositions.
Changing the notation of Atserias and Balcázar to be compatible with that of this paper,
Pr |=γ X → Y if Pr(Y | X) ≥ γ. Given a set ∆ of such formulas, Pr |=γ ∆ ↪→
(X → Y ) if Pr(Y ′ | X ′) ≥ γ for all X ′ → Y ′ ∈ ∆ implies Pr(Y | X) ≥ γ. Atserias
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and Balcázar provide algorithms for checking when such entailments hold, using linear
programming. Note that in Atserias and Balcàzar’s work, the same γ is used for the
hypothesis and the conclusion in the entailment; it will be crucial for my main result
that it is possible to use different parameters (the framework used here allows us to
write the parameter explicitly in the formula).

I now now explain how qualitative reasoning in L0
C and quantitative reasoning in

L0
C,q can be related. First note that for each of the axioms and rules in system P+

Λ ,
there is a corresponding sound axiom or rule in L0

C,q. Consider the following axioms:

LLEq . {ϕ1 →r ψ} ↪→ (ϕ2 →r ψ) if `Λ ϕ1 ⇔ ϕ2.

RWq . {ϕ→r ψ1} ↪→ (ϕ→r ψ2) if `Λ ψ1 ⇒ ψ2.

REFq . ∅ ↪→ (ϕ→0 ϕ).

ANDq . {ϕ→r1 ψ1, ϕ→r2 ψ2} ↪→ (ϕ→r3 (ψ1 ∧ψ2)), where r3 = min(r1 + r2, 1).

ORq . {ϕ1 →r1 ψ,ϕ2 →r2 ψ} ↪→ ((ϕ1∨ϕ2)→r3 ψ), where r3 = min(max(2r1, 2r2), 1).

CMq . {ϕ1 →r1 ϕ2, ϕ1 →r2 ψ} ↪→ ((ϕ1 ∧ϕ2)→r3 ψ), where r3 = min(r1 + r2, 1).

C6q . {true→r false} ↪→ false for all r ∈ [0, 1).

F5q . {x 6= y} ↪→ N0(x 6= y), where N0ϕ is an abbreviation for ¬ϕ→0 false .

Let P+,q
Λ consist of the rules above, together with TRIV, F1+, F4+, IMP, Gen+,

and TRANS (all of which hold with no change in the quantitative setting), and

INC. {ϕ→r1 ψ} ↪→ (ϕ→r2 ψ) if r1 ≤ r2 (increasing superscript).

Theorem 3.6: The rules in P+,q
Λ are all sound.

Proof: The soundness of the quantitative analogues of the rules in PΛ is immediate
from the proof of Theorem 3.2. The soundness of remaining rules holds as it did before
(since they are unchanged).

I do not believe that P+,q
Λ is complete, nor do I have a candidate complete axiom-

atization for the quantitative language. Nevertheless, as the proofs in [Datta, Halpern,
Mitchell, Roy, and Sen 2015] show, P+,q

Λ (when combined with axioms for reasoning
about actions and partial correctness) suffices for proving many results of interest in
security. Moreover, as I now show, there is a deep relationship between P+

Λ and P+,q
Λ .

To make it precise, given a set of formulas ∆ ⊆ Lfo ∪ L0
C , say that ∆′ ⊆ Lfo ∪ L0

C,q

is a quantitative instantiation of ∆ if there is a bijection f from ∆ to ∆′ such that, for
every formula ϕ → ψ ∈ ∆, there is a real number r ∈ [0, 1] such that f(ϕ) = ϕr,
where ϕr = ϕ if ϕ ∈ Lfo , and (∀x1 . . . ∀xk(ϕ′ → ψ))r = ∀x1 . . . ∀xk(ϕ′ →r ψ).
That is, ∆′ is a quantitative instantiation of ∆ if each qualitative formula in ∆ has a
quantitative analogue in ∆′.

Although the proof of the following theorem is straightforward, it shows the power
of using of P+

Λ . Specifically, it shows that if ∆ ↪→ ϕ is derivable in P+
Λ then, for

all r ∈ [0, 1], there exists a quantitative instantiation ∆′ of ∆ such that ∆′ ↪→ ϕr is
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derivable in P+,q
Λ . Thus, if the system designer wants security at level r (that is, she

wants to know that a desired security property holds with probability at least 1−r), then
if she has a qualitative proof of the result, she can compute the strength with which her
assumptions must hold in order for the desired conclusion to hold. For example, she can
compute how to set the security parameters in order to get the desired level of security.
This result can be viewed as justifying qualitative reasoning. Roughly speaking, it says
that it is safe to avoid thinking about the quantitative details, since they can always be
derived later. Note that this result would not hold if the language allowed negation.
For example, even if ¬(ϕ → ψ) could be proved given some assumptions (using the
axiom system AXΛ

C), it would not necessarily follow that ¬(ϕ →q ψ) holds, even if
the probability of the assumptions was taken arbitrarily close to one.

Theorem 3.7: If P+
Λ ` ∆ ↪→ ϕ, then for all r ∈ [0, 1], there exists a quantitative

instantiation ∆′ of a finite subset ∆′′ of ∆ such that P+,q
Λ ` ∆′ ↪→ ϕr. Moreover, ∆′

can be found in polynomial time, given the derivation of ∆ ↪→ ϕ.

Proof: Intuitively, ∆′′ consists of the formulas in ∆ needed for the proof of ∆ ↪→
ϕ. The existence of ∆′ follows by a straightforward induction on the length of the
derivation. If it has length 1, then the proof must be an instance of an axiom. In this
case, the argument proceeds by considering each axiom in turn. The arguments are
all straightforward. I consider a few representative cases here. If the axiom TRIV
was applied, then it must be the case that ϕ ∈ ∆, so we can take ∆′′ = {ϕ} and
∆′ = {ϕr}. If REF was applied, the ϕ has the form ϕ′ → ϕ′. In this case, take
∆′′ = ∅. By REFq , ∅ ↪→ (ϕ′ →0 ϕ′). The conclusion now follows from INC. If AND
was applied, then ϕmust have the form ϕ′ → ψ1∧ψ2, where ϕ′ → ψ1, ϕ

′ → ψ2 ∈ ∆.
Let ∆′′ = {ϕ′ → ψ1, ϕ

′ → ψ2}. Choose s1, s2 ∈ [0, 1] such that s1 + s2 = r.7 Let
∆′ − {ϕ′ →s1 ψ1, ϕ

′ →s2 ψ2}. By ANDq , it easily follows that P+,q
Λ ∆′ ↪→ (ϕ →r

(ψ1 ∧ ψ2)). The argument for all the other axioms in P+
Λ is similar and left to the

reader.
Now suppose that the derivation of ∆ ↪→ ϕ has length N > 1. If the last line of the

derivation is an axiom, the the argument above applies without change. Otherwise, it
must be the result of applying Gen+(a), Gen+(b), or TRANS. I consider the latter two
cases here; the case of Gen+(a) is straightforward and left to the reader. If Gen+(b)
was applied, then ϕ has the form ∀xϕ′ and there is a derivation ∆ ↪→ ϕ[x/z] of length
less than N , where z does not appear in ∆. By the induction hypothesis, there is a
subset ∆′′ of ∆ and instantiation of ∆′ of ∆′′ such that P+,q

Λ ` ∆′ ↪→ (ϕ′)r[x/z].
Since ϕr = (∀xϕ′)r = ∀x((ϕ′)r), by Gen+(a), it follows that P+,q

Λ ` ∆′ ↪→ ϕr.
Finally, if the last step in the proof of ∆ ↪→ ϕ is an application of TRANS, then

there exists ∆1 ⊆ ∆ such that P+
Λ ` ∆ ↪→ ψ for all ψ ∈ ∆1 and P+

Λ ` ∆1 ↪→ ϕ.
By the induction hypothesis, there exists a finite subset ∆2 of ∆1 and a quantitative
instantiation ∆′2 of ∆2 such that P+,q

Λ ` ∆′2 ` ϕr. By the induction hypothesis again,
for each formula ψs ∈ ∆′2, there exists a finite subset ∆ψ of ∆ and a quantitative
instantiation ∆′ψ of ∆ψ such that P+,q

Λ ` ∆′ψ ↪→ ψs. Let ∆′′ = ∪ψ∈∆2∆ψ and let
∆′ = ∪ψ∈∆2

∆′ψ . By TRANS, we have P+,q
Λ ∆′ ↪→ ϕr, as desired.

7It suffices to take s1 = s2 = r/2, but there is an advantage to having this greater flexibility; see the
discussion after the proof.
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This argument also shows that finding ∆′ from the proof of ∆ ↪→ (ϕ → ψ) just
involves solving some simple linear inequalities, which can be done in polynomial
time.

The proof of Theorem 3.7 gives even more useful information to the system de-
signer. In general, there may be a number of quantitative instantiations ∆′ of ∆ that
give the desired conclusion. For example, as the proof shows, if the AND rule is used
in the qualitative proof, and we want the conclusion to hold at level r, we must just
choose s1 and s2 such that ϕ → ψ1 and ϕ → ψ2 hold at level s1 and s2, respectively.
If the system designer finds it easier to satisfy the first formula than the second (for
example, the first may involve the length of the key, while the second may involve the
degree of trustworthiness of one of the participants in the protocol), there may be an
advantage in choosing s1 relatively small and s2 larger. As long as s1 + s2 = r, the
desired conclusion will hold.

Given r, we might wonder how close to optimal the q we can find in Theorem 3.7
is. While I cannot give a definitive answer here, the following comments may give
some insight. For each axiom individually, the quantitative instantiation is optimal,
in the sense that it is not hard to find examples where the bounds are satisfied with
equality. For example, in the ANDq rule, we cannot do better in general than taking
r3 = min(r1 + r2, 1). However, it could well be that when putting several steps in a
proof together, we end up with a significant overestimate. Different proofs of the same
conclusion might lead to different estimates. That also suggests that developing new
proof rules might be useful, since they might result in better estimates.

4 Discussion
I have shown how the intuition behind the ⊃ operator used by Datta et al. [2005] can
be captured using the well-studied conditional implication operator→, where ϕ → ψ
is interpreted as “the probability of ψ conditional on ϕ converges to 1” (or converges
to 1 super-polynomially). Using→ with this interpretation has a significant advantage:
it allows us to relate quantitative and qualitative reasoning. Specifically, for a rich
fragment L0

C of full first-order conditional logic, I have shown that if ϕ is provable
from a collection ∆ of formulas in L0

C ∪ Lfo , then, for all r, there exists a quantitative
instantiation ∆′ of a finite subset of ∆, computable in time polynomial in the length
of the proof of ∆ ↪→ ϕ, such that ϕr is provable from ∆′. That mean that once we
have a qualitative proof of a fact of interest from some assumptions, we can compute
the strength of the assumptions needed to reach that conclusion.

I have suggested that this result is applicable to reasoning about quantitative se-
curity. This statement must be interpreted carefully. While L0

C is a rich fragment of
LC , it clearly does not suffice for stating and proving interesting facts about security
programs. To do that, we need more operators than just those for reasoning about (con-
ditional) probability. For example, the logic used in [Datta, Halpern, Mitchell, Roy,
and Sen 2015] includes Hoare-like assertions of the form ϕ[program]ψ and included
axioms about the predictability of nonces and the unforgeability of signatures. Even
if we had a completeness theorem for the fragment of the logic that does not involve
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the → operator (which we do not), there may be interactions between the → opera-
tor and the other operators. So while the axioms of this paper are still sound, it is
unlikely that they will be enough for completeness (even when they are added to com-
plete axiomatizations for the other operators). The fact that (as shown by Theorem 3.1)
that the language cannot distinguish super-polynomial convergence from non-super-
polynomial convergence is further evidence that the logic cannot capture all that is
needed for proving correctness of security protocols.

Nevertheless, that does not render the results of this paper irrelevant for security.
Even in a richer logic, Theorem 3.7 still holds. More precisely, if there is a qualita-
tive proof of a fact of the form ∆ ↪→ ϕ using only the axioms and rules of P+

Λ for
reasoning about → (or, more generally, using only axioms and rules that have quan-
titative analogues (as the axioms and rules of P+

Λ do)), then, for all r, we can find a
quantitative instantiation ∆′ of a finite subset of ∆ such that ∆′ ↪→ ϕr is provable. In
[Datta, Halpern, Mitchell, Roy, and Sen 2015], nontrivial quantitative properties of a
challenge-response protocol are proved using the axioms of P+,q

Λ and axioms involv-
ing→q that talk about properties of nonces and the likelihood that a signature can be
forged. Interestingly, the superscript q used in the proof (and in the axioms that talk
about the properties of nonces and unforgeability) is not a constant, but a function of
the security parameter (and other parameters); this does not affect the arguments about
→q at all (all the axioms of this paper still hold), but again, makes it more applica-
ble to security. It is easy to transform the quantitative proof given in [Datta, Halpern,
Mitchell, Roy, and Sen 2015] to a qualitative proof of a conclusion of the form ∆ ↪→ ϕ
where the only axioms used for reasoning about→ are those in P+

Λ . We simply erase
the superscript on→, and put (qualitative versions of) the axioms for nonces and un-
forgeability into ∆. Now Theorem 3.7 can be used, for example, to deduce the strength
of security parameter needed to get the conclusion to hold with a given strength. Put an-
other way, we can think of the proof in [Datta, Halpern, Mitchell, Roy, and Sen 2015]
as going in the “forward” direction: given assumptions about the security parameter
and unforgeability, we prove that a conclusion about the security protocol holds with a
certain probability. Theorem 3.7 lets us go in the “backward” direction: after proving a
result qualitatively, we can deduce the strength that the assumptions need to hold with
to be able to get the conclusion to hold with a given strength. It seems to me that both
directions are of practical interest.

It is perhaps also worth noting that one of the features of the logic considered
here is that it allows us to make statements about conditional probability; the formula
ϕ → ψ is making a statement about the probability of ϕ conditional on ψ. Most
of the security analyses in the literature have focused on unconditional probability;
this amounts to considering formulas of the form true → ψ. (This is the case for
the analyses done by Datta et al. [2015], for example.) One reason for the focus
on unconditional probability may be that the guarantees provided by cryptographic
schemes are typically unconditional guarantees (or, at least, their formalizations avoid
the use of unconditional probabilities). For example, when we say that a signature
scheme has only a negligible probability of being broken, we take this probability to
be unconditional (i.e., relative to the whole space). A signature scheme is considered
secure even if someone broadcasts all the secret keys, as long as this is done with
exponentially small probability. Of course, conditional on getting the secret keys, the
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system is highly insecure. But we don’t tend to worry about that in our proofs; it is a
negligible event.

As shown by the analysis of Datta et al. [2015], the logic considered here is of inter-
est even in the unconditional case (i.e., if we restrict to formulas of the form true → ψ
or true →r ϕ). Moreover, although current analyses seem to focus on the uncondi-
tional case, it seems to me that a more refined security analysis might want to take
into account some conditional probabilities: we might be interested, for example, in
how secure a system would be if one of the agents in the system chose a somewhat
weak key or inadvertently changed some security settings in a system. Note that once
we allow nontrivial formulas ϕ in the antecedent of →, it becomes critical that → is
nonmonotonic. While a conclusion of the form true → ψ may be sound, a conclusion
of the form ϕ → ψ may not be, if ϕ is an unlikely event (like an agent inadvertently
changing some security setting).

Finally, it is worth considering in a little more detail the relationship between this
work and that of Bana, Hasebe, and Okada [2013]. As I mentioned in the introduc-
tion, they also use a→ operator. They give semantics to their→ operator relative to a
sequence P of probability measures, just as I do, but the the technical details of their
semantics are quite different from the semantics I use.8 Bana et al. work purely at
the qualitative level; they have no “concrete” analogue→r to their→ operator. Thus,
they make no attempt to relate their quatitative semantics to a more quantitative seman-
tics. That said, they are very interested in relating qualitative work on what they call
symbolic adversaries to more quantitative work on verification that works directly on
models that involve probability. So, their goals are the same as mine. More experience
is needed to determine which logic is better suited to reasoning about such programs.
However it is done, as I hope the results of this paper have made clear, a logic with con-
ditional statements can be an extremely useful addition to a security analyst’s toolkit.

Acknowledgments: I thank Anupam Datta, John Mitchell, Riccardo Pucella, Arnab
Roy, and Shayak Sen for many useful discussions on applying conditional logic to
security protocols. The anonymous reviewers of the paper provided many helpful sug-
gestions as well.

8In more detail, for Bana et al., each probability measure Prn is a measure on a possibly different
domain Wn. They also consider sequences S = (S1, S2, . . .), where Sn ⊆ Wn, in giving the semantics
of formulas. Very roughly speaking, (P, S) |= ϕ → ψ if (P, S) |= �(p ⇒ q), where �ϕ holds if
ϕ holds for all non-negligible subsets S′ of S, and S′ = (S′1, S

′
2, . . .) is a non-negligible subset of S if

S′n ⊆ Sn for all n and Prn(S′n) is non-negligible as a function of n, that is, Prn(Ωn−Sn) does not grow
super-polynomially.

There are clearly significant differences between the two semantics for→. In the semantics for→ that I
have used, there is no analogue to the sequence S of events. Moreover, my focus is on events whose prob-
ability increases (super-polynomially) to 1, rather than non-negligible events. As an anonymous reviewer
pointed out, we could make the two approaches somewhat closer by viewing the measures Prn used by
Bana et al. as all being defined on a single space Ω = W1 ×W2 × · · · (i.e., the crossproduct of the domain
of Prn’s), where the measurable subsets of Ω are those of the form A1 ×A2 × · · · and An is a measurable
subset of Wn, defining Prn(A1 ×A2 × · · ·) = Prn(An), and identifying a sequence S′ = (S′1, S

′
2, . . .)

where S′n ⊆ Wn with the subset S′1 × S2 × · · · of Ω. But even with these identifications, the other
differences pointed out above still remain.
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