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Abstract—We study the pattern frequency vector for runs
in probabilistic Vector Addition Systems with States (pVASS).
Intuitively, each configuration of a given pVASS is assignedone
of finitely many patterns, and every run can thus be seen as an
infinite sequence of these patterns. The pattern frequency vector
assigns to each run the limit of pattern frequencies computed
for longer and longer prefixes of the run. If the limit does
not exist, then the vector is undefined. We show that for one-
counter pVASS, the pattern frequency vector is defined and takes
one of finitely many values for almost all runs. Further, these
values and their associated probabilities can be approximated
up to an arbitrarily small relative error in polynomial time . For
stable two-counter pVASS, we show the same result, but we do
not provide any upper complexity bound. As a byproduct of
our study, we discover counterexamples falsifying some classical
results about stochastic Petri nets published in the 80s.

I. I NTRODUCTION

Stochastic extensions of Petri nets are intensively used in
performance and dependability analysis as well as reliability
engineering and bio-informatics. They have been developed
in the early eighties [19], [2], and their token-game semantics
yields a denumerable Markov chain. The analysis of stochastic
Petri nets (SPNs) has primarily focused on long-run average
behaviour. Whereas for safe nets long-run averages always
exist and can be efficiently computed, the setting of infinite-
state nets is much more challenging. This is a practically very
relevant problem as, e.g., classical open queueing networks
and biological processes typically yield nets with unbounded
state space. The aim of this paper is to study the long-
run average behaviour for infinite-state nets. We do so by
considering probabilistic Vector Addition Systems with States
(pVASS, for short), finite-state weighted automata equipped
with a finite number of non-negative counters. A pVASS
evolves by taking weighted rules along which any counter can
be either incremented or decremented by one (or zero). The
probability of performing a given enabled rule is given by
its weight divided by the total weight of all enabled rules.
This model is equivalent to discrete-time SPNs: a counter
vector corresponds to the occupancy of the unbounded places
in the net, and the bounded places are either encoded in the
counters or in the control states. Producing a token yields an
increment, whereas token consumption yields a decrement.

Discrete-time SPNs describe the probabilistic branching of
the continuous-time Markov chains determined by SPNs, and
many properties of continuous-time SPNs can be derived
directly from the properties of their underlying discrete-time
SPNs. In fact, discrete-time SPNs are a model of interest in
itself, see e.g., [17].

Our study concentrates on long-run averagepattern frequen-
ciesfor pVASS. Aconfigurationof a given pVASSA is a pair
pvvv, wherep is the current control state andvvv ∈ Nd is the vector
of current counter values. Thepatternassociated topvvv is a pair
pα, whereα ∈ {0, ∗}d, andαi is either 0 or ∗, depending
on whethervvvi is zero or positive (for example, the pattern
associated top(12, 0) is p(∗, 0)). Every run inA is an infinite
sequence of configurations which determines a unique infinite
sequence of the associated patterns. For every finite prefix
of a run w, we can compute the frequency of each pattern
in the prefix, and define thepattern frequency vectorfor w,
denoted byFA(w), as the limit of the sequence of frequencies
computed for longer and longer prefixes ofw. If the limit does
not exist, we putFA(w) = ⊥ and say thatFA is not well
defined forw. Intuitively, a pattern represents the information
sufficient to determine the set of enabled rules (recall that
each rule can consume at most one token from each counter).
Hence, if we knowFA(w), we can also determine the limit
frequency of rules fired alongw. However, we can also encode
various predicates in the finite control ofA and determine the
frequency of (or time proportion spent in) configurations inw
satisfying the predicate. For example, we might wonder what
is the proportion of time spent in configurations where the
second counter is even, which can be encoded in the above
indicated way.

The very basic questions about the pattern frequency vector
include the following:

• Do we haveP(FA= ⊥) = 0, i.e., isFA well defined for
almost all runs?

• Is FA (seen as a random variable) discrete? If so, how
many values canFA take with positive probability?

• Can we somehow compute or approximate possible val-
ues ofFA and the probabilities of all runs that take these
values?
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These fundamental questions are rather difficult for general
pVASS. In this paper, we concentrate on the subcase of pVASS
with one or two counters, and we also observe that with three
or more counters, there are some new unexpected phenomena
that make the analysis even more challenging. Still, our
results can be seen as a basis for designing algorithms that
analyze the long-run average behaviour in certain subclasses
of pVASS with arbitrarily many counters (see below). The
main “algorithmic results” of our paper can be summarized as
follows:

1. For aone-counterpVASS withn control states, we show
that FA is well defined and takes at mostmax{2, 2n−1}
different values for almost all runs. These values and the as-
sociated probabilities may be irrational, but can be effectively
approximated up to an arbitrarily small relative errorε > 0 in
polynomial time.

2. For two-counterpVASS that arestable, we show thatFA
is well defined and takes only finitely many values for almost
all runs. Further, these values and the associated probabilities
can be effectively approximated up to an arbitrarily small
absolute/relative errorε > 0.

Intuitively, a two-counter pVASSA is unstable if the
changes of the counters are well-balanced so that certain
infinite-state Markov chains used to analyze the behaviour of
A may becomenull-recurrent. Except for some degenerated
cases, this null-recurrence is not preserved under small per-
turbations in transition probabilities. Hence, we can assume
that pVASS models constructed by estimating some real-life
probabilities are stable. Further, the analysis of null-recurrent
Markov chains requires different methods and represents an
almost independent task. Therefore, we decided to disregard
unstable two-counter pVASS in this paper. Let us note that the
problem whether a given two-counter pVASSA is (un)stable
is decidable in exponential time.

The above results for one-counter and stable two-counter
pVASS are obtained by showing the following:

(a) There are finitely many sets of configurations called
regions, such that almost every run eventually stays in some
region, and almost all runs that stay in the same region share
the same well-defined value of the pattern frequency vector.

(b) For every regionR, the associated pattern frequency
vector and the probability of reachingR can be com-
puted/approximated effectively. For one-counter pVASS, we
first identify families of regions (calledzones) that share the
same pattern frequency vector, and then consider these zones
rather then individual regions.

For one-counter pVASS, we show that the total num-
ber of all regions (and hence also zones) cannot exceed
max{2, 2n−1}, wheren is the number of control states. To
compute/approximate the pattern frequency vector of a given
zoneZ and the probability of staying inZ, the tail bounds of
[5] and the polynomial-time algorithm of [21] provide all the
tools we need.

For two-counter pVASS, we do not give an explicit bound
on the number of regions, but we show that all regions

are effectively semilinear (i.e., for each region there is a
computable Presburger formula which represents the region).
Here we repeatedly use the result of [18] which says that
the reachability relation of a two-counter VASS is effectively
semilinear. Technically, we show that every run eventually
reaches a configuration where one or both counters become
bounded or irrelevant (and we apply the results for one-counter
pVASS), or a configuration of a special setC for which we
show the existence and effective constructibility of a finite
eager attractor1. This is perhaps the most advanced part of
our paper, where we need to establish new exponential tail
bounds for certain random variables using an appropriately
defined martingale. We believe that these tail bounds and the
associated martingale are of broader interest, because they
provide generic and powerful tools for quantitative analysis
of two-counter pVASS. Hence, every run which visitsC also
visits its finite eager attractor, and the regions where the runs
initiated in C eventually stay correspond to bottom strongly
connected components of this attractor. For each of these
bottom strongly connected components, we approximate the
pattern frequency vector by employing the abstract algorithm
of [1].

The overall complexity of our algorithm for stable two-
counter pVASS could be estimated by developing lower/upper
bounds on the parameters that are used in the lemmata of
Section IV. Many of these parameters are “structural” (e.g., we
consider the minimal length of a path from some configuration
to some set of configurations). Here we miss a refinement
of the results published in [18] which would provide explicit
upper bounds. Another difficulty is that we do not have any
lower bound on|τR| in the case whenτR 6= 0, whereτR is
the mean payoff defined in Section IV. Still, we conjecture
that these “structural bounds” and hence also the complexity
of our algorithm are not too high (perhaps, singly exponential
in the size ofA and in |τR|), but we leave this problem for
future work.

The results summarized in (a) and (b) give a reasonably
deep understanding of the long-run behaviour of a given one-
counter or a stable two-counter pVASS, which can be used to
develop algorithms for other interesting problems. For exam-
ple, we can decide the existence of a finite attractor for the set
of configuration reachable from a given initial configuration,
we can provide a sufficient condition which guarantees that
all pattern frequency vectors taken with positive probability
are rational, etc. An obvious question is whether these results
can be extended to pVASS with three or more counters. The
answer is twofold.

I. The algorithm for stable two-dimensional pVASS pre-
sented in Section IV in fact “reduces” the analysis of a given
two-counter pVASSA to the analysis of several one-counter
pVASS and the analysis of some “special” configurations ofA.
It seems that this approach can be generalized to a recursive

1A finite eager attractor [1] for a set of configurationsC is a finite set of
configurationsA ⊆ C such that the probability of reachingA from every
configuration ofC ∪post∗(A) is equal to1, and the probability of revisiting
A in more thanℓ steps after leavingA decays (sub)exponentially inℓ.
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procedure which takes a pVASSA with n counters, isolates
certain subsets of runs whose properties can be deduced by
analyzing pVASS with smaller number of counters, and checks
that the remaining runs are sufficiently simple so that they can
be analyzed directly. Thus, we would obtain a procedure for
analyzing a subset of pVASS withn counters.

II. In Section V we give an example of athree-counter
pVASSA with strongly connected state-space whose long-run
behaviour isundefinedfor almost all runs (i.e.,FA takes the⊥
value), and this property is not sensitive to small perturbations
in transition probabilities. Since we do not provide a rigorous
mathematical analysis ofA in this paper, the above claims
are formally justconjecturesconfirmed only by Monte Carlo
simulations. Assuming that these conjectures are valid, the
method used for two-counter pVASS is not sufficient for the
analysis of general three-counter pVASS, i.e., there are new
phenomena which cannot be identified by the methods used
for two-counter pVASS.

Related work. The problem of studying pattern frequency
vector is directly related to the study of ergodicity properties
in stochastic Petri nets, particularly to the study of the so-
called firing process. A classical paper in this area [14] has
been written by Florin & Natkin in the 80s. In the paper,
it is claimed that if the state-space of a given stochastic
Petri net (with arbitrarily many unbounded places) is strongly
connected, then the firing process in ergodic. In the setting
of (discrete-time) probabilistic Petri nets, this impliesthat for
almost all runs, the limit frequency of transitions performed
along a run is defined and takes the same value. A simple
counterexample to this claim is shown in Fig. 1. The net
N has two unbounded places and strongly connected state-
space, but the limit frequency of transitions takes two values
with positive probability (each with probability1/2). Note
that N can be translated into an equivalent pVASSA with
two counters which is also shown in Fig. 1. Intuitively, if
both places/counters are positive, then both of them have a
tendency to decrease, i.e., the trendtS of the only BSCCS of
CA is negative in both components (see Section II). However,
if we reach a configuration where the first place/counter is
zero and the second place/counter is sufficiently large, then the
second place/counter starts toincrease, i.e., it never becomes
zero again with some positive probability (i.e., the the mean
payoff τR2 is positive, whereR2 is the only type II region
of the one-counter pVASSA2, see Section IV). The first
place/counter stays zero for most of the time, because when
it becomes positive, it is immediately emptied with a very
large probability. This means that the frequency of firingt2
will be much higher than the frequency of firingt1. When
we reach a configuration where the first place/counter is
large and the second place/counter is zero, the situation is
symmetric, i.e., the frequency of firingt1 becomes much
higher than the frequency of firingt2. Further, almost every
run eventually behaves according to one of the two scenarios,
and therefore there are two limit frequencies of transitions,
each of which is taken with probability1/2. This possibility
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Fig. 1: A discrete-time SPNN and an equivalent pVASSA.

of reversing the “global” trend of the counters after hitting
zero in some counter was not considered in [14]. Further, as
we already mentioned, we conjecture the existence of a three-
counter pVASSA with strongly connected state-space (the
one of Section V) where the limit frequency of transitions
is undefined for almost all runs. So, we must unfortunately
conclude that the results of [14] are invalid for fundamental
reasons. On the other hand, the results achieved for one-
counter pVASS are consistent with another paper by Florin
& Natkin [13] devoted to stochastic Petri nets with only one
unbounded place and strongly connected state-space, where
the firing process is indeed ergodic (in our terms, the pattern
frequency vector takes only one value with probability1).

II. PRELIMINARIES

We useZ, N, N+, Q, andR to denote the set of all integers,
non-negative integers, positive integers, rational numbers, and
real numbers, respectively. The absolute value of a given
x ∈ R is denoted by|x|. Let δ > 0, x ∈ Q, and y ∈ R.
We say thatx approximatesy up to a relative errorδ, if
either y 6= 0 and |x− y|/|y| ≤ δ, or x = y = 0. Further,
we say thatx approximatesy up to an absolute errorδ
if |x− y| ≤ δ. We assume that rational numbers (including
integers) are represented as fractions of binary numbers, and
we use||x|| to denote the size (length) of this representation.

Let V = (V, → ), whereV is a non-empty set of vertices
and → ⊆ V × V a total relation (i.e., for everyv ∈ V there
is someu ∈ V such thatv→u). The reflexive and transitive
closure of→ is denoted by→ ∗, and the reflexive, symmetric
and transitive closure of→ is denoted by↔∗. We say that
V is weakly connectedif s ↔∗ t for all s, t ∈ V . A finite
path in V of length k ≥ 0 is a finite sequence of vertices
v0, . . . , vk, wherevi → vi+1 for all 0 ≤ i < k. The length
of a finite pathw is denoted bylength(w). A run in V is
an infinite sequencew of vertices such that every finite prefix
of w is a finite path inV . The individual vertices ofw are
denoted byw(0), w(1), . . . The sets of all finite paths and all
runs inV that start with a given finite pathw are denoted by
FPathV(w) andRunV(w) (or just byFPath(w) andRun(w)
if V is understood), respectively. For a given setS ⊆ V , we
usepre∗(S) andpost∗(S) to denote the set of allv ∈ V such
that v→ ∗s ands→ ∗v for somes ∈ S, respectively. Further,
we say that a runw staysin S if there is ak ∈ N such that for
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all ℓ ≥ k we have thatw(ℓ) ∈ S. The set of all runs initiated
in s that stay inS is denoted byRun(s, S).

A strongly connected component (SCC)of V is a maximal
subsetC ⊆ V such that for allv, u ∈ C we have thatv→ ∗u.
A SCCC of V is a bottom SCC (BSCC)of V if for all v ∈ C
andu ∈ V such thatv→u we have thatu ∈ C.

We assume familiarity with basic notions of probability the-
ory, e.g.,probability space, random variable, or theexpected
value. Given eventsE,F , we say thatE holds for almost all
elements ofF if P(E∩F ) = P(F ) (in particular, ifP(F ) = 0,
then any event holds for almost all elements ofF ). As usual,
a probability distributionover a finite or countably infinite set
A is a functionf : A → [0, 1] such that

∑
a∈A f(a) = 1. We

call f positive if f(a) > 0 for everya ∈ A, and rational if
f(a) ∈ Q for everya ∈ A.

Definition 1. A Markov chainis a triple M = (S, → ,Prob)
where S is a finite or countably infinite set ofvertices,
→ ⊆ S × S is a total transition relation, and Prob is a
function that assigns to each states ∈ S a positive probability
distribution over the outgoing transitions ofs. As usual, we
write s

x→ t whens→ t and x is the probability ofs→ t.

To everys ∈ S we associate the standard probability space
(RunM(s),F ,P) of runs starting ats, whereF is theσ-field
generated by allbasic cylindersRunM(w), wherew is a
finite path starting ats, and P : F → [0, 1] is the unique
probability measure such thatP(RunM(w)) =

∏length(w)
i=1 xi

where w(i−1)
xi→w(i) for every 1 ≤ i ≤ length(w). If

length(w) = 0, we putP(RunM(w)) = 1.
If M = (S, → ,Prob) is a strongly connected finite-state

Markov chain, we useµS to denote the uniqueinvariant
distribution ofM. Recall that by the strong ergodic theorem,
(see, e.g., [20]), the limit frequency of visits to the states of
S is defined for almost allw ∈ Run(s) (wheres ∈ S is some
initial state) and it is equal toµS .

Definition 2. A probabilistic vector addition system with states
(pVASS)of dimensiond ≥ 1 is a tripleA = (Q, γ,W ), where
Q is a finite set ofcontrol states, γ ⊆ Q× {−1, 0, 1}d ×Q is
a set of rules, andW : γ → N+ is a weight assignment.

In the following, we often writep κ→ q to denote that
(p, κ, q) ∈ γ, and p

κ,ℓ−→ q to denote that(p, κ, q) ∈ γ and
W ((p, κ, q)) = ℓ. The encoding size ofA is denoted by||A||,
where the weights are encoded in binary.

Assumption 1. From now on (in the whole paper), we assume
that (Q, → ), where p→ q iff p

κ→ q for someq, is weakly
connected. Further, we also assume that for every pair of
control statesp, q there is at most one rule of the formp κ→ q.

The first condition of Assumption 1 is obviously safe (if
(Q, → ) is not weakly connected, thenA is a “disjoint union”
of several independent pVASS, and we can apply our results
to each of them separately). The second condition is also safe
because every pVASSA can be easily transformed into another
pVASSA′ satisfying this condition in the following way: for
each control states of A and each rule of the formr κ→ s

we add a fresh control states[r, κ] to A′. Further, for every
s

κ,ℓ−→ t in A we adds[r, κ′] κ,ℓ−→ t[s, κ] to A′ (for all states of
the forms[r, κ′] in A′). In other words,A′ is the same asA,
but it also “remembers” the rule that was used to enter a given
control state.

A configurationof A is an element ofconf (A) = Q× Nd,
written as pvvv. A rule p

κ→ q is enabled in a configuration
pvvv if vvvi > 0 for all 1 ≤ i ≤ d with κi = −1. To A we
associate an infinite-state Markov chainMA whose vertices
are the configurations ofA, and the outgoing transitions of a
configurationpvvv are determined as follows:

• If no rule of γ is enabled inpvvv, thenpvvv 1→ pvvv is the only
outgoing transition ofpvvv;

• otherwise, for every rulep κ,ℓ−→ q enabled inpvvv there is a
transitionpvvv ℓ/T−→ q(vvv+ κ) whereT is the total weight of
all rules enabled inpvvv, and there are no other outgoing
transitions ofpvvv.

In this paper, we also consider the underlying finite-state
Markov chain ofA, denoted byCA, whose vertices are the
control states ofA, and p

x→ q in CA iff p
κ,ℓ−→ q in A and

x = ℓ/Tp > 0, whereTp is the sum of the weights of all
outgoing rules ofp in A. Note that every BSCCS of CA can
be seen as a strongly connected finite-state Markov chain, and
we useµS to denote the invariant distribution on the states
of S. To eachs ∈ S we associate the vector

change(s) =
∑

(s,κ,t)∈γ

κ · W ((s, κ, t))

Ts

of expected changes in counter values ats. Further, we
define the trend of S, denoted by tS , as the vector
tS =

∑
s∈S µS(s) · change(s).

A patternof A is a pairqα ∈ Q×{0, ∗}d, and the set of all
patterns ofA is denoted byPatA. A configurationpvvv matches
a patternqα ∈ PatA if p = q and for everyi ∈ {1, . . . , d} we
have thatvvvi = 0 or vvvi > 0, depending on whetherαi = 0 or
αi = ∗, respectively. Intuitively, a pattern represents exactly
the information which determines the set of enabled rules. For
all w ∈ RunMA(pvvv), we define thepattern frequency vector
FA(w) : PatA → R as follows:

FA(w)(qα) = lim
k→∞

#qα(w(0), . . . , w(k))

k + 1

where#qα(w(0), . . . , w(k)) denotes the total number of all
indexesi such that0 ≤ i ≤ k andw(i) matches the pattern
qα. If the above limit does not exist for someqα ∈ PatA,
we putFA(w) = ⊥. We say thatFA is well definedfor w if
FA(w) 6= ⊥. Note that ifFA is well defined forw, then the
sum of all components ofFA(w) is equal to1.

Let R ⊆ Run(pvvv) be a measurable subset of runs, and
let ε > 0. We say that a sequence(H1, P1), . . . , (Hn, Pn),
whereHi : PatA → Q andPi ∈ Q, approximates the pattern
frequencies ofR up to the absolute/relative errorε, if there
are pairwise disjoint measurable subsetsR1, . . . , Rn of R and
vectorsF1, . . . , Fn, whereFi : PatA → R, such that

•
∑n

i=1 P(Ri) = P(R);
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• FA(w) = Fi for almost allw ∈ Ri;
• Hi(qα) approximatesFi(qα) up to the absolute/relative

error ε for everyqα ∈ PatA;
• Pi approximatesP(Ri) up to the absolute/relative errorε.

Note that if (H1, P1), . . . , (Hn, Pn) approximates the pattern
frequencies ofR up to some absolute/relative error, then the
pattern frequency vector is well defined for almost allw ∈ R
and takes only finitely many values with positive probability.
Also note that neitherF1, . . . , Fn norH1, . . . , Hn are required
to be pairwise different. Hence, it may happen that there exist
i 6= j such thatHi 6= Hj and Fi = Fj (or Hi = Hj and
Fi 6= Fj).

III. R ESULTS FOR ONE-COUNTER PVASS

In this section we concentrate on analyzing the pattern
frequency vector for one-dimensional pVASS. We show that
FA is well defined and takes at most|Q| + b distinct values
for almost all runs, where|Q| is the number of control states
of A, andb is the number of BSCCs ofCA. Moreover, these
values as well as the associated probabilities can be efficiently
approximated up to an arbitrarily small positive relative error.
More precisely, our aim is to prove the following:

Theorem 1. LetA = (Q, γ,W ) be a one-dimensional pVASS,
and let b be the number of BSCCs ofCA. Then there is
n ≤ |Q|+b computable in time polynomial in||A|| such that for
everyε > 0, there areH1, . . . , Hn : PatA → Q computable
in time polynomial in||A|| and ||ε||, such that for every initial
configurationp(k) ∈ conf (A) there areP1, . . . , Pn ∈ Q

computable in time polynomial in||A||, ||ε||, and k, such that
the sequence(P1, H1), . . . , (Pn, Hn) approximates the pattern
frequencies ofRun(p(k)) up to the relative errorε.

Let us note that the “real” pattern frequency vectorsFi as well
as the probabilitiesP(FA=Fi) may take irrational values, and
they cannot be computed precisely in general.

Remark 1. The|Q|+b upper bound onn given in Theorem 1
is tight. To see this, realize that if|Q| = 1, then b = 1 and
the trivial pVASS with the only rulep 0−→ p witnesses that
the pattern frequency vector may take two different values.
If |Q| ≥ 2, we have thatb ≤ |Q| − 1. Consider a pVASS
whereQ = {p, q1, . . . , qk} and γ contains the rulesp −1−→ p,
p

−1−→ qi, and qi
0−→ qi for all 1 ≤ i ≤ k, where all of these

rules have the same weight equal to1. For p(2) as the initial
configuration, the vectorFA takes2k+1 = 2|Q|−1 pairwise
different values with positive probability.

For the rest of this section, we fix a one-dimensional pVASS
A = (Q, γ,W ). We start by identifying certain (possibly
empty) subsets of configurations calledregionsthat satisfy the
following properties:

• there are at most|Q|+ b non-empty regions;
• almost every run eventually stays in precisely one region;
• almost all runs that stay in a given region have the same

well defined pattern frequency vector.
In principle, we might proceed by considering each regionR
separately and computing/approximating the associated pattern

frequency vector and the probability of all runs that stay inR.
However, this would lead to unnecessary technical complica-
tions. Instead, we identify situations when multiple regions
share thesamepattern frequency vector, consider unions of
such regions (calledzones), and then compute/approximate the
pattern frequency vector and the probability of staying inZ
for each zoneZ. Thus, we obtain Theorem 1.

Technically, we distinguish among fourtypes of regions
determined either by a control state ofA or a BSCC ofCA.

• Let p ∈ Q. A type I region determined byp is either the
setpost∗(p(0)) or the empty set, depending on whether
post∗(p(0)) is a finite set satisfyingpost∗(p(0)) ⊆
pre∗(p(0)) or not, respectively.

• Let p ∈ S, whereS is a BSCC ofCA. A type II region
determined byp is either the setpost∗(p(0)) or the empty
set, depending on whetherpost∗(p(0)) is an infinite set
satisfyingpost∗(p(0)) ⊆ pre∗(p(0)) or not, respectively.

• Let S be a BSCC ofCA. A type III region determined
by S consists of allp(k) ∈ S × N+ that cannot reach a
configuration with zero counter.

• Let S be a BSCC ofCA, and letRI(S) andRII(S) be
the unions of all type I and all type II regions determined
by the control states ofS, respectively. Further, letD(S)
be the set(
S×N ∩ pre∗(RI(S))

)
r

(
RI(S) ∪ pre∗(RII(S))

)

A type IV region determined byS is either the setD(S)
or the empty set, depending on whetherD(S) is infinite
or finite, respectively.

Note that ifR1, R2 are regions ofA such thatR1 ∩R2 6= ∅,
thenR1 = R2. Also observe that regions of type I, II, and III
are closed underpost∗, and each such region can thus be seen
as a Markov chain. Finally, note that every configuration of a
type IV region can reach a configuration of a type I region,
and the size of every type I region is bounded by|Q|2 (if
R = post∗(p(0)) is a type I region andp(0)→ ∗q(j), then
j < |Q|, because otherwise the counter could be pumped to
an arbitrarily large value; hence,|R| ≤ |Q|2).

Let us note that all regions areregular in the following
sense: We say that a setC ⊆ conf (A) of configurations
is regular if there is a non-deterministic finite automatonA
over the alphabet{a} such that the set of control states ofA
subsumesQ and for every configurationp(k) ∈ conf (A) we
have thatp(k) ∈ C iff the word ak is accepted byA with
p as the initial state. If follows, e.g., from the results of [10]
that if C ⊆ conf (A) is regular, thenpost∗(C) and pre∗(C)
are also regular and the associated NFA are computable in
time polynomial in||A||, whereA is the NFA representingC.
Hence, all regions are effectively regular which becomes
important in Section IV.

Let S be a SCC ofCA. If S is not a BSCC ofCA, then
the control states ofS may determine at most|S| non-empty
regions (of type I). IfS is a BSCC ofCA, then the control
states ofS may determine at most|S| non-empty regions of
type I or II, and at most one additional non-empty region
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which is either of type III or of type IV (clearly, it cannot
happen that the type III and type IV regions determined byS
are both non-empty). Hence, the total number of non-empty
regions cannot exceed|Q|+b, whereb is the number of BSCCs
of CA (here we also use the assumption thatCA is weakly
connected).

Now we prove thatevery configuration can reach some
region in a bounded number of steps. This fact is partic-
ularly important for the analysis of two-counter pVASS in
Section IV.

Lemma 1. Every configuration ofA can reach a configuration
of some region in at most11|Q|4 transitions.

By Lemma 1, the probability of reaching (some) region from
an arbitrary initial configuration is at leastx11|Q|4

min , wherexmin

is the least positive transition probability ofMA. This implies
that almost everyw ∈ Run(p(k)) visits some regionR. If R
is of type I, II, or III, thenw inevitably stays inR because
these regions are closed underpost∗. If R is a type IV region,
thenw either stays inR, or later visits a configuration of a
type I region where it stays. Thus, we obtain the following:

Lemma 2. Let p(k) be a configuration ofA. Then almost
every run initiated inp(k) eventually stays in precisely one
region.

As we already mentioned, computing the pattern frequency
vector and the probability of staying inR for each regionR
separately is technically complicated. Therefore, we alsoin-
troducezones, which are unions of regions that are guaranteed
to share the same pattern frequency vector. Formally, azone
of A is a setZ ⊆ conf (A) satisfying one of the following
conditions (recall thattS denotes the trend of a BSCCS):

• Z = R, whereR is a region of type I.
• Z = R, whereR is a type III region determined by a

BSCCS of CA such thattS ≤ 0.
• Z = R, whereR is a type II region determined byp ∈ S

whereS is a BSCC ofCA satisfyingtS < 0.
• Z = RII(S), whereS is a BSCC ofCA such thattS = 0

andRII(S) is the union of all type II regions determined
by the control states ofS.

• Z = RII(S) ∪ RIII(S) ∪ RIV (S), whereS is a BSCC
of CA such thattS > 0, RII(S) is the union of all
type II regions determined by the control states ofS, and
RIII(S) and RIV (S) are the type III and the type IV
regions determined byS, respectively.

The next two lemmata are nontrivial and represent the techni-
cal core of this section (proofs can be found in Appendix A).
They crucially depend on the results presented recently in
[5] and [21]. In the proof of Lemma 3, we also characterize
situations when some elements of pattern frequency vectors
take irrational values.

Lemma 3. Let p(k) be a configuration ofA and Z a
zone ofA. Then FA is well defined for almost allw ∈
Run(p(k), Z), and there existsF : PatA → R such that
FA(w) = F for almost all w ∈ Run(p(k), Z). Further, for

every rational ε > 0, there is a vectorH : PatA → Q

computable in time polynomial in||A|| and ||ε|| such that
H(qα) approximatesF (qα) up to the relative errorε for every
qα ∈ PatA.

Lemma 4. Let p(k) be a configuration ofA. Then almost
every run initiated inp(k) eventually stays in precisely one
zone ofA. Further, for every zoneZ and every rationalε > 0,
there is aP ∈ Q computable in time polynomial in||A||, ||ε||,
and k such thatP approximatesP(Run(p(k), Z)) up to the
relative error ε.

IV. RESULTS FOR TWO-COUNTER PVASS

In this section we analyze the long-run average behavior
of two-counter pVASS. We show that if a given two-counter
pVASS is stable (see Definition 5 below), then the pattern
frequency vector is well defined takes one of finitely many
values for almost all runs. Further, these values and the
associated probabilities can be effectively approximatedup to
an arbitrarily small positive absolute/relative error.

Let A be a two-counter pVASS. When we say that some
object (e.g., a number or a vector) iscomputablefor every
σ ∈ Σ, whereΣ is some set of parameters, we mean that there
exists an algorithm which inputs the encodings ofA andσ, and
outputs the object. Typically, the parameterσ is some rational
ε > 0, of a pair (ε, pvvv) where pvvv is a configuration. The
parameter can also be void, which means that the algorithm
inputs just the encoding ofA.

A semilinear constraintϕ is a function ϕ : Q → Φ,
whereΦ is the set of all formulae of Presburger arithmetic
with two free variablesx, y. Eachϕ determines a semilinear
set [[ϕ]] ⊆ conf (A) consisting of all p(v1, v2) such that
ϕ(p)[x/v1, y/v2] is a valid formula. Since the reachability
relation→ ∗ of A is effectively semilinear [18] and semilinear
sets are closed under complement and union, all of the sets
of configurations we work with (such asC[R1, R2] defined
below) are effectively semilinear, i.e., the associated semilin-
ear constraint is computable. In particular, the membership
problem for these sets is decidable.

Given pvvv ∈ conf (A) and D ⊆ conf (A), we use
Run(pvvv →∗ D) to denote the set of allw ∈ Run(pvvv) that
visit a configuration ofD, andRun(pvvv 6→∗ D) to denote the
set Run(pvvv) r Run(pvvv →∗ D). Note that if D = ∅, then
Run(pvvv 6→∗ D) = Run(pvvv).

Intuitively, our aim is to prove that the setC = conf (A)
is “good” in the sense that there is a computablen ∈ N

such that for every rationalε > 0, there exists a computable
sequence of rational vectorsH1, . . . , Hn such that for every
pvvv ∈ C, there are computable rationalP1, . . . , Pn such that
the sequence(P1, H1), . . . , (Pn, Hn) that approximates the
pattern frequencies ofRun(pvvv) up to the absolute/relative
error ε. This is achieved by first showing that certain simple
subsets of configurations are good, and then (repeatedly)
demonstrating that more complicated subsets are also good
because they can be “reduced” to simpler subsets that are
already known to be good. Thus, we eventually prove that
the whole setconf (A) is good.
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For our purposes, it is convenient to parameterize the notion
of a “good” subsetC by another subset of “dangerous”
configurationsD so that the above conditions are required
to hold only for those runs that do not visitD. Further, we
require that every configuration ofC can avoid visitingD with
some positive probability which is bounded away from zero.

Definition 3. Let A = (Q, γ,W ) be a pVASS of dimen-
sion two, and letC,D ⊆ conf (A). We say thatC is good
for D if the following conditions are satisfied:

• There isδ > 0 such thatP(Run(pvvv →∗ D)) ≤ 1− δ for
everypvvv ∈ C.

• There is a computablen ∈ N such that for every
ε > 0, there are computableH1, . . . , Hn : PatA → Q

such that for every pvvv ∈ C there are
computable Ppvvv,1, . . . , Ppvvv,n ∈ Q such that
(Ppvvv,1, H1), . . . , (Ppvvv,n, Hn) approximate the pattern
frequencies ofRun(pvvv 6→∗ D) up to the absolute
error ε.

Note that in Definition 3, we require that
(Ppvvv,1, H1), . . . , (Ppvvv,n, Hn) approximate the pattern
frequencies ofRun(pvvv 6→∗ D) up to theabsoluteerror ε. As
we shall see, we can always compute a lower bound for each
positivePpvvv,i andHi, which implies that ifPpvvv,i andHi can
be effectively approximated up to an arbitrarily small absolute
error ε > 0, they can also be effectively approximated up to
an arbitrarily smallrelative error ε > 0.

The next definition and lemma explain what we mean by
reducing the analysis of runs initiated in configurations ofC
to the analysis of runs initiated in “simpler” configurations of
C1, . . . , Ck.

Definition 4. Let A be a pVASS of dimension two,C ⊆
conf (A), and E = {C1, . . . , Ck} a set of pairwise disjoint
subsets ofconf (A). We say thatC is reducibleto E if, for
every ε > 0, there are computable semilinear constraints
ϕ1, . . . , ϕk such that

• [[ϕi]] ⊆ Ci for every1 ≤ i ≤ k;
• for all 1 ≤ i ≤ k and pvvv ∈ [[ϕi]], we have that

P(Run(pvvv →∗ Di)) ≤ ε, whereDi =
⋃

j 6=i Cj .
• for everypvvv ∈ C and everyδ > 0, there is a computable

ℓ ∈ N such that the probability of reaching a configura-
tion of [[ϕ1]] ∪ · · · ∪ [[ϕk]] in at mostℓ transitions is at
least1− δ.

Lemma 5. If C is reducible toE = {C1, . . . , Ck} and every
Ci is good forDi =

⋃
j 6=i Cj , thenC is good for∅.

Proof: For every1 ≤ i ≤ k, let ni be the computable
constant forCi which exists by Definition 3. The constantn
for C is defined asn =

∑k
i=1 ni. Now let us fix someε > 0.

SinceC is reducible to{C1, . . . , Ck}, there are computable
constraintsϕ1, . . . , ϕk such that, for every1 ≤ i ≤ k,
we have that[[ϕi]] ⊆ Ci and P(Run(pivvvi →∗ Di)) ≤ ε/4
for every pivvvi ∈ [[ϕi]]. Further, there are computable
Hi,1, . . . , Hi,ni

: PatA → Q such that for everypivvvi ∈ [[ϕi]],
there are computablePpivvvi,1, . . . , Ppivvvi,ni

∈ Q such that

(Ppivvvi,1, Hi,1), . . . , (Ppivvvi,ni
, Hi,ni

) approximate the pattern
frequencies ofRun(pivvvi 6→∗ Di) up to the absolute errorε/4.
Now let pvvv ∈ C. Then there is a computableℓ ∈ N such that
the probability of reaching a configuration of[[ϕ1]]∪· · ·∪ [[ϕk ]]
in at most ℓ transitions is at least1 − ε/4. Hence, we
can effectively construct a finite treeT rooted bypvvv which
represents the (unfolding of) the part ofMA reachable from
pvvv. A branch in this tree is terminated when a configuration of
[[ϕ1]]∪ · · · ∪ [[ϕk]] is visited, or when the length of the branch
reachesℓ. For every1 ≤ i ≤ k, let Li be the set of all leafsα
of T labeled by configurations of[[ϕi]]. We usePα to denote
the (rational and computable) probability of reachingα from
the root ofT , andlabel (α) to denote the configuration which
is the label ofα. For every1 ≤ i ≤ k and every1 ≤ j ≤ ni,
we putPpvvv,i,j =

∑
α∈Li

Pα · Plabel(α),j . It is straightforward
to verify that the sequence

(Ppvvv,1,1, H1,1), . . . , (Ppvvv,1,n1 , H1,n1),

(Ppvvv,2,1, H2,1), . . . , (Ppvvv,1,n1 , H2,n2),

...

(Ppvvv,k,1, Hk,1), . . . , (Ppvvv,k,nk
, Hk,nk

)

approximates the pattern frequencies ofRun(pvvv) up to the
absolute errorε. In particular, realize that almost every
w ∈ Run(pvvv) eventually “decides” for someCi, i.e., there
is m ∈ N such thatw(m) ∈ Ci and for all m′ > m we
havew(m′) 6∈ Di (this is where we use the first condition
of Definition 3). Hence, the pattern frequency vector is well
defined and approximated up to the absolute errorε/4 by some
of the aboveHi,j for almost allw ∈ Run(pvvv).

For the rest of this section, we fix a two-counter pVASS
A = (Q, γ,W ) (recall thatA satisfies Assumption 1). For
i ∈ {1, 2}, we define a one-counter pVASSAi = (Q, γi,Wi)
and a labelingLi : γi → {−1, 0, 1} as follows:s κ(i),ℓ−→ t in Ai

andLi((s, κ(i), t)) = κ(3−i) iff s
κ,ℓ−→ t in A. Note thatAi is

obtained by “preserving” thei-th counter; the change of the
other counter is encoded inLi. Also observe thatCA, CA1 ,
andCA2 are the same Markov chains.

The results of Section III are applicable toA1 and A2.
Let R be a type II or a type IV region ofAi. We claim
that there is a uniqueτR ∈ R such that for almost all runs
w ∈ Run(p(k), R), wherep(k) ∈ R, we have that the limit

lim
n→∞

∑n−1
j=0 Li(rule(w, j))

n

exists and it is equal toτR (here,rule(w, j)) is the unique
rule of γi which determines the transitionw(j)→w(j+1);
cf. Assumption 1). In other words,τR is the uniquemean
payoff determined by the labelingLi associated toR. To see
this, consider the trendtS of the associated BSCCS of CA.
If R is a type IV region, thenτR = tS(3−i) for almost all
w ∈ Run(p(k), R) (in particular, note that iftS(i) ≤ 0 then
P(Run(p(k), R)) = 0; see Section III). IftS(i) ≥ 0 andR
is a type II region, thenτR = tS(3−i), because the frequency
of visits to configurations with zero counter is zero for almost
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all w ∈ Run(p(k)), wherep(k) ∈ R (see [5]). Finally, if
tS(i) < 0 andR is a type II region, thenR is ergodic because
the mean recurrence time in every configuration ofR is finite
[5], and henceτR takes the same value for almost allw ∈
Run(p(k), R), wherep(k) ∈ R.

Although the value ofτR may be irrational whenR is
of type II and tS(i) < 0, there exists a formulaΦ(x) of
Tarski algebra with a fixed alternation depth of quantifiers
computable in polynomial time such thatΦ[x/c] is valid iff
c = τR. Hence, the problem whetherτR is zero (or positive, or
negative) is decidable in exponential time [15]; and ifτR < 0
(or τR > 0), there is a computablex ∈ Q such thatx < 0 (or
x > 0) and |x| ≤ |τR|.
Definition 5. Let A = (Q, γ,W ) be a pVASS of dimen-
sion two. We say thatA is stableif the following conditions
are satisfied:

• Let S be a BSCC ofCA such that the type IV region
determined byS is non-empty inA1 or A2, or there is
p ∈ S such that the type II region determined byp(0)
is non-empty inA1 or A2. Then the trendtS is non-zero
in both components.

• LetR by a type II region inAi such thattS(i) < 0, where
S is the BSCC ofCA associated toR. ThenτR 6= 0.

Note that the problem whether a given two-counter pVASSA
is stable is decidable in exponential time. Our aim is to prove
the following theorem:

Theorem 2. Let A = (Q, γ,W ) be a stable pVASS of
dimension two. Then the setconf (A) is good for∅.

For the rest of this section, we fix a pVASSA of dimension
two a present a sequence of observations that imply Theo-
rem 2. Note thatA is not necessarily stable, i.e., the presented
observations are valid forgeneral two-dimensional pVASS.
The stability condition is used to rule out some problematic
subcases that are not covered by these observations.

In our constructions, we need to consider the following
subsets of configurations:

• C[R1, R2], whereR1 ∈ Reg(A1) andR2 ∈ Reg(A2), is
the set of allp(m1,m1) ∈ conf (A) such thatp(m1) ∈
R1 andp(m2) ∈ R2;

• B[b], whereb ∈ N, consists of allpvvv ∈ conf (A) such
that for everyquuu ∈ post∗(pvvv) we have thatuuu(1) ≤ b or
uuu(2) ≤ b;

• CS [c1∼b1 ∧ c2≈b2], whereS ⊆ Q, b1, b2 ∈ N, and∼,≈
are numerical comparisons (such as= or ≤) consists of
all p(m1,m2) ∈ conf (A) such thatp ∈ S, m1 ∼ b1, and
m2 ≈ b2. Trivial constraints of the formci ≥ 0 can be
omitted. For example,CQ[c1 = 0 ∧ c2 ≥ 6] is the set of
all q(0,m) ∈ conf (A) wherem ≥ 6, andCS [c1 ≤ 2]
is the set of allq(n,m) ∈ conf (A) where q ∈ S and
n ≤ 2.

• ZS , whereS ⊆ Q, consists of allp(m1,m2) such that
p ∈ S and some counter is zero (i.e.,m1 = 0 orm2 = 0).

• ES [b1, b2], whereS ⊆ Q and b1, b2 ∈ N, consists of
all p(m1,m2) such thatp ∈ S, some counter is zero,

and everyq(n1, n2) ∈ post∗(p(m1,m2)) satisfies the
following:

– if n1 = 0, thenn2 ≤ b2;
– if n2 = 0, thenn1 ≤ b1.

Note that all of these sets are semilinear and the associated
semilinear constraints are computable.

A direct consequence of Lemma 1 is the following:

Lemma 6. Let b = 11|Q|4, and letE be a set consisting of
B[b] and allC[R1, R2] whereR1 ∈ Reg(A1), R2 ∈ Reg(A2).
Thenconf (A) is reducible toE .

To prove Lemma 6, it suffices to realize that there is a
computablek ∈ N such that every pvvv ∈ conf (A) can
reach a configuration of someC[R1, R2] or B[b] in at most
k transitions.

Hence, it suffices to prove thatB[b] and allC[R1, R2] are
good for∅. All cases except for those whereR1 andR2 are
of type II or type IV follow almost immediately. To handle
the remaining cases, we need to develop new tools, which we
present now. We start by introducing some notation.

Given a finite path or a runw in MA and ℓ ∈ N, where
ℓ ≤ length(w), we denote byx(ℓ)

1 (w), x
(ℓ)
2 (w), and p(ℓ)(w)

the value of the first counter, the value of the second counter,
and the control state of the configurationw(ℓ), respectively.
Further,T (w) denotes either the leastℓ such thatx(ℓ)

1 (w) = 0,
or ∞ if there is no suchℓ. For everyi ∈ N, [pvvv →∗ quuu, i]
denotes the probability of allw ∈ Run(pvvv) such that
T (w) ≥ i, w(i) = quuu, andw(j) 6= quuu for all 0 ≤ j < i. By
[pvvv →∗ quuu] =

∑∞
i=0[pvvv →∗ quuu, i] we denote the probability

of reachingquuu from pvvv before timeT . We also put

[pvvv →∗ q(0, ∗), i] =
∞∑

k=0

[pvvv →∗ q(0, k), i]

and

[pvvv →∗ q(0, ∗)] =
∞∑

k=0

[pvvv →∗ q(0, k)] .

For a measurable functionX over the runs ofMA, we use
Epvvv[X ] to denote the expected value ofX overRun(pvvv).

The following theorems are at the very core of our analysis,
and represent new non-trivial quantitative bounds obtained by
designing and analyzing a suitable martingale. Proofs can be
found in [6].

Theorem 3. Let S be a BSCC ofCA such thattS(2) < 0,
and letR be a type II region ofA2 determined by some state
of S. Then there are rationala1, b1 > 0 and 0 < z1 < 1
computable in polynomial space such that the following holds
for all p(0) ∈ R, n ∈ N, and i ∈ N+:

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i) ≤ a1 · zb1·i1 .

Moreover, ifPp(n,0)(T < ∞) = 1, then

Ep(n,0)

[
x
(T )
2

]
≤ a1 · zb11

1− zb11
.

In particular, noneof the bounds depends onn.
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Theorem 4. Let S be a BSCC ofCA such thattS(2) < 0,
and let R be a type II region determined by some state of
S such thatτR > 0. Then there are rationala2, b2 > 0 and
0 < z2 < 1 computable in polynomial space such that for all
configurationsp(n, 0), wherep(0) ∈ R, and all q ∈ Q, the
following holds:

[p(n, 0) →∗ q(0, ∗)] ≤ n · a2 · zn·b22

Theorem 5. LetR be a type II region ofA2 such thatτR < 0.
Then there are rationala3, b3, d3 > 0 and 0 < z3 < 1 com-
putable in polynomial space such that for all configurations
p(n, 0), wherep(0) ∈ R, and all q ∈ Q, the following holds
for all i ≥ H·n

−τR
, whereH is computable in polynomial space:

[p(n, 0) →∗ q(0, ∗), i] ≤ i · a3 · z
√
n·τR·b3+i·d3

3 .

The above theorems are use to prove that certain configu-
rations areeagerly attractedby certain sets of configurations
in the following sense:

Definition 6. Let C,D ⊆ conf (A). We say thatpvvv ∈ C is
eagerly attractedbyD if P(Run(pvvv→ ∗D)) = 1 and there are
computable constantsa, z ∈ Q, ℓ ∈ N, andk ∈ N+ (possibly
dependent onpvvv), wherea > 0 and 0 < z < 1, such that for
everyℓ′ ≥ ℓ, the probability of visitingD from pvvv in at most
ℓ′ transitions is at least1−a ·z k

√
ℓ′ . Further, we say thatC is

eagerly attracted byD if all configurations ofC are eagerly
attracted byD, andD is a finite eager attractorif D is finite
and post∗(D) is eagerly attracted byD.

Markov chains with finite eager attractors were studied
in [1]. The only subtle difference is that in [1], the probability
of revisiting the attractor in at mostℓ transitions is at least
1 − zℓ. However, all arguments of [1] are valid also for the
sub-exponential bound1−a·z k

√
ℓ′ adopted in Definition 6 (note

that some quantitative bounds given in [1], such as the bound
on K in Lemma 5.1 of [1], need to be slightly adjusted to
accommodate the sub-exponential bound). In [1], it was shown
that various limit properties of Markov chains with finite eager
attractors can be effectively approximated up to an arbitrarily
small absolute errorε > 0. A direct consequence of these
results is the following:

Proposition 1. Let D ⊆ conf (A) be a finite eager attractor.
ThenD is good for∅.

Let us also formulate one simple consequence of Theorem 4.

Corollary 1. For every BSCCS of CA we have the following:

• If tS is negative in some component, then every configu-
ration pvvv wherep ∈ S is eagerly attracted byZS .

• If both components oftS are positive, then for every
ε > 0 there is a computablebε such that for every
configurationpvvv wherep ∈ S andvvv ≥ (bε, bε) we have
that P(Run(pvvv→ ∗ZS)) < ε.

The following theorem follows from the results about one-
counter pVASS presented in [5].

Theorem 6. For every BSCCS of CA we have the following:

• If tS is negative in some component, then every configu-
ration pvvv wherep ∈ S is eagerly attracted byZS .

• If both components oftS are positive, then for every
ε > 0 there is a computablebε such that for every
configurationpvvv wherep ∈ S andvvv ≥ (bε, bε) we have
that P(Run(pvvv→ ∗ZS)) ≤ ε.

In the next lemmata, we reduce the study of pattern frequencies
for certain runs inMA to the study of pattern frequencies for
runs in one-counter pVASS (i.e., to the results of Section III).
This is possible because in each of these cases, one of
the counters is either bounded or irrelevant. Proofs of the
following lemmata are straightforward.

Lemma 7. For everyb ∈ N, the setB[b] is good for∅.

Lemma 8. The setC[R1, R2], whereR1 or R2 is a type I or
a type III region, is good for∅.

So, it remains to consider sets of the formC[R1, R2], where
the regionsR1, R2 are of type II or type IV. We start with
the simple case when the trendtS of the associated BSCC is
positive in both components.

Lemma 9. Let C[R1, R2] be a set such thatR1, R2 are
regions of type II or type IV, and the trendtS of the associated
BSCCS of CA is positive in both components. ThenC[R1, R2]
is good for∅.

Proof: Let b ∈ N be a bound such that for everypvvv ∈
conf (A) where p ∈ S and vvv ≥ (b, b) we have that there
exists a “pumpable path” of the formpvvv→ ∗p(vvv+uuu) whereuuu
is positive in both components. Note that such ab exists and
it is computable (in fact, one can give an explicit upper bound
on b in the size ofS; see, e.g., [3]).

By Lemma 7, B[b] is good for ∅. We show that
CS [c1 ≥ b ∧ c2 ≥ b] is good forB[b]. By our choice ofb and
Theorem 6, there isδ > 0 such thatP(Run(pvvv 6→∗ B[b])) ≥ δ
for everypvvv ∈ CS [c1 ≥ b ∧ c2 ≥ b]. Further, almost all runs of
Run(pvvv 6→∗ B[b]) have the same pattern frequency vectorFS

whereFS(q(∗, ∗)) = µS(q) for all q ∈ S, andFS(α) = 0 for
the other patterns.

Now we prove that C[R1, R2] is reducible to
{B[b], CS [c1 ≥ b ∧ c2 ≥ b]}. By Theorem 6, we obtain
that for everyε > 0 there is a computablebε such that
for every configuration ofquuu where uuu ≥ (bε, bε) we
have thatP(Run(quuu→ ∗ZS)) ≤ ε. Let ϕ be a semilinear
constraint whereϕ(s) = x≥b+bε ∧ y≥b+bε for all
s ∈ S, and ϕ(s) = false for all s ∈ Q r S. Then
[[ϕ]] ⊆ CS [c1 ≥ b ∧ c2 ≥ b] and for everyquuu ∈ [[ϕ]] we
have thatP(Run(quuu→ ∗B[b])) ≤ ε. Further, there exists
a computablek ∈ N such that every configuration of
C[R1, R2] can reach a configuration ofB[b] ∪ [[ϕ]] in at most
k transitions. This implies that for everyδ > 0, there is a
computableℓ ∈ N such that every configuration ofC[R1, R2]
reaches a configuration ofB[b] ∪ [[ϕ]] in at mostℓ steps with
probability at least1− δ.
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To prove Theorem 2, it suffices to show that the following
sets of configurations are good for∅, where we disregard the
subcases ruled out by the stability condition. In particular, due
to Lemma 9 we can safely assume that some component of
tS is negative.

(a) C[R1, R2], where bothR1 andR2 are of type II.
(b) C[R1, R2], whereR1 is of type IV andR2 is of type II,

or R1 is of type II andR2 is of type IV.
(c) C[R1, R2], where bothR1 andR2 are of type IV.

The most interesting (and technically demanding) is the
following subcase of Case (a). Here we only sketch the main
ideas, a full proof can be found in [6].

Lemma 10. Let C[R1, R2] be a set of configurations where
R1 andR2 are of type II,tS(2) < 0, τR1 < 0, and τR2 < 0.
ThenC[R1, R2] is good for∅.

Proof Sketch:Let C be the set of all configurations of the
form q(0,m) ∈ C[R1, R2] satisfyingm ≤ (a1 ·zb11 )/(1−zb11 ),
wherea1, b1, z1 are the computable constants of Theorem 3.
We prove thatC[R1, R2] is eagerly attracted byC. This
immediately implies thatC is a finite eager attractor, henceC
is good for∅ by Proposition 1. We also immediately obtain that
C[R1, R2] is reducible to{C}, which means thatC[R1, R2]
is good for∅ by Lemma 5.

Let pvvv ∈ C[R1, R2]. SincetS(2) < 0 andτR1 < 1, almost
every runw ∈ Run(pvvv) eventually visits a configuration of
CS [c2 = 0], and, from that moment on, visits configurations
of bothCS [c2 = 0] andCS [c1 = 0] infinitely often.

Denote byΘ0(w) the leastℓ such thatw(ℓ) ∈ CS [c2 = 0].
Given k ≥ 1, denote byΘk(w) the leastℓ ≥ Θk−1(w) such
that the following holds:

• If k is odd, thenw(ℓ) ∈ CS [c1 = 0].
• If k is even, thenw(ℓ) ∈ CS [c2 = 0].

We use Theorems 6, 3, and 5 to show that there are computable
constantŝa > 0 and0 < ẑ < 1 such that for allk ≥ 0 and all
ℓ ∈ N we have that

Ppvvv(Θk −Θk−1 ≥ ℓ) ≤ â · (ẑ)
√
ℓ

Here Θ−1 = 0. Observe thatΘ0 is the sum of the number
of transitions needed to visitZS for the first time (the first
phase) and the number of transitions need to reachCS [c2 = 0]
subsequently (the second phase). Due to Theorem 6, the
probability that the first phase takes more thanℓ transitions is
bounded bya · zℓ for some computablea > 0 and0 < z < 1.
Note that the length of the second phase depends on the value
of c2 after the first phase. However, the probability that this
value will be larger thanℓ can be bounded bya · zℓ as well.
Finally, assuming that the first phase ends in a configuration
q(0,m), Theorem 5 gives a bounda′ · (z′)

√
ℓ−m on the

probability of reachingCS [c2 = 0] in at leastℓ transitions. By
combining these bounds appropriately, we obtain the above
bound onΘ0.

Now let us considerΘk − Θk−1 for k > 0. Let us assume
that k is even (the other case follows similarly). The only
difference from the previous consideration (forΘ0) is that

now the first phase consists of the part of the run up to the
Θk−1-th configuration, and the second phase from there up
to the Θk-th configuration. Using Theorem 3 and induction
hypothesis, we derive a bounda · zℓ on the probability that
the height of the second counter in theΘk−1-th configuration
will be at leastℓ. Then, as above, we combine this bound with
the bound on the probability of reachingCS [c2 = 0] in ℓ steps
from a fixed configuration ofCS [c1 = 0].

In order to finish the proof, we observe that the probability
of reaching a configuration ofC between theΘk−1-th and
Θk-th configuration is bounded away from zero by a com-
putable constant. This follows immediately from Theorem 3
which basically bounds the expected value ofc2 in the Θk-
th configuration. Denoting byRounds(w) the least number
k such thatw(Θk(w)) ∈ C, we may easily show that
Ppvvv(Rounds ≥ ℓ) ≤ c̄ℓ for a computable constant0 ≤ c̄ < 1.

Finally, we combine the bound on the number of rounds
(i.e., the bound onPpvvv(Rounds ≥ ℓ)) with the bound on the
length of each round (i.e., the bound onPpvvv(Θk−Θk−1 ≥ ℓ)),
and thus obtain the desired bound on the number of steps to
visit C.

For the other cases (incl. Cases (b) and (c)), we show that
the set of configurationsC we aim to analyze is eagerly
attracted by computable semilinear sets of configurations
C1, . . . , Ck, where eachCi is either good for∅ or good
for

⋃
i6=j Cj . In all these cases, it is easy to see that the

configurations ofC reach a configuration of
⋃k

i=1 Ci with
probability one, and the argument thatC is eagerlyattracted⋃k

i=1 Ci is a simplified version of the proof of Lemma 10
(in some cases, the proof is substantially simpler than the one
of Lemma 10). Therefore, in these cases we just list the sets
C1, . . . , Ck and add some intuitive comments which explain
possible behaviour of the runs initiated in configurations of C.

When defining the aforementioned setsC1, . . . , Ck, we
use the following computable constantsBII , BIV , DII ∈ N,
which are numbers (not necessarily the least ones) satisfying
the following conditions:

• if p(0) ∈ R, whereR is a type IV region ofAi for some
i ∈ {1, 2}, thenp(0) can reach a configuration a type I
region in at mostBIV transitions.

• if p(0) ∈ R, whereR is a type II region ofAi such that
tS(i) < 0 andτR > 0, then there is a finite pathw from
p(0) to p(0) of length smaller thanBII such that the total
Li-reward of all transitions executed inw is positive.

• for everypvvv ∈ conf (A) and everyi ∈ {1, 2}, if vvv(i) = 0,
vvv(3−i) ≥ DII , and p(0) ∈ R for some type II region
of Ai such that eithertS(i) > 0 and tS(3−i) < 0, or
tS(i) < 0 andτR < 0, then there existsquuu ∈ post∗(pvvv)
such thatuuu(i) ≥ max{BII , BIV } anduuu(3−i) = 0.

The existence and computability ofBII , BIV , and DII

follows from simple observations about the transition structure
of MA (these constants are in fact small and their size can
be explicitly bounded in||A||).
Lemma 11. For all m,n ∈ N and a BSCCS of CA such that
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tS is negative in some component, the setEs[m,n] is good
for ∅.

Proof: From the definition ofES [m,n] and Theorem 6,
we immediately obtain thatES [m,n] is a finite eager attractor
(even if ES [m,n] = ∅). Hence, the claim follows from
Proposition 1.

Now we consider the remaining subcases of Case (a).

Lemma 12. Let C[R1, R2] be a set of configurations where
R1 andR2 are of type II,tS(2) < 0, tS(1) > 0, andτR2 > 0.
ThenC[R1, R2] is good for∅.

Proof: Let E = {E[BII , DII ], CS [c2=0 ∧ c1≥BII ]}.
Observe thatE[BII , DII ] is good for∅ by Lemma 11. We
show thatCS [c2=0 ∧ c1≥BII ] is good forE[BII , DII ] and
thatC[R1, R2] reducible toE . Hence,C[R1, R2] is good for∅
by Lemma 5.

To see thatCS [c2=0 ∧ c1≥BII ] is good forE[BII , DII ],
realize that for everypvvv ∈ CS [c2=0 ∧ c1≥BII ] we have
that almost all runs ofRun(pvvv) that do not visit a con-
figuration of E[BII , DII ] eventually behave as if the first
counter did not exist, which means that the long-run be-
haviour of almost all of these runs is the same as the
behavior of the runs ofA2 initiated in p(0) (here we also
use the defining property ofDII ). Further, it follows from
the definition of BII and Theorem 4 that there exists a
δ > 0 such thatP(Run(pvvv 6→∗ E[BII , DII ])) > δ for every
pvvv ∈ CS [c2=0 ∧ c1≥BII ].

By Theorem 4, for everyε > 0 there exists a computable
semilinear constraintϕ such that[[ϕ]] ⊆ CS [c2=0 ∧ c1≥BII ]
and for everyquuu ∈ [[ϕ]] we have that the probability of visiting
C[c1=BII ] (and hence alsoE[BII , DII ]) is bounded byε.

Now let pvvv ∈ C[R1, R2] and δ > 0. We need to show
that there is a computableℓ ∈ N such that the probability
of reaching a configuration ofE[BII , DII ] ∪ [[ϕ]] in at most
ℓ transitions is at least1 − δ. Since tS(2) < 0, every pvvv ∈
C[R1, R2] is eagerly attracted byZS . Similarly as in the proof
of Lemma 10, we show that almost every run visitsCS [c2=0]
infinitely many times, and that the probability that the length
between two consecutive visits toCS [c2=0] exceedsℓ decays
sub-exponentially inℓ. Further, the probability of vising a
configuration ofE[BII , DII ] ∪ [[ϕ]] from a configuration of
CS [c2=0] is bounded away from zero by a fixed constant.
Hence, we can argue as in the proof of Lemma 10.

Lemma 13. Let C[R1, R2] be a set of configurations where
R1 and R2 are of type II,tS(2) < 0, tS(1) < 0, τR1 > 0,
and τR2 > 0. ThenC[R1, R2] is good for∅.

Proof: Let E be the set consiting ofE[BII , BII ],
CS [c2=0 ∧ c1≥BII ], andCS [c1=0 ∧ c2≥BII ]. Clearly, each
C ∈ E is either good for∅ or good for the union of
all sets in E r {C} (see Lemma 11 and the proof of
Lemma 12). For everyε > 0, there are computable semilin-
ear constraintϕ1, ϕ2 such that[[ϕ1]] ⊆ CS [c2=0 ∧ c1≥BII ],
[[ϕ2]] ⊆ CS [c1=0 ∧ c2≥BII ] satisfying the requirements of
Definition 4. Note that there is ak ∈ N such that for every

configuration ofZS there is a finite path of length at mostk
to a configuration ofE[BII , BII ] ∪ [[ϕ1]] ∪ [[ϕ2]]. The rest of
the argument is even simpler than in Lemma 12.

Lemma 14. Let C[R1, R2] be a set of configurations where
R1 and R2 are of type II,tS(2) < 0, tS(1) < 0, τR1 < 0,
and τR2 > 0. ThenC[R1, R2] is good for∅.

Proof: Let E = {E[BII , DII ], CS [c2=0∧ c1≥BII ]}. We
show thatC[R1, R2] reducible toE similarly as in Lemma 12.

The case whenR1 and R2 are of type II, tS(2) < 0,
tS(1) < 0, τR1 > 0, and τR2 < 0 is symmetric to the case
considered in Lemma 14.

Now we continue with Case (b)

Lemma 15. Let C[R1, R2] be a set of configurations where
R1 is of type IV andR2 is of type II such thattS(2) < 0 and
τR2 > 0. ThenC[R1, R2] is good for∅.

Proof: Let E be the set consisting ofE[BII , BIV ],
CS [c2=0∧ c1≥BII ], and allC[R′

1, R2], whereR′
1 is a type I

region reachable fromR1 in A1. We show thatC[R1, R2]
reducible toE similarly as in previous lemmata.

Lemma 16. Let C[R1, R2] be a set of configurations where
R1 is of type IV andR2 is of type II such thattS(2) < 0 and
τR2 < 0. ThenC[R1, R2] is good for∅.

Proof: Let E be the set consisting ofE[DII , BIV ] and all
C[R′

1, R2], whereR′
1 is a type I region reachable fromR1 in

A1. ThenC[R1, R2] reducible toE and eachC ∈ E is good
for ∅.

Lemma 17. Let C[R1, R2] be a set of configurations where
R1 is of type II andR2 is of type IV such thattS(2) < 0 and
tS(1) > 0. ThenC[R1, R2] is good for∅.

Proof: Let E be the set consisting ofE[BIV , DII ] and
all C[R1, R

′
2], whereR′

2 is a type I region reachable fromR2

in A2. ThenC[R1, R2] reducible toE . Further, all elements
of E are good for∅.

Note that the case whenR1 is of type II andR2 is of type IV
such thattS(2) < 0 and tS(1) < 0 is symmetric to the cases
covered in Lemma 15 and Lemma 16.

Finally, in the next lemma we consider Case (c).

Lemma 18. Let C[R1, R2] be a set of configurations where
bothR1 andR2 are type IV regions, and the trendtS of the
associated BSCCS of CA is negative in some component.
ThenC[R1, R2] is good for∅.

Proof: Let E be the set consisting ofE[BIV , BIV ] and
all C[R1, R

′
2], C[R′

1, R2], C[R′
1, R

′
2], whereR′

i is a type I
region reachable fromRi in Ai (for i ∈ {1, 2}). We show
thatC[R1, R2] reducible toE .

V. SOME NOTES ON THREE-COUNTER PVASS

In this section we give an example of a3-dimensional
pVASS A such thatMA is strongly connected, and the
pattern frequency vector seems to take the⊥ value with
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p

t1 t2 t3

(-1,-1,0);Q
(0,-1,-1);Q

(-1,0,-1);Q
(0,3,0);1

(0,0,3);1

(3,0,0);1

(2,0,0);P, (0,2,0);P, (0,0,2);P, (-1,-1,-1);R

Fig. 2: A 3-dimensional pVASSA. For suitable weights
P,Q,R > 0, we have thatFA = ⊥ almost surely.

probability one (this intuition is confirmed by Monte Carlo
simulations, see below). Further, the example is insensitive
to small changes in rule weights, and it also shows that
the method of Section IV based on constructing pVASS of
smaller dimension by “forgetting” one of the counters and then
studying the “trend” of this counter in the smaller pVASS is
insufficient for three (or more) counters.

The pVASSA is shown in Fig. 2. Some rules increase the
counter by more that1, so these should be formally replaced
by several rules using auxiliary control states. Intuitively, A
behaves in the following way. Suppose we start in an initial
configurationp(m, 0, 0), wherem is “large”. Then,A starts
to decrease the first counter and increase the second one. On
average, the value of the second counter becomes2m when the
first counter is decreased to zero, and the third counter is kept
“small”. So, “on average” we eventually reach a configuration
p(0, 2m, 0) in about2m transitions. Then, the second counter
is decreased and the third counter is increased, where the value
is again doubled “on average”, using4m transitions. Thus, we
reach a configurationp(0, 0, 4m). Then, we “pump” the tokens
from the third counter to the first one, reachingp(8m, 0, 0) in
about8m transitions. And so on. Observe that thek-th phase
takes about2k transitions, and so at the end of each phase,
about half of the time was spent in configurations with the
“current” pattern. Hence, the pattern frequency oscillates.

A precise formulation of this phenomenon, and a formal
proof that almost all runs really behave in the above indicated
way, are technically demanding and we do not provide them in
this paper. For the reader’s convenience, we have implemented
a simple Maple sheet which can be used to perform Monte
Carlo simulations ofA and observe the above described
phenomenon in practice2.

Note that the oscillation ofA is insensitive to small changes
in rule weights. However, if we modifyA into A′ so that the
counter value isdecreasedon average in each phase (e.g., we
start inp(m, 0, 0), and then reachp(0,m−1, 0), p(0, 0,m−2),
p(m− 3, 0, 0), etc., on average), then thesumof the counters
has a tendency to decrease andMA′ has a finite attractor.
This means that the pattern frequency vector is well defined
for almost all runs ofA′. Still, the behaviour of all two-counter

2Available at http://www.cs.ox.ac.uk/people/stefan.kiefer/pVASS-simulation.txt

machinesB1, B2, B3 obtained fromA by “forgetting” the first,
the second, and the third counter, is essentially similar tothe
behaviour ofB′

1, B′
2, andB′

3 obtained fromA′ in the same
way (for example, both inB1 andB′

1, the second counter has a
tendency to increase and the third has a tendency to decrease).
Hence, we cannot distinguish between the behaviour ofA and
A′ just by studying the “trends” in the two-counter pVASS
obtained by “forgetting” one of the counters. This indicates
that the study of3-dimensional pVASS requires different (and
perhaps more advanced) methods than those presented in this
paper.
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APPENDIX A
PROOFS OFSECTION III

Lemma 19. Let R 6= ∅ be a type II region. Then every configuration ofpre∗(R) can reach a configuration ofR in at most
4|Q|3 transitions.

Proof: Let R = post∗(p(0)) be a type II region. Recall thatR is strongly connected. For everyi ≥ 0, let Li = {q ∈ Q |
q(i) ∈ post∗(p(0))}. We start by showing that there isτ ≤ |Q| such thatLi ⊆ Li+τ for every i ∈ N, and if i ≥ |Q|2, then
Li = Li+τ . Hence, the structure ofR is “ultimately periodic” and the periodτ is small.

Let τ be the leastj > 0 such thatp ∈ Lj . We claim thatτ ≤ |Q|. SinceR is infinite, all Li are non-empty, and hence
there are0 ≤ i < j ≤ |Q| such thatLi ∩ Lj 6= ∅. Let r ∈ Li ∩ Lj. Thenr(i)→ ∗p(0), hence alsor(j)→ ∗p(j−i), which
meansp ∈ Lj−i. Now we show thatLi ⊆ Li+τ for every i ∈ N; to see this, first realize thatp(0)→ ∗p(τ). If r ∈ Li, then
p(0)→ ∗r(i), and hence alsop(τ)→ ∗r(τ+i). This means thatr(τ+i) is reachable fromp(0), i.e., r ∈ Li+τ . It remains to
prove that if i ≥ |Q|2, thenLi = Li+τ . Clearly, there isk ≤ |Q| such thatLk·τ = L(k+1)·τ . Sincek · τ ≤ |Q|2, it suffices
show that for everyi ≥ k · τ we have thatLi ⊇ Li+τ . Let s ∈ Li+τ , and letr ∈ L(k+1)·τ . Thenr((k+1) · τ)→ ∗s(i+τ), and
this finite path inevitably contains a suffix which is a finite path from t((k+1) · τ) to s(i+τ) such thatt ∈ L(k+1)·τ and the
counter is never decreased below(k+1) · τ along this suffix. Hence, there is also a finite path fromt(k · τ) to s(i), and since
t ∈ Lk·τ , we obtains ∈ Li.

Now let q(k) ∈ pre∗(R), and letw be a path of minimal length fromq(k) to a configuration ofR. Suppose that the last
configuration ofw is r(m) ∈ R.

First we show thatw cannot contain a subpath of the formt(i)→ ∗s(j) wherei− j ≥ |Q|2. Suppose thatw contains such
a subpath. Thenw also contains a subpath of the formv(n+ℓτ)→ ∗v(n), whereℓ ≥ 1, which can be safely removed from
w and the suffix ofw after the configurationv(n) can be trivially adjusted so that the resulting pathw′ leads fromq(k) to
r(m+ℓτ). Sincer(m+ℓτ) ∈ R (see above), we obtain a contradiction with our choice ofw.

Further, we prove that the counter stays bounded byk + 3|Q|2 in every configuration visited byw. Suppose the converse.
Thenw contains a subpath of the formt(k+2|Q|2)→ ∗s(k+3|Q|2). By applying the observation of the previous paragraph,
we obtain that the counter stays abovek + |Q|2 in all configurations visited byw after t(k+2|Q|2), and abovek + 2|Q|2
in all configurations visited byw after s(k+3|Q|2). In particular, the last configurationr(m) of w satisfiesm ≥ k + 2|Q|2.
Further, the subpatht(k+2|Q|2)→ ∗s(k+3|Q|2) must contain a subpath of the formv(n)→ ∗v(n+ℓτ) where1 ≤ ℓ ≤ |Q|. If
we delete this subpath fromw and adjust the configurations visited afterv(n+ℓτ), we obtain a pathw′ from q(k) to r(m−ℓτ).
Sincer(m) ∈ R, m ≥ k + 2|Q|2, andℓτ ≤ |Q|2, we obtain thatr(m−ℓτ) ∈ R (see above). Thus, we obtain a contradiction
with our choice ofw.

To sum up,w can visit at most4|Q|3 different configurations, and hence its length cannot exceed 4|Q|3.

Lemma 1 Every configuration ofA can reach a configuration of some region in at most11|Q|4 transitions.

Proof: We start with three auxiliary observations. LetS be a BSCC ofCA, and letRI(S) andRII(S) be the unions of
all type I regions and all type II regions determined by allq ∈ S, respectively. Further, letRIII(S) be the type III region
determined byS. We have the following:

(a) If RIII(S) 6= ∅, then for allq ∈ S and allℓ ≥ |Q| we have thatq(ℓ) ∈ RIII(S).
(b) Let DS be the set (

S×N ∩ pre∗(RI(S))

)
r

(
RI(S) ∪ pre∗(RII(S))

)
.

If DS contains a configurationq(ℓ) whereℓ ≥ 4|Q|3 + |Q|2, thenDS is infinite (i.e., the type IV region determined by
S is exactlyDS).

(c) If q(ℓ) ∈ pre∗(RI(S)), thenq(ℓ) can reach a configuration ofRI(S) in at mostℓ|Q|+ 4|Q|3 transitions.

Observation (a) follows by observing that ifq(ℓ)→ ∗s(0) wherer, s ∈ S andℓ ≥ |Q|, than the path fromq(ℓ) to s(0) contains
a subpath of the formt(i)→ ∗t(j), wherei > j. This means thateveryconfiguration ofS ×N can reach a configuration with
zero counter, becauseS is strongly connected.

To prove Observation (b), assume thatDS contains a configurationq(ℓ) whereℓ ≥ 4|Q|3 + |Q|2 andDS is finite. Then
there is the largestℓ′ such thatq(ℓ′) ∈ DS . Obviously,ℓ′ ≥ 4|Q|3 + |Q|2. We show thatq(ℓ′) ∈ pre∗(RII(S)), which is
a contradiction. Recall that every non-empty type II regiondetermined by a control state ofS is ultimately periodic and its
periodτ is bounded by|Q| (see the proof of Lemma 19). Letκ be the product of the periods of all non-empty type II regions
determined by the control states ofS. Thenq(ℓ′+κ) ∈ pre∗(RII(S)) (otherwise, we have a contradiction with the maximality
of ℓ′). Hence,q(ℓ′+κ) can reach a configurationv(m) of some type II region in at most4|Q|3 transitions, which means
that m ≥ κ + |Q|2, and the configurationq(ℓ′) can reach the configurationv(m−κ). By our choice ofκ and the fact that
m−κ ≥ |Q|2, we obtain thatv(m−κ) belongs to the same type II region asv(m) (see the proof of Lemma 19).
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Observation (c) is obtained in two steps. We show that

(A) q(ℓ) can reach (some) configuration with zero counter in at mostℓ|Q|+ |Q|2 transitions;
(B) if s(0)→ ∗t(0) wheres, t ∈ S, thens(0) can reacht(0) in at most|Q|3 + |Q| transitions.

Note that Observation (c) follows immediately from (A) and (B). To prove (A), we distinguish two possibilities. If thereis a
decreasing cycle, i.e., a path of length less than|Q| of the form t(i)→ ∗t(j) wherej < i, thenq(ℓ) needs at most|Q| − 1
transitions to reach a configuration with zero counter or a configurationt(ℓ + c) wherec < |Q|. In the second case, at most
(ℓ + c)(|Q| − 1) ≤ ℓ|Q| + |Q|2 − |Q| transitions are needed to reach a configuration with zero counter from t(ℓ + c), and
henceq(ℓ) can reach a configuration with zero counter in at mostℓ|Q|+ |Q|2 transitions. If there is no decreasing cycle, then
q(ℓ) can still reach a configuration with zero counter (becauseq(ℓ) ∈ pre∗(RI(S))), and hence there is a pathw of minimal
length fromq(ℓ) to a configuration with zero counter. It follows easily that if the length of this path exceedsℓ|Q|, thenw
either contains a decreasing cycle or can be shortened.

To prove part (B), consider a pathw of minimal length froms(0) to t(0). One can easily show that the counter value must
be bounded by|Q|2 alongw, becausew could be shortened otherwise. Hence,w can visit at most|Q|3 + |Q| configuration,
which means that its length is bounded by|Q|3 + |Q|.

Now we can finish the proof of Lemma 1. Letp(k) be a configuration ofA. If p(k) ∈ pre∗(R) for some type II regionR,
thenp(k) can reachR in at most4|Q|3 transitions by Lemma 19. Otherwise, let us first consider thecase whenp(k)→ ∗t(i)
for some configurationt(i) wherei ≥ |Q|. Then such at(i) is reachable fromp(k) in at most|Q|2 transitions. Further,t(i)
can reach a configurationr(j), wherer ∈ S for some BSCCS of CA, in at most|Q| transitions. Ifr(j) ∈ RI(S), we are
done. Otherwise, ifr(j) can reach a configuration ofRIII(S), then such a configuration is reachable fromr(j) in at most
|Q|2 transitions (here we use Observation (a)). Otherwise,r(j) ∈ DS . If j ≥ 4|Q|3 + |Q|2, thenDS is the type IV region
determined byS by Observation (b) and we are done. Ifj < 4|Q|3+ |Q|2, thenr(j) can reach a configuration ofRI(S) in at
most9|Q|4 transitions by Observation (c). Hence,p(k) can reach a configuration of some region in at most11|Q|4 transitions.

It remains to consider the case whenp(k) cannot reach a configurationt(i) such thati ≥ |Q|. Then the total number of
configurations reachable fromp(k) is bounded by|Q|2. Each of these configurations is reachable in at most|Q|2 transitions,
and some of them must belong to a type I or a type III region.

Before proving the next lemmata, we need to introduce some notation. For all configurationsp(k) and q(ℓ), we use
Run(p(k)→ ∗q(ℓ)) to denote the set of allw ∈ Run(p(k)) that visit q(ℓ). We also useRun(p(k), ↑) to denote the set
of all w ∈ Run(p(k)) such that the counter stays positive in some suffix ofw, andRun(p(k), ↑S), whereS is a BSCC of
CA, to denote thosew ∈ Run(p(k), ↑) which visit a configuration with control state inS. For all p, q ∈ Q, we use[p↓q] to
denote the probability of allw ∈ Run(p(1)) that visit q(0) and the counter stays positive in all configurations preceding this
visit. Finally, we use[p↑] to denote1−∑q∈Q[p↓q].
Lemma 3 Let p(k) be a configuration ofA andZ a zone ofA. ThenFA is well defined for almost allw ∈ Run(p(k), Z),
and there existsF : PatA → R such thatFA(w) = F for almost allw ∈ Run(p(k), Z). Further, for every rationalε > 0,
there is a vectorH : PatA → Q computable in time polynomial in||A|| and ||ε|| such thatH(qα) approximatesF (qα) up to
the relative errorε for everyqα ∈ PatA.

Proof: For every BSCCS of CA, we define a vectorFS : PatA → Q as follows:FS(q(0)) = 0 for all q ∈ Q,
FS(q(∗)) = 0 for all q ∈ Qr S, andFS(q(∗)) = µS(q) for all q ∈ S (recall thatµS is the invariant distribution ofS). Note
thatFS is a rational vector that can be computed in time polynomial in ||A||.

Let Z be a zone ofA. If Z = ∅, then the claim follows trivially (according to the definitions adopted in Section II,F can
be chosen arbitrarily, and we can putH = F ). Now let Z be a non-empty zone. We proceed by considering possible forms
of Z.

Let us first assume thatZ = R, whereR is a type I region. ThenR can be seen as a strongly connected Markov chain
with at most|Q|2 vertices (see the remarks before Lemma 19), and the corresponding invariant distributionµR is computable
in time polynomial in||A||. Hence, for almost allw ∈ Run(p(k), R) we have thatFA(w) = FR, whereFR(q(0)) = µR(q(0))
for all q(0) ∈ R, FR(q(0)) = 0 for all q(0) 6∈ R, andFR(q(∗)) =

∑
q(k)∈R,k>0 µR(q(k)) for all q ∈ Q (the empty sum is

equal to0).
If Z = R whereR is a type III region determined by a BSCCS of CA such thattS ≤ 0, then the actual counter value

does not influence the limit behaviour of runs staying inR, which means thatFA(w) = FS for almost allw ∈ Run(p(k), R).
If Z = RII(S) ∪RIII(S) ∪RIV (S), whereS is a BSCC ofCA such thattS > 0, then almost all runs ofRun(p(k), Z))

arediverging, i.e., for everyℓ ∈ N and almost everyw ∈ Run(p(k), Z)) there existsm ∈ N such that the counter value is at
leastℓ in every configurationw(m′) wherem′ ≥ m. Consequently,FA(w) = FS for almost allw ∈ Run(p(k), Z).

If Z = RII(S), whereS is a BSCC ofCA such thattS = 0, then the configurations ofZ with zero counter are visited
infinitely often by almost all runs ofRun(p(k), Z), but the expected number of transitions between two consecutive visits
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to such configurations is infinite (see [5]). In other words, visits to configurations with zero counter have zero frequency for
almost all runs ofRun(p(k), Z). Consequently,FA(w) = FS for almost allw ∈ Run(p(k), Z).

Finally, consider the case whenZ = R, whereR is a type II region determined byp ∈ S whereS is a BSCC ofCA
satisfying tS < 0. Let DS be a finite-state Markov chain where the set of vertices is{qj | j ∈ {0, 1}, q(j) ∈ R} and the
transitions are defined as follows:

• q0
x→ rj in DS iff q(0)

x→ r(j) in MA (wherej ∈ {0, 1});
• q1

x→ r0 in DS iff x = [q↓r] > 0.

Note that the sum of the probabilities of all outgoing transitions of every vertexr1 of DS is equal to one, because almost all
runs ofRunMA(q(1)) visit a configuration with zero counter (see [5]). Also note that DS is strongly connected. For every
transition of the formq1 → r0 in DS , we define the following conditional expectations:

• E[L | q1 → r0], theconditional expected lengthof a path fromq(1) to r(0) in MA, under the condition thatq(1) reaches
r(0) via a path where the counter stays positive in all configurations except for the last one;

• E[#s | q1 → r0], the conditional expected number of visits to configurations with control states ∈ S along a path from
q(1) to r(0) in MA (where the visit tor(0) does not count), under the condition thatq(1) reachesr(0) via a path where
the counter stays positive in all configurations except for the last one.

Let µDS
be the invariant distribution ofDS . Then

E[L] =
∑

q0inDS

µDS
(q0) +

∑

q1
x→r0inDS

µDS
(q1) · x · E[L | q1 → r0]

is the average number of transitions between two consecutive visits to configurationsq(i), r(j) of R, wherei + j ≤ 1, in a
run initiated in a configuration ofR. Similarly,

E[s] =
∑

q1
x→r0inDS

µDS
(q1) · x ·E[#s | q1 → r0]

is the average number of visits to a configuration with control states between two consecutive visits to configurationsq(i),
r(j) of R, wherei + j ≤ 1, in a run initiated in a configuration ofR (the visit to r(j) does not count). Now we define a
vectorFDS

: PatA → R as follows:

• FDS
(q(0)) = 0 for all q(0) 6∈ R,

• FDS
(q(∗)) = 0 for all q(∗) such thatR does not contain any configuration matchingq(∗),

• FDS
(q(0)) = µDS

(q0)/E[L] for all q(0) ∈ R,
• FDS

(q(∗)) = E[q]/E[L] for all q(∗) such thatR contains a configuration matchingq(∗).
By applying strong ergodic theorem (see, e.g., [20]), we obtain thatFA(w) = FDS

for almost allw ∈ Run(p(k), R).
Since the transition probabilities ofDS may take irrational values, the numbers involved in the definition of FDS

cannot be
computed precisely. By Theorem 3.2 (B.b.1) of [5], we have that bothE[L | q1 → r0] andE[#s | q1 → r0] are bounded by

α = 85000|Q|6/(x5|Q|+|Q|3
min · t4S), wherexmin is the least transition probability ofMA. Note that||α|| is polynomial in ||A||.

Using this bound, a simple error propagation analysis reveals that if the transition probabilities ofDS , all components of the
invariant distributionµDS

, and the conditional expectationsE[L | q1 → r0], E[#s | q1 → r0] are computed up to a relative
error ε/(42 · |Q|2 · α), then the relative error of every component in the approximated FDS

is bounded byε. By [21], the
transition probabilities ofDS can be approximated up to an arbitrarily small positive relative error in polynomial time. The
values of the conditional expectations can be efficiently approximated by applying the results of [5] (in [5], the results are
formulated just forE[L | q1 → r0], but their extension toE[#s | q1 → r0] is trivial). The invariant distributionµDS

can be
efficiently approximated by, e.g., applying the result of [8] (see also [9] for a more comprehensive overview) which saysthat
if the transition matrixMDS

of DS is approximated byM ′
DS

, then |||µDS
− µ′

DS
||| ≤ ̺ · |||MDS

−M ′
DS

|||, whereµ′
DS

is the
invariant distribution ofM ′

DS
and

̺ =
1

2
·max

j

{
maxi6=j mij

mjj

}

Heremij , i 6= j, is the mean first passage time from statei to statej, andmjj is the mean return time to statej, where all

of these values are considered forMDS
. Since the least transition probability ofDS is at leastx|Q|3

min (see [12]) andDS has at

most2|Q| states, we have thatmij andmii are bounded by2|Q|/x2|Q|4
min . This means that every component ofµDS

is bounded

by x
2|Q|4
min /2|Q| from below, and̺ is bounded by|Q|/x2|Q|4

min from above. Hence, it suffices to approximate the transition

probabilities ofDS up to the absolute errorεx4|Q|4
min /(168|Q|5α) and compute the invariant distribution for the approximated

transition matrixM ′
DS

.
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Lemma A Let p(k) be a configuration ofA. Then almost every run initiated inp(k) eventually stays in precisely one zone
of A. Further, for every zoneZ and every rationalε > 0, there is aP ∈ Q computable in time polynomial in||A||, ||ε||, and
k such thatP approximatesP(Run(p(k), Z)) up to the relative errorε.

Proof: First, observe that every region is a part of some zone, except for non-empty type IV regions determined by BSCCs
of CA with negative trend. IfR is such a type IV region andS the associated BSCC wheretS < 0, then almost all runs
initiated in a configuration ofR visit a configuration with zero counter infinitely often. Consequently, almost all runs initiated
in a configuration ofR visit a type I region, which means thatP(p(k), R) = 0. Thus, by applying Lemma 2, we obtain that
almost every run initiated inp(k) eventually stays in precisely one zone ofA.

Let Z be a zone ofA. We proceed by considering possible forms ofZ.

• Let Z = R, whereR is a type I region determined by a control stateq. Note that the problem whetherR = ∅ is decidable
in time polynomial in ||A||. If R = ∅, thenP(Run(p(k), Z)) = 0 and we are done. Otherwise,P(Run(p(k), Z)) =
P(Run(p(k)→ ∗q(0))).

• Let Z = R whereR is a type III region determined by a BSCCS of CA such thattS ≤ 0. ThenP(Run(p(k), Z)) =
P(Run(p(k), ↑S)) (note that the equality holds even ifR = ∅).

• Let Z = RII(S) ∪ RIII(S) ∪ RIV (S), whereS is a BSCC ofCA such thattS > 0. Then P(Run(p(k), Z)) =
P(Run(p(k), ↑S)).

• Z = RII(S), whereS is a BSCC ofCA such thattS = 0. If the type III region determined byS is non-empty (which
can be checked in time polynomial in||A||, thenRII(S) = ∅ and we are done. Otherwise, every configuration ofS × N

can reach a configuration with zero counter. Let→֒ ⊆ S×S be a binary relation such thats →֒ t iff s(0)→ t(0) in MA.
Note that →֒ is computable in time polynomial in||A||. Hence, we can also efficiently compute the BSCCs of(S, →֒),
and determine allnon-trivial BSCCsK of (S, →֒) such that for some (and hence all)q ∈ K we have thatpost∗(q(0)) is
infinite. Each non-trivial BSCCs of(S, →֒) corresponds to a type II region determined by a control stateof S, and vice
versa. Let us fix some control stateqK ∈ K for each non-trivial BSCCK, and letK be the set of all non-trivial BSCCs
of (S, →֒). ThenP(Run(p(k), Z)) =

∑
K∈K P(Run(p(k)→ ∗qK(0))).

• Let Z = R, whereR is a type II region determined byq ∈ S whereS is a BSCC ofCA such thattS < 0. If q belongs
to a non-trivial BSCC of(S, →֒) (see the previous item), thenP(Run(p(k), Z)) = P(Run(p(k)→ ∗q(0))). Otherwise,
P(Run(p(k), Z)) = 0.

Hence, it suffices to show how to efficiently approximateP(Run(p(k), ↑S)) andP(Run(p(k)→ ∗q(0))) where we may further
assume thatP(Run(r(ℓ)→ ∗q(0))) = 1 for everyr(ℓ) ∈ post∗(q(0)). In the following we assume thatk = 1 and we prove
that these probabilities can be approximated up to a relative errorε > 0 in time polynomial in||A|| and ||ε|| (for k > 1, we
simply introducek − 1 fresh control states that are used to increase the counter from 1 to k).

Let us fix q ∈ Q such thatP(Run(r(ℓ)→ ∗q(0))) = 1 for every r(ℓ) ∈ post∗(q(0)). Hence, ifp(1) ∈ post∗(q(0)) then
P(Run(p(1)→ ∗q(0))) = 1, and if p(1) 6∈ pre∗(q(0)) thenP(Run(p(1)→ ∗q(0))) = 0. Now assumep(1) ∈ pre∗(q(0)) r
post∗(q(0)). We construct a finite-state Markov chainEq where the set of vertices consists of allrj wherej ∈ {0, 1} and
r(j) ∈ pre∗(q(0))r post∗(q(0)), and two fresh verticesgood , bad . The outgoing transitions of a vertexrj are determined as
follows:

• r0
x→ sj iff sj is a vertex ofEq andr(0) x→ s(j) in MA;

• r0
x→ good iff x > 0 is the total probability of all transitionsr(0) y→ s(j) in MA such thats(j) ∈ post∗(q(0));

• r0
x→ bad iff x > 0 is the total probability of all transitionsr(0) y→ s(j) in MA such thats(j) 6∈ pre∗(q(0));

• r1
x→ s0 iff s0 is a vertex ofEq andx = [r↓s] > 0

• r1
x→ good iff x =

∑
s(0)∈post∗(q(0))[r↓s] > 0;

• r1
x→ bad iff x = [r↑] +∑s(0) 6∈pre∗(q(0))[r↓s] > 0;

• good
1→ good , bad 1→ bad .

It follows directly from the construction ofEq thatP(Run(p(1)→ ∗q(0))) is equal to the probability of reachinggood from
p1 in Eq. Note thatEq is an absorbing finite-state Markov chain with two absorbingverticesgood and bad . Let Eq be the
other (transient) vertices ofEq, and letU : Eq → R be the unique vector such thatUv is the probability of reachinggood
from v in Eq. ThenU is the unique solution of the systemxxx = Axxx+C, whereA is the |Eq| × |Eq| transition matrix for the
transient part ofEq andCv is the probability of the transitionv→ good in Eq (if there is no such transition, thenCv = 0).
This system can be rewritten to the standard form(I − A)xxx = C. Note that(I − A)−1 (i.e., thefundamental matrixof Eq)
satisfies|||(I −A)−1||| ≤ maxv∈Eq

mv, wheremv is the mean time of reaching an absorbing state fromv. Since every vertex

of Eq can reachgood in at most2|Q| transitions and the probability of each of these transitions is at leastx|Q|3
min (see [12]),

we obtain thatmv is bounded by2|Q|/x2|Q|4
min . Since |||I − A||| ≤ 1, we obtain that thecondition numberof I − A, i.e.,

|||I − A||| · |||(I − A)−1||| is bounded by2|Q|/x2|Q|4
min from above. By applying the standard result of numerical analysis (see,

e.g., [16]), we obtain that if the coefficients ofA andC are approximated so that the resulting matrixA′ and vectorC′ satisfy
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|||A − A′|||/|||I − A||| ≤ εx
2|Q|4
min /8|Q| and |||C − C′|||/|||C||| ≤ εx

2|Q|4
min /8|Q|, then the unique solutionU ′ of (I − A′)xxx = C′

satisfies|||U −U ′|||/|||U ||| ≤ ε. Since suchA′ andC′ are computable in time polynomial in||A|| and ||ε|| [21], [5], we are done.
Now let S be a BSCC ofCA. First, realize that if we change every rule(r, κ, s) ∈ γ, wherer belongs to a BSCC of

CA different from S, to (r,−1, s), then the resulting pVASSA′ satisfiesP(RunMA(p(1), ↑S)) = P(RunMA′ (p(1), ↑)).
To simplify our notation, we directly assume thatP(Run(p(1), ↑S)) = P(Run(p(1), ↑)), and we show how to approximate
P(Run(p(1), ↑)). Let Diverge be the set of all configurationsq(1) such thatq ∈ Q and [q↑] > 0. If p(1) 6∈ pre∗(Diverge),
we have thatP(Run(p(1), ↑)) = 0. Otherwise, we construct a finite-state Markov chainG where the set of vertices consists
of all rj wherej ∈ {0, 1} andr(j) ∈ pre∗(Diverge), and two fresh verticesgood , bad . The transitions ofG are determined
as follows:

• r0
x→ sj iff sj is a vertex ofG andr(0) x→ s(j) in MA;

• r0
x→ bad iff x > 0 is the total probability of all transitionsr(0) y→ s(j) in MA such thats(j) 6∈ pre∗(Diverge);

• r1
x→ s0 iff s0 is a vertex ofG andx = [r↓s] > 0;

• r1
x→ good iff x = [r↑] > 0;

• r1
x→ bad iff x =

∑
s(0) 6∈pre∗(Diverge)[r↓s] > 0;

• good
1→ good , bad 1→ bad .

It is easy to check thatP(Run(p(1), ↑)) is equal to the probability of reachinggood from p1 in G. The rest of the argument

is the same as above, the only difference is that now we also employ thex
4|Q|2
min · t3/(7000 · |Q|3) lower bound on positive

probability of the form[r↑], wheret is the trend ofS (see Theorem 4.8 in [5]).

APPENDIX B
PROOFS OFSECTION IV

The whole Appendix B is devoted to proofs of the following three theorems.

Theorem 3 Let S be a BSCC ofCA such thattS(2) < 0. Moreover, letR be any type-II region ofA2 determined by some
state ofS. Then there area1, b1 ∈ R>0 and z1 ∈ (0, 1) computable in polynomial space such that the following holds for all
p ∈ S such thatp(0) ∈ R, all n ∈ N, and all i ∈ N+:

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i) ≤ a1 · zb1·i1

Moreover, ifEp(n,0) < ∞, then it holds

Ep(n,0)

(
x
(T )
2

)
≤ a1 · zb11

1− zb11
.

In particular, neitherof the bounds depends onn.

Theorem 4 Let S be any BSCC ofCA such thattS(2) < 0. Furthermore, letR be any type II region ofA2 determined by
some state ofS and satisfyingτR > 0. Then there are numbersa2, b2 > 0 and 0 < z2 < 1 computable in space bounded by
a polynomial in||A|| such that for all configurationsp(n, 0), wherep(0) belongs toR, the following holds:

[p(n, 0) →∗ q(0, ∗)] ≤ a2 · zn·b22

Theorem 5 Let R be any type II region ofA2 such thatτR < 0. Then there are numbersa3, b3, d3 > 0 and 0 < z3 < 1,
computable in space bounded by a polynomial in||A||, such that for all configurationsp(n, 0), wherep(0) belongs toR, and
all q ∈ Q the following holds:

[p(n, 0) →∗ q(0, ∗), i] ≤ i · a3 · z
√
n·τR·b3+i·d3

3

for all i ≥ H·n
−τR

whereH is a computable constant.

We use the following additional notation: we denote byRun(pvvv →∗ quuu, i) the set of all runsw ∈ Run(pvvv) such that
T (w) ≥ i, w(i) = quuu, and for all0 ≤ j < i we havew(j) 6= quuu. Note that the probability ofRun(pvvv →∗ quuu, i) is exactly the
number[pvvv →∗ quuu, i].

A. Martingale Techniques

In this subsection we use the techniques of martingale theory to prove several technical lemmas that are crucial for the
analysis of those sets of configurationsC[R1, R2] such thatR2 is a type II region in which the corresponding counter has a
tendency to decrease.

To this end, fix a regionR of A2 whose type is II and which is determined by somep ∈ S, whereS satisfiestS(2) < 0.
We use the stochastic process{m(ℓ)}∞ℓ=0 defined in [7] as follows: for everyℓ ∈ N we put

m(ℓ) :=

{
x
(ℓ)
1 − τR · ℓ+ ggg

(
x
(ℓ)
2

)
[p(ℓ)] if x

(j)
1 > 0 for all 0 ≤ j < ℓ,

m(ℓ−1) otherwise.
(1)
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(Hereggg is a suitable function, defined precisely in [7], assigning numerical weights to configurations ofA2.) In other words,
the valuem(ℓ)(w) of the ℓ-th configuration of a runw is obtained by adding the value of the first counterx

(ℓ)
1 (w) to the value

of the second counterx(ℓ)
2 (w) weighted by the functionggg and by subtractingℓ times the trendτR.

In [7] we defined the functionggg in such a fay that the process{m(ℓ)}∞ℓ=0 satisfies several important properties: First of all, it
is a martingale[22], which intuitively means that the expected value of theℓ-th configuration is always equal to the observed
value of the(ℓ − 1)-th configuration, even if we are given the knowledge of values of all configurations up to the(ℓ − 1)-th
step.

A second crucial observations proved in [7] is that grows more or less linearly withx(ℓ)
2 .

Lemma 20 ([7]). There is a numberC > 0 computable in space bounded by a polynomial in||A|| such that for allp ∈ Q
andn ≥ 1 it holds |ggg(0)[p]| ≤ C and |ggg(n)[p]| ≤ C · n.

However, to apply powerful tools of martingale theory, suchas the Azuma’s inequality, we need to show that{m(ℓ)}∞ℓ=0

has bounded-differences. This is covered in the following lemma, whose proof combines several facts shown in [7] with
rather involved techniques from the theory of stochastic matrices. For better readability, we prove this lemma separately in
Appendix B-H.

Lemma 21. There is a boundB ≥ 1 computable in in space bounded by a polynomial in||A|| such that|m(ℓ+1) −m(ℓ)| ≤ B
for everyℓ ∈ N.

The power of martingale techniques is illustrated in the following lemma, which will be handy in the proof of Theorem 3.

Lemma 22. Let R be a type II region ofA2 determined by somep ∈ S, whereS is a BSCC ofCA such thattS(2) < 0.
Moreover, letp(n, 0) be any configuration such thatp(0) ∈ R. Denote byRepeat the set of all runsw such thatw(0) = w(i)
for some positivei such that4B2/τ2R ≤ i ≤ T (w). Then

Pp(n,0)(Repeat) <
1

2
.

Proof: For any runw ∈ Repeat let TRepeat(w) be the smallesti ≥ 4B2/τ2R such thatw(i) = w(0) (for suchw we have
TRepeat(w) ≤ T (w)). We have

Pp(n,0)(Repeat) =
∞∑

i=⌈4B2/τ2
R
⌉
Pp(n,0)(Repeat ∧ TRepeat = i) (2)

Now any runw initiated in p(n, 0) satisfiesm(0)(w) = n + ggg(0)[p]. Similarly, any runw ∈ Run(p(n, 0)) ∩ Repeat that
satisfiesTRepeat(w) = i satisfiesm(i)(w) = n+ ggg(0)[p]− i · τR. Hence,

Pp(n,0)(Repeat ∧ TRepeat = i) ≤ Pp(n,0)(|m(i) −m(0)| ≥ i · |τR|). (3)

From Azuma’s inequality we get

Pp(n,0)(|m(i) −m(0)| ≥ i · |τR|) ≤ 2 exp

(−τ2R · i2
2iB2

)
= 2 exp

(−τ2R · i
2B2

)

Combining this with (3) and (2) we get

Pp(n,0)(Repeat) ≤
∞∑

i=⌈4B2/τ2
R
⌉
2 exp

(−τ2R · i
2B2

)
≤ 2

exp
(
⌈ 4B2

τ2
R

⌉ · τ2
R

2B2

)
·
(
1− exp

(
− τ2R/2B

2
))

≤ 2

e2 · (1− 1
e2 )

<
1

2
.

The following lemma, which is crucial for the proof of Theorems 4 and 5, is also proved using Azuma’s inequality.

Lemma 23. Let R be a type II region ofA2 determined by somep ∈ S, whereS is a BSCC ofCA such thattS(2) < 0.
Then there area′, b′, b′′ ∈ R>0 and c′ ∈ (0, 1) such that for allp, q ∈ Q, wherep(0) ∈ R, and all i, n, n′ ∈ N satisfying
i ≥ (2 · (C + 1) · n′)/|τR| the following holds: If eitherτR > 0, or −τR · i

2 ≥ n, then

[p(n, 0) →∗ q(0, n′), i] ≤ a′ · (c′)n·τR·b′+i·b′′

Moreover,a′, b′, b′′, c′ are effectively computable in polynomial space.
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Proof: Denotevvv = (n, 0) anduuu = (0, n′). For better readability, we denote byτ the numberτR, whereR is the region
of A2 containingp(0). Let w ∈ Run(pvvv →∗ quuu, i). Then

(m(i) −m(0))(w) = x
(i)
1 (w) − τ · i+ ggg

(
x
(i)
2 (w)

)
[p(i)(w)]

− x
(0)
1 (w) + τ · 0− ggg

(
x
(0)
2 (w)

)
[p(0)(w)]

= −τi+ ggg(n′)[q]− n− ggg(0)[p]

= ggg(n′)[q]− ggg(0)[p]− n− τi.

Thus,
[pvvv →∗ quuu, i] ≤ P(m(i) −m(0) = ggg(n′)[q]− ggg(0)[p]− n− τi).

Note that if i < n, then [pvvv →∗ quuu, i] = 0. Assumei ≥ n. Sincei ≥ (2 · (C + 1) · n′)/|τ | ≥ (2 · |ggg(n′)[q]− ggg(0)[p]|)/|τ |, we
have

|ggg(n′)[q]− ggg(0)[p]| ≤ |τ | i
2
. (4)

Thus, denotingZ = ggg(n′)[q]− ggg(0)[p], the following holds:

• If τ < 0, then from (4) we haveZ ≥ τ i
2 and thusZ − τ i

2 ≥ 0. Hence,

[pvvv →∗ quuu, i] ≤ P(m(i) −m(0) ≥ −n− τ
i

2
). (5)

• If τ > 0, then from (4) we haveZ ≤ |τ | i2 = τ i
2 , and thusZ − τ i

2 ≤ 0. Hence,

[pvvv →∗ quuu, i] ≤ P(m(i) −m(0) ≤ −n− τ
i

2
). (6)

Now we apply the Azuma’s inequality. First considerτ > 0. Then, by Azuma’s inequality, for alli it holds

P(m(i) −m(0) ≤ −n− τ
i

2
) ≤ 2 exp

(−(n+ τ
2 i)

2

2 ·B · i

)

= 2 exp

(
−n2 − nτi − τ2i2

4

2 ·B · i

)

= 2 exp

(
1

2B

(−n2

i
− nτ − i

τ2

4

))

≤ 2 exp

(
1

2B

(
−nτ − i

τ2

4

))

≤ 2 exp

(−τ2

8B
(i+ nτ)

)
.

(For the last inequality we used the fact thatτ2/4 < 1.) Combining this inequality with (6) we obtain

[pvvv →∗ quuu, i] ≤ 2 exp

(−τ2

8B
(i+ nτ)

)

It is now easy to computea′, b′, b′′, c′ from the statement of the lemma: it suffices to puta′ = 2, c′ = 1/2 andb′ = b′′ = x2

8B ,
wherex is a number, computable in polynomial space, such thatτ ≥ x > 0 (x can be computed in polynomial space sinceτ
can be encoded in Tarski’s algebra).

Now considerτ < 0. To apply Azuma’s inequality in this case, we need to assume that−τ i
2 ≥ n. Then, as above,

P(m(i) −m(0) ≥ −n− τ
i

2
) ≤ 2 exp

(
1

2B

(
−nτ − i

τ2

4

))
,

and combining this with (5) yields

[pvvv →∗ quuu, i] ≤ 2 exp

(
1

2B

(
−nτ − i

τ2

4

))
.

Numbersa′, b′, b′′, c′ can be now easily computed (we putb′ = 1/2B andb′′ = x2/8B, wherex is as above).

20



B. Proof of Theorem 3

Fix a regionR of A2 that satisfies the assumptions of Theorem 3.
For the purpose of this proof we define the valueT (w) also for finite pathsw: we putT (w) = inf{i | 0 ≤ i ≤ length(w)∧

x
(i)
2 = 0}. Given a finite path or a runw, we denote byLVisit(w) the largest numberk such thatx(k)

2 (w) = 0 and for all
0 ≤ i ≤ k we havex(i)

1 (w) > 0 (if there are infinitely many suchk, which is possible only iflength(w) = T (w) = ∞, we
put LVisit(w) = ∞). Further, forw such thatLVisit(w) ∈ N we letLast(w) be the configurationw(LVisit(w)). Finally, for
a finite path or a runw and a configurationquuu we denote by#quuu(w) the number of occurrences ofquuu on w beforezeroing
the first counter. Formally, we put

#quuu(w) = |{i ∈ N | 0 ≤ i ≤ T (w) ∧ w(i) = quuu}|.
We have

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i) =

∑

q∈Q

∞∑

k=1

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i ∧ Last = q(k, 0))

=
∑

q∈Q

∞∑

k=1

∞∑

m=1

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i ∧ Last = q(k, 0) ∧#q(k,0) = m) (7)

Now denote byAi,m
q,k the eventT < ∞∧ x

(T )
2 ≥ i ∧ Last = q(k, 0) ∧#q(k,0) = m. It holds

Ai,m
q,k =

⋃

w∈FPath(p(n,0))
#q(k,0)=m

w(length(w))=q(k,0)

⋃

w′∈Run(q(k,0))
T (w′)<∞
x
(T )
2 (w′)≥i

∧T (w′)−1
j=1 x

(j)
2 (w′)>0

Run(w · w′).

(Herew · w′ = w(0), w(1), . . . , w(length(w) − 1), w′(0), w′(1), . . . .) It follows that

Pp(n,0)(A
i,m
q,k ) =

∑

w∈FPath(p(n,0))
#q(k,0)=m

w(length(w))=q(k,0)

Pp(n,0)(Run(w)) ·
( ∑

w′∈Run(q(k,0))
T (w′)<∞
x
(T )
2 (w′)≥i

∧T (w′)−1
j=1 x

(j)
2 (w′)>0

Pp(n,0)(Run(w
′))
)

= Pp(n,0)(#q(k,0) ≥ m) · Pq(k,0)(T < ∞∧ x
(T )
2 ≥ i ∧

T−1∧

j=1

x
(j)
2 > 0). (8)

Note that every runw initiated in q(k, 0) that satisfiesx(T )
2 (w) ≥ i and

∧T
j=1 x

(j)
2 (w) > 0 must have a prefix of length at

leasti+ k such that for every0 < j < i+ k we havex(j)
2 (w) > 0. It follows that

Pq(k,0)(T < ∞∧ x
(T )
2 ≥ i ∧

T−1∧

j=1

x
(j)
2 > 0) ≤ Pq(0)(L ≥ i+ k). (9)

HerePq(0)(L ≥ i+ k) is measured inA2 andL assigns to a given runw of A2 either the leastk > 0 such that the counter is
zero ink-th step ofw, or ∞ if there is no suchk (intuitively, L(w) is the number of steps in whichw (re)visits a configuration
with zero counter value for the first time).

By [5, Section 3.1], we can compute, in polynomial time, a number z such that

Pq(0)(L ≥ i+ k) ≤ 1 + 2|z|/|t2(s)|+ |Q| · 2d
i+k

1− d
,

whered = exp
(
− (tS(2))2

8(z+|ts(2)|+1)2

)
∈ (0, 1). Using this knowledge, we can easily compute, in polynomialtime, numbers

a, b ∈ R>0, andc ∈ (0, 1) such that
Pq(0)(L ≥ i + k) ≤ a · cb·(i+k).

Plugging this into (9), (8) and (7) we get

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i) ≤

∑

q∈Q

∞∑

k=1

a · cb·(i+k) ·
( ∞∑

m=1

Pp(n,0)(#q(k,0) ≥ m)
)
. (10)
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We now turn our attention to boundingPp(n,0)(#q(k,0) ≥ m). From Lemma 22 it follows that for anyh ∈ N it holds

Pp(n,0)(#q(k,0) ≥ 4hB2/τ2R) ≤ 2−h.

From this it follows that ∞∑

m=1

Pp(n,0)(#q(k,0) ≥ m) ≤ 4B2

τ2R
·

∞∑

h=0

2−h =
8B2

τ2R
.

Plugging this bound into (10) we get

Pp(n,0)(T < ∞∧ x
(T )
2 ≥ i) ≤

∑

q∈Q

∞∑

k=1

a · cb·(i+k) · 8B
2

τ2R
= |Q| · a · cb · 8B2

(1− cb) · τ2R
· cb·i,

and from this form the numbersa1, b1, c1 in the statement of Theorem 3 can be easily computed.
Finally, whenPp(n,0)(T < ∞) = 1, we have

Ep(n,0)

(
x
(T )
2

)
=

∑

i≥1

Pp(n,0)(x
(T )
2 ≥ i) ≤

∑

i≥1

a1 · cb1·i1 =
a1 · cb11
1− cb11

C. Proof of Theorem 4

We start with a simple corollary of the facts that we proved sofar. The corollary will be also useful in the proof of Theorem5.

Corollary 2. Let R be a type II region ofA2 determined by somep ∈ S, whereS is a BSCC ofCA such thattS(2) < 0.
Moreover, letp(n, 0) be any configuration ofA such thatp(0) ∈ R. Denotek = |τR|

2(C+1) , whereC is as in Lemma 20. Then
for arbitrary i ∈ N such that eitheri ≥ 2 · n/|τR| or τR < 0 it holds

[p(n, 0) →∗ q(0, ∗), i] ≤ i · k · a′ · (c′)n·τR·b′+i·k·b′′ +
a1

1− cb11
· ci·b1·k1 ,

wherea′, b′, b′′, c′ are as in Lemma 23 anda1, b1, c1 are as in Theorem 3.

Proof: We have

[p(n, 0) →∗ q(0, ∗), i] =

i∑

n′=0

[p(n, 0) →∗ q(0, n′), i] =

⌊i·k⌋∑

n′=1

[p(n, 0) →∗ q(0, n′), i] +
i∑

n′=⌊i·k+1⌋
[p(n, 0) →∗ q(0, n′), i]

≤ i · k · a′ · (c′)n·τR·b′+i·b′′ +
i∑

n′=⌊i·k+1⌋
[p(n, 0) →∗ q(0, n′), i] ≤ i · k · a′ · (c′)n·τR·b′+i·k·b′′ +

i∑

n′=⌊i·k+1⌋
a1 · cb1·i1

≤ i · k · a′ · (c′)n·τR·b′+i·k·b′′ +
a1

1− cb11
· ci·b1·k1 .

Here the first inequality on the second line follows from Lemma 23 (note that anyn′ ≤ i · k satisfiesi ≥ (2(C + 1)n′)/|τR|,
so the assumptions of this Lemma are satisfied), while the second inequality follows from Theorem 3.

We now proceed with the proof of Theorem 4. SinceτR > 0, from Corollary 2 we get

[p(n, 0) →∗ q(0, ∗), i] ≤ i · k · a′ · (c′)i·k·b′′ + a1

1− cb11
· ci·b1·k1

But then

[p(n, 0) →∗ q(0, ∗)] =
∞∑

i=n

[p(n, 0) →∗ q(0, ∗), i] ≤ n · k · a′
(1− (c′)k·b′′)2

· (c′)n·k·b′′ + a1

(1 − cb11 ) · (1− cb1·k1 )
· cn·b1·k1 .

The numbersa2, b2, z2 in Theorem 4 can be straightforwardly computed from this bound.

D. Proof of Theorem 5 fortS(2) < 0

In this subsection we prove Theorem 5 under the assumption that the regionR is determined by somep ∈ S, whereS is a
BSCC ofCA with tS(2) < 0. The case whentS(2) > 0 is handled separately in the next subsection.

We put ã3 = 2 · max{k · a′, a1/(1 − cb11 )}, b̃3 = b′, z̃3 = max{c′, c1} and d̃3 = k · min{b′′, b1}. From Corollary 2 it
immediately follows that

[p(n, 0) →∗ q(0, ∗), i] ≤ i · ã3 · (z̃3)n·τR·b̃3+i·d̃3

wheneveri ≥ 2n
−τR

. From this, the numbersa3, b3, z3 in the statement of the theorem can be easily.
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E. Proof of Theorem 5 fortS(2) > 0

Intuitively, if the second counter starts high enough andtS(2) > 0, then the probability of reaching zero in the second
counter is negligibly small, and hence we may basically ignore the value of the second counter. We obtain a one counter
pVASS, preserving the behaviour of the first counter, on which we may easily bound time to zeroing this counter using the
previous results.

Within this subsection we often operate with several probability measures within a single expression. To differentiate between
them, we denote byPB the probability measure associated to a pVASSB.

In the proof we use some known results on one counter pVASS. Let B be a one counter pVASS and letS be a BSCC of
CB such thattS 6= 0. As shown in the proof of Lemma 5.6 in [5] (see also Proposition 7 in [4]) one can compute, in time
polynomial in the size ofB, a boundhS ∈ N and numbersaS > 0, cS ∈ (0, 1) such that for all configurationsp(k), where
p ∈ S, all statesq of B, and all i ≥ hS · k it holds

PB
p(k)

(
Run(p(k) →∗ q(0), i)

)
≤ aS · c−i

S . (11)

Another crucial tool from the world of one-counter pVASS is the divergence gap theorem[5, Theorem 4.8], which bounds
a positive non-termination probability away from zero. Thetheorem states that for any BSCCS of B with tS > 0 there is a
numberδS ∈ (0, 1) computable in polynomial time such that for everyp ∈ S for which the probability of avoiding zero when
starting inp(1) is positive it holds ∑

q∈Q

PB
p(1)

(
Run(p(1) →∗ q(0))

)
≤ 1− δS .

In [7] we proved that for anyS with tS > 0 there isℓ ∈ N such that for everyp ∈ S the probability of avoiding zero counter
from p(ℓ) is positive. Now ifR is in a type II region ofB determined by somep ∈ S, then from every configurationq ∈ S
such thatq(|S|) ∈ R there is a zero-avoiding path fromq(|S|) to somer(ℓ), so the probability of avoiding zero fromq(|S|)
is also positive. From this it follows that for anyp(k) ∈ R, wherek ≥ |S|, it holds

∑

q∈Q

PB
p(k)

(
Run(p(k) →∗ q(0))

)
≤ (1− δS)

k−|S|.

Both of the above results on one-counter pVASS were originally proved using a suitable martingale{m̂(ℓ)}ℓ=0∞. We will
need this martingale in this subsection as well, to prove some additional auxiliary results. The process{m̂(ℓ)}∞ℓ=0 can be seen
as the one-counter analogue of the (substantially more complex) two-counter martingale{m(ℓ)}∞ℓ=0 which was defined in one
of the previous sections. Formally, let us fix a one-counter pVASS B and a BSCCS of CB. We define a stochastic process
{m̂(ℓ)}∞ℓ=0 on runs ofB by putting, for everyℓ ∈ N,

m̂(ℓ) =

{
x
(ℓ)
1 − tS · ℓ+ zzz(p(ℓ)) if x

(j)
1 > 0 for all 0 ≤ j < ℓ,

m(ℓ−1) otherwise,

wherezzz is a suitable function assigning numerical weights to states in S. It was shown in [5] that one can compute, in time
polynomial in size ofB, a functionzzz such that

• maxp,q∈S |zzz(p)− zzz(q)| ≤ hS , and
• the stochastic process{m̂(ℓ)}∞ℓ=0 is a martingale whenever the initial state belongs toS.

Now fix a two counter pVASSA and letâ, ĉ, andĥ be the maximalaS andcS andhS , respectively, among all BSCCsS
of A1 andA2. Note thatâ, ĉ, and ĥ can be computed in time polynomial in the size ofA.

Lemma 24. LetR be a region ofA2 satisfying the assumptions of Theorem 5 whose corresponding BSCCS satisfiestS(2) > 0.
Then there are numbersa4, b4 > 0, c4 ∈ (0, 1) computable in polynomial time such that for everyp ∈ S with p(0) ∈ R, every
n ∈ N, everyi ≥ max{2ĥn, 4|S|}, and everyk ≥ i/8 it holds

[p(n, k) →∗ q(0, ∗), i/2] ≤ a4 · (c4)i·b4

Proof: Note that

[p(n, k) →∗ q(0, ∗), i/2] ≤ PA1

p(n)

(
Run(p(n) →∗ q(0), i/2)

)
+
∑

r∈Q

i/2∑

j=0

PA2

p(k)

(
Run(p(k) →∗ r(0), j)

)
. (12)

This is because the set of runs initiated inp(n, k) that visits a configuration with zero value in the second counter before
reaching zero in the first counter has the same probability asthe corresponding set of those runs ofA1 initiated inp(n) whose
accumulated payoff (i.e. the change of the second counter which is encoded in labels ofA1) does not drop below−k before
a configuration with a zero counter is reached. We will bound both summands in (12) separately.
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For the first summand, the discussion at the beginning of thissubsection shows that

PA1

p(n)

(
Run(p(n) →∗ q(0), i/2)

)
≤ â · ĉ i

2 ≤ â · ĉ i
2 . (13)

For the second summand we use the divergence gap theorem, seeabove. We have

∑

r∈Q

i/2∑

j=0

PA2

p(k)

(
Run(p(k) →∗ r(0), j)

)
≤

∑

r∈Q

PA2

p(k)

(
Run(p(k) →∗ r(0))

)
≤ (1− δ)k−|S| ≤ (1− δ)

i
8 . (14)

(The last two inequalities follow from our lower bounds oni andk.) Combining (14), (13), and (12) we can easily compute
the numbersa4, b4, c4 from the statement of the lemma.

Now starting inp(n, 0) and assuming thattS(2) > 0, we may easily show that the second counter quickly grows with high
probability.

Lemma 25. LetR be a region ofA2 satisfying the assumptions of Theorem 5 whose corresponding BSCCS satisfiestS(2) > 0.
Then there are numbersa5, b5 > 0, c5 ∈ (0, 1) computable in polynomial time such that for everyp ∈ S with p(0) ∈ R, every
n ∈ N, everyi ≥ 16 · ( ĥ

tS(2) )
2, and everyk ≤ i

8tS(2) it holds

PA
p(n,0)(Tk = i/2 ∧Over ≤ i/4) ≤ a5 · c

√
i·b5

5 .

Proof:
For a runw ∈ Run(p(n, 0) →∗ r(∗, k)) we denote by

• Tk(w) the smallestℓ such thatx(ℓ)
2 (w) = k,

• Over(w) the largestℓ ≤ Tk(w) such thatx(ℓ)
2 (w) = 1,

• COver(w) the configurationw(Over (w)),
• #q(m) the cardinality of the set{ℓ ∈ N | ℓ ≤ Tk(w) ∧ w(ℓ) = q(m)}.

We have

[p(n, 0) →∗ r(∗, k), i/2] ≤ PA
p(n,0)(Tk = i/2 ∧Over ≤ i/4) + PA

p(n,0)(Tk = i/2 ∧Over > i/4). (15)

To prove the lemma it suffices to give tail bounds on both summands in (15).
Let us start with the second summand. Denote byA the set of all runsw ∈ Run(p(n, 0) →∗ r(∗, k)) such that
• Tk(w) = i/2
• there are at most

√
i/4 indexesℓ ≤ Tk(w) such that the second counter is equal to0 in w(ℓ).

• w contains a sub-pathw′(0), . . . , w′(ℓ) with the following properties:
– i/2 ≥ ℓ ≥

√
i/4− 1,

– the second counter is equal to 1 inw′(0) andw′(ℓ),
– the second counter is positive in all configurations ofw′

Note that the last item in the definition ofA is implied by the previous items. Next, denote byB the set of all runsw ∈
Run(p(n, 0) →∗ r(∗, k)) such that there are at least

√
i/4 indexesℓ ≤ Tk(w) such that the second counter is equal to0 in

w(ℓ). Then
PA
p(n,0)(Tk = i/2 ∧Over > i/4) ≤ PA

p(n,0)(A) + PA
p(n,0)(B).

Again, it suffices to give tail bounds for both summands on theright-side of the previous equation.
First we focus on the probability ofA. Letw be any run initiated in some configurationq(1) of A2, hereq ∈ S, such that the

leastℓ for which w(ℓ) has a zero counter satisfiesℓ ≥ (
√
i/2)− 1. Thenm̂(ℓ)(w)− m̂(0)(w) ≤ −ℓ · tS(2)+maxp,q∈S |zzz(p)−

zzz(q)| ≤ −ℓ · tS(2) + ĥ ≤ −ℓ
2 · tS(2), the last inequality following from our assumption thati ≥ 16 · ( ĥ

tS(2) )
2. Using this fact

and Azuma’s inequality we get that

PA
p(n,0)(A) ≤

√
i

2
· 2 ·

i/2∑

ℓ=⌊
√

i/4−1⌋

exp

(
− ℓ

8((tS(2))2 + ĥ+ 1)

)
≤ (a′) · (c′)

√
i·b′ ,

for suitable polynomially computable numbersa′, b′ > 0, c′ ∈ (0, 1).
Now we turn our attention toB. SinceR is a type II region, from every configurationq(0) of A2 that is reachable from

p(0) there is a finite path of length at most|Q|2 ending in a configuration of the formt(|S|), from which the probability of
zeroing the counter is at most1 − δ̂, as argued above. Hence, denotingpmin the minimal non-zero transition probability in
CA2 we get

PA
p(n,0)(A) ≤

(
(1− p

|Q|2
min ) · (1− δ̂)

)⌊ √
i

|Q|2·
√

4
⌋ ≤ a′′ · (c′′)

√
i·b′′ ,
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for suitable polynomially computable numbersa′′, b′′ > 0, c′′ ∈ (0, 1).
Now we go back to (15) and bound the numberPA

p(n,0)(Tk = i/2 ∧ Over ≤ i/4). We can easily show, using similar
arguments as in the proof of Theorem 3, that

PA
p(n,0)(A) ≤

∑

q∈Q

n+i/2∑

j=n−i/2

i/2∑

m=1

i/4∑

o=0

Pp(n,0)(Tk =
i

2
∧ x

(i/2)
2 = k ∧Over = o ∧COver = q(j, 1) ∧#q(j,1) = m)

≤
i/2∑

m=1

Pp(n,0)(#q(j,1) ≥ m) ·
(∑

q∈Q

n+i/2∑

j=n−i/2

i/4∑

o=0

·Pq(j,1)(Tk =
i

2
− o ∧ x

( i
2−o)

2 = k ∧
i
2−o∧

ℓ=1

x
(ℓ)
2 > 0)

)

≤ i

2

∑

q∈Q

n+i/2∑

j=n−i/2

i/4∑

o=0

·Pq(j,1)(Tk =
i

2
− o ∧ x

( i
2−o)

2 = k ∧
i
2−o∧

ℓ=1

x
(ℓ)
2 > 0

︸ ︷︷ ︸
denote byX

).

Any run w ∈ X satisfiesm̂( i
2−o) − m̂(0) ≤ k − ( i

2 − o) · tS(2) + ĥ ≤ k − ( i
4 − o) · tS(2). For k ≤ i

8·tS(2) this number is
≤ ( i

8 − o) · tS(2), and hence we can use the Azuma’s inequality to get

PA
p(n,0)(A) ≤

i

2

∑

q∈Q

n+i/2∑

j=n−i/2

i/4∑

o=0

2(c′′′)(i−o)b′′′

for suitable polynomially computable numbersb′′′ > 0, c′′′ ∈ (0, 1). Hence,

PA
p(n,0)(A) ≤

i

2

∑

q∈Q

n+i/2∑

j=n−i/2

2(c′′′)(i/4)·b
′′′
/(1− (c′′′)b

′′′
)) ≤ a′′′′ · (c′′′′)i·b′′′′

For suitable polynomially computable numbersa′′′′, b′′′′ > 0, c′′′′ ∈ (0, 1). The numbersa5, b5, c5 can now be computed in
polynomial time using the tail bounds given within this proof.

Now we finish the proof of Theorem 5. We have LetH = max{2ĥ, 4|S|, 16( ĥ
tS(2) )

2}. Then for alli ≥ H · n it holds

[p(n, 0) →∗ q(0, ∗), i] =
∑

k≤i

∑

r∈Q

n+i/2∑

ℓ=n−i/2

[p(n, 0) →∗ r(ℓ, k), i/2][r(ℓ, k) →∗ q(0, ∗), i/2]

and thus, by Lemma 25,

[p(n, 0) →∗ q(0, ∗), i] ≤
i/8∑

k=0

a5 · cb5
√

i/2

5 +

i/2∑

k=i/8

∑

r∈Q

n+i/2∑

ℓ=n−i/2

[p(n, 0) →∗ r(ℓ, k), i/2][r(ℓ, k) →∗ q(0, ∗), i/2]

But by Lemma 24, fork ≥ i/8 we have that

[r(ℓ, k) →∗ q(0, ∗), i/2] ≤ a4 · (c4)i·b4

This together with the previous equation gives us

[p(n, 0) →∗ q(0, ∗), i] ≤ i

8
· cb5·

√
i/2

5 + a4 · (c4)i·b4 .

The numbersa3, b3, z3 can now be straightforwardly computed using the above inequality.

F. Proof of Lemma 10

Let C be the set of all configurations of the formq(0,m) ∈ C[R1, R2] satisfyingm ≤ a1·cb11
1−c

b1
1

wherea1, b1, c1 come from

Theorem 3. As explained in Section IV, Lemma 10 is an immediate consequence of the following

Proposition 2 (The Attractor). ConsiderC[R1, R2] where bothR1 andR2 are of type II. Assume thattS(2) < 0, tS(1) 6= 0,
τR1 < 0 and τR2 < 0. ThenC[R1, R2] is eagerly attracted toC.

Given a configurationpvvv and a setA of configurations we denote by[pvvv →∗ A,≥ i] the probability that a run that starting
in pvvv visits A in at leasti steps and does not visitA between the first and the last step.
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Given a runw, we denote byT1(w), T2(w), andT12(w) the leastk such thatw(k) ∈ CS [c1 = 0], w(k) ∈ CS [c2 = 0], and
w(k) ∈ ZS = CS [c1 = 0] ∪ CS [c2 = 0], respectively.

The following lemma reformulates results of Theorem 3, Theorem 4, and Theorem 5 in a bit weaker but more transparent
way.

Lemma 26. Let us fixpvvv ∈ C[R1, R2]. There are effectively computable numbersa > 0 and 0 < b < 1 (depending onpvvv)
such that the following holds:

1) For all ℓ ∈ N we have
[pvvv →∗ ZS ,≥ ℓ] ≤ a · bℓ

2) For all ℓ ∈ N we have
Ppvvv(x

(T12)
1 + x

(T12)
2 ≥ ℓ) ≤ a · bℓ

3) For all q ∈ Q, m ∈ N and ℓ ≥ m we have

[q(m, 0) →∗ CS [c1 = 0],≥ ℓ] ≤ a · b
√
ℓ−m

and
[q(0,m) →∗ CS [c2 = 0],≥ ℓ] ≤ a · b

√
ℓ−m

4) For all q ∈ Q, m ∈ N and ℓ ∈ N we have

Pq(m,0)(x
(T1)
2 ≥ ℓ) ≤ a · bℓ

5) For all q ∈ Q, m ∈ N we have the following:

a) If tS(1) < 0, then for all ℓ ∈ N we have

Pq(0,m)(x
(T2)
1 ≥ ℓ) ≤ a · bℓ

b) If tS(1) > 0, then for all ℓ ≥ m we have

Pq(0,m)(x
(T2)
1 ≥ ℓ) ≤ a · b

√
ℓ−m

Let w be a run starting inpvvv. Denote byΘ0(w) the leastℓ such thatw(ℓ) ∈ CS [c2 = 0]. Given k ≥ 1, denote byΘk(w)
the leastℓ ≥ Θk−1(w) such that the following holds

• If k is odd, thenw(ℓ) ∈ CS [c1 = 0].
• If k is even, thenw(ℓ) ∈ CS [c2 = 0].

Lemma 27. There are effectively computable numbersâ > 0 and 0 < b̂ < 1 such that for allk ≥ 0 and all ℓ ∈ N we have

Ppvvv(Θk −Θk−1 ≥ ℓ) ≤ â · (b̂)
√
ℓ

Proof: We distinguish two casesk = 0 andk > 0.
CaseΘ0: Note that

Ppvvv(Θ0 ≥ ℓ) ≤ [pvvv →∗ ZS ,≥ ℓ/2] + Ppvvv(x
(T12)
1 + x

(T12)
2 ≥ ℓ/4)

+
∑

q∈Q

ℓ/4∑

m=1

Ppvvv(x
(T1)
2 = m ∧ p(T1) = q) · [q(m, 0) →∗ CS [c2 = 0],≥ ℓ/2]

≤ a · bℓ/2 + a · bℓ/4 +
∑

q∈Q

ℓ/4∑

m=1

Ppvvv(x
(T1)
2 = m ∧ p(T1) = q) · a · b

√
ℓ/2−m

≤ 3 · a · b
√

ℓ/4

which can easily be rewritten to the desired form.
CaseΘk: If either tS(1) < 0, or k is odd, then using Lemma 27 2., 4., 5. a), and induction one mayeasily prove that

Ppvvv(x
(Θk)
1 + x

(Θk)
2 ≥ ℓ) ≤ a · bℓ

(Intuitively, whenever we start inq(m, 0), then we reachCS [c1 = 0] with probability one and by Lemma 27 4., the probability
that the height of the second counter at the time is at leastℓ is bounded bya · bℓ (independently ofm). The same holds for
configurationsq(0,m) sincetS(1) < 0.)
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Now assume thattS(1) > 0 and thatk ≥ 2 is even. Note that

Ppvvv(x
(Θk)
2 ≥ ℓ) ≤ Ppvvv(x

(Θt−1)
1 ≥ ℓ/2) +

∑

q∈Q

ℓ/2∑

m=1

Ppvvv(x
(Θt−1)
2 = m ∧ p(Θt−1) = q) · Pq(0,m)(x

(T2)
1 ≥ ℓ)

≤ a · bℓ/2 +
∑

q∈Q

ℓ/2∑

m=1

Ppvvv(x
(Θt−1)
2 = m ∧ p(Θt−1) = q) · a · b

√
ℓ−m

≤ 2 · a · b
√

ℓ/2

≤ a′ · (b′)
√
ℓ

for suitablea′ > 0 and0 < b′ < 1 that are effectively computable and satisfya · b
√
ℓ ≤ a′ · (b′)

√
ℓ.

So for arbitrary tS(1) 6= 0 andk ≥ 1 we have that

Ppvvv(x
(Θk)
1 + x

(Θk)
2 ≥ ℓ) ≤ a′ · (b′)

√
ℓ

Now using the same argument as forΘ0, we obtain fork odd,

Ppvvv(Θk −Θk−1 ≥ ℓ) ≤ Ppvvv(x
(Θt−1)
2 ≥ ℓ/2) +

∑

q∈Q

ℓ/2∑

m=1

Ppvvv(x
(Θt−1)
2 = m ∧ p(Θt−1) = q) · [q(m, 0) →∗ CS [c2 = 0],≥ ℓ]

≤ a′ · (b′)ℓ/2 +
∑

q∈Q

ℓ/2∑

m=1

Ppvvv(x
(Θt−1)
2 = m ∧ p(Θt−1) = q) · a′ · (b′)

√
ℓ−m

≤ 2 · a′ · (b′)
√

ℓ/2

which can easily be rewritten into the desired form. Fork even the argument is similar with counters switched.
Now let us finish the proof of Proposition 2. Letw be a run starting inpvvv. Denote byRounds(w) the least numberk ≥ 0

such thatw(Tk(w)) ∈ C. Denote by¬Termk the set of all runsw starting inpvvv satisfyingw(Θk(w)) 6∈ C. We write¬Term<k

to denote the set of all runsw starting inpvvv satisfyingw(Θj(w)) 6∈ C for all 0 ≤ j < k. Finally, we denote by¬Term the
set ofall runs thatdo notvisit C before visiting a configuration ofCS [c1 = 0]r C.

It follows from Theorem 3 that there is an effectively computable constant0 ≤ c̄ < 1 (independent ofvvv(1)) such that for
all q ∈ Q and allm ∈ N we have

Pq(m,0)(¬Term) ≤ c̄

For all k ≥ 1 odd holds

Ppvvv(¬Termk ∧ ¬Term<k) =
∑

q∈Q

∑

m∈N

Ppvvv(x
(Θk−1)
1 = m ∧ p(Θk−1) = q ∧ ¬Termk ∧ ¬Term<k)

=
∑

q∈Q

∑

m∈N

Ppvvv(x
(Θk−1)
1 = m ∧ p(Θk−1) = q ∧ ¬Term<k) · Ppvvv(¬Termk | x(Θk−1)

1 = m ∧ p(Θk−1) = q ∧ ¬Term<k)

=
∑

q∈Q

∑

m∈N

Ppvvv(x
(Θk−1)
1 = m ∧ p(Θk−1) = q ∧ ¬Term<k) · Pq(m,0)(¬Term)

≤
∑

q∈Q

∑

m∈N

Ppvvv(x
(Θk−1)
1 = m ∧ p(Θk−1) = q ∧ ¬Term<k) · c̄

= Ppvvv(¬Term<k) · c̄
For all k ≥ 1 even holds

Ppvvv(¬Termk ∧ ¬Term<k) ≤ Ppvvv(¬Term<k)

Now since¬Term<k = ¬Termk−1 ∩ ¬Term<k−1 we obtain, by induction, thatPpvvv(Rounds ≥
√
k) ≤ (c̄)(⌊

√
k⌋)/2−1. Thus

for all i ≥ N we have

[pvvv →∗ C,≥ i] ≤ P(Tours ≥ ⌊
√
i⌋) +

⌊
√
i⌋∑

k=1

P(Θk −Θk−1 ≥ ⌊
√
i⌋)

≤ (c̄)(⌊
√
i⌋)/2−1 +

√
i · â(b̂)⌊ 4√i⌋

which proves thatpvvv is eagerly attracted toC.
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G. Geometric Sums of Stochastic Matrices

For the proof of Lemma 21 in Appendix B-H we will need a generallemma on geometric sums of stochastic matrices, see
Lemma 29 below. For the proof of Lemma 29 we use a coupling argument on finite-state Markov chains. As a preparation we
first prove the following lemma on finite-state Markov chains.

Lemma 28. Consider a finite-state Markov chain on a setQ of states with|Q| = n. Let ymin denote the smallest nonzero
transition probability in the chain. Letp ∈ Q be any state andS ⊆ Q any subset ofQ. Define the random variableT on runs
starting in p by

T :=

{
k if the run hits a state inS for the first time after exactlyk steps

undefined if the run never hits a state inS .

We haveP(T ≥ k) ≤ 2ck for all k ≥ n, where c := exp(−ynmin/n). Moreover, if P(T < ∞) = 1, then we have
ET ≤ 5n/ynmin, we we writeE for the expectation with respect toP .

Proof: If ymin = 1 then all states that are visited are visited after at mostn − 1 steps and henceP(T ≥ n) = 0.
Assumeymin < 1 in the following. Since for each state the sum of the probabilities of the outgoing edges is1, we must have
ymin ≤ 1/2. Call crash the event of, within the firstn− 1 steps, either hittingS or some stater ∈ Q from which S is not
reachable. The probability of a crash is at leastyn−1

min ≥ ynmin, regardless of the starting state. Letk ≥ n. For the event where
T ≥ k, a crash has to be avoided at least⌊ k−1

n−1⌋ times; i.e.,

P(T ≥ k) ≤ (1− ynmin)
⌊ k−1
n−1 ⌋ .

As ⌊ k−1
n−1⌋ ≥ k−1

n−1 − 1 ≥ k
n − 1, we have

P(T ≥ k) ≤ 1

1− ynmin

·
(
(1− ynmin)

1/n
)k

≤ 2 ·
(
(1 − ynmin)

1/n
)k

= 2 · exp
(
1

n
log(1− ynmin)

)k

≤ 2 · exp
(
1

n
· (−ynmin)

)k

= 2 · ck .

Moreover, ifP(T < ∞) = 1, we have:

ET =

∞∑

k=1

P(T ≥ k)

≤ n+

∞∑

k=0

2ck

= n+
2

1− exp(−ynmin/n)

≤ n+
4n

ynmin

asexp(−ynmin/n) ≤ 1− ynmin

2n

≤ 5n/ynmin

Now we are ready to prove the following lemma.

Lemma 29. Let G ∈ [0, 1]Q×Q be a stochastic matrix with only one BSCC. Letymin denote the smallest nonzero entry
of G. Let rrr ∈ RQ be a vector. Definefff(n) :=

∑n−1
i=0 Girrr for all n ∈ N. For any vectorvvv ∈ RQ let us define|vvv|diff :=

maxp1,p2∈Q |vvv[p1]− vvv[p2]|. Then we have|fff(n)|diff ≤ C |rrr|diff for all n ∈ N, whereC := 10|Q|/y|Q|
min.

Proof: Let κ ∈ R, and definerrr+ := rrr + κ111. Note that|rrr+|diff = |rrr|diff . SinceG is stochastic, we have for alln ∈ N:
∣∣∣∣∣

n−1∑

i=0

Girrr+

∣∣∣∣∣
diff

=

∣∣∣∣∣nκ111 +
n−1∑

i=0

Girrr

∣∣∣∣∣
diff

= |nκ111 + fff(n)|diff = |fff(n)|diff

So in the following we can assume without loss of generality thatrrr ≥ 000 andrrr[p] = 0 for somep ∈ Q, so that we have:

|rrr|diff = |||rrr||| (16)
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Consider the finite-state Markov chain onQ induced byG. Let p1, p2 ∈ Q be arbitrary states. We define random runs
X

(0)
1 , X

(1)
1 , . . . andX

(0)
2 , X

(1)
2 , . . . in the Markov chain, withX(i)

1 , X
(i)
2 ∈ Q for all i ∈ N, andX(0)

1 = p1 andX
(0)
2 = p2,

and
P(X

(i+1)
1 = q | X(i)

1 = p) = G[p, q] for all i ∈ N and

P(X
(i+1)
2 = q | X(i)

2 = p) = G[p, q] for all i ∈ N.
(17)

We write X1,X2 for the sequences(X(i)
1 )i and (X

(i)
2 )i in the following. Forq ∈ Q we regardrrr[q] as a “reward” incurred

when the chain is in stateq. For eachn ∈ N we define a random variableR1(n), the “accumulated reward before timen”:

R1(n) :=

n−1∑

i=0

rrr[X
(i)
1 ]

We defineR2(n) similarly, replacingX(i)
1 by X

(i)
2 . Writing E for expectation, we have for alln ∈ N:

ER1(n) = fff(n)[p1] and ER2(n) = fff(n)[p2] (18)

We now refine the definition ofX1 andX2 by coupling them as follows. Lets ∈ Q be a state from the only BSCC ofG. Let
T1, T2 ∈ N so that:

T1 := min{i ∈ N | X(i)
1 = s}

T2 := min{i ∈ N | X(i)
2 = s}

Note thatT1, T2 exist almost surely. We now require fromX1,X2 that for eachi ∈ N we have:

• if there isj ∈ N with i− j = T2 ≥ T1, thenX(i)
2 = X

(T1+j)
1 ;

• if there isj ∈ N with i− j = T1 ≥ T2, thenX(i)
1 = X

(T2+j)
2 .

In words: ifX1 reachess first, then as soonX2 also reachess, it mimics the behavior ofX1 after it had reacheds; symmetrically,
if X2 reachess first, thenX1 mimicsX2 in a similar way; if they reachs at the same time, their behavior is henceforth identical.
Note that althoughX1,X2 are not independent, Equations (17) and (18) remain valid, as they did not require independence.
By the coupling we have:

R1(T1 + n)−R1(T1) = R2(T2 + n)−R2(T2) for all n ∈ N

Let T1 ≤ T2. Then it follows for alln ∈ N:

R1(T1 + n)−R2(T1 + n) = R2(T2 + n)−R2(T2) +R1(T1)−R2(T1 + n)

≤ (T2 − T1)|||rrr|||+ T1|||rrr||| ≤ (T1 + T2)|||rrr|||

Let nowT2 ≤ T1. Then we similarly have for alln ∈ N:

R1(T1 + n)−R2(T1 + n) = R2(T2 + n)−R2(T2) +R1(T1)−R2(T1 + n)

≤ R1(T1) ≤ T1|||rrr|||

So in any case (T1 ≤ T2 or T2 ≤ T1) we have:

R1(n)−R2(n) ≤ (T1 + T2)|||rrr||| for all n ∈ N (19)

We have:

fff(n)[p1]− fff(n)[p2] = ER1(n)− ER2(n) by (18)

= E (R1(n)−R2(n)) by linearity of expectation

≤ |||rrr|||(ET1 + ET2) by (19)

≤ 10|||rrr||||Q|/y|Q|
min by Lemma 28

= 10 |rrr|diff |Q|/y|Q|
min by (16)

The statement follows, asp1, p2 were chosen arbitrarily.
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H. Bounded Differences

We are going to prove Lemma 21, stating that the martingale defined in (1) has bounded differences. Recall that we have
fixed a regionR of A2 whose type is II and which is determined by somep ∈ S, whereS satisfiestS(2) < 0. Let us recall
from [7] the definition of the functionggg : N → RS referred to in (1). A certain vectorggg(0) ∈ RS was defined in [7], and
since the matrixA in [7] is stochastic, we can assumeggg(0) ≥ 000. Usingggg(0) as base case, we define the functionggg : N → RS

inductively as follows:
ggg(n+ 1) = rrr↓ +Gggg(n) for all n ∈ N, (20)

whererrr↓ ∈ RS was defined in [7], andG ∈ RS×S denotes the matrix such thatG[q, r] is the probability that starting from
q(1) the configurationr(0) is visited before visiting any configurationr′(0) for any r′ 6= r. SincetS(2) < 0, the matrixG is
stochastic, i.e.,G111 = 111. We prove:

Lemma 30. Matrix G has only one BSCC.

Proof: For p, q ∈ S andk ∈ Z we write p
k−→ q if there is a path inA2 from p(n) to q(n+ k) for somen ≥ 0. Observe

that there isk < 0 with p
k−→ q if and only if there is a nonempty path in the graph ofG from p to q.

Let p ∈ S andq ∈ B, whereB ⊆ S is a BSCC ofG. We need to show thatq is reachable fromp in the graph ofG. Let
k ∈ Z with p

k−→ q. Sinceq is in the BSCCB of G, we haveq
ℓ−→ q for someℓ < 0. By combining the two paths, we get

p
k+ℓ−−→ q and, by pumping the second path,p

k+aℓ−−−→ q for all a ≥ 0. So by choosinga large enough we getp
m−→ q for some

m < 0. Hence there is a nonempty path in the graph ofG from p to q.

Lemma 31. Let gmax > 0 so that000 ≤ ggg(0) ≤ gmax111. Let rmax ≥ 1 such that|||rrr↓||| ≤ rmax. Let xmin be the smallest nonzero
probability in the description ofA2. Then

|m(ℓ+1) −m(ℓ)| ≤ 2 + 2gmax + 30|S|rmax/x
|S|4
min for everyℓ ∈ N.

Proof: By (20), using straightforward induction, we obtain for alln ≥ 0:

ggg(n) = Gn ggg(0)︸︷︷︸
≤gmax111

+

n−1∑

i=0

Gi rrr↓︸︷︷︸
≤rmax111

(21)

SinceG is stochastic, it follows for alln ≥ 0:

|||ggg(n+ 1)− ggg(n)||| ≤ |||Gn+1ggg(0)−Gnggg(0)|||+ |||Gnrrr↓||| ≤ gmax + rmax (22)

For a vectorvvv ∈ RS let us define
|vvv|diff := max

p,q∈S
|vvv[p]− vvv[q]|

Observe that for anyuuu,vvv ∈ RS we have|uuu+ vvv|diff ≤ |uuu|diff + |vvv|diff . Let C be the constant from Lemma 29 for the matrixG.
We have for alln ≥ 0:

|ggg(n)|diff ≤ |Gnggg(0)|diff +

∣∣∣∣∣

n−1∑

i=0

Girrr↓

∣∣∣∣∣
diff

by (21)

≤ gmax + C |rrr↓|diff by Lemmas 29 and 30

≤ gmax + 2Crmax as |rrr↓|diff ≤ 2rmax (23)

Recall from (1) thatm(ℓ) = x
(ℓ)
1 − τRℓ+ ggg

(
x
(ℓ)
2

)
[p(ℓ)] for all ℓ ∈ N. Hence we have:

|m(ℓ+1) −m(ℓ)| ≤ |x(ℓ+1)
1 − x

(ℓ)
1 |+ |τR|

+
∣∣∣ggg
(
x
(ℓ+1)
2

)
[p(ℓ+1)]− ggg

(
x
(ℓ)
2

)
[p(ℓ)]

∣∣∣

≤ 1 + 1 +
∣∣∣ggg
(
x
(ℓ+1)
2

)
[p(ℓ+1)]− ggg

(
x
(ℓ)
2

)
[p(ℓ+1)]

∣∣∣

+
∣∣∣ggg
(
x
(ℓ)
2

)
[p(ℓ+1)]− ggg

(
x
(ℓ)
2

)
[p(ℓ)]

∣∣∣

≤ 2 +
∣∣∣ggg
(
x
(ℓ+1)
2

)
− ggg
(
x
(ℓ)
2

)∣∣∣+
∣∣∣ggg
(
x
(ℓ)
2

)∣∣∣
diff

≤ 2 + 2gmax + (2C + 1)︸ ︷︷ ︸
≤3C

rmax by (22) and (23)
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We haveC := 10|S|/y|S|
min, whereymin is the smallest nonzero entry ofG. By [11, Corollary 6] we haveymin ≥ x

|S|3
min , so

we haveC ≤ 10|S|/x|S|4
min . Hence:

|m(ℓ+1) −m(ℓ)| ≤ 2 + 2gmax + 30|S|rmax/x
|S|4
min

Now we can prove Lemma 21.

Lemma 21 There is a boundB ≥ 1 computable in polynomial space such that|m(ℓ+1) −m(ℓ)| ≤ B for everyℓ ∈ N.

Proof: This follows from Lemma 31, as the vectorsggg(0) andrrr↓, as defined in [7], can easily be expressed in the existential
theory of the reals.
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