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Abstract—We put forward an exponential-time algorithm for
deciding branching bisimilarity on normed BPA (Bacis Process
Algebra) systems. The decidability of branching (or weak) sim-
ilarity on normed BPA was once a long standing open problem
which was closed by Yuxi Fu in [1]. TheEXPTIME-hardness is
an inference of a slight modification of the reduction preseted
by Richard Mayr [2]. Our result claims that this problem is
EXPTIME-complete.

large bisimulation base for branching bisimilarity on nean
BPA, and by guessing the base, they show that the complexity
of this problem is inNEXPTIME [25]. The current best
lowerbound for weak bisimilarity is thEXPTIME-hardness
established by Mayi [2], whose proof can be slightly modified
to show theEXPTIME-hardness for branching bisimilarity
as well. As to the general BPA, decidability of branching
bisimilarity is still unknown.

] . In this paper, we confirm that an exponential time algorithm
~ Basic process algebra (BPA)/ [3] is a fundamental model gists for checking branching bisimilarity on normed BPA.
infinite state systems, with its famous counterpart in tke®th Comparing with the knowrEXPTIME-hardness result, we
of formal languages: context free grammars in Greibach n@fat the result ofEXPTIME-completeness. Thus the com-

mal forms, which generate the entire context free languaggfexity class of branching bisimilarity on normed BPA is
In 1987, Baeten, Bergstra and Klopl [4] proved a surprisingmpletely determined.

result at the time that strong bisimilarity on normed BPA

is decidable. This result is in sharp contrast to the classic Basmally, we introduce a family of rglatwe bisimilaritie
: . . parameterized by the reference sets, which can be repeglsent
fact that language equivalence is undecidable for context f

grammar([5]. After this remarkable discovery, decidapiind by a decomposition base defined in this paper. The branching

L S . e bisimilarity is exactly the relative bisimilarity whose feg-
complexity issues of bisimilarity checking on infinite sat y y y

) . 4 ; p . ence set is the empty set. We show that this base can be
systems have been intensively investigated. See [[5], ], [approximated The approximation procedure starts from an
[Q], [1Q] for a number of surveys. )

AT . initial base, which is relatively trivial, and is carried doy
As regards strong bisimilarity on normed BPA, Huttel aan peatedly refining the current base. In order to define the

Z{lrllng .[11] |mproved_ thle.f. rzsult Olf tl)?;aetelnt,. Betrrg];strat an pproximation procedure and to ensure that the family of
Op USIng & more simpiified prool by relating the s ron19elative bisimilarities is achieved at last, a lot of teaali

bisimilarity of two normed BPA processes to th? existenca o difficulties need overcoming. Some of them are listed here:
successful tableau system. Later, Huynh and Tiah [12] stowe

that the problem is irtY, the second level of the polynomial
hierarchy. Before long, another significant discovery waslen

by Hirshfeld, Jerrum and Moller [13] who showed that the
problem can even be decided in polynomial time. Improve-

I. INTRODUCTION

« Despite the seeming resemblance, the relative bisimilar-
ities (Section[Ill) defined in this paper is significantly
superior to the corresponding concepts In|[25]. The
relative bisimilarities in this paper isuffix independent

ments on running time was made later[inl[14],1[15],1[16].
The decidability of strong bisimilarity on general BPA is af
firmed by Christensen, Huttel and Stirling [17] EXPTIME

is claimed to be an upper bound by Burkart, Caucal and

Steffen [18] and is explicitly proven recently by Janda@][1
As to the lower bound, Kiefer[ [20] achievdsXPTIME-
hardness, which is an improvement of the previB6®ACE-
hardness obtained by Srha [21].

This property is extremely crucial for our algorithm. The
correctness of definition is characterized in Theokém 2.
We show that a generalized unique decomposition prop-
erty holds for the family of relative bisimilarities (The-
orem[3). In the decompositions, bisimilarities with dif-
ferent reference sets depend and impact on each other.
The notion of decomposition bases (Secfidn V) provides
an effective representation of an arbitrary family of pro-

In the presence of silent actions, however, the picture is
less clear. The decidability for both weak bisimilarity and
branching bisimilarity on normed BPA was once long standing «
open problems. For weak bisimilarity [22], the problem if st
open, while for branching bisimilarity [23], [24], a remaitie
discovery is made by Ful[1] recently that the problem is decid
able. Very recently, using the key property developed_in [1]
Czerwihski and Jan€ar shows that there exists an expiatgnt

cess equivalences that satisfies the uniqgue decomposition
property.

In an iteration of refinement operation, a new decomposi-
tion base is constructed from the old (Secfioh VI). That is,
a new family of equivalences is obtained from the old one.
Besides, comparing with all the previous algorithing [26],
[15], [27] which take patrtition refinement approach, our
refinement procedure possesses several hallmarks:
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— The new base is constructed viagibally greedy If < is an equivalence relation on processes, then we will
strategy, which means that all the relevant equivaisea —» o’ to denote the fact —— o’ anda =< o/, and use
lences with different reference sets are dealt with as % o/ to denote the fact —— o’ and a # o'. We write
a whole. — for the reflexive transitive closure of~, and <= for

— The refinement operation in previous works heavilyhe symmetric closure of= (i.e. < def —U="1). Ac-

depends on predefined notions of norms and dgordingly, = is understood as the reflexive transitive closure
creasing transitions. These notions can be determingd_=, "That is, o == « if and only ifa =5 ... —sa'.

from the normed BPA definition immediately. Sucr‘?emarkl. 0= ol is slightly different froma —> o’ = a.

3 method doe_s not work at present. Our solution is ?Computation Lemma (Lemnid 1) holds fer, thena > o’
efine norms in a semantic way (Secfion IV). Norms .
. ; . If and only if « = o/ < a.
relying on the relevant equivalence relations, together . . ; ;
with decreasing transitions, can change dynamically A processa is normedif a — -.... =" ¢ for some
in every iteration. When we start to construct a new, . . ., /. A BPA systemI' = (C, A, A) is normed if all
base, no information on norms is available. Thus &fie processes defined Ih are normed. In other word$; is
this time we cannot determine whether a transition 3ormed if X' is normed for everyX <€ C. In the rest of the
decreasing. Our solution is to incorporate the task gaper, we will invariably usé’ = (C, A, A) to indicate the
computing norms into the global iteration procedureoncerned normed BPA system. A BPA systénis called
via the greedy strategy. realtimeif for every (X SN a) € A, we havel # 7.
— In previous works the order of process constants canA processu is called agroundprocess ifa —> €. The set
be determined in advance. Every time a new basea$ ground constants is denoted 6. ApparentlyCg C C
constructed from the old, the constants are treatesid « is ground if and only ifa € CE,.

in the same order. There is no such predefined ord®emark2. A BPA systemI’ = (C, A, A) is totally normed
in our algorithm. The treating order is dynamically and only if rules of the formX — ¢ are forbiddenI’ =
determined in every iteration. (C, A, A) is totally normed if and only iiCg = 0.
Equivalence checking on normed BPA is significantly hardeBr_ Bisimulation and Bisimilarity
than the related problem ototally normed BPA. For to- . . . L
tally normed BPA, branching bisimilarity is recently shown !N the presence of silent actions, branching bisimilarity o
polynomial-time decidablé [27]. What is obtained in thippa V3" Glabbeek and Weijland [P3], [P4] is well-known.
is significantly stronger than previous results![28]./[Z2]/]. Definition 1. Let < be an equivalence relation on processes.
= is called abranching bisimulationif the following bisimu-

Il. PRELIMINARIES lation propertyhold: whenever = 3,

A. Normed Basic Process Algebra e If @ - o, thenf = - %5 8 for somef’ such that
A basic process algebrgBPA) systemI' is a triple o < g _ "

(C, A, A), whereC is a finite set of process constants ranged « If a = o/, theng = - = j’ for somep’ such that

overby XY, Z, U, V,W, Ais a finite set of actions, and o <.

is a finite set of transition rules. Th@rocessesranged over The branching bisimilarity~ is the largest branching bisimu-
by o, 3,7, 6, ¢, n, are generated by the following grammar: lation.

a =€ | X | ot Remark3. In this paper, branching bisimulations in Defini-
tion[d and other bisimulation-like relations in later chexgtare
The syntactic equality is denoted by. We assume that forced to be equivalence relations. This technical coriwant
the sequential composition, .c; is associative up te= and does not affect the notion of branching bisimilarity.

c.a = a.c = a. Sometimesy.j is shortened asf. The st 1hg pranching bisimilarity is a congruence relation, and it
of processes is exactlg”, the finite strings oveCC. There is  g4iisfies the following famous lemma.

a special symboft in A for silent transition.¢ is invariably _ ) .
used to denote an arbitrary action, whilés used to denote a Lemma 1I(Computat|on Lemma[23))if a = o/ = o ~
visible (i.e. non-silent) action. The transition rulesdnare of &: thena’ ~ .

4 . .
the form X — «. The operational semantics of the processes|f I" is realtime, the branching bisimilarity is the same as the
are defined by the following labelled transition rules. strong bisimilarity In this paper, branching bisimilarity will
be abbreviated alsisimilarity. For realtime systems, the term

(X = a) €A a5 a bisimilarity will also be used to indicate strong bisimitsr
X 5a a.fB N o'.p Ill. RELATIVIZED BISIMILARITIES ON NORMED BPA
A central dot ¥’ is often used to indicate an arbitrary processA. Retrospection
For example, we writer -5 - %5 8, or evena -2 §, to In [1], Yuxi Fu creates the notion of redundant processes,

mean that there exists somesuch thaty b, ~ andy N 3. and discover the following Propositigh 3, which is crucial t



the proof of decidability of bisimilarity for normed BPA. Two processes arg-equal if they differ only in suffixes in
R*. R-equality is an equivalence relation. Eliminating a suffix
in R* from a process does not change thg-class.

We useRd('y? = {X| X~ ~ ~} to indicate the set of all | o, 14 4. 1) a =g av if and only if v € R*.
constants thgt |&—redundant[ overy. Clearly,Rd(y) C Cg. 2) a =g e if and only if o« € R*.

The following lemma confirms that the redundant processes
over~ are completely determined by the redundant constanigfinition 4. Let R C Cg. « is in R-normal-form(R-nf) if
1) eithera =,
2) or there existy’ and X such thate = o/ X and X ¢ R.
The crucial observation in[1] is the following fact. If « = o’ and«’ is in R-nf, thena/ is called anR-nf of a.
The (unique)R-nf of « is denoted byng.

Definition 2. A processx is a~-redundant overy if ay ~ ~.

Lemma 2. ay ~ « if and only if « € (Rd(y))*.

Proposition 3. Assume thatRd(y1) = Rd(v2), thenay; ~
B if and only if aye >~ Bys. From Definition[4, taking theR-nf of « is nothing but
g?moving any suffix ofa in R. R-equality is the syntactic
equality on R-nf's. In particular, f-equality is exactly the
ordinary syntactic equality.

Propositior B inspires us to define a relativized version
bisimilarity ~ for a given suitablereference setR, which
will satisfy the following theorem.

Lemma 5. a =g B if and only if ag = Sg. In particular,

Theorem 1. Let v be a process satisfyingd(y) = R. Then o = 3 if and only if o = 3.

a ~p B if and only if ay ~ £7.

. . The transition relations can be relativized as follows.
Proposition[B confirms thattr does not depend on the

special choice ofy under the assumption of the existence dbefinition 5. The R-transition rglationsbetweenR—nf's are
~ such thatR = Rd(~y). However, it is much wiser not to takedefined as follows: We writ§ —r 7 if there existsa and
Theorent ] as the definition ef z from a computational point 3 such thatt = ar, n = Br, anda £ 8.

of view. Here are the reasons. q ¢ 5. the rel ’ defined ol

. According to DefinitiorL b, the relatior—  is defined on

« We cannot tell beforehand (except when we can decide th i gf #nf. Wh R't ¢ y
~) whether, for a giverR, there existsy such thatR = on Ihe Set of processes fint. en we writea rfa

Rd(v), nor can we tell whetheR = Rd(~) even if both and 3 are implicitly supposed to b&-nf’s.

R and~y are given. o Lemma 6. ap ——g Br ifand only if a =5 - —— - =p .
« The algorithm developed in this paper takes the refine- ; ;
ment approach. Imagine thatis an approximation of-, Let o — g B. Intuitively, if o« # ¢, thena —p § is

we can define, for example, the-redundant constantsinduced byc; if a = ¢, thena LR B is induced by one
Rd™(v) accordingly. It is quite possible to run into theof the constants irR. This important fact is formalized in the
situation where, for a specifi®, there is noj such that following lemma.
R =Rd™(6) even if R = Rd(~) for some.

Therefore it is advisable to maker well-defined for every

. £
R satisfying R C Cc. Importantly,~ should be defined 1) eitherar = e andX — f’ for somep’ and X € R

without the knowledge of the existence of such that3’ =g ﬁ-z
2) oragr # € anda — B’ for somef’ such that3’ =p 3.

Lemma 7. agr LR Br if and only if

Remark 4. In [25], CzerwifAski and Jancar also define a
relativized version of bisimilarities. The difference st they As usual, we write=>p for the reflexive transitive closure
directly take Theoreni]1l as the definition. After that, theyf -, and < for the symmetric closure of=p
establish aveakerversion of unique decomposition property(j e« € — |y — 5-1). Accordingly, a 5 o’
In [25], ~r is defined only for thos&'s such thatk = Rd(y) is understood as: Thp o = a, and=>j, is the reflexive
for somey. Using Theorerhill, a property of z can be proved tansitive closure ofF s .
by a translation of a property of. Though seemingly similar,  The ground processes are robust under relativization.
the properties which will be developed in this section areimu
stronger than those properties in][25]. Lemma 8. « = ¢ if and only if ar =r e.

Now it is time for definingR-bisimilarity.

B. Definition of R-Bisimilarities o )
Definition 6. Let R C Cg and let < be an equivalence

Now we elaborate on the definition ofz. Some auxiliary relation such that=yr C <. We say= is an R-bisimulation
notations are introduced to make things clear. if the following conditions are satisfied whenever< :

Definition 3. Let R C Cg. Two processes: and 3 are R- 1) ground preservationif a = ¢, thenj = e.
equal denoted bya =g J if there exist¢,a’, 3 such that 2) If @ -2 o, thenBr =g - —+x (' for somes’ such
a=C_(d, =CF,andd, s € R*. thata’ < 3'.



3) If a -2 o/, thenfr =>p - —x (' for somef’ such C. R-identities and Admissible Reference Sets
thata’ < j3’. Clearly, R-bisimilarity has the following basic property.
The R-bisimilarity ~p is the largestR-bisimulation. Lemma 12. Let R C Cg. If X € R, thenX ~p c.

Remark5. R-bisimilarity ~ is well-defined, based on the

. . Be aware that the converse of Lemma 12 does not hold in
following observations:

general. That is, ifX ~ ¢, there is no guarantee thit € R.

« =g is an R-bisimulation. This basic observation leads to further discussion.
« If <7 and=, are bothR-bisimilations, then(<; Uxs)* o )
is an R-bisimulation. Definition 7. Let R C Cg. A processa is called a~g-

] ) L identity if « ~p e. We useldg to denote{X | X ~y €}.
If R =10, then~y is exactly the ordinary bisimilarity-.

R-bisimulations can actually be understood as the bisimu-BY Lemma 12 and Definition] 62 C Idr C Cg. Moreover,

lations onR-nf’s under R-transitions, as is stated below. Lemma 13. o ~p ¢ if and only if & € (Idg)*.

Proposition 9. Let R C Cg and let= be an equivalence Below we will demonstrate that, as a reference $et,
relation such that=x C <. Thenx is an R-bisimulationif  pjays an important role. At first we state a useful propositio
and only if whenever < g, for relative bisimilarities. It says that is monotone.

1) it ar :;R ¢, thenfr =7RE y Proposition 14. Let Ry € Ry, C Cg. If a ~p, S, then
2) if ap =g o, thenfr =g - =g By for somep’ ~r, B.
such thato’ < 3’;
3) if ap g o, thenfr =g - —>r B for somes’
such thate” =< 3. Intuitively, ~, is the relative bisimilarity which is induced
by regarding the constants R ase purposely. It is reasonable
to expect thatX ~ 4, € if and only if X € Idg. This intuition
gssconfirmed by Proposition 16 and its corollaries.

Corollary 15. Let Ry C Ry C Cg. Then,ldg, C ldg,.

Comparing with the definition of bisimulation (Defini-
tion[d), Definitior[ 6 and Propositidn 9 contains an exfraund
preservatiorcondition which guarantees that a ground proce
cannot be related to a non-ground process ifaisimilation.  Proposition 16. o ~ 3 if and only if o ~4,, 3.

In the definition of bisimulation, this condition is alsoiséied,
for it can be derived from other bisimulation conditions. A&OrOlary 17. Let By € Cg and ity € Ce. If ldg, = ldg,,
to R-bisimulation, this is not always the case, as is iIIusdatéheno‘ ~r, B it and only if a ~p, 5.

in the following example. Corollary 18. Let R, S C Cg such thatk C S C Idg, then
Example 1. Consider the following normed BPAC, A, A): lds = ldg.
« C={Ay, A} A direct inference of Corollarf/_18 is the following fact.
« A= {a,7}; o ) Lemma 19. X ~4, eif and only if X € Idg. In other words,
« A is the set containing the following rules: ldig,, = Idg.

AOLA]_, Al i>A1, A1;>6

Let R = {A;}, and let< be the equivalence relation which . o
relates every processes definedlirio . Clearly Ay =5 e. Definition 8. An k C Cg is calledadmissibleif R = Id.

However, we can show thdtd,¢) satisfiesiz-bisimulation  te significance of Propositidill4, Proposition 16, andthei
conditions except for the ground preserving condition: corollaries is the revelation of the following fact: The $etr

Considering that theR-transitions of e can be trivially . ~of all relative bisimilarities is completely determined
matched byA, it remains to show that can match theR-  py those~y’s in which R is admissible.

transitions of4,. The uniqueR-transition of Ay is A9 g ¢, _ o _
which can be matched by —%55 € since A; %+ A, and Lemma 20. For everyR C Cg, ldg is admissibleldy, is the

The above discussions lead to the following definition.

(A1)p = €. smallest admissible set which contaiRs

The relative bisimilarity~ is not a congruence in generalD- R-redundant Constants
For example, we may not havey ~x 3y even ifa ~pr 3. The properties of--redundant processes (Definitibh 2 and
However, we have the following result. PropositiorB) in Section III-A can now be generalized fa th

Lemma 10. If v ~g 6§ anda ~ 3, thenay ~g 54. In relative bisimilarity~ s.

particular, Ify ~ ¢, thenay ~g ad. Definition 9. Let R C Cg. A processy is ~z-redundant over
v if ay ~g . We useRdg(v) to denote{ X | X~ ~p ~}.

Note thatRd(~) defined in SectioRTl-A is exactlRdy ().
Also note thatldy is the same aBdg/(e).

The computation lemma also holds fotx.

Lemma 11 (Computation Lemma for~g). If a —g
o =prd" ~p athena ~p a.



Lemma 21. If v ~g 4, thenRdr(y) = Rdg(9). e X is a~pg-compositef X ~r X’ for someX’ and«
such thatX’ ¢ Idg anda ¢ Rdr(X’).

e X is a~pg-primeif X is neither a~g-identity nor a
~ r-composite.

Lemma 22. 1) a~peif and only if « € (Idg)*.
2) ay ~g v if and only if & € (Rdg(7))*.

Lemmal2l is a direct inference of Lemra 10. Leniméa 22
is the strengthened version of Lemida 2.
Now we can state the fundamental theorem-os.

According to Definitio_ID, a constad€ € C must act as
one of the three different rolesy-identity, ~z-composite,
or ~p-prime. We will usePrr and Cmp to indicate the set
Theorem 2. Let R’ = Rdg(7), thena ~x g if and only if 0of ~x-primes and~x-composites, respectively. According to

ay ~g 3. Propositior I6Prr = Prig, andCmpg = Cmyg,,.

Proposition 23. Assume thatRdr(y1) = Rdg(y2), then Definition 11. We call P,.P ;... Py a~p-prime decom-

ayy ~g By if and only if ays ~g Bs. positionof «, if @« ~g P..P._1..... Py, and P; is a ~pg;-
prime forl < i <r, if Ry =Idgr and R;y; = Rdg,(F;) for

Proposition 24. Suppose that ~5 § and letR’ = Rdgr(y) = 1<i<pr—1.

Rdgr(6). Thenay ~g B4 if and only if o ~p/ 3.
Note that according to Lemnial27 eveRy for 1 < i <
Theoreni 2 and Propositigni23 are the strengthened versiQis ymissible. g ey =r=T

of TheorenilL and Propositioh 3. Proposition 24 is an infe2enc. 1, o)1owing ‘relativized prime process property’ is ciaic

of Lemma[10 and Theoreft} 2. Theor&in 2 and Proposition géhe ynique decomposition property (Theorfeém 3).
act as the relativized version of the congruence property an

the cancellation law. Lemma 28. Suppose thaX, Y are ~p-primes ando X ~p
The following lemma is an inference of Theoré&in 2. BY. ThenX ~r Y.
Lemma 25. Rdra,(s)(7) = Rdr(70). Theorem 3 (Unique Decomposition Property fét-bisimilari-

] ] o _ties). LetP..P._4..... P andQ,.Qs—1. . ... Q1 be~g-prime

In the following we discuss the significance of the adm'%fecompositions. LeR,S; = Idr and letR;y; = Rdg. (P,)

sible reference sets. First it is easy to see the followirng fa, | < ; - , and S'+i = Rdg,(Q;) for 1 < j < s. Then
according to Proposition 16. r=s, R =S, and]% ~p O for 1J< i<

Lemma 26. Rdy(y) = Rdiay (7) for everyy and R. IV. NORMS AND DECREASINGBISIMULATIONS

The following lemma ensures that the admissible set j§ Syntactic Norms vs. Semantic Norms

preserved under the ‘redundant’ operation. When T" is realtime, a natural number callegorm is

Lemma 27. If R = Rdg/ () for somey, thenR is admissible. assigned to every process. Therm of « is the least number
a{c such thaty — - 22 ... 2% ¢ for someas, as, . . ., a.

The norm for realtime systems is both syntactic (static) and
semantic (dynamic). It is syntactic because its definitioasd
not rely on bisimilarity, and it can be efficiently calculdteia
greedy strategy merely with the knowledge of ruleg\inlt is
E. Unique Decomposition Property fdt-bisimilarities semantic, because the norm of a realtime proagsshe least

al a2z af

i i numberk suchthaty ~ - — -~ — .~ ... ~. —5 . ~¢
WhenT is realtime, the se€ of process constants can bqor someas . as an
A2,y ... Q.

divided into two disjoint setsprimesPr andcompositem. parefore, we get the coincidence of tyentactic normand
Every processy is bisimilar tg a sequennil composglon Ofsemantic nornior realtime systems. For non-realtime systems,
prime constants?.....P, and moreover, the prime decomy,, yever, the syntactic norms and the semantic ones do not

position is unique (up to bisimilarity). That is, if;. . ... P~ gincide any more. They must be studied separately.
Q1..... Qs, thenr = s and P; ~ Q; for everyl < ¢ < r.

This property is calledinique decomposition propertwhich B. Strong Norms and Weak Norms

is first establish_ed by Hirshfelek g_l.in [13]. When_F is totally We define two syntactic norms for non-realtime systems.
normed, the unique decomposition property still holds [27] The strong norm takes silent actions into account while the

If T is not totally normed, the unique decomposition proRgeak norm neglects the contribution of silent actions.
erty in the above sense does not hold due to the existence of _
redundant processes. However, we expound that, apart frB@finition 12. The strong normof «, denoted byals, is the

the existence of redundant constants, the relative bisiitids least numberk such thata Ly Ly 5y ¢ for some

Remark6. Even if R is admissible, it is not guaranteed th
R = Rdpg/ () for somey andR’. This fact indicates that, even
if ~p is only attractive for only admissibl&’s, our notion of
R-bisimilarities strictly generalizes the ones in|[25].

{~gr} enjoys a ‘weakened’ version of unique decompositiofy, ¢o, ..., {k.
property (Theoreriil3), which is still calleghique decompo- Theweak nornof «, denoted by«/|wx, is the least number
sition propertyin this paper. k such thate =2 - =22 ... =25 ¢ for someaq, as, . . . , ai.

Definition 10. Let R C Cg, and X € C. Lemma 29. 1) |elst = |€|wk = 0;



2) |aBlst = |alst + 18]st; |aBlwk = |a|wk + | 5] wk- Proposition 34. ~g is a decreasing bisimulation for every

Lemma 30. 1) |a|s, =0 if and only if o = e. R < Ce.

2) |alwk =0 if and only if a € C§ (i.e.a = ¢). There is no need to define the so-calkRdlecreasing bisim-
ulation. The following lemma confirms that, for decreasing

Lemma 31. If « ~g S, then|a|wk = |B|wk- o ’ ’ :
transitions,—r and — are essentially the same.

Lemma 32. | X |y is exponentially bounded for every. , .
. Lemma 35. If « — i 8 is ~g-decreasing, them — 5’
C. The Semantic Norms for some’ such that}, = 3.

The semantic norms play an important role in our algorithm.
They depend on the involved semantic equivalence = &ie

a process equivalence. A transition — o' is called <- Lemma 36. If < is a decreasing bisimulation, théja||~ <

The following lemma provides a bound for semantic norms.

preservingif o/ =< a. las¢ for everya.
Definition 13. Let < be a process equivalence. Thenorm Remark7. The labelled transition graph defined by a normed
of a, denoted by||a||x, is the least numbek, such that BPA I can be perceived asdirected graphg (with infinite
0 L5 O number of nodes) whose nodes are the processes and whose
A= TR TR R T NG edges are the labelled transition§. can be extended to
for somely, 0, ..., 0. If |la|= = k, then any transition @ weighted direct graphin different ways. Letgy; be the
sequence of the form weighted extension of in which every edge off has weight

- 0 - ’ - _ o _ one Let Gy be the one which is the same s except
a= — = — -=..= - -—-=>¢ (1) that the weight of every silent transition &era The strong
(resp. weak) norm of a processis the length of the shortest
path froma to € in Gy (resp. Gyi). Let < be an equivalence
relation on processes. We can define the grdphwhich is

Clearly, thex<-norms have the following basic fact: the same ag., except that the weight of —= +/ is setzero
Lemma 33. If o = 8, then|ja|= = ||3]|=. if v =< +'. A witness path of<-norm of o corresponds to a

_ ) ) ) ) shortest path frona to € in G-.
If =< is an arbitrary equivalence relation, the witness path ~p is known for everyR, then ~p-norm of a BPA

is called awitness pathof =<-norm for a. The length of the
witness path ig.

does not always exist, because it is not always the 6ase>  rocess (or constant) can be calculated via the greedggyrat

8 whenevera = j. This is one of the motivations of thej, 4 efficient way. It depends on the following property:
forthcoming notion oflecreasing bisimulatio(Definition[15).

For the moment, we introduce the-decreasing transitions. 1) |lall~r =0 if and only if o ~g €.

2) [laBll~r = llell~p + [15]l~p in which R = Rd%(5).
, It works like a generalization of Breadth-first search, or a
lofll< < lledl. variant of Dijkstra’s algorithm. The detail of the calcudat is
According to Definitior I8 o/ ||« = [lall= — 1 if a _t, . omitted, but this idea will be used to calculate the semantic

is a<-decreasing transition. In witness pafh (1), every trandiorms| - [z later (SectioriMI) in the refinement procedure
tion -5 must bex=-decreasing foll < i < k. when constructing new base from the old.

Definition 14. A transiton o —— o' is =-decreasingif

Definition 15. A process equivalence< is a decreasing p Decreasing Bisimulation wittR-Expansion of~
bisimulation if the following conditions are satisfied:

1) If a x¢ thena = .
2) If a < anda L alis a=-decreasing transition, then

Based on decreasing transitions, we can define a special
notion called decreasing bisimulation withR-expansion of
N , DA =, which will be taken as the refinement operation in our
th/ere ?X'Stﬁ and 5" such thatf = 5" — f’ and algorithm. This notion is crucial to the correctness of the
o <[ refinement operation. The readers are suggested to review

Decreasing bisimulation is a weaker version of bisimutatio Definition[6 and Definitio 15 before going on.

The difference lies in that only decreasing tranSitionSdne%efinition 16. Let = and= be two equivalences on processes

. ¢
to be matched. Be aware that the transitioh — 5’ in ¢ ,p that=x C = C =. We say that= is an R-expansiorof

Definition[I3 is forced to be<-decreasing. = if the following conditions hold whenever = §:
Let < be a decreasing bisimulation. Then anydecreasing

transition ofa can be extended to a witness path-ehorm of ~ 1) @ == ¢ if and only if 5 =&
a. The norm||a||= is equal to the least number of decreasing2) If « 2, o, then eitherfr =g - Zn B’ for somef’
transitions froma to e. such thato = 3'.

Nearly all equivalences appearing in this paper are decrea8) If a - o/, then8r =>r - —r ' for somes’ such
ing bisimulation. For example: thata’ = 3.



We say thatx is adecreasing bisimulation witlR-expansion constants areR-bisimilar to each other, thus they can be
of =~ if < is both a decreasing bisimulation and/arexpansion contractedinto a single one. In the work [27] for totally

of =, normed BPA, we prevent the occurrence &f <— Y

c\)/]ja a preprocess in which mutually associate constants are
contracted into a singe one. For normed BPA discussed in
this paper, we take the same idea but the difficulty is that the
Lemma 37. Assume thatrp C < C =, < is an decreasing contracting operation cannot be performed uniformly, for i
bisimulation with R-expansion of= if and only if following depends on the reference et The only way we can take

The following lemma provides another characterization
the decreasing bisimulation witR-expansion of~.

conditions hold whenevet =< 8 anda, 8 are in R-nf: is to introduce theR-association and to contradi-associate
1) if a =g ¢, then =g ¢; constants intaR-blocks for individual R's. The members in
2) if o e d, being =-decreasing, thep = - #,, anR-block are interchangeable.
B’ for somep’ such that' < Be aware that it is possible th& ~r ¢ even if X ¢ R.
3) if « iR o, not being=-decreasing, thef =5 In this case we must havé&|r C Idr by the Computation
R, B’ for somef’ such thata’ = j’; Lemma (Lemma@l1). Also note that it is possible that—>r
4) if a %55 o, being=-decreasing, thep =>5 - - € for someR. But these kinds of? is uninteresting because
B for somes’ such that’ = 3. by putting suchX into R we can get a larger reference get
5) if & —%+5 o/, not being=-decreasing, therp =s Such that~p = ~p.
. %5 B’ for somep’ such thate’ = 3'. We call a reference seR qualifiedif X <=px e cannot

happen for ever R. The unqualifiedR’s can be pre-
Remark8. The style of the definition of ‘decreasing biSimUIaHefeF;mined. '\I'/he);Xa?e uselessufrglrj‘n Inlow to the endpof this

_tlonhW|t_h e;:_pansnon’ a:]so‘zppears_\n [27]. 'I_'he m’aln d|ffc_cren paper. From now on we assume that every referenc& dst
is that in this paper, the ‘decreasing transitions’ are s#ina qualified. For example when we write ‘for evely C Cg’,

while in [27], the ‘decreasing transitions’ are syntactic. we refer to everygualified R which is a subset oCq. In
The notion of ‘decreasing bisimulation with expansion’ is ﬁarticular every admissible set is qualified

better understanding of the previous refinement operations
totally normed BPA and BPP[15], [26]. Moreover, this notio.emma 38. All constants in a blocKX]r are R-bisimilar.
is crucial to the development of a polynomial time algorith

for branching bisimilarity on totally normed BPA [27]. Temma 301 [X]r # [Y]randX = V', thenY 7= X.

The behaviours of X|z can be more than the total be-

haviours of its member constants. All the processes asso-

In thls Sec“of" we deﬁne_a way fqr f'”'te_'y representlngjate to X should be taken into account. It is possible that
a family of equivalences which satisfies unique decomposj- » (X’ for some ground process For instance we

tion property in the sense of Theordm 3. Such family an haveX —p Z —sp (Y —p ¥ —5 X. In this

e](cquwa!enlces includé~ s} r an a_II theh|nt§rme_d|ate fﬁ?'“?s example.X,Y, Z, (X, (Y, (Z are mutuallyR-associate. Thus
of equivalences constructed during the iterations. Thigefin e penhayiour of, should also be taken into account.

representation is named decomposition base.
Definition 18. Y is an R-propagatingof X (or of [X]g) if

A. R-blocks andR-ord_ers X <= Y(X' for some¢ and X'. (In this case we must
To make our algorithm easy to formulate, we need SOMRye X’ <=, X, andY( is ground.)

technical preparations. The reason will be clear later.

V. DECOMPOSITIONBASES

o ] ) Lemma 40.Y € Rdgr(X) if Y is an R-propagating ofX.
Definition 17. Let R C Cg. We call thata is R-associate
to 8 if @ <= 8. Let X € C\ R. The R-blockrelated to Lemma 41. SupposeX «=p (X' ——x ('X’ such that
X, denoted by[X]r is the set of all the constants which iS¢’ X’ 4= X. Then X’ € [X]g, and¢ = Y~ for someY
R-associate taX. Namely, [ X]z & {Y | X <=5 Y}. We andy such that

use the ternblock to specify anyR-block for R C Cg. « Y is an R-propagating of X| .

Clearly, two R-blocks coincide when they overlap. Thizs e v 5 aand¢ = a.
blocks compose a partition & \ R. The partition is denoted ¢ X ~p vX. (i.e.y € (Rdr(X))*)
by Cr % {[X]r | X € C\ R). e Y.X Sp aX with Y.X ~p (X' ~5 X andaX ~p
We will use the convention that the members|&f| g for (X ~p (X'
different R's are taken from different copy o€. In other
words, if Ry # Ro, then[X]g, and[X]g, are always disjoint,
and they are regarded as different objects, even if thegateli
the same set.

Remark9. The intuition of R-blocks is obvious. According Definition 19. The R-derived transitionim is defined as
to the Computation Lemma (Lemnialll), Th&associate follows:

Lemmal4l shows that the behaviours [6f]z are com-
pletely determined by the associate constants and the fpropa
gating constants ok, which leads to the following definition.



1) Let X € (X]r and X LR «. If either¢ # 7, or £ = 7 activated aftely’¢ is consumed completely. This nice property
anda #=x X, then[X]|p Lm . of normed BPA simplifies the situation greatly.

2) LetY be anR-propagating of X|r andY i>H CZ' If B. Decomposition Bases
either( # 7, or £ = 7 ando #=r ¢, then[X]r —r A decomposition bas is a family of {Br} rcc., in which

a.X. every By, is a quintuple(Id%, Pr%, Cm%, Dc5, Rd5).
Lemma 42. SupposeX <=y - L. n a. If either ¢ £ 7, 0r « Id% is a subset of ground constants callgg-identities
(=71 anda £=5 X, then[X]n p - ~pa « Cm?% specifies the set ofBz-composites A Bg-

_ _ _ _ composite is add4-block.
It is technically convenient to treat the-blocks as the basic Prég specifies the set oBz-primes A Bg-prime is an

objects in the algorithm, because of the following lemma. 1d5-block.

Lemma 43. If [X]g ~5r - =>r Y, then[Y]r # [X]x. « Rd}; is a function whose domain Brf. Let [X];4s be
a Bgr-prime. The vaIueRdﬁ([X]IdsR) is a set of ground
constants which are callelz-redundantover [X] gz .

« Dc% is a function whose domain i€m?%. Let [X]1az
be aBgr-composite. The valué)cg([X]Idg) is called

Finally we can define an order oR-blocks based on
Lemmal39. For everny, we fix a linear ordex r such that
whenevel X|r <gr [Y]r, we haveX #=r Y.

Lemma 44. If [X]g —r-==>r Y, then[Y]r <g [X]r. the Br-decompositionof [X];qs, which is a string of

Example 2. The example illustrates why we have to introduce ~ PIOcks [X,]r, [Xr—1]r,_, ... [Xo]Rr, [X1]R, With r > 1,

possibly different orders: for different R’s. Ry = 1d}, [Xi|r, € Prf, and Riyy = RdR, ([Xi]g,)
In a normed BPA systeih = (C,A4,A), we can have for everyl <i <r.

the following fragment of definition: Lefl,, A5, B1, B, be To make a decomposition bagework properly, we need the

constants inCg. We have transition rules: following constraints:

1) R CId% C Cq.

Ay D5 AsBy, Ay 5 A1 Bs.
G Rt 2)If R C S, thenId® C 1d&. If R C § C 1dB, then

There can be other transitions related to there constanistwh Id% =1d%. In particu|ar,1dfdg =1d5.
is of no importance. Now, take notice of the following facts: 3) Br = Byys for every R. When R = Id%, R is called
« Inthe case ofR; = {B,}, we haved; ——p, A,. Thus B-admissible B is completely determined by thodgx
we have[As|r, <g, [A1]r,. Or, in short, Ay <p, Ai. in which R is B-admissible.
« In the case ofR, = {B,}, we haved, g, A;. Thus  4) If R is B-admissible, thet€m? andPr’ are a partition
we have[Ai|r, <g, [A2]r,. O, in short, A; <g, As. of R-blocks: Cm5% UPr8 = Cr andCm% nPrf = 0.

These two orderscg, and <p, are clearly not consistent. 5) Rdﬁ([X]IdsR) is B-admissible provided thafX];4z is a
This feature reflects a big difference between normed BPA and Bx-prime. ThusDcf; is well-defined.

totally normed BPA. A decomposition basB defines a family of string rewriting

Remark10. There is also a big difference between normesystem{=>r} ncc. - The family of Bp-reductionrelations are
BPA and normed BPP. In the case of normed BPP [30], [3Hefined according to the following structural rules.

let us say thalX' generated” if X <Y || X, in while ‘||’ is B B B _
i : X eld X £1d Dcr([X =«
the operator oparallel compositionThus, if X generatey’, EB R = # 1dg r(l ]I‘f)
then X < Y || X henceX ~ Y" || X for everyn € N. X =pe X =g [X]as [X]waz =R a
) B . ,
Suppose thak’ — ¢, we have [X]IdBR c Pr}g a %Rdﬁ([xhdg) o 5 ER g
X—=Y|[...|[V|XZY]|...|Y 5 ' B
L,L ” L,L O"[X]Idg —R O/.[X]Idg Oz.ﬂ —R Oz.ﬂ/
n times n times ) )

Br-reduction relations are deterministic. Thus for any pssce
«, the Br-normal-form (in the sense of string rewriting
Y|...|Y|X systems) is unique, and it is called tH#x-decomposition
— of a. We use the notatioricmp?(«) to indicate theBg-
decomposition ofa. Processesy and 3 are Br-equivalent

notationa ER B, if they have the samBr-decomposition.

for everyn € N. Now, if all the

n times

for everyn € N are contracted into a blod], then we have

¢

X]— Y| ...]|Y

H—/

n times

for everyn € N, as is done in the same way as Definitiofh 194,

This example shows that the behaviour [Gf] is infinite _ o

branching. Note that in the case of normed BPA, this sitmatié-emma 46. If R is B-admissible, then
is not possible. IfX < Y (X, then actions inX canonlybe  « dcmpB(e) = .

Lemma 45. o £ 3 if and only if demp8 () = dempB(8).

According to Bgr-reduction rules, we have the following
aracterization oficmp’ (a).



o If X € R, thendcmpB(7X) = demp’ (7). « In the third step, for every noB-admissibleR, Biq,,

o If X R, thendcmp}‘%(vX) = dcmpg(w.[X]R). is assigned td?R. That is,Prg = Pria,, Cmp =
e If [X]gr € Cmpg, then Cmyq,, and so on.
dempf(v.[X]r) = dempf (v.Der([X]r)). Pay special attention to the descriptionsRf; and Cmp.
o If [X]r € Prg, then They have slightly different frolRrz andCmg. Semantically,
demp? (v.[X]Rr) = (dcmpgdg([x]R)(V))~[X]R- if X € PrpandX ~p Y, thenY € Prg. In the syntactic

description ofPrz andCmpg, we need theﬁR-primes to be
absolutely unique, which is accomplished vig. The orders
We list some basic facts. < g take effects in double means: L&tbe admissible, then

1) Among theR-blocks of~pg-primes, there is exactly one
distinguishedR-block that is qualified as #r-prime,
which is the<g-minimum one in the related:z-class.

Lemma 48. If X;,X> € [X]|g, then X; ER X, and  2) Let[X]g be al?R-prime. If[X]RAAR o, thenX %R Q.
|\X1HgR:HX2||gR- If X —=grY #~r X, thenX QR Y.

We can write||[X]z]= = HXIIB for any)A( € [X]g. Every decqmposition l:_)ase cpnstrl_Jcted during the refingment
=R =R procedure in our algorithm will satisfy these two propestie

Remark11. For realtime normed BPA (or BPP), there is an
even strong property. There exists a uniform orderon all
fhe constants such that, whenever -5 « is syntactically
(also semantically) decreasing ot-preserving (for some
In the following the superscripB will often be omitted if appropriate<), all the constants i will be strictly less than
B is clear from the context. For example sometimes we writ€ in order ‘<’. In history, this property plays a significant
Prg for Prg. role in the previous fast bisimilarity decision algorithifi2€],
[15].
For totally normed BPA, we have an adaptation of this
strong property, in which the condition becom&s -5 o
for everyR. Thatis,o 2 gifand only ifa ~p 3. TheoreniB is syntactically (no longer semantically) decreasing, el
is crucial. Moreover, there are other subtleties which de&se norm-preserving (no longex-preserving)[[277].
to be mentioned. For non-realtime normed BPA systems, the above require-
ment is definitely too strong to be satisfied, so that the datis
N algorithm must be developed in some other ways. This is the
The description o8 = {(Idg, Prg,Cmg,Dcgr,Rdg)}r origination of putting semantic norms into the algorithm.
relies on the family of orderg<z}  defined in Sectioh V-R. iimately we have the following coincidence result.
It contains three steps: R
« In the first step, we determinkl; for every R: Idgr = Proposition 52. o ~g 3 if and only if « ER 5.
Idr. According to Propositioh 14, Propositign]16 and
their corollaries,Idr satisfies constraints 1-3 in Sec-
tion (=Bl In particular, R is admissible if and only if ~ Our algorithm takes the partition refinement approach. The

If R is not B-admissible, thercmpf () = dempf, s (av).
R

Lemma 47. a 25 ¢ if and only if o € Id%. When R is
B-admissibleq £, ¢ if and only if a € R.

Lemma 49. | X||z > 1if Ris B-admissible andX ¢ R.
=R

Lemma 50. If ER is a decreasing bisimulation, then the siz
of Dc5([X]r) is exponentially bounded.

C. Representing=r via Decomposition Base
We define a decomposition baBewhich can representp

Lemma 51. All constants in a blocKX],4,, are R-bisimilar.

VI. DESCRIPTION OF THEALGORITHM

R is B-admissible. purpose is to figure out th8 defined in Sectiofi VAC. The
« In the second step, we determine other constituents sifategy is to start with a special initial ba#g satisfying
BR for everyB admissibleR: B C By and iteratively refine it. We will use notatio C D
- Prp = {[X]lg | X € PrrpandX #p tomean tha€ C 2 for everyR. The refinement operation
Y for everyY <p X}. will be denoted byRef. By taking B;;1 = Ref(;), we have
- Cmg = {[X]Jg | X € Cmg,orX € asequence of decomposition bases
Prr andX ~p Y <p X for someY}.
— If [X]g € Prp, thenRdgp([X]g) = {Y | YX ~p Bo, By, By, ...
X}. Be aware thaRdg([X]r) is admissible (also sych that
B-admissible) according to Lemnial27. ByD> By DBy D

—If [X]R S Cmpg, then DCR([X]R) =
(X, ]r [Xr—1]r,_, ... [Xo]r,[X1]r,,» in which The correctness of the refinement operation adopted in this
X ~p Xp Xpoq... .. X1, Ri = R, [Xi|g, € Prp, Paper depends on the following requirements, which will be
and R;+1 = Rdg, ([Xi]r,) for everyl < i < r. Pproved gradually:
Thanks to theB-admissibility of Rd g, ([Xi]r,) for 1) BC By.
1<i<r, Dcgr([X]r) is well-defined. 2) Ref(B) = B.



3) If B C B, thenB C Ref(B) C B.

C. Expansion Conditions

According to the above three requirements, once the sequencwe start to define new bade from the old baseD. This

{Bi}icw begomes stable, say; = B;,, for somei, we can
affirm thatB = B;.
On the whole, our algorithm is an iteration:

1) Compute the initial basg, and letD := B.
2) Compute the new bade from the old baseD.
3) If B equalsD then halt and returi.

4) D := B and go to step 2.

Apparently, the algorithm relies on the initial base and the

refinement step which comput&s= Ref(D) from D.

A. Relationships between Old and New Bases

Before describing the algorithm in details, we investighte
relationship between two basBsandD assume thaB C D.

Lemma 53. If B C D, thenId% C Id% for everyR.

Remark 12. An
Lemmal[53 is that, ifR = Id%, then R = Id% must hold

becausek C Id% C Id%. This confirms the fact that, during
R R

the iteration of refinement, once a reference Bebecomes
B-admissible, it preserves the admissibility in the future.

Lemma 54. If B C D and1d} = 1d%, thenPr% C Prb.

Lemma 55. If B C D, Id5 = 1d%, andPrs = Pr%, then
Rd? C Rd%.

Lemma 56. If B C D, and moreovellds = 1d%, Prf =
Pr?, andRd% = Rd%, for every R, then3 = D.

The purpose of LemmA 53 to Lemnial 56 is to get the

following fact.

interesting consequence according to

is the core of our algorithm. The newly constructgd? is
made to be a decreasing bisimulation withexpansion of

QR. Referring to Lemma_37, we ha\ﬁgR C QR, and for
every o, 8 in R-nf, the following conditions hold whenever
B
o =R ﬂ:
1) if a =pre¢ theng =g ¢;
2) Whenevern —— 5 o/,

B
a) if @« —5x o is Z-decreasing, thed =25 - g
B’ for somef’ such thato/ ER 8
b) if a —T+ o is not2 z-decreasing and 2y o, then

B
B=Rp. Tsp B for somef such that 25 5
3) Wheneverr -5 o/,

B
a) if a« %5 o is 2 -decreasing, thed =25 - %5
B’ for somep’ such thato’ éR g

B
b) if @ 55 o is not 2x-decreasing, thed =% g
. %, » B for somes’ such thate’ 25 3.

The above conditions will be calleexpansion conditions

the following. Our task is to constru¢t from D and validate

these expansion conditions. From expansion conditionsane ¢
see that, in casng = QR, ER must be anR-bisimulation.

Thus when~p C QR, we must havegR C QR.

Basically, the construction contains three steps:

1) DetermineId]‘% for every qualifiedR. After that, we know
whether a givenR is B-admissible. Note that som&’s
which are notD-admissible can b&-admissible.

2) Determine other constituents oBr for every B-
admissibleR.

Proposition 57. The total number of iterations (i.e. refinement 3) For nonB-admissibleR’s, B, is copied toBx
’ R .

operations) in our algorithm is exponentially bounded.

B. The Initial Base

The initial baseBy = {By r}r is defined as follows:
e Idgp :=Cg ={X € C| |X|wk = 0} for everyR.
ThusCg is the only5y-admissible set.
e Prp = {[Plc.} Where[P]c, is the <c,-minimum
C-block satisfying| P|yx = 1. Prg := 0 in caseCg =
C.
e Cmp = Cc, \ Pri.
. DCR([X]CG) = [P]Cc e [P]Cc if [X]CG € Cmg.
| X |wik times
. RdR([P]IdR) = C(;, if PI‘R = {[P]IdR}-
Now BO7R is defined as(IdR, Prr,Cmg, Dcgp, RdR) No-
tice thatBB r is the same for everyz C Cg.

Lemma 58. o @R B if and only if |a|wk = |8wk-

Lemma 59. B C By. Namely,~g C gR for every R.

One can check that all the five constraints described in

Section V-B are satisfied bg,.

The third step is relatively trivial. Its correctness degen
on the following lemma.

B B
Lemma 60. If ~45 C =145, then~p C =p.

The first and second steps of the construction are described

in Section VI-D and Sectioh VIE.

D. DeterminingId?

First of all, we must determine whatl? is. This problem

asks under what circumstance we can believemaiR e for
X € Cg. Be aware that Lemnfab3 confirms tiat;, C Id 7.
The basic idea is to make use of the expansion conditions.

Definition 20. Let S be a set that makeR C S C Id?.
We call S an Id%-candidateif the following conditions are
satisfied whenevek € S\ R:
1) If X Tpaanda ¢ (IdR)*, thene —— 5 3 for some
B such thatdcmp? (o) = demp? (3).
2) If X %k o, thene -, B for some 8 such that
demp® (o) = dempR (B).

According to Definitior_2D,



1) R is anId%-candidate.

2) IdB candidates are closed under union.
Id is deflned as the IargeEﬂR-candldate One fast way of
computlngIdR is described as procedure®@PUTINGID(R)
in Fig.[.

Remark13. We can also determinBd in exponential time
even by directly enumerating all tHelz-candidates.

It is easy to check the following properties.

Lemma 61. 1) RCId5 C Idg
2) If R C S, thenIdB C Id5. If R C § C Id3, then
18 = 1d%. In particular,IdIdB —1d5.

According toBr-reduction rules in Sectl-Bx =peif
and onlya € (Id%)*. Thus(Id%)* is the only class that the
ER-norm of whose members are zero. The correctness of t
construction ofIdg depends on the following lemma.

Lemma 62. Assume thatvp C QR. Thena ~g € implies

B
Q =R €.

E. Determining Other Constituents 8fz

When Id% has been determined for evedy, we can
construct the whole3 via a greedy strategy. SincBg is
completely determined bys;45, we only need to construct
thoseBr’s in which R is B- a(fm|55|ble

The algorithm in FiglR construct3r and compute théR—
norms of [ X]g's for every B-admissibleR at the same time
via the greedy strategy. When the program starts an iterati
of repeatblock at line[4, it attempts to find all the blocks
[X]r's such thatHXHB = m. In the algorithmdg[[X]g] is
used to |nd|catq|X||B We also writedr(«) for ||a|\§R.

Precisely,
r(@) € 3 dr[[Xi]n]

if demp®(a) = [X,]r, [Xr-1]R, , ---[Xi]r,. The algorithm
maintains two set®J andV. They forms a partition of all the
B-admissible blocks. (A blockX|r is B-admissible ifR is
B-admissible. ) During the execution of the algorithm, we cal
move a certaiffX]g from U to V. At that time, we define
the related information fofX|z: determine whethefX|x is

a Br-prime or aBz-composite; comput®d5 ([ X]z) if it is

a Br-prime; computeDc’([X]R) if it is a Br-composite.

In the following, we say that a blockX]y is treated if
[X]r € V. When [X]R is selected during the execution of
the algorithm, it is calledinder treating Every time[X |y is
under treating, we confirm the following fact:

-1, (ER-decreasing)
LB
= m, (possibly =g-

)

o If [X]R IL)R o with dR(a) =m

o Or if [X]R }L)R o with dR(OL)
preserving. )

then all the blocks in thér-decomposition ofx have been

treated, thus the related information faris already known.

The first case is guaranteed by the non-decrease.ofhe

second case is by the aid of the ordeg. These are two

COMPUTINGID(R):
1) Id% = 1dE.
2) while there existsX € Id% —
followings are violated:
o If X g aanda ¢ (IdR)”,
somegf such thato L2 8.
o If X %55 o, thene 55 3 for some such that
« gR /B
do removeY from Id% for everyY =5 ¢ =>x € and

X appears irc.
end while

R such that one of the

thene —— B for

INITIALIZING :
1) for every B-admissibleR
Pr? =0 ; Cm% = 0.
for every [X]r € Cr

e Dc2([X]r) == L ; RAE([X]r) == L.
dr[[X]r] = L.
end for

end for

2) U = {[X]R | R = Id and[X]R S CR}
V=0
T:=0

ExXPANDR (X, [Yilg, - - [Yi]Rr,):
1) if X ZrYs...Ys then

return false.
2) if the followings conditions are met:

« WheneverX|z ——r o, then
a) if dr(a) = m — 1, then [Yi]r, ——r, ¢ such
thate Z5 .Y 1.....Y1.

b) else, either/ = 7 and L Y., Y1, or
[Yk]Rk ’L)Rk C such thaio gR C-kal ..... Y.
« Either [X]r ——=r « for somea such thata s,
Yi..... Y1; or wheneverYy]r, Lmk ¢,
a) ide(’y.Yk,1 ..... Yl) :m—l,then[X]R |L>R
« for somea such thato ER CYio1.o... Yi.
b) else,[X]r »im « for somea such thato 23
CYio1.....Y1.
then
N return true .
else

return false.

COMPUTINGRDR([X]R):

1) T={W|WX 2z X}; RdB([X] ) i=T.
2) while there existsY” € Rd%([X]r) such that one of the
followings are violated:
o IfY 15 ¢and¢ ¢ T*, then[X]r —r 3 for some
B such that¢. X ER 5.
o If Y % ¢, then[X]r ——r B for somegs such that
¢x 2.
do remove Y from Rd%([X]r) for every Y =—p

¢ =g € and X appears irg.
end while

Figure 1. Constructing New Base: Part |



CONSTRUCTINGNEWBASE: At the time we have knowrdcmp3 (7). The first problem
is to decide whethe[X | is a prime or a composite. To this
end, we try to guess a candidate for decompositioXdf,
say [Yk]Rk [Yk—l]Rk,l [Y'I]Rl with Ry = R and Ri+1 =
Rdﬁi (Y;) for 1 < i < k. If this decomposition is ‘right’,

1) for everyR
COMPUTINGID(R).
end for
2) INITIALIZING .

3) m = 1. we will have X £ Vj,...Y;. SinceZx will be ensured to
4) repeat be a decreasing bisimulation. We must have a matching of
5)  while their exists|X ]z € U such that [X]r 55 p ~ from [Yi]g, - - - [Y1]Rr,, which must be induced
[(X]r NN v anddg[y] = m — 1, by [Yx]r,. From the above investigation, we can require that
do Yic1lre_, --- [Yilr, is a suffix of demp® (7). In summary,
select one of suchX|z which is < g-minimum. in order to guess a candidate for decompositiofiX0fr, we
dR[[X]R] =m. need to:
if there existsy such that o Guessk. Thus [Yi_1]r,_, ---[Y1]r, IS obtained from
EXPAND (X, demp®(9)), then dempf(7)-
put [X]z into Cm5. o Guess[Yy]g,, which ensures thatY .. Y1|\5 =m.
Dc’([X]r) = demph (). If £ > 1, then every||Y|\B <mthus[Y;|g, € V for every
else y

1<i<k. If k=1, then we gues®DCcB([X]r) = [Vi]r for
Y1 <g X. If every time we pick out the<z-minimum such
[X]r, then we can ensure thiit1]r € V.

put [X] into Pr.
COMPUTINGRD g ([X]Rr) -

end if
move [X]r from U to V. Remark15. It is probable thai{X1]r <gr _[X_Q]R and [Xs2)r
end while is treated beforgX;]z. For example, it is probable that
6) while their exists[X]r € U such that |\X2||B <R |\X1|\B But taking our way, we can ensure that
[(X|r =k v anddg(y) = m, [Xl]R is treated befor@XQ]R whenevelX;|r <gr [X2]r and
do [X1]r 2r [Xo]g.
if EXPANDR (X, dcmPBR( 7)), then After one candidat@ |, . .. [Y1]r, is found, we will make
put [X]g into Cmp use of the expansion conditions (Section VI-C) to decide
dr[[X]r] :=m. whetherDc% ([ X]) can be defined &%)z, . .. [Y1]r,. This
Dcj([X]r) = dempf(a). is done by BPANDR (X, [Yi]r, - .. [¥1]r, ) defined in Fig[lL.
move [X]g from U to V. 2) Treating[X|]g: The Second Possibility. Every witness
else
path of [X]r starts with aZ Rr-preserving S|Ient transition.
enlgci)fve [X]r from U to T. That is, HVH%’R > m for every~ such thaf X|r 51 7, but
end while [X]r ——r 7 for some~ such thatX B ~ (which needs to
7)  put every block inT into U. be confirmed) and~| s = m. This possibility is treated via
8) m=m+1. the while-blocks at line
until U =0 This possibility is relatively easy because there is no
9) for every nonB-admissibleR need to guess the candidates for decompositior{ofz.
B = ids It X £; 4, we must haveDc3([X]g) = dempB(v).
end for Let [Yilr, ---[Yi]r, be dcmp2(y). Then we will check
EXPANDR (X, [Yi]R, - -- [Y1]Rr,). Note that it is unnessesary
Figure 2. Constructing New Base: Part Il to check the second half of expansion conditions, because

[X|r g - _R ~y always holds.
3) DeterminingRd%([X]z): When [X]r is declared as
cases which correspond to two different possibilities that a Bz-prime. There is an extra work: definBd% ([X]z).
Br-norm of [ X]r can be declared as. Intuitively Rd%([X]z) contains all the constants which

5
Remark14. If R is not B-admissible, the second part ofnakeY.X =r X. Itis necessary that” € Cg. We can use
the above fact cannot always be satisfied. This is one of e same way of determiningly to determineRd} ([X]r).

reasons why we must construgt; only for B-admissibleR’'s  pefinition 21 Let [X]r

) be a Bg-prime, letT be the set
at first and then copy back to all oth&'s.

(W | W.X 25 X1, and letS C T. We callS anRd% ([X]g)-

1) Treating [X]r: The First POSS'b”'ty There exists a candidateif the following conditions are satisfied whenever
witness path ofX | r starting with as r-decreasing transition. Y € S:
That is, [ X]|r o ~ for somey such that|y||s =m—1. 1) If Y - ¢ and( ¢ T*, then[X]|r —— J for somef3
This possibility is treated via thevhile-block at linel5. such that{. X ER S.



2) If Y % ¢, then[X]r — g B for some B such that blocks in V. The following statement is used as induction
X 2,8 hypothesis:
According to Definitior 2L, IH. Let S be an arbitrary3-admissible set. Suppose that
_ B _ is Bg,v-applicable, andicmp (v) = [Wyls,, - - - [Wils,
1) 9 is anRdp([X]r)-candidate. ThenW,, ... W, is Bsy-applicable, andicmp? +,(7) =
2) Rd%([X]r)-candidates are closed under union. v S;v=app ' Ps.vi7

B ig ~ 2
Rd%([X]r) is defined as the large®d’ (| X]z)-candidate. dempg v (W ... Wh). Thatis,y =g Wi, ... W1,
One fast way of computingRd3([X]z) is described as WhenV contains all blocks, we can get Theorgin 4.
procedure ©MPUTINGRD g ([X|g) in Fig.[d. Making use ofl[H we can establish the following.
4) Basic Properties of the ConstructioWe point out the

. _ . . B‘ _
following important properties. Lemma 67. SupposeS is B-admissible andicmp? (W)

Wuls, --- [Wils,, andW,, ... W7 is Bgy-applicable.

Lemma 63. Rd%([X]z) constructed above i8-admissible.
& ([X]z) N v 153! 1) If [Wa...Wils < m, then[W]s € V andW Zg
=s

Lemma 64. dr[[X]r] computed in our algorithm is equal to W ... Wi.
[X|[z - As an inference dr(e) = [lafs . 2) If [Wy...Wills_=mandW <s X, then[W]s € V

Lemma 65. B C D. Moreover, if B8 C D, thenB C D. andW Z5 W, ... Wi

With Lemmal[&¥ andIH, we can show the following
auxiliary lemma.

Remember Lemmia’$9 and Lemind 65. The remain thing is ~ ]
to confirm the following fact. Lemma 68. SupposgX|r be aBr-composite, and assume

~ ~ thatDCR([X] ) [Zt]p% . [Zl]Rl- ThenZt A is BR,V'
Theorem 4. Suppose tha3 C D, then B C B. Namely, gppjicable.

a~p B implies a ER B for every R.

F. The Correctness of the Refinement Operation

Now, the following Proposition 89 is obtained by Lemima 68
It is enough to prove Theoreﬁ 4 under the assumption thaid Lemmd4. 86, and finally Theordm 4 is proved.

R’s are B-admissible. If~rp C _R for every B-admissible . .
R's, then for nonB-admissibleR we have~p C ~pgs C Proposition 69. Suppose[X]r be a Br-composite, and

B B " assume thaDcﬁ([X]R) = [Zg, ---[Z1]r,- Then X .
~I1d8 = TR-

The correctness of Theorel 4 relies on some |mportan’i
observations. The following one is crucial.

Lemma 66. Let R be B-admissible. Lety = Y;... Y3 ) . ) )
and 6 = Z...7Z, such that[Yi]r, Vi 1lr, ... [Yilr, Remark 16. The refinement steps defined in previous

and[Z]s,[Z1— 1]sl _...[Z1]s, are twoBx-decompositions, in works [13], [15], [27] have the following interesting prapg
which Ry, S; = R andR;;; = Rdg, (Y;) for 1 <i < k and which says thal is thelargestdecreasing bisimulation with
Sjr1 = Rdg,(Z;) for 1 < j < I. If v and ¢ satisfy the expansion o2, in which

expansion cond|t|0ns foBgr, then we havek = [, R, = S;
and[Y;|gr, = [Zi]s, for 1 <i <k.

G. Remark

e« B and D are the new and the old base corresponding
to the related works, and is the equivalence relation
Lemmal[66 confirms that, whepX|x is being treated, generated bys;

at most one decomposition candiddt,|r, ...[Yi]r, can e« ‘decreasing’ is syntectic;

make EXPANDR(X,[Yi]r, ---[Y1]r,) returntrue. If such a e ‘decreasing bisimulation with expansion’ is a simplified

candidate exists, it is declared B ([X]z) and and[X]g version of the one in Definition 16.

is declared as @z-composite; otherwis¢X|r is declared This fact is also pointed out in [27]. Before this, a step
as aBr-prime. Decreasing b|S|muIat|on property is cruciahf refinement is divided into two stages, and inl[27], it is
to validate Lemma& 86. This is wh§ must be constructed pointed out that this two-stage understanding does not fit
as a decreasing bisimulation with-expansion of_R (Sec— well for branching bisimilarity, thus the notion afecreasing
tion[VI=C), rather than simply defined d&-expansion of:R_ bisimulation with expansiois invented accordingly.

Apparently, the proof of Theoref 4 should be done by In this paper, however, we do not claim théty is the
induction. Remember that our algorithm maintains aVet |argest decreasing bisimulation with expansion g;fR_ We
Containing all the blocks which have been treated. We W&hrmise that the ‘|argest’ does not a|WayS make sense, becau
suppose thak is B-admissible and Itz be a block which  semantic norms take the place of syntactic ones. Fortypatel
is about to be put intdv. We try to prove Propositioh 69. the correctness of the algorithm does not rely on the ‘ldrges
A processa is called Br,v-applicableif the derivation of |t only relies on the three requirements stated at the béwgnn
aBp demp? () (refer to Sectiof V-B) only depends on theof Sectior[ V).



H. The Time Complexity The date of the initial base is summarized as follows:
o ) . ) blocks [Jord| nom[Pr [Cm ]| Rd | Dc
The running t.|me ofour_ al_gorlthm is expont_entlally bounde’J, Aolin.cy 1 1 4 1B.0}
according to its description, together with Lemmal 32,74, s.cy || 2 1 7 A 5.0t
Lemmal36, Lemma 50, and Proposition 57. Finally, we can Finally, 3, is assigned td.

conclude. N B
3) The 1st Iteration:First, we calculatdd’; for everyR C

Theorem 5. Branching bisimilarity on normed BPA is Cg via COMPUTINGID(R) . We obtain:
EXPTIME-complete.

. Id} =0, and
VIl. EXAMPLES o Id{p, = Idfc} = Id{BB@} ={B,C}.
A. Example One Thus only() and{B, C'} are B-admissible.

Let us illustrate the algorithm for the following normed BPA Now we go into the main part. At first,

systemI’ = (C, A, A) in which
. C={Ag A, B,CY}; « U= {[Aoly, [A1]o [Blo, [Cla, [Ao]¢s.cy, [Ai]im.cy}-

e A={a,b,7}; - V=0
« A contains the following rules: Now let m = 1 and explore therepeatblock. Since
Ao -5 A, A " Ay, A -6, A -5 B, Ay -2 e anddy(e) = 0, and moreovefAoy is <, minimum,
B-%e¢ B-De 50, C-DSe [Aglp is selected fromU. [Ag]p is deemed to be &y-prime

By direct observation, we havé,.C' ~ A;.C but Ay % A because there is no candidate of decompositigalgfi;. Thus
, C >~ A, : . . B -

this observation tells us thaty ~c; A;. [4o]p is put into Pry. Then we computhde([AO]@) via
Another observation is thatdy.Ay.C ~ A;.A,.C but COMPUTINGRDg([Ao]p), and the result isRdy([Aoly) =

Ag.Ag 2% Ay.Ag, which tells us that even ifd, ¢ Rd(C), {B, C}. After that [Ag]y is put into V. Next, we can select
we still cannot cancel the rightmost. [B]p from U. The only candidate for decomposition @] is

Below we will demonstrate the behaviour of the algorithriylolo- One can check thabEANDy (B, [Ao]y) returnsfalse,
: thus we can affirm thdiB] is a By-prime, andRd} ([B]y) =

on this systeni’ to get more valuable facts. BC b Qd , th ' 0 N 0

1) Preprocessing:The ground constant€g = {B,C}. {B,C} can be computed in the same way. eilo,
Thus the reference set can be{B}, {C}, and{B,C}. All [Aol(p.cy, and[Ai](p c) are treated successively], and
these sets are qualified. We hagvé|r = { X} for every R C Aol(p,c) areB-primes[Ai] (s cy is, however, &3-composite
Cc andX € C\R. We can also find that thR-propagating of because one ga” CheckBAND  5,c1(A1, [Ao](p,c}) retumn
X are always the empty set for evelRyC C; andX € C\R. tUe- Now Defp oy ([Ailgn.cy) = [Aolin.0y-
Thus[X]r —r « if and only if X —r . Therefore, we ~ Now m = 2. Becaused; —y Ay and dy(4g) = 1, we

will simply write X for [X]g. can selecfA, ]y from U and definely[A;] = 2. We can check
We know thatf)-transitions— is exactly—. For future that[A,]y is prime too, ancRd?B@}([Al]@) ={B,C}.
use, we list the{ B, C}-transitions—s s,y The date computed in this iteration is summarized as
follows:

a a b
Ao —B,cy A1, A1 —B.cy 4o Ao — (B} 6

A L{B,C} €, € L>{B,c} €, € L>{B,C} c. [ blocks JJord[norm[Pr [Cm | Rd | Dc |
. . Aolo 1 1 v {B,C}
The order ofR-blocks does not matter in this example. We™ 4], 6 2 v {B,C}
choose the following orders: Bly 2 1 v {B,C}
C 3 1 e B,C
-A0<@A1<@B<@C. 1 0 Z 1 7 }BC{
Ao <(py A1 <(py C Pt :
o Ap <ypy A1 <ypy C. All(B.cy 5 1 v [Ao]tB,0}

o Ay <{c} Ay <{c} B.

o Ay <{B,C} Ay

Finally, |Blwk = |Clwk = 0; [Ao|wk = |A1]wk = 1.

2) The Initial Base: Now we define the initial basé,
according to Section V[IB. We know thatlp = {B, C} for ] 5 _
every R C {B,C}. The only By-admissible set ig3,C}. _ Whenm =1, we find [Ag]y, [Bly, [Cly € Prg, in which
Therefore By r = By (p.cy for every R C {B,C}, and Rdy([4o]o) = Rdy([Blp) = 0 andRdy([C]p) = {B,C}.

Finally, B is assigned td.

4) The 2nd Iteration:We calculateldﬁ for everyR C Cg
via COMPUTINGID(R) at first. Once agairf) and{B,C} are
B-admissible.

Bo,(B,cy is defined as follows: Ther; we find [Ao](p,cy € P.r{B,C} and [Al]{B,%‘} c
o Prigcy = {40} CmB{B_C}. Whenm = 2, we find that[4;]y € Pr; and
« Cmypcy = {A1}. Rdj ([A1]p) = 0.
e Dcypcy(Ar) = {Ao} The date computed in this iteration is summarized as

Rd¢p,cy(Ao) = {B,C}. follows:



[ blocks Jod[norm|[Pr [ Cm | Rd | Dc |
Aolp 1 1 v 1]
A1lg 6 2 v [ [1
Bly 2 1 e 0
Clo 3 1 v {B,CY}
Alpey | 4 | 1T |7 {B.C}
Alpoy | 5 | 1 v [Ad 5.0y [2]
We Tind an interesting fact that the only difference between

B andD is Rd§ ¢ Rdj. Compare this fact with Lemniab5. (3]

Finally, B is assigned td.

5) The 3rd Iteration: In this iteration, we can obtain that [4]
B = D. Therefore the algorithm stops here. We can draw the
conclusion that3 = D. In other words~r = 23 for every [5]
R C Cg.

6) Conclusion: We confirm thatA, % A; by showing
dcmpg(Ao) + dcmpg(Al). In fact, dempg (Ag) = [Aglp and
dempf (A1) = [Ad]g. R

We can showA,.C' ~ A;.C. Using theB-reduction rules
defined in Sectioh V-B, we have

. C 51@ [Clo;
- Rdj([C]y) = {B,C};

(6]
7
8]
9]
[20]
e Ao %{B,C} [Aol(B,c1 R [11]

o« Ay 5{B,C} [A1]B,c} 5{B,C} [Ao](B,cy-
Therefore, we have

dempy (Ag.C) = dempy(A;1.C) = [Ao],c3[Clo,

henceAd,.C ~ A,.C.

Actually, we can show

1) For everyiy, ji, ..., 5: € {0,1}, we have

[12]
[13]

[14]
[15]

[16]

2) For everyiy, ji,...,4 j: € {0,1},

[17]

if and only if i; = j1,.. [18]

VIll. REMARK

The algorithm described in Sectidn ]VI can be further
improved. For example, in thepeat-block at line 4, although [19]
m can be exponentially large, there is no need to enumerate
every m. We can compute the next candidate 1of based [,q
on the right-hand-sides ak. Thus only polynomial number
of candidates ofn is available. In addition, we notice that,[21]
although the length of the decomposition pf]z can be
exponentially large, the technique of string compressian ¢
be used such that the representation and manipulation (23]
strings can be implemented in polynomial time. This is do
in all the previous works on polynomial-time algorithms for
checking bisimilarity on realtime BPA. Ultimately, the nber
of ground constants is essentially the only factor of theoexp[24]
nential time. Therefore, we claim that branching bisiniflar [>s)
on normed BPA is in fact fixed parameter tractable.

<yt = Jt-
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We show thaty; ~ «; for every0 < 4,5 < k. To this end, let

s {(evi, ) | 0 <4,5 <k}, and construct the equivalence

relation= &' (SU~)*. We emphasize that can be viewed as
a single ‘equivalence class’, becausés both symmetric and
transitive, and connective. We confirm thais a bisimulation.
The crux is to show the followindey property For every
i,j€{0,1,...,k},

1) If a; % 4, thena; = - —%+ § for somed such that
v~ 6.

2) If a; = 7, thena; == - 2+ § for somes such that
v~ 0.

To show this property, we study the following two cases:

« i > j. In this case, we have; = «;. By lettingd = ~,
we get the key property.

e i < 7. In this case, we will make use of the faet~ ay.
Consider the transitioa — «;. Now eithera; ~ ay,
or ap = - — o/ such thata; ~ of. In view of
(o, 1) € S, we conclude that in either case = o)
for somea) such thata; ~ . By repeatedly applying
the above argument. We can show that = o for
someq; such thate; ~ o). Sinceaq; = ay, We Now
havea; => o/ such thato; ~ /. Now it is a routine
work to justify the key property. For example, suppose
thato; = v, then we haver; = o}, = - - § for
somed such thaty ~ 4.

Remarkl17. We can show the bisimulation property ef by
repeatedly using thieey propertyand the bisimulation property
of ~. Be very careful that it would be a mistake if the ‘key
property’ was modified slightly as follows: For eveiyj €

{0,1,...,k},
1) If a; % 4, thena; = - —% § for somed such that
v =< 6.
2) If a; = 7, thena; == - 2+ § for somes such that
v =< 6.

This mistake is essentially the same as the well-known kasta
of ‘weak bisimulation up-to weak bisimilarity’. To get a et
understanding of the mistake, readers are referred to €hapt
of [22], especially Section 5.7.

2) Proof of Lemma11:This proof is an adaptation of the
proof of LemmaL.
Let R C Cg and leta be in R-nf. Suppose that

T T T T
a=0q) —RON] —ROQQ —R ... R O =R Q.
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We show thaty;

sE {(vi, ) | 0<4,5 <k}, and construck

~p «a; forevery0 <i,j <k. T0 this end, let
< (SU=p)*.

We confirm that< is an R-bisimulation (via Propositiof]9).

First of all, we point out the following basic facts:

e = is an equivalence relation.
« S is symmetric, transitive, and connective.
e =p C =. (Because=p C ~p and~p C <.)
o If a; = € for some0 < ¢ < k, thena; = ¢ for every
0<j<k.
e All o;’s are inR-nf for 0 < i < k.
The crux of the proof is to show the followinkgy property

3) if a - o, thenfr, =g, - —g, 3’ for somep’
such thato ~g, g’

Note that, ifao < 3, then we must have
~pg, B

for somen € N andi, € {1,2} for everyl < k < n.
Therefore, by repeatedly using the propdrtgndll, we can
obtain that< is a bisimulation.

We can observe that the propeityis an direct inference
of the bisimulation property ofr,. Thus it suffices to prove
propertyl.

QR R e

Condition 1 (i.e. ground preservation) is trivial. Otherotw
conditions have the same structures and Condition 3 cannot
be more difficult than Condition 2. Thus we choose to prove

For everyi,j € {0,1,...,k},
1) If i g v, thena; =>5 - % & for somed such

that’7 ~R 0. -,
+ - # Condition 2.
2) t'; O;i >R57' thena; = - =g 0 for somed such g 5n0se there are and 3 satisfyinga ~p, 8. According
aly ~pr o.

to Definition[8, we have:

To show this property, we study the following two cases: it o @ o, then Bn, ::R;Rl ' ﬂRl 3 for some '

e ¢ > j. In this case, we have; = «;. By letting such thai/ ~p, 4.
0 = =, we get the key property. %

e i < j. In this case, we will make use of the fact Assumex — «'. Because~p, C <
a~p ag. ConS|derthe transmon —» aq. Now either /. We can finds’ such thatgg, :ﬁR] . ﬁR] A and

a1 ~pg ay, OF a =>g - —g o} such thaty ~g of. o ~p, B’ In view of Lemmd® and Lemnid 7, we have
In view of (a, 1) € S, we conclude that in either case, an
—R R
e

ar =g o, for somed/ such thata; ~p a}. By
repeatedly applymg the above argument. We can Sh?or some s’ such thatn/ ~p, A'. Since Ry C Ry, we have
C =g,. Also note that~g, C <. Thus

that ay, :>R o), for somea) such thatal ~p af.
ﬁ =R L> e BI

Since o :>R ag, We now haveaj =g « such that
for some 3’, 8” such thato/ ~pg, (’. We can ensure that

a; ~p o). Now it is a routine work to justify the key
property. For example suppose that—-  ~, then we

B" # ', because’d”’ < 3 =< a # o < . Therefore,
B:Rz'é.L'ZRQﬁ/

have o = p o, =>p - —25r ¢ for somed such that
Y ~g 0.

for some s’ such thata’ ~g, 8’. Applying Lemmal6 and
LemmalT repeatedly, and rememberiag, C~g,, we have

=, we must havex @

=R,

.:X>B//

B. Proof of Propositiof 114
SupposeR; C R;. We show that
def

=~ =

(231 U sz)* = » ,
ﬁRz :>R2 : —>R2 ﬁR2
for somepy, such thata' ~p, - ~g, 5.
Remark 18. We make a mistake in the previous version,

e =p, T = because we take the following slightly different variant of
e ~p., ~p,, < are all equivalence relations. propertyl andll :

In order to show thatz is an Ry-bisimulation, we design I'. Suppose there are and 3 satisfyinga ~gr, 3, then

is an Rsy-bisimulation.
We emphasize the following basic facts:

o« ~p, C < a.nd’l’R2 C <

the following propertyl andll : 1) if « = ¢, theng = ¢;
|. Suppose there are and 3 satisfyinga ~g, 3, then 2) if a 2o, then Br, =>g, - i>32 g’ for somep’

1) if a = ¢, thenpg = ¢; such thato' < f';
2) if a 25 o, thenfBr, =>r, - —+r, B’ for somep’ 3) if a = o/, thenBr, =>r, - —r, {' for somes’

such thate ~p, such that’ < g’

: —Rz BI

3) if « % o/, thenBr, =>g, - —r, (' for somes’ II'. Suppose there are and 3 satisfyinga ~g, 3, then
such thato ~g, - ~g, 4’ 1) if a = ¢, thenf = ¢;
Il. Suppose there are and 3 satisfyinga ~g, 3, then 2) if N o, thenBr, =g, - LRZ B for somef’

1) if a = ¢, theng = ¢;
2) if a 25 o, thenBp, =g, -
such thate ~g, §';

such thato’ < 3’; 3
if o i> a’, thenﬁR2 :’\>R2 .
such thato’ < 3'.

25, B for somes’ 3) —+ g, B for somep’



It will run into trouble when using property andll’ to prove
bisimulation property of<. The reason is the same as in the
situation of ‘weak bisimulation up to weak bisimilarity” 2.

To get a better understanding of this mistake, readers are
referred to Chapter 5 of [22], especially Section 5.7.

C. Proof of Propositiof_16

BecauseR C Idg, by Propositioi 14, we know thatg C
~4s- Thus it suffices to showy, C ~p. Let S = Idg, it
suffices to show thatvg is an R-bisimulation.

e [Bs # e. Inthis case, there are several subcases, depending
on the patth =L O S
- fs —>5 B’. We can show by applying Lemnid 7

that 3 — [3’ for someﬁ’ such thate’ ~5 [3’ By
LemmaE(S we haver —r ﬂR Knowing the fact
thatﬁR ~p ﬁ’ and~p C ~g, we haveﬂR ~g [3
and thusa/ ~g @%. Finally it is a routine work to
QbserveﬁR ;éSAB}%. In summary, we havér ﬁm
Br anda/ ~g ff.

Clearly,~¢ is an equivalence relation, andr C ~g. Thus - Bs =3¢ n =g - Z5¢ . We can show by
it suffices to prove the following property: Whenever-s 3, applying Lemmdl7 tha =5 7 for some7 such
1) if a = ¢, theng = ¢; thatns = 7. In view of ~g C ~g, and by Lemmals6,

2) if a 2% o, thenfr =3, - 25, B for somep’ such we have8r =3 7r and a ~g 7z (because

thato' ~g 5'; a ~g B ~sn~s 7 ~g nr). Remember the fact
3) if a -5 o, thenBr =25 - 255 B for somef’ such 7ls = 1, we can now use induction to confirm that
that o/ ~g [‘3/.

. o "y ﬁR%R'ﬁRB/
Condition 1 is trivial. Other two conditions have the same
structures. As usual we choose to prove Condition 2.
Suppose that ~5 8 anda =% /. By Definition[8, we
have:
Bg =g - ﬁs B’ for somef’ such that! ~g 3.
Now there are two cases:
« Bs = e In this case, we havg € S* = (Idg)* thus D. Proof of Theorenill and Theorérh 2
B ~r ¢ by LemmdIB. Since-r < :5, we havels ~g
e. Consider anys3” such that3s —
following properties.
— B"” = ¢ (becaused”’ ~g ).
— There existsX € S such thatX =% ~ andyg = 3”.
(By LemmalY)
Now we havee ~p X — v = ¢ and by Lemmal6,

for somep’ such thate’ ~g 8’. Put them together,
we get

Br 3R MR =>rR - £>R B

for somef’ such thate’ ~g 3.

s B"”. We have the prove Theorer]2. The proof is divided into the following two
lemmas: Lemma_10 and Lemrhal 71.

Lemma 70. If S = Rdr(7), thena ~g §impliesay ~g 5.

Proof: We can assume that¢Z R*. If not, we will have
S = Idg and thus according to Propositibn] 145 = ~p.
The result of this lemma holds accordingly.
Let = be the relation{(ay,8v)|a ~s (}. Define the

According to Computation Lemma (Lemtal 13)~x e, relation o def (=

and thus by Lemma13y € (ldg)* = S*. Therefore
B" = ~s = e. This crucial fact leads to the following We show that< is an R-bisimulation.
assertion: We point out the following basic facts:
Whenever3s =3¢ 7 =5 s g B, B” must bee. e 2Cx,=pgC~pCx,andzo~p C x
Therefore we confirm that  LC~p inwhichI ={(¢.()|¢e€C }, which is the
fis s ¢ for somep’ such thata’ = . IJ(?eigtlsarlnrrr(?:::trlicc;nag<rjctr'.;msitive
Now achrd|ng to I_Aemn@], there existse S such that :R' xyare all equivalence reletions
X 25 ' for someﬁ’ andfs = . Knowing~p C ~g, Now consider an arbitrary paii¢,7) such that¢ = 7. We
we haveX =5 j’. BecauseX € S = Idz, we have will prove
X ~p e. Now according to Definitiofil6, 1) if ¢ = ¢, thenn = ¢; (trivial)

. # = #
~ ~ 2) if ¢ = (’, then = p - 25 1 for somen’ such
N oy B ) if ¢ ¢ NR =R R n

that(’ =< 1/;
for some~’, which implies that

-
EZRXR —R YR —>R €.

U=~g)".

3) if ¢ % (¢, thennr =>5 - —— 1’ for somern’ such
that ' < 7'

As usual (similar to the proof of Propositidn]14), we show

for some~’,~". Finally we can observe” g ~/, for the following propertyl andli:

V' ~g e ~g B ~5 a ks o ~g . Above all, we find |. Suppose there arg andn satisfying( = n, then

suchy that 8r =5 5 - “% 5 4/ ando/ ~g . 1) if ¢ = ¢, thenn = ¢;

=~ no_T /
63]{’}/ —RY XR«

Since Theorerll is a special case of Theorém 2. We only



2) if ¢ 25 ¢!, thennp =>pr - 2> x 1/ for somen’ such
that (g" n)e (=~ )UI
3) if ¢ % ¢/, thennp = - %> g 1’ for somen’ such
that (¢',n) € (= - =g)UT.
II. Suppose there argandn satisfying( ~z 7, then
1) if { = ¢, thenyn = ¢;
2) if ¢ 25 ¢!, thennp =>p - 2> x 1/ for somen’ such
that C/ ~R 7’]’,
3) if ¢ % ¢/, thennr =>5 - —— 5 1 for somey’ such
that C/ ~pn 77/.
Now assume thaf = 7, we must have] ~p - = - ~p
- =~ . ~p B. (Think why. ) Thus we can show that is
anR b|S|muIat|on by applying propertyandll finitely many
times.
Since propertyll is trivial, it suffices to prove property.
If (¢,n) € =. Now we must havé = oy andn = S~ such
thata ~g 8. There are two cases:

1) a # e. In this case] -4 ¢’ is induced byary -4 o'y,
o If £ = 7 anday # «'v. In this case, we must

haveo’ #s «a. According to the facty ~¢ 8 and
Definition[8, we have

Bs%&ﬁsg

for sonjeB such thate/ ~g B The above path from
Bs to B can be written as follows:

~ ~ >~ fﬁ )
Bs=PBo —2s B —2s ... —25 B —>s B.

Consider this path. We have two possibilities:

— B; # € for every0 < i < k. If so, according to
LemmalT, we have

BES . ES g g B

for some’. Actually we haves =2 g = g
with o/ ~g B'. Therefore we havesy =
By 7, B'v, and o/y = p’y. Furthermore,
because=p C ~g, we have

Byr :X>R BH'YR i>R ﬁ/'YR

with o'y =
B'vr % Byr is that B"yr < Byr X ayr #
a'vr =< B'YR-

— B; = e for some0 < i < k. Choose the largest

~r A'vr. Note that the reason for

becauser ~5 8 ~¢s ¢, we havea ~g X, thus
ay = X~.

c) According toay = X~ and X =5 g7 75
B’, we can now take the way in the first pos-
sibility to obtain the following fact:X~ =—>
By L3 By with o'y = B, N

d) Now rememberX~ ~ v, we haveyr ==r
v —sr v, for somes” andy’ such that
By ~p~" and 'y ~g 7.

In all, we have

= = " T /
BYR =R YR =—R7TrR —RR

such thatay < +” anda’y = - ~ +'. To see
" % ~', we notice thaty” < 3y < ay # o'y <
o
o ( # 7. This case can be proved in the same way as
the cas€/ = 7 anday # o'+.

2) a = e. In this case( 4 ¢’ is induced by~ LN ~'.

Now we haveB =% e. Thus Byr =5k YR — Yh,
with ay =y <y and(y/,v') € Z.
| ]

Lemma 71. SupposeS = Rdg(v), thenay ~g B~ implies
a~g ﬁ

Proof: Define the set

=¥ {(o, B) |y ~r B}

As before we can assume¢ R*. Otherwise the conclusion
of the lemma is relatively trivial.

We show thatx is an S-bisimulation. It is easy to see that

= is an equivalence relation indeed.

Now we check the properties in Definitiomh 6.

1) We show=g C =. Let o =g (. According to Def-
inition [3, there exista/, 8’ € S* = (Rdg(y))* and
a process¢ such thata = (o’ and 8 = (3’. Now
ay = (d/y ~r (v ~r (B'v = Bv. Thereforea < 3
by the definition ofx.

2) If a < 8 anda = ¢, we showg = e. According to
the definition of<, ay ~r Bv. Now ayr =g yr must
be matched by~g. Let us suppose that the matching is
BYr =Rr B8'vr ~r YR, Which is induced by — f'.
Otherwise we will have3 — ¢ immediately. Now we
haves’~ ~g ~, which implies3’ = ¢ and consequently
b8 =e.

such that8; = ¢, Then according to Lemnid 7, we 3 Ifax=pfanda i o/, then we show thaBs :>S

have
Bs =Sge=5 X == " 75 i 58 ~g B

for somep’. Then we have the following facts.

a) Because3s =3¢ ¢, by Lemma[B we have
B =% e. Then we havex ~5 3 ~ ¢ and
By = 1.

b) We know Xs = ¢, or equivalently X €
Rdgr(v), which means thay ~p v. Then,

is B’ for somep’ such thate’ =< ’. According to

definition of <, we haveay ~g 3. Moreover,« NN

is equivalent toay —> #n o’~. There are two cases:
e a ¢ (Rdg(7))*. In this case we also havg ¢
(Rdr(7))*. Thus the actiomy =% o/ must be

= " # ’

matched byByr =2 B"vr =g B'vr for some
B" and B with o’y ~r B’+. This is equal to
8 = 5" % B with o/ = A, which implies



Bs =>g BY I B% with o/ =< B’ according to

the fact=4 C x.
e a € (Rdg(y))*. In this case we havey ~r v ~g
B~ hences € (Rdg(y))*. In other wordsg, 8 € S*.

~

Now we havesy = v, or equivalently3 = e.
Now rememberc =5 o and a i> o'. Combine
these transitions we havé = ¢ —g a 25 o/,
and thusfs =g ¢ = ag g /s and trivially
o' < o/y. We are done.
4) If o =< Banda -5 o, then we showds =>g - —g 3’
for someg’ such thato
in the same way as the previous one.

~
=~

E. Proofs Concerningk-redundancy

Proof of Lemmal 25: SupposeX € Rdgg,s)(7). By
Definition[8, this is equivalent toXy ~gq,(s) 7. According
to Theoreni R X~4 ~g +d, which meansX € Rdg (7). The

APPENDIXB
PrROOFS INSECTION[VT]

A. Proofs Concerning Relationships between Bases

Proof of Lemmd §3:If X e Id%, then X gR e. Since
B, C 2y we haveX 25 ¢, henceX e Id2.

Proof of Lemmd 34:First note that, becauskl} = Id%,
a reference se? is B-admissible if and only if it isD-
admissible. The members Prz andPr’;, are both thdd -
blocks. Thus comparin®r’;, with Prr makes sense.

We only need to prove the conclusion #8radmissible (also

3. This case can be treatedD-admissible)R’s. Keep in mind that? = Id% = Id?.

Now supposéX|r € Cm%, we will show [X]z € CmZE.
Since[X]z € Cm%, we can suppose that 5 a.P in which
[P]r € Pr% and [X]r # [P]g. (Caution: we cannot assert
thatP <z X.) BecauseLiR C 23, we also haveX QR a.P.
Since P ¢ R, either [P|r € Prp or [Plp € Cmp will
happen.

If [P]r € PrZ, it is done. Otherwise we must harZ

proof of the other direction is from the fact that the abovg’.p’ such that[P'|gr € Prg. Thus X ER a.of . P with

reasoning steps are reversible.
Proof of Lemm&27We show thatdy = R. That is,X ~p
e if and only if X € R. It is trivial that X ~; ¢ whenever
X € R. So it suffices to showX € R wheneverX ~p e.
Assume thatX ~p e. SinceR = Rdg/(v), by TheoreniP,
X~ ~pg v which implies X € Rdg/(v) = R according to
Definition[Q.

F. Proofs of Lemm& 28 and Theoréin 3

Proof of Lemm#& 28:There are two cases.

1) aX ~g X. In this case, we hav& ~g Y. Since X
andY are both~pg-primes, we must havgY ~p Y.
ThereforeX ~r Y.

2) aX #pr X.Inthis case, we also haveX #r Y, BY #g

[P'|r € Prk. Therefore, in either casgX|r ¢ Prk. The
only possibility is[X]z € CmZE.

Proof of Lemmd_55:It suffices to proveRd%s C Rd%
for Br-admissible (alsd3r-admissible)R’s. Let [P]r be a
Br-prime (alsoDgr-prime). According to the rules oBg-
reduction defined in Sectidn BX € Rd%([P]z) if and
only if XP £5 P. ThusXP 25 P henceX € RAR([P]r),
since2 r C 2 R.

Proof of Lemm&86First we point out thaCm% = Cm?%
wheneverdd?, = Id% andPr5 = Pr%.

Now we prove B D. Suppose on the contrary that
B C D. There is somex and someBg-admissible (also
Br-admissible) R such thatdemp?(a) # dempZ(a). By
examine the B-reduction rules, The only possibility to

Y and fY #x X. Consider the following sequence ofmake dcmp?(a) # dcmp®(a) is the existence ofBg-

transitions
£y 12 L £ !
aX o X ... S5 aX —aoaX

with oy X #r X for1 < i <k anda’X ~p X. This
sequence must be matched By via

BY & 5y 2 & sy 5y,

such that
o BiY 2rY for1 <i<kandf'Y ~rY; and
e ;X ~pfBYforl<i<kanddX ~ppY.
Accordingly X ~g o/ X ~r 'Y ~p Y.
Proof of Theoreni]3:By Induction onr or s. Remember
from Definition[11,P; is a~g,-prime andQ; is a~g, -prime.
BecauseP,.P,_1..... PP ~pR, Qs-Qs—l ..... Q2-Q1a by
Lemma28, we havé’; ~g, @Q;, which impliesRdg, (P;) =
Rdg,(Q1) by Lemmal[ZL. In other wordsR; Ss.
According to Lemma 24, we havé,..P._;..... Py ~p,

admissible (als@Bz-admissible) reference séttogether with
[X]s € Cm% = CmY% such thatDc5([X]s) # DcZ ([X]s).
Let us sayDeg ([X]s) = [X,]s, [Xro1]s, ;- [Xols, [X1]s:,
in which S; = S, [X,]s, € PrS andSi;, = RdS ([Xi]s,)

for every 1 < ¢ < r. Consequently,[X;]s, € Pr?i

and Siy1 = Rdj ([Xi]s,) for every 1 < i < 7
according to the condition of the Ilemma. Now,
becausegs - 25, we have X 2 X, X,—q1..... Xi.
Thus  dempB(X) = demp® (X, Xy 1. ... X1).
Amazingly, demp®(X,.X,_1..... X;) turns out to
be [X)]s, [Xro1ls, ... [Xo]s,[Xi]s,,  which  implies
Dcg([X]s) = [Xs,[Xrals, - [Xo]su[Xi]s, =

Dc5([X]s). This is a contradiction.

B. Proofs of the Properties of Construction
Proofs of Lemmd 680:Clearly R C Id%. According to
Propositioi TA~p C ~y45. On the other han(ﬁldg =E

—R-
herefore,~ ~ = = =
I 1—R( ~148 ¢ =148 = =R-

QsQs—1..... @2, and now the proof is accomplished by using Proofs of Lemm& 821t is a routine work to check that

induction hypothesis.

{X | X ~p ¢} is anId%-candidate.



Proofs of LemmA 63We need to show thatdﬁdg([x] )=
B - B Sl
Rd;([X]r). To this end, we showIdeg([X}R)
Rd%([X]r)-candidate.
def

As before we letT’ = {W | WX E2 X}. First we
confirm IdeB([X] y € T. By inductionT" is a D-admissible

set thus it is alsd3-admissible set, hendel? = T Because
Rd([X]r) C T, we haveldggs (x),) C Id7 =

Now we check the conditions (RdB([ 1r)- candldate. Let
Y e Ideg( . If Y € RA%([X]r), then nothing need to
to. Now we suppose that ¢ Rd5([X]r).

HIFY 5 ¢and( ¢ T

B
Idggs ((x),) € T+ we have( ¢ (Ideg([X] )*. Thus
Y SR8 (X)) ¢ =Rd8 (x]n) ¢ Now accordmg to
the definition ofTdg 4 (1., we havee —gas ((x))

~

n for some 7 such that dcmdeB([X] )(C)
’D A
dcmdeBR([X]R)(n). In other words, there isZ ¢

is an

RdA%([X]zr) and Z 5 5 for some 5 such that
dcmpgdB([X]R)(O = depgdB([ X]r )(77). This makes

X RnX Now, we use the fact th®d5 ([X]z) itself

is anRd% ([ X]r)-candidate. Thus it satisfies the relevant

conditions. That is[X]1a, —— 3 for someg such that
n.X QR 5. And finally we have( X QR 5.

2) If Y % ¢. The proof is complete the same as the first

case.

Proof of Lemmd_84:Apparently we can only prove the
proposition for3-admissibleR’s.

The proof is by induction. Assume at some time in the the

execution of the algorithm, we have the 3&twhich contains
all the treated blocks, and we have a current valuepfind
current block X,

If [X]r € V, thendg[[X]r] = || X[z ; if «
satisfiesdcmp, () € V*, thendg(a) = [|of|s -
=R
According to the algorithm, it is clear thair[[X]|r] >
[ Xz . The reason is elaborated as follows.

1) If dr[[X]g] = m via the fact{X]z — v anddg(q) =
m — 1. Then there is a path fronX to v with length1
and there is a path from to ¢ with lengthm — 1. Thus
totally we have a path fronX to ¢ with lengthm.

2) If dg[[X]r] = m via the fact[X]r — v, dr(7)
and X ER ~. Then there is a path fron’X to v with
length0 and there is a path from to ¢ with lengthm.
Thus totally we have a path frotd to ¢ with lengthm.

Thus in both case we havg[[X]g] > || X5 -

Now assume, for contradiction, thdk| X]RR > ||X||B .
In other words,m > || X||s . Then according to induction
hypothesis, for everyY]s _eRV, dr[[Y]s] = |IY|ls . Now

=m

consider the time whem is assigned t@lz[[X]g]. There are By

two possibilities:

1) [X]r ~— ~ and dg(y)
induction dr(v) = |17/ls

= m — 1. In this case, by
= m — 1. There can not be

In this case, because

. The induction hypothesis is the following:

other transition of X|r such agX]gr N ¢ that
a) eitherdr({) <m —1,
b) ordg({) =m —1 and( . X.
If so, m — 1 would be assigned tdr[[X]z] and the
block [X]r should have already been put irt@ This is
a contradiction.

2) [X]r —= 7, dr(y) = m and X 25 ~. In this case,
by inductiondr(y) = ||v[[s = m, thus we must have

—R
IX|z =lvlls =m. Thisis a contradiction.
=R =R
APPENDIXC
PROOF OFTHEOREMH!
A. Proof of Lemm&a86
There are several cases according to the valudsanid!:

o If k,1 > 1. In this case we can assume th\a)tHB
101 5 5 which is already known, and we can tell whether

a g|ven action isZ-decreasing. Suppose we have a
decreasing transition of <— - LR n.Yr_1...Y]
which is induced by[Y%]r, »im,c 1. Now we have the
matching transitiod <— - im (.Z;_1...Z; whichis
induced by[Z] g, niml ¢. Moreover, we have

77Yk1 ..... Y1 RCle ..... Z1

Now we must haved’; = Z;. And the procesyy ... Ys
andZ; ... Z, also satisfy the expansion property ..

The result of the lemma can be obtained by induction.

If k 1 and! > 1. In this case,[Y1]g must not

be a prime. According to our algorithm, one of the
candidates will be defined @c%([Y1]r) if there exist
some candidates which can pass the expansion testing.
If k=1=1.1f [Z1]r <r [Y1]r, then this is the same

as the above case. Otherwise we can change the role of
Yi and AP

B. Preparations for the Proof of Theordm 4

To make things clear, we introduce some new terminolo-
gies. Note that the program in Fi§] 2 maintains a 3&t
of the blocks which have already been treated. During the
execution of the algorithmV start from () and get larger
and larger. Intuitively these blocks iV contain part of
information of B. Formally, we can define theartial de-
composition baseé3y = {Bgrv}rcc, In which Bg v
(1d%, Prf \,,CmY y, Dk v, R} /) where

« P8, =P8NV,

« Cmby =CmbnV,

o chv([X]R) :{ DC}%([X]R)

if [X]ge€Cmpy

undefined otherwise
B _ [ RA}([X]r) if [X]rePriy
» Rd -V([X]R)_{ undefined  otherwise

is called partial in the sense thaPrRV U CmRV =
CrNV CCk. ComparatlverPrR U CmR = Cgp.

At some time in the execution of the algorithm, we get a spe-
cific value ofV, thenBy is already known at that time. Now



we can definelcmp%\,(oz) for any process. dcmpg,v(a) = running in the firstwhile-loop in F|g [2. SinceX ~p 4,

dempB(«) if the derivation ofa S, dempB(a) (refer to there is a matching of X]p ~— ~ from 6, say
Section[V-B) only relies on the information provided in s =8 . 4 ¢ for some( that v ~p (. Because
Bv. OtherWIsedcmpRV( «) is undefined. In the following, a 0 is itself a ~g-prime-decomposition, we must have
processy is calledBr v-applicableif dcmpRV( «) is defined. §oe— . 4 ¢, which is induced by[Z]z, .L>Rt n
Now we prepare to confirm the important result~p 3 for some n, and ¢ = n.Z,_1...Z;. Suppose
impliesa £, 3. dempl () = [Vi]...[vi] (s > 0), then dempB(()
First of all, we find that it is enough to prove the result under  must be in the formYs]...[Y1].[Zi—1]r, - ---[Z1]R, -
the assumption thak is B-admissible. Note that i C 5. Because v =~ (¢, we have dcmp}"g(v) =
for every B-admissibleR’s, then for everyR we have~p C Ys]... Y1) [Zi=1]lRr,s-- - - [Z1] Ry - According to
~pa8 C Elds = ER Thus in the rest of this section we induction hypothesis 1,y ER Y... Yi.2_1... 74,
asstimeR to be B-admissible. thus|Ys..Y1Ziy...Zifls = m — 1. Now since
Th\:ev(;trentgz help of Lemmd_86, we are able to establish dempB(() = Vil VillZelge s - [Zi]res by
: B
We take the following approach to prove Theorém 4. Lemma @' ¢ =r Ys---Yl-Zt—l--é- Z1 and thus
Remember that our algorithm maintains a $&t containing IICIIB = m — 1. Sinced <= - — (, we have
all the blocks which have been treated. We will supposefhat ||6||,S <'m. In summary, we have:

is B-admissible. Lef.X]r be a block which is about to be put

into V. We try to prove that if X is aBR-composne and

let DcR([ Ir) = Zir, ---[Z1] Ry s thenx £ =R Zi... 2.
Apparently, the proof must be done by induction. However,

- H(HB = |\YS...Y1.Zt,1...Z1||gR =
H?’] Zt 1- ZngR =m—1.
bl HZt 1- .Z1||2R Sm—l

this is not an easy task. We will choose the following state- - H‘SHB < m.
ments as our induction hypotheses: - HZle
I. Let R be an arbitraryB-admissible set. Suppose that There are two possibilities:
is Br,v-applicable, andicmpf (y) = [Wlr, Wil — EITHER [|Zi]ls, < m for everyl < i < ¢ In
ThenW, ... Wy is BR_VV-apPhcal;Ie, andicmpz v (7) = this case we havé — Z; ... 7 is Br,v-applicable
dcmp%v(Wu . Wl) That IS,Y =R Wu e Wl. tr|v|a||y_
We remark that at the time the algorithm terminates wNen - OrRt =1 and ||Z1Hs = m. In this case, we
contains every blocks, the statement | implies Thedrem 4. have[Z|r <r [X]r and HleB ||X||B Thus
. The readers are suggested to imagine 'th following picture [Z1]r € V and thus) = Z; is BR V—apphcable
in mind. AlthoughR;, ..., R, are all B-admissible according
to the definition of decomposition base, we cannot draw thee If for every v such that{X]r ~—x v, we do not have
conclusion thaf?,, . . ., R, are allB-admissible. It may indeed ||7||B < m. In this case, the algorithm is running in
happen thaZ; € Id%, , which means thaZ; is Br,-redundant. the secondvhile-loop in Fig.[2. We are able to find 2
However, sinceR; = R is B-admissible, we do have; ¢ Wthh is Br,v-applicable such thatX]z ——r v and
Id}, . This fact will be used in the proof. xEq4, and||7||5 = || X|[|s = m. If it happens that
C. Proof of Lemm&&7 we can find suchy sat|sfy|ng ~p v, We can use the

induction hypothesis | to confirm immediately thatis
Br v-applicable andy ER 0 (henceX ER 0). Thus in
the following we will assume that % X. That is,
[X]r ——r v g X. SinceX ~y §, there is a matching
of [X]gr — ~ from §, sayd == . zn ¢ for some
¢ such thaty ~p (. Because) is itself a ~g-prime-

This fact can be proved by induction ol =
[Wy...Wi]ls , and by studying a witness path efp-
norm forW “fhen using hypothesis | and by inspecting the
algorithm we can show that wheW ~p W, ... Wy, W
should have already been put inta

D. Proof of Lemm&_88 decomposition, we must hawke <= - —— ( ~p 7,
We usesé to indicate Z, ... Z;. The lemma confirms that, which is induced by[Z;]g, '—>Rtl§77 for somen , and
when[X]r is about to be put intd, demp’ v (Z; ... Z1) has ¢ = 1.Zi—1...Z1. Supposedcmpy, (n) = [Yi]...[Y1]
already been defined. This fact is proved by induction, using (s > 0), then demp3(¢) must be in the form
the induction hypotheses. The way is to choose a progess  [Y]...[Y1].[Z;1]R, ,....[Z1]r,. Becausey ~f ¢, we
such that{ X g AL, v is on aZ g-witness path ofX. Now have demp?(v) = [Yi...[V1].[Zi-1lR, y----[Z1)R,

7 is Br v-applicable, thus we try to use induction hypotheses  according to  induction hypothesis 1, 5.
on+. There are MO cases: , Yy...Y1.Zy_1 ... 71, thusdempb (C) is Br,v-applicable,
o If there exist v such that [X]p +~—gr ~ and and ||demp2 (Q)|ls = IYs-. . Y1 Zso1... Z1lls = m.

—R —R

Ivlzs = m — 1. In this case, the algorithm is In summary:
=R



- Ys.. V1.2 ... Z4||s =m. Up to now, we have shown thdZ;|r <gr [X]|r
=R

21 Zills, <m. and [Z1]gr ——r 7 such thatX 25 v £ 5 with
- 1Z1lls > 0. HﬁHB = m. This fact means thdtZ;|r should be
o chosen to test the expansion condition in igle-

Now we have two possibilities:
F+ > 92 B P 0 th loop before[X]z. Now we can do without difficulty
a = . Because || 1”5 5 - » TUS to check expansion conditions to ensure that] z
[Zt-1...Z1lls > 0. Let S = Rd r(Zi-1...21). is put into'V before[X]z.

By inductionRRt C S. Then we have .
Y, .. Yle < m. Sincen ~p Yi...Y., E. Proof of Propositioh 89

it is clearn ~g Y,...Y:, by Lemmal[®F, We uses toindicateZ;...Z,. By Lemmal68.0 is Br v-

n is Bsv-applicable, 7 5. v....vs, and applicable. In other WOI’dSlcmpRV( ) is known.
9|l s _ Y, .. Y1||B < m. Now let us The proof goes by directly exploring the expansion condi-
=3

investigate Z,. If Z, ¢ S Zi... 7, is trivially tions. Only to remembgr the following fact:

Br v-applicable. If Z, ¢ S, we have got the fact 1) If a ~r 3, thena =g 3.

that [Z,]s — n and|n]ls < m. This fact tells us ~ 2) If o~ 3, anda, 3 are Bg, v-applicable, themy £ 3.
=S

that [Z;]s should have been treated befd¥]|z. By studying the the expansion conditions, we can confirm
In other words, [Z;]s € V, which means that thatdcmp? +,(6) can successfully pass this testing. Now it is

d=2,...Z, is Brv-applicable. important to take notice of Lemnial66. It ensures that at most
— If ¢ = 1. In this case, we have the followingone decomposition candidate can pass the testing. Thus we
facts: [Z1]r '—>R 7, dcmpR( ) = [¥i]...[v1], and can confirm thaDc%([X]r) = dempf, v (8), which implies

15 .. Y1|\5 = m. We can show|\Y1||BR >0 xE,7 .. 7.
using the same argument for provnﬁ@lHB >0
before. Let us say) = »'.W (' can bee), and let
S = Rdgr(W). ThusdcmpR(W) = [Yi]...[Y1] and
dempZ(n') = [Ys] ... [Yis1] for somel <i < s. and
1’ is B s-applicable by induction.
1) If |Y;...Y1]ls < m. we can use Lemnia b7 to

prove: o

x W is Bgrv-applicable andiV/ ER Y;... Y,

and

x S C RA5(W).

Since we know 7/ ~g Y,...Yi,

then »/ ~RdE (W) Ys...Y;11. Because

IYs...Yigils < m, we can use
:RdBR(W)

. : ) .

induction to prover' is Bras w) v-applicable

and 7/ éRdg(W) Ys... Y11, In summary,y is
Br v-applicable and BR Y,... Y.
2) If||y;.. Y1||B = m. In this caseYs.. i+l €

RAL(Y; .. Yl) this implies that, ... Y;,; —
¢, and therefore

n=nW~pY,.. Y1 =Y,.. Y1 ~g W

which implies n =—pr W. Now we have
Z1 =R 1 —R w, thUS[W]R <ﬁ [ZI]R- On
the other hand, byZi|r = demph([X]r), we
have [Z1]r < [X]g. ThereforeW <gr Z; <gr
X. By Lemmal®&V,W is Bg v-applicable and
w BR Y;...Y1. Now in the same way of case 1,
we can proven is BRdB(W v-applicable and

B B
’I]/ =RdB (W) Ys... Y;+1 =RdE(W) €. In sum-
mary, n is Bg,v-applicable and; ER Y,... Y.
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