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Open-world query answering is the problem of deciding, igeset of facts, conjunc-
tion of constraints, and query, whether the facts and caimésr imply the query. This
amounts to reasoning over all instances that include ths tawd satisfy the constraints.
We studyfinite open-world query answering-QA), which assumes that the underlying
world is finite and thus only considers tfiaite completions of the instance. The major
known decidable cases of FQA derive from the following: tlhergled fragment of first-
order logic, which can express referential constraint$a(dfaone place points to data in
another) but cannot express number restrictions such atidoal dependencies; and the
guarded fragment with number restrictions but on a sigeatfiarity only two. In this pa-
per, we give the first decidability results for FQA that cormdboth referential constraints
and number restrictions for arbitrary signatures: we shwt, for unary inclusion depen-
dencies and functional dependencies, the finiteness atisnngh FQA can be lifted up
to taking the finite implication closure of the dependend&ls Our result relies on new
techniques to construct finite universal models of suchtcaimés, for any bound on the
maximal query size.

. Introduction

A longstanding goal in computational logic is to design tadilanguages that are both decidable and
expressive. One approach is to distinguish integrity ¢aivts and queries, and have separate lan-
guages for them. We would then seek decidability ofdbery answering with constrainggroblem:
given a queryg, a conjunction of constraints, and a finite instanck, determine which answers tp
are certain to hold over any instaniéghat extend$ and satisfiez. This problem is often calledpen-
world query answeringlt is fundamental for deciding query containment underst@ints, querying
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in the presence of ontologies, or reformulating querief witnstraints. Thus it has been the subject of
intense study within several communities for decades [&1g.5, 3, 15, 10]).

In many cases (e.g., in databases) the instaHaafsinterest are the finite ones, and hence we can
definefinite open-world query answerin@enoted here as FQA), which restricts the quantification
to finite extensiond’ of |. In contrast, byunrestricted open-world query answerifigQA) we refer
to the problem wherd' can be either finite or infinite. Generally the class of gueisetaken to be
the conjunctive queriesCQs) — queries built up from relational atoms via existentiabntification
and conjunction. We will restrict t€Qs here, and thus omit explicit mention of the query language,
focusing on the constraint language.

A first constraint class known to have tractable open-wodédryg answering problems aireclusion
dependenciefiDs) — constraints of the form, e.¢/xyz Rx,y,z) — 3vw Sz v,w,y). The fundamental
results of Johnson and Klug [11] and Rosati [18] show thalh B&pA and UQA are decidable fob
and that, in fact, they coincide. When this happens, thet@ints are said to bénitely controllable
These results have been generalized by Barany et al. [3] tach micher class of constraints, the
guarded fragment of first-order logic.

However, those results do not cover a second important Kiedrstraints, namelpumber restric-
tions which express, e.g., uniqueness. We represent them bylabkg affunctional dependencies
(FDs) — of the formvxy (R(X1, ..., %) AR(Y1,--.,Yn) A AieL X = ¥i) = X% =Y;. The implication prob-
lem (does ond-D follow from a set of others) is decidable féDs, and coincides with implication
restricted to finite instances [1]. Trivially, the FQA and B@roblems are also decidable f6Ds
alone, and coincide.

Trying to combinelDs andFDs makes both UQA and FQA undecidable in general [5]. However,
UQA is known to be decidable when tii®s and thdDs arenon-conflicting[11, 5]. Intuitively, this
condition guarantees that tl@®s can be ignored, as long as they hold on the initial instanead
one can then solve the query answering problem by cons@éraliDs alone. But the non-conflicting
condition only applies to UQA and not to FQA. In fact it is knowhat even for very simple classes
of IDs andFDs, including non-conflicting classes, FQA and UQA do not cmia. Rosati [18] showed
that FQA is undecidable for non-conflictinBs andFDs (indeed, fotDs and keys, which are less rich
thanFDs).

Thus a general question is to what extent these claBBssandDs, can be combined while retaining
decidable FQA. The only decidable cases impose very sesguirements. For example, the constraint
class of “single KDs and FKs" introduced in [18] has deci@abA, but such constraints cannot model,
e.g.,FDs which are not keys. Further, in contrast with the genersg cdF Ds andIDs, single KDs and
FKs are always finitely controllable, which limits their egpsiveness. Indeed, we know of no tools to
deal with FQA for non-finitely-controllable constraints mrations of arbitrary arity.

A second decidable case is where all relation symbols argubformulas of the constraints have
arity at most two. In this context, results of Pratt-Hartm#h5] imply the decidability of both FQA
and UQA for a very rich non-finitely-controllable sublogitfost-order logic. For some fragments of
this arity-two logic, the complexity of FQA has recently basolated by Ibafiez-Garcia et al. [10]. Yet
these results do not apply to arbitrary arity signatures.

The contribution of this paper is to provide the first resubioat finite query answering for non-
finitely-controllableIDs andFDs over relations of arbitrary arity.As the problem is undecidable in
general, we must naturally make some restriction. Our ehisido limit to Unary IDs (UIDs), which
export only one variable: for instancéxyz Rx,y,z) — 3w Sw,x). UIDs andFDs are an interesting
class to study because they are not finitely controllabld allow the modeling, e.g., of single-attribute
foreign keys, a common use case in database systems. Tidaliéti of UQA for UIDs andFDs is
known because they are always non-conflicting. In this papershow that finite query answering is



decidable folJIDs andFDs, and obtain tight bounds on its complexity.

The idea is tareduce the finite case to the unrestricted ¢azat in a more complex way than by
finite controllability. We make use of a technique origingtin Cosmadakis et al. [8] to study finite
implication onUIDs andFDs: thefinite closureoperation which takes a conjunction @fDs andFDs
and determines exactly which additiondlDs andFDs are implied over finite instances. Rosati [17]
and lbanez-Garcia [10] make use of the closure operatiohaim study of constraint classes over
schemas of arity two. They show that finite query answerimgfqueryq, instancd, and constraints
> reduces to unrestricted query answeringlfag, and the finite closur&’ of Z. In other words, the
closure construction which is sound for implication is adsoind for query answering.

We show that the same general approach applies to arbitrigyys@natures, with constraints being
UIDs andFDs. Our main result thus reduces finite query answering tostriceed query answering,
for UIDs andFDs in arbitrary arity:

Theorem 1.1. For any finite instance |, conjunctive query g, and constsi consisting ofUIDs
and FDs, the finite open-world query answering problem fay underX has the same answer as the
unrestricted open-world query answering problem far under the finite closure &.

Using the known results about the complexity of UQA BIDs, we isolate the precise complexity
of finite query answering with respect tiDs andFDs, showing that it matches that of UQA:

Corollary 1.2. The combined complexity of the finite open-world query arisg/g@roblem forUIDs
andFDs isNP-complete, and it is PTIME in data complexity (that is, whies tonstraints and query
are fixed).

Our proof of Theorem 1.1 is quite involved, since dealinghndrbitrary arity models introduces
many new difficulties that do not arise in the arity-two casenothe case oiDs in isolation. We
borrow and adapt a variety of techniques from prior work:ngdi-bounded simulations to preserve
small acyclicCQs [10], dealing withUIDs following a topological sort [8, 10], performing a chasatth
reuses sufficiently similar elements [18], and taking thedpct with groups of large girth to blow up
cycles [14]. However, we must also develop some new infragire to deal with number restrictions
in an arbitrary arity setting: distinguishing between sdlexl dangerousandnon-dangerougpositions
when chasing, constructing realizations for relations jmegewisananner following thé=Ds, reusing
elements in @&ombinatorialway that shuffles them to avoid violating the higher-afifys, and a new
notion of mixed producto blow cycles up while preserving fact overlaps to avoidatiag the higher-
arity FDs.

Paper structure. The general scheme, presented in Section lll, is to corstnodels ofUIDs and
FDs that are universal up to a certain query $ize&hich we callk-universal modelsWe start with only
unary FDs (UFDs) andacyclic CQs (ACQs), and by assuming that th#Ds andUFDs arereversible
a condition inspired by the finite closure construction.

As a warm-up, Section IV proves the weakened result for a mwediker notion thak-universality,
starting with binary signatures and generalizing to aabjtiarity. We extend the result ksuniversality
in Section V, maintaining &bounded simulation to the chase, and performimifty chase steps that
reuse sufficiently similar elements without violatibidgDs. We also rely on a structural observation
about the chase undeiiDs (Theorem V.11). Section VI eliminates the assumption degendencies
are reversible, by partitioning thelDs into classes that are either reversible or trivial, antfyatg
successively each class following a certain ordering.

We then generalize our result to higher-arity (non-und&®p in Section VII. This requires us to
define a new notion of thrifty chase steps that apply to itgamvith many ways to reuse elements; the



existence of these instances relies on a combinatoriatremtion of models of Ds with a high number
of facts but a small domain (Theorem VI1.7). Last, in Sectiifi, we apply a cycle blowup process
to the result of the previous constructions, to go from dcytd arbitraryCQs through a product with
acyclic groups. The technique is inspired by Otto [14] bustrie adapted to respdebs.

Complete proofs of our results are provided in the appendix.

Il. Background

Instances. We assume an infinite countable seetdmentgor values a,b,c,... andvariable names
XY,z .... A schemao consists ofelation namege.g.,R) with anarity (e.g.,|R|) which we assume is
> 1. Following the unnamed perspective, the sgtasitionsof Ris Pos(R) := {R | 1 <i < |R|}, and
we definePos(0) := | Jgeg Pos(R). We identify R andi when no confusion can result.

A relationalinstance(or mode) | of o is a set ofground factof the formR(a) whereR is a relation
name and an|R|-tuple of values. Thsize|l| of an instancé is its number of facts. Thactive domain
dom(l) of | is the set of the elements which appeat.ifFor any positiorR € Pos(c), we define the
projection 7 (1) of | to R as the set of the elements of dfimthat occur at positioR in I. For
L C Pos(R), the projectionrg (1) is a set ofiL|-tuples defined analogously; for convenience, departing
from the unnamed perspective, we index those tuples by thigigoes ofL. A superinstancef | is a
(not necessarily finite) instand¢esuch that C I'.

A homomorphisnfrom an instancé to an instancé’ is a mappingh : dom(l) — dom(l’) such that,
for every factF = R(a) of I, the facth(F ) := R(h(ay),...,h(agy)) isinl’.

Constraints. We consider integrity constraints (dependencigsvhich are special sentences of first-
order logic. As usual in the relational setting, we do nadwlfunction symbols. The definition of an
instance satisfying a constraint, written| |= %, is standard.

An inclusion dependendp is a sentence of the form: VXR(xy,...,X,) — 3yS(z,...,zn), Where
zC xUy and no variable occurs twice m The exported variablesre the variables of that occur
in z, and thearity of the dependency is the number of such variables. This wolk studiesunary
inclusion dependencigd)IDs) which are théDs with arity 1. If T is aUID, we writeT asRP C S,
whereRP andS* are the positions dR(x) and S(z) where the exported variable occurs. For instance,
the UID YxyRx,y) — 3z Sy, z) is writtenR? C S'. We assume without loss of generality that there are
notrivial UIDs of the formRP C RP,

We say that a conjunctiobyp of UIDs istransitively closedf it is closed under implication by the
transitivity rule if RP C S'andS" C T" are inZyp, then so iRP C T" unless itis trivial. The transitive
closure ofzyp can clearly be computed in PTIME By p, and it contains all non-trividlIDs implied
by Zyp over finite or unrestricted instances [7]. We sayl® 1 : RP C Stis reversiblerelative toZyp
if both T and itsreverser 1 := I C RP are inXyp.

A functional dependendyD is a sentence of the forgr: VXy (R(X1, ..., X)) AR(Y1, .-, Yn) AAReL X =
Yi) = % = Yr, whereL C Pos(R) andR" € Pos(R). For brevity, we writep asR- — R'. We callp a
unary functional dependentyFD if |L| = 1; otherwise it idhigher-arity. For instanceyxxyy R(x,x) A
R(y,Y)AX =y — x=yis aUFD, and we write itR> — R, We assume that.| > 0, i.e., we do not
allow nonstandard or degenerdBs. We callg trivial if R” € R-, in which casep always holds. Two
factsR(a) andR(b) violatea non-trivial FD @ if 7 (a) = i (b) buta, # by.

The key dependency : R- — R, for L C Pos(R), is the conjunction oFDs R- — R’ for all R" €
Pos(R); itis unaryif |L| = 1. If k holds, we callL akey(or unary key of R.



Queries. An atom A= R(t) consists of a relation nanfRand a|R|-tuplet of variables or constants.
A conjunctive quenCQ is an existentially quantified conjunction of atoms. In théper we focus for
simplicity on Boolean queries (queries without free vaeal but all our results hold for non-Boolean
queries as well, by the standard method of enumerating #igrasents. Theaize|q| of aCQ qis its
number of atoms.

A Berge cyclan a BooleanCQ qis a sequencéy, X1, Ao, X2, ..., An, Xy With n > 2, where theA; are
pairwise distinct atoms af, thex; are pairwise distinct variables gf andx; occurs inA; andA; . 1 for
1 <i < n(with addition modulm, sox, occurs inA;). We callq acyclicif g has no Berge cycle and if
no variable ofg occurs more than once in the same atom. We wa@i& for the class of acycli€Qs.

A BooleanCQ g holdsin an instancé exactly when there is a homomorphisrfrom the atoms of
to | such thath is the identity on the constants gf(we call this ahomomorphism from g tg.l The
image ofh is called amatchof gin I.

QA problems. We define thainrestricted open-world query answeripgoblem (UQA) as follows:
given a finite instancé, a conjunction of constrains, and a Booleai€Q g, decide whether there is a
superinstance dfthat satisfieg and violateq. If there is none, we say thatand entail gand write
(1,Z) Funr @

This work focuses on thinite query answering probleifrQA), which is the variant of open-world
guery answering where we require the counterexample sigbanice to be finite; if none exists, we
write (1,%) Eiin g. Of course(l,%) =unr g implies (1, %) =iin 9. We say a conjunction of constrairis
is finitely controllableif FQA and UQA coincide: for every finite instandeand every BooleakQ q,

(I ,Z) ):unrq iff (I ,Z) |:fin g.

The combined complexitpf the UQA and FQA problems, for a fixed class of constrairdshe
complexity of deciding it when all of, Z (in the constraint class) anglare given as input. Thdata
complexityis defined by assuming thatandq are fixed, and only is given as input.

Chase. We say that a superinstanteof an instancd is universalfor constraintsz if I’ =X and

if forany CQ q, I’ = qiff (1,%) Eunrg- We now recall the definition of thehase[1, 13], a standard
construction of (generally infinite) universal superimstas. We assume that we have fixed an infinite
set of nulls which is disjoint from donil). We only define the chase for transitively clodétDs,
which we call theUID chase

We say that a facE, = R(a) of an instancd is anactive factfor a UID 17 : RP C S if, writing
T : YXR(X) — 3yS(z), there is a homomorphism fromR(x) to F; but no such homomorphism can
be extended to a homomorphism frdfR(x),S(z)} to |. In this case we say thai, wantsto occur
at positionS? in I, written a, € Wants(l,S%), and that wewant to apply theUID 1 to ap, written
ap € Wants(l, 7). Note thatWants(l, ) = mre(l)\ & ().

The result of achase sten the active fack; for 7 in | (we call thisapplying T to F,) is the
superinstancé’ of | obtained by adding a new faéh = S(b) defined as follows: we sdi; := ay,
which we call theexported elemeniand S the exported positiorof F,), and use fresh nulls fronV
to instantiate the existentially quantified variablestodnd completer,; we say the corresponding
elements arentroducedat F,. This ensures thd, is no longer an active fact iH for 1.

A chase rouncf a conjunction>yp of UIDs onl is the result of applying simultaneous chase steps
on all active facts for alUIDs of Zyp, using distinct fresh elements. ThdD chaseChase(l,Zyp)
of | by Zyp is the (generally infinite) fixpoint of applying chase rountiss a universal superinstance
for ZUID [9]

As we are chasing by transitively closédDs, if we perform thecore chasq13] rather than the



UID chase defined above, we can ensure the followdimigue Witness Propertyfor any element
a € dom(Chase(l,Zyip)) and positionRP of o, if two different facts ofChase(l,Zyp) containa at

position RP, then they are both facts &f In our context, however, the core chase matchedJtie
chase defined above, except at the first round. Thus, modeifarshround, byChase(l, Zyp ) we refer
to theUID chase, which has the Unique Witness Property. See Appentix details.

Finite closure. Rosati[16, 18] showed that, while conjunctiondD§ are finitely controllable, even
conjunctions ofUIDs andFDs may not be. However, Cosmadakis et al. [8] showed how talddni
PTIME thefinite implicationproblem forUIDs andFDs: given a conjunctiox of such dependencies,
decide whether &ID or FD is implied byZ over finite instances. Thienite closureof X is the set of
the UIDs andFDs thus implied by in the finite.

Rosati [17] later showed that the finite closure could be usereduce UQA to FQA for some
constraints on relations of arity at most two. Following ##ne idea, we say that a conjunction of
constraints is finitely controllable up to finite closuré for every finite instance, and BoolearCQ q,
(1,Z) Efin qiff (1,Y) Funr g, where' is the finite closure oE. This implies that we can reduce FQA
to UQA, even if finite controllability does not hold.

I1l. Main Result and Overall Approach

We study open-world query answering l8Ds andUIDs. For unrestricted query answering (UQA),
the following is already known, from bounds on UQA fdlDs:

Proposition 111.1. UQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

However, for thefinite case even the decidability of FQA fofDs andUIDs is not known. Here is
our main result, which is proved in the rest of this paper:

Theorem IIl.2 (Main theorem) Conjunctions offDs andUIDs are finitely controllable up to finite
closure.

From these two results, and an efficient computation of theuck, we deduce that the complexity
of FQA matches that of UQA (see Appendix B.3):

Corollary 111.3.  FQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

I1.1. Rephrasing with universal models
We prove the main theorem via the notionkesoundandk-universal instances

Definition 111.4. For k € N, we say that a superinstance | of an instangéslk-sound for constraints
> (and for b) if for every constant-fre€Q q of size< k such that I= g, we havelp,Z) =unrq. We say
it is k-universal if the converse also holds:H g wheneve(lp, %) Fynr Q.

The assumption thatis constant-free is without loss of generality: we can akvagsume that, for
each constant € dom(lp), a factP;(c) has been added 1g for a fresh unary relatiof., andc was
replaced irg by a existentially quantified variable with the atomP;(x;) added tay. So for simplicity
we assume from now on that queries are constant-free

Theorem 111.2 is implied by the following (see Appendix B.2)



Theorem 111.5 (Universal models) For every conjunctiork of FDs Zrp and UIDs 2y p closed under
finite implication, for every finite instancg that satisfiessrp, for any ke N, there exists a finite
superinstance | ofplthat is k-sound fok and satisfiez (and hence is k-universal).

The fact that such ahis k-universal is because any superinstancé, diat satisfieZ must satisfy
all CQsqsuch thatlp, %) =ynr g, by definition of =ypr.

We now fix the conjunctiork of FDs Zgp andUIDs Zyp. We assume thé is closed under finite
implication; in particular>gp andZyp in isolation are closed under implication, which implieatth
>yip is transitively closed. We also fix the instarlgesuch that = Zgp, and the maximal query size
keN.

Our goal in the rest of this paper is to construct the fikismund superinstance hfthat satisfie,
thus proving the Universal Models Theorem and hence the Miagorem.

I11.2. Restricting to ACQs, UFDs, and reversible constraints

We first prove the Universal Models Theorem for a restricledsof queries and dependencies, which
we now define. We will lift these restrictions later.

First, we defineyrp to be theunary FDs of Zgp, and writeXy := Zyrp A Zyip. Note that, as we
assumed tha& is closed under finite implication fa¥FDs andUIDs, the characterization of [8] implies
thatXy also is. We will first construct B-sound superinstance that only satistigs in Section VIl we
will show how to adapt the process to also satsfy

Second, we will first construct a superinstance th&t$sund only for acyclic Boolean queries; in
Section VIII we will show how to make the resulting superarste sufficiently acyclic to be sound for
cyclic queries as well.

Hence, in Sections IV, V and VI, we prove the following wealkgnof the Universal Models Theo-
rem. The restrictions will be lifted in Sections VIl and VII

Theorem II.6 (Acyclic unary universal models)There exists a finite superinstance gfthat satis-
fiesZy and is k-sound foEy and ACQ (and hence k-universal f&y and ACQ).

To prove the Acyclic Unary Universal Models Theorem, in 8 IV and V, we will assume the
following condition on the structure of the dependencies:

reversible: The following holds abouky:
¢ all UIDs in Xy p arereversible (remember this means that the reversé of any 1 € Zyp
is also inZyp);
e for any positionsRP and R% occurring inUIDs of Zyp, if R°P — RAis in ZyFp then so is
RY — RP,

Intuitively, assumptiomeversible is connected to the finite closure characterization of [8jiclv adds
to 2y the reverses of anyIDs andUFDs that form a certain cyclic pattern.

Working under assumptioreversible, Section IV proves an even weaker version of the Acyclic
Unary Universal Models Theorem, which replagéesoundness by weak-soundness; Section V proves
the actual theorem. Assumptiogversible is lifted in Section VI to conclude the proof.

IV. Weak-Soundness and Reversible UIDs

The goal of this section is to prove the Acyclic Unary Uniafglodels Theorem (Theorem Il1.6) under
assumptioneversible, replacingk-soundness bweak-soundness



Definition IV.1. A superinstance’ lof an instance | isveakly-sound if the following holds:
e for any ac dom(l) and R’ € Pos(0), if a € ire(1”), then either & 1=e(l) or a € Wants(I,RP);
e for any ac dom(l’)\ dom(l) and R, S € Pos(0), if a€ mre(l’) and a€ m(1’) then R = S or
RPC Hisin 2UID-

Intuitively, a superinstance is weakly-sound if existingneents were only added to positions where
they wanted to appear, and new elements only occur at pasititnich are connected By p. This
section shows the following:

Proposition V.2 (Acyclic unary weakly-sound models)Jnder assumptioneversible, there exists a
finite superinstance of that satisfie2y and is weakly-sound.

The proposition itself will not be reused in the sequel, hetproof introduces some useful concepts
to prove the actual Acyclic Unary Universal Models Theoren$ection V.

IV.1. Binary signatures and balanced instances

For simplicity, we first focus on a simplified case with a binaignature, making the following as-
sumption that will be lifted later in this section:

binary: all relations have arity 2 anflrp contains th&JFDsR! — R? andR? — R! for any relatiorR.

Our approach to construct a weakly-sound superinstinafely that satisfieg is then to perform
acompletion procesthat adds new (binary) facts to connect together elemergsallfpossibledJFDs
hold, I’ can only contain a new fa®(ay,by) if, for i € {1,2}, & ¢ = (lo), so that ifa; € dom(lp) then
a € Wants(lp,R') by weak soundness.

One easy situation is whegpis balanced for every relatiorR, we can construct a bijection between
the elements that want to beRt and those that want to be R?:

Definition IV.3. Aninstance | idalanced if, for every two positions Rand R! such that R — R% and
RY — RP are in Zyrp, we havegWants(l,RP)| = |Wants(l,R%)|.

If I is balanced, we can show the Acyclic Unary Weakly-Sound MoBeoposition under assump-
tion binary, simply by pairing together elements, without adding any nees:

Proposition IV.4. Assumingbinary and reversible, any balanced finite instance | satisfyidgrp has
a finite weakly-sound superinstanceHhat satisfies, with dom(l’) = dom(l).

However, our instancé may not be balanced. The idea is then to balance it by addiapéh’
elements and assigning them to positions, as the followtagn@le shows:

Example 1V.5. Consider three binary relations R, S, T, with thédbs R C S', S C T, T2CR!
and their reverses, and tHeDs prescribed by assumptidrinary. Consider § := {R(a,b)}. We have
a € Wants(lp, T?) and be Wants(lp, St); howeverWants(lp,S?) = Wants(lp, TY) = 0, so b is not
balanced.

Still, we can construct the weakly-sound superinstance {R(a,b), S(b,c), T (c,a)} that satisfies
the constraints. Intuitively, we have added a “helper” elsihc and “assigned” it to the positions'S
and T2, which are connected by théiDs.

We now formalize this idea of constructing weakly-soundesinstances where the domain is aug-
mented withhelper elementsWe first need to understand at which positions the helpersppear to
avoid violating weak-soundness:



Definition IV.6. For any two positions Rand 9, we write R ~;p S*when R = S or when R C &,
and hence $C RP by assumptiomeversible, are inZyp.

As Zyp is transitively closed;v|p is an equivalence relation. Our idea to construct weakiyrgo
superinstances is thus to first decide on the helpers thatam¢ @ add, and the |p-class to which
we want to assign them, following the definition of weak-siness. We represent this choice as a
partially-specified superinstangcer pssinstance

Definition IV.7. Apssinstance of an instance | is atriple - (1,7, ) where# is afinite set ohelpers
and A maps each & H to an~p-classA (h).

We definéVants(P,RP) := Wants(l,R?) i{h € % | R® € A(h)}. This allows us to talk of P being
balanced following Definition IV.3.

A superinstance’ lof | is arealization of P if dom(l") = dom(l) U#, and, for any fact Ra) of I'\|
and R € Pos(R), we have g € Wants(P,RP).

Example IV.8. In Example IV.5, a pssinstance @fi$ P:= (lo, {c},A) whereA (c) := {S}, T?}, and |
is a realization of P.

It is always possible to balance an instance by adding relper

Lemma IV.9 (Balancing) For any finite instance I, if | satisfieSyrp then it has a balanced pssin-
stance.

From there, we can construct realizations like we constdistiperinstances in Lemma IV.4.

Lemma IV.10 (Binary realizations) For any balanced pssinstance P of an instance | that satisfies
2UFD, We can construct a realization of P that satisfies

We then observe that realizations are weakly-sound sigtanioes of.

Lemma IV.11 (Binary realizations are completiondlf |’ is a realization of a pssinstance of | then it
is a weakly-sound superinstance of I.

We have thus proved the Acyclic Unary Weakly-Sound ModetgpBsition under assumptiobgary
andreversible, using the completion process formed by combining the thbewe lemmas.

IV.2. Arbitrary arity and piecewise realizations

We now lift assumptiorbinary (but retain assumptioreversible). We show how to generalize the
previous constructions to the arbitrary arity case. Copti@thebinary situation, we will see later that
the resulting completion process needs to assume thatarcsaturationprocess has been applied
to lp beforehand.

The definition of balanced instances (Definition 1V.3) gatfiges to arbitrary arity, and we can show
that the Balancing Lemma (Lemma 1V.9) still holds. We keep definition of pssinstance (Defini-
tion IV.7) but need to change the notion of realization. Waaee it bypiecewise realizationsvhich
are defined on subsets of positions that are connectEgrin

Definition 1V.12. For any two positions Rand R, we write R <ryn RY whenever R — RY and
RY — RP are in Zyep.

By transitivity of Zyrp, <>rFun IS clearly an equivalence relation. We number theyn-classes of
Pos(o) asMy,...,MN, and defingiecewise instancdsy their projections to thél;:



Definition IV.13. A piecewise instance is an n-tuple Pl= (Ky,...,Kp), where each Kis a set of|[1;|-
tuples, indexed bil; for convenience. Thadomain of Pl isdom(PI) := |J;dom(K;). For1 <i<nand
RP € N;, we writeTze (P1) := mre(K).

We use this to definpiecewise realizationef pssinstances:

Definition 1V.14. A piecewise instance P (Ky,...,K;) is apiecewise realization of the pssinstance
P=(l,H,A)if:

e h,(I) CKiforall 1<i<n,

e dom(PIl) =dom(l)UH,

e forall 1 <i <n,forall RP € I;, for every tuplea € Ki\ 1, (), we have g € Wants(P,RP).

In order to generalize the Binary Realizations Lemma (LertwiiD), we need to talk of a piecewise
instanceP| “satisfying” Zy. ForZygp, we require thaPl respects th&/FDs within each«ryn-class.
ForZyp, we define it directly from the projections Bf.

Definition 1V.15. A piecewise instance Pl Eyrp-compliant if, for all 1 <i < n, there are no two
tuplesa # b in K; such that g = b, for some R < ;.

Pl is Zyp-compliant if Wants(PI, 1) := me(P1)\ 1 (PI) is empty for allt € Zyp.

Pl is Zy-compliant if it is Zyrp- and Zyp-compliant.

We can then generalize the Binary Realizations Lemma:

Lemma IV.16 (Realizations) For any balanced pssinstance P of an instance | that sati&figs, we
can construct &y-compliant piecewise realization of P.

Example IV.17. Consider a4-ary relation R and th&JIDs 1 : Rt C R?, 7" : R® C R* and their reverses,
and theUFDs ¢: R! — R?, ¢ : R® — R* and their reverses. We havg = {R,R?} andll, = {R®,R*}.
Consider § := {R(a,b,c,d) }, which is balanced, and the balanced pssinstance R, 0,1 ), whereA
is the empty function. By-compliant piecewise realization of P is P} ({(a,b), (b,a)},{(c,d),(d,c)}).

We now transform they-compliant piecewise realizatioRl into a weakly-sound superinstance,
generalizing the “Binary Realizations Are Completions’hima (Lemma 1V.11), and completing the
description of our completion process. The idea is to expawth tuple of eachK; to an entire fack
of the corresponding relation.

However, to fill the other positions &, we will need to reuse existing elementsl@f For this, we
wantlg to contain somé&-fact for every relatiorR that occurs inChase(lo, Zyip).

Definition 1V.18. A relation R isachieved (by | andXyp) if there is some R-fact ithase(l,Zyp).
A superinstance’lof an instance | igelation-saturated (for Zyp) if every achieved relation (by |
andXyp) occurs in I.

Example 1V.19. Consider two binary relations R and T and a unary relationt®,lIDs 7 : S C R,
T’ : R? C T! and their reverses, ndFDs, and the non-relation-saturated instange+ {S(a)} which
is trivially balanced.

P:=(lp,0,A), with A the empty function, is a pssinstance of I, and:RI({(a)},0,{(a)},0,0),
wherell; and N3 are the<«ryn-classes of Rand S, is a Xy-compliant piecewise realization of P.
However, we cannot easily complete PI to a superinstance sa#tisfyingt and v/, because, to create
the fact Ra,e), we need to create an element to fill positiofﬁ Bnd this would introduce a violation
of 7. Intuitively, this is because Is not relation-saturated.

Consider instead the instance:& 1o {S(c),R(c,d), T (d)}. We can completq ko satisfyt and 7’/
by adding the fact R, d), reusing the element d to fill positiorf R
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Clearly, initial chasing omg ensures relation-saturation:

Lemma IV.20 (Relation-saturated solutionsJ he result of performing sufficiently many chase rounds
on any instance | is relation-saturated.

Relation-saturation ensures that we can reuse existingeslis when completinBl. This allows us
to perform the last step of the completion process:

Lemma IV.21 (Using realizations to get completiongjor any finite relation-saturated instance | that
satisfies>ygp, from aZy-compliant piecewise realization Pl of a pssinstance ofd,oan construct a
finite weakly-sound superinstance of | that satistigs

We can now prove the Acyclic Unary Weakly-Sound Models Psitm. Consider our initial finite
instancely, that satisfiesyrp, and chase it to a finite relation-saturated superinstédficsing the
Relation-Saturated Solutions Lemma. By the Unique Witirsperty,|; still satisfies>ygp, and it is
clearly a weakly-sound superinstancd @f

Now, perform the completion process: construct a balanssthgtancé of 1) using the Balancing
Lemma (Lemma 1V.9), and a finit&y-compliant piecewise realizatioRl of P by the Realizations
Lemma (Lemma IV.16). Then, use the realizatlinwith Lemma V.21 to construct the finite weakly-
sound superinstandeof | that satisfiegy. | is clearly also a weakly-sound superinstancép$o the
result is proven.

V. k-Soundness and Reversible UIDs

We now move from weak-soundness k@oundness, to prove the Acyclic Unary Universal Models
Theorem (Theorem 111.6), still making assumptianersible.

We first introduce the notion dadligned superinstancethat we use to maintaik-soundness, and
give the saturation process that generalizes relatiamsgain. We then define a notion tirifty chase
steps and a completion process that uses these chase stepsitdtiégpaiolations in the instance.

V.1. Aligned superinstances and fact-saturation

We ensurek-soundness by maintainingkabounded simulatiofirom our superinstance df to the
chaseChase(lp, Zyip ). Indeed,Chase(lo, Zyip) is @ universal model foEyp, and it satisfieZrp (by
the Unique Witness Property, and becalisdoes). Hence, it is in particuld&sound forzZ. Now, as
acyclic queries of sizeC k are preserved througktbounded simulations, superinstancedgofvith a
k-bounded simulation t€hase(lp, Zyip) are indeed-sound forACQ.

Definition V.1. For I, I’ two instances, & dom(l), b€ dom(l’), and ne N, we write(l,a) < (I’,b) if,
for any fact Ra) of | with a, = a for some R € Pos(R), there exists a fact (®) of I’ such that |y = b,
and(l,aq) <n-1 (I’,by) for all RY € Pos(R). The base casfl,a) <o (I’,b) always holds.

An nbounded simulation from | to I' is a mappingsim such that for all ac dom(l), (I,a) <,
(I';sim(a)).

We write a~, b for a b € dom(l) if both (I,a) <, (I,b) and (I,b) <, (I,a); this is an equivalence
relation ondom(l).

Lemma V.2. For any instance | and\CQ q of size< n such that I= q, if there is an n-bounded
simulation from | to {, then I =q.

11



We accordingly give a name to superinstance$@hat have &-bounded simulation to the chase.
For convenience, we also require them to be finite and s&igfy. For technical reasons we require
that the simulation is the identity djg, that it does not map other elementslgpand that elements
occur in the superinstance at least at the position whenediheimage was introduced in the chase:

Definition V.3. Analigned superinstance J = (I,sim) of lp is a finite superinstance | of that satisfies
Zurp, and a k-bounded simulatiosim from | to Chase(lo,Zyip) such thasim, is the identity and
sim|(|\|0) maps t(fhase(|o,ZU|D)\|o.

Further, for any ac dom(l)\ dom(lp), letting R’ be the position whersim(a) was introduced in
Chase(lp,Zuip), we require that & 1o (1).

Before we perform theompletion procesghat allows us to satisfgyp, we need to perform a
saturation processlike relation-saturation in the previous section. Indteaachieving all relations,
we want the aligned superinstance to achievéaall classes

Definition V.4. Afact classis a pair (RP,C) of a position R € Pos(0) and a|R|-tuple of~-classes
of elements ofhase(lp, Zyip ). The dependency on k is omitted for brevity.

Thefact class of a fact F= R(a) of Chase(lg, Zuip)\lo is (R, C), where g is the exported element
of F and G is the~-class of ain Chase(lp, Zy;p) for all R' € Pos(R).

A fact class(RP,C) is achieved if it is the fact class of some fact @hase(lo,Zyip)\lo. We write
AFactCl for the set of all achieved fact classes (for brevity, thesthelence ongl Zyp, and k is omitted
from notation).

An aligned superinstanced (1,sim) is fact-saturated if, for any achieved fact class B (RP,C) in
AFactCl, there is a fact 5 = R(a) of I\lp such thatsim(a;) € G; for all R' € Pos(R). We say that f
achievesD in J.

Lemma V.5. For any initial instance ¢, set>yp of UIDs, and ke N, AFactCl is finite.

We now define our saturation process: chaamtil all fact classes are achieved, which is possible in
finitely many rounds thanks to the above lemma. The resultsgyeseen to be a fact-saturated aligned
superinstance:

Lemma V.6 (Fact-saturated solutionsY he result | of performing sufficiently many chase roundsyon |
is such that d= (1,id) is a fact-saturated aligned superinstance ©f |

We thus obtain a fact-saturated aligned superinstdpaé 1o, which we now want to complete to
one that satisfiesyp.

V.2. Fact-thrifty completion

Our general method to repdifD violations inJy is to apply a form of chase step on aligned superin-
stances, which may reuse elemertisifty chase stepsTo define them, we first distinguigtangerous
andnon-dangeroupositions, which determine how we may reuse elements whasiraip

Definition V.7. We say a position 'Sc Pos(0) is dangerous for a position 8 #S if S — Sl is
in Zyep, and write S € Dng(ST). Otherwise, Sis non-dangerous, written S € NDng(S). Note that
{S'} L'Dng(S?) LUNDng(S) = Pos(S).

Definition V.8 (Thrifty chase steps)Let J= (I,sim) be an aligned superinstance @f let7: R° C &1
be aUID of Zyp, and let i = R(a) be an active fact for in I.
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Becauseaim is a 1-bounded simulationsim(ap) € 7ire(Chase(lp,Zuip)), S0, because the chase sat-
isfiest, there is a fact f = S(b') in Chase(lo, Zuip ) with b, = sim(ap); we call K the chase witness.

Applying athrifty chase step on F, for 1 yields an aligned superinstancé=3 (I’,sim’). We define
I” as | plus a new fact = S(b), where lj = a, and the b for S’ # ST may be elements dbm(J) or
fresh elements. We require that:

e for S € NDng(S), by € g (J) (so they are not fresh)
e for S € Dng(S7), by ¢ 15 (J) (so they may be fresh)
e for S #£ S, if by is not fresh themim(by) ~ by.

We definasim’ by extendingim to dom(J’): we setsim’(by) := b} whenever pis fresh.

A fact-thrifty chase step is a thrifty chase step where we choose one fact §(c) of J\lp that
achieves the fact class ofyRthat is, sim(c;) ~ b for all i), and use Fto define b:= ¢, for all
S € NDng(S%).

The chase step fsesh if by is fresh for all $ € Dng(S?).

Thrifty chase steps may in general violaig-p, but fact-thrifty chase steps never do. For this reason,
we will only use fact-thrifty chase steps in this sectionePoint of working with fact-saturated aligned
superinstances is that we can ensure that a suiRlallevays exists. We thus claim:

Lemma V.9 (Fact-thrifty chase stepsfor any fact-saturated aligned superinstance J, the re¥ulif
a fact-thrifty chase step on J is indeed a well-defined aligseperinstance where the former active
fact R, is no longer active.

We now claim that we can expand fact-saturated superirssatocsatisfy>yp, using fact-thrifty
chase steps:

Proposition V.10 (Fact-thrifty completion) Under assumptioreversible, for any fact-saturated aligned
superinstance J of) we can expand J by fact-thrifty chase steps to a fact-stedraligned superin-
stance Jof |y that satisfie<yp.

This proposition allows us to prove the Acyclic Unary UnisarModels Theorem (Theorem 111.6)
under assumptioreversible. Indeed, consider the fact-saturated aligned superiostimproduced by
the Fact-Saturated Solutions Lemma (Lemma V.6). ApplyirgRact-Thrifty Completion Proposition
to Jp yields a fact-saturated aligned superinstadi¢cevhich is a finitek-sound superinstance bf that
satisfies yrp and satisfiegyp.

The rest of this section sketches the proof of the Propaos{see Appendix D.5 for the full proof).
The idea is to construct, as in Section 1V, a balanced pssinsP of the input aligned superinstande
and aZzy-compliant piecewise realizatiddl of P. Now, instead of completing the facts Bf to add
them directly taJ, we add them one by one, using fact-thrifty chase steps,dorerthat alignedness is
preserved.

The only problematic point is tha@l could connect together elements that have dissinsilar
images, violating alignedness. However, we show that, whésing fork + 1 rounds on the initial
with fresh fact-thrifty chase steps before constructhgve can ensure what we célreversibility. all
elements that want to be at some posifihin J have asim-image whose-y-class only depends drP.
Once we have ensured this, we can essentially stop worrjinogtaim-images, because respecting
weak-soundness, &3 does, is sufficient.

The reason whk+ 1 chasing rounds suffice to ensure this is by a general stalahservation on
the UID chase: when the laktUIDs applied to an elememtof Chase(lp, Zyip) are reversible (as is the
case here, by assumptiesversible), the ~y-class ofa only depends on thep-class of the position
where it was introduced, and not on its exact history. Fdgmal

13



Theorem V.11(Chase locality theorem)or any instanced, transitively closed set @fIDs Zyp, and
n € N, for any two elements a and b respectively introduced attiposi R and S in Chase(lp, Zyip)
such that R ~p §1, if the last nUIDs applied to create a and b are reversible, therab.

VI. Arbitrary UIDs: Lifting Assumption reversible

This section concludes the proof of the Acyclic Unary Unsa#Models Theorem (Theorem I111.6) by
removing assumptioreversible. We do so by splittingyp in subsets that can be satisfied sequentially:

Definition VI.1. ForanyTt, 1’ € Zyp, we writeT — 1’ when we can writ¢ = RP C Sand7’ =S C TY
with ! #£ S, and theUFD S — S'is in Zyrp. Anordered partition (Pi,...,P,) of Zyp is a partition
of Zyip (i.e.,Zuip =i R) such that foranyr € R, T/ € P}, if T — 1’ then i< |.

The notion of ordered partition is useful because thriftasghsteps can only cause neWD viola-
tions at the dangerous positions of the new fact. This iraphe following:

Lemma VI.2. Let J be an aligned superinstance gfand J be the result of applying a thrifty chase
step on J for &JID 1 of Zyp. Assume that 81D 1’ of Zyp was satisfied by J but is not satisfied By J
Thent — 1'.

Hence, given an ordered partition Bf;p, once we have satisfied thilDs of the firsti classes
P1,...,R, then this property is preserved while we do thrifty chasiitl P;, j > i. So if we can satisfy
eachR individually with thrifty chase steps, then we can satigfyp by satisfyingPy,...,P.

Of course, the point of partitioningyp is to be able to control the structure of ttdDs in each
class:

Definition VI.3. We call PC Xy p reversible if it is transitively closed (a&yp is) and satisfies as-
sumptionreversible.

We say PC Zyp is trivial if we have P= {1} for somet € Xyp such thatt »~ 7. An ordered
partition is manageable if all of its classes are either reversible or trivial.

If PC Zyp is reversible, then the previous section describes howrtiplete with thrifty chase steps
any fact-saturated aligned superinstancéyab one that satisfieB. If P is trivial, it follows directly
from Lemma VI.2 that we can satisfy it:

Corollary V1.4. For any trivial class{t}, performing one chase round on an aligned fact-saturated
superinstance J oflby fresh fact-thrifty chase steps fowyields an aligned superinstancédf | that
satisfiesr.

We now claim that we can construct a manageable partitiaiy@f. We build it as a topological sort
of the strongly connected components (SCCs) of the diregteph onZyp defined by—, with the
technical complication that SCCs must be closed unilérreversal. The construction relies on the
fact that>yp is closed under finite implication, as characterized by CGadakis et al. [8].

Lemma VI.5. Any conjunctiorn>yp of UIDs closed under finite implication has a manageable parti-
tion.

Example VI.6. Consider theJIDsTr: RIC R?, 15: S'C &, 1: RR C S, and theUFDs ¢k : R — R?,
¢S — <, ¢h:RR— R, andg: St — S TheUIDs 1zt and g t, andUFDs ¢, g5t and R — R?,
S — S, are finitely implied. A manageable partition(i§tr, 1g '}, {1}, {Ts, 75 *}), where the first and
third classes are reversible and the second is trivial.
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We can now conclude the proof of the Acyclic Unary Universalddls Theorem (Theorem 111.6).
We first note that the Fact-Saturated Solutions Lemma (LeM#B)adoes not use assumptiesversible,
so we apply it (withzyp) to obtain fromly an aligned fact-saturated superinstadgcef lg. This is the
saturation process

We now satisfyzyp by acompletion process Build a manageable partitiai®, . .., P,) of Zyp, by
Lemma VI.5. Now, for 1< i < n, use fact-thrifty chase steps b{Ds of B to extend the fact-saturated
aligned superinstancg to a larger ongj;. ; that satisfied?. If B is trivial, use Corollary VI1.4. IfR is
reversible, apply the Fact-Thrifty Completion Propositi®roposition V.10), takingyp to beP. By
Lemma V1.2, the resuld;, 1 satisfiesUjgi P.

Hence the resull,, 1 of the completion process is an aligned superinstandg tbt satisfiezyp;
as an aligned superinstance, it is also finite, satigfigs, and isk-sound forACQ; so it isk-universal
for Zy andACQ. This concludes the proof of the Acyclic Unary Universal MtsdTheorem.

VIl. Higher-Arity FDs

We now bootstrap the Acyclic Unary Universal Models Theor@rheorem II1.6) to the Universal
Models Theorem (Theorem lII.5). The first step is to changecoustruction to avoid violating higher-
arity FDs, namely, show the following, which applies3e= Zyp A Z¢p rather tharky = Zyp A Zyrp:

Theorem VII.1 (Acyclic universal models) There is a finite superinstance qf that is k-universal
for Z and ACQ queries.

The problem to address is that our completion process tefgalip was defined with fact-thrifty
chase steps, which reuse elements from the same facts antieep®sitions multiple times. This may
violate Zrp, and we can show that is the only point where we do so in thetieanti®n.

The goal of this section is to define a new version of thriftasd steps that preservEsp rather
than justzyrp; we call themenvelope-thrifty chase stepd/e first describe the new saturation process
designed for them. Second, we define how they work, redefmedmpletion process of the previ-
ous section to use them, and use this new completion proogssve the Acyclic Universal Models
Theorem above.

VIl.1. Envelopes and saturation

We start by defining a new notion of saturated instances. IRtheanotions of fact classes (Defini-
tion V.4) and thrifty chase steps (Definition V.8). When dftitrchase step wants to create a f&gt
whose chase witne$s, has fact claséRP, C), it needs elements to reusefpnat positions oNDng(RP).
They must have the rigtm-image and must already occur at the positions where theseased.
Fact-thrifty chase steps reuse a tuple of elements fromawi&f and thus apply tfact-saturated in-
stanceswith one fact for each class. Our new notion of envelopdithachase steps will need saturated
instances that havaultiple reusable tuples. A set of such tuples is callegavelopdor (RP,C):

Definition VII.2. Consider D= (RP,C) in AFactCl, and write O:= NDng(RP). Anenvelope E for D
and for an aligned superinstance=J(l,sim) of lp is a non-empty set ¢O|-tuples indexed by O, with
domaindom(l), such that:
o foreveryFD ¢:R- — R of Zpp with R C O and R € O, E satisfiesp (seeing its tuples as facts
on O);
o foreveryFD ¢:R- — R of Sppwith R COand R ¢ O, forallt,t’ € E, i (t) = iz (1) implies
t="t;

15



e for every ac domE), there is exactly one position?R O such that & 1 (E); and then we
also have & Tia(J);
e for any fact F=R(a) of J and R € O, if aq € Ta(E), then F achieves D in J anth(a) € E.

Intuitively, the tuples in the envelopg satisfy theUFDs of Xyrp within NDng(RP), and never
overlap on positions that determine a position oull®fing(RP). Further, their elements already occur
at the positions where they will be reused, and have the sighimage for the fact clads. To simplify
the reasoning, we also impose that each elemegt isfused at only one position, and occurs at that
position only in facts which achiev@ and whose projection tDng(RP) is in E.

Depending orO, it may be possible to use a singleton tuple as the enveligefact-thrifty chase
steps, and not violatEgp. The class is themafe Otherwise, we focus on the envelope tuples which do
not appear in the instance yet.

Definition VII.3. We call(RP, C) in AFactCl safeif there is noFD R- — R in gp with R- C NDng(RP)
and R ¢ NDng(RP).

Letting E be an envelope f¢RP,C) and J be an aligned superinstance, tiseaining tuples of E
are E\ypng(rre)(J) if (RP,C) is unsafe, and E if it is safe.

We now introduce the notion aflobal envelopesthat give us one envelope per classAdfactCl.
This leads to our new notion of saturation: a saturated rmestdnas a global envelope with many re-
maining tuples in the unsafe classes. Note that this imfdigtssaturation.

Definition VII.4. A global envelope £ for an aligned superinstance 3 (I,sim) of Iy is @ mapping
from each D= AFactCl to an envelop€ (D) for D and J, such that the envelopes have pairwise disjoint
domains.

We call J nenvelope-saturated if it has a global envelop& such that(D) has > n remaining
tuples for all unsafe @x AFactCl. J is envelope-saturated if it is n-envelope-saturated forn 0, and
envel ope-exhausted otherwise.

We now justify that we can make arbitrarily saturated supgtances ofy (the switch tolj is a
technicality):

Proposition VII.5 (Sufficiently envelope-saturated solutiongpr any K € N and instanced, we can
build a superinstanceylof Iy that is k-sound folCQ, and an aligned superinstance J gfthat satis-
fiesZgp and is(K |J|)-envelope-saturated.

Example VII.6. For simplicity, we work with instances rather than alignegerinstances. Consider

lo:={S(a),T(2)}, theUIDs1:S' CR'and1’: T* C R! for a 3-ary relation R, and th&D ¢: R°R® —

R. Consider I:= lou {R(a,b,c)} obtained by one chase step obn Sa). It would violate  to

perform a fact-thrifty chase step ofon z to create R, b, c), reusing(b,c) at NDng(R!) = {R?, R%}.
Now, consider the k-soung = {S(a), T(z),S(&),SZ)}, and I := IJU{R(a,b,c),R(&,b',c’)} ob-

tained by two chase steps. The two facta,B,c) and Ra,b’,c’) would be mapped to the same fact

class D, so we can defing(B) := {(b,c), (b',c), (b',c),(b,c’)}. We can now satisf¥yp on I' with-

out violating ¢, with two envelope-thrifty chase steps that reuse the neimgituples(b’,c) and (b,c’)

of E(D).

The crucial result needed for the Sufficiently Envelopes&died Proposition is the following, which
may be of independent interest, and is proved in Appendixi§ir®y a combinatorial construction. The
fact that unary keys are problematic is the reason why welbaade classes differently.
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Theorem VII.7 (Dense interpretations)-or any setzgp of FDs over a relation R with no unary key,
and K e N, there exists a non-empty instance | of R that satigfigsand has at least kdom(l)| facts.

Hence, we have defined the new notiomeafnvelope-saturation, and a saturation process to achieve
it: the Sufficiently Envelope-Saturated Solutions Profasi Unlike the Fact-Saturated Solutions
Lemma, where one fact of each class was enough, we have shaivenvelope-saturated superin-
stances may have an arbitrarily high saturation relatiteédnstance size.

VII.2. Envelope-thrifty chase steps
We can now introducenvelope-thrifty chase steps

Definition VII.8. Envelope-thrifty chase steps are thrifty chase steps (Definition V.8) applicable to
envelope-saturated aligned superinstances. %be&the exported position of the new fag) ket
Fw = S(b') be the chase witness, and let)(S*, C) € AFactCl be the fact class of - We choose some
remaining tuple of £(D) and define p:=t, for all S" € NDng(S").

Recall from Lemma V.9 that fact-thrifty chase steps applfatti-saturated aligned superinstances,
and never violateyrp. Similarly, envelope-thrifty chase steps apply to envelgpturated aligned
superinstances, and never violaig,:

Lemma VIIL.9. For n > 0, for any n-envelope-saturated aligned superinstance J $htisfies>gp,
the result J of an envelope-thrifty chase step on J is(an- 1)-envelope-saturated superinstance that
satisfie rp.

We now modify the Fact-Thrifty Completion Proposition (Position V.10), generalized without as-
sumptionreversible as in the previous section, to use envelope-thrifty chagesshstead of fact-thrifty
chase steps. This is possible because the choice of reusadrab at non-dangerous positions makes
no difference in terms of applicablglDs, as they already occur at the position where they are reused
Hence, we can perform the exact same process as before {é¢keepon-dangerous reuses), using
Lemma VII.9 to justify thatzrp is preserved; but we must abort if we reach an envelope-skiwhu
instance:

Proposition VII.10 (Envelope-thrifty completion)For any envelope-saturated aligned superinstance
J of |y that satisfieSFp, we can obtain by envelope-thrifty chase steps an alignpdrswstance Jof
lo, such that Jis either envelope-exhausted or satisfies

The last problem to address is exhaustion. Unlike factraitun, envelope-saturation “runs out”;
whenever we use a remaining tuglén a chase step to creakg and obtain a new aligned superin-
stanceJ’, then we cannot useagain inJ’. So we must start with a sufficiently envelope-saturated
superinstance, and we must control how many chase steppiedsin the envelope-thrifty comple-
tion process. From the details of our construction, we cawghe following:

Lemma VII.11 (Envelope blowup) There exists B- N depending only on k ang, such that, for any
aligned superinstance 3 (1,sim) of lp, and global envelopé, letting J = (I’,sim’) be the result of
the envelope-thrifty completion process, we h{je< BJl|.

We can now conclude the proof of the Acyclic Universal ModBteorem (Theorem 111.6) that we
stated at the beginning of this section. Start by applyirg ghturation process of the Sufficiently
Envelope-Saturated Solutions Proposition to obtain amneati superinstancé= (I,sim) of somek-
soundly, such that) satisfies>rp and is(B|l|)-envelope-saturated. Now, apply the Envelope-Thrifty
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Completion Proposition to obtain an aligned superinstaha |g. By the Envelope Blowup Lemma,
J' contains< B|l| new facts, so, by Lemma VI1.9) must still be 1-envelope-saturated. Hende,
satisfies>. This concludes the proof, dsis an aligned superinstance lgf

VIIl. Cyclic Queries

We now finally complete our proof of the Universal Models Tren (Theorem I11.5) by moving from
acyclic BooleanCQs to arbitrary Boolear€Qs. We do so by a generic process which is essentially
independent from our previous construction.

Intuitively, the only cyclicCQs that hold inChase(lo, Zuip ) either have an acyclic self-homomorphic
match (so they are implied by an acycli€ that also holds) or have all cycles matched to elements
of Igp. Hence, in &-sound instance fo€Q, no other cyclic queries must be true. We ensure this by a
cycle blowup process that takes the product of lowith a group of high girth, following Otto [14].
However, we need to adjust this construction to avoid angdtD violations.

We letJ = (lt,sim) be the aligned superinstance obtained from the Acyclic sl Models The-
orem (Theorem VII.1). Its underlying instankds a finite superinstance &f that satisfiex, and the
k-bounded simulatiosim guarantees thdt is k-sound forACQ. Our goal in this section is to make
It k-sound forCQ while still satisfyingz, so that it isk-universal. This will conclude the proof of the
Universal Models Theorem (Theorem IIL.5).

VIII.1. Simple product

Let us first introduce preliminary notions:

Definition VIII.1. Agroup G = (S -) over afinite set S consists of an associagiveduct law - : S — S,
aneutral dementec S, and arinverselaw - —1: S— Ssuchthat xx 1 =x1.x=eforall xe S. We
say that G iggenerated by X C S if all elements of S can be written as a product of elementsafd
X 1= {x1|xeX}.

Given a group G generated by X, thieth of G under X is the length of the shortest non-empty word
w of elements of X and % such that w---w, = e and w+# w, % for all 1 <i < n. (If X = {g} with
g=g 1, the girth is1.)

Lemma VIIl.2 ([12]). For all n € N and finite non-empty set X, there is a finite group=GS,-)
generated by X with girttr n under X. We call G an-acyclic group generated by X.

In other words, in am-acyclic group generated b, there is no short product of elementsxoand
their inverses which evaluates épexcept those that include a factor*.

We now take the product &f with such a finite grougs. This ensures that any cycles in the product
instance are large, because they project to cycl€ We use a specific generator:

Definition VIII.3. Thefact labels of a superinstance | oflare A(1) := {IF | F € 1\lg,1 <i < |F|}.

Now, we define the product of a superinstahaé |y with a group generated by(l). We make sure
not to blow up cycles ithy, so the result remains a superinstancébf

Definition VIII.4. Let| be a finite superinstance of &nd G be a finite group generated byl). The
product of | by G preserving g is the finite instancél, o) ® G with domaindom(l) x G consisting of
the following facts, for all = G:

e For every fact Ra) of lo, the fact R(a1,9),. .., (aRr,9)).
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e For every fact F= R(a) of I\ Iy, the following fact:
R((alag' IE)? (R (a\R|>g : IFR|))
We identify(a, e) to a for ac dom(lp), so(l,lp) ® G is still a superinstance of|

We say a superinstandeof |y is k-instance-sound(for %) if for any CQ q such that/g| <Kk, if q
has a match in involving an element ofy, then Chase(lo,Zyip) = 0. We can ensure thdt is k-
instance-sound, up to having performedhase rounds oly initially. We can then state the following

property:

Lemma VIIL.5 (Simple product) Let | be a finite superinstance of &nd G a finite(2k + 1)-acyclic
group generated b(1). If I is k-sound forACQ and k-instance-sound, théh 1) ® G is k-sound for
CcQ.

Example VIII.6. Consider k5 := R(a,b), lp := {Fp}, andZyp consisting off : RZ C S, 1/ : S C R,
1 and(1") L. Let F:= S(b,a), and I:= lo LU {F}. | satisfies>;p and is sound foACQ, but not for
CQ: take for instance q3xy Rx,y) A S(y,x), which is cyclic and holds in | whillg, Zyip) Funr g
We haveA(l) = {IF,15}. Identify T and 15 to 1 and 2 and consider the group G= ({0,1,2},-)
where- is addition modulo 3. G has girth 2 undax(l).
The producty := (1, lp) ® G, writing pairs as subscripts for brevity, {&(ag, o), R(a1,b1), R(az, by),
S(by,a2),S(b2,a0),S(bg,a1) }. In this case § happens to bé-sound forCQ.

We cannot conclude directly with the simple product, beedyps= (It,l0) ® G may violateZyrp
even though; = Zgp. Indeed, there may be a relati®aUFD ¢ : RP — RYin Zygp, and twoR-facts
F andF’ in If\lg with 7ze ra(F ) = Tre ra(F”). In | the images oF andF’ may overlap only ofRP, so
they could violatep.

VIIl.2. Mixed product

What we need is a more refined notion of product, that doestt@nhpt to blow up cycles within fact
overlaps. To define it, we need to considejuatientof Is:

Definition VII.7. Thequotient | /~ of an instance | by an equivalence relatisrondom(l) is defined
as follows:
e dom(l /~) is the equivalence classes-efondom(l),
e |/~ contains one fact ) for every fact Ra) of |, where A is the ~-class of afor all R' €
Pos(R).
Thequotient homomorphism x.. is the homomorphism from | tg'& defined accordingly.

We quotientls by the equivalence relatioryy (recall Definition V.1), yieldingl{ := If/~. The
resultingl{ may no longer satisff. However, it is stillk-sound forACQ, for the following reason:

Lemma VIII.8. Any k-bounded simulation from an instance | to an instafiaefines a k-bounded
simulation from J~ to I'.

We then consider the homomorphigm, from Is to I{, and blow up cycles ity by amixed product
that only distinguishes facts with a different imagelirby x~,. The point is that, as we show from
our construction, facts df that have the same elements at the same positions alwaysheagame
~-class. Hence, they are mapped to the same fagt.byand will not be distinguished by the mixed
product. Let us formalize this:
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Definition VIIL.9. Let | be a superinstance of &nd h be a homomorphism from | to some instarice |
We say | iscautious for h (and b) if for any relation R, for any two R-facts F and’ Buch that
Tre(F) = e (F') for some R € Pos(R), either EF’ € I, or h(F) = h(F').

Lemma VIII.10 (Cautiousness)The superinstance of Iy constructed by the Acyclic Universal Mod-
els Theorem (Theorem VII.1) is cautious for, .

The reason why is cautious foh := x~, is that, except for facts dp, overlaps between facts only
occur when reusing envelope elements at non-dangeroutopssiin which case theim-images of
both facts are~y-equivalent inChase(lp,Zyip). We can then show that, from our construction, such
elements are actualty-equivalent inls.

We now define the notion of mixed product, which uses the sattddbel for facts with the same
image byh:

Definition VIII.11. Let | be a finite superinstance of with a homomorphism h to another finite
superinstance’lof lp such that , is the identity and fio) Maps to \lp. Let G be a finite group
generated by\(l").
Themixed product of | by G via h preservingol written (I,19) ®" G, is the finite superinstance of |
with domaindom(l) x G consisting of the following facts, for everyeds:
e For every fact Ra) of lp, the fact R(as,9),. .., (ar;,9))-
e For every fact Ra) of I\lo, the following fact:

R((a1.9-1"7)......(ar, 0 1)),

We now show that the mixed product preseri#Bs andFDs when cautiousness is assumed.

Lemma VIII.12 (Mixed product preservation)For any UID or FD 1, if | =1 and | is cautious for h,
then(l,lo) "G = 1.

Second, we show thdt: | — I’ lifts to a homomorphism from the mixed product to the simple
product.

Lemma VIII.13 (Mixed product homomorphism)There is a homomorphism frofh o) ®"G to (I, 1g) ®
G which is the identity orylx G.

We can now conclude our proof of the Universal Models Theof&heorem III.5). We construct
J: = (It,sim) by the Acyclic Universal Models Theorem (Theorem VII.1) aahsiderl;. It is a finite
superinstance df which isk-universal forz andACQ. Further, up to having distinguished the elements
of lp with fresh predicates and having performed initial chasing can ensure thaf := s/~ is k-
instance-sound and that the homomorphjsm: I+ — |{ satisfies the hypotheses of the mixed product.

Let G be a(2k+ 1)-acyclic group generated b¥(l{), and considet, := (I{,lp) ® G. As If was
k-sound forACQ, so isl{ by Lemma VII1.8, and a¥ is alsok-instance-soundy, is k-sound forCQ by
the Simple Product Lemma (Lemma VIII.5). However, as we &ixgld, in generall, = ~. We thus
constructly, := (It,lo) @M G, with h:= X~ By the Mixed Product Homomorphism Lemmia, has a
homomorphism tdy, so it is alsck-sound forCQ. Further,ls is cautious forx., by the Cautiousness
Lemma, so, by the Mixed Product Preservation Lemma, we haye X becausé; |= X.

Hence, the mixed produtt, is a finitek-universal instance faX andCQ. This concludes the proof
of the Universal Models Theorem, and hence of our main tmediigheorem 111.2).
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IX. Conclusion

In this work we have developed the first techniques on argittety schemas to build finite models that
satisfy both referential constraints and number resbrstj while controlling whictCQs are satisfied.
We have used this to prove that finite open-world query arisgdor CQs, UIDs andFDs is finitely
controllable up to finite closure of the dependencies. Uslig) we have isolated the complexity of
FQA for UIDs andFDs.

As presented the constructions are quite specific to depeiede but in future work we will look
to extend them to constraint languages containing disipmctith the goal of generalizing to higher
arity the rich arity-2 constraint languages of, e.g., [18)], While maintaining the decidability of FQA.
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A. Details about the UID chase and Unique Witness Property

Recall theUnique Witness Property

For any elemena € dom(Chase(l,2yp)) and positionRP of o, if two facts of Chase(l,Zyp) con-
tain a at positionRP, then they are both facts of

We first exemplify why this may not be guaranteed by the firghrbof theUID chase. Consider the
instancel = {R(a),S(a)} and theUIDs 1; : R* C Tt and 1, : St C T, whereT is binary. Applying a
round of theUID chase creates the instand&(a), S(a), T (a,b1), T(a,by)}, with T(a, b ) being created
by applyingt; to the active facR(a), andT (a,by) being created by applying to the active fac§(a).

By contrast, the core chase would create only one of thesdaint®, because it would consider that
two new facts arequivalent they have the same exported element occurring at the sasitéopo In
general, the core chase keeps only one fact within each @l@&spiivalent facts.

However, after one chase round by the core chase, theredmgerlany distinction between thiéD
chase and the core chase, because the following propeds bnlthe result’ of a chase round (by the
core chase or the UID chase) on any instarfceg*) for any 1 € Zyp and elemena € Wants(l', 1), a
occurs in only one fact df. This is true becausEyp is transitively closed, so we know that kD
of Zyp is applicable to an element of dgii) in I’; hence the only elements that witness violations
occur in the one fact where they were introduced in

We now claim that (*) implies the Unique Witness Propertyddad, assume to the contrary that
a € dom(Chase(l,Zyp)) violates it.

If ac dom(l), becaus&yp is transitively closed, after the first chase round ome no longer create
any fact that involves. Hence, each one &% andF; is either a fact ot or a fact created in the first
round of the chase (which is a chase round by the core chasmyewér, if one ofF, andF; is in |,
then it witnesses that we could not hawve Wants(l,RP), so it is not possible that the other fact was
created in the first chase round. It cannot be the case dlithdftandF, were both created in the first
chase round, by definition of the core chase. HeRgandF, are necessarily both facts bf

If a € dom(Chase(l,Zyp))\dom(l), assume thad occurs at positiorRP in two factsF;, F,. As
a ¢ dom(l), none of them is a fact df. We then show a contradiction. It is not possible that one of
those facts was created in a chase round before the othethexsvise the second created fact could
not have been created because of the first created fact. Heoitefacts must have been created in
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the same chase round. So there was a chase round frtom” where we hadi € Wants(1”,RP) and
both F; andF, were created respectively from active faB{sandF, of I” by UIDs 1, : ST C RP and
T, : T" C RP. But then, by property (*)a occurs in only one fact, so as it occursfihandF; we have
F{ = F,. Further, asa ¢ dom(l), F{ andF; are not facts of either, so by definition of the UID chase
and of the core chase, it is easy to seecurs at only one position i = F}. This implies thatr; = 1.
Hence, we must havg, = F,.

B. Proofs for Section IlI: Main Result and Overall Approach

B.1. Proof of Proposition I1l.1 (Complexity of UQA for FDs and UIDs)

Proposition 111.1. UQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

We first show the results fddIDs in isolation. UQA forUIDs is NP-complete in combined com-
plexity: the lower bound is immediate from query evaluatjdh the upper bound is by Johnson &
Klug [11] and actually holds fotDs of arbitrary fixed arity (which they call “width”). For datzom-
plexity, Cali et al. [6] showed a PTIME (in fact, ATupper bound for arbitrariDs by observing that
the certain answers can be expressed by another first-ardey. q

We now show that the same upper bounds apply to UQAJfdrs andFDs (the lower bound clearly
also applies). This result is implicit in prior work of [5,,4Jut we prove it here for completeness. We
argue thatJIDs andFDs areseparableThis means that for any conjuncti@hof FDs Zgp andUIDs
>uip, for any instancéy andCQ q, if Io = Zrp then we havélp,2) =unr g < (lo,Zuip) Funr - From
this result, the upper bounds follow from the bounds fore case above, since checking whether
lo E Zrp can be done in PTIME. Separability follows from then-conflicting conditiorof [5, 4] but
we give a simpler argument.

Assume that satisfiesZgp. Clearly if (lo,Zuip) Funr q then (10,%) Funr . We thus need to
show that if(lp,Z) =unr q then(lo, Zuip) Funr 9. ConsiderChase(lg, Zyip). If Chase(lg, Zuip) E Zrp,
then Chase(lp, Zyip) is a superinstance d§ that satisfies, so becausély,>) =unr g we must have
Chase(lo, Zuip) = 0. By universality of the chase, this impli¢, >uip) Funr Q.

Hence, it suffices to show thé&tase(lp,Zyip) = Zrp. Assume to the contrary the existenceFof
andF’ in Chase(lg,Zyp) violating anFD of Zgp. There must exist a positidRP € Pos(a) such that
e (F) = e (F'). By the Unique Witness Property, this implies tRaandF’ are facts olg, which is
impossible by our assumption thgt= Zgp.

B.2. Proof of the Main Theorem (Theorem 111.2) from the Universal Models
Theorem (Theorem I11.5)

To show the Main Theorem from the Universal Models TheorarnhZ Ibe a conjunction ofDs and
UIDs, ¥’ its finite closure, andy a finite instance. We want to show finite controllability upfitaite
closure, namelylo, %) Eiin qiff (1o,Z') Eunr Q.

We can assume without loss of generality thasatisfies the-Ds of &', as otherwise there is no
superinstance df, satisfyingZ’, and both problems are always vacuously true.

It is clear that for anyCQ g, we have(lp,%) =iin q iff (l0,Z) Efin . Indeed,?’ includesZ and
conversely any finite superinstance Igfwhich satisfies must satisfyZ’, by definition of the finite
closure. So in fact, to prove finite controllability up to fiaclosure, it suffices to show thdp,2') |=rin
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qiff (Io,2') Eunrq for any CQ g. The backward implication is immediate as all finite supgtances
of Iy satisfyingX’ are also unrestricted superinstances. We prove the costtizp of the forward
implication.

Letqbe aCQ, letk:=|qg|, and assume thdty,>’) [~unr g. By the Universal Models Theorem, let
be a finite superinstance kfthat is|q|-sound and satisfi€s. As| is|q|-sound, we havé (~ g, so, as
| is a finite superinstance &f that satisfieg’, it witnesses thatlp,2’) [4fin g. This proves the desired
equivalence. Hence, we have established ¥hag finitely controllable up to finite closure, and have
proved the Main Theorem.

B.3. Proof of Corollary I11.3 (Complexity of FQA for FDs and UIDs)

Corollary 111.3.  FQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

By our Main Theorem (Theorem 111.2), any instangeZ,q) to the FQA problem, formed of an
instancel, a conjunctionZ of IDs Zyp and FDs Zgp, and aCQ g, reduces to the UQA instance
(1,Y',q), whereZ' is the finite closure oE. ComputingZ’ from X is data-independent, so the PTIME
data complexity result of Proposition Ill.1 clearly stibbglies. It is also clear that the NP-hardness
combined complexity bound of Proposition 1ll.1 can be reven for FQA, as it already held even
whenZ = 0. So we only need to show that the combined complexity of FEEJANP. A naive approach
would be to compute explicith)f’ and solve the UQA instande ¥/, g; but materializingZ’ may take
exponential time.

Instead, remember that from our study of UQA complexity mphnoof of Proposition I11.1, UQA for
UIDs andFDs can be performed by first checking thBs on the initial instance, and then performing
UQA for theUIDs in isolation. Hence, I€f};,; andZy be theUIDs andFDs of>’. Rather than materi-
alizing ¥’, we will show that we can decide whethe= X in PTIME, and comput&y,, in PTIME,
which suffices to prove the claim as the combined compleXityeaiding whethe(l,X{,5) =unr g is
then in NP.

We first justify that we can indeed compufg,, in PTIME. We consider every possibléiD on
positions occurring irk (there are polynomially many), and for each of them, deteenin PTIME
from X whether it is inY’, using the implication procedure of Cosmadakis et al. [8lisTallows us to
computeX; 5 in PTIME.

We next justify that we can decide whethee= > in PTIME. For the same reason as for thiDs,
we can compute in PTIME frorR the set{,-; of the UFDs which are irn2’, by deciding implication
for each possiblé&/FD. We now argue that to test whethel= 2, it suffices to test whethdr= Zgp
and whethel |= >{,5. This follows if we can show thalpy is implied byZ{,-p U >rp by the usual
axiomatization of unrestricted and finite implication f&ids alone, from Armstrong [2]. Indeed, in this
case, ifl =3¢ thenl = >,;p UZpp as it is a subset dfr, and conversely if = X{;-p U Zrp thenl
satisfie - because they are implied By, U Zgp S0 are also satisfied by any instance that satisfies
Z/UFDU 2FD-

To justify that> is implied by>{,-5 U Zrp, we use Theorem 4.1 of [8], according to which a sound
and complete axiomatization of the finite closurd-Bfs andUIDs consists of the usu&D implication
rules, the standardID axiomatization of Casanova et al. [7], and thyele rule So, consider aniD
@ of Xr and let us justify that it is implied b¥;rp U Zrp. If @ is aUFD, theng € . Otherwise
the last steps of a derivation gfwith the axiomatization of [8] must be rules from tRB implication
rules, as they are the only ones which can deduce highgrfddis. Let us group together the IdsD
implication rules that were applied, and consider theSseft the hypotheses tBD implication rules
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that were not themselves producedFly implication rules. Each hypothesis frois either anFD
of Zgp or was produced by the cycle rule. Now, the cycle rule can aelguceUFDs (andUIDs).
Hence,SC Xgp U Z{)rp, Which implies that we can construct a derivationgofrom Zgp U Z{ e Using
the FD implication rules. Thus, we can indeed compute in PTIMEy U Zrp, and check in PTIME
whetherl |= Z{,-p U Zgp, and we have shown that this is equivalent to checking whétheXy. This
concludes the proof.

C. Proofs for Section IV: Weak-Soundness and Reversible UlIDs

This section proves the Acyclic Unary Weakly-Sound Modeaigp®sition (Proposition 1V.2), which
weakens the Acyclic Unary Models Theorem (Theorem I11.6)nbgking assumptiomeversible and
replacingk-soundness by weak-soundness (Definition 1V.1).

C.1. Proof of Proposition 1V.4 (Satisfying UIDs in balanced instances)

Proposition IV.4. Assumingbinary and reversible, any balanced finite instance | satisfyidgrp has
a finite weakly-sound superinstanceHhat satisfies, with dom(l’) = dom(l).

For every relationR of g, let fr be a bijection betweelVants(l,R') and Wants(I,R?); this is
possible, becaudeis balanced.

Consider the superinstanteof I, with dom(l’) = dom(l), obtained by adding, for everi of o,
the factR(a, fr(a)) for everya € Wants(1,R?). I’ is clearly a finite weakly-sound superinstancd of
because for everg € dom(l’), if a occurs at some positioRP in some fact of I, then eitherF is a
fact of| anda € mre(l), or F is a new fact and by definitioa € Wants(I,RP).

Let us show that’ = Zypp. Assume to the contrary that there are two fdetand F’ in I’ that
witness a violation of AJFD ¢ : RP — R of Zyrp. As| = Zyep, one of F andF’ is necessarily a
new fact; we assume without loss of generality that FisConsidera := mre(F). By definition of
the new facts, we have € Wants(I,RP), so thata ¢ e(1). Now, as{F,F’} is a violation, we must
haverie(F) = mre(F'), S0 asa ¢ mre(l), F’ must also be a new fact. Hence, by definition of the new
facts, lettingb := mza(F) and b’ := mza(F’), depending on whethgn = 1 or p = 2 we have either
b= = fr(@) orb= ' = fz*(a), which is well-defined becaudg is a bijection. This contradicts the
fact thatF andF’ violate ¢.

Let us now show thal’ = Zyp. Assume to the contrary that there is an active faet R(a;,ay),
foraUID 1:RP C S If F is a fact ofl, we hada, € Wants(I,S), soF cannot be an active fact in
I” by construction offs. So we must hav& € I'\I. Hence, by definition of the new facts, we had
ap € Wants(l,RP); so there must be’ : T" C RP in Xy p such that, € 7+ (1). Hence, becausEyp
is transitively closed, eithef" = ST or theUID T" C STis in Zyp. In the first case, aa, € (1), F
cannot be an active fact far, a contradiction. In the second case, we hgd Wants(l,S%), which is
a contradiction for the same reason as before.

Hence,l’ is a finite weakly-sound superinstanceldhat satisfiesy and with donil’) = dom(1),
the desired claim.

C.2. Proof of the Balancing Lemma (Lemma IV.9)

Lemma IV.9 (Balancing) For any finite instance I, if | satisfieSyrp then it has a balanced pssin-
stance.
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We prove the lemma without assumptibimary, as we will use it without this assumption later in
Section IV.

For any positiorRP defineo(RP) := Wants(l,RP) LU re(l). Intuitively, those are the elements that
either appear &P or want to appear there. We claim tlgRP) = o(S?) wheneveRP ~\p S1. Indeed,
we haverie(l) C o(S): elements e (1) want to appear & unless they already do, and in both
cases they are io(S7). Likewise, elements diVants(l, RP) either occur a§?, or at some other position
T" such thafl" C RPis aUID of Zyp, so that by transitivityT" C S also is, and so they want to be at
St unless they already are. HermRP) C o(S7), and symmetricallyp(ST) C o(RP).

Let N := MaXzecpos(o) |0(RP), which is finite. We writgRP|;p the ~|p-class of any positioRP. We
define for eachv|p-class[RP]p a setp([RP]ip) of N — |o(RP)| fresh values. We let{ be the disjoint
union of thep([RP]p) for all classegRP)|p, and setA to map the elements qf([RP];p) to [RP];p. We
have thus defined our pssinstarite- (I,#,A).

Let us now show tha® is balanced. Consider now two positioR&andR? such thatp: R° — R34 and
¢ : RY— RP are inZygp, and show thatWants(P,RP)| = [Wants(P,R?)|. We have|Wants(P,RP)| =
|[Wants(I,RP)|+ | p([RP]ip)| = |o(RP)| — |Te (1)| + N — |o(RP)|, which simplifies taN — | 7ize (1 )|. Simi-
larly |Wants(P,R%)| = N — |m&a(1)|. Sincel = Zyrp andg@ and¢’ are inZypp we know thaf e (1)| =
|Tia(1)|. From this the conclusion follows.

C.3. Proof of the Binary Realizations Lemma (Lemma 1V.10)

Lemma IV.10 (Binary realizations) For any balanced pssinstance P of an instance | that satisfies
2UFD, We can construct a realization of P that satisfies

Let us construct a realizatiod of P. We construct bijectiondr for every relationR between
Wants(P,RY) and Wants(P,R?) as for Proposition IV.4; this is possible, &sis balanced. We then
construct!l’ in the same way, by adding tq for everyR of g, the factR(a, fr(a)) for everya e
Wants(P,R?).

We prove that’ is a realization again by observing that whenever we cretget&®(a, fr(a)), then
we havea € Wants(P,R?) and fr(a) € Wants(P,R?).

The fact that’ satisfiesSygp is for the same reason as for Proposition V.4,

We now show thal’ satisfiessyp. Assume to the contrary that there is an active Faet R(a;, &),
foraUID 1: RP C &, so thata, € Wants(lI’,RP). If a, € dom(l), then the proof is exactly as for
Proposition 1V.4. Otherwise, i, € #, clearly by construction ofgr andl’ we havea, € 75+ (I’) iff
T" € A(ap). Hence, as, € Tre(l’) and ast witnesses by assumptioaversible thatRP ~p ST, we
havea, € mw(1’), contradicting the fact that, € Wants(l’, S7).

C.4. Proof of Lemma “Binary realizations are completions” (Lemma 1V.11)

Lemma V.11 (Binary realizations are completiondlf |’ is a realization of a pssinstance of | then it
is a weakly-sound superinstance of I.

Clearly I’ is a superinstance d¢f Let us show that it is weakly-sound. Recall the definitioraof
weakly-sound superinstance:

Definition IV.1. A superinstance’ lof an instance | isveakly-sound if the following holds:
e for any ac dom(l) and R’ € Pos(0), if a € Tre(1”), then either a 1o (1) or a € Wants(l,RP);
e for any ac dom(l’)\ dom(l) and R, € Pos(0), if a€ mre(l’) and ac (1) then R = St or
RP - Fisin ZUID-
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Considera e dom(l") andRP € Pos(o) such tha € mze(1"). As 1’ is a realization, we know that ei-
thera € mro(1) or a € Wants(P,RP). By definition ofWants(P,RP), and becaus® = dom(l")\ dom(l),
this means that eithere dom(1) anda € o (1) LU Wants(I,RP), orae dom(l’)\ dom(l) andRP € A (a).
Hence:

e For anya € dom(l) andRP € Pos(0), we have established thate mze(1") implied that either
ac Mro(l) orae Wants(l,RP).

e For anya € dom(l")\ dom(l) and for anyRP, S € Pos(0), we know thatRP, S? € A (a), which
implies thatRP ~|p ¥, soRP = S1orRP C Sis in Zyp.

So indeed the two conditions of weak-soundness hold.

C.5. Proof of the Realizations Lemma (Lemma 1V.16)

Lemma V.16 (Realizations) For any balanced pssinstance P of an instance | that sati&figs, we
can construct &-compliant piecewise realization of P.

Let P= (I,H,A) be the balanced pssinstance. Recall that«thgn-classes ofo are numbered
M4,...,M,. By definition of being balanced (Definition IV.3), for aryryn-classn;, for any two
positionsRP,R% € MM;, we have|Wants(P,RP)| = |Wants(P,RY)|. Hence, for all 1<i <n, lets be
the value of|Wants(P,RP)| for any RP € M;. For 1<i < n, we letm; be the arity off1;, and number
the positions ofT; ast'l,...,Rp'mi. We define foreach ¥i<nand 1< j<m a bijection(pji from

{1,...,5} to Wants(P, Rpij). We construct the piecewise realizatiBh= (K, ...,Kn) by setting each
Ki for 1 <i < nto ber, (1) plus the tuplegg|(l),..., ¢, (1)) for 1 <1 <s.

It is clear thatPl is indeed a piecewise realization, because whenever weeadaplea € IM; for
any 1<i <n, then, for anyRP € IM;, we havea, € Wants(P,RP).

Let us then show tha®l is Zyrp-compliant. Assume by contradiction that there is1 < n and
a,b € K; such thatg = by buta, # by for someR ,R € M. As| satisfiesSSyrp, we assume without loss
of generality that € K;\rT;(1). Now eitherb € rif1;(1) or b € K\ rT;(1).

If b e mi(l), then we know thab, € 1y (1), but we know by construction that, as= Ki\rif1;(1),
we haveg; € Wants(P, R'). Now, asa = by andb; € dom(l), we havesy € dom(l), so that by definition
of Wants(P,R') we havea, € Wants(I,R). Thus, asy = by, we have a contradiction.

Now, if b € Kj\r;(l), then, writing R =RP andR = Rplj/, the fact thatay = by but a; # by
contradicts the fact thag o ((p},)*l is injective. HencePI is Zyrp-compliant.

Let us now show tha®l is Zyp-compliant.

We must show that, for evetyID 1 : RP C S of Zyp, we haveWants(PI, 7) = 0, which means that
we haverie (P1) C 1 (P1). LetN; be the<»gyn-class ofRP, and assume to the contrary the existence
of a tuplea of K; such thaty, ¢ i (PI). Either we have, € dom(l), or we havea, € H.

In the first case, as, ¢ mm(Pl), in particulara, ¢ mw(l), and asa, € Tre(l), we havea, €
Wants(l,T), soay € Wants(I,S7). By construction oPl, then, lettingi’ be the«ryn-class ofST and

letting 1 = i , aS(p}/ is surjective, we must haway, € 1 (K ), that is,a, € T (P1), a contradiction.
In the second case, clearly by construction we tegve 15+ (Pl) iff T' € A(ap), so that, given that
T witnesseRP ~p 1, if &, € e (PI) thenay, € T (P1), a contradiction.

We deduce tha®l is indeed & -compliant piecewise realization 8f completing the proof.
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C.6. Proof of the Relation-Saturated Solutions Lemma (Lemma IV.20)

Lemma V.20 (Relation-saturated solutions}he result of performing sufficiently many chase rounds
on any instance | is relation-saturated.

Recall the definition of an instance beirgation-saturated

Definition 1V.18. A relation R isachieved (by | andXyp) if there is some R-fact iGhase(l,Zyp).
A superinstance’lof an instance | igelation-saturated (for Zyp) if every achieved relation (by |
andXyp) occursin I,

We now prove the lemma. For every relatiBn eitherR is not achieved by andZyp, or there
is ng € N such that there is R-fact of Chase(l,Zyp) generated at theg-th round of the chase. Let
n:= MaXzes NR. As the number of relations ia is finite, nis finite. Hence, lettind’ be the result of
applyingn chase rounds th it is clear that’ is relation-saturated.

C.7. Proof of Lemma “Using realizations to get completions” (Lemma 1V.21)

Lemma IV.21 (Using realizations to get completiongjor any finite relation-saturated instance | that
satisfies>ygp, from aZy-compliant piecewise realization Pl of a pssinstance ofd,oan construct a
finite weakly-sound superinstance of | that satisligs

Recall that we numbdf,, ..., M, the <»gyn-classes oPos(o). We first define the following notion:

Definition C.1. We say thafl; is aninner «ryn-class if it contains a position occurring iByp;
otherwise, it is arouter <»gyn-class.

Intuitively, “outer” <»gyn-classes are those to which kidD of Zyp can apply, so we can create
fresh elements at the positions of these classes withoutliaBUIDs will be applicable to the fresh
elements.

We will use the notion of dangerous and non-dangerous pasifrom Section V:

Definition V.7. We say a position 'Sc Pos(0) is dangerous for a position S # S if S — S is
in Zyep, and write S € Dng(S7). Otherwise, Sis non-dangerous, written S € NDng(S). Note that
{S1} LDng(S") UNDng(S?) = Pos(9).

Observe that, iRP «<+ryn RY, then forR™ ¢ {RP, R}, we haveR' € Dng(RP) iff R € Dng(R?), and
likewise forNDng(RP) andNDng(RY). So it makes sense to defibag(;) or NDng(IM;), for IM; an
+run-class of positions of some relatid®) to refer to the positions d?os(R)\IM; that are dangerous
or non-dangerous for soni®’ € IM; (and hence for all of them).

We show a first lemma about the positions whiebeviolations may be introduced:

Lemma C.2. For any relation R andFDs Zgp, for any R’ € Pos(R) and UFD R — R" of Zgp, if
R € NDng(RP) then R € NDng(RP).

Proof. Assume by contradiction th&" ¢ NDng(RP). Then eitherR" = RP or R" € Dng(RP). The
first case is impossible because of theD RY — R'. So we haveR" € Dng(RP). Hence, theUFD
R — RPis in Zypp, so that by transitivity th&JFD R? — RP is in Zyrp, again contradicting the fact
thatRY € NDng(RP). O
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Fix the finite relation-saturated instant¢hat satisfieyrp, the pssinstancP of |, and the finite
>y-compliant piecewise realizatidRl = (Kg,...,K,) of P. Our approach is to construct the desired
superinstanc¥ asl LI, LI-- - Ul,, where the facts of eadhare constructed fror;, as we now explain.
We call F the set of the fresh elements (not in dd@h)) that will be created in the construction, so that
we will have donfl’) C dom(PI) LI F.

We consider every £ i < n. LetRbe the relation to which the positionsidf belong. If the relation
Ris not achieved by andXyp, or if I1; is outer, then we do not create any fact Ryrand set; := 0.
Otherwise, a$ is relation-saturated, we choose one fa@t) in |. For everya € K;\ 1, (1), we create
a factF! := R(b) in I;, with by, defined as follows for everRP € Pos(0):

o If RP € ;, takeby, := ap. In other words, the tupla is used to fillb at the positions ofl;.

e If RP € Dng(MN;), use a fresh element iR for by. In other words, dangerous positions have to
be filled with fresh elements (but this is no problem becausevll show later that their classes
are outer).

e If R? € NDng(MM;) is non-dangerous, take, := c,. In other words, we reuse the faR(c)
guaranteed bY being relation-saturated to complete the non-dangerosisiqus.

We have thus constructet which is clearly a finite superinstance lofWe first show the following
claim:

Lemma C.3. For any1 <i < n anda € K; for which we create a fact;Efor any R € IM;, the fact %
is the only fact of lwhere g occurs at position R

This claim implies that the facts of and all the facts of thg for 1 <i < n, are pairwise distinct. By
this, we mean that we did not try to recreatd;ia fact that already existed Inand that we never tried
to create the same fact twice in the saimar in differentl;.

Proof. Fix 1 <i < nanda € K;, and assume that we have created aﬁépﬁx RP c ;.

We first show that we cannot haeg € 7iwe(l). Assuming by contradiction that we do, letbe a
witnessing fact. By definition of a piecewise realization weer, (1) C K, som, (F) € K;. Hence,
asPl is Zgp-compliant, we hava = 11y, (F ); but we do not create facts for the tugle K; if a€ (1),
which contradicts the fact that we creafed

Second, we show that there cannot be anotherRaaft|’\| such that, = 7e(F). As Pl is Zyrp-
compliant, there clearly cannot be such a ficfor & € K, a # &, with a, occurring at positiorRP of
Fa'1 HenceF is afactF;f for i’ #i. Now, Mj andM; are disjoint as—+Fyn-classes, and thus we cannot
haveRP € ;. So eitheRP € Dng (M) andb, € F, or R° € NDng(M;/) andby, € 1o (1). The first case
is impossible because elementsfbccur in only one fact, and we showed above that the secord cas
was impossible. This concludes. O

We now show thal’ has the required properties. Let us first show that weakly-sound. Recall the
definition:

Definition IV.1. A superinstance’ lof an instance | isveakly-sound if the following holds:
e for any ac dom(l) and R’ € Pos(0), if a € ire(1”), then either & e (1) or a € Wants(I,RP);
e for any ac dom(l’)\ dom(l) and R, S € Pos(0), if a€ mre(l’) and ac 1 (1) then R = St or
RP - Fisin ZUID-
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We begin by checking the first condition. Lat dom(l) andRP € Pos(0) such thata € o (1),
and letF be a fact ofl’ that witnesses it. IF is a fact ofl thena € mre(l) anda does not witness a
violation of weak-soundness. $ois a fact ofl’\|. Leti be the index of thé that containd-, anda
be such thaF = F! (this is uniquely defined according to Lemma C.3).

We cannot hav&P € Dng(IM;), because we would then halge(F) € F, contradictinga € dom(l).
We cannot hav&P € NDng(IM;) either, because themn= e (F) would imply thata € mze(I) which
we already excluded. Hen&® < IM;. Now, by definition ofPl being a piecewise realization, ag Kj,
we know thata € e (l) or a € Wants(P,RP). But we excludedh € mizo(l) above, and we assumed
ac dom(l), soa € Wants(P,RP) translates t@a € Wants(I,RP). Hencea does not witness a violation
of weak-soundness.

We now check the second condition. Llaet dom(l")\dom(l) andRP, S € Pos(0) such thata €
e (") N 1&n(17). We must show thaRP = STorRP C Stis in Zyp, that is,RP ~|p S'. Now eithera e F,
orac H. If ac F, observe that elements @ occur at only one position itf. Hence, necessarily
RP = ST which impliesRP ~|p S, anda does not witness a violation of weak-soundness. TaasH.

Let F be a fact witnessing that € e (l’), andF’ a fact witnessing thaa € mm(l’). Asa e H,
necessarily= andF’ are facts o'\, so there areandi’ such thaf andF’ are respectively facts of
andl;. Clearlya cannot occur irF or F’ at a position oDng(I1;) or Dng(MM;/) (they contain elements
of F) or at a position oNDng(IM;) or NDng(I1;) (they contain elements of ddi)). Hence RP € IT;
andS? € M. Now, asPI is a piecewise realization, asz dom(l ), we conclude thaa € Wants(P,RP)
anda € Wants(P, §), and asa ¢ dom(l) this implies thaRP € A (a) andS" € A (a), so thatRP ~|p §1,
anda does not witness a violation of weak-soundness.

Hence,l’ is weakly-sound.

Let us now show that' = Zyrp. Assume to the contrary the existence of two fdetandF’ that
witness a violation of &FD ¢: RP — RY of Zyrp. As| | Zypp, We assume without loss of generality
thatF is a fact ofl’\I; let 1 <i < nanda € K; be such thatF = F;. We cannot hav®P € Dng(;),
as then we would hava, € F, and elements af only occur in a single fact i'. We cannot have
RP € IM; either because, by Lemma CE’Q\, is the only fact ofl’ wherea,, occurs at positiorRP. So
RP € NDng(M;), and by Lemma C.2 we haw € NDng(;) as well. Hence, lettin§g” = R(c) be the
fact of | used to fill the positions dllDng(IM;) in F, we know thaia’p =Cp anda{q = Cq. Thus, as this
makes it impossible th&’' = F”, we deduce thaE” andF’ also violateg.

Now, eitherF’ is also a fact of and we have a contradiction becalisec | butl = Zyep, oritis a
fact of 1"\l and, by the same process that we applie# tae can replace it by a fact f reaching a
contradiction again. This proves tHat= Zyrp.

Let us last show that = Zyp. Assume to the contrary the existence ofl® 7: R° C S1of Zp and
an element € dom(l’) such that € e (I")\7=i(l’). Let F be a fact ofi’ witnessing that € 1o (1”).
EitherF is a fact ofl oritis a fact ofl"\I.

For the first case, iF is a fact ofl, by definition ofP| being a realization, we haweec 7zo (Pl). As
Pl is Zyip-compliant, we hava € rim(PI), and lettinga be the witnessing tuple il§; wherel; is the
<run-Class ofs?, we know that eithea € 7 (1) or a € 1 (FL). In the first sub-case there is nothing to
show. In the second sub-case it suffices to showl-’f;mtas indeed created, and this is the case because
T witnesses thdfl; is inner, and= € | witnesses thaR was achieved itChase(l,Zyp), SOSmust also
be because af. This concludes the first case.

For the second case, I is a fact oflI’\I, write F = F!'. The existence oF! implies thatlT;
is inner andR is achieved inChase(l,Zyp); henceSis, because of. There are three possibilities:
RP € NDng(My), RP € My, or RP € Dng(My ). The first sub-case BP € NDng(IM;); but then we could
have picked as witness fare e (l’) the factS(c) of | used to define the non-dangerous positions, and
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we are back to the first case. The second sub-cd®edd1;/; then we have € 1o (P1) by construction,
so that adl is Zyp-compliant we hava € 1 (P1), and we conclude as before. The only remaining
sub-case is the third sub-cas$®, € Dng(;/), so thata, € 7. Now, asRP € Dng(I; ), we know that
RP — R is in Zypp for any positionR" of Mj that occurs inyp (such anR’ exists becausél; is
inner). Now, ast witnesses thaRP occurs inZyp, we know by assumptioreversible thatR" — RP is
in Zyfp, so thatkP € M. But we assume®&® € Dng(My/), a contradiction.

Hence we conclude thit= Zyp.

Hence,l’ is a finite superinstance ofwhich is weakly-sound and satisfigg. This concludes the
proof.

D. Proofs for Section V: k-Soundness and Reversible UIDs

This section completes the proof of the Acyclic Unary Modeigeorem (Theorem I11.6) under assump-
tion reversible.

D.1. Proof of Lemma V.2 (ACQs are preserved through k-bounded simulations)

Lemma V.2. For any instance | and\CQ q of size< n such that I= q, if there is an n-bounded
simulation from | to 1, then I |=q.

Fix the instancd. We will prove by induction om the following stronger claim: for ang € N, for
anyACQ qof size< nand any variable of g, if g has a match ih that mapsto a € dom(l), then for
anyb € dom(l) such that(l,a) <, (I’,b), g has a match i’ mappingx to b. The base case of=0
corresponds to queries with no atoms, and it is trivial.

For the induction step, fir € N, the queryg, the variablex and the matcin from qto | that maps
to a € dom(l). We define a reachability relation between variablegq a$ the reflexive and transitive
closure of the relation of co-occurring in some atongoflf this relation consists of a single class,
we say thag is connected As we can otherwise rewritgas a conjunction of strictly smaller queries
of ACQ and process all such queries separately using the indugfioothesis, we assume without loss
of generality thaty is connected.

Let A =Aq,...,An be the atoms aoff wherex occurs (this set of atoms is non-empty, by the connect-
edness assumption). Becaupis anACQ), each variabley occurring in one of thé\, occurs at most
once: once per atom (as the same variable cannot occur haditipes in an atom), and in only one
atom (as ify occurs both ifA;, andA, thenA;,, y, A;,, Xis a Berge cycle of)). LetY be the set of the
variables occurring in thé; (not includingx).

Becauseq is acyclic and connected, the other variablegj@fan be partitioned depending on the
variable inY from which they are reachable without usig Hence, we can partition the remaining
atoms ofg into strictly smaller acyclic subquerieg(yi,z), ..., (W,2) in ACQ, forY ={y1,....vi },
where theg are pairwise disjoint sets of variables.

Now, letb € dom(l") be such thafl,a) <, (I’,b). For each ator®y = R(x) in A, let 1< p; < |R|
be the one position such that = x. Consider the facF = R(g) that is the image oA in | by h.
As (I,a) <, (I',b), there exists a fad’ = R(b;) of I’ with by, = b and with (I,aq) <n_1 (I',bq) for
all 1 <q< |R. Consider now each variablg € Y that occurs inA;, letting 1< q < |R| be the
one position such thaty = yj, and letq;(y;j,z) be the subquery correspondingyto We know that
(I,aq) < (I,by), and thatg; has a match in that mapsy; to ag (namely, the restrictiot; of the

matchh to the subqueryy;) so that, by the induction hypothesig, has a matcHn’j in I’ wherey; is
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matched tdy,. Now, we can assemble thg and all the matchek; thus obtained, because theare
pairwise disjoint, yielding a match’ of g in I’ wherex is matched td. This concludes the induction
step.

Hence, the stronger claim is proven by induction. It rem&inebserve that it implies the desired
claim. Indeed, ifi = g and there is @-bounded simulatiosim from | to I, choose any variablein
g (if g has no variables, the result is vacuous), consider any nadigin | matchingx to a, usesim to
defineb := sim(a), and deduce the existence of a matclyof I’ (matchingx to b) using the claim that
we have shown by induction.

D.2. Proof of Lemma V.5 (AFactCl is finite)

Lemma V.5. For any initial instance ¢, setZyp of UIDs, and ke N, AFactCl is finite.

We first show that- has only a finite number of equivalence classe€wse(lp, Zyp). Indeed, for
any element € dom(Chase(lo, Zuip ) ), by the Unique Witness Property, the number of facts in which
occurs is bounded by a constant depending onliy@mdp. Hence, there is a constaitdepending
only onlp, Zyip, andk, so that, for any elememnt € dom(Chase(lp,Zyip)), the number of elements
of dom(Chase(lp, Zyip)) which are relevant to determine thg-class ofd (that is, the elements whose
distance tal in the Gaifman graph dfhase(lp,Zyip) is < k) is bounded byM.

This clearly implies thatAFactCl is finite, because the number wktuples of equivalence classes
of ~ that occur inChase(lg, Zyip) is then finite for anyn < maxzes |R|, andPos(0) is finite.

D.3. Proof of the Fact-Saturated Solutions Lemma (Lemma V.6)

Lemma V.6 (Fact-saturated solutionsY he result | of performing sufficiently many chase roundsyon |
is such that d= (1,id) is a fact-saturated aligned superinstance ©f |

For everyD € AFactCl, let np € N be such thaD is achieved by a fact ofhase(lp,Zyp) created
at roundnp. As AFactCl is finite, n := maXpearacici Np IS finite. Hence, all classes @éfFactCl are
achieved aften chase rounds oly.

Consider now, obtained from the aligned superinstarigeby n rounds of theUID chase, and
Jo = (15, Zuip)- Itis clear that for anyD € AFactCl, there is an achievdf = R(b) of D in I}. Hence,
the corresponding fact iy is an achiever oD in Jy.

D.4. Proof of the Fact-Thrifty Chase Steps Lemma (Lemma V.9)

We first prove the following lemma, which we will use to jugtthat we can extend aligned instances.

Lemma D.1. Let ne N. Let l; and | be instances anelm be a n-bounded simulation from 1o I.
Let I, be a superinstance of Hefined by adding one fact & R(a) to I;, and letsim’ be a mapping
from I, to | such that;im"I1 = sim. Assume there is a fact,F~= R(b) in | such that, for all R€ Pos(R),
sim’(g) ~p bj. Thensim’ is a n-bounded simulation from to I.

Proof. We prove the claim by induction am The base case of= 0 is immediate.

Letn > 0, assume that the claim holds for 1, and show that it holds far. Assim is an-bounded
simulation, it is a(n — 1)-bounded simulation, so we know by the induction hypoth#sssim’ is a
(n—1)-bounded simulation.
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Let us now show that it is a-bounded simulation. Led € dom(l2) be an element and show that
(I2,8) <n (I,sim’(a)). To do this, choos& = S(a) a fact ofl, with a, = a for somep, and show that
there exists a fadt’ = (&) of | with &, = sim’(ap) and(l,aq) <n_1 (I,a) for all ! € Pos(S).

The first possibility is thaf is the new facE, = R(a). In this case, as we hayk bp) <y (1,sim’(ap)),
consideringr,, we deduce the existence of a f&gt= R(c) in | such that, =sim’(ap) and(l,by) <p_1
(1,cq) forall 1 < q< |R|. We takeF’ = F,,. By construction we have, = sim’(ay). Fixing 1< q <R,
to show that(l2,aq) <n-1 (I,¢q), we use the fact thaim’ is an(n— 1)-bounded simulation to deduce
that (12,aq) <n-1 (I,sim’(aq)). Now, we have(l,sim’(ag)) <n-1 (I,bgy), and as we explained we have
(I,bg) <n-1(l,cq), SO we conclude by transitivity.

If F is another fact, then it is a fact &f, so its elements are in ddin), and asim’ coincides with
sim on such elements, we conclude becaiseis an-bounded simulation. O

We then prove the main result:

Lemma V.9 (Fact-thrifty chase stepsfor any fact-saturated aligned superinstance J, the re¥ulif
a fact-thrifty chase step on J is indeed a well-defined aligseperinstance where the former active
fact R, is no longer active.

We first observe that fact-thrifty chase steps are well-éefibecause a suitablg = S(c) always
exists, agl is fact-saturated. It is immediate thitis finite.

It is immediate that, lettingl = (I’,sim’) be the result of the procesk, is still a superinstance
of lp, and the previously active fa&, is no longer active in’. To show thasim’ is still a k-bounded
simulation, use Lemma D.1 with, = S(b) andF, = S(b/). The fact thasim’ is the identity onlg is
immediate becausém|,  =sim,.

We now show thatl’ satisfiesZrp, using the fact thaf does. Indeed, any violation &yrp in
J would have to include the one new fdgt = S(b), By way of contradiction, letp: S — S be a
violated UFD in Zyrp and let{F,F,} be a violation, wher& = S(d) is some fact of’. It is clear that
we cannot havely = by, as otherwise this would contradict the fact tRatvas an active fact. Hence,
by construction of the new fa,, we can only havéy;, = d if S NDng(S'). As {F,F,} violates g,
this implies thatS e NDng(S7), so that, by Lemma C.& < NDng(S). Now, observe that we have
Thpng(s) (Fn) = Thpng(sn (Fr), with F the fact used to fill the non-dangerous position in the dédimit
of fact-thrifty chase steps. Now, we cannot hdve- F because they must disagree 8n so that
{F,F} also witnesses a violation @fin J. This contradicts our assumption thgt Zyep.

We must now check the last part of the definition of alignedesimgtances, which only needs to be
verified for the fresh elements: f8F == S, if by is fresh, then it occurs idf at the position whergim(b; )
was introduced irChase(lp, Zyip). For this, it suffices to show thag was the exported element Bf,.
In this case, asm(b;) = b], we will know thatb, was introduced at positio8l in F, in Chase(lg, Zyip ),
so the condition is respected. We make this a separate lemma:

Lemma D.2. Let J be an aligned superinstance gfdand consider the application of a thrifty chase
step for aUID 7: RP C S. Consider the chase witnesg F S(b'). Then § is the exported element
of Ry.

Using this lemma, it is also clear tm?rm,\lo maps toChase(lo, Zuip )\ lo, Which is the last thing we
had to verify. Indeed, for all fresh elemerisc dom(l")\ dom(l) (with S # %), which are clearly
not in lp, we have fixedim’(b;) to beb}, which by the lemma is introduced R, so it cannot be an
element oflp; hence it is indeed an element©fiase(lp, Zyip )\ lo-

We conclude by proving Lemma D.2:
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Proof. Let F, = R(a) be the active fact id, F, = S(b) be the new fact od’, andt : R° C S be theUID,
soap = by is the exported element of this chase step. Assume by wayntfacbiction thab{1 was hot
the exported element iRy, so that it was introduced iR,. In this case, asim(ap) = sim(bg) = b,
by the last part of the definition of aligned superinstaneeshavea, € 7w (J), which contradicts the
fact thata, € Wants(J, 7). Hence, we have proved by contradiction thatvas the exported element
in Fy. O

D.5. Proof of the Fact-Thrifty Completion Proposition (Proposition V.10)

Proposition V.10(Fact-thrifty completion) Under assumptioreversible, for any fact-saturated aligned
superinstance J of) we can expand J by fact-thrifty chase steps to a fact-stedraligned superin-
stance Jof |y that satisfie<yp.

There are two steps to the proof. The first one is to applyainithasing by fresh fact-thrifty chase
steps to ensure a certain propeklyreversibility The second one is to use fact-thrifty chase steps to
satisfy>yp, using the constructions of Section IV.

We start with the first step. We consider a forest structuréherfacts ofChase(lp,Zyip): the facts
of lp are the roots, and the parent of a f&ahot in lg is the factF’ that was the active fact for whidh
was created, so th&t andF share the exported elementfof Fora € dom(Chase(lp,Zup)), if awas
introduced at positiol® of anSfactF = Sa) created by applying theID 1: RP C S (with §1#£ S)
to its parent facF’, we callt thelast UID of a. The last twoUIDs ofa are(1,1’) wheret’ is the last
UID of the exported elemerd; of F (which was introduced iff’). Forn € N, we define the lash
UIDs in the same way, for elements ©fiase(lo, Zyip) introduced after sufficiently many rounds. We
say thata is n-reversible if its lastn UIDs are reversible.

We accordingly define the notion ofreversible aligned superinstanaghich requires that elements
where aUlD is violated are mapped bym to an-reversible element in the chase. Recall that, for any
positionRP, we write [RP],p the ~|p-class ofRP.

Definition D.3. An aligned superinstance J @fis n-reversible if for any position 8and ac Wants(J, %),
sim(a) is a n-reversible element @hase(lo, Zyip ) introduced at a position d&7;p in Chase(lg, Zuip )-

The first step of the proof of Proposition V.10 is to perfokm 1 fresh fact-thrifty chase rounds on
the input fact-saturated aligned superinstaha® ensure that the resut is k-reversible forzyp:

Proposition D.4 (Ensuringn-reversibility) For any ne N, applying n+ 1 fresh fact-thrifty chase
rounds on a fact-saturated aligned superinstance J byuttis of 2 p yields a fact-saturated aligned
superinstance’Xhat is n-reversible fokyp.

This proposition is proved in Appendix D.6.
The second step of the proof is simply to apply the followiagia tal’.

Lemma D.5 (Guided chase)For any fact-saturated k-reversible aligned superinstadc= (1,sim)
of lp, we can build by fact-thrifty chase steps an aligned sutaince J= (I’,sim’) of Iy such that
| C I’,sim‘/l = sim, and J satisfiesyp.

The lemma is proved in Appendix D.7. It uses the construstiohSection 1V, and relies on an
independent result about the UID chase, the Chase LocdlgépEm (Theorem V.11), proved in Ap-
pendix D.8. Clearly, applying the Guided Chase Lemma twoncludes the proof of the Fact-Thrifty
Completion Proposition.
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D.6. Proof of Proposition “Ensuring n-reversibility” (Proposition D.4)
We first make the following easy observation:

Lemma D.6. Let J be an aligned superinstance, arldb& the result of applying one chase round
to J with fresh fact-thrifty chase steps. LetaWants(J',7) for any UID 7. Then we have &
dom(J’)\ dom(J), and a occurs in a single fact F (which is an active fact fjpr

Proof. For the first part of the claim, let us assume by way of conttaati thata € dom(J). Note
that, by definition of chase rounds, we cannot hawe Wants(J,7), otherwise we could not have
a € Wants(J, 7). Hence, if we havea € dom(J) but a ¢ Wants(J,T), any active facF witnessing
a € Wants(J, T) must be inJ.

Now, by definition of fact-thrifty chase steps,af¢ dom(J), there are two possibilities. Either
was the exported element i or it was an element reused at a non-dangerous positionfirfhease
is impossible: becausgyp is transitively closed, the new facts createdlirtannot make newIDs
applicable to old elements df The second case is also impossible: elements reused alamgerous
positions already occurred at the same positiod, 0 this cannot make neldiDs applicable to them.
This proves the first claim.

The second part of the claim is by observing that elementtedeind’ occur in a single fact, by
definition of chase rounds, and by definition of fresh facifthchase steps (elements in new facts are
either in donfJ) or are fresh). So the one fact whex®ccurs must be the active fact witnessing that
a€ Wants(J, 7). O

We then show the following simple lemma abawuteversibility:

LemmaD.7. Letne N, let J be a n-reversible aligned superinstanceqcdnd let i = S(b) be a new
fact obtained by applying a thrifty chase step to J. For &lESPos(S), such that b¢ dom(J), sim(by)
is (n+ 1)-reversible and introduced at positiofh B Chase(lo, Zyip).

Proof. Let F, be the active fact, be the chase witness, andRP C S be theUID for this chase step.
By Lemma D.2 we know thaly, is the exported element &,. Hence, for allS' € Pos(S)\{S}, by is
(n+ 1)-reversible and introduced at positi&h Now, for allS" € Pos(S) such thaty is fresh inF,, we
have setim(b) = by, so the result follows. O

We now prove the main result:

Proposition D.4 (Ensuringn-reversibility) For any ne N, applying n+ 1 fresh fact-thrifty chase
rounds on a fact-saturated aligned superinstance J byuttis of 2 p yields a fact-saturated aligned
superinstance’Xhat is n-reversible fokyp.

Fix the aligned superinstanck= (l,sim). We prove the result by induction an For the base
casen = 0, lettingJ’ be the result of applying one chase roundltave need only show that for any
position ! anda € Wants(J', ), sim(a) was introduced at a position ¢85 in Chase(lo,Zuip).

By Lemma D.6,a occurs in a single fadt at some positiorRP (so that, using assumptionversible,

RP ~|p §7), and we have € dom(J')\ dom(J), so it was created by the application of a thrifty chase
step toJ. By Lemma D.7, we conclude thsitn(a) was introduced at positioRP in Chase(lo, Zuip),
which implies the desired claim.

For the induction, fixn > 0 and assume that the result is truerfer 1. Letd’ = (I’,sim’) be the result
of applying(n— 1) + 1 chase rounds td. By induction hypothesis] is (n— 1)-reversible. We want to
show that)” = (1”,sim”) obtained by applying one more chase round is n-reversible. This is shown

35



exactly as in the base case, except that, when applying Ldnave use th¢n— 1)-reversibility ofJ
to deduce the-reversibility of the element under consideration.

This proves the desired claim by induction. Note that we halied implicitly on the Fact-Thrifty
Chase Steps Lemma (Lemma V.9) to justify that the result aselrounds by fact-thrifty chase steps
are indeed aligned superinstances; it is immediate thasttaration is preserved.

D.7. Proof of the Guided Chase Lemma (Lemma D.5)

Recall that the—Fyn-classes oPos(0) are numberedly, ..., M. Recall the notion of inner and outer
+rrun-Classes (Definition C.1), and the notion of piecewise ratitbn (Definition 1V.14). We define:

Definition D.8. A superinstance’ lof the instance follows the piecewise realization R (Ky, ..., Kp)
if for every inner+gyn-classrl;, we haver, (1) C K;.

We show the main claim:

Lemma D.5 (Guided chase)For any fact-saturated k-reversible aligned superinstadc= (1,sim)
of lp, we can build by fact-thrifty chase steps an aligned sustaince J= (I’,sim’) of Iy such that
| C I’,sim"I = sim, and J satisfiesyp.

Fix the fact-saturate@t-reversible aligned superinstande= (l,sim) of lp. LetP = (I,#,A) be a
balanced pssinstance dbbtained by the Balancing Lemma (Lemma IV.9) andAet (K, ..., Kp) be
a finite Zy-compliant piecewise realization Bfobtained by the Realizations Lemma (Lemma IV.16).

We will prove the result by satisfyingID violations inJ with fact-thrifty chase steps using the
piecewise realizatioPl, yielding a finite aligned superinstande= (lIs,sim¢) such thatl C I, the
restriction ofsim; to | is sim, J satisfieszyp, andl; follows PI. The process is a variant of Lemma
“Using realizations to get completions” (Lemma IV.21).

We callJ’ = (I’,sim’) the current state of our superinstance, startin at J. We will perform fact-
thrifty chase steps odf. We call F the set of all fresh elements (not in dgf)) that we will introduce
(only in outer classes) during the chase steps. It is imnbedieat our construction will maintain the
following:

fsat: J'is afact-saturated aligned superinstanc ¢fhis uses Lemma V.9);
sub: 1 CI";

sim: simidom(l) = sim.

Further, we will additionally maintain the following invants:

fw: |’ follows PI;

krev: J isk-reversible;

out: elements of outer classes are onlyAror in dom(l).

We now describe formally how we apply each fact-thrifty ahasep. Choose an elemeats
Wants(J', 7) to which someUID 1 : RP C S is applicable. Lef,; = R(a) be the active fact, with
a=ap. TheUID 1 witnesses that the>ryn-classed1; andly, of RP andS™ respectively, are inner, so
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by invariantfw we havea € mire(PI). As Pl is Zyp-compliant, we must have € rm(Pl), and there is
a|My|-tuplet € Ky such thaty = a.

We choose a fadt = S(c) of J that achieves the fact class of the chase witkgsghis is possible
by invariantfsat), and create a new fak = S(b) with the fact-thrifty chase step defined as follows:

o For the exported positiof?, we sethy := ay,.
e For anyS € My, noting that necessarilg € Dng(S"), we seth, :=t;.
e For any positiorS € Dng(S7)\M;, we takeb; to be a fresh element frod.

e For any positiorS € NDng(S7), we seth, :=c;.

We must verify that this satisfies the conditions of thrifyase steps. The fact thiat € 1 (J') for
S € NDng(S") is immediate by definition of,. We now show the two other points.

First, we show thab, ¢ mig(J') for S € Dng(S?). Obviously this needs only to be checked for
S e Ny (as the otheb; are always fresh). Assume to the contrary that 1 (J'), and letF = S(d) be
a witnessing fact. A§ly is inner, by invariantw, we deduce thatp,, (d) € 75, (Pl). Now, asd; =t;
andPl is Zygp-compliant, we deduce that=t, so thatF witnesses thad is in 7 (J’). As we have
dyq = tq = &, this contradicts the applicability afto a. Hence, the claim is proven.

Second, we check that reused elements have thedighimage. This is the case by definition of
fact-thrifty chase steps for the non-dangerous positisoggain we need only check this for elements
at a positionS € Iy, and only if they are not fresh. We start by showing that, fahsS, we have
br € Wants(J',S).

Indeed, we have; =t whichis in7g (PI), and we cannot havies 1, (J'), as otherwise this would
contradict the applicability of to a; so in particular, by invariangub, we cannot have € m, (1).
Thus, by definition of a piecewise realization, we have Wants(P,S). Recalling that we have
tr € dom(J’), we show that this implies € Wants(J',S'). Recalling the definition df € Wants(P,S),
we distinguish two subcases: (1.)c dom(J) andt, € Wants(J,S'), or (2.)t, € H andS € A(t;).

In the subcase (1t) € dom(J) andt, € Wants(J,S'), we remember that in the first point we showed
thatt, ¢ g (J'). So we still have, € Wants(J',S'), which is what we claimed.

In the subcase (21 € H andS € A(t;), consider a facE’ of J’ witnessingt; € dom(J’), wheret,
occurs at a positioff'; let Mj» be the<>pyn-class of T'. Ast, € H, by invariantout, M; is inner, so
by invariantfw there is a tupl¢’ of Kj» such that =t,. Now, ast; € #, by definition of piecewise
realizations, we havé' € A (t,). Hence, either th&)ID T/ : T' C S is in Zy;p or we haveT' =S. As
t. € 751 (J') and we have shown in the first point tha¢ 7 (J'), we know thafl' # S, sot’ is in Zyp.
Hence, a§’ witnesses that € m1(J'), and ag, ¢ 15 (J'), we havet, € Wants(J',S'), as we claimed.

Hence, we know that, =t; is in Wants(J',S') in either subcase. By invariaktev, this implies that
sim(by) is ak-reversible element dthase(lp,Zyp) introduced at a position 48 ,p. By Lemma D.7,
we know that thaim-imageb; of a fresh element at positioB would bek-reversible and introduced
at positionS. Hence, by the Chase Locality Theorem (Theorem V.11), we kiaw(b;) ~ b}, so
the condition is satisfied. This proves that, indeed, we @fopm the fact-thrifty chase step that we
described.

We now check that the invariants are preserved. We first vbgbat for anyS € Dng(S7)\My,
the «++Fun-class ofS is outer. Indeed, i occurred inZyp, asS! does because af, we know by
assumptioneversible that, as thdJFD S — S is in Zygp by dangerousness &, theUFD S — S
also should, but then we would ha8e<«ryny S, soS < Iy, a contradiction. Hence, thegyn-class
of S is indeed outer.
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Figure 1: Chase locality example. Elemebtandb’ are 1-reversible and introduced at positid®s
andU?. ReversibleUIDs are represented by thick edges.

Now, invariantfw is preserved because, by the above observation, the newfastdefined on
the inner classes either followingor following an existing fact of)'. Invariantkrev is preserved
by Lemma D.7 for the fresh elements, or kxev on the previous stat& for the existing elements.
Invariantout is preserved because the only elements,ahat are not inF or in dom(l) are those of
MM, which is inner. This shows that the invariant is preservethle fact-thrifty chase step.

We perform fact-thrifty chase steps until no violations>gfp remain: invarianfw guarantees that
we terminate. Indeed| is finite, the domain of the resulting instance is boundedhlay of Pl for all
inner classes, and new elements created in outer classest cxaate violations ofp or cause the
creation of further elements, by definition of their clasmbeouter. Hence, the result of the process is
finite, and it satisfiexyp because no violations remain. This concludes the proof.

D.8. Proof of the Chase Locality Theorem (Theorem V.11)

We give an equivalent rephrasing of the Chase Locality TérofTheorem V.11) using the notion of
n-reversible elements (Definition D.3):

Theorem D.9(Chase locality theorem)ror any instance(, transitively closed set dfIDs 2yp, and
n € N, for any two elements a and b respectively introduced atiposi R and S in Chase(lp, Zuip)
such that R ~p &1, if a and b are n-reversible thena, b.

Note that this result is for an arbitrary setldfDs andFDs, not relying on any finite closure proper-
ties, or on assumptioreversible. (It only assumes that the lastdependencies used to creatandb
were reversible.) However we still assume thgjp is transitively closed.

Figure 1 illustrates the result in a simple situation. Theition is the following: n-reversible ele-
ments in the chase have the same neighborhoods up to distanoematter their exact histories, as
long as they were introduced #p-equivalent positions: intuitively, the facts that go “domards” in
the neighborhood ad in the forest structure can be matched to facts in the neitjiolool ofb because
they are required b¥yp, and the facts “upwards” are also matched up to distamicecause of the
reverses of th&JIDs used along this chain.

To prove the theorem, fix the instankeand the sekyp of UIDs. We first show the following easy
lemma:
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Lemma D.10. For any n> 0 and position R, for any two elements, b of Chase(lp, Zyip) introduced
at position R in two facts i and R, letting d and  be the exported elements qfdénd k, if @’ ~,_1 b/,
then a~, b.

Proof. By symmetry, it suffices to show that<, b. We proceed by induction am

For the base case= 1, observe that, for every fa€t of Chase(lp,Zyip) Wherea occurs at some
positionS?, there are only two cases. EitHer= F, so we can piclE, as the representative fact, or the
UID RP C Sis in Zyp so we can pick a corresponding fact foby definition of the chase.

For the induction step, we proceed in the same wayF # F,, we pick F, and use either the
hypothesis o andb’ or the induction hypothesis (for other elementspaindFR,) to justify thatF,
is a suitable witness. Otherwise, we pick the corresponfdiogfor b which must exist by definition of
the chase, and apply the induction hypothesis to the otbaraits of the fact to conclude. O

We now prove the Chase Locality Theorem. Recall the defmitio~p (Definition 1V.6). However,
note that, as we no longer make assumptiemersible, while ~|p is still an equivalence relation, it is
no longer the case that alliDs of Zyp are reflected inv|p: the UID RP C S may be inZyp even
thoughRP «p Sif SIC RPis notinZyp.

We prove by induction on the main claim: for any positionR° andS? such thaRP ~|p S, for any
two n-reversible elementa andb respectively introduced at positioR® and$, we havea ~, b. By
symmetry it suffices to show th&€hase(lo, Zuip ), a) <n (Chase(lp,Zuip),b).

The base case of= 0 is immediate.

For the induction step, fir > 0, and assume that the result holdsrier 1. Fix RP andS*, and let
a,b be twon-reversible elements introduced respectivelRaandS! in factsF, andF,. Note that by
the induction hypothesis we already know tt@base(lp, Zuip),a) <n-1 (Chase(lp,Zuip),b); we must
show that this holds fo.

First, observe that, am andb aren-reversible withn > 0, they are not elements &f. Hence, by
definition of the chase, for each one of them, the followingri®: for each fact of the chase where
the element occurs, it only occurs at one position, and hérotlements co-occurring with it in a fact
of the chase occur only at one position in only one of thests fakchus, to prove the claim, it suffices
to construct a mapping from the setN;(a) of the facts ofChase(lo, Zyip) wherea occurs, to the set
N;(b) of the facts wheré occurs, such that the following holds: for every f&ct= T(a) of Ni(a),
letting T be the position of such thata; = a (there is only one such position by construction of the
chase)p occurs at positioT ¢ in g(F) = T(b), and for everyi, & <,_1 b;.

By construction of the chase (using the Unique Witness RtgpeN;(a) consists of exactly the
following facts:

e The factF, = R(a), whereayg = @ is the exported element (for a certai)) a, = awas introduced
atRPin R, and fori ¢ {p,d}, & was introduced &R' in F

e For everyUID 1: RP C VY of 2y p, aV-fact Ff where all elements were introduced in this fact
except the one at positidr® which isa.

A similar characterization holds fdr, with the analogous notation. We construct the mapgiras
follows:

o If RP = Sthen seip(F,) = Fy; otherwise, ag : ST C RPis in Zyp, setg(F,) to be the fack/.

e For everyUID 7: RP C V9 of Zyp, asRP ~p §1, by transitivity, eithers? = V9 or the UID
T :S1CVYisinZyp. In the first case, se(F]) = F,. In the second case, sptF) = F! .
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We must now show thap satisfies the required conditions. First, verify that irdtjd®y construction,
whenevera occurs at positio © in F thenb occurs at positiorT ¢ in ¢(F). Second, fixt € Ny(a),
write F = T(a) and@(F) = T(b), with a; = aandb. = b for somec, and show thas <1 b; for all
Tie Pos(T). If n= 1 there is nothing to show and we are done, so we assum2. If i = c then the
claim is immediate by the induction hypothesis; otherwige distinguish two cases:

1. F = R4 (so thatT = Randc = p), or F = F] such that thdJID 7: RP C TC is reversible. In
this case, by construction, eith@(F) = F, or ¢(F) = FbT' for v/ : 1 C TC; 1’ is then reversible,
becausdrP ~p S andRP ~|p TC.

We show that forall K i <|T|,i#¢c, g is (n—1)-reversible and was introduced@hase(lo, Zuip)

at a position in thevp-class of T'. Once we have proved this, by symmetry we can show the
same for alb;, so that we can conclude that<, ; b; by induction hypothesis. To see why the
claim holds, we distinguish two subcases. Eithewas introduced i+, or we haveF = F,,

i =d andg; is the exported element far

In the first subcasey; was created by applying the reversitléD T and the exported elemeat
is n-reversible, sa; is (n— 1)-reversible (in fact it iSn+ 1)-reversible), and is introduced at
position T'. In the second subcase, is the exported element used to createwhich is n-
reversible, s@ is (n— 1)-reversible; and as > 2, the last dependency applied to creatés
reversible, so that; was introduced at a position in the samg-class as'. Hence, we have
proved the desired claim in the first case.

2. F =F; such thatr : R° C T® s not reversible. In this case, we cannot h@fe= S (because we
haveRP ~p §Y), so thatp(F) = F/, and alla; for i # c were introduced i at positionT', and
likewise for theb; in ¢(F). Using Lemma D.10, ag ~,_1 b, we conclude tha#; ~, b;, hence
8 <p_1b.

This concludes the proof.

E. Proofs for Section VI: Arbitrary UIDs: Lifting Assumption
Reversible

This appendix proves the claims needed to complete our fobeorem II1.6, the existence of uni-
versal instances fadIDs, UFDs, and acyclicCQs of fixed size. The main claim is the existence of
manageable partitions (Lemma VI.5).

Remember that we are assuming the “Unique Witness Prop@ggtion 1) and that the constraints
>y are closed under the finite closure rule (in particllayip is transitively closed).

E.1. Finite closure computation algorithm

For convenience we recall here how the finite closure is coetydrom [8].

Given a set = Zrp L Zyp of FDs andUIDs, aniD pathof X is a sequence dfIDs of Zyp of the
following form:_R'l1 - Rf, R CRY,...,R™ CRI, withiy # ji for all k. The path iunctionalif, for
all 1 <k<n, R — R¥ € Zep. Note that our definition of the- relation ensures that— 1 iff 7,7’
is a functionallD path.
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An invertible cycle Qof % is a functional D path withR, = Ry and j, = j1 (so thatR} — RI! € Z¢p):
aUlD that occurs in an invertible cycle is said toibeertible ThereverseC of an invertible cycleC is
RPCR,...,RECR}

Applying thecycle closure rulén = means taking every invertible cydzof > and adding t& the
UIDs andUFDs needed to make an invertible cycle irk, namely,R? C R}, RE CRZ,... R C R,
and Rlik — R{(k for 1 <k < n. The finite closure is computed by closing under the rule alamd by
implication of theUIDs and of the-Ds in isolation.

The fact that the result is exactly the finite closurea$ shown in [8].

E.2. Proof of Lemma VI.2 (New violations follow —)

Lemma VI.2. Let J be an aligned superinstance gfand J be the result of applying a thrifty chase
step on J for &JID 1 of Zyp. Assume that &1D 1’ of Zp was satisfied by J but is not satisfied By J
Thent — 1.

Fix J, J andt : RP C STand1’. As chase steps add a single fact, the only h&{ violations in
J relative tol are on elements in the newly created fRgt= S(b), As Zyp is transitively closedF,
can introduce no new violation on the exported elenigntNow, as thrifty chase steps always reuse
existing elements at non-dangerous positions, we knowiftist NDng(S?) then no newJID can be
applicable tdy. Hence, if a newJID is applicable tdy, for S € Pos(S), then necessarilg € Dng(S).
By definition of dangerous positions, théD S — ST is in Zyrp, and it is non-trivial becausg # 1.
Hence, writingt’ : S C T', we see that ~— T’.

E.3. Proof of Corollary VI.4 (Dealing with trivial classes)

Corollary VI1.4. For any trivial class{t}, performing one chase round on an aligned fact-saturated
superinstance J oflby fresh fact-thrifty chase steps fowyields an aligned superinstancédf |y that
satisfiesr.

Fix J, ) and 1. All violations of T in J have been satisfied il by definition ofJ’, so we only
have to show that no new violations ofwere introduced id’. But by Lemma V1.2, ag 4~ 1, each
fresh fact-thrifty chase step cannot introduce such a timlahence there is no new violation ofin
J. HenceJ 1.

E.4. Proof of Lemma VI.5 (Existence of manageable partitions)

Our goal in this section is to show:

Lemma VI.5. Any conjunctiorn>yp of UIDs closed under finite implication has a manageable parti-
tion.

We assume thayp is closed under the finite closure rule (see Appendix E.1jhddgin particular,
it is transitively closed.

We start by introducing definitions about the relation, which we recall is defined so that— 1’
for 1,7 € Zyip wheneverr, 7’ is a functionallD path, namely: letting : R° C S'andt’: S C TY, the
UFD S — Sis non-trivial and is i ygp.

We extend— to sets ofUIDs in the expected wayP — P’ if there existst € P, T/ € P’ such that
T—T.
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Definition E.1. ThelD graph I'(Zyp) is the directed graph (with self-loops) defined Znp by the
— relation. We define thgtrongly connected components of I' (2yp) as usual: an SCC is a maximal
subset P ofyp such that for allt, 7’ € P, we haver —* 1/, where——* denotes the transitive and
reflexive closure of the— relation. TheSCC graph G(Zyp) is the directed acyclic graph (without
self-loops) defined on the SCCd @k yp) such that, for any two SCCsPP’ of ' (Zyp ), there is an
edge from P to Piff P »— P’.

Note that the definition of SCCs allows both singleton SCGsvhere we have a self-loop (— 1),
and singletons where there is nore 7). We say that an SCC tsivial if it is a singleton without
self-loops. Otherwise, if the SCC is not a singleton or ii$ la self-loop, we call ihon-trivial.

We first show the following lemma to understand the structiiitae SCCs of (Zyip). This lemma
is proved in Appendix E.5.

Lemma E.2 (SCC structure) The SCCs of (Zyp) are transitively closed sets ofiDs. Further, for
any non-trivial SCC P, letting P' := {t~1 | € P}, all UIDs of P! are in Zyp, and P 1 is an SCC
of F(ZU|D).

Note thatP andP~1, as SCCs of (Zyp ), may be equal or disjoint. We accordingly csdilf-inverse
an SCCP that is non-trivial but satisfieB = P~1; non-trivial SCCs such thd& andP~* are disjoint are
callednon-self-inverse

Given the structure of the SCCs, the first step to construcamageable partition is to construct a
topological sort of the SCC grapB(Zyip) of I'(Zyip), but with an additional property, motivated by
what we showed in Lemma E.2:

Definition E.3. A topological sort of GZyp) is inverse-sequential if, for any non-self-inverse SCC P,
the SCCs P and P are enumerated consecutively.

The first result, proven in Appendix E.6, is to justify that wan indeed construct an inverse-
sequential topological sort of the SCC graph ¢Eyp ):

Proposition E.4 (Inverse-sequential topological sorfjor any conjunctior>yp of UIDs closed under
finite implication, GZyp) has an inverse-sequential topological sort.

The second step is to construct the manageable partitielhfitsm the inverse-sequential topological
sort. Here is how we define the ordered partition from the ltgioal sort:

Definition E.5. An inverse-sequential topological sort defines an ordegatitpn (Py,...,P,) of Zyp,

in the following way: each class Bf the partition either corresponds to one SCC d&Gpp) (which

is either trivial or self-inverse), or to the union of an SCad4ts inverse SCC (which were enumerated
consecutively because the topological sort is inversewsatipl). It is immediate thatPy,...,R,) is
indeed an ordered patrtition, as it is constructed from a fogacal sort by merging some classes that
were enumerated consecutively.

The second result is to show that the resulting orderedtioaris indeed a manageable patrtition. In
other words, we must show that the classes of the partiticmgither trivial, or that they are a set of
UID that is transitively closed and satisfies assumptévarsible.

Proposition E.6 (Manageable partitions from sortdyor any conjunctiorzyp of UIDs closed under
finite implication, lettingP be an ordered partition obtained from an inverse-sequéntpological
sort of G Zyp ), P is a manageable partition.

This second result is proven in Appendix E.7 and concludegtbof of our original claim.
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E.5. Proof of the SCC Structure Lemma (Lemma E.2)

Lemma E.2 (SCC structure) The SCCs of (Xyp) are transitively closed sets &fiDs. Further, for
any non-trivial SCC P, letting P' := {t~! | € P}, all UIDs of P! are in Zyp, and Pt is an SCC
of F(ZU|D).

We first show an general lemma:

Lemma E.7. Let P be a non-trivial SCC df (Xyp). For any 1,1’ € P, there is an invertible cycle
of UIDs of P in whicht and 1’ occur.

Proof. BecauseP is a non-trivial SCC, we have —* 1’ and1’ —* 1, and the desired invertible cycle
is obtained by concatenating the functioh@alpaths fromr to 1/, and from1’ to 7. BecauseP is an
SCC, it is immediate that thelDs of the resulting path are all i O

We then divide our claim in two lemmas:
Lemma E.8. Let P be an SCC df(Zyp). Then P is closed under the transitivity rule.

Proof. Let P be an SCC. IfP consists of a singl&JID, then transitivity is immediately respected, so
we assume thd contains> 1 UIDs. In particularP is non-trivial. Lett : R°P C Sandt’ : S C T" be
two UIDs of P with RP # T". As Zyp is closed under transitivity, we know : R° C T" is in Zy;p. We
show thatr” € P.

As P is a non-trivial SCC, there is a functiondD patht’ =11 — --- — T, = T, wheret; € P
for all 1 <i < n. Because of th&JFDs that must be irEygp to make it a functionalD path, it is
immediate that the following two paths are function@l paths as well:1” — 1, »— --- — T, and
Ty — -+ — Tm_1 — T”. Thus we hava” —* 1, andt’ —* 1”7 wheret,1’ € P, so thatt” € P by
definition of an SCC. O

Lemma E.9. Let P be a non-trivial SCC df(Zyp), and let P1:= {11 | 1 € P}. Then P1 C 5ypp,
and Plis an SCC of (Zyp).

Proof. We first prove that, for any € P, =% € Syp. This is a direct consequence of Lemma E.7:
there is an invertible cycle d® containingt, so that by definition of an invertible cycle; t is in Zyp.
We now turn to the second part of the claim.

First, we show that for any two, T’ € P~1, there is a functiondD path fromt to 1/, so thatP—1 is
strongly connected. This is clear: by Lemma E.7, there xistinvertible cycl€ of P containingr —*
and(r’)‘l € P, and the revers€ of this cycle is also an invertible cycle, becadseis finitely closed,;
Cis then a cycle ofJIDs of P~ containingr andt’.

Second, we show that for ayiD 1 € Syp, if P! —* r andt —* P~! thent € P~1. Consider
suchaUlD r,andletpy: 7'=1] — - — 1,=1andpy: T=1/ — --- — T, = 7" be the witnessing
functional ID paths, witht’, 7”7 € P~1. We showed in the previous paragraph tRat is strongly
connected: consider a (possibly empty) functiolialpath ps from 1” to 1/ witnessing the fact that
7" —* 1. Concatenating;, p, andpsz yields an invertible cycl€, so that becaus¥y is finitely closed,
its reverseC is also an invertible cycle. B@ witnesses the fact that”) 1 »—* r—tandr =% —* (1/)~1.
Now, as(t’) %, (1)1 e PandPis an SCC, we have ! € P, so thatr € P~1, the desired claim. Hence,
P~ is both strongly connected and maximal, so it is an SCC. O

This concludes the proof. Note that, RandP~! are both SCCs df (Zyp), either they are equal
or they are disjoint. We observe that both cases may occur:
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Example E.10. Consider theUIDs 1 : R C S and 1’ : S C RY, and theUFDs ¢ : R> — R! and
¢ : St — . 1,7 is an invertible cycle, so that by the finite closure rule, h®s 1= and (1/)~!
and the reversdJFDs are implied. However iff (Zy;p) we haver — 1/, ' — 1, 71— (1),
(t')"1— 171, sothat{r, 7’} and {1, (1/) "1} are two disjoint SCCs.

Consider now th&JIDsT:RRC P, 1 1: S CR, 7:RICR3, 17: P C S, and theUFDs Rt — R?,
R - R, S — S and $ — S'. We can construct the invertible cyclesand t”, so that(t’)~* and
(t”)~1 are implied by the finite closure rule. However, besides- 1/, " — 17, (1')"! — (1)1,
(t")~1 — (1")71, it is also the case that — 1", 7 — 1%, 171 1’ and 1’ ~— 1, and using the
reverseUFDs the same is true of the inversestof(t') 1, 1, and (1”) 1. So in fact there is only one
SCCP={r,t7 4,7, ()L, ", (1")~1}, with P~ 1 = P.

E.6. Proof of the Inverse-Sequential Topological Sort Proposition
(Proposition E.4)

We now prove thaG(Zyp) has an inverse-sequential topological sort:

Proposition E.4 (Inverse-sequential topological sorfjor any conjunctior>yp of UIDs closed under
finite implication, GZyp) has an inverse-sequential topological sort.

For this we need the following observation ab@{&yp):

Lemma E.11. Let P be a non-self-inverse SCC and considet Zyp\(PUP~1) such thatr — P.
Then one of the following holds:

e we haver — P11
e the SCC of is trivial, and for anyt, € Zyp such thatr, — 1, we haver, —* p-1

Proof. Fix T € Zy;p\(PUP~1) and assume that we have— P, i.e., T — 1’ for somet’ € P. AsP

is non-trivial, using Lemma E.7, consider the predeces$or of 7’ in an invertible cycle containing
T’ (possiblyt/ ; = 1’). LetRP be the second position @f R% be the first position of’, andR" be the
second position of;,_,. Note that we hav&® = Rl becausea;, ; — 1/, andRP # R becausea — 1’.
Observe that iRP £ R', thent — (rr’]fl)‘l becauséR’ — RI andR? — RP hold in Zygp (as these
UFDs are used in an invertible cycle) aBdrp is closed under transitivity. This proves the claim, as
taking1” := (1)_4)"* € P~1, we haver — 1”.

If RP =R, let P’ be the SCC ofr. Assume first thaP’ is non-trivial. In this case, by Lemma E.7,
there is an invertible cycle = 14,...,Tmy = T in P". But then, we have], , — T, so thatP — P’, and
asP’ — P we haveP = P/, sot € P, a contradiction.

Hence,P' is trivial. Let ST be the first position of andT" be the first position of;,_;. We must
haveS? £ TY, as otherwise we have= T}, , soT € P, a contradiction. Hence, becausg ;) 1isin
Suip (ast)_, € P), by transitivity 1/ : 1 C T!is in Zyp. We can then see that — (1) ,)~! because
we had(t, ;)1 — (1}_,) ! and bothUIDs share the same second position; hemte,» P~1. Now
ast” andt have the same first position, for afye Zyp, clearlyt, — T implies thatt, — 17— P4,

proving the last part of the claim. O

We now construct the inverse-sequential topological sb@(@yp) by enumerating the SCCs in a
certain way that respects the relation and maintains the following invariant: wheneRéas non-self-
inverse, therP andP~! are enumerated consecutively; this guarantees that th i®s topological
sort and that it is inverse-sequential.
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First, whenever trivial or self-inverse SCCs can be enutadr&numerate them. Second, whenever
the SCCs that can be enumerated are all non-self-invereesetone sucP to enumerate. By the
invariant, P~! has not yet been enumerated, otherwRseould have been enumerated immediately
after. We want to enumerafe and then enumerate 1.

To see why this is doable, we must show that, assumingRtbaP 1, if P can be enumerated and
no trivial or self-inverse SCCs can be enumerated, B#encan also be enumerated. [Rtbe a parent
SCC ofP~1in G(Zypp) (so thatP’ — P~1), and show that it has been enumerated already. If we have
P’ = P, meaning thaP — P~1, then this is not a problem, because we are about to enunfesate
and thenP~1, so we may assume thit #+ P. Hence,P is different fromP and P~1 soitis disjoint
from it. We apply Lemma E.11 to any< P'. In the first case, we also ha® — P, so asP can be
enumerated?’ was enumerated already. In the second d&se,{1} is trivial; further, considering any
P’ — P, we haveP” —* P, soP” was enumerated already. Hence, all sBlare already enumerated,
so thatP’ can be enumerated, but as it is trivial, it must have been erated already. Hence, in both
cased”’ was already enumerated unless iPisThis ensures that we can indeed enumePaaedP 1
consecutively, maintaining our invariant. Thus, we havesticted an inverse-sequential topological
sort of G(Zyp ). This concludes the proof.

E.7. Proof of the Manageable Partitions From Sorts Proposition
(Proposition E.6)

Proposition E.6 (Manageable partitions from sortdjor any conjunction>yp of UIDs closed under
finite implication, lettingP be an ordered partition obtained from an inverse-sequéntpological
sort of G Zyp), P is @ manageable partition.

Let (Pi,...,P,) be the ordered partition. We prove that it is manageableialrf5CCs are indeed
trivial classes of the partition, so we must only justifytthay other clas® is transitively closed and
satisfies assumptiamversible.

We definePos(P) for P a set ofUIDs as the set of positions occurring i as in the definition of
assumptioneversible. We first prove a general lemma to take care of the second e assumption:

Lemma E.12. Let P be a non-trivial SCC df (Zyip). For any two positions R£ R! of Pos(P), if
R - RlisinZyep thensois R— R.

Proof. Fix R andRI, assume thap: R — Rl is in Zyrp, and show thap ! : Rl — R also is. Letr
be aUID of P whereR' occurs, and; be aUID of P whereR/ occurs. By Lemma E.7, there exists an
invertible cycleC; whereR' andR! occur.

We writeC; = R} C RE,...,Rn C R}, with some 1< p,q < n such thatR, = Ry = R, and either
ip=1iorjp=1i,and eitheiqg= j or jq= j. By definition of an invertible cycle, thdFDs ¢, : R — Rip,
ot Rl — R, @ : Ra — Rla and @t Rla — Ria are inZyrp. Thus, becausEyrp is closed under
transitivity, it is clear that if two positions amorg= (R'»,R'»,Rla, Ra) are equal (in particular, if
p = q), then we havé¥* «<»ryy R for any two positiondR¥, R in S. Hence, as we know th& # RI,
andR andR! are inS, the only case where we cannot conclude is the one whereeglidsitions oS
are different.

If all positions ofS are different, then, because @f, @, (plgl and (pq*1, by transitivity of Zyrp, we
know that for anyxy, x> € {ip, jp}, Y1,¥2 € {iq; jq}, theUFD R — R is in Zypp iff the UFD R? — RY2
is. Hence, sinc@ is in Zyrp, asi € {ip, jp} andj € {ig, jq}, we know thatR* — R is in Zyrp for all
X € {ip, jp},Y € {ig, iq}, and, to prove thap—1 is in Zygp, it suffices to show tha® — R*is in Zyrp
for some xe {ip, jp},Y € {ig: jq}-
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So let us construct the cycle, = Ri1 C Rj2 R:H C R(jf R C R:)‘jj, ,Rin C le This is an
invertible cycle, becaus®; = R, = R, andR'"» # RJq and theFD R» — Rlais in X gp by our assumption.
Hence, a<; is an invertible cycle, and becauZg is finitely closed, the reverseD Ria — R® is in

Y urp, Which implies thatp~t is in Zyrp. O
We then show a lemma to help justify that the classes areitikeahg closed:

Lemma E.13. For any non-trivial SCC P, if there is € P and 1’ € P~! such thatt—! + 1’ but the
second position of is the first position of’, then P= P,

Proof. We first observe that we hawe—* P~1. Indeed, a® andP—! are non-trivial, considerg € P
andt) € P~ such thatrp — 1 and1’ — 1}. Letting 7" be theUID which is transitively implied byr
and1’, we know that it must be iLy;p as it is transitively closed, and we observe that- 7 — 1,
so thatP —* P71,

Now, writeT: RP C STandt’: I C T", with RP £ T". AsP andP~! are non-trivial, using LemmaE.7,
We can consider a functiondd patht =11 — o — - »— Ty = (r’)*l, and a functionalD path
T =1 — - — Ty,=T. By Lemma E.12, alUFDs along these paths are such that their reverses
are also irfyep. Consider now the smallekt> 2 such that we have, ! # 1/, ,, ;; such sk must exist
because we have, = (1)t and 1] = 771, and we know thatr ! = /. Considert” := 1 € P, and
=1/ ., €P1 and letS' andS' be respectively the first position of and the second position
of 77: indeed it is easily observed that these positions must Heeisame relatio, as this is true for
T, andt}, , and is preserved far” andt” because we havg * =1, |, forall 1< 2 <k.

We now distinguish two cases. The first cas®'ig §, and we then have” — 1”7, so thatt~% — P.
The second case & = S. In this caser” and1” are twoUIDs of P~ andP such that(t”") 1 # 1”
but the second position af” is the first position oft”. Hence, applying the reasoning of the first
paragraph ta” andt, we deduce tha® 1 —* P. In either case, as we observed initially tRat-* P,
we conclude thalP = P~1, the desired claim. O

Corollary E.14. For any non-trivial SCC P, P/P~1 s transitively closed.

Proof. By Lemma E.8,P andP~! are transitively closed. Hence, if ndiDs is transitively implied
by oneUID from P and one fromP~! (or one fromP~! and one fromP), then the claim is proven.
Otherwise, by Lemma E.13, we hae= P~1, so we can conclude by applying Lemma E.&te-
PUP L O

We now conclude the proof of Proposition E.6. [Eebe a class of the ordered partitiofy, ..., P,).
We must show that it is either trivial or reversible. If it istrtrivial, then we must show three things:

e B is transitively closed
e Foreverytr € B, we haver 1 e P.
e For every two position®P, R € Pos(R) such thaRP — RAis in Zypp, R — RP is also inZyfp.

For the first claim, a$} is not trivial, it is either a self-inverse SCE of ' (Zyp) (and the claim
follows by Lemma E.8) or it is a unioPU P~ whereP is a non-self-inverse SCC (and the claim
follows by Corollary E.14). The second claim is immediatedoystruction. The third claim is what
is shown by Lemma E.12, noting that for any S@®f Zyp, we havePos(P) = Pos(P~1). This
concludes the proof of Proposition E.6.
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F. Proofs for Section VII: Higher-Arity FDs

In this section, we show what is needed to adapt the Acycliariybniversal Models Theorem (Theo-
rem I11.6) to produce aligned superinstances that satiefyfull set of constraint& rather than just the
unary subseky.

F.1. Proof of the Sufficiently Envelope-Saturated Solutions Proposition
(Proposition VII.5)

We now prove the following result, which provides our way tmstruct the initial instance on which
we apply the completion process of the previous sections:

Proposition VII.5 (Sufficiently envelope-saturated solutionpr any K € N and instance(d, we can
build a superinstancejlof Ig that is k-sound foICQ, and an aligned superinstance J gfthat satis-
fiesZgp and is(K |J|)-envelope-saturated.

We define the notatiofu| := maxzes |R|, and also define the following:

Definition F.1. Theoverlap OVL(F,F’) between two facts F= R(a) and F = R(b) of the same rela-
tion R in an instance | is the subset ORifs(R) such that @ = b iff RS € O. If |O| > 0, we say that F
and F overlap.

We also define the following, which are th®s used in the definition of envelopes (Definition VI1.2):

Definition F.2. Given a sekrp of FDs on a relation R and @ Pos(R), theFD projection ZED of Zrp
to O are theFDs R~ — R of Zp such that R C O and R € O, plus, for everyffD R- — R of Zgp
where R C O and R ¢ O, the key dependency R O.

We first note the following immediate consequence of the Bdngerpretations Theorem (Theo-
rem VIL7):

Corollary F.3. We can assume in the Dense Interpretations Theorem (Thadiefnthat the resulting
instance | is such that each element occurs at exactly ongigrosf the relation R: formally, for all
ac dom(l), there exists exactly one’R Pos(R) such that ac 1ize(1).

Proof. Create froml the instancé’ whose domain i§(a,RP) | a € dom(l),RP € Pos(o)} and which
contains for every fadt = R(a) of | a factF’ = R(b) such that, = (ap, RP) for everyRP € Pos(0).
Clearly this defines a bijectiop from the facts ofl to the facts ofi’, and for any fact$=, F’ of I,
OVL(F,F’) = OVL(¢ Y(F),@ 1(F")). Thus any violation of thé&"Ds Srp in I’ would witness one

in I. Of course,|dom(l")| = |a]| - |dom(l)|, so that, lettingK’ be our target constant factor between
|dom(1”)| and|l|, we must us& := K’ |g| as the constant for the Dense Interpretation Theorem, so tha
[l > K'|g|-|[dom(l)|, which implies|l’| > K’ |dom(l")|. O

We also show two easy lemmas:

Lemma F.4. Let | be an instancesrp be a conjunction oFDs, and F# F’ be two facts of I. Assume
there is a position Re Pos(0) such that, writing O= NDng(RP), we haveOVL(F,F’) C O, and that
{m(F), mo(F')} is not a violation o=8,. Then{F,F’} is not a violation o&¢p.
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Proof. Assume by way of contradiction thBtandF’ violate anFD ¢ : R- — R of Zgp, which implies
that R~ C OVL(F,F’) C O andR ¢ OVL(F,F’). Now, if R € O, theng is in =&, so thatrp(F)
and T, (F’) violate £2,, a contradiction. Hence®®' € Pos(R)\O, and the key dependenay: R- — O
is in =85, so thatrp(F) and ro(F’) must satisfyk. Thus, becaus® C OVL(F,F’), we must have
OVL(F,F’) = O, which is a contradiction because we assud¥d.(F,F’) C O. O

Lemma F.5. For any (RP,C) € AFactCl, letting O:= NDng(RP), if (RP,C) is unsafe, then there is no
position R € O that determines O i&8,: formally, there is no Re O such that we have®R~ R’ in
59, forall R" € O.

Proof. Fix D = (RP,C) in AFactCl and letO be the non-dangerous positionsRi. We first show that
if Zrp implies thatO has a unary kefr® € O in Zgp, thenD is safe. Indeed, assume the existence of
such a unary ke, If there were &D R- — R" in Zgp with R- C O andR' ¢ O, then, by transitivity,
the UFD R® — R would be inZygp, which by Lemma C.2 implies th&" is non-dangerous fdrP
becauséd?® € O is non-dangerous fdRP. This contradicts our assumption tiit¢ O.

We must now show that © has a unary key i© according toZED thenO has a unary key i©
according taZgp. It suffices to show that for any two positioR§, R® € O, if ¢ : R4 — R® holds inZ2,
then it also does ixrp. Assuming to the contrary that there there is suah aonsider its derivation
from the dependencies &2,. Clearly the derivation must be using one of the key depeciden
K : R~ — O, which are the only dependenciesﬁﬁD that are not irkgp. But this means that, the first
time we used such a dependency, we had derived a unary keydismyR? — R- using only theFDs
of Zrp. Considering thak was created to stand forf R- — R in Zgp, with R” ¢ O, we deduce that
we can derive fronkgp thatR? — R', contradicting again the fact th&t ¢ O (becausdr’ should then
be inNDng(RP)). Hence, ifO has a unary key i® according ta®, thenD is safe. Thus, we have
proven the contrapositive of the desired result. O

We now prove Proposition VII.5. The bulk of the work is to shdve following claim, for each
unsafe class oAFactCl. The construction of global envelopes from the individuatedopes is then
easy.

Lemma F.6. For any unsafe class D iAFactCl and constant K, one can construct a superinstarce |
of lp that is k-sound foCQ, and an aligned superinstance=J(l,sim) of |} that satisfierp with an
envelope E for D of size K.

Proof. Fix the unsafe achieved fact cld3s= (RP,C) and choos€& = R(b) a fact ofChase(lo, Zuip)\lo
that achieve®. Letl; be obtained fronty by applyingUID chase steps dg to obtain a finite truncation
of Chase(lo, Zyip) that includes= but no child fact ofF, and consider the aligned superinstatdce-
(I1,sim1) wheresim; is the identity.

Let O := NDng(RP), and define 40|-ary relationR; for convenience, we index its positions by
O. BecauseD is unsafe, by Lemma F.B g has no unary key iLS,. Apply the Dense Interpretations
Theorem (Theorem VII.7) B0 andZED with the additional condition of Corollary F.3, takikg|J;| as
the constant. We thus obtain an instahgefR o that satisfie€2, and such that, lettinly := |dom(Ip)|,
we have|lp| > NK|J;|. Letlj C Ip be an subinstance of si®¢ of Ip such that dorfl;,) = dom(Ip),
that is, each element of ddig) occurs in some fact df;. This can clearly be ensured by picking, for
any element of doifip ), one fact oflp where it occurs, removing duplicate facts, and completiitg w
other arbitrary facts offp to haveN distinct facts. Number the facts tff asF/, ..., F.

We createN — 1 disjoint copies ofl;, numberedl, to Jy. We callJ’ = (I',sim) the disjoint union
Jiu---UJy. Itis clear that) is indeed an aligned superinstancel pfwherel; is formed of theN
disjoint copies oflp, andl is clearly ak-sound superinstance &f for CQ. For 1<i < N, we call
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F = R(a‘) the fact ofl; that corresponds to the achieverin Chase(lp,Zyip). In particular, for all
1<i<N,we have thatim(aij) = bj forall j, andaiIO is the only element of; that also occurs in other
facts ofJ;.

We consider the applicatiohthat mapai-, for1<i<NandRi €O, to i (F'). This applicationf
is well-defined, because tiai? are pairwise distinct. We exterfdto dom(l’), and call the extensiofy,
by settingf’(a) := aif ais not in the domain of. We calll the image of’ underf’. In other words,
| is the underlying instance df except that elements at positions@fn the factsF were identified
so that the projections t0 of the f/(F) are isomorphic to thé;. Becausea‘j occurs only inF for all
R # RP, andRP ¢ O, this means that the identified elements only occurred irthel’.

We now buildJ = (I,sim) obtained by definingim from thesim; as follows: any elemerd not in
the domain off is mapped taim;(a) for the onei such thata € dom(l;), and anya in the domain of
f is mapped taim; (&) for any preimage of’ by f. All that remains to show is thakis indeed an
aligned superinstance tf satisfying the required conditions.

We note that it is immediate thdtis a superinstance ¢f, as the achievef is not a fact oflg, so that
dom(lp) is not in the domain of . Itis clear that) hasN |J;| facts, because, & ¢ O, no facts can be
identified by f’. We now claim thatl is an aligned superinstancelgf and that, defined as the set of
the tuples olp, is an envelope fo’ andD. The fact thatE| = K |J| is immediate.

The fact thasim is ak-bounded simulation fromto Chase(l}, Zyip ) is by induction. The case é&f=
0 is trivial. The induction case is trivial for all facts extdor theh'(F), because thaij only occurred
in | in the factsk, by our assumption that tHg have no children in thé and by the fact that the
exported position oF is RP ¢ O. Consider now one faét’ = R(c) of I’ which is the image by’ of aF.
Choose K p < |R|. We show that there exists a fd€t = R(d) of Chase(l}, Zyip) such thasim(c,) =
dp and for all 1< q < |R| we have(l,cy) <k-1 (Chase(ly, Zuip),dq), which by induction hypothesis is
implied bysim(cq) ~ dg. Let a'j% be the preimage dd, used to defingim(ay); by the condition of
Corollary F.3, we must havg = p. Consider the fadt” = R(d) of Chase(lj, Zyip) corresponding to
F, in 1. By definition,sim(cp) = sim(a'j%) =dp. Fixnow 1<qg<|R|. Let a'j% used to defingim(cy);
againjo = g andsim(cq) is Te(F") for the factF” = R(e) of Chase(lg, Zuip) corresponding té;, in
I. But as bothF"”" andF" are copies of the same achiever fRabf Chase(lo, Zuip ), we havedy ~ ey,
so thatsim(cq) ~ dq, what we wanted to show. This proves thit is indeed &-bounded simulation
from J to Chase(lo, Zyip)-

We show that] satisfiesXrp. As | satisfiesZgp, any new violation o2rp in I’ relative tol must
include some fack = I (F), and some facE’ overlapping withF, so necessarilf’ = I (F/ ) for
somei; by construction of’, andOVL(F,F’) C O. We now use Lemma F.4 to deduce that we cannot
haveOVL(F,F’) C O, soOVL(F,F’) = O. By our definition off and of theF this implies that| = F/,
a contradiction because# F’.

Thus, from the above, and as the technical conditions of ¢ffi@ition of aligned superinstances are
clearly respected] is indeed an aligned superinstancd pf

Last, we check thakE is indeed an envelope. Indeed, it satism% by construction, so the first
two conditions are respected. The third condition is reigakeby the condition of Corollary F.3, and
because the (aij) always occur at positiolR! in some fact ofl};, as we constructetf, such that
dom(l;) = dom(lp). The last condition is true because the envelope elemeatserdy used in the
f(F), and thesim-images of thef (F) are copies inChase(l),Zyip) of the same achiever faét in
ChaSE(lo,zU”)).

Hence J is indeed an aligned superinstance &fsoundl; that satisfieZrp and has an envelope of
sizeK |J|, proving the desired claim. O
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We now prove the main result by buildifg and the aligned superinstande= (1,sim) of 1} that
has a global envelop€. As AFactCl is finite, we build onelp perD € AFactCl. WhenD is unsafe,
we use the previous lemma. WhBn= (RP,C) is safe, we just take a single copy of the truncated
chase to achieve the claBs and take as the only fact of the envelope the projectioiDag(RP) of
the fact ofJp corresponding to the achiever Bfin Chase(lo, Zuip). As AFactCl is finite and its size is
a constant, we can ensure thé&(D)| for all unsafeD € AFactClis > (K + 1) |l|, by taking sufficiently
largeK when we apply Lemma F.6 for each unsafe class.

Let J be the disjoint union of thdp. EachJp is an aligned superinstance of éi§)p which is a
k-sound superinstance &f. Hence,J is an aligned superinstance of the union of {Hgp which is
alsok-sound. There are no violations Bfp in J because there are none in any of Jgeand the union
is disjoint. The disjointness of domains of envelopes isalise thelp are disjoint. It is easy to see that
Jis (K|l|)-envelope-saturated, becay§éD)| > (K + 1) |I| for all unsafeD € AFactCl, so the number
of remaining facts of each envelope for an unsafe classisl| (every fact ofl eliminates at most one
fact in each envelope). Hence, the proposition is proven.

F.2. Proof of the Dense Interpretations Theorem (Theorem VII.7)

Remember that we want to show:

Theorem VII.7 (Dense interpretations)ror any setzgp of FDs over a relation R with no unary key,
and Ke N, there exists a non-empty instance | of R that satigfigsand has at least kdom(l)| facts.

Fix the relationR, and letZrp be an arbitrary set ofDs which we assume is closed unddd
implication. LetZygp be theUFDs implied byZp; it is also closed unddfD implication. Recall the
definition of OVL (Definition F.1). We introduce a notion shfe overlapdor >yrp, which depends
only onZygp but (we will show) is a sufficient condition to satishgp:

Definition F.7. We say a subset Q Pos(R) is safe for Zygp if O is empty or for every Re Pos(R)\O,
there exists Re Pos(R) such that the unary key dependendy-R O is implied byzyrp but theUFD
RY — RP does not hold irEygp.

We say that an instance | has tsafe overlaps property (forZygp) if for every F#£ F’ of |, OVL(F,F’)
is safe.

We now claim the following lemma, and its immediate corgllar

Lemma F.8. If O C Pos(R) is safe forZyrp then there is n&D ¢ : R- — R in Z¢p such that R C O
butR ¢ O.

Proof. If Ois empty the claim is immediate. Otherwise, assume to theagnthe existence of such
anFD ¢. AsR ¢ O andO s safe, there iR®? € Pos(R) such thaiR? — O holds inZygp butRY — R
does not hold irEyrp. Now, asR- C O, we know thatRd — R- holds inZyrp, so that, by transitivity
of Zrp, ¢ : R — R holds inZgp. As ¢ is aUFD, this implies it holds intygp, a contradiction. [

Corollary F.9. For any instance |, if | has the safe overlaps property ¥gep, then | satisfiexp.

Proof. Considering two facts andF’ in |, asOVL(F,F’) is safe, we know that for arfjD ¢ : R- — R’
in Zrp, We cannot hav& C O butR’ ¢ O. HenceF andF’ cannot be a violation of. O

Thus, it suffices to show the following generalization of Bense Interpretations Theorem:
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Theorem F.10. Let R be a relation andygp be a set ofJFDs over R. Let D be the number of positions
of the smallest key of R f@iyrp: formally, D := |K|, where KC Pos(R) is such that R — RP holds
in Zyep for all RP € Pos(R), and K has minimal cardinality among all subsetsRak(R) with this
property. Let x quDTl if D > 1 and 1 otherwise.

For every N> 1, there exists a finite instance | of R such ttdam(l)| is O(N), |I| is Q(N*), and |
has the safe overlaps property Byep.

It is clear that this theorem implies the Dense InterpretetiTheorem, becauseRfhas no unary
key for Z¢p thenD > 1 and thus< > 1, which implies that, for an¥(, by taking a sufficiently largé\,
we can obtain an instand¢dor Rwith N elements an&KN facts that has the safe overlaps property for
>urp; how, by Lemma F.9, this implies thasatisfies rp.

We will now prove Theorem F.10. Fix the relatidhand set ofUFDs Zyrp. The case oD =1
is vacuous and can be eliminated directly (consider tham&{R(a;,...,a) | 1 <i < N}). Hence,
assume thab > 1, and letx := 52;.

We first show the claim on a specific relati® and set=l-, of UFDs. We will then generalize
the construction to arbitrary relations abldFDs. LetTp := {1,...,D}, and consider a bijectiom :
{1,...,2P} —PB(To)\{0}. LetRg be a(2P — 1)-ary relation, and takB)- := {R — R | v(i) Cv(j)}.
Note thatzJ, is clearly closed under implication &fFDs. FixN € N, and let us construct an instance
lo with O(N) elements an@ (N*) facts.

Fixn:= [NY(P-1 | LetF be the set of partial functions frofa to {1, ..., n}, and writeF = 7L Fp,
where F; and F,, are respectively the total and the strictly partial funasio We takdg to consist of
one factF; for eachf € F, whereF; = Ro(af) is defined as follows: for ¥ i < 2P, aif = fig\w@y- IN
particular:

. a\f/,l(T()), the element oF; at the position mapped % < B(To)\{0}, is the strictly partial func-
tion that is nowhere defined,;
o a{i}, the element oF¢ at the position mapped 0} € B(Tp)\{0}, is the strictly partial function
equal tof except that it is undefined an
Hence, donllp) = F;, (because 0 is not in the image wf, so that/dom(lg)| = Yo<i<p ('?) n'. Remem-
bering thatD is a constant, this implies thadom(lp)| is O(n°~1), so it isO(N) by definition ofn.
Further, we claim thalo| = | 7| = n® = NX. To show this, consider two facks andFy, and show that
Fi = Fg implies f = g, so there are indee(d| different facts inlo. As 73,-1(11y)(Ft) = 15,-102y) (Fg),
we havef(t) = g(t) for all t € To\{1}, and looking at, 1,y (Ft) and g, 1(5)(Fg) concludes (here
we use the fact thdd > 2). Hence, the cardinalities &f and of its domain are suitable.

We must now show thag has the safe overlaps property. For this we first make theviollg general

observation:

Lemma F.11. LetZygp be any conjunction dFDs and | be an instance such thad Zygp. Assume
that, for any pair of facts £ F’ of | that overlap, there existsPRe OVL(F,F’) which is a unary key
for OVL(F,F’). Then | has the safe overlaps property ¥rp.

Proof. ConsiderF,F’ € | andO := OVL(F,F’). If F =F’, thenO = Pos(R), andO is clearly safe.
Otherwise, ifF # F’, let R? € Pos(R)\O. Let RY € O be the unary key o®. We know thatR? — O
holds inZygp, so to show thaO is safe it suffices to show thai: R? — RP does not hold irzyep.
However, if it did, then aR® € O andRP ¢ O, F andF’ would witness a violation of, contradicting
the fact thal satisfiesgp. O

So we show thaly satisfiesZBFD and that every non-empty overlap between factk dfas a unary
key.
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First, to show that, satisfiesz)., observe that whenever: Ry — R} holds inZygp, thenv (i) C
v(j), so that, for any fack of I, for any 1<t < To, whenever(rg (F))(t) is defined, so i$rg(F))(t),
and we haver;(F))(t) = (15(F))(t). Hence, letting= andF’ be two facts ofl such thatrg(F) =
5(F’), we know thatr; (F) is defined iffrtj (F’) is (as this only depends aj), and, if both are defined,
the previous observation shows ttmgtF ) = m1;(F’). HenceF andF’ cannot witness a violation @.

Second, considering two fads = Ry(a') andFy = Ro(a%), with f # g so thatFr # Fy, we show
that if OVL(F¢,Fy) is non-empty then it has a unary key. L@t= {t € To| f(t) =g(t)}, and let
X = To\O; we haveX # 0, because otherwise= g, so we can defing := v—1(X). We will show that
OVL(Ff,Fg) = {R € Pos(Ry) | X C v(i)}. This implies thaRP € OVL(Fs,F,) and thatRP is a unary
key of OVL(Fs,Fy), because, for alR? € OVL(F¢,Fg), X C v(RY), so thatRP — R holds inXyrp.

Indeed, consideR' such thatX C v(i). ThenTo\v(i) C To\X, so that, becausaf = fi\v() and
& =gm\v(1), We havea| = a? by definition of O = To\X. ThusR € OVL(F,Fy). Conversely, if
R € OVL(Ft,Fy), then we have' = a2, so by definition of0 we must havelp\v(i) C O’ = To\X,
which impliesX C v(i).

Hence,ly is a finite instance oEyrp Which satisfies the safe overlaps property and cont@iiié)
elements an@(NP/(P-Y) facts. This concludes the proof of Theorem F.10 for the $jsecase ofRy
and=dp,.

Let us now show the claim for the actudlandZyrp. Let K be a key ofR of minimal cardinality,
so that|K| = D. LetA be any bijective labeling frorK to Tp. ExtendA to a functionu from Pos(R)
to B(To)\ {0} such that, for everrP € Pos(R) andR¥ € K, we haveA (R¢) € u(RP) iff R¢ = RP or
Rk — RP holds iNZyFD.

Now, create the instandeof R from Iy by creating, for every fadt, = Ry(a) of lo, a factF = R(b)
inl, with b = ay-1(y(R)) forall1<i<|R.

We do not create duplicate facts by the same argument asebefonsidering the projection of
the facts ofl to R4 # R in K, becausqu(R4) = {A(R)} and u(R®) = {A(R<)} (otherwise this
contradicts the minimality oK). Hencel, aslg, has a suitable number of facts, and a suitable domain
cardinality because dofh) C dom(lp).

Let us now show that overlaps are safelinConsider two facts=,F’ of | that overlap, and let
O:= OVL(F,F’). We first claim that there exists®@K’ C K, such that, letting’ := {A (R¢) | R € K'},
we haveOVL(F,F’) = {R € Pos(R) | X’ C u(R)}. Indeed, letting/s andFg be the facts ofy used
to createF andF’, we previously showed the existence of X C Ty such thatOVL (F¢,Fy) = {Ri €
Pos(Rp) | X C v(i)}. Our definition ofF andF’ from F¢ andFy makes it clear that we can satisfy the
condition by takingk’ := A ~1(X), so thatX’ = X.

Consider nowRP € Pos(R)\O. We cannot hav&X’ C p(RP), otherwiseRP € O. Hence, there exists
R € K’ such thatA (R¢) ¢ u(RP). This implies thatR¢ — RP does not hold irZyrp. However, as
RK € K/, we haveA (R¥) € u(RY) for all RY € O, so thatRk — O holds inZyrp. This proves tha® =
OVL(F,F’) is safe. Hencd, has the safe overlaps property, which concludes the proof.

F.3. Proof of Lemma VII.9 (Envelope-thrifty chase steps satisfy Zgp)

Lemma VII.9. For n > 0, for any n-envelope-saturated aligned superinstance J shtisfieszrp,
the result J of an envelope-thrifty chase step on J is(an- 1)-envelope-saturated superinstance that
satisfieS pp.

Consider an application of an envelope-thrifty chase stept : R? C S be theUID, let O :=
NDng(S"), let J = (I,sim) be the aligned superinstance lgf let F, = S(b’) the chase witness, let
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D = ($1,C) be the fact class, 1€}, = S(b) be the new fact to be created, andtlbe the remaining tuple
of £(D) used to definé,.

We first check that envelope-thrifty chase steps are wéihee in the sense that the fact cldss-
(S1,C) is indeed achieved ithase(lo, Zyip), so it is inAFactCl. To see why, observe thg}, is a fact
of Chase(lo, Zuip ) Whose fact class €S, C). Indeed, by Lemma D.2y, is the exported element &,
and clearlybf € C; for all S € Pos(S). Hence indee® € AFactCl.

It is then clear that envelope-thrifty chase steps are dafiled, in the sense that they are indeed
thrifty chase steps: elements reused from the envelopeadsiroccur at the positions where they are
used in the new fadt,. Further, theisim-image is the right one, by definition of an envelope.

We first prove that) is still an aligned superinstance. This is shown exactlynaseémma V.9,
except for the fact thal’ = Zyrp which was specific to fact-thrifty chase steps. We show atste
thatJ' = Zrp, using the assumption thdt= Zrp. Recall the definition oOVL (Definition F.1), and
assume by contradiction the existence of a violatiogf in J’. The violation must be betwedm,
and an existing fadt = S(c). However, because only the elements at positiord aiready occur at
their position, we must hav@VL(F,, F) C O. As mp(F,) was defined using elements of dGiiD)),
takingS € OVL(F,, F) C O, we havec; = b, € 15 (£(D)), so that, by definition of (D), we know that
mo(c) is a tuple ofE (D). If OVL(F,,F”) € O then we have a contradiction by applying Lemma F.4 to
tandmp(c) in £(D). HenceOVL(F,, F”) = O So, if D is unsafe, we have a contradiction becabse
witnesses thatwas not a remaining tuple, so we cannot have used it to dEfiné D is safe, there is
noFD Rt — R of Zrp with R- C O andR' ¢ O, soF andF, cannot violaterp, a contradiction again.

We now prove that is still a global envelope o} after performing an envelope-thrifty chase step.
The condition on the disjointness of the envelope domaifsamcernst, which is unchanged. Hence,
we need only show that, for ary’ € AFactCl, £(D’) is still an envelope. Except the last one, all
conditions of the definition of envelopes either concerryahé envelope (D’), which is unchanged,
or they are preserved when more facts are creatdd iffhe last condition needs only to be checked
about the new fadg, created in this chase step.

Except for the elements d¢%, at positions inO, all elements of, did not occur at the positions
where they occur i, by definition of a thrifty chase step. So they cannot be etgsmef don{€&)
occurring inF, at the one position where they occur in the one envelope wheyeoccur, because we
know that elements from any envelope already occuranthat position. So we only need to check the
condition for theb, for S € O. But because the envelopes&fre pairwise disjoint and as the are
allin dom&(D)), we only need to check the condition f6(D). Now, t witnesses that(b) € £(D).
Hence€ is still a global envelope af'.

Last, to see that the resultidgis (n— 1)-envelope-saturated, it suffices to observe that the new fac
Fn witnesses that, for each unsafe cléss AFactCl, the remaining tuples of (D) for J’ are those of
£(D) for I minus at most one tuple (namely, some projectiof)f This concludes the proof.

F.4. Proof of the Envelope-Thrifty Completion Proposition (Proposition VI1.10)

Proposition VII.10 (Envelope-thrifty completion)For any envelope-saturated aligned superinstance
J of |y that satisfierp, we can obtain by envelope-thrifty chase steps an alignpdrswstance Jof
lo, such that Jis either envelope-exhausted or satisfies

The completion process for envelope-thrifty chase stegefised in the same way as for fact-thrifty
chase steps, except that the elements reused at non-dasgesitions are different. By definition
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of thrifty chase steps, the choice of elements reused ag thositions cannot make any néWD ap-
plicable, or satisfy anyJID, because the elements thus reused are required to already aicthe
positions where they are used in the new fact. Further, epeethrifty chase steps do not introduce
UFD violations (in fact, they do not introdudeD violations), as follows from Lemma VII.9. Hence,
we can indeed define the completion process for envelofferthhase steps exactly like the comple-
tion process for fact-thrifty chase steps, are long as th&ainte is envelope-saturated. Whenever an
envelope-exhausted instance is obtained at any point qfrtheess, we abort and set it to be the final
instance.

Assuming that we do not reach any envelope-exhausted gestdine fact that is still a global
envelope of the resull’ of the envelope-thrifty completion process, and thaatisfiesS rp in addition
to Zyip, is by Lemma VII.9.

F.5. Proof of the Envelope Blowup Lemma (Lemma VII.11)

Lemma VII.11 (Envelope blowup) There exists B- N depending only on k ang, such that, for any
aligned superinstance 3 (1,sim) of lp, and global envelopé, letting J = (I’,sim’) be the result of
the envelope-thrifty completion process, we h{je< BJl|.

We first observe that applying a chase round to an alignedrissgencel = (1,sim) of lo by any
form of thrifty chase steps (Definition V.8) only increastsdize by a multiplicative constant. This is
becausédom(l)| <|a|-|l|, and the number of facts created per elementiofa chase round is at most
|Pos(0)|.

Remember that the envelope-completion process starts figtrooting an ordered partitioR =
(P1,...,Py) of Zyp (Definition VI.1). ThisP does not depend on the aligned superinstance. Hence,
as we satisfy théJIDs of eachP, in turn, if we can show that the instance size only increasea b
multiplicative constant for each class, then the blow-uptlf@ entire process is by a multiplicative
constant (obtained as the product of the constants for@ach

For trivial classes, we apply one chase round by fresh epeetlarifty chase steps (Corollary VI.4),
so the blowup is by a multiplicative constant by our initilservation.

For non-trivial classes, we apply the Fact-Thrifty ComipletProposition (Proposition V.10), mod-
ified to use envelope-thrifty rather than fact-thrifty chadeps (but the exact same steps are applied).
Remember that this proposition first ensukeeversibility by applyingk+ 1 envelope-thrifty chase
rounds (Proposition D.4) and then makes the result sabigfy using the Guided Chase Lemma
(Lemma D.5). Ensurinds-reversibility only implies a blowup by a multiplicative ostant, because
it means applyink+ 1 envelope-thrifty chase rounds. Hence, we focus on thedduthase Lemma.

The lemma starts by constructing a balanced pssinsRnsing the Balancing Lemma (Lemma 1V.9),
and ax-compliant piecewise realizatid?l of P by the Realizations Lemma (Lemma IV.16), and then
performs envelope-thrifty chase steps to satigfyy following P1. We know that, whenever we apply
a envelope-thrifty chase step to an eleneeint the guided chase, occurs after the chase step at a new
position where it did not occur before. Hence, it sufficestove that|dom(P)| is within a constant
factor of|J|, because then we know that the final number of facts once tdedjechase is over will be
< |dom(P)| - |Pos(0)|.

To show this, remember that d¢R) = dom(J) LI, whereH is the helper set. Hence, we only
need to show thd®{| is within a multiplicative constant factor ¢d|. From the proof of the Balancing
Lemma, we know that{ is a disjoint union o< |Pos(0’)| sets whose size is linear jdom(J)| which
is itself < |o| - |J]. Hence, the Guided Chase Lemma only gives rise to a blowupdonstant factor.
As we justified, this implies the same about the entire cotigrigorocess, and concludes the proof.
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G. Proofs for Section VIII: Cyclic Queries

In this section, we extend our construction of superingarhat satisfy. and arek-sound forACQ, to
superinstances that desound forCQ while still satisfyingZ.

G.1. Proof of the Simple Product Lemma (Lemma VIII.5)

Lemma VIIL.5 (Simple product) Let | be a finite superinstance of &nd G a finite(2k + 1)-acyclic
group generated b(1). If I is k-sound forACQ and k-instance-sound, théh 1) ® G is k-sound for
CcQ.

Fixing the superinstanck of Iy that isk-sound forACQ and k-instance-sound, and th@k + 1)-
acyclic groupG generated by\(l), consider’ := (I,lp) ® G, which is a superinstance &f (up to our
identification of(a, e) to afor a€ dom(lp), whereeis the neutral element @&). We must show that
is k-sound forCQ.

We start by proving a simple lemma:

Lemma G.1. For any CQ g and instance |, if = g and some match h of g in | maps two different
atoms of q to the same fact F, then there is a strictly smallerhich entails g and has a matchih |
such that, seeing matches as subinstancesdfrh(h’) C dom(h).

Proof. Fix g, I, h, and letA = R(x) andA’ = R(y) be the two atoms af mapped to the same faEtby
h. NecessarilyA andA’ are atoms for the same relati®of the factF, and ash(A) = h(A’) we know
thath(x) = h(y;) for all R € Pos(R).

Let dom(q) be the set of variables occurringdn Consider the applicatiof from dom(q) to dom(q)
defined byf(y;) = x for all i, and f(x) = x if x does not occur i®. Observe that this ensures that
h(x) = h(f(x)) for all x e dom(q). Letq = f(q) be the query obtained by replacing every variable
xin g by f(x), and, asf(A’) = f(A), removing one of those duplicate atoms so tlogdt< |g|. Let
h" =hgomq)- Clearly the image off is a subset of that dfi, and to see why this is a match gf
observe that any atorfi(A”) of ' is homomorphically mapped Hy to h(A”) becausédY (f(x)) = h(x)
for all x sol (f(A”)) = h(A”).

To see why entailsq, observe thaf defines a homomorphism fromqto ¢, so that, for any match
H’ of g on an instanc#’, "’ o f is a match ofjon!’. O

Fix now aCQ g such thatqg| <k, and assume thét = g: leth be a match ofjin I. Let us show that
Chase(lo,ZU|D) ): g.

Let pt be the application fron' to | defined bypr : (a,g) — afor all ae dom(l) andg € G. ltis
clear thatpr is a homomorphism fronf to | that maps dortlg) x G to dont(lp). Hence, ifh involves
some element of dofly) x G, thenq has a match in involving an element of,. Hence, ad is
k-instance-soundChase(lo,Zuip) = 9. We accordingly assume thhatdoes not involve an element
of dom(lg) x G.

If we can show that there is a quegyof ACQ, |d| <k, such thaiy entailsq andl = ¢/, then, as
I is k-sound forACQ, this suffices to conclude th&hase(lo,Zuip) = o, henceChase(lp, Zuip) = 9
becausey entailsq. So by way of contradiction we assume tlopis a query with a matchhin I’
involving no element of dorflg) x G such that there is nq € ACQ, |q| < k, whereq entailsq and
| = d; and we take this counterexample qugrp be of minimal size.

In particular, this means we assume thas not in ACQ, otherwise we could take = g, because
| = q, as evidenced byroh. So consider a Berge cyce of g, of the formAy,Xx1,Az, X2, . .., An, Xn,
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where theA; are pairwise distinct atoms and tRepairwise distinct variables, and for alldi < n,

variablex; occurs at positiorg; of atomA; and positionp;..1 of Aj;1, with addition modulon := |C|.

We assume without loss of generality tipatz g; for all i. However, we do not assume thmeat 2: either
n> 2 andC is really a Berge cycle according to our previous definitimm = 1 and variable; occurs
in atomA; at positionsp; # g1, which corresponds to the case where there are multiple@oes of
the same variable in an atom.

For 1<i <n, we writeF = Ri(ai) the image ofz; by hin |’; by definition ofl’, becausd involves
no element ofy x G and hence no fact df x G, there is a facF/ = Ri(bi) of | andg; € G such that

a = (bij,gi-llj:'l) for Rl € Pos(R;). Now, for all 1< i <n, ?sh(xi) = a/iili = ipﬁl forall 1<i<n,
we deduce by projecting on the second componentg;hziy'!?ii =0is11- I,F)iiﬁ, so that, by collapsing the

equations of the cycle togethefﬁ/ 152yt |§g;; : (I,F)”;)*l : Ig'n4 (I l=e
As the girth ofG underA(l) is > 2k+ 1, and this product contains X 2k elements, we must have
either E,' = I,F)iiﬁ for somei, or I,F)‘i = |§; for somei. The second case is impossible because we assumed

thatp; # g for all 1 <i < n. Hence, necessarilgg = I'F:,iiﬁ, so in particulali’ = F/ ;. Hence the atoms

A # Ay, of g are mapped b to the same fadg’ = F/, ;. We conclude by Lemma G.1 that there is
a strictly smallery which entailsq and has a match iH which is a submatch df; so in particular it
involves no element of doffy) x G. Now, by minimality ofg, g cannot be a counterexample query.
So there ig)’ € ACQ, |d’| < k, whereq” entailsq andl = g”. Now, asq” entailsq’ andq entailsq,
thenq” entailsg, so this contradicts the fact thatvas a counterexample.

Hence, there is no such counterexample qugrgndl’ is indeedk-sound forCQ. This concludes

the proof.

G.2. Proof of Lemma VIII.8 (Lifting k-bounded simulations to the quotient)

Lemma VIII.8. Any k-bounded simulation from an instance | to an instariaefines a k-bounded
simulation from J/~ to I.

Fix the instancd and thek-bounded simulatiosim to an instancd’, and considet” := | /~.
We show that there is kbounded simulatiosim’ from I” to |, becausaim o sim’ would then be a
k-bounded simulation fronh” to I’, the desired claim. We defingm’(A) for all A€ 1” to bea for
any membea € A of the equivalence class, and show thatim’ thus defined is indeed kabounded
simulation.

We will show the stronger result thét’, A) < (I,a) for all A€ dom(l”) and for anya € A. We do
it by proving, by induction on & k' <k, that(1”,A) <y (l,a) for all Ac dom(l”) anda € A. The case
K' =0 is trivial. Hence, fix 0< k' <k, assume thatl”,A) <y _1 (I,a) for all A€ dom(l”) anda € A,
and show that this is also true fit. ChooseA € dom(1”), a € A, and show thatl”,A) <\ (I,a). To
do so, consider any faét = R(A) of I” such thatA, = A for someRP € Pos(R). LetF’ = R(&) be
a fact of| that is a preimage df by x~,, so thata, € Aq for all R € Pos(R). We haved,, € A and
acA, so thau‘a’p ~aholds inl. Hence, in particular we hayg, a’p) <k (1,a) becausé’ <k, so there
exists a fackF” = R(&") of | such that], = a and(l,a;) <y1 (I,a3) for all R € Pos(R). We show
thatF" is a witness fact foF. Indeed, we havel; = a. Let us now choos&? ¢ Pos(R) and show
that (1”,Aq) <k-1 (I,ag). By induction hypothesis, &&, € Aq, we have(l”,Aq) <k 1 (I,8;), and as
(I,ag) <w-1 (I,ag), by transitivity we have indeed”,Aq) <y 1 (l,a3). Hence, we have shown that
(|//7A) <K (I7a)'

By induction, we conclude th&t”, A) <, (1,a) for all A< dom(I”) anda € A, so that there is indeed
ak-bounded simulation frof” to I, which, as we have explained, implies the desired claim.
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G.3. Proof of the Cautiousness Lemma (Lemma VII1.10)

Lemma VIII.10 (Cautiousness)The superinstance of lg constructed by the Acyclic Universal Mod-
els Theorem (Theorem VII.1) is cautious for, .

Let % = (lt,sim) be the aligned superinstance lgfconstructed by the Acyclic Universal Models
Theorem (Theorem VII.1), and show that it is cautiousoy.

We first observe that the definition of cautiousness (Dediniti111.9) can be generalized to apply to
any function, and not just homomorphisms. In this casejng# = R(a) andF’ = R(a’), we define
cautiousness as requiring, instead¥) = h(F’), thath(a)) = h(a)) forall 1 <i <|R|,

Now, let x_, be the homomorphism frorGhase(lo, Zuip) to its quotient by~. (We distinguish it
from x~,, which is the homomorphism froa to It /~.) We first show that our construction ensures
the following:

Lemma G.2. |t is cautious forx’:k osim.

In other words, whenever two fadis= R(a) andF’ = R(b) overlap inl; and are not both ity, then,
for any positionRP € Pos(R), we havesim(ap) ~ sim(bp) in Chase(lg, Zuip).

Proof. In the proof of the Acyclic Universal Models Theorem (Theur®1l.1), I; is constructed by
first constructing an instandausing the Sufficiently Envelope-Saturated Solutions Psitjpm (Propo-
sition VII.5), and then completind using the Envelope-Thrifty Completion Proposition (Prsipo
tion VI1.10).

Thus, we first check that this claim holds forindeed, we check it for each instance constructed in
Lemma F.6, and the only overlapping facts in each such instanich are not iy are theh(F ), which
all map to~-equivalentsim-images. Hence, dsis the disjoint union of the instances constructed in
Lemma F.6, we deduce that the claim holdslfor

Second, in the proof of the Envelope-Thrifty Completion orsition, we only perform envelope-
thrifty chase steps. By their definition, whenever we createw factF, for a fact clasD, the only
elements of+, that can be part of an overlap betwdgnand an existing fact are envelope elements,
appearing at the one position at which they appe&i(?). Then, by the last condition in the definition
of envelopes (Definition VII1.2), we deduce that the two o&ppging facts achieve the same fact class,
which is what we wanted to show. O

We now want to show that two elementsdnhaving ~y-equivalentsim images inChase(lo, Zuip)
must themselves beg-equivalent inJk. We do it by showing that, in fact, for arsye dom(J), not only
do we havéls,a) <y (Chase(lo, Zuip ),sim(a)), but we also have the reverg€hase(lo, Zuip),sim(a)) <g
(It,a). In other words, intuitively, the facts of the chase must imérfored” in Is.

We define theancestry Ag of a factF in Chase(lg, Zyip) aslo plus the facts of the path in the chase
forest that leads t& (if F € g then A is justlp). Theancestry A, of a € dom(Chase(lp, Zyip)) is
that of the fact whera was introduced.

We now claim the following:

Lemma G.3. For any ac dom(lf), there is a homomorphism, from A 5) to I such that B(sim(a)) =
a.

Proof. We prove that this property holds & by first showing that it is true of the instance constructed
in the Sufficiently Envelope-Saturated Solutions Propasi{Proposition VII.5). This is clearly the
case because the instances created by Lemma F.6 are jgsttions of the chase where some elements
are identified.
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Second, we show that the property is maintained by the agmi&in of the Envelope-Thrifty Com-
pletion Proposition. We show the stronger claim that it isgerved by any thrifty chase step (Defi-
nition V.8). Consider a thrifty chase step where, in a sfate: (l1,sim;) of the construction of our
aligned superinstance, we applW# 1 : RP C S1to a factk; = R(a) to create a fadg, = S(b) and ob-
tain the aligned superinstandg= (I,sim;). Consider the chase witneBg = S(b’). By Lemma D.2,
b{] is the exported element betweBgp and its parent itChase(lo, Zyip ). So we know that for any+ q,
we haveAdy = Ap, L {Fw}.

We need to show that the property holds for théhat are fresh (otherwise we already know that the
property is satisfied, as adding more facts cannot violagtbperty inJ, on an element for which it
held inJ;). So, if none of thdy; are fresh, there is nothing to do. Otherwise, chdosgch thaty; is
fresh. By the definition of thrifty chase steps, we havessetb;) := b{. Becausey, = by is in dom(ly),
we know that there is a homomorphigg, from Agmm,) = Ap, to |1 such that we hava(by) = bg.
We extenchy, to the homomorphisrhy, from Ay = AUq LI{Rw} to |2 such thaty, (b)) = by, by setting
hp, (Fw) := Fn andhy, (F) := h(F) for any other of Ay; we can do this because, by definition of the
chase R, shares no element with the other facts,!qyi (that is, withAba), exceptb{] for which our
definition coincides with the existing image. This proves tkaim. O

We claim that this property implies the following:

Corollary G.4. For any ac dom(ls), there is a homomorphismy from Chase(lg, Zyip) to I such that
ha(sim(a)) = a.

Proof. Choosea € dom(lf) and let us construdt,. Let i, be the homomorphism fromima) to
Iy with h(sim(a)) = a whose existence was proved in Lemma G.3. Now start by selting- h},
and extendn to be the desired homomorphism, fact by fact, using the prppbat It = Zyp: for
any b € dom(Chase(lp,Zyip)) not in the domain of; but which was introduced in a faé& whose
exported elemert s in the current domain df), let us extend, to the elements df in the following
way: consider the parent faét of F and its match by, let T be theUID used to creat&’ from
F, and, becausk = 1, there must be a suitable faet' to extendh] to all elements of by setting
h,(F) := F”; this is consistent with the image ofpreviously defined irh,. Performing this process
allows us to define the desired homomorphigm O

Clearly this result implies:
Corollary G.5. For any ac dom(l;), we haveChase(lo, Zuip ),sim(a)) <k (Is,a).

Proof. Consider the restriction df, to the neighborhood at distankén the Gaifman graph afim(a).
O

We are now ready to show our desired claim:
Lemma G.6. For any ab € dom(ls), if sim(a) ~ sim(b) in Chase(lo, Zyip ), then a~¢ b in ;.

Proof. Fix a,b € dom(lf). We have(lf,a) < (Chase(lp,Zuip),sim(a)) becauseim is a k-bounded
simulation; we havéChase(lg, Zyip),sim(a)) <k (Chase(lo,Zuip),sim(b)) becausaim(a) ~ sim(b);
and we have Chase(lp, Zyip),sim(b)) <k (It,b) by Corollary G.5. By transitivity, we havfls,a) <
(It,b). The other direction is symmetric, so the desired clainofed. O

We prove Lemma VII1.8 immediately from Lemma G.2 and Lemm6.G.
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G.4. Proof of the Mixed Product Preservation Lemma (Lemma VII1.12)

Lemma VIII.12 (Mixed product preservation)For any UID or FD 1, if | |= 1 and | is cautious for h,
then(l,lo) "G = 1.

Write I := (1,10) ®" G.

If TisaUlD, the claim is immediate even without the cautiousness tmgsis. (In fact, the analogous
claim could even be proven for the simple product.) Indeedahya e dom(l) andRP € Pos(0), if
ac mro(l) then(a,g) € mwe(Im) for all g € G; conversely, ifa ¢ m=e(l) then(a,g) ¢ mre(Im) for all
g€ G. Hence, letting : R° C STbe aUID of Zyp, if there is(a,g) € dom(l,) such thata, g) € mre(Im)
but (a,9) ¢ M= (Im) thena e mre(1) buta ¢ 7 (1). Hence any violation of in I, implies the existence
of a violation oft in |, so we conclude becausé= 1.

Assume now that is aFD ¢ : R- — R'. Assume by contradiction that there are two fdgts= R(a)
andF, = R(b) in I, that violateg, i.e., we haveyy = by for all | € L, buta, # by. Write g = (v, ;)
andb; = (w;,g) for all R € Pos(R). ConsiderF] := R(v) andF} := R(w) the facts ofl that are the
images ofF; andF, by the homomorphism fronhy, to | that projects on the first component. As
| = 1, F{ andF; cannot violatep, so asvy = w; for all | € L, we must havey, = w;. Further, we have
o (F{) = Ty (Fy) for anylg € L; hence, a$ is cautious fom, eitherF[,F; € lp or h(F;) = h(F;).

In the first case, by definition of the mixed product, there faig@e G such thatfi = f andg =g
forall R € Pos(R). Thus, taking anyp € L, as we havey, = by,, we havef|, = g,,, so f = g, which
implies thatf, = g.. Hence, as; = w;, we have(v;, f;) = (W, g), contradicting the fact that, # by.

In the second case, &ss the identity orlg and maps\lo to 1"\l, h(F) = h(F,) implies that either
F{ andF; are both facts ofg or they are both facts df\lo; but we have already excluded the former

possibility in the first case, so we assume the latterALeeh(F;). By definition of the mixed product,
there aref,g € G such thatf; = f -Iih(F> andg =g- Iih(F) for all R Pos(R). Pickinglp € L, from
a, = by,, we deduce that - IITF) =g- IE)(F), which simplifies tof = g. Hence,f; = g- and we conclude

like in the first case.

G.5. Proof of the Mixed Product Homomorphism Lemma (Lemma VII1.13)

Lemma VIII.13 (Mixed product homomorphism)There is a homomorphism frofh o) ®"G to (I, 1g) ®
G which is the identity orylx G.

We use the homomorphisim: | — 1; to define the homomorphist from I, := (1,19) @" G to
lp:= (I,l0) ® G by W'((a,9)) := (h(a),9) for every(a,g) € dom(l) x G.

Consider a facEF = R(a) of I, with a = (v, g;) for all R € Pos(R). Consider its imagé’ = R(v)
by the homomorphism frory, to | obtained by projecting to the first component, and the infg§é)
of F’ by the homomorphisrh. Ash, is the identity andh ., maps tol;\lo, h(F') is a fact oflo iff
F’is. Now by definition of the simple product it is clear thgicontains the fact/(F) (it was created
in I, from h(F’) for the same choice af € G).

The fact thah is the identity orlp also ensures thét is the identity orlg x G.
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