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Open-world query answering is the problem of deciding, given a set of facts, conjunc-
tion of constraints, and query, whether the facts and constraints imply the query. This
amounts to reasoning over all instances that include the facts and satisfy the constraints.
We studyfinite open-world query answering(FQA), which assumes that the underlying
world is finite and thus only considers thefinite completions of the instance. The major
known decidable cases of FQA derive from the following: the guarded fragment of first-
order logic, which can express referential constraints (data in one place points to data in
another) but cannot express number restrictions such as functional dependencies; and the
guarded fragment with number restrictions but on a signature of arity only two. In this pa-
per, we give the first decidability results for FQA that combine both referential constraints
and number restrictions for arbitrary signatures: we show that, for unary inclusion depen-
dencies and functional dependencies, the finiteness assumption of FQA can be lifted up
to taking the finite implication closure of the dependencies[8]. Our result relies on new
techniques to construct finite universal models of such constraints, for any bound on the
maximal query size.

I. Introduction

A longstanding goal in computational logic is to design logical languages that are both decidable and
expressive. One approach is to distinguish integrity constraints and queries, and have separate lan-
guages for them. We would then seek decidability of thequery answering with constraintsproblem:
given a queryq, a conjunction of constraintsΣ, and a finite instanceI , determine which answers toq
are certain to hold over any instanceI ′ that extendsI and satisfiesΣ. This problem is often calledopen-
world query answering. It is fundamental for deciding query containment under constraints, querying
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in the presence of ontologies, or reformulating queries with constraints. Thus it has been the subject of
intense study within several communities for decades (e.g.[11, 5, 3, 15, 10]).

In many cases (e.g., in databases) the instancesI ′ of interest are the finite ones, and hence we can
definefinite open-world query answering(denoted here as FQA), which restricts the quantification
to finite extensionsI ′ of I . In contrast, byunrestricted open-world query answering(UQA) we refer
to the problem whereI ′ can be either finite or infinite. Generally the class of queries is taken to be
the conjunctive queries (CQs) — queries built up from relational atoms via existential quantification
and conjunction. We will restrict toCQs here, and thus omit explicit mention of the query language,
focusing on the constraint language.

A first constraint class known to have tractable open-world query answering problems areinclusion
dependencies(IDs) — constraints of the form, e.g.,∀xyz R(x,y,z)→∃vw S(z,v,w,y). The fundamental
results of Johnson and Klug [11] and Rosati [18] show that both FQA and UQA are decidable forID
and that, in fact, they coincide. When this happens, the constraints are said to befinitely controllable.
These results have been generalized by Bárány et al. [3] to a much richer class of constraints, the
guarded fragment of first-order logic.

However, those results do not cover a second important kind of constraints, namelynumber restric-
tions, which express, e.g., uniqueness. We represent them by the class of functional dependencies
(FDs) — of the form∀xy (R(x1, . . . ,xn)∧R(y1, . . . ,yn)∧

∧

i∈L xi = yi)→ xr = yr . The implication prob-
lem (does oneFD follow from a set of others) is decidable forFDs, and coincides with implication
restricted to finite instances [1]. Trivially, the FQA and UQA problems are also decidable forFDs
alone, and coincide.

Trying to combineIDs andFDs makes both UQA and FQA undecidable in general [5]. However,
UQA is known to be decidable when theFDs and theIDs arenon-conflicting[11, 5]. Intuitively, this
condition guarantees that theFDs can be ignored, as long as they hold on the initial instanceI , and
one can then solve the query answering problem by considering theIDs alone. But the non-conflicting
condition only applies to UQA and not to FQA. In fact it is known that even for very simple classes
of IDs andFDs, including non-conflicting classes, FQA and UQA do not coincide. Rosati [18] showed
that FQA is undecidable for non-conflictingIDs andFDs (indeed, forIDs and keys, which are less rich
thanFDs).

Thus a general question is to what extent these classes,FDs andIDs, can be combined while retaining
decidable FQA. The only decidable cases impose very severe requirements. For example, the constraint
class of “single KDs and FKs” introduced in [18] has decidable FQA, but such constraints cannot model,
e.g.,FDs which are not keys. Further, in contrast with the general case ofFDs andIDs, single KDs and
FKs are always finitely controllable, which limits their expressiveness. Indeed, we know of no tools to
deal with FQA for non-finitely-controllable constraints onrelations of arbitrary arity.

A second decidable case is where all relation symbols and allsubformulas of the constraints have
arity at most two. In this context, results of Pratt-Hartmann [15] imply the decidability of both FQA
and UQA for a very rich non-finitely-controllable sublogic of first-order logic. For some fragments of
this arity-two logic, the complexity of FQA has recently been isolated by Ibáñez-García et al. [10]. Yet
these results do not apply to arbitrary arity signatures.

The contribution of this paper is to provide the first result about finite query answering for non-
finitely-controllableIDs andFDs over relations of arbitrary arity.As the problem is undecidable in
general, we must naturally make some restriction. Our choice is to limit toUnary IDs (UIDs), which
export only one variable: for instance,∀xyz R(x,y,z) → ∃w S(w,x). UIDs andFDs are an interesting
class to study because they are not finitely controllable, and allow the modeling, e.g., of single-attribute
foreign keys, a common use case in database systems. The decidability of UQA for UIDs andFDs is
known because they are always non-conflicting. In this paper, we show that finite query answering is
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decidable forUIDs andFDs, and obtain tight bounds on its complexity.
The idea is toreduce the finite case to the unrestricted case, but in a more complex way than by

finite controllability. We make use of a technique originating in Cosmadakis et al. [8] to study finite
implication onUIDs andFDs: thefinite closureoperation which takes a conjunction ofUIDs andFDs
and determines exactly which additionalUIDs andFDs are implied over finite instances. Rosati [17]
and Ibáñez-García [10] make use of the closure operation in their study of constraint classes over
schemas of arity two. They show that finite query answering for a queryq, instanceI , and constraints
Σ reduces to unrestricted query answering forI , q, and the finite closureΣ′ of Σ. In other words, the
closure construction which is sound for implication is alsosound for query answering.

We show that the same general approach applies to arbitrary arity signatures, with constraints being
UIDs andFDs. Our main result thus reduces finite query answering to unrestricted query answering,
for UIDs andFDs in arbitrary arity:

Theorem I.1. For any finite instance I, conjunctive query q, and constraints Σ consisting ofUIDs
andFDs, the finite open-world query answering problem for I,q underΣ has the same answer as the
unrestricted open-world query answering problem for I,q under the finite closure ofΣ.

Using the known results about the complexity of UQA forUIDs, we isolate the precise complexity
of finite query answering with respect toUIDs andFDs, showing that it matches that of UQA:

Corollary I.2. The combined complexity of the finite open-world query answering problem forUIDs
andFDs isNP-complete, and it is PTIME in data complexity (that is, when the constraints and query
are fixed).

Our proof of Theorem I.1 is quite involved, since dealing with arbitrary arity models introduces
many new difficulties that do not arise in the arity-two case or in the case ofIDs in isolation. We
borrow and adapt a variety of techniques from prior work: using k-bounded simulations to preserve
small acyclicCQs [10], dealing withUIDs following a topological sort [8, 10], performing a chase that
reuses sufficiently similar elements [18], and taking the product with groups of large girth to blow up
cycles [14]. However, we must also develop some new infrastructure to deal with number restrictions
in an arbitrary arity setting: distinguishing between so-called dangerousandnon-dangerouspositions
when chasing, constructing realizations for relations in apiecewisemanner following theFDs, reusing
elements in acombinatorialway that shuffles them to avoid violating the higher-arityFDs, and a new
notion ofmixed productto blow cycles up while preserving fact overlaps to avoid violating the higher-
arity FDs.

Paper structure. The general scheme, presented in Section III, is to construct models ofUIDs and
FDs that are universal up to a certain query sizek, which we callk-universal models. We start with only
unaryFDs (UFDs) andacyclicCQs (ACQs), and by assuming that theUIDs andUFDs arereversible,
a condition inspired by the finite closure construction.

As a warm-up, Section IV proves the weakened result for a muchweaker notion thank-universality,
starting with binary signatures and generalizing to arbitrary arity. We extend the result tok-universality
in Section V, maintaining ak-bounded simulation to the chase, and performingthrifty chase steps that
reuse sufficiently similar elements without violatingUFDs. We also rely on a structural observation
about the chase underUIDs (Theorem V.11). Section VI eliminates the assumption thatdependencies
are reversible, by partitioning theUIDs into classes that are either reversible or trivial, and satisfying
successively each class following a certain ordering.

We then generalize our result to higher-arity (non-unary)FDs in Section VII. This requires us to
define a new notion of thrifty chase steps that apply to instances with many ways to reuse elements; the
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existence of these instances relies on a combinatorial construction of models ofFDs with a high number
of facts but a small domain (Theorem VII.7). Last, in SectionVIII, we apply a cycle blowup process
to the result of the previous constructions, to go from acyclic to arbitraryCQs through a product with
acyclic groups. The technique is inspired by Otto [14] but must be adapted to respectFDs.

Complete proofs of our results are provided in the appendix.

II. Background

Instances. We assume an infinite countable set ofelements(or values) a,b,c, . . . andvariable names
x,y,z, . . .. A schemaσ consists ofrelation names(e.g.,R) with anarity (e.g.,|R|) which we assume is
≥ 1. Following the unnamed perspective, the set ofpositionsof R is Pos(R) ··= {Ri | 1≤ i ≤ |R|}, and
we definePos(σ) ··=

⊔

R∈σ Pos(R). We identifyRi andi when no confusion can result.
A relationalinstance(or model) I of σ is a set ofground factsof the formR(a) whereR is a relation

name anda an|R|-tuple of values. Thesize|I | of an instanceI is its number of facts. Theactive domain
dom(I) of I is the set of the elements which appear inI . For any positionRi ∈ Pos(σ), we define the
projection πRi (I) of I to Ri as the set of the elements of dom(I) that occur at positionRi in I . For
L ⊆ Pos(R), the projectionπL(I) is a set of|L|-tuples defined analogously; for convenience, departing
from the unnamed perspective, we index those tuples by the positions ofL. A superinstanceof I is a
(not necessarily finite) instanceI ′ such thatI ⊆ I ′.

A homomorphismfrom an instanceI to an instanceI ′ is a mappingh : dom(I)→ dom(I ′) such that,
for every factF = R(a) of I , the facth(F) ··= R(h(a1), . . . ,h(a|R|)) is in I ′.

Constraints. We consider integrity constraints (ordependencies) which are special sentences of first-
order logic. As usual in the relational setting, we do not allow function symbols. The definition of an
instanceI satisfying a constraintΣ, written I |= Σ, is standard.

An inclusion dependencyID is a sentence of the formτ : ∀xR(x1, . . . ,xn)→∃yS(z1, . . . ,zm), where
z ⊆ x∪ y and no variable occurs twice inz. Theexported variablesare the variables ofx that occur
in z, and thearity of the dependency is the number of such variables. This work only studiesunary
inclusion dependencies(UIDs) which are theIDs with arity 1. If τ is aUID, we writeτ asRp ⊆ Sq,
whereRp andSq are the positions ofR(x) andS(z) where the exported variable occurs. For instance,
theUID ∀xyR(x,y)→∃zS(y,z) is writtenR2 ⊆ S1. We assume without loss of generality that there are
no trivial UIDs of the formRp ⊆ Rp.

We say that a conjunctionΣUID of UIDs is transitively closedif it is closed under implication by the
transitivity rule: if Rp ⊆Sq andSq ⊆ Tr are inΣUID , then so isRp ⊆ T r unless it is trivial. The transitive
closure ofΣUID can clearly be computed in PTIME inΣUID , and it contains all non-trivialUIDs implied
by ΣUID over finite or unrestricted instances [7]. We say aUID τ : Rp ⊆ Sq is reversiblerelative toΣUID

if both τ and itsreverseτ−1 ··= Sq ⊆ Rp are inΣUID .
A functional dependencyFD is a sentence of the formφ :∀xy(R(x1, . . . ,xn)∧R(y1, . . . ,yn)∧

∧

Rl∈L xl =
yl ) → xr = yr , whereL ⊆ Pos(R) andRr ∈ Pos(R). For brevity, we writeφ asRL → Rr . We callφ a
unary functional dependencyUFD if |L|= 1; otherwise it ishigher-arity. For instance,∀xx′yy′ R(x,x′)∧
R(y,y′)∧ x′ = y′ → x= y is aUFD, and we write itR2 → R1. We assume that|L| > 0, i.e., we do not
allow nonstandard or degenerateFDs. We callφ trivial if Rr ∈ RL, in which caseφ always holds. Two
factsR(a) andR(b) violatea non-trivialFD φ if πL(a) = πL(b) but ar 6= br .

The key dependencyκ : RL → R, for L ⊆ Pos(R), is the conjunction ofFDs RL → Rr for all Rr ∈
Pos(R); it is unary if |L|= 1. If κ holds, we callL a key(or unary key) of R.

4



Queries. An atom A= R(t) consists of a relation nameR and a|R|-tuple t of variables or constants.
A conjunctive queryCQ is an existentially quantified conjunction of atoms. In thispaper we focus for
simplicity on Boolean queries (queries without free variables), but all our results hold for non-Boolean
queries as well, by the standard method of enumerating the assignments. Thesize|q| of aCQ q is its
number of atoms.

A Berge cyclein a BooleanCQ q is a sequenceA1,x1,A2,x2, . . . ,An,xn with n≥ 2, where theAi are
pairwise distinct atoms ofq, thexi are pairwise distinct variables ofq, andxi occurs inAi andAi+1 for
1≤ i ≤ n (with addition modulon, soxn occurs inA1). We callq acyclicif q has no Berge cycle and if
no variable ofq occurs more than once in the same atom. We writeACQ for the class of acyclicCQs.

A BooleanCQ q holdsin an instanceI exactly when there is a homomorphismh from the atoms ofq
to I such thath is the identity on the constants ofq (we call this ahomomorphism from q to I). The
image ofh is called amatchof q in I .

QA problems. We define theunrestricted open-world query answeringproblem (UQA) as follows:
given a finite instanceI , a conjunction of constraintsΣ, and a BooleanCQ q, decide whether there is a
superinstance ofI that satisfiesΣ and violatesq. If there is none, we say thatI andΣ entail qand write
(I ,Σ) |=unr q.

This work focuses on thefinite query answering problem(FQA), which is the variant of open-world
query answering where we require the counterexample superinstance to be finite; if none exists, we
write (I ,Σ) |=fin q. Of course(I ,Σ) |=unr q implies(I ,Σ) |=fin q. We say a conjunction of constraintsΣ
is finitely controllableif FQA and UQA coincide: for every finite instanceI and every BooleanCQ q,
(I ,Σ) |=unr q iff (I ,Σ) |=fin q.

The combined complexityof the UQA and FQA problems, for a fixed class of constraints, is the
complexity of deciding it when all ofI , Σ (in the constraint class) andq are given as input. Thedata
complexityis defined by assuming thatΣ andq are fixed, and onlyI is given as input.

Chase. We say that a superinstanceI ′ of an instanceI is universal for constraintsΣ if I ′ |= Σ and
if for any CQ q, I ′ |= q iff (I ,Σ) |=unr q. We now recall the definition of thechase[1, 13], a standard
construction of (generally infinite) universal superinstances. We assume that we have fixed an infinite
setN of nulls which is disjoint from dom(I). We only define the chase for transitively closedUIDs,
which we call theUID chase.

We say that a factFa = R(a) of an instanceI is an active factfor a UID τ : Rp ⊆ Sq if, writing
τ : ∀xR(x) → ∃yS(z), there is a homomorphism fromR(x) to Fa but no such homomorphism can
be extended to a homomorphism from{R(x),S(z)} to I . In this case we say thatap wantsto occur
at positionSq in I , written ap ∈ Wants(I ,Sq), and that wewant to apply theUID τ to ap, written
ap ∈Wants(I ,τ). Note thatWants(I ,τ) = πRp(I)\πSq(I).

The result of achase stepon the active factFa for τ in I (we call thisapplying τ to Fa) is the
superinstanceI ′ of I obtained by adding a new factFn = S(b) defined as follows: we setbq ··= ap,
which we call theexported element(andSq the exported positionof Fn), and use fresh nulls fromN
to instantiate the existentially quantified variables ofτ and completeFn; we say the corresponding
elements areintroducedatFn. This ensures thatFa is no longer an active fact inI ′ for τ .

A chase roundof a conjunctionΣUID of UIDs onI is the result of applying simultaneous chase steps
on all active facts for allUIDs of ΣUID , using distinct fresh elements. TheUID chaseChase(I ,ΣUID)
of I by ΣUID is the (generally infinite) fixpoint of applying chase rounds. It is a universal superinstance
for ΣUID [9].

As we are chasing by transitively closedUIDs, if we perform thecore chase[13] rather than the
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UID chase defined above, we can ensure the followingUnique Witness Property: for any element
a ∈ dom(Chase(I ,ΣUID)) and positionRp of σ , if two different facts ofChase(I ,ΣUID) containa at
position Rp, then they are both facts ofI . In our context, however, the core chase matches theUID

chase defined above, except at the first round. Thus, modulo the first round, byChase(I ,ΣUID) we refer
to theUID chase, which has the Unique Witness Property. See Appendix Afor details.

Finite closure. Rosati [16, 18] showed that, while conjunctions ofIDs are finitely controllable, even
conjunctions ofUIDs andFDs may not be. However, Cosmadakis et al. [8] showed how to decide in
PTIME thefinite implicationproblem forUIDs andFDs: given a conjunctionΣ of such dependencies,
decide whether aUID or FD is implied byΣ over finite instances. Thefinite closureof Σ is the set of
theUIDs andFDs thus implied byΣ in the finite.

Rosati [17] later showed that the finite closure could be usedto reduce UQA to FQA for some
constraints on relations of arity at most two. Following thesame idea, we say that a conjunction of
constraintsΣ is finitely controllable up to finite closureif for every finite instanceI , and BooleanCQ q,
(I ,Σ) |=fin q iff (I ,Σ′) |=unr q, whereΣ′ is the finite closure ofΣ. This implies that we can reduce FQA
to UQA, even if finite controllability does not hold.

III. Main Result and Overall Approach

We study open-world query answering forFDs andUIDs. For unrestricted query answering (UQA),
the following is already known, from bounds on UQA forUIDs:

Proposition III.1. UQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

However, for thefinite case, even the decidability of FQA forFDs andUIDs is not known. Here is
our main result, which is proved in the rest of this paper:

Theorem III.2 (Main theorem). Conjunctions ofFDs andUIDs are finitely controllable up to finite
closure.

From these two results, and an efficient computation of the closure, we deduce that the complexity
of FQA matches that of UQA (see Appendix B.3):

Corollary III.3. FQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

III.1. Rephrasing with universal models

We prove the main theorem via the notions ofk-soundandk-universal instances.

Definition III.4. For k∈ N, we say that a superinstance I of an instance I0 is k-sound for constraints
Σ (and for I0) if for every constant-freeCQ q of size≤ k such that I|= q, we have(I0,Σ) |=unr q. We say
it is k-universal if the converse also holds: I|= q whenever(I0,Σ) |=unr q.

The assumption thatq is constant-free is without loss of generality: we can always assume that, for
each constantc ∈ dom(I0), a factPc(c) has been added toI0 for a fresh unary relationPc, andc was
replaced inq by a existentially quantified variablexc with the atomPc(xc) added toq. So for simplicity
we assume from now on that queries are constant-free.

Theorem III.2 is implied by the following (see Appendix B.2):
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Theorem III.5 (Universal models). For every conjunctionΣ of FDs ΣFD andUIDs ΣUID closed under
finite implication, for every finite instance I0 that satisfiesΣFD, for any k∈ N, there exists a finite
superinstance I of I0 that is k-sound forΣ and satisfiesΣ (and hence is k-universal).

The fact that such anI is k-universal is because any superinstance ofI0 that satisfiesΣ must satisfy
all CQsq such that(I0,Σ) |=unr q, by definition of|=unr.

We now fix the conjunctionΣ of FDs ΣFD andUIDs ΣUID . We assume thatΣ is closed under finite
implication; in particular,ΣFD andΣUID in isolation are closed under implication, which implies that
ΣUID is transitively closed. We also fix the instanceI0 such thatI0 |= ΣFD, and the maximal query size
k∈ N.

Our goal in the rest of this paper is to construct the finitek-sound superinstance ofI0 that satisfiesΣ,
thus proving the Universal Models Theorem and hence the MainTheorem.

III.2. Restricting to ACQs, UFDs, and reversible constraints

We first prove the Universal Models Theorem for a restricted class of queries and dependencies, which
we now define. We will lift these restrictions later.

First, we defineΣUFD to be theunaryFDs of ΣFD, and writeΣU ··= ΣUFD∧ΣUID . Note that, as we
assumed thatΣ is closed under finite implication forUFDs andUIDs, the characterization of [8] implies
thatΣU also is. We will first construct ak-sound superinstance that only satisfiesΣU; in Section VII we
will show how to adapt the process to also satisfyΣ.

Second, we will first construct a superinstance that isk-sound only for acyclic Boolean queries; in
Section VIII we will show how to make the resulting superinstance sufficiently acyclic to be sound for
cyclic queries as well.

Hence, in Sections IV, V and VI, we prove the following weakening of the Universal Models Theo-
rem. The restrictions will be lifted in Sections VII and VIII.

Theorem III.6 (Acyclic unary universal models). There exists a finite superinstance of I0 that satis-
fiesΣU and is k-sound forΣU andACQ (and hence k-universal forΣU andACQ).

To prove the Acyclic Unary Universal Models Theorem, in Sections IV and V, we will assume the
following condition on the structure of the dependencies:

reversible: The following holds aboutΣU:
• all UIDs in ΣUID arereversible (remember this means that the reverseτ−1 of anyτ ∈ ΣUID

is also inΣUID);
• for any positionsRp andRq occurring inUIDs of ΣUID , if Rp → Rq is in ΣUFD then so is

Rq → Rp.

Intuitively, assumptionreversible is connected to the finite closure characterization of [8], which adds
to ΣU the reverses of anyUIDs andUFDs that form a certain cyclic pattern.

Working under assumptionreversible, Section IV proves an even weaker version of the Acyclic
Unary Universal Models Theorem, which replacesk-soundness by weak-soundness; Section V proves
the actual theorem. Assumptionreversible is lifted in Section VI to conclude the proof.

IV. Weak-Soundness and Reversible UIDs

The goal of this section is to prove the Acyclic Unary Universal Models Theorem (Theorem III.6) under
assumptionreversible, replacingk-soundness byweak-soundness.
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Definition IV.1. A superinstance I′ of an instance I isweakly-sound if the following holds:
• for any a∈ dom(I) and Rp ∈ Pos(σ), if a ∈ πRp(I ′), then either a∈ πRp(I) or a∈Wants(I ,Rp);
• for any a∈ dom(I ′)\dom(I) and Rp,Sq ∈ Pos(σ), if a∈ πRp(I ′) and a∈ πSq(I ′) then Rp = Sq or

Rp ⊆ Sq is in ΣUID .

Intuitively, a superinstance is weakly-sound if existing elements were only added to positions where
they wanted to appear, and new elements only occur at positions which are connected inΣUID . This
section shows the following:

Proposition IV.2 (Acyclic unary weakly-sound models). Under assumptionreversible, there exists a
finite superinstance of I0 that satisfiesΣU and is weakly-sound.

The proposition itself will not be reused in the sequel, but the proof introduces some useful concepts
to prove the actual Acyclic Unary Universal Models Theorem in Section V.

IV.1. Binary signatures and balanced instances

For simplicity, we first focus on a simplified case with a binary signature, making the following as-
sumption that will be lifted later in this section:

binary: all relations have arity 2 andΣUFD contains theUFDsR1 →R2 andR2 → R1 for any relationR.

Our approach to construct a weakly-sound superinstanceI ′ of I0 that satisfiesΣU is then to perform
a completion processthat adds new (binary) facts to connect together elements. As all possibleUFDs
hold, I ′ can only contain a new factR(a1,b2) if, for i ∈ {1,2}, ai /∈ πRi (I0), so that ifai ∈ dom(I0) then
ai ∈Wants(I0,Ri) by weak soundness.

One easy situation is whenI0 is balanced: for every relationR, we can construct a bijection between
the elements that want to be inR1 and those that want to be inR2:

Definition IV.3. An instance I isbalanced if, for every two positions Rp and Rq such that Rp → Rq and
Rq → Rp are in ΣUFD, we have|Wants(I ,Rp)|= |Wants(I ,Rq)|.

If I0 is balanced, we can show the Acyclic Unary Weakly-Sound Models Proposition under assump-
tion binary, simply by pairing together elements, without adding any new ones:

Proposition IV.4. Assumingbinary and reversible, any balanced finite instance I satisfyingΣUFD has
a finite weakly-sound superinstance I′ that satisfiesΣU, with dom(I ′) = dom(I).

However, our instanceI0 may not be balanced. The idea is then to balance it by adding “helper”
elements and assigning them to positions, as the following example shows:

Example IV.5. Consider three binary relations R, S, T , with theUIDs R2 ⊆ S1, S2 ⊆ T1, T2 ⊆ R1

and their reverses, and theFDs prescribed by assumptionbinary. Consider I0 ··= {R(a,b)}. We have
a ∈ Wants(I0,T2) and b∈ Wants(I0,S1); howeverWants(I0,S2) = Wants(I0,T1) = /0, so I0 is not
balanced.

Still, we can construct the weakly-sound superinstance I··= {R(a,b),S(b,c),T(c,a)} that satisfies
the constraints. Intuitively, we have added a “helper” element c and “assigned” it to the positions S1

and T2, which are connected by theUIDs.

We now formalize this idea of constructing weakly-sound superinstances where the domain is aug-
mented withhelper elements. We first need to understand at which positions the helpers can appear to
avoid violating weak-soundness:
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Definition IV.6. For any two positions Rp and Sq, we write Rp ∼ID Sq when Rp = Sq or when Rp ⊆ Sq,
and hence Sq ⊆ Rp by assumptionreversible, are inΣUID .

As ΣUID is transitively closed,∼ID is an equivalence relation. Our idea to construct weakly-sound
superinstances is thus to first decide on the helpers that we want to add, and the∼ID-class to which
we want to assign them, following the definition of weak-soundness. We represent this choice as a
partially-specified superinstance, or pssinstance:

Definition IV.7. A pssinstance of an instance I is a triple P= (I ,H,λ ) whereH is a finite set ofhelpers
andλ maps each h∈H to an∼ID-classλ (h).

We defineWants(P,Rp) ··= Wants(I ,Rp)⊔{h∈ H | Rp ∈ λ (h)}. This allows us to talk of P being
balanced following Definition IV.3.

A superinstance I′ of I is a realization of P if dom(I ′) = dom(I)⊔H, and, for any fact R(a) of I′\I
and Rp ∈ Pos(R), we have ap ∈Wants(P,Rp).

Example IV.8. In Example IV.5, a pssinstance of I0 is P ··= (I0,{c},λ ) whereλ (c) ··= {S1,T2}, and I
is a realization of P.

It is always possible to balance an instance by adding helpers:

Lemma IV.9 (Balancing). For any finite instance I, if I satisfiesΣUFD then it has a balanced pssin-
stance.

From there, we can construct realizations like we constructed superinstances in Lemma IV.4.

Lemma IV.10 (Binary realizations). For any balanced pssinstance P of an instance I that satisfies
ΣUFD, we can construct a realization of P that satisfiesΣU.

We then observe that realizations are weakly-sound superinstances ofI0.

Lemma IV.11 (Binary realizations are completions). If I ′ is a realization of a pssinstance of I then it
is a weakly-sound superinstance of I.

We have thus proved the Acyclic Unary Weakly-Sound Models Proposition under assumptionsbinary

andreversible, using the completion process formed by combining the threeabove lemmas.

IV.2. Arbitrary arity and piecewise realizations

We now lift assumptionbinary (but retain assumptionreversible). We show how to generalize the
previous constructions to the arbitrary arity case. Contrary to thebinary situation, we will see later that
the resulting completion process needs to assume that a certain saturationprocess has been applied
to I0 beforehand.

The definition of balanced instances (Definition IV.3) generalizes to arbitrary arity, and we can show
that the Balancing Lemma (Lemma IV.9) still holds. We keep the definition of pssinstance (Defini-
tion IV.7) but need to change the notion of realization. We replace it bypiecewise realizations, which
are defined on subsets of positions that are connected inΣUFD.

Definition IV.12. For any two positions Rp and Rq, we write Rp ↔FUN Rq whenever Rp → Rq and
Rq → Rp are in ΣUFD.

By transitivity of ΣUFD, ↔FUN is clearly an equivalence relation. We number the↔FUN-classes of
Pos(σ) asΠ1, . . . ,Πn and definepiecewise instancesby their projections to theΠi:
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Definition IV.13. A piecewise instance is an n-tuple PI= (K1, . . . ,Kn), where each Ki is a set of|Πi|-
tuples, indexed byΠi for convenience. Thedomain of PI isdom(PI) ··=

⋃

i dom(Ki). For 1≤ i ≤ n and
Rp ∈ Πi, we writeπRp(PI) ··= πRp(Ki).

We use this to definepiecewise realizationsof pssinstances:

Definition IV.14. A piecewise instance PI= (K1, . . . ,Kn) is a piecewise realization of the pssinstance
P= (I ,H,λ ) if:

• πΠi (I)⊆ Ki for all 1≤ i ≤ n,
• dom(PI) = dom(I)⊔H,
• for all 1≤ i ≤ n, for all Rp ∈ Πi, for every tuplea ∈ Ki\πΠi (I), we have ap ∈Wants(P,Rp).

In order to generalize the Binary Realizations Lemma (LemmaIV.10), we need to talk of a piecewise
instancePI “satisfying” ΣU. ForΣUFD, we require thatPI respects theUFDs within each↔FUN-class.
For ΣUID , we define it directly from the projections ofPI.

Definition IV.15. A piecewise instance PI isΣUFD-compliant if, for all 1 ≤ i ≤ n, there are no two
tuplesa 6= b in Ki such that ap = bp for some Rp ∈ Πi.

PI is ΣUID-compliant if Wants(PI,τ) ··= πRp(PI)\πSq(PI) is empty for allτ ∈ ΣUID .
PI is ΣU-compliant if it is ΣUFD- andΣUID-compliant.

We can then generalize the Binary Realizations Lemma:

Lemma IV.16 (Realizations). For any balanced pssinstance P of an instance I that satisfiesΣUFD, we
can construct aΣU-compliant piecewise realization of P.

Example IV.17. Consider a4-ary relation R and theUIDsτ : R1 ⊆ R2, τ ′ : R3 ⊆ R4 and their reverses,
and theUFDsφ : R1 → R2, φ ′ : R3 → R4 and their reverses. We haveΠ1 = {R1,R2} andΠ2 = {R3,R4}.
Consider I0 ··= {R(a,b,c,d)}, which is balanced, and the balanced pssinstance P··= (I0, /0,λ ), whereλ
is the empty function. AΣU-compliant piecewise realization of P is PI··=({(a,b),(b,a)},{(c,d), (d,c)}).

We now transform theΣU-compliant piecewise realizationPI into a weakly-sound superinstance,
generalizing the “Binary Realizations Are Completions” Lemma (Lemma IV.11), and completing the
description of our completion process. The idea is to expandeach tuplet of eachKi to an entire factFt

of the corresponding relation.
However, to fill the other positions ofFt, we will need to reuse existing elements ofI0. For this, we

wantI0 to contain someR-fact for every relationR that occurs inChase(I0,ΣUID).

Definition IV.18. A relation R isachieved (by I andΣUID) if there is some R-fact inChase(I ,ΣUID).
A superinstance I′ of an instance I isrelation-saturated (for ΣUID) if every achieved relation (by I

andΣUID) occurs in I′.

Example IV.19. Consider two binary relations R and T and a unary relation S, theUIDs τ : S1 ⊆ R1,
τ ′ : R2 ⊆ T1 and their reverses, noUFDs, and the non-relation-saturated instance I0 ··= {S(a)} which
is trivially balanced.

P ··= (I0, /0,λ ), with λ the empty function, is a pssinstance of I, and PI··= ({(a)}, /0,{(a)}, /0, /0),
whereΠ1 and Π3 are the↔FUN-classes of R1 and S1, is a ΣU-compliant piecewise realization of P.
However, we cannot easily complete PI to a superinstance of I0 satisfyingτ andτ ′, because, to create
the fact R(a,•), we need to create an element to fill position R2, and this would introduce a violation
of τ ′. Intuitively, this is because I0 is not relation-saturated.

Consider instead the instance I1 ··= I0⊔{S(c),R(c,d),T(d)}. We can complete I1 to satisfyτ andτ ′

by adding the fact R(a,d), reusing the element d to fill position R2.

10



Clearly, initial chasing onI0 ensures relation-saturation:

Lemma IV.20 (Relation-saturated solutions). The result of performing sufficiently many chase rounds
on any instance I is relation-saturated.

Relation-saturation ensures that we can reuse existing elements when completingPI. This allows us
to perform the last step of the completion process:

Lemma IV.21 (Using realizations to get completions). For any finite relation-saturated instance I that
satisfiesΣUFD, from aΣU-compliant piecewise realization PI of a pssinstance of I, we can construct a
finite weakly-sound superinstance of I that satisfiesΣU.

We can now prove the Acyclic Unary Weakly-Sound Models Proposition. Consider our initial finite
instanceI0, that satisfiesΣUFD, and chase it to a finite relation-saturated superinstanceI ′0 using the
Relation-Saturated Solutions Lemma. By the Unique WitnessProperty,I ′0 still satisfiesΣUFD, and it is
clearly a weakly-sound superinstance ofI0.

Now, perform the completion process: construct a balanced pssinstanceP of I ′0 using the Balancing
Lemma (Lemma IV.9), and a finiteΣU-compliant piecewise realizationPI of P by the Realizations
Lemma (Lemma IV.16). Then, use the realizationPI with Lemma IV.21 to construct the finite weakly-
sound superinstanceI of I ′0 that satisfiesΣU. I is clearly also a weakly-sound superinstance ofI0, so the
result is proven.

V. k-Soundness and Reversible UIDs

We now move from weak-soundness tok-soundness, to prove the Acyclic Unary Universal Models
Theorem (Theorem III.6), still making assumptionreversible.

We first introduce the notion ofaligned superinstancesthat we use to maintaink-soundness, and
give the saturation process that generalizes relation-saturation. We then define a notion ofthrifty chase
steps, and a completion process that uses these chase steps to repair UID violations in the instance.

V.1. Aligned superinstances and fact-saturation

We ensurek-soundness by maintaining ak-bounded simulationfrom our superinstance ofI0 to the
chaseChase(I0,ΣUID). Indeed,Chase(I0,ΣUID) is a universal model forΣUID , and it satisfiesΣFD (by
the Unique Witness Property, and becauseI0 does). Hence, it is in particulark-sound forΣ. Now, as
acyclic queries of size≤ k are preserved throughk-bounded simulations, superinstances ofI0 with a
k-bounded simulation toChase(I0,ΣUID) are indeedk-sound forACQ.

Definition V.1. For I, I ′ two instances, a∈ dom(I), b∈ dom(I ′), and n∈N, we write(I ,a)≤n (I ′,b) if,
for any fact R(a) of I with ap = a for some Rp ∈ Pos(R), there exists a fact R(b) of I′ such that bp = b,
and(I ,aq)≤n−1 (I ′,bq) for all Rq ∈ Pos(R). The base case(I ,a)≤0 (I ′,b) always holds.

An n-bounded simulation from I to I′ is a mappingsim such that for all a∈ dom(I), (I ,a) ≤n

(I ′,sim(a)).
We write a≃n b for a,b ∈ dom(I) if both (I ,a) ≤n (I ,b) and (I ,b) ≤n (I ,a); this is an equivalence

relation ondom(I).

Lemma V.2. For any instance I andACQ q of size≤ n such that I|= q, if there is an n-bounded
simulation from I to I′, then I′ |= q.
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We accordingly give a name to superinstances ofI0 that have ak-bounded simulation to the chase.
For convenience, we also require them to be finite and satisfyΣUFD. For technical reasons we require
that the simulation is the identity onI0, that it does not map other elements toI0, and that elements
occur in the superinstance at least at the position where their sim-image was introduced in the chase:

Definition V.3. Analigned superinstance J= (I ,sim) of I0 is a finite superinstance I of I0 that satisfies
ΣUFD, and a k-bounded simulationsim from I to Chase(I0,ΣUID) such thatsim|I0 is the identity and
sim|(I\I0) maps toChase(I0,ΣUID)\I0.

Further, for any a∈ dom(I)\dom(I0), letting Rp be the position wheresim(a) was introduced in
Chase(I0,ΣUID), we require that a∈ πRp(I).

Before we perform thecompletion processthat allows us to satisfyΣUID , we need to perform a
saturation process, like relation-saturation in the previous section. Instead of achieving all relations,
we want the aligned superinstance to achieve allfact classes:

Definition V.4. A fact class is a pair (Rp,C) of a position Rp ∈ Pos(σ) and a|R|-tuple of≃k-classes
of elements ofChase(I0,ΣUID). The dependency on k is omitted for brevity.

Thefact class of a fact F= R(a) of Chase(I0,ΣUID)\I0 is (Rp,C), where ap is the exported element
of F and Ci is the≃k-class of ai in Chase(I0,ΣUID) for all Ri ∈ Pos(R).

A fact class(Rp,C) is achieved if it is the fact class of some fact ofChase(I0,ΣUID)\I0. We write
AFactCl for the set of all achieved fact classes (for brevity, the dependence on I0, ΣUID , and k is omitted
from notation).

An aligned superinstance J= (I ,sim) is fact-saturated if, for any achieved fact class D= (Rp,C) in
AFactCl, there is a fact FD = R(a) of I\I0 such thatsim(ai) ∈Ci for all Ri ∈ Pos(R). We say that FD
achieves D in J.

Lemma V.5. For any initial instance I0, setΣUID of UIDs, and k∈ N, AFactCl is finite.

We now define our saturation process: chaseI0 until all fact classes are achieved, which is possible in
finitely many rounds thanks to the above lemma. The result is easily seen to be a fact-saturated aligned
superinstance:

Lemma V.6 (Fact-saturated solutions). The result I of performing sufficiently many chase rounds on I0

is such that J0 = (I , id) is a fact-saturated aligned superinstance of I0.

We thus obtain a fact-saturated aligned superinstanceJ0 of I0, which we now want to complete to
one that satisfiesΣUID .

V.2. Fact-thrifty completion

Our general method to repairUID violations inJ0 is to apply a form of chase step on aligned superin-
stances, which may reuse elements:thrifty chase steps. To define them, we first distinguishdangerous
andnon-dangerouspositions, which determine how we may reuse elements when chasing.

Definition V.7. We say a position Sr ∈ Pos(σ) is dangerous for a position Sq 6= Sr if Sr → Sq is
in ΣUFD, and write Sr ∈ Dng(Sq). Otherwise, Sr is non-dangerous, written Sr ∈ NDng(Sq). Note that
{Sq}⊔Dng(Sq)⊔NDng(Sq) = Pos(S).

Definition V.8 (Thrifty chase steps). Let J= (I ,sim) be an aligned superinstance of I0, let τ : Rp ⊆ Sq

be aUID of ΣUID , and let Fa = R(a) be an active fact forτ in I.
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Becausesim is a 1-bounded simulation,sim(ap) ∈ πRp(Chase(I0,ΣUID)), so, because the chase sat-
isfiesτ , there is a fact Fw = S(b′) in Chase(I0,ΣUID) with b′q = sim(ap); we call Fw thechase witness.

Applying athrifty chase step on Fa for τ yields an aligned superinstance J′ = (I ′,sim′). We define
I ′ as I plus a new fact Fn = S(b), where bq = ap and the br for Sr 6= Sq may be elements ofdom(J) or
fresh elements. We require that:

• for Sr ∈ NDng(Sq), br ∈ πSr (J) (so they are not fresh)
• for Sr ∈ Dng(Sq), br /∈ πSr (J) (so they may be fresh)
• for Sr 6= Sq, if br is not fresh thensim(br )≃k b′r .

We definesim′ by extendingsim to dom(J′): we setsim′(br) ··= b′r whenever br is fresh.
A fact-thrifty chase step is a thrifty chase step where we choose one fact Fr = S(c) of J\I0 that

achieves the fact class of Fw (that is, sim(ci) ≃k b′i for all i), and use Fr to define br ··= cr for all
Sr ∈ NDng(Sq).

The chase step isfresh if br is fresh for all Sr ∈ Dng(Sq).

Thrifty chase steps may in general violateΣUFD, but fact-thrifty chase steps never do. For this reason,
we will only use fact-thrifty chase steps in this section. The point of working with fact-saturated aligned
superinstances is that we can ensure that a suitableFr always exists. We thus claim:

Lemma V.9 (Fact-thrifty chase steps). For any fact-saturated aligned superinstance J, the resultJ′ of
a fact-thrifty chase step on J is indeed a well-defined aligned superinstance where the former active
fact Fa is no longer active.

We now claim that we can expand fact-saturated superinstances to satisfyΣUID , using fact-thrifty
chase steps:

Proposition V.10(Fact-thrifty completion). Under assumptionreversible, for any fact-saturated aligned
superinstance J of I0, we can expand J by fact-thrifty chase steps to a fact-saturated aligned superin-
stance J′ of I0 that satisfiesΣUID .

This proposition allows us to prove the Acyclic Unary Universal Models Theorem (Theorem III.6)
under assumptionreversible. Indeed, consider the fact-saturated aligned superinstance J0 produced by
the Fact-Saturated Solutions Lemma (Lemma V.6). Applying the Fact-Thrifty Completion Proposition
to J0 yields a fact-saturated aligned superinstanceJ′, which is a finitek-sound superinstance ofI0 that
satisfiesΣUFD and satisfiesΣUID .

The rest of this section sketches the proof of the Proposition (see Appendix D.5 for the full proof).
The idea is to construct, as in Section IV, a balanced pssinstanceP of the input aligned superinstanceJ,
and aΣU-compliant piecewise realizationPI of P. Now, instead of completing the facts ofPI to add
them directly toJ, we add them one by one, using fact-thrifty chase steps, to ensure that alignedness is
preserved.

The only problematic point is thatPI could connect together elements that have dissimilarsim-
images, violating alignedness. However, we show that, up tochasing fork+1 rounds on the initialJ
with fresh fact-thrifty chase steps before constructingP, we can ensure what we callk-reversibility: all
elements that want to be at some positionRp in J have asim-image whose≃k-class only depends onRp.
Once we have ensured this, we can essentially stop worrying about sim-images, because respecting
weak-soundness, asPI does, is sufficient.

The reason whyk+1 chasing rounds suffice to ensure this is by a general structural observation on
theUID chase: when the lastkUIDs applied to an elementa of Chase(I0,ΣUID) are reversible (as is the
case here, by assumptionreversible), the≃k-class ofa only depends on the∼ID-class of the position
where it was introduced, and not on its exact history. Formally:
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Theorem V.11(Chase locality theorem). For any instance I0, transitively closed set ofUIDs ΣUID , and
n∈ N, for any two elements a and b respectively introduced at positions Rp and Sq in Chase(I0,ΣUID)
such that Rp ∼ID Sq, if the last nUIDs applied to create a and b are reversible, then a≃n b.

VI. Arbitrary UIDs: Lifting Assumption reversible

This section concludes the proof of the Acyclic Unary Universal Models Theorem (Theorem III.6) by
removing assumptionreversible. We do so by splittingΣUID in subsets that can be satisfied sequentially:

Definition VI.1. For anyτ ,τ ′ ∈ ΣUID , we writeτ ֌ τ ′ when we can writeτ =Rp ⊆Sq andτ ′ =Sr ⊆Tu

with Sq 6= Sr , and theUFD Sr → Sq is in ΣUFD. Anordered partition (P1, . . . ,Pn) of ΣUID is a partition
of ΣUID (i.e.,ΣUID =

⊔

i Pi) such that for anyτ ∈ Pi, τ ′ ∈ Pj , if τ ֌ τ ′ then i≤ j.

The notion of ordered partition is useful because thrifty chase steps can only cause newUID viola-
tions at the dangerous positions of the new fact. This implies the following:

Lemma VI.2. Let J be an aligned superinstance of I0 and J′ be the result of applying a thrifty chase
step on J for aUID τ of ΣUID . Assume that aUID τ ′ of ΣUID was satisfied by J but is not satisfied by J′.
Thenτ ֌ τ ′.

Hence, given an ordered partition ofΣUID , once we have satisfied theUIDs of the firsti classes
P1, . . . ,Pi, then this property is preserved while we do thrifty chasingwith Pj , j > i. So if we can satisfy
eachPi individually with thrifty chase steps, then we can satisfyΣUID by satisfyingP1, . . . ,Pn.

Of course, the point of partitioningΣUID is to be able to control the structure of theUIDs in each
class:

Definition VI.3. We call P⊆ ΣUID reversible if it is transitively closed (asΣUID is) and satisfies as-
sumptionreversible.

We say P⊆ ΣUID is trivial if we have P= {τ} for someτ ∈ ΣUID such thatτ 6֌ τ . An ordered
partition is manageable if all of its classes are either reversible or trivial.

If P⊆ ΣUID is reversible, then the previous section describes how to complete with thrifty chase steps
any fact-saturated aligned superinstance ofI0 to one that satisfiesP. If P is trivial, it follows directly
from Lemma VI.2 that we can satisfy it:

Corollary VI.4. For any trivial class{τ}, performing one chase round on an aligned fact-saturated
superinstance J of I0 by fresh fact-thrifty chase steps forτ yields an aligned superinstance J′ of I0 that
satisfiesτ .

We now claim that we can construct a manageable partition ofΣUID . We build it as a topological sort
of the strongly connected components (SCCs) of the directedgraph onΣUID defined by֌, with the
technical complication that SCCs must be closed underUID reversal. The construction relies on the
fact thatΣUID is closed under finite implication, as characterized by Cosmadakis et al. [8].

Lemma VI.5. Any conjunctionΣUID of UIDs closed under finite implication has a manageable parti-
tion.

Example VI.6. Consider theUIDs τR : R1 ⊆ R2, τS : S1 ⊆ S2, τ : R3 ⊆ S3, and theUFDs φR : R1 → R2,
φS : S1 →S2, φ ′

R : R3 →R1, andφ ′
S : S1 →S3. TheUIDsτ−1

R andτ−1
S , andUFDsφ−1

R , φ−1
S , and R3 →R2,

S2 → S3, are finitely implied. A manageable partition is({τR,τ−1
R },{τ},{τS,τ−1

S }), where the first and
third classes are reversible and the second is trivial.
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We can now conclude the proof of the Acyclic Unary Universal Models Theorem (Theorem III.6).
We first note that the Fact-Saturated Solutions Lemma (LemmaV.6) does not use assumptionreversible,
so we apply it (withΣUID) to obtain fromI0 an aligned fact-saturated superinstanceJ1 of I0. This is the
saturation process.

We now satisfyΣUID by acompletion process. Build a manageable partition(P1, . . . ,Pn) of ΣUID , by
Lemma VI.5. Now, for 1≤ i ≤ n, use fact-thrifty chase steps byUIDs ofPi to extend the fact-saturated
aligned superinstanceJi to a larger oneJi+1 that satisfiesPi. If Pi is trivial, use Corollary VI.4. IfPi is
reversible, apply the Fact-Thrifty Completion Proposition (Proposition V.10), takingΣUID to bePi. By
Lemma VI.2, the resultJi+1 satisfies

⋃

j≤i Pj .
Hence the resultJn+1 of the completion process is an aligned superinstance ofI0 that satisfiesΣUID ;

as an aligned superinstance, it is also finite, satisfiesΣUFD, and isk-sound forACQ; so it isk-universal
for ΣU andACQ. This concludes the proof of the Acyclic Unary Universal Models Theorem.

VII. Higher-Arity FDs

We now bootstrap the Acyclic Unary Universal Models Theorem(Theorem III.6) to the Universal
Models Theorem (Theorem III.5). The first step is to change our construction to avoid violating higher-
arity FDs, namely, show the following, which applies toΣ = ΣUID ∧ΣFD rather thanΣU = ΣUID ∧ΣUFD:

Theorem VII.1 (Acyclic universal models). There is a finite superinstance of I0 that is k-universal
for Σ andACQ queries.

The problem to address is that our completion process to satisfy ΣUID was defined with fact-thrifty
chase steps, which reuse elements from the same facts at the same positions multiple times. This may
violateΣFD, and we can show that is the only point where we do so in the construction.

The goal of this section is to define a new version of thrifty chase steps that preservesΣFD rather
than justΣUFD; we call themenvelope-thrifty chase steps. We first describe the new saturation process
designed for them. Second, we define how they work, redefine the completion process of the previ-
ous section to use them, and use this new completion process to prove the Acyclic Universal Models
Theorem above.

VII.1. Envelopes and saturation

We start by defining a new notion of saturated instances. Recall the notions of fact classes (Defini-
tion V.4) and thrifty chase steps (Definition V.8). When a thrifty chase step wants to create a factFn

whose chase witnessFw has fact class(Rp,C), it needs elements to reuse inFn at positions ofNDng(Rp).
They must have the rightsim-image and must already occur at the positions where they arereused.

Fact-thrifty chase steps reuse a tuple of elements from one factFr, and thus apply tofact-saturated in-
stanceswith one fact for each class. Our new notion of envelope-thrifty chase steps will need saturated
instances that havemultiple reusable tuples. A set of such tuples is called anenvelopefor (Rp,C):

Definition VII.2. Consider D= (Rp,C) in AFactCl, and write O··= NDng(Rp). Anenvelope E for D
and for an aligned superinstance J= (I ,sim) of I0 is a non-empty set of|O|-tuples indexed by O, with
domaindom(I), such that:

• for everyFD φ : RL → Rr of ΣFD with RL ⊆ O and Rr ∈ O, E satisfiesφ (seeing its tuples as facts
on O);

• for everyFD φ : RL →Rr of ΣFD with RL ⊆O and Rr /∈O, for all t, t′ ∈E, πRL(t) = πRL(t′) implies
t = t′;
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• for every a∈ dom(E), there is exactly one position Rq ∈ O such that a∈ πRq(E); and then we
also have a∈ πRq(J);

• for any fact F= R(a) of J and Rq ∈ O, if aq ∈ πRq(E), then F achieves D in J andπO(a) ∈ E.

Intuitively, the tuples in the envelopeE satisfy theUFDs of ΣUFD within NDng(Rp), and never
overlap on positions that determine a position out ofNDng(Rp). Further, their elements already occur
at the positions where they will be reused, and have the rightsim-image for the fact classD. To simplify
the reasoning, we also impose that each element ofE is used at only one position, and occurs at that
position only in facts which achieveD and whose projection toNDng(Rp) is in E.

Depending onO, it may be possible to use a singleton tuple as the envelope, like fact-thrifty chase
steps, and not violateΣFD. The class is thensafe. Otherwise, we focus on the envelope tuples which do
not appear in the instance yet.

Definition VII.3. We call(Rp,C) inAFactCl safe if there is noFDRL →Rr in ΣFD with RL ⊆NDng(Rp)
and Rr /∈ NDng(Rp).

Letting E be an envelope for(Rp,C) and J be an aligned superinstance, theremaining tuples of E
are E\πNDng(Rp)(J) if (Rp,C) is unsafe, and E if it is safe.

We now introduce the notion ofglobal envelopes, that give us one envelope per class ofAFactCl.
This leads to our new notion of saturation: a saturated instance has a global envelope with many re-
maining tuples in the unsafe classes. Note that this impliesfact-saturation.

Definition VII.4. A global envelope E for an aligned superinstance J= (I ,sim) of I0 is a mapping
from each D∈AFactCl to an envelopeE(D) for D and J, such that the envelopes have pairwise disjoint
domains.

We call J n-envelope-saturated if it has a global envelopeE such thatE(D) has≥ n remaining
tuples for all unsafe D∈ AFactCl. J is envelope-saturated if it is n-envelope-saturated for n> 0, and
envelope-exhausted otherwise.

We now justify that we can make arbitrarily saturated superinstances ofI0 (the switch toI ′0 is a
technicality):

Proposition VII.5 (Sufficiently envelope-saturated solutions). For any K∈ N and instance I0, we can
build a superinstance I′0 of I0 that is k-sound forCQ, and an aligned superinstance J of I′

0 that satis-
fiesΣFD and is(K |J|)-envelope-saturated.

Example VII.6. For simplicity, we work with instances rather than aligned superinstances. Consider
I0 ··= {S(a),T(z)}, theUIDsτ : S1 ⊆ R1 andτ ′ : T1 ⊆ R1 for a 3-ary relation R, and theFD φ : R2R3 →
R1. Consider I··= I0 ⊔{R(a,b,c)} obtained by one chase step ofτ on S(a). It would violateφ to
perform a fact-thrifty chase step ofτ ′ on z to create R(z,b,c), reusing(b,c) atNDng(R1) = {R2,R3}.

Now, consider the k-sound I′
0
··= {S(a),T(z),S(a′),S(z′)}, and I′ ··= I ′0⊔{R(a,b,c),R(a′,b′,c′)} ob-

tained by two chase steps. The two facts R(a,b,c) and R(a′,b′,c′) would be mapped to the same fact
class D, so we can define E(D) ··= {(b,c),(b′,c′),(b′,c),(b,c′)}. We can now satisfyΣUID on I′ with-
out violatingφ , with two envelope-thrifty chase steps that reuse the remaining tuples(b′,c) and(b,c′)
of E(D).

The crucial result needed for the Sufficiently Envelope-Saturated Proposition is the following, which
may be of independent interest, and is proved in Appendix F.2using a combinatorial construction. The
fact that unary keys are problematic is the reason why we handle safe classes differently.
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Theorem VII.7 (Dense interpretations). For any setΣFD of FDs over a relation R with no unary key,
and K∈ N, there exists a non-empty instance I of R that satisfiesΣFD and has at least K|dom(I)| facts.

Hence, we have defined the new notion ofn-envelope-saturation, and a saturation process to achieve
it: the Sufficiently Envelope-Saturated Solutions Proposition. Unlike the Fact-Saturated Solutions
Lemma, where one fact of each class was enough, we have shown that envelope-saturated superin-
stances may have an arbitrarily high saturation relative tothe instance size.

VII.2. Envelope-thrifty chase steps

We can now introduceenvelope-thrifty chase steps:

Definition VII.8. Envelope-thrifty chase steps are thrifty chase steps (Definition V.8) applicable to
envelope-saturated aligned superinstances. Let Sq be the exported position of the new fact Fn, let
Fw =S(b′) be the chase witness, and let D= (Sq,C)∈AFactCl be the fact class of Fw. We choose some
remaining tuplet of E(D) and define br ··= tr for all Sr ∈ NDng(Sq).

Recall from Lemma V.9 that fact-thrifty chase steps apply tofact-saturated aligned superinstances,
and never violateΣUFD. Similarly, envelope-thrifty chase steps apply to envelope-saturated aligned
superinstances, and never violateΣFD:

Lemma VII.9. For n > 0, for any n-envelope-saturated aligned superinstance J that satisfiesΣFD,
the result J′ of an envelope-thrifty chase step on J is an(n−1)-envelope-saturated superinstance that
satisfiesΣFD.

We now modify the Fact-Thrifty Completion Proposition (Proposition V.10), generalized without as-
sumptionreversible as in the previous section, to use envelope-thrifty chase steps instead of fact-thrifty
chase steps. This is possible because the choice of reused elements at non-dangerous positions makes
no difference in terms of applicableUIDs, as they already occur at the position where they are reused.
Hence, we can perform the exact same process as before (except the non-dangerous reuses), using
Lemma VII.9 to justify thatΣFD is preserved; but we must abort if we reach an envelope-exhausted
instance:

Proposition VII.10 (Envelope-thrifty completion). For any envelope-saturated aligned superinstance
J of I0 that satisfiesΣFD, we can obtain by envelope-thrifty chase steps an aligned superinstance J′ of
I0, such that J′ is either envelope-exhausted or satisfiesΣ.

The last problem to address is exhaustion. Unlike fact-saturation, envelope-saturation “runs out”;
whenever we use a remaining tuplet in a chase step to createFn and obtain a new aligned superin-
stanceJ′, then we cannot uset again inJ′. So we must start with a sufficiently envelope-saturated
superinstance, and we must control how many chase steps are applied in the envelope-thrifty comple-
tion process. From the details of our construction, we can show the following:

Lemma VII.11 (Envelope blowup). There exists B∈N depending only on k andΣU such that, for any
aligned superinstance J= (I ,sim) of I0, and global envelopeE , letting J′ = (I ′,sim′) be the result of
the envelope-thrifty completion process, we have|I ′|< B|I |.

We can now conclude the proof of the Acyclic Universal ModelsTheorem (Theorem III.6) that we
stated at the beginning of this section. Start by applying the saturation process of the Sufficiently
Envelope-Saturated Solutions Proposition to obtain an aligned superinstanceJ = (I ,sim) of somek-
soundI ′0, such thatJ satisfiesΣFD and is(B|I |)-envelope-saturated. Now, apply the Envelope-Thrifty
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Completion Proposition to obtain an aligned superinstanceJ′ of I0. By the Envelope Blowup Lemma,
J′ contains< B|I | new facts, so, by Lemma VII.9,J′ must still be 1-envelope-saturated. Hence,J′

satisfiesΣ. This concludes the proof, asJ′ is an aligned superinstance ofI0.

VIII. Cyclic Queries

We now finally complete our proof of the Universal Models Theorem (Theorem III.5) by moving from
acyclic BooleanCQs to arbitrary BooleanCQs. We do so by a generic process which is essentially
independent from our previous construction.

Intuitively, the only cyclicCQs that hold inChase(I0,ΣUID) either have an acyclic self-homomorphic
match (so they are implied by an acyclicCQ that also holds) or have all cycles matched to elements
of I0. Hence, in ak-sound instance forCQ, no other cyclic queries must be true. We ensure this by a
cycle blowup process that takes the product of ourI with a group of high girth, following Otto [14].
However, we need to adjust this construction to avoid creatingFD violations.

We letJf = (If,sim) be the aligned superinstance obtained from the Acyclic Universal Models The-
orem (Theorem VII.1). Its underlying instanceIf is a finite superinstance ofI0 that satisfiesΣ, and the
k-bounded simulationsim guarantees thatIf is k-sound forACQ. Our goal in this section is to make
If k-sound forCQ while still satisfyingΣ, so that it isk-universal. This will conclude the proof of the
Universal Models Theorem (Theorem III.5).

VIII.1. Simple product

Let us first introduce preliminary notions:

Definition VIII.1. A group G=(S, ·) over a finite set S consists of an associativeproduct law · : S2 →S,
a neutral element e∈ S, and aninverse law ·−1 : S→ S such that x·x−1 = x−1 ·x= e for all x∈ S. We
say that G isgenerated by X⊆ S if all elements of S can be written as a product of elements ofX and
X−1 ··= {x−1 | x∈ X}.

Given a group G generated by X, thegirth of G under X is the length of the shortest non-empty word
w of elements of X and X−1 such that w1 · · ·wn = e and wi 6= w−1

i+1 for all 1≤ i < n. (If X = {g} with
g= g−1, the girth is1.)

Lemma VIII.2 ([12]). For all n ∈ N and finite non-empty set X, there is a finite group G= (S, ·)
generated by X with girth≥ n under X. We call G an n-acyclic group generated by X.

In other words, in ann-acyclic group generated byX, there is no short product of elements ofX and
their inverses which evaluates toe, except those that include a factorxx−1.

We now take the product ofIf with such a finite groupG. This ensures that any cycles in the product
instance are large, because they project to cycles inG. We use a specific generator:

Definition VIII.3. Thefact labels of a superinstance I of I0 are Λ(I) ··= {lFi | F ∈ I\I0,1≤ i ≤ |F|}.

Now, we define the product of a superinstanceI of I0 with a group generated byΛ(I). We make sure
not to blow up cycles inI0, so the result remains a superinstance ofI0:

Definition VIII.4. Let I be a finite superinstance of I0 and G be a finite group generated byΛ(I). The
product of I by G preserving I0 is the finite instance(I , I0)⊗G with domaindom(I)×G consisting of
the following facts, for all g∈ G:

• For every fact R(a) of I0, the fact R((a1,g), . . . ,(a|R|,g)).
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• For every fact F= R(a) of I\I0, the following fact:
R((a1,g· lF1 ), . . . ,(a|R|,g· l

F
|R|)).

We identify(a,e) to a for a∈ dom(I0), so(I , I0)⊗G is still a superinstance of I0.

We say a superinstanceI of I0 is k-instance-sound(for Σ) if for any CQ q such that|q| ≤ k, if q
has a match inI involving an element ofI0, thenChase(I0,ΣUID) |= q. We can ensure thatIf is k-
instance-sound, up to having performedk chase rounds onI0 initially. We can then state the following
property:

Lemma VIII.5 (Simple product). Let I be a finite superinstance of I0 and G a finite(2k+1)-acyclic
group generated byΛ(I). If I is k-sound forACQ and k-instance-sound, then(I , I0)⊗G is k-sound for
CQ.

Example VIII.6. Consider F0 ··= R(a,b), I0 ··= {F0}, andΣUID consisting ofτ : R2 ⊆ S1, τ ′ : S2 ⊆ R1,
τ−1, and(τ ′)−1. Let F ··= S(b,a), and I ··= I0⊔{F}. I satisfiesΣUID and is sound forACQ, but not for
CQ: take for instance q: ∃xy R(x,y)∧S(y,x), which is cyclic and holds in I while(I0,ΣUID) 6|=unr q.

We haveΛ(I) = {lF1 , l
F
2 }. Identify lF1 and lF2 to 1 and 2 and consider the group G··= ({0,1,2}, ·)

where· is addition modulo 3. G has girth 2 underΛ(I).
The product Ip ··= (I , I0)⊗G, writing pairs as subscripts for brevity, is{R(a0,b0),R(a1,b1),R(a2,b2),

S(b1,a2),S(b2,a0),S(b0,a1)}. In this case Ip happens to be5-sound forCQ.

We cannot conclude directly with the simple product, because Ip ··= (If , I0)⊗G may violateΣUFD

even thoughIf |= ΣFD. Indeed, there may be a relationR, aUFD φ : Rp → Rq in ΣUFD, and twoR-facts
F andF ′ in If\I0 with πRp,Rq(F) = πRp,Rq(F ′). In Ip the images ofF andF ′ may overlap only onRp, so
they could violateφ .

VIII.2. Mixed product

What we need is a more refined notion of product, that does not attempt to blow up cycles within fact
overlaps. To define it, we need to consider aquotientof If:

Definition VIII.7. Thequotient I/∼ of an instance I by an equivalence relation∼ ondom(I) is defined
as follows:

• dom(I/∼) is the equivalence classes of∼ on dom(I),
• I/∼ contains one fact R(A) for every fact R(a) of I, where Ai is the∼-class of ai for all Ri ∈

Pos(R).
Thequotient homomorphism χ∼ is the homomorphism from I to I/∼ defined accordingly.

We quotientIf by the equivalence relation≃k (recall Definition V.1), yieldingI ′f ··= If/≃k. The
resultingI ′f may no longer satisfyΣ. However, it is stillk-sound forACQ, for the following reason:

Lemma VIII.8. Any k-bounded simulation from an instance I to an instance I′ defines a k-bounded
simulation from I/≃k to I′.

We then consider the homomorphismχ≃k from If to I ′f , and blow up cycles inIf by amixed product
that only distinguishes facts with a different image inI ′f by χ≃k. The point is that, as we show from
our construction, facts ofIf that have the same elements at the same positions always havethe same
≃k-class. Hence, they are mapped to the same fact byχ≃k and will not be distinguished by the mixed
product. Let us formalize this:
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Definition VIII.9. Let I be a superinstance of I0 and h be a homomorphism from I to some instance I′.
We say I iscautious for h (and I0) if for any relation R, for any two R-facts F and F′ such that
πRp(F) = πRp(F ′) for some Rp ∈ Pos(R), either F,F ′ ∈ I0, or h(F) = h(F ′).

Lemma VIII.10 (Cautiousness). The superinstance If of I0 constructed by the Acyclic Universal Mod-
els Theorem (Theorem VII.1) is cautious forχ≃k.

The reason whyIf is cautious forh ··= χ≃k is that, except for facts ofI0, overlaps between facts only
occur when reusing envelope elements at non-dangerous positions, in which case thesim-images of
both facts are≃k-equivalent inChase(I0,ΣUID). We can then show that, from our construction, such
elements are actually≃k-equivalent inIf .

We now define the notion of mixed product, which uses the same fact label for facts with the same
image byh:

Definition VIII.11. Let I be a finite superinstance of I0 with a homomorphism h to another finite
superinstance I′ of I0 such that h|I0 is the identity and h|(I\I0) maps to I′\I0. Let G be a finite group
generated byΛ(I ′).

Themixed product of I by G via h preserving I0, written (I , I0)⊗h G, is the finite superinstance of I0

with domaindom(I)×G consisting of the following facts, for every g∈ G:
• For every fact R(a) of I0, the fact R((a1,g), . . . ,(a|R|,g)).
• For every fact R(a) of I\I0, the following fact:

R((a1,g· l
h(F)
1 ), . . . ,(a|R|,g· l

h(F)
|R| )).

We now show that the mixed product preservesUIDs andFDs when cautiousness is assumed.

Lemma VIII.12 (Mixed product preservation). For anyUID or FD τ , if I |= τ and I is cautious for h,
then(I , I0)⊗h G |= τ .

Second, we show thath : I → I ′ lifts to a homomorphism from the mixed product to the simple
product.

Lemma VIII.13 (Mixed product homomorphism). There is a homomorphism from(I , I0)⊗hG to(I ′, I0)⊗
G which is the identity on I0×G.

We can now conclude our proof of the Universal Models Theorem(Theorem III.5). We construct
Jf = (If ,sim) by the Acyclic Universal Models Theorem (Theorem VII.1) andconsiderIf. It is a finite
superinstance ofI0 which isk-universal forΣ andACQ. Further, up to having distinguished the elements
of I0 with fresh predicates and having performed initial chasing, we can ensure thatI ′f ··= If/≃k is k-
instance-sound and that the homomorphismχ≃k : If → I ′f satisfies the hypotheses of the mixed product.

Let G be a(2k+ 1)-acyclic group generated byΛ(I ′f ), and considerIp ··= (I ′f , I0)⊗G. As If was
k-sound forACQ, so isI ′f by Lemma VIII.8, and asI ′f is alsok-instance-sound,Ip is k-sound forCQ by
the Simple Product Lemma (Lemma VIII.5). However, as we explained, in generalIp 6|= Σ. We thus
constructIm ··= (If, I0)⊗h G, with h ··= χ≃k. By the Mixed Product Homomorphism Lemma,Im has a
homomorphism toIp, so it is alsok-sound forCQ. Further,If is cautious forχ≃k by the Cautiousness
Lemma, so, by the Mixed Product Preservation Lemma, we haveIm |= Σ becauseIf |= Σ.

Hence, the mixed productIm is a finitek-universal instance forΣ andCQ. This concludes the proof
of the Universal Models Theorem, and hence of our main theorem (Theorem III.2).
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IX. Conclusion

In this work we have developed the first techniques on arbitrary arity schemas to build finite models that
satisfy both referential constraints and number restrictions, while controlling whichCQs are satisfied.
We have used this to prove that finite open-world query answering for CQs,UIDs andFDs is finitely
controllable up to finite closure of the dependencies. Usingthis, we have isolated the complexity of
FQA forUIDs andFDs.

As presented the constructions are quite specific to dependencies, but in future work we will look
to extend them to constraint languages containing disjunction, with the goal of generalizing to higher
arity the rich arity-2 constraint languages of, e.g., [10, 15], while maintaining the decidability of FQA.
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A. Details about the UID chase and Unique Witness Property

Recall theUnique Witness Property:

For any elementa∈ dom(Chase(I ,ΣUID)) and positionRp of σ , if two facts ofChase(I ,ΣUID) con-
tain a at positionRp, then they are both facts ofI .

We first exemplify why this may not be guaranteed by the first round of theUID chase. Consider the
instanceI = {R(a),S(a)} and theUIDs τ1 : R1 ⊆ T1 andτ2 : S1 ⊆ T1, whereT is binary. Applying a
round of theUID chase creates the instance{R(a),S(a),T(a,b1),T(a,b2)}, with T(a,b1) being created
by applyingτ1 to the active factR(a), andT(a,b2) being created by applyingτ2 to the active factS(a).

By contrast, the core chase would create only one of these twofacts, because it would consider that
two new facts areequivalent: they have the same exported element occurring at the same position. In
general, the core chase keeps only one fact within each classof equivalent facts.

However, after one chase round by the core chase, there is no longer any distinction between theUID
chase and the core chase, because the following property holds on the resultI ′ of a chase round (by the
core chase or the UID chase) on any instanceI ′′: (*) for any τ ∈ ΣUID and elementa∈Wants(I ′,τ), a
occurs in only one fact ofI ′. This is true becauseΣUID is transitively closed, so we know that noUID
of ΣUID is applicable to an element of dom(I ′′) in I ′; hence the only elements that witness violations
occur in the one fact where they were introduced inI ′.

We now claim that (*) implies the Unique Witness Property. Indeed, assume to the contrary that
a∈ dom(Chase(I ,ΣUID)) violates it.

If a∈ dom(I), becauseΣUID is transitively closed, after the first chase round onI , we no longer create
any fact that involvesa. Hence, each one ofF1 andF2 is either a fact ofI or a fact created in the first
round of the chase (which is a chase round by the core chase). However, if one ofF1 andF2 is in I ,
then it witnesses that we could not havea∈Wants(I ,Rp), so it is not possible that the other fact was
created in the first chase round. It cannot be the case either thatF1 andF2 were both created in the first
chase round, by definition of the core chase. Hence,F1 andF2 are necessarily both facts ofI .

If a ∈ dom(Chase(I ,ΣUID))\dom(I), assume thata occurs at positionRp in two factsF1, F2. As
a /∈ dom(I), none of them is a fact ofI . We then show a contradiction. It is not possible that one of
those facts was created in a chase round before the other, as otherwise the second created fact could
not have been created because of the first created fact. Hence, both facts must have been created in
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the same chase round. So there was a chase round fromI ′′ to I ′ where we hada∈Wants(I ′′,Rp) and
both F1 andF2 were created respectively from active factsF ′

1 andF ′
2 of I ′′ by UIDs τ1 : Sq ⊆ Rp and

τ2 : Tr ⊆ Rp. But then, by property (*),a occurs in only one fact, so as it occurs inF ′
1 andF ′

2 we have
F ′

1 = F ′
2. Further, asa /∈ dom(I), F ′

1 andF ′
2 are not facts ofI either, so by definition of the UID chase

and of the core chase, it is easy to seea occurs at only one position inF ′
1 = F ′

2. This implies thatτ1 = τ2.
Hence, we must haveF1 = F2.

B. Proofs for Section III: Main Result and Overall Approach

B.1. Proof of Proposition III.1 (Complexity of UQA for FDs and UIDs)

Proposition III.1. UQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

We first show the results forUIDs in isolation. UQA forUIDs is NP-complete in combined com-
plexity: the lower bound is immediate from query evaluation[1], the upper bound is by Johnson &
Klug [11] and actually holds forIDs of arbitrary fixed arity (which they call “width”). For datacom-
plexity, Calì et al. [6] showed a PTIME (in fact, AC0) upper bound for arbitraryIDs by observing that
the certain answers can be expressed by another first-order query.

We now show that the same upper bounds apply to UQA forUIDs andFDs (the lower bound clearly
also applies). This result is implicit in prior work of [5, 4], but we prove it here for completeness. We
argue thatUIDs andFDs areseparableThis means that for any conjunctionΣ of FDs ΣFD andUIDs
ΣUID , for any instanceI0 andCQ q, if I0 |= ΣFD then we have(I0,Σ) |=unr q↔ (I0,ΣUID) |=unr q. From
this result, the upper bounds follow from the bounds for theUID case above, since checking whether
I0 |= ΣFD can be done in PTIME. Separability follows from thenon-conflicting conditionof [5, 4] but
we give a simpler argument.

Assume thatI0 satisfiesΣFD. Clearly if (I0,ΣUID) |=unr q then (I0,Σ) |=unr q. We thus need to
show that if(I0,Σ) |=unr q then(I0,ΣUID) |=unr q. ConsiderChase(I0,ΣUID). If Chase(I0,ΣUID) |= ΣFD,
thenChase(I0,ΣUID) is a superinstance ofI0 that satisfiesΣ, so because(I0,Σ) |=unr q we must have
Chase(I0,ΣUID) |= q. By universality of the chase, this implies(I0,ΣUID) |=unr q.

Hence, it suffices to show thatChase(I0,ΣUID) |= ΣFD. Assume to the contrary the existence ofF
andF ′ in Chase(I0,ΣUID) violating anFD of ΣFD. There must exist a positionRp ∈ Pos(σ) such that
πRp(F) = πRp(F ′). By the Unique Witness Property, this implies thatF andF ′ are facts ofI0, which is
impossible by our assumption thatI0 |= ΣFD.

B.2. Proof of the Main Theorem (Theorem III.2) from the Universal Models
Theorem (Theorem III.5)

To show the Main Theorem from the Universal Models Theorem, let Σ be a conjunction ofFDs and
UIDs, Σ′ its finite closure, andI0 a finite instance. We want to show finite controllability up tofinite
closure, namely,(I0,Σ) |=fin q iff (I0,Σ′) |=unr q.

We can assume without loss of generality thatI0 satisfies theFDs of Σ′, as otherwise there is no
superinstance ofI0 satisfyingΣ′, and both problems are always vacuously true.

It is clear that for anyCQ q, we have(I0,Σ) |=fin q iff (I0,Σ′) |=fin q. Indeed,Σ′ includesΣ and
conversely any finite superinstance ofI0 which satisfiesΣ must satisfyΣ′, by definition of the finite
closure. So in fact, to prove finite controllability up to finite closure, it suffices to show that(I0,Σ′) |=fin
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q iff (I0,Σ′) |=unr q for anyCQ q. The backward implication is immediate as all finite superinstances
of I0 satisfyingΣ′ are also unrestricted superinstances. We prove the contrapositive of the forward
implication.

Let q be aCQ, let k ··= |q|, and assume that(I0,Σ′) 6|=unr q. By the Universal Models Theorem, letI
be a finite superinstance ofI0 that is|q|-sound and satisfiesΣ′. As I is |q|-sound, we haveI 6|= q, so, as
I is a finite superinstance ofI0 that satisfiesΣ′, it witnesses that(I0,Σ′) 6|=fin q. This proves the desired
equivalence. Hence, we have established thatΣ′ is finitely controllable up to finite closure, and have
proved the Main Theorem.

B.3. Proof of Corollary III.3 (Complexity of FQA for FDs and UIDs)

Corollary III.3. FQA for FDs andUIDs has PTIME data complexity and NP-complete combined
complexity.

By our Main Theorem (Theorem III.2), any instance(I ,Σ,q) to the FQA problem, formed of an
instanceI , a conjunctionΣ of IDs ΣUID and FDs ΣFD, and aCQ q, reduces to the UQA instance
(I ,Σ′,q), whereΣ′ is the finite closure ofΣ. ComputingΣ′ from Σ is data-independent, so the PTIME
data complexity result of Proposition III.1 clearly still applies. It is also clear that the NP-hardness
combined complexity bound of Proposition III.1 can be re-proven for FQA, as it already held even
whenΣ = /0. So we only need to show that the combined complexity of FQAis in NP. A naive approach
would be to compute explicitlyΣ′ and solve the UQA instanceI , Σ′, q; but materializingΣ′ may take
exponential time.

Instead, remember that from our study of UQA complexity in the proof of Proposition III.1, UQA for
UIDs andFDs can be performed by first checking theFDs on the initial instance, and then performing
UQA for theUIDs in isolation. Hence, letΣ′

UID andΣ′
FD be theUIDs andFDs ofΣ′. Rather than materi-

alizing Σ′, we will show that we can decide whetherI |= Σ′
FD in PTIME, and computeΣ′

UID in PTIME,
which suffices to prove the claim as the combined complexity of deciding whether(I ,Σ′

UID) |=unr q is
then in NP.

We first justify that we can indeed computeΣ′
UID in PTIME. We consider every possibleUID on

positions occurring inΣ (there are polynomially many), and for each of them, determine in PTIME
from Σ whether it is inΣ′, using the implication procedure of Cosmadakis et al. [8]. This allows us to
computeΣ′

UID in PTIME.
We next justify that we can decide whetherI |= Σ′

FD in PTIME. For the same reason as for theUIDs,
we can compute in PTIME fromΣ the setΣ′

UFD of theUFDs which are inΣ′, by deciding implication
for each possibleUFD. We now argue that to test whetherI |= Σ′

FD, it suffices to test whetherI |= ΣFD

and whetherI |= Σ′
UFD. This follows if we can show thatΣ′

FD is implied byΣ′
UFD∪ΣFD by the usual

axiomatization of unrestricted and finite implication forFDs alone, from Armstrong [2]. Indeed, in this
case, ifI |= Σ′

FD thenI |= Σ′
UFD∪ΣFD as it is a subset ofΣ′

FD, and conversely ifI |= Σ′
UFD∪ΣFD thenI

satisfiesΣ′
FD because they are implied byΣ′

UFD∪ΣFD so are also satisfied by any instance that satisfies
Σ′

UFD∪ΣFD.
To justify thatΣ′

FD is implied byΣ′
UFD∪ΣFD, we use Theorem 4.1 of [8], according to which a sound

and complete axiomatization of the finite closure ofFDs andUIDs consists of the usualFD implication
rules, the standardUID axiomatization of Casanova et al. [7], and thecycle rule. So, consider anyFD
φ of Σ′

FD and let us justify that it is implied byΣ′
UFD∪ΣFD. If φ is aUFD, thenφ ∈ Σ′

FD. Otherwise
the last steps of a derivation ofφ with the axiomatization of [8] must be rules from theFD implication
rules, as they are the only ones which can deduce higher-arity FDs. Let us group together the lastFD

implication rules that were applied, and consider the setS of the hypotheses toFD implication rules
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that were not themselves produced byFD implication rules. Each hypothesis fromS is either anFD
of ΣFD or was produced by the cycle rule. Now, the cycle rule can onlydeduceUFDs (andUIDs).
Hence,S⊆ ΣFD∪Σ′

UFD, which implies that we can construct a derivation ofφ from ΣFD∪Σ′
UFD using

theFD implication rules. Thus, we can indeed compute in PTIMEΣ′
UFD∪ΣFD, and check in PTIME

whetherI |= Σ′
UFD∪ΣFD, and we have shown that this is equivalent to checking whether I |= Σ′

FD. This
concludes the proof.

C. Proofs for Section IV: Weak-Soundness and Reversible UIDs

This section proves the Acyclic Unary Weakly-Sound Models Proposition (Proposition IV.2), which
weakens the Acyclic Unary Models Theorem (Theorem III.6) bymaking assumptionreversible and
replacingk-soundness by weak-soundness (Definition IV.1).

C.1. Proof of Proposition IV.4 (Satisfying UIDs in balanced instances)

Proposition IV.4. Assumingbinary and reversible, any balanced finite instance I satisfyingΣUFD has
a finite weakly-sound superinstance I′ that satisfiesΣU, with dom(I ′) = dom(I).

For every relationR of σ , let fR be a bijection betweenWants(I ,R1) andWants(I ,R2); this is
possible, becauseI is balanced.

Consider the superinstanceI ′ of I , with dom(I ′) = dom(I), obtained by adding, for everyR of σ ,
the factR(a, fR(a)) for everya∈Wants(I ,R1). I ′ is clearly a finite weakly-sound superinstance ofI ,
because for everya∈ dom(I ′), if a occurs at some positionRp in some factF of I ′, then eitherF is a
fact of I anda∈ πRp(I), or F is a new fact and by definitiona∈Wants(I ,Rp).

Let us show thatI ′ |= ΣUFD. Assume to the contrary that there are two factsF and F ′ in I ′ that
witness a violation of aUFD φ : Rp → Rq of ΣUFD. As I |= ΣUFD, one ofF andF ′ is necessarily a
new fact; we assume without loss of generality that it isF . Considera ··= πRp(F). By definition of
the new facts, we havea ∈Wants(I ,Rp), so thata /∈ πRp(I). Now, as{F,F ′} is a violation, we must
haveπRp(F) = πRp(F ′), so asa /∈ πRp(I), F ′ must also be a new fact. Hence, by definition of the new
facts, lettingb ··= πRq(F) and b′ ··= πRq(F ′), depending on whetherp = 1 or p = 2 we have either
b= b′ = fR(a) or b= b′ = f−1

R (a), which is well-defined becausefR is a bijection. This contradicts the
fact thatF andF ′ violateφ .

Let us now show thatI ′ |= ΣUID . Assume to the contrary that there is an active factF = R(a1,a2),
for aUID τ : Rp ⊆ Sq. If F is a fact ofI , we hadap ∈Wants(I ,Sq), soF cannot be an active fact in
I ′ by construction offS. So we must haveF ∈ I ′\I . Hence, by definition of the new facts, we had
ap ∈Wants(I ,Rp); so there must beτ ′ : Tr ⊆ Rp in ΣUID such thatap ∈ πT r (I). Hence, becauseΣUID

is transitively closed, eitherTr = Sq or theUID Tr ⊆ Sq is in ΣUID . In the first case, asap ∈ πTr (I), F
cannot be an active fact forτ , a contradiction. In the second case, we hadap ∈Wants(I ,Sq), which is
a contradiction for the same reason as before.

Hence,I ′ is a finite weakly-sound superinstance ofI that satisfiesΣU and with dom(I ′) = dom(I),
the desired claim.

C.2. Proof of the Balancing Lemma (Lemma IV.9)

Lemma IV.9 (Balancing). For any finite instance I, if I satisfiesΣUFD then it has a balanced pssin-
stance.

25



We prove the lemma without assumptionbinary, as we will use it without this assumption later in
Section IV.

For any positionRp defineo(Rp) ··=Wants(I ,Rp)⊔πRp(I). Intuitively, those are the elements that
either appear atRp or want to appear there. We claim thato(Rp) = o(Sq) wheneverRp ∼ID Sq. Indeed,
we haveπRp(I) ⊆ o(Sq): elements inπRp(I) want to appear atSq unless they already do, and in both
cases they are ino(Sq). Likewise, elements ofWants(I ,Rp) either occur atSq, or at some other position
Tr such thatTr ⊆ Rp is aUID of ΣUID , so that by transitivityTr ⊆ Sq also is, and so they want to be at
Sq unless they already are. Henceo(Rp)⊆ o(Sq), and symmetricallyo(Sq)⊆ o(Rp).

Let N ··= maxRp∈Pos(σ) |o(R
p)|, which is finite. We write[Rp]ID the∼ID-class of any positionRp. We

define for each∼ID-class[Rp]ID a setp([Rp]ID) of N−|o(Rp)| fresh values. We letH be the disjoint
union of thep([Rp]ID) for all classes[Rp]ID, and setλ to map the elements ofp([Rp]ID) to [Rp]ID. We
have thus defined our pssinstanceP= (I ,H,λ ).

Let us now show thatP is balanced. Consider now two positionsRp andRq such thatφ : Rp →Rq and
φ ′ : Rq → Rp are inΣUFD, and show that|Wants(P,Rp)| = |Wants(P,Rq)|. We have|Wants(P,Rp)| =
|Wants(I ,Rp)|+ |p([Rp]ID)|= |o(Rp)|− |πRp(I)|+N−|o(Rp)|, which simplifies toN−|πRp(I)|. Simi-
larly |Wants(P,Rq)|= N−|πRq(I)|. SinceI |= ΣUFD andφ andφ ′ are inΣUFD we know that|πRp(I)|=
|πRq(I)|. From this the conclusion follows.

C.3. Proof of the Binary Realizations Lemma (Lemma IV.10)

Lemma IV.10 (Binary realizations). For any balanced pssinstance P of an instance I that satisfies
ΣUFD, we can construct a realization of P that satisfiesΣU.

Let us construct a realizationI ′ of P. We construct bijectionsfR for every relationR between
Wants(P,R1) andWants(P,R2) as for Proposition IV.4; this is possible, asP is balanced. We then
constructI ′ in the same way, by adding toI , for everyR of σ , the factR(a, fR(a)) for every a ∈
Wants(P,R1).

We prove thatI ′ is a realization again by observing that whenever we create afact R(a, fR(a)), then
we havea∈Wants(P,R1) and fR(a) ∈Wants(P,R2).

The fact thatI ′ satisfiesΣUFD is for the same reason as for Proposition IV.4.
We now show thatI ′ satisfiesΣUID . Assume to the contrary that there is an active factF = R(a1,a2),

for a UID τ : Rp ⊆ Sq, so thatap ∈ Wants(I ′,Rp). If ap ∈ dom(I), then the proof is exactly as for
Proposition IV.4. Otherwise, ifap ∈ H, clearly by construction offR and I ′ we haveap ∈ πTr (I ′) iff
Tr ∈ λ (ap). Hence, asap ∈ πRp(I ′) and asτ witnesses by assumptionreversible that Rp ∼ID Sq , we
haveap ∈ πSq(I ′), contradicting the fact thatap ∈Wants(I ′,Sq).

C.4. Proof of Lemma “Binary realizations are completions” (Lemma IV.11)

Lemma IV.11 (Binary realizations are completions). If I ′ is a realization of a pssinstance of I then it
is a weakly-sound superinstance of I.

Clearly I ′ is a superinstance ofI . Let us show that it is weakly-sound. Recall the definition ofa
weakly-sound superinstance:

Definition IV.1. A superinstance I′ of an instance I isweakly-sound if the following holds:
• for any a∈ dom(I) and Rp ∈ Pos(σ), if a ∈ πRp(I ′), then either a∈ πRp(I) or a∈Wants(I ,Rp);
• for any a∈ dom(I ′)\dom(I) and Rp,Sq ∈ Pos(σ), if a∈ πRp(I ′) and a∈ πSq(I ′) then Rp = Sq or

Rp ⊆ Sq is in ΣUID .
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Considera∈ dom(I ′) andRp ∈ Pos(σ) such thata∈ πRp(I ′). As I ′ is a realization, we know that ei-
thera∈ πRp(I) or a∈Wants(P,Rp). By definition ofWants(P,Rp), and becauseH= dom(I ′)\dom(I),
this means that eithera∈ dom(I) anda∈ πRp(I)⊔Wants(I ,Rp), ora∈ dom(I ′)\dom(I) andRp ∈ λ (a).
Hence:

• For anya ∈ dom(I) andRp ∈ Pos(σ), we have established thata ∈ πRp(I ′) implied that either
a∈ πRp(I) or a∈Wants(I ,Rp).

• For anya∈ dom(I ′)\dom(I) and for anyRp,Sq ∈ Pos(σ), we know thatRp,Sq ∈ λ (a), which
implies thatRp ∼ID Sq, soRp = Sq or Rp ⊆ Sq is in ΣUID .

So indeed the two conditions of weak-soundness hold.

C.5. Proof of the Realizations Lemma (Lemma IV.16)

Lemma IV.16 (Realizations). For any balanced pssinstance P of an instance I that satisfiesΣUFD, we
can construct aΣU-compliant piecewise realization of P.

Let P = (I ,H,λ ) be the balanced pssinstance. Recall that the↔FUN-classes ofσ are numbered
Π1, . . . ,Πn. By definition of being balanced (Definition IV.3), for any↔FUN-classΠi , for any two
positionsRp,Rq ∈ Πi , we have|Wants(P,Rp)| = |Wants(P,Rq)|. Hence, for all 1≤ i ≤ n, let si be
the value of|Wants(P,Rp)| for anyRp ∈ Πi . For 1≤ i ≤ n, we letmi be the arity ofΠi, and number

the positions ofΠi asRpi
1, . . . ,Rpi

mi . We define for each 1≤ i ≤ n and 1≤ j ≤ mi a bijectionφ i
j from

{1, . . . ,si} to Wants(P,Rpi
j ). We construct the piecewise realizationPI = (K1, . . . ,Kn) by setting each

Ki for 1≤ i ≤ n to beπΠi (I) plus the tuples(φ i
1(l), . . . ,φ i

mi
(l)) for 1≤ l ≤ si .

It is clear thatPI is indeed a piecewise realization, because whenever we create a tuplea ∈ Πi for
any 1≤ i ≤ n, then, for anyRp ∈ Πi, we haveap ∈Wants(P,Rp).

Let us then show thatPI is ΣUFD-compliant. Assume by contradiction that there is 1≤ i ≤ n and
a,b ∈ Ki such thatal = bl butar 6= br for someRl ,Rr ∈ Πi. As I satisfiesΣUFD, we assume without loss
of generality thata ∈ Ki\πΠi(I). Now eitherb ∈ πΠi(I) or b ∈ Ki\πΠi(I).

If b ∈ πΠi(I), then we know thatbl ∈ πRl (I), but we know by construction that, asa ∈ Ki\πΠi(I),
we haveal ∈Wants(P,Rl ). Now, asal = bl andbl ∈ dom(I), we haveal ∈ dom(I), so that by definition
of Wants(P,Rl ) we haveal ∈Wants(I ,Rl ). Thus, asal = bl , we have a contradiction.

Now, if b ∈ Ki\πΠi(I), then, writingRl = Rpi
j and Rr = Rpi

j′ , the fact thatal = bl but ar 6= br

contradicts the fact thatφ i
j ◦ (φ i

j ′)
−1 is injective. Hence,PI is ΣUFD-compliant.

Let us now show thatPI is ΣUID-compliant.
We must show that, for everyUID τ : Rp ⊆ Sq of ΣUID , we haveWants(PI,τ) = /0, which means that

we haveπRp(PI)⊆ πSq(PI). Let Πi be the↔FUN-class ofRp, and assume to the contrary the existence
of a tuplea of Ki such thatap /∈ πSq(PI). Either we haveap ∈ dom(I), or we haveap ∈H.

In the first case, asap /∈ πSq(PI), in particular ap /∈ πSq(I), and asap ∈ πRp(I), we haveap ∈
Wants(I ,τ), soap ∈Wants(I ,Sq). By construction ofPI, then, lettingi′ be the↔FUN-class ofSq and

letting Sq = Spi′
j , asφ i′

j is surjective, we must haveap ∈ πSq(Ki′), that is,ap ∈ πSq(PI), a contradiction.
In the second case, clearly by construction we haveap ∈ πT r (PI) iff Tr ∈ λ (ap), so that, given that

τ witnessesRp ∼ID Sq, if ap ∈ πRp(PI) thenap ∈ πSq(PI), a contradiction.

We deduce thatPI is indeed aΣU-compliant piecewise realization ofP, completing the proof.
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C.6. Proof of the Relation-Saturated Solutions Lemma (Lemma IV.20)

Lemma IV.20 (Relation-saturated solutions). The result of performing sufficiently many chase rounds
on any instance I is relation-saturated.

Recall the definition of an instance beingrelation-saturated:

Definition IV.18. A relation R isachieved (by I andΣUID) if there is some R-fact inChase(I ,ΣUID).
A superinstance I′ of an instance I isrelation-saturated (for ΣUID) if every achieved relation (by I

andΣUID) occurs in I′.

We now prove the lemma. For every relationR, eitherR is not achieved byI and ΣUID , or there
is nR ∈ N such that there is aR-fact ofChase(I ,ΣUID) generated at thenR-th round of the chase. Let
n ··= maxR∈σ nR. As the number of relations inσ is finite, n is finite. Hence, lettingI ′ be the result of
applyingn chase rounds toI , it is clear thatI ′ is relation-saturated.

C.7. Proof of Lemma “Using realizations to get completions” (Lemma IV.21)

Lemma IV.21 (Using realizations to get completions). For any finite relation-saturated instance I that
satisfiesΣUFD, from aΣU-compliant piecewise realization PI of a pssinstance of I, we can construct a
finite weakly-sound superinstance of I that satisfiesΣU.

Recall that we numberΠ1, . . . ,Πn the↔FUN-classes ofPos(σ). We first define the following notion:

Definition C.1. We say thatΠ j is an inner ↔FUN-class if it contains a position occurring inΣUID ;
otherwise, it is anouter ↔FUN-class.

Intuitively, “outer” ↔FUN-classes are those to which noUID of ΣUID can apply, so we can create
fresh elements at the positions of these classes without fear thatUIDs will be applicable to the fresh
elements.

We will use the notion of dangerous and non-dangerous positions from Section V:

Definition V.7. We say a position Sr ∈ Pos(σ) is dangerous for a position Sq 6= Sr if Sr → Sq is
in ΣUFD, and write Sr ∈ Dng(Sq). Otherwise, Sr is non-dangerous, written Sr ∈ NDng(Sq). Note that
{Sq}⊔Dng(Sq)⊔NDng(Sq) = Pos(S).

Observe that, ifRp ↔FUN Rq, then forRr /∈ {Rp,Rq}, we haveRr ∈ Dng(Rp) iff Rr ∈ Dng(Rq), and
likewise forNDng(Rp) andNDng(Rq). So it makes sense to defineDng(Πi) or NDng(Πi), for Πi an
↔FUN-class of positions of some relationR, to refer to the positions ofPos(R)\Πi that are dangerous
or non-dangerous for someRp ∈ Πi (and hence for all of them).

We show a first lemma about the positions whereFD violations may be introduced:

Lemma C.2. For any relation R andFDs ΣFD, for any Rp ∈ Pos(R) and UFD Rq → Rr of ΣFD, if
Rq ∈ NDng(Rp) then Rr ∈ NDng(Rp).

Proof. Assume by contradiction thatRr /∈ NDng(Rp). Then eitherRr = Rp or Rr ∈ Dng(Rp). The
first case is impossible because of theUFD Rq → Rr . So we haveRr ∈ Dng(Rp). Hence, theUFD
Rr → Rp is in ΣUFD, so that by transitivity theUFD Rq → Rp is in ΣUFD, again contradicting the fact
thatRq ∈ NDng(Rp).

28



Fix the finite relation-saturated instanceI that satisfiesΣUFD, the pssinstanceP of I , and the finite
ΣU-compliant piecewise realizationPI = (K1, . . . ,Kn) of P. Our approach is to construct the desired
superinstanceI ′ asI ⊔ I1⊔·· ·⊔ In, where the facts of eachIi are constructed fromKi, as we now explain.
We callF the set of the fresh elements (not in dom(PI)) that will be created in the construction, so that
we will have dom(I ′)⊆ dom(PI)⊔F .

We consider every 1≤ i ≤ n. LetRbe the relation to which the positions ofΠi belong. If the relation
R is not achieved byI andΣUID , or if Πi is outer, then we do not create any fact forR, and setIi ··= /0.
Otherwise, asI is relation-saturated, we choose one factR(c) in I . For everya ∈ Ki\πΠi (I), we create
a factF i

a ··= R(b) in Ii , with bp defined as follows for everyRp ∈ Pos(σ):

• If Rp ∈ Πi , takebp ··= ap. In other words, the tuplea is used to fillb at the positions ofΠi .

• If Rp ∈ Dng(Πi), use a fresh element inF for bp. In other words, dangerous positions have to
be filled with fresh elements (but this is no problem because we will show later that their classes
are outer).

• If Rp ∈ NDng(Πi) is non-dangerous, takebp ··= cp. In other words, we reuse the factR(c)
guaranteed byI being relation-saturated to complete the non-dangerous positions.

We have thus constructedI ′, which is clearly a finite superinstance ofI . We first show the following
claim:

Lemma C.3. For any1≤ i ≤ n anda ∈ Ki for which we create a fact Fia, for any Rp ∈ Πi , the fact Fi
a

is the only fact of I′ where ap occurs at position Rp.

This claim implies that the facts ofI , and all the facts of theIi for 1≤ i ≤ n, are pairwise distinct. By
this, we mean that we did not try to recreate inIi a fact that already existed inI , and that we never tried
to create the same fact twice in the sameIi or in differentIi.

Proof. Fix 1≤ i ≤ n anda ∈ Ki, and assume that we have created a factF i
a; fix Rp ∈ Πi .

We first show that we cannot haveap ∈ πRp(I). Assuming by contradiction that we do, letF be a
witnessing fact. By definition of a piecewise realization wehaveπΠi (I) ⊆ Ki, soπΠi (F) ∈ Ki. Hence,
asPI is ΣFD-compliant, we havea = πΠi (F); but we do not create facts for the tuplea∈Ki if a ∈ πΠi (I),
which contradicts the fact that we createdF i

a.
Second, we show that there cannot be another factF of I ′\I such thatap = πRp(F). As PI is ΣUFD-

compliant, there clearly cannot be such a factF i
a′ for a′ ∈ Ki, a 6= a′, with ap occurring at positionRp of

F i
a′ . Hence,F is a factF i′

a′ for i′ 6= i. Now, Πi andΠi′ are disjoint as↔FUN-classes, and thus we cannot
haveRp ∈ Πi′ . So eitherRp ∈Dng(Πi′) andbp ∈F , or Rp ∈NDng(Πi′) andbp ∈ πRp(I). The first case
is impossible because elements ofF occur in only one fact, and we showed above that the second case
was impossible. This concludes.

We now show thatI ′ has the required properties. Let us first show thatI ′ is weakly-sound. Recall the
definition:

Definition IV.1. A superinstance I′ of an instance I isweakly-sound if the following holds:
• for any a∈ dom(I) and Rp ∈ Pos(σ), if a ∈ πRp(I ′), then either a∈ πRp(I) or a∈Wants(I ,Rp);
• for any a∈ dom(I ′)\dom(I) and Rp,Sq ∈ Pos(σ), if a∈ πRp(I ′) and a∈ πSq(I ′) then Rp = Sq or

Rp ⊆ Sq is in ΣUID .
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We begin by checking the first condition. Leta ∈ dom(I) andRp ∈ Pos(σ) such thata ∈ πRp(I ′),
and letF be a fact ofI ′ that witnesses it. IfF is a fact ofI thena ∈ πRp(I) anda does not witness a
violation of weak-soundness. SoF is a fact ofI ′\I . Let i be the index of theIi that containsF, anda
be such thatF = F i

a (this is uniquely defined according to Lemma C.3).
We cannot haveRp ∈Dng(Πi), because we would then haveΠRp(F) ∈ F , contradictinga∈ dom(I).

We cannot haveRp ∈ NDng(Πi) either, because thena = πRp(F) would imply thata∈ πRp(I) which
we already excluded. HenceRp ∈ Πi . Now, by definition ofPI being a piecewise realization, asa ∈ Ki,
we know thata ∈ πRp(I) or a ∈ Wants(P,Rp). But we excludeda ∈ πRp(I) above, and we assumed
a∈ dom(I), soa∈Wants(P,Rp) translates toa∈Wants(I ,Rp). Hence,a does not witness a violation
of weak-soundness.

We now check the second condition. Leta ∈ dom(I ′)\dom(I) andRp,Sq ∈ Pos(σ) such thata ∈
πRp(I ′)∩πSq(I ′). We must show thatRp =Sq or Rp ⊆Sq is in ΣUID , that is,Rp ∼ID Sq. Now eithera∈F ,
or a ∈ H. If a ∈ F , observe that elements ofF occur at only one position inI ′. Hence, necessarily
Rp = Sq which impliesRp ∼ID Sq, anda does not witness a violation of weak-soundness. Thus,a∈H.

Let F be a fact witnessing thata ∈ πRp(I ′), andF ′ a fact witnessing thata ∈ πSq(I ′). As a ∈ H,
necessarilyF andF ′ are facts ofI ′\I , so there arei andi′ such thatF andF ′ are respectively facts ofIi
andIi′ . Clearlya cannot occur inF or F ′ at a position ofDng(Πi) or Dng(Πi′) (they contain elements
of F) or at a position ofNDng(Πi) or NDng(Πi′) (they contain elements of dom(I)). Hence,Rp ∈ Πi

andSq ∈ Πi′ . Now, asPI is a piecewise realization, asa /∈ dom(I), we conclude thata∈Wants(P,Rp)
anda∈Wants(P,Sq), and asa /∈ dom(I) this implies thatRp ∈ λ (a) andSq ∈ λ (a), so thatRp ∼ID Sq,
anda does not witness a violation of weak-soundness.

Hence,I ′ is weakly-sound.

Let us now show thatI ′ |= ΣUFD. Assume to the contrary the existence of two factsF andF ′ that
witness a violation of aUFD φ : Rp → Rq of ΣUFD. As I |= ΣUFD, we assume without loss of generality
thatF is a fact ofI ′\I ; let 1≤ i ≤ n anda ∈ Ki be such thatF = F i

a. We cannot haveRp ∈ Dng(Πi),
as then we would haveap ∈ F , and elements ofF only occur in a single fact inI ′. We cannot have
Rp ∈ Πi either because, by Lemma C.3,F i

a is the only fact ofI ′ whereap occurs at positionRp. So
Rp ∈ NDng(Πi), and by Lemma C.2 we haveRq ∈ NDng(Πi) as well. Hence, lettingF ′′ = R(c) be the
fact of I used to fill the positions ofNDng(Πi) in F , we know thata′p = cp anda′q = cq. Thus, as this
makes it impossible thatF ′ = F ′′, we deduce thatF ′′ andF ′ also violateφ .

Now, eitherF ′ is also a fact ofI and we have a contradiction becauseF ′′ ∈ I but I |= ΣUFD, or it is a
fact of I ′\I and, by the same process that we applied toF, we can replace it by a fact ofI , reaching a
contradiction again. This proves thatI ′ |= ΣUFD.

Let us last show thatI ′ |= ΣUID . Assume to the contrary the existence of aUID τ : Rp ⊆Sq of ΣUID and
an elementa∈ dom(I ′) such thata∈ πRp(I ′)\πSq(I ′). Let F be a fact ofI ′ witnessing thata∈ πRp(I ′).
EitherF is a fact ofI or it is a fact ofI ′\I .

For the first case, ifF is a fact ofI , by definition ofPI being a realization, we havea∈ πRp(PI). As
PI is ΣUID-compliant, we havea∈ πSq(PI), and lettinga be the witnessing tuple inKi whereΠi is the
↔FUN-class ofSq, we know that eithera∈ πSq(I) or a∈ πSq(F i

a). In the first sub-case there is nothing to
show. In the second sub-case it suffices to show thatF i

a was indeed created, and this is the case because
τ witnesses thatΠi is inner, andF ∈ I witnesses thatRwas achieved inChase(I ,ΣUID), soSmust also
be because ofτ . This concludes the first case.

For the second case, ifF is a fact of I ′\I , write F = F i′
a . The existence ofF i′

a implies thatΠi′

is inner andR is achieved inChase(I ,ΣUID); henceS is, because ofτ . There are three possibilities:
Rp ∈ NDng(Πi′), Rp ∈ Πi′ , or Rp ∈Dng(Πi′). The first sub-case isRp ∈NDng(Πi′); but then we could
have picked as witness fora∈ πRp(I ′) the factS(c) of I used to define the non-dangerous positions, and
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we are back to the first case. The second sub-case isRp ∈Πi′ ; then we havea∈ πRp(PI) by construction,
so that asPI is ΣUID-compliant we havea∈ πSq(PI), and we conclude as before. The only remaining
sub-case is the third sub-case,Rp ∈ Dng(Πi′), so thatap ∈ F . Now, asRp ∈ Dng(Πi′), we know that
Rp → Rr is in ΣUFD for any positionRr of Πi′ that occurs inΣUID (such anRr exists becauseΠi′ is
inner). Now, asτ witnesses thatRp occurs inΣUID , we know by assumptionreversible thatRr → Rp is
in ΣUFD, so thatRp ∈ Πi′ . But we assumedRp ∈ Dng(Πi′), a contradiction.

Hence we conclude thatI ′ |= ΣUID .

Hence,I ′ is a finite superinstance ofI which is weakly-sound and satisfiesΣU. This concludes the
proof.

D. Proofs for Section V: k-Soundness and Reversible UIDs

This section completes the proof of the Acyclic Unary ModelsTheorem (Theorem III.6) under assump-
tion reversible.

D.1. Proof of Lemma V.2 (ACQs are preserved through k-bounded simulations)

Lemma V.2. For any instance I andACQ q of size≤ n such that I|= q, if there is an n-bounded
simulation from I to I′, then I′ |= q.

Fix the instanceI . We will prove by induction onn the following stronger claim: for anyn∈ N, for
anyACQ q of size≤ n and any variablex of q, if q has a match inI that mapsx to a∈ dom(I), then for
anyb∈ dom(I ′) such that(I ,a) ≤n (I ′,b), q has a match inI ′ mappingx to b. The base case ofn= 0
corresponds to queries with no atoms, and it is trivial.

For the induction step, fixn∈ N, the queryq, the variablex and the matchh from q to I that mapsx
to a∈ dom(I). We define a reachability relation between variables ofq as the reflexive and transitive
closure of the relation of co-occurring in some atom ofq. If this relation consists of a single class,
we say thatq is connected. As we can otherwise rewriteq as a conjunction of strictly smaller queries
of ACQ and process all such queries separately using the inductionhypothesis, we assume without loss
of generality thatq is connected.

LetA= A1, . . . ,Am be the atoms ofq wherex occurs (this set of atoms is non-empty, by the connect-
edness assumption). Becauseq is anACQ, each variabley occurring in one of theAi occurs at most
once: once per atom (as the same variable cannot occur multiple times in an atom), and in only one
atom (as ify occurs both inAi1 andAi2 thenAi1, y, Ai2, x is a Berge cycle ofq). LetY be the set of the
variables occurring in theAi (not includingx).

Becauseq is acyclic and connected, the other variables ofq can be partitioned depending on the
variable inY from which they are reachable without usingA. Hence, we can partition the remaining
atoms ofq into strictly smaller acyclic subqueriesq1(y1,z1), . . . ,ql (yl ,zl) in ACQ, for Y = {y1, . . . ,yl},
where thezj are pairwise disjoint sets of variables.

Now, let b∈ dom(I ′) be such that(I ,a) ≤n (I ′,b). For each atomAi = R(x) in A, let 1≤ pi ≤ |R|
be the one position such thatxpi = x. Consider the factFi = R(ai) that is the image ofAi in I by h.
As (I ,a) ≤n (I ′,b), there exists a factF ′

i = R(bi) of I ′ with bpi = b and with(I ,aq) ≤n−1 (I ′,bq) for
all 1 ≤ q ≤ |R|. Consider now each variabley j ∈ Y that occurs inAi, letting 1≤ q ≤ |R| be the
one position such thatxq = y j , and letq j(y j ,zj) be the subquery corresponding toy j . We know that
(I ,aq) ≤|qj | (I

′,bq), and thatq j has a match inI that mapsy j to aq (namely, the restrictionh j of the

matchh to the subqueryq j ) so that, by the induction hypothesis,q j has a matchh′j in I ′ wherey j is
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matched tobq. Now, we can assemble theF ′
i and all the matchesh′j thus obtained, because thezj are

pairwise disjoint, yielding a matchh′ of q in I ′ wherex is matched tob. This concludes the induction
step.

Hence, the stronger claim is proven by induction. It remainsto observe that it implies the desired
claim. Indeed, ifI |= q and there is an-bounded simulationsim from I to I ′, choose any variablex in
q (if q has no variables, the result is vacuous), consider any matchof q in I matchingx to a, usesim to
defineb ··= sim(a), and deduce the existence of a match ofq in I ′ (matchingx to b) using the claim that
we have shown by induction.

D.2. Proof of Lemma V.5 (AFactCl is finite)

Lemma V.5. For any initial instance I0, setΣUID of UIDs, and k∈ N, AFactCl is finite.

We first show that≃k has only a finite number of equivalence classes onChase(I0,ΣUID). Indeed, for
any elementa∈ dom(Chase(I0,ΣUID)), by the Unique Witness Property, the number of facts in whicha
occurs is bounded by a constant depending only onI0 andΣUID . Hence, there is a constantM depending
only on I0, ΣUID , andk, so that, for any elementd ∈ dom(Chase(I0,ΣUID)), the number of elements
of dom(Chase(I0,ΣUID)) which are relevant to determine the≃k-class ofd (that is, the elements whose
distance tod in the Gaifman graph ofChase(I0,ΣUID) is ≤ k) is bounded byM.

This clearly implies thatAFactCl is finite, because the number ofm-tuples of equivalence classes
of ≃k that occur inChase(I0,ΣUID) is then finite for anym≤ maxR∈σ |R|, andPos(σ) is finite.

D.3. Proof of the Fact-Saturated Solutions Lemma (Lemma V.6)

Lemma V.6 (Fact-saturated solutions). The result I of performing sufficiently many chase rounds on I0

is such that J0 = (I , id) is a fact-saturated aligned superinstance of I0.

For everyD ∈ AFactCl, let nD ∈ N be such thatD is achieved by a fact ofChase(I0,ΣUID) created
at roundnD. As AFactCl is finite, n ··= maxD∈AFactCl nD is finite. Hence, all classes ofAFactCl are
achieved aftern chase rounds onI0.

Consider nowI ′0 obtained from the aligned superinstanceI0 by n rounds of theUID chase, and
J0 = (I ′0,ΣUID). It is clear that for anyD ∈ AFactCl, there is an achieverF = R(b) of D in I ′0. Hence,
the corresponding fact inJ0 is an achiever ofD in J0.

D.4. Proof of the Fact-Thrifty Chase Steps Lemma (Lemma V.9)

We first prove the following lemma, which we will use to justify that we can extend aligned instances.

Lemma D.1. Let n∈ N. Let I1 and I be instances andsim be a n-bounded simulation from I1 to I.
Let I2 be a superinstance of I1 defined by adding one fact Fn = R(a) to I1, and letsim′ be a mapping
from I2 to I such thatsim′

|I1
= sim. Assume there is a fact Fw = R(b) in I such that, for all Ri ∈ Pos(R),

sim′(ai)≃n bi . Thensim′ is a n-bounded simulation from I2 to I.

Proof. We prove the claim by induction onn. The base case ofn= 0 is immediate.
Let n> 0, assume that the claim holds forn−1, and show that it holds forn. As sim is an-bounded

simulation, it is a(n−1)-bounded simulation, so we know by the induction hypothesisthat sim′ is a
(n−1)-bounded simulation.
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Let us now show that it is an-bounded simulation. Leta ∈ dom(I2) be an element and show that
(I2,a) ≤n (I ,sim′(a)). To do this, chooseF = S(a) a fact ofI2 with ap = a for somep, and show that
there exists a factF ′ = S(a′) of I with a′p = sim′(ap) and(I2,aq)≤n−1 (I ,a′q) for all Sq ∈ Pos(S).

The first possibility is thatF is the new factFn =R(a). In this case, as we have(I ,bp)≤n (I ,sim′(ap)),
consideringFw, we deduce the existence of a factF ′

w =R(c) in I such thatcp = sim′(ap) and(I ,bq)≤n−1

(I ,cq) for all 1≤ q≤ |R|. We takeF ′ = F ′
w. By construction we havecp = sim′(ap). Fixing 1≤ q≤ |R|,

to show that(I2,aq)≤n−1 (I ,cq), we use the fact thatsim′ is an(n−1)-bounded simulation to deduce
that (I2,aq) ≤n−1 (I ,sim′(aq)). Now, we have(I ,sim′(aq)) ≤n−1 (I ,bq), and as we explained we have
(I ,bq)≤n−1 (I ,cq), so we conclude by transitivity.

If F is another fact, then it is a fact ofI1, so its elements are in dom(I1), and assim′ coincides with
sim on such elements, we conclude becausesim is an-bounded simulation.

We then prove the main result:

Lemma V.9 (Fact-thrifty chase steps). For any fact-saturated aligned superinstance J, the resultJ′ of
a fact-thrifty chase step on J is indeed a well-defined aligned superinstance where the former active
fact Fa is no longer active.

We first observe that fact-thrifty chase steps are well-defined because a suitableFr = S(c) always
exists, asJ is fact-saturated. It is immediate thatJ′ is finite.

It is immediate that, lettingJ′ = (I ′,sim′) be the result of the process,I ′ is still a superinstance
of I0, and the previously active factFa is no longer active inI ′. To show thatsim′ is still a k-bounded
simulation, use Lemma D.1 withFn = S(b) andFw = S(b′). The fact thatsim′ is the identity onI0 is
immediate becausesim′

|I0
=sim|I0.

We now show thatJ′ satisfiesΣUFD, using the fact thatJ does. Indeed, any violation ofΣUFD in
J′ would have to include the one new factFn = S(b), By way of contradiction, letφ : Sl → Sr be a
violatedUFD in ΣUFD and let{F,Fn} be a violation, whereF = S(d) is some fact ofI ′. It is clear that
we cannot havedq = bq, as otherwise this would contradict the fact thatFa was an active fact. Hence,
by construction of the new factFn, we can only havebi = di if Si ∈ NDng(Sq). As {F,Fn} violatesφ ,
this implies thatSl ∈ NDng(Sq), so that, by Lemma C.2,Sr ∈ NDng(Sq). Now, observe that we have
πNDng(Sq)(Fn) = πNDng(Sq)(Fr), with Fr the fact used to fill the non-dangerous position in the definition
of fact-thrifty chase steps. Now, we cannot haveF = Fr because they must disagree onSr , so that
{F,Fr} also witnesses a violation ofφ in J. This contradicts our assumption thatJ |= ΣUFD.

We must now check the last part of the definition of aligned superinstances, which only needs to be
verified for the fresh elements: forSr 6=Sq, if br is fresh, then it occurs inJ′ at the position wheresim(br)
was introduced inChase(I0,ΣUID). For this, it suffices to show thatb′q was the exported element ofFw.
In this case, assim(br) = b′r , we will know thatb′r was introduced at positionSr in Fw in Chase(I0,ΣUID),
so the condition is respected. We make this a separate lemma:

Lemma D.2. Let J be an aligned superinstance of I0 and consider the application of a thrifty chase
step for aUID τ : Rp ⊆ Sq. Consider the chase witness Fw = S(b′). Then b′q is the exported element
of Fw.

Using this lemma, it is also clear thatsim′
|I ′\I0

maps toChase(I0,ΣUID)\I0, which is the last thing we
had to verify. Indeed, for all fresh elementsbr ∈ dom(I ′)\dom(I) (with Sr 6= Sq), which are clearly
not in I0, we have fixedsim′(br ) to beb′r , which by the lemma is introduced inFw so it cannot be an
element ofI0; hence it is indeed an element ofChase(I0,ΣUID)\I0.

We conclude by proving Lemma D.2:
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Proof. Let Fa= R(a) be the active fact inJ, Fn = S(b) be the new fact ofJ′, andτ : Rp ⊆ Sq be theUID,
soap = bq is the exported element of this chase step. Assume by way of contradiction thatb′q was not
the exported element inFw, so that it was introduced inFw. In this case, assim(ap) = sim(bq) = b′q,
by the last part of the definition of aligned superinstances,we haveap ∈ πSq(J), which contradicts the
fact thatap ∈Wants(J,τ). Hence, we have proved by contradiction thatb′q was the exported element
in Fw.

D.5. Proof of the Fact-Thrifty Completion Proposition (Proposition V.10)

Proposition V.10(Fact-thrifty completion). Under assumptionreversible, for any fact-saturated aligned
superinstance J of I0, we can expand J by fact-thrifty chase steps to a fact-saturated aligned superin-
stance J′ of I0 that satisfiesΣUID .

There are two steps to the proof. The first one is to apply initial chasing by fresh fact-thrifty chase
steps to ensure a certain property,k-reversibility. The second one is to use fact-thrifty chase steps to
satisfyΣUID , using the constructions of Section IV.

We start with the first step. We consider a forest structure onthe facts ofChase(I0,ΣUID): the facts
of I0 are the roots, and the parent of a factF not in I0 is the factF ′ that was the active fact for whichF
was created, so thatF ′ andF share the exported element ofF. Fora∈ dom(Chase(I0,ΣUID)), if a was
introduced at positionSr of anS-fact F = S(a) created by applying theUID τ : Rp ⊆ Sq (with Sq 6= Sr)
to its parent factF ′, we callτ the lastUID of a. The last twoUIDs of a are(τ ,τ ′) whereτ ′ is the last
UID of the exported elementaq of F (which was introduced inF ′). For n ∈ N, we define the lastn
UIDs in the same way, for elements ofChase(I0,ΣUID) introduced after sufficiently many rounds. We
say thata is n-reversible if its last nUIDs are reversible.

We accordingly define the notion ofn-reversible aligned superinstance, which requires that elements
where aUID is violated are mapped bysim to an-reversible element in the chase. Recall that, for any
positionRp, we write[Rp]ID the∼ID-class ofRp.

Definition D.3. An aligned superinstance J of I0 is n-reversible if for any position Sq and a∈Wants(J,Sq),
sim(a) is a n-reversible element ofChase(I0,ΣUID) introduced at a position of[Sq]ID in Chase(I0,ΣUID).

The first step of the proof of Proposition V.10 is to performk+1 fresh fact-thrifty chase rounds on
the input fact-saturated aligned superinstanceJ, to ensure that the resultJ′ is k-reversible forΣUID :

Proposition D.4 (Ensuringn-reversibility). For any n∈ N, applying n+ 1 fresh fact-thrifty chase
rounds on a fact-saturated aligned superinstance J by theUIDs ofΣUID yields a fact-saturated aligned
superinstance J′ that is n-reversible forΣUID .

This proposition is proved in Appendix D.6.

The second step of the proof is simply to apply the following lemma toJ′.

Lemma D.5 (Guided chase). For any fact-saturated k-reversible aligned superinstance J= (I ,sim)
of I0, we can build by fact-thrifty chase steps an aligned superinstance J′ = (I ′,sim′) of I0 such that
I ⊆ I ′, sim′

|I = sim, and J′ satisfiesΣUID .

The lemma is proved in Appendix D.7. It uses the constructions of Section IV, and relies on an
independent result about the UID chase, the Chase Locality Theorem (Theorem V.11), proved in Ap-
pendix D.8. Clearly, applying the Guided Chase Lemma toJ′ concludes the proof of the Fact-Thrifty
Completion Proposition.
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D.6. Proof of Proposition “Ensuring n-reversibility” (Proposition D.4)

We first make the following easy observation:

Lemma D.6. Let J be an aligned superinstance, and J′ be the result of applying one chase round
to J with fresh fact-thrifty chase steps. Let a∈ Wants(J′,τ) for any UID τ . Then we have a∈
dom(J′)\dom(J), and a occurs in a single fact F (which is an active fact forτ).

Proof. For the first part of the claim, let us assume by way of contradiction thata ∈ dom(J). Note
that, by definition of chase rounds, we cannot havea ∈ Wants(J,τ), otherwise we could not have
a ∈ Wants(J′,τ). Hence, if we havea ∈ dom(J) but a /∈ Wants(J,τ), any active factF witnessing
a∈Wants(J,τ) must be inJ′.

Now, by definition of fact-thrifty chase steps, ifa /∈ dom(J), there are two possibilities. Eithera
was the exported element inF, or it was an element reused at a non-dangerous position. Thefirst case
is impossible: becauseΣUID is transitively closed, the new facts created inJ′ cannot make newUIDs
applicable to old elements ofJ. The second case is also impossible: elements reused at non-dangerous
positions already occurred at the same position inJ, so this cannot make newUIDs applicable to them.
This proves the first claim.

The second part of the claim is by observing that elements created inJ′ occur in a single fact, by
definition of chase rounds, and by definition of fresh fact-thrifty chase steps (elements in new facts are
either in dom(J) or are fresh). So the one fact wherea occurs must be the active fact witnessing that
a∈Wants(J′,τ).

We then show the following simple lemma aboutn-reversibility:

Lemma D.7. Let n∈ N, let J be a n-reversible aligned superinstance of I0 and let Fn = S(b) be a new
fact obtained by applying a thrifty chase step to J. For all Sr ∈ Pos(S), such that br /∈ dom(J), sim(br)
is (n+1)-reversible and introduced at position Sr in Chase(I0,ΣUID).

Proof. Let Fa be the active fact,Fw be the chase witness, andτ : Rp ⊆ Sq be theUID for this chase step.
By Lemma D.2 we know thatb′q is the exported element ofFw. Hence, for allSr ∈ Pos(S)\{Sq}, b′r is
(n+1)-reversible and introduced at positionSr . Now, for allSr ∈ Pos(S) such thatbr is fresh inFn, we
have setsim(br) = b′r , so the result follows.

We now prove the main result:

Proposition D.4 (Ensuringn-reversibility). For any n∈ N, applying n+ 1 fresh fact-thrifty chase
rounds on a fact-saturated aligned superinstance J by theUIDs ofΣUID yields a fact-saturated aligned
superinstance J′ that is n-reversible forΣUID .

Fix the aligned superinstanceJ = (I ,sim). We prove the result by induction onn. For the base
casen = 0, lettingJ′ be the result of applying one chase round toJ, we need only show that for any
position Sq and a ∈ Wants(J′,Sq), sim(a) was introduced at a position of[Sq]ID in Chase(I0,ΣUID).
By Lemma D.6,a occurs in a single factF at some positionRp (so that, using assumptionreversible,
Rp ∼ID Sq), and we havea∈ dom(J′)\dom(J), so it was created by the application of a thrifty chase
step toJ. By Lemma D.7, we conclude thatsim(a) was introduced at positionRp in Chase(I0,ΣUID),
which implies the desired claim.

For the induction, fixn> 0 and assume that the result is true forn−1. LetJ′ = (I ′,sim′) be the result
of applying(n−1)+1 chase rounds toJ. By induction hypothesis,J is (n−1)-reversible. We want to
show thatJ′′ =(I ′′,sim′′) obtained by applying one more chase round toJ′ is n-reversible. This is shown
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exactly as in the base case, except that, when applying LemmaD.7, we use the(n−1)-reversibility ofJ
to deduce then-reversibility of the element under consideration.

This proves the desired claim by induction. Note that we haverelied implicitly on the Fact-Thrifty
Chase Steps Lemma (Lemma V.9) to justify that the result of chase rounds by fact-thrifty chase steps
are indeed aligned superinstances; it is immediate that fact-saturation is preserved.

D.7. Proof of the Guided Chase Lemma (Lemma D.5)

Recall that the↔FUN-classes ofPos(σ) are numberedΠ1, . . . ,Πn. Recall the notion of inner and outer
↔FUN-classes (Definition C.1), and the notion of piecewise realization (Definition IV.14). We define:

Definition D.8. A superinstance I′ of the instance Ifollows the piecewise realization PI= (K1, . . . ,Kn)
if for every inner↔FUN-classΠi, we haveπΠi (I

′)⊆ Ki.

We show the main claim:

Lemma D.5 (Guided chase). For any fact-saturated k-reversible aligned superinstance J= (I ,sim)
of I0, we can build by fact-thrifty chase steps an aligned superinstance J′ = (I ′,sim′) of I0 such that
I ⊆ I ′, sim′

|I = sim, and J′ satisfiesΣUID .

Fix the fact-saturatedk-reversible aligned superinstanceJ = (I ,sim) of I0. Let P = (I ,H,λ ) be a
balanced pssinstance ofJ obtained by the Balancing Lemma (Lemma IV.9) and letPI = (K1, . . . ,Kn) be
a finiteΣU-compliant piecewise realization ofP obtained by the Realizations Lemma (Lemma IV.16).

We will prove the result by satisfyingUID violations in J with fact-thrifty chase steps using the
piecewise realizationPI, yielding a finite aligned superinstanceJf = (If ,simf) such thatI ⊆ If, the
restriction ofsimf to I is sim, Jf satisfiesΣUID , andIf follows PI. The process is a variant of Lemma
“Using realizations to get completions” (Lemma IV.21).

We callJ′ = (I ′,sim′) the current state of our superinstance, starting atJ′ ··= J. We will perform fact-
thrifty chase steps onJ′. We callF the set of all fresh elements (not in dom(P)) that we will introduce
(only in outer classes) during the chase steps. It is immediate that our construction will maintain the
following:

fsat: J′ is a fact-saturated aligned superinstance ofI0 (this uses Lemma V.9);

sub: I ⊆ I ′;

sim: sim′
|dom(I) = sim.

Further, we will additionally maintain the following invariants:

fw: I ′ follows PI;

krev: J′ is k-reversible;

out: elements of outer classes are only inF or in dom(I).

We now describe formally how we apply each fact-thrifty chase step. Choose an elementa ∈
Wants(J′,τ) to which someUID τ : Rp ⊆ Sq is applicable. LetFa = R(a) be the active fact, with
a= ap. TheUID τ witnesses that the↔FUN-classesΠi andΠi′ , of Rp andSq respectively, are inner, so
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by invariantfw we havea∈ πRp(PI). As PI is ΣUID-compliant, we must havea∈ πSq(PI), and there is
a |Πi′ |-tuple t ∈ Ki′ such thattq = a.

We choose a factFr = S(c) of J that achieves the fact class of the chase witnessFw (this is possible
by invariantfsat), and create a new factFn = S(b) with the fact-thrifty chase step defined as follows:

• For the exported positionSq, we setbq ··= ap.

• For anySr ∈ Πi′ , noting that necessarilySr ∈Dng(Sq), we setbr ··= tr .

• For any positionSr ∈ Dng(Sq)\Πi′ , we takebr to be a fresh element fromF .

• For any positionSr ∈ NDng(Sq), we setbr ··= cr .

We must verify that this satisfies the conditions of thrifty chase steps. The fact thatbr ∈ πSr (J′) for
Sr ∈ NDng(Sq) is immediate by definition ofFr. We now show the two other points.

First, we show thatbr /∈ πSr (J′) for Sr ∈ Dng(Sq). Obviously this needs only to be checked for
Sr ∈ Πi′ (as the otherbr are always fresh). Assume to the contrary thattr ∈ πSr (J′), and letF = S(d) be
a witnessing fact. AsΠi′ is inner, by invariantfw, we deduce thatπΠi′

(d) ∈ πΠi′
(PI). Now, asdr = tr

andPI is ΣUFD-compliant, we deduce thatd = t, so thatF witnesses thatdq is in πSq(J′). As we have
dq = tq = a, this contradicts the applicability ofτ to a. Hence, the claim is proven.

Second, we check that reused elements have the rightsim-image. This is the case by definition of
fact-thrifty chase steps for the non-dangerous positions,so again we need only check this for elements
at a positionSr ∈ Πi′ , and only if they are not fresh. We start by showing that, for such Sr , we have
br ∈Wants(J′,Sr).

Indeed, we havebr = tr which is inπSr (PI), and we cannot havet ∈ πΠi′
(J′), as otherwise this would

contradict the applicability ofτ to a; so in particular, by invariantsub, we cannot havet ∈ πΠi′
(I).

Thus, by definition of a piecewise realization, we havetr ∈ Wants(P,Sr). Recalling that we have
tr ∈ dom(J′), we show that this impliestr ∈Wants(J′,Sr). Recalling the definition oftr ∈Wants(P,Sr),
we distinguish two subcases: (1.)tr ∈ dom(J) andtr ∈Wants(J,Sr ), or (2.) tr ∈H andSr ∈ λ (tr).

In the subcase (1.)tr ∈ dom(J) andtr ∈Wants(J,Sr), we remember that in the first point we showed
thattr /∈ πSr (J′). So we still havetr ∈Wants(J′,Sr), which is what we claimed.

In the subcase (2.)tr ∈ H andSr ∈ λ (tr), consider a factF ′ of J′ witnessingtr ∈ dom(J′), wheretr
occurs at a positionT l ; let Πi′′ be the↔FUN-class ofT l . As tr ∈ H, by invariantout, Πi′′ is inner, so
by invariantfw there is a tuplet′ of Ki′′ such thatt ′l = tr . Now, astr ∈ H, by definition of piecewise
realizations, we haveT l ∈ λ (tr). Hence, either theUID τ ′ : T l ⊆ Sr is in ΣUID or we haveT l = Sr . As
tr ∈ πT l (J′) and we have shown in the first point thattr /∈ πSr (J′), we know thatT l 6= Sr , soτ ′ is in ΣUID .
Hence, asF ′ witnesses thattr ∈ πT l (J′), and astr /∈ πSr (J′), we havetr ∈Wants(J′,Sr), as we claimed.

Hence, we know thatbr = tr is inWants(J′,Sr) in either subcase. By invariantkrev, this implies that
sim(br) is ak-reversible element ofChase(I0,ΣUID) introduced at a position of[Sr ]ID. By Lemma D.7,
we know that thesim-imageb′r of a fresh element at positionSr would bek-reversible and introduced
at positionSr . Hence, by the Chase Locality Theorem (Theorem V.11), we have sim(br ) ≃k b′r , so
the condition is satisfied. This proves that, indeed, we can perform the fact-thrifty chase step that we
described.

We now check that the invariants are preserved. We first observe that for anySr ∈ Dng(Sq)\Πi′ ,
the↔FUN-class ofSr is outer. Indeed, ifSr occurred inΣUID , asSq does because ofτ , we know by
assumptionreversible that, as theUFD Sr → Sq is in ΣUFD by dangerousness ofSr , theUFD Sq → Sr

also should, but then we would haveSr ↔FUN Sq, soSr ∈ Πi′ , a contradiction. Hence, the↔FUN-class
of Sr is indeed outer.
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Figure 1: Chase locality example. Elementsb andb′ are 1-reversible and introduced at positionsR3

andU1. ReversibleUIDs are represented by thick edges.

Now, invariant fw is preserved because, by the above observation, the new factFn is defined on
the inner classes either followingt or following an existing fact ofJ′. Invariant krev is preserved
by Lemma D.7 for the fresh elements, or bykrev on the previous stateJ′ for the existing elements.
Invariantout is preserved because the only elements ofFn that are not inF or in dom(I) are those of
Πi′ , which is inner. This shows that the invariant is preserved by the fact-thrifty chase step.

We perform fact-thrifty chase steps until no violations ofΣUID remain: invariantfw guarantees that
we terminate. Indeed,PI is finite, the domain of the resulting instance is bounded by that ofPI for all
inner classes, and new elements created in outer classes cannot create violations ofΣUID or cause the
creation of further elements, by definition of their class being outer. Hence, the result of the process is
finite, and it satisfiesΣUID because no violations remain. This concludes the proof.

D.8. Proof of the Chase Locality Theorem (Theorem V.11)

We give an equivalent rephrasing of the Chase Locality Theorem (Theorem V.11) using the notion of
n-reversible elements (Definition D.3):

Theorem D.9(Chase locality theorem). For any instance I0, transitively closed set ofUIDs ΣUID , and
n∈ N, for any two elements a and b respectively introduced at positions Rp and Sq in Chase(I0,ΣUID)
such that Rp ∼ID Sq, if a and b are n-reversible then a≃n b.

Note that this result is for an arbitrary set ofUIDs andFDs, not relying on any finite closure proper-
ties, or on assumptionreversible. (It only assumes that the lastn dependencies used to createa andb
were reversible.) However we still assume thatΣUID is transitively closed.

Figure 1 illustrates the result in a simple situation. The intuition is the following: n-reversible ele-
ments in the chase have the same neighborhoods up to distancen, no matter their exact histories, as
long as they were introduced in∼ID-equivalent positions: intuitively, the facts that go “downwards” in
the neighborhood ofa in the forest structure can be matched to facts in the neighborhood ofb because
they are required byΣUID , and the facts “upwards” are also matched up to distancen because of the
reverses of theUIDs used along this chain.

To prove the theorem, fix the instanceI0 and the setΣUID of UIDs. We first show the following easy
lemma:
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Lemma D.10. For any n> 0 and position Rp, for any two elements a,b ofChase(I0,ΣUID) introduced
at position Rp in two facts Fa and Fb, letting a′ and b′ be the exported elements of Fa and Fb, if a′ ≃n−1 b′,
then a≃n b.

Proof. By symmetry, it suffices to show thata≤n b. We proceed by induction onn.
For the base casen = 1, observe that, for every factF of Chase(I0,ΣUID) wherea occurs at some

positionSq, there are only two cases. EitherF = Fa, so we can pickFb as the representative fact, or the
UID Rp ⊆ Sq is in ΣUID so we can pick a corresponding fact forb by definition of the chase.

For the induction step, we proceed in the same way. IfF = Fa, we pick Fb and use either the
hypothesis ona′ andb′ or the induction hypothesis (for other elements ofFa andFb) to justify thatFb

is a suitable witness. Otherwise, we pick the correspondingfact forb which must exist by definition of
the chase, and apply the induction hypothesis to the other elements of the fact to conclude.

We now prove the Chase Locality Theorem. Recall the definition of∼ID (Definition IV.6). However,
note that, as we no longer make assumptionreversible, while ∼ID is still an equivalence relation, it is
no longer the case that allUIDs of ΣUID are reflected in∼ID: theUID Rp ⊆ Sq may be inΣUID even
thoughRp 6∼ID Sq if Sq ⊆ Rp is not inΣUID .

We prove by induction onn the main claim: for any positionsRp andSq such thatRp ∼ID Sq, for any
two n-reversible elementsa andb respectively introduced at positionsRp andSq, we havea≃n b. By
symmetry it suffices to show that(Chase(I0,ΣUID),a)≤n (Chase(I0,ΣUID),b).

The base case ofn= 0 is immediate.
For the induction step, fixn> 0, and assume that the result holds forn−1. Fix Rp andSq, and let

a,b be twon-reversible elements introduced respectively atRp andSq in factsFa andFb. Note that by
the induction hypothesis we already know that(Chase(I0,ΣUID),a)≤n−1 (Chase(I0,ΣUID),b); we must
show that this holds forn.

First, observe that, asa andb aren-reversible withn > 0, they are not elements ofI0. Hence, by
definition of the chase, for each one of them, the following istrue: for each fact of the chase where
the element occurs, it only occurs at one position, and all other elements co-occurring with it in a fact
of the chase occur only at one position in only one of these facts. Thus, to prove the claim, it suffices
to construct a mappingφ from the setN1(a) of the facts ofChase(I0,ΣUID) wherea occurs, to the set
N1(b) of the facts whereb occurs, such that the following holds: for every factF = T(a) of N1(a),
letting Tc be the position ofF such thatac = a (there is only one such position by construction of the
chase),b occurs at positionTc in φ(F) = T(b), and for everyi, ai ≤n−1 bi .

By construction of the chase (using the Unique Witness Property), N1(a) consists of exactly the
following facts:

• The factFa =R(a), wheread = a′ is the exported element (for a certaind), ap = a was introduced
at Rp in Fa, and fori /∈ {p,d}, ai was introduced atRi in Fa

• For everyUID τ : Rp ⊆Vg of ΣUID , aV-fact Fτ
a where all elements were introduced in this fact

except the one at positionVg which isa.

A similar characterization holds forb, with the analogous notation. We construct the mappingφ as
follows:

• If Rp = Sq then setφ(Fa) = Fb; otherwise, asτ : Sq ⊆ Rp is in ΣUID , setφ(Fa) to be the factFτ
b .

• For everyUID τ : Rp ⊆ Vg of ΣUID , asRp ∼ID Sq, by transitivity, eitherSq = Vg or theUID

τ ′ : Sq ⊆Vg is in ΣUID . In the first case, setφ(Fτ
a ) = Fb. In the second case, setφ(Fτ

a ) = Fτ ′
b .
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We must now show thatφ satisfies the required conditions. First, verify that indeed, by construction,
whenevera occurs at positionTc in F thenb occurs at positionTc in φ(F). Second, fixF ∈ N1(a),
write F = T(a) andφ(F) = T(b), with ac = a andbc = b for somec, and show thatai ≤n−1 bi for all
T i ∈ Pos(T). If n= 1 there is nothing to show and we are done, so we assumen≥ 2. If i = c then the
claim is immediate by the induction hypothesis; otherwise,we distinguish two cases:

1. F = Fa (so thatT = R andc = p), or F = Fτ
a such that theUID τ : Rp ⊆ Tc is reversible. In

this case, by construction, eitherφ(F) = Fb or φ(F) = Fτ ′
b for τ ′ : Sq ⊆ Tc; τ ′ is then reversible,

becauseRp ∼ID Sq andRp ∼ID Tc.

We show that for all 1≤ i ≤ |T|, i 6= c, ai is (n−1)-reversible and was introduced inChase(I0,ΣUID)
at a position in the∼ID-class ofT i. Once we have proved this, by symmetry we can show the
same for allbi , so that we can conclude thatai ≤n−1 bi by induction hypothesis. To see why the
claim holds, we distinguish two subcases. Eitherai was introduced inF, or we haveF = Fa,
i = d andai is the exported element fora.

In the first subcase,ai was created by applying the reversibleUID τ and the exported elementa
is n-reversible, soai is (n− 1)-reversible (in fact it is(n+ 1)-reversible), and is introduced at
position T i. In the second subcase,ai is the exported element used to createa, which is n-
reversible, soai is (n− 1)-reversible; and asn ≥ 2, the last dependency applied to createai is
reversible, so thatai was introduced at a position in the same∼ID-class asT i. Hence, we have
proved the desired claim in the first case.

2. F = Fτ
a such thatτ : Rp ⊆ Tc is not reversible. In this case, we cannot haveTc = Sq (because we

haveRp ∼ID Sq), so thatφ(F) = Fτ
b , and allai for i 6= c were introduced inF at positionT i , and

likewise for thebi in φ(F). Using Lemma D.10, asa≃n−1 b, we conclude thatai ≃n bi , hence
ai ≤n−1 b.

This concludes the proof.

E. Proofs for Section VI: Arbitrary UIDs: Lifting Assumption

Reversible

This appendix proves the claims needed to complete our proofof Theorem III.6, the existence of uni-
versal instances forUIDs, UFDs, and acyclicCQs of fixed size. The main claim is the existence of
manageable partitions (Lemma VI.5).

Remember that we are assuming the “Unique Witness Property”(Section II) and that the constraints
ΣU are closed under the finite closure rule (in particular,ΣUID is transitively closed).

E.1. Finite closure computation algorithm

For convenience we recall here how the finite closure is computed, from [8].
Given a setΣ = ΣFD⊔ΣUID of FDs andUIDs, anID pathof Σ is a sequence ofUIDs of ΣUID of the

following form: Ri1
1 ⊆ Rj2

2 ,Ri2
2 ⊆ Rj3

3 , . . . ,Rin−1
n−1 ⊆ Rjn

n , with ik 6= jk for all k. The path isfunctionalif, for

all 1< k< n, Rik
k → Rjk

k ∈ ΣFD. Note that our definition of the֌ relation ensures thatτ ֌ τ ′ iff τ ,τ ′

is a functionalID path.
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An invertible cycle Cof Σ is a functionalID path withRn = R1 and jn = j1 (so thatRi1
1 → Rj1

1 ∈ ΣFD):
aUID that occurs in an invertible cycle is said to beinvertible. ThereverseC of an invertible cycleC is
Rjn

n ⊆ Rin−1
n−1, . . . ,R

j2
2 ⊆ Ri1

1 .
Applying thecycle closure rulein Σ means taking every invertible cycleC of Σ and adding toΣ the

UIDs andUFDs needed to makeC an invertible cycle inΣ, namely,Rj2
2 ⊆ Ri1

1 ,R
j3
3 ⊆Ri2

2 , . . . ,R
jn
n ⊆Rin−1

n−1,

andRjk
k → Rik

k for 1 ≤ k ≤ n. The finite closure is computed by closing under the rule above and by
implication of theUIDs and of theFDs in isolation.

The fact that the result is exactly the finite closure ofΣ is shown in [8].

E.2. Proof of Lemma VI.2 (New violations follow ֌)

Lemma VI.2. Let J be an aligned superinstance of I0 and J′ be the result of applying a thrifty chase
step on J for aUID τ of ΣUID . Assume that aUID τ ′ of ΣUID was satisfied by J but is not satisfied by J′.
Thenτ ֌ τ ′.

Fix J, J′ andτ : Rp ⊆ Sq andτ ′. As chase steps add a single fact, the only newUID violations in
J′ relative toI are on elements in the newly created factFn = S(b), As ΣUID is transitively closed,Fn

can introduce no new violation on the exported elementbq. Now, as thrifty chase steps always reuse
existing elements at non-dangerous positions, we know thatif Sr ∈ NDng(Sq) then no newUID can be
applicable tobr . Hence, if a newUID is applicable tobr for Sr ∈ Pos(S), then necessarilySr ∈Dng(Sq).
By definition of dangerous positions, theUFD Sr → Sq is in ΣUFD, and it is non-trivial becauseSr 6= Sq.
Hence, writingτ ′ : Sr ⊆ Tr , we see thatτ ֌ τ ′.

E.3. Proof of Corollary VI.4 (Dealing with trivial classes)

Corollary VI.4. For any trivial class{τ}, performing one chase round on an aligned fact-saturated
superinstance J of I0 by fresh fact-thrifty chase steps forτ yields an aligned superinstance J′ of I0 that
satisfiesτ .

Fix J, J′ and τ . All violations of τ in J have been satisfied inJ′ by definition ofJ′, so we only
have to show that no new violations ofτ were introduced inJ′. But by Lemma VI.2, asτ 6֌ τ , each
fresh fact-thrifty chase step cannot introduce such a violation, hence there is no new violation ofτ in
J′. Hence,J′ |= τ .

E.4. Proof of Lemma VI.5 (Existence of manageable partitions)

Our goal in this section is to show:

Lemma VI.5. Any conjunctionΣUID of UIDs closed under finite implication has a manageable parti-
tion.

We assume thatΣUID is closed under the finite closure rule (see Appendix E.1). Hence, in particular,
it is transitively closed.

We start by introducing definitions about the֌ relation, which we recall is defined so thatτ ֌ τ ′

for τ ,τ ′ ∈ ΣUID wheneverτ ,τ ′ is a functionalID path, namely: lettingτ : Rp ⊆ Sq andτ ′ : Sr ⊆ Tu, the
UFD Sr → Sq is non-trivial and is inΣUFD.

We extend֌ to sets ofUIDs in the expected way:P֌ P′ if there existsτ ∈ P, τ ′ ∈ P′ such that
τ ֌ τ ′.
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Definition E.1. TheID graph Γ(ΣUID) is the directed graph (with self-loops) defined onΣUID by the
֌ relation. We define thestrongly connected components of Γ(ΣUID) as usual: an SCC is a maximal
subset P ofΣUID such that for allτ ,τ ′ ∈ P, we haveτ ֌

∗ τ ′, where֌∗ denotes the transitive and
reflexive closure of the֌ relation. TheSCC graph G(ΣUID) is the directed acyclic graph (without
self-loops) defined on the SCCs ofΓ(ΣUID) such that, for any two SCCs P6= P′ of Γ(ΣUID), there is an
edge from P to P′ iff P ֌ P′.

Note that the definition of SCCs allows both singleton SCCs{τ} where we have a self-loop (τ ֌ τ),
and singletons where there is none (τ 6֌ τ). We say that an SCC istrivial if it is a singleton without
self-loops. Otherwise, if the SCC is not a singleton or if it has a self-loop, we call itnon-trivial.

We first show the following lemma to understand the structureof the SCCs ofΓ(ΣUID). This lemma
is proved in Appendix E.5.

Lemma E.2 (SCC structure). The SCCs ofΓ(ΣUID) are transitively closed sets ofUIDs. Further, for
any non-trivial SCC P, letting P−1 ··= {τ−1 | τ ∈ P}, all UIDs of P−1 are in ΣUID , and P−1 is an SCC
of Γ(ΣUID).

Note thatP andP−1, as SCCs ofΓ(ΣUID), may be equal or disjoint. We accordingly callself-inverse
an SCCP that is non-trivial but satisfiesP= P−1; non-trivial SCCs such thatP andP−1 are disjoint are
callednon-self-inverse.

Given the structure of the SCCs, the first step to construct a manageable partition is to construct a
topological sort of the SCC graphG(ΣUID) of Γ(ΣUID), but with an additional property, motivated by
what we showed in Lemma E.2:

Definition E.3. A topological sort of G(ΣUID) is inverse-sequential if, for any non-self-inverse SCC P,
the SCCs P and P−1 are enumerated consecutively.

The first result, proven in Appendix E.6, is to justify that wecan indeed construct an inverse-
sequential topological sort of the SCC graph ofΓ(ΣUID):

Proposition E.4(Inverse-sequential topological sort). For any conjunctionΣUID ofUIDs closed under
finite implication, G(ΣUID) has an inverse-sequential topological sort.

The second step is to construct the manageable partition itself from the inverse-sequential topological
sort. Here is how we define the ordered partition from the topological sort:

Definition E.5. An inverse-sequential topological sort defines an ordered partition (P1, . . . ,Pn) of ΣUID ,
in the following way: each class Pi of the partition either corresponds to one SCC of G(ΣUID) (which
is either trivial or self-inverse), or to the union of an SCC and its inverse SCC (which were enumerated
consecutively because the topological sort is inverse-sequential). It is immediate that(P1, . . . ,Pn) is
indeed an ordered partition, as it is constructed from a topological sort by merging some classes that
were enumerated consecutively.

The second result is to show that the resulting ordered partition is indeed a manageable partition. In
other words, we must show that the classes of the partitions are either trivial, or that they are a set of
UID that is transitively closed and satisfies assumptionreversible.

Proposition E.6 (Manageable partitions from sorts). For any conjunctionΣUID of UIDs closed under
finite implication, lettingP be an ordered partition obtained from an inverse-sequential topological
sort of G(ΣUID), P is a manageable partition.

This second result is proven in Appendix E.7 and concludes the proof of our original claim.
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E.5. Proof of the SCC Structure Lemma (Lemma E.2)

Lemma E.2 (SCC structure). The SCCs ofΓ(ΣUID) are transitively closed sets ofUIDs. Further, for
any non-trivial SCC P, letting P−1 ··= {τ−1 | τ ∈ P}, all UIDs of P−1 are in ΣUID , and P−1 is an SCC
of Γ(ΣUID).

We first show an general lemma:

Lemma E.7. Let P be a non-trivial SCC ofΓ(ΣUID). For any τ ,τ ′ ∈ P, there is an invertible cycle
of UIDs of P in whichτ andτ ′ occur.

Proof. BecauseP is a non-trivial SCC, we haveτ ֌
∗ τ ′ andτ ′

֌
∗ τ , and the desired invertible cycle

is obtained by concatenating the functionalID paths fromτ to τ ′, and fromτ ′ to τ . BecauseP is an
SCC, it is immediate that theUIDs of the resulting path are all inP.

We then divide our claim in two lemmas:

Lemma E.8. Let P be an SCC ofΓ(ΣUID). Then P is closed under the transitivity rule.

Proof. Let P be an SCC. IfP consists of a singleUID, then transitivity is immediately respected, so
we assume thatP contains> 1UIDs. In particular,P is non-trivial. Letτ : Rp ⊆ Sq andτ ′ : Sq ⊆ Tr be
twoUIDs ofP with Rp 6= Tr . As ΣUID is closed under transitivity, we knowτ ′′ : Rp ⊆ Tr is in ΣUID . We
show thatτ ′′ ∈ P.

As P is a non-trivial SCC, there is a functionalID path τ ′ = τ1 ֌ · · · ֌ τn = τ , whereτi ∈ P
for all 1 ≤ i ≤ n. Because of theUFDs that must be inΣUFD to make it a functionalID path, it is
immediate that the following two paths are functionalID paths as well:τ ′′

֌ τ2 ֌ · · · ֌ τn and
τ1 ֌ · · · ֌ τm−1 ֌ τ ′′. Thus we haveτ ′′

֌
∗ τ , andτ ′

֌
∗ τ ′′ whereτ ,τ ′ ∈ P, so thatτ ′′ ∈ P by

definition of an SCC.

Lemma E.9. Let P be a non-trivial SCC ofΓ(ΣUID), and let P−1 ··= {τ−1 | τ ∈ P}. Then P−1 ⊆ ΣUID ,
and P−1 is an SCC ofΓ(ΣUID).

Proof. We first prove that, for anyτ ∈ P, τ−1 ∈ ΣUID . This is a direct consequence of Lemma E.7:
there is an invertible cycle ofP containingτ , so that by definition of an invertible cycle,τ−1 is in ΣUID .
We now turn to the second part of the claim.

First, we show that for any twoτ ,τ ′ ∈ P−1, there is a functionalID path fromτ to τ ′, so thatP−1 is
strongly connected. This is clear: by Lemma E.7, there exists an invertible cycleC of P containingτ−1

and(τ ′)−1 ∈ P, and the reverseC of this cycle is also an invertible cycle, becauseΣU is finitely closed;
C is then a cycle ofUIDs ofP−1 containingτ andτ ′.

Second, we show that for anyUID τ ∈ ΣUID , if P−1
֌

∗ τ andτ ֌
∗ P−1 thenτ ∈ P−1. Consider

such aUID τ , and letp1 : τ ′ = τ ′
1 ֌ · · ·֌ τ ′

n = τ andp2 : τ = τ ′′
1 ֌ · · ·֌ τ ′′

m = τ ′′ be the witnessing
functional ID paths, withτ ′,τ ′′ ∈ P−1. We showed in the previous paragraph thatP−1 is strongly
connected: consider a (possibly empty) functionalID path p3 from τ ′′ to τ ′ witnessing the fact that
τ ′′

֌
∗ τ . Concatenatingp1, p2 andp3 yields an invertible cycleC, so that becauseΣU is finitely closed,

its reverseC is also an invertible cycle. ButC witnesses the fact that(τ ′′)−1
֌

∗ τ−1 andτ−1
֌

∗ (τ ′)−1.
Now, as(τ ′)−1,(τ ′′)−1 ∈PandP is an SCC, we haveτ−1∈P, so thatτ ∈P−1, the desired claim. Hence,
P−1 is both strongly connected and maximal, so it is an SCC.

This concludes the proof. Note that, asP andP−1 are both SCCs ofΓ(ΣUID), either they are equal
or they are disjoint. We observe that both cases may occur:
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Example E.10. Consider theUIDs τ : R2 ⊆ S2 and τ ′ : S1 ⊆ R1, and theUFDs φ : R2 → R1 and
φ ′ : S1 → S2. τ ,τ ′ is an invertible cycle, so that by the finite closure rule, theUIDs τ−1 and (τ ′)−1

and the reverseUFDs are implied. However inΓ(ΣUID) we haveτ ֌ τ ′, τ ′
֌ τ , τ−1

֌ (τ ′)−1,
(τ ′)−1

֌ τ−1, so that{τ ,τ ′} and{τ−1,(τ ′)−1} are two disjoint SCCs.
Consider now theUIDsτ : R2 ⊆ S2, τ−1 : S2 ⊆ R2, τ ′ : R1 ⊆ R3, τ ′′ : S3 ⊆ S1, and theUFDs R1 → R2,

R2 → R3, S3 → S2 and S2 → S1. We can construct the invertible cyclesτ ′ and τ ′′, so that(τ ′)−1 and
(τ ′′)−1 are implied by the finite closure rule. However, besidesτ ′

֌ τ ′, τ ′′
֌ τ ′′, (τ ′)−1

֌ (τ ′)−1,
(τ ′′)−1

֌ (τ ′′)−1, it is also the case thatτ ֌ τ ′′, τ ′′
֌ τ−1, τ−1

֌ τ ′ and τ ′
֌ τ , and using the

reverseUFDs the same is true of the inverses ofτ ′, (τ ′)−1, τ ′′, and(τ ′′)−1. So in fact there is only one
SCC P= {τ ,τ−1,τ ′,(τ ′)−1,τ ′′,(τ ′′)−1}, with P−1 = P.

E.6. Proof of the Inverse-Sequential Topological Sort Proposition
(Proposition E.4)

We now prove thatG(ΣUID) has an inverse-sequential topological sort:

Proposition E.4(Inverse-sequential topological sort). For any conjunctionΣUID ofUIDs closed under
finite implication, G(ΣUID) has an inverse-sequential topological sort.

For this we need the following observation aboutG(ΣUID):

Lemma E.11. Let P be a non-self-inverse SCC and considerτ ∈ ΣUID\(P∪P−1) such thatτ ֌ P.
Then one of the following holds:

• we haveτ ֌ P−1

• the SCC ofτ is trivial, and for anyτp ∈ ΣUID such thatτp ֌ τ , we haveτp ֌
∗ P−1.

Proof. Fix τ ∈ ΣUID\(P∪P−1) and assume that we haveτ ֌ P, i.e., τ ֌ τ ′ for someτ ′ ∈ P. As P
is non-trivial, using Lemma E.7, consider the predecessorτ ′

n−1 of τ ′ in an invertible cycle containing
τ ′ (possiblyτ ′

n−1 = τ ′). Let Rp be the second position ofτ , Rq be the first position ofτ ′, andRr be the
second position ofτ ′

n−1. Note that we haveRr 6= Rq becauseτ ′
n−1 ֌ τ ′, andRp 6= Rq becauseτ ֌ τ ′.

Observe that ifRp 6= Rr , thenτ ֌ (τ ′
n−1)

−1 becauseRr → Rq andRq → Rp hold in ΣUFD (as these
UFDs are used in an invertible cycle) andΣUFD is closed under transitivity. This proves the claim, as
takingτ ′′ ··= (τ ′

n−1)
−1 ∈ P−1, we haveτ ֌ τ ′′.

If Rp = Rr , let P′ be the SCC ofτ . Assume first thatP′ is non-trivial. In this case, by Lemma E.7,
there is an invertible cycleτ = τ1, . . . ,τm = τ in P′. But then, we haveτ ′

n−1 ֌ τ2, so thatP֌ P′, and
asP′

֌ P we haveP= P′, soτ ∈ P, a contradiction.
Hence,P′ is trivial. Let Sq be the first position ofτ andTu be the first position ofτ ′

n−1. We must
haveSq 6= Tu, as otherwise we haveτ = τ ′

n−1 soτ ∈ P, a contradiction. Hence, because(τ ′
n−1)

−1 is in
ΣUID (asτ ′

n−1 ∈ P), by transitivityτ ′′ : Sq ⊆ Tu is in ΣUID . We can then see thatτ ′′
֌ (τ ′

n−2)
−1 because

we had(τ ′
n−1)

−1
֌ (τ ′

n−2)
−1 and bothUIDs share the same second position; hence,τ ′′

֌ P−1. Now
asτ ′′ andτ have the same first position, for anyτp ∈ ΣUID , clearlyτp ֌ τ implies thatτp ֌ τ ′′

֌ P−1,
proving the last part of the claim.

We now construct the inverse-sequential topological sort of G(ΣUID) by enumerating the SCCs in a
certain way that respects the֌ relation and maintains the following invariant: wheneverP is non-self-
inverse, thenP andP−1 are enumerated consecutively; this guarantees that the result is a topological
sort and that it is inverse-sequential.
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First, whenever trivial or self-inverse SCCs can be enumerated, enumerate them. Second, whenever
the SCCs that can be enumerated are all non-self-inverse, choose one suchP to enumerate. By the
invariant, P−1 has not yet been enumerated, otherwiseP would have been enumerated immediately
after. We want to enumerateP, and then enumerateP−1.

To see why this is doable, we must show that, assuming thatP 6= P−1, if P can be enumerated and
no trivial or self-inverse SCCs can be enumerated, thenP−1 can also be enumerated. LetP′ be a parent
SCC ofP−1 in G(ΣUID) (so thatP′

֌ P−1), and show that it has been enumerated already. If we have
P′ = P, meaning thatP֌ P−1, then this is not a problem, because we are about to enumeratefirst P
and thenP−1, so we may assume thatP′ 6= P. Hence,P′ is different fromP andP−1, so it is disjoint
from it. We apply Lemma E.11 to anyτ ∈ P′. In the first case, we also haveP′

֌ P, so asP can be
enumerated,P′ was enumerated already. In the second case,P′ = {τ} is trivial; further, considering any
P′′

֌ P′, we haveP′′
֌

∗ P, soP′′ was enumerated already. Hence, all suchP′′ are already enumerated,
so thatP′ can be enumerated, but as it is trivial, it must have been enumerated already. Hence, in both
casesP′ was already enumerated unless it isP. This ensures that we can indeed enumerateP andP−1

consecutively, maintaining our invariant. Thus, we have constructed an inverse-sequential topological
sort ofG(ΣUID). This concludes the proof.

E.7. Proof of the Manageable Partitions From Sorts Proposition
(Proposition E.6)

Proposition E.6 (Manageable partitions from sorts). For any conjunctionΣUID of UIDs closed under
finite implication, lettingP be an ordered partition obtained from an inverse-sequential topological
sort of G(ΣUID), P is a manageable partition.

Let (P1, . . . ,Pn) be the ordered partition. We prove that it is manageable. Trivial SCCs are indeed
trivial classes of the partition, so we must only justify that any other classPi is transitively closed and
satisfies assumptionreversible.

We definePos(P) for P a set ofUIDs as the set of positions occurring inP, as in the definition of
assumptionreversible. We first prove a general lemma to take care of the second part of the assumption:

Lemma E.12. Let P be a non-trivial SCC ofΓ(ΣUID). For any two positions Ri 6= Rj of Pos(P), if
Ri → Rj is in ΣUFD then so is Rj → Ri.

Proof. Fix Ri andRj , assume thatφ : Ri → Rj is in ΣUFD, and show thatφ−1 : Rj → Ri also is. Letτi

be aUID of P whereRi occurs, andτ j be aUID of P whereRj occurs. By Lemma E.7, there exists an
invertible cycleC1 whereRi andRj occur.

We writeC1 = Ri1
1 ⊆ Rj2

2 , . . . ,R
in
n ⊆ Rj1

1 , with some 1≤ p,q ≤ n such thatRp = Rq = R, and either
ip = i or jp = i, and eitheriq = j or jq = j. By definition of an invertible cycle, theUFDsφp : Rip →Rjp,
φ−1

p : Rjp → Rip, φq : Riq → Rjq andφ−1
q : Rjq → Riq are inΣUFD. Thus, becauseΣUFD is closed under

transitivity, it is clear that if two positions amongS= (Rjp,Rip,Rjq,Riq) are equal (in particular, if
p= q), then we haveRx ↔FUN Ry for any two positionsRx, Ry in S. Hence, as we know thatRi 6= Rj ,
andRi andRj are inS, the only case where we cannot conclude is the one where all the positions ofS
are different.

If all positions ofSare different, then, because ofφp, φq, φ−1
p andφ−1

q , by transitivity ofΣUFD, we
know that for anyx1,x2 ∈ {ip, jp}, y1,y2 ∈ {iq, jq}, theUFDRx1 →Ry1 is in ΣUFD iff the UFD Rx2 →Ry2

is. Hence, sinceφ is in ΣUFD, asi ∈ {ip, jp} and j ∈ {iq, jq}, we know thatRx → Ry is in ΣUFD for all
x∈ {ip, jp},y∈ {iq, jq}, and, to prove thatφ−1 is in ΣUFD, it suffices to show thatRy → Rx is in ΣUFD

for some x∈ {ip, jp},y∈ {iq, jq}.
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So let us construct the cycleC2 = Ri1
1 ⊆ Rj2

2 , . . . ,R
iq−1

q−1 ⊆ R
jq
q ,R

ip
p ⊆ R

jp+1

p+1, . . . ,R
in
n ⊆ Rj1

1 . This is an
invertible cycle, becauseRq =Rp =R, andRip 6=Rjq and theFDRip →Rjq is in ΣUFD by our assumption.
Hence, asC2 is an invertible cycle, and becauseΣU is finitely closed, the reverseFD Rjq → Rip is in
ΣUFD, which implies thatφ−1 is in ΣUFD.

We then show a lemma to help justify that the classes are transitively closed:

Lemma E.13. For any non-trivial SCC P, if there isτ ∈ P andτ ′ ∈ P−1 such thatτ−1 6= τ ′ but the
second position ofτ is the first position ofτ ′, then P= P−1.

Proof. We first observe that we haveP֌
∗ P−1. Indeed, asP andP−1 are non-trivial, considerτ0 ∈ P

andτ ′
0 ∈ P−1 such thatτ0 ֌ τ andτ ′

֌ τ ′
0. Letting τ ′′ be theUID which is transitively implied byτ

andτ ′, we know that it must be inΣUID as it is transitively closed, and we observe thatτ0 ֌ τ ′′
֌ τ ′

0,
so thatP֌

∗ P−1.
Now, writeτ : Rp⊆Sq andτ ′ : Sq ⊆Tr , with Rp 6=Tr . AsPandP−1 are non-trivial, using Lemma E.7,

we can consider a functionalID path τ = τ1 ֌ τ2 ֌ · · · ֌ τn = (τ ′)−1, and a functionalID path
τ−1 = τ ′

1 ֌ · · · ֌ τ ′
m = τ ′. By Lemma E.12, allUFDs along these paths are such that their reverses

are also inΣUFD. Consider now the smallestk≥ 2 such that we haveτ−1
k 6= τ ′

m−k+1; such ak must exist
because we haveτn = (τ ′)−1 andτ ′

1 = τ−1, and we know thatτ−1 6= τ ′. Considerτ ′′ ··= τk ∈ P, and
τ ′′′ ··= τ ′

m−k+1 ∈ P−1, and letSu andSv be respectively the first position ofτ ′′ and the second position
of τ ′′′: indeed it is easily observed that these positions must be inthe same relationS, as this is true for
τ2 andτ ′

m−1 and is preserved forτ ′′ andτ ′′′ because we haveτ−1
l = τ ′

m−l+1 for all 1≤ 2≤ k.
We now distinguish two cases. The first case isSv 6=Su, and we then haveτ ′′′

֌ τ ′′, so thatP−1
֌P.

The second case isSv = Su. In this case,τ ′′′ andτ ′′ are twoUIDs of P−1 andP such that(τ ′′′)−1 6= τ ′′

but the second position ofτ ′′′ is the first position ofτ ′′. Hence, applying the reasoning of the first
paragraph toτ ′′ andτ , we deduce thatP−1

֌
∗ P. In either case, as we observed initially thatP֌

∗ P−1,
we conclude thatP= P−1, the desired claim.

Corollary E.14. For any non-trivial SCC P, P∪P−1 is transitively closed.

Proof. By Lemma E.8,P andP−1 are transitively closed. Hence, if noUIDs is transitively implied
by oneUID from P and one fromP−1 (or one fromP−1 and one fromP), then the claim is proven.
Otherwise, by Lemma E.13, we haveP = P−1, so we can conclude by applying Lemma E.8 toP =
P∪P−1.

We now conclude the proof of Proposition E.6. LetPi be a class of the ordered partition(P1, . . . ,Pn).
We must show that it is either trivial or reversible. If it is not trivial, then we must show three things:

• Pi is transitively closed

• For everyτ ∈ Pi, we haveτ−1 ∈ Pi.

• For every two positionsRp,Rq ∈ Pos(Pi) such thatRp → Rq is in ΣUFD, Rq → Rp is also inΣUFD.

For the first claim, asPi is not trivial, it is either a self-inverse SCCP of Γ(ΣUID) (and the claim
follows by Lemma E.8) or it is a unionP∪P−1 whereP is a non-self-inverse SCC (and the claim
follows by Corollary E.14). The second claim is immediate byconstruction. The third claim is what
is shown by Lemma E.12, noting that for any SCCP of ΣUID , we havePos(P) = Pos(P−1). This
concludes the proof of Proposition E.6.
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F. Proofs for Section VII: Higher-Arity FDs

In this section, we show what is needed to adapt the Acyclic Unary Universal Models Theorem (Theo-
rem III.6) to produce aligned superinstances that satisfy the full set of constraintsΣ rather than just the
unary subsetΣU.

F.1. Proof of the Sufficiently Envelope-Saturated Solutions Proposition
(Proposition VII.5)

We now prove the following result, which provides our way to construct the initial instance on which
we apply the completion process of the previous sections:

Proposition VII.5 (Sufficiently envelope-saturated solutions). For any K∈ N and instance I0, we can
build a superinstance I′0 of I0 that is k-sound forCQ, and an aligned superinstance J of I′

0 that satis-
fiesΣFD and is(K |J|)-envelope-saturated.

We define the notation|σ | ··= maxR∈σ |R|, and also define the following:

Definition F.1. Theoverlap OVL(F,F ′) between two facts F= R(a) and F′ = R(b) of the same rela-
tion R in an instance I is the subset O ofPos(R) such that as = bs iff Rs ∈ O. If |O|> 0, we say that F
and F′ overlap.

We also define the following, which are theFDs used in the definition of envelopes (Definition VII.2):

Definition F.2. Given a setΣFD of FDs on a relation R and O⊆ Pos(R), theFD projection ΣO
FD of ΣFD

to O are theFDs RL → Rr of ΣFD such that RL ⊆ O and Rr ∈ O, plus, for everyFD RL → Rr of ΣFD

where RL ⊆ O and Rr /∈ O, the key dependency RL → O.

We first note the following immediate consequence of the Dense Interpretations Theorem (Theo-
rem VII.7):

Corollary F.3. We can assume in the Dense Interpretations Theorem (TheoremVII.7) that the resulting
instance I is such that each element occurs at exactly one position of the relation R: formally, for all
a∈ dom(I), there exists exactly one Rp ∈ Pos(R) such that a∈ πRp(I).

Proof. Create fromI the instanceI ′ whose domain is{(a,Rp) | a∈ dom(I),Rp ∈ Pos(σ)} and which
contains for every factF = R(a) of I a factF ′ = R(b) such thatbp = (ap,Rp) for everyRp ∈ Pos(σ).
Clearly this defines a bijectionφ from the facts ofI to the facts ofI ′, and for any factsF, F ′ of I ′,
OVL(F,F ′) = OVL(φ−1(F),φ−1(F ′)). Thus any violation of theFDs ΣFD in I ′ would witness one
in I . Of course,|dom(I ′)| = |σ | · |dom(I)|, so that, lettingK′ be our target constant factor between
|dom(I ′)| and|I |, we must useK ··= K′ |σ | as the constant for the Dense Interpretation Theorem, so that
|I | ≥ K′ |σ | · |dom(I)|, which implies|I ′| ≥ K′ |dom(I ′)|.

We also show two easy lemmas:

Lemma F.4. Let I be an instance,ΣFD be a conjunction ofFDs, and F 6= F ′ be two facts of I. Assume
there is a position Rp ∈ Pos(σ) such that, writing O··= NDng(Rp), we haveOVL(F,F ′)( O, and that
{πO(F),πO(F ′)} is not a violation ofΣO

FD. Then{F,F ′} is not a violation ofΣFD.
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Proof. Assume by way of contradiction thatF andF ′ violate anFD φ : RL → Rr of ΣFD, which implies
that RL ⊆ OVL(F,F ′) ⊆ O and Rr /∈ OVL(F,F ′). Now, if Rr ∈ O, thenφ is in ΣO

FD, so thatπO(F)
andπO(F ′) violateΣO

FD, a contradiction. Hence,Rr ∈ Pos(R)\O, and the key dependencyκ : RL → O
is in ΣO

FD, so thatπO(F) andπO(F ′) must satisfyκ . Thus, becauseRL ⊆ OVL(F,F ′), we must have
OVL(F,F ′) = O, which is a contradiction because we assumedOVL(F,F ′)( O.

Lemma F.5. For any(Rp,C) ∈ AFactCl, letting O··= NDng(Rp), if (Rp,C) is unsafe, then there is no
position Rq ∈ O that determines O inΣO

FD: formally, there is no Rq ∈ O such that we have Rq → Rr in
ΣO

FD for all Rr ∈ O.

Proof. Fix D = (Rp,C) in AFactCl and letO be the non-dangerous positions ofRp. We first show that
if ΣFD implies thatO has a unary keyRs ∈ O in ΣFD, thenD is safe. Indeed, assume the existence of
such a unary keyRs. If there were aFD RL → Rr in ΣFD with RL ⊆ O andRr /∈ O, then, by transitivity,
theUFD Rs → Rr would be inΣUFD, which by Lemma C.2 implies thatRr is non-dangerous forRp

becauseRs∈ O is non-dangerous forRp. This contradicts our assumption thatRr /∈ O.
We must now show that ifO has a unary key inO according toΣO

FD thenO has a unary key inO
according toΣFD. It suffices to show that for any two positionsRq,Rs ∈ O, if φ : Rq → Rs holds inΣO

FD
then it also does inΣFD. Assuming to the contrary that there there is such aφ , consider its derivation
from the dependencies ofΣO

FD. Clearly the derivation must be using one of the key dependencies
κ : RL → O, which are the only dependencies inΣO

FD that are not inΣFD. But this means that, the first
time we used such a dependency, we had derived a unary key dependencyRq → RL using only theFDs
of ΣFD. Considering thatκ was created to stand for aFD RL → Rr in ΣFD, with Rr /∈ O, we deduce that
we can derive fromΣFD thatRq → Rr , contradicting again the fact thatRr /∈ O (becauseRr should then
be inNDng(Rp)). Hence, ifO has a unary key inO according toΣO

FD thenD is safe. Thus, we have
proven the contrapositive of the desired result.

We now prove Proposition VII.5. The bulk of the work is to showthe following claim, for each
unsafe class ofAFactCl. The construction of global envelopes from the individual envelopes is then
easy.

Lemma F.6. For any unsafe class D inAFactCl and constant K, one can construct a superinstance I′
0

of I0 that is k-sound forCQ, and an aligned superinstance J= (I ,sim) of I′0 that satisfiesΣFD with an
envelope E for D of size K|J|.

Proof. Fix the unsafe achieved fact classD= (Rp,C) and chooseF =R(b) a fact ofChase(I0,ΣUID)\I0
that achievesD. Let I1 be obtained fromI0 by applyingUID chase steps onI0 to obtain a finite truncation
of Chase(I0,ΣUID) that includesF but no child fact ofF, and consider the aligned superinstanceJ1 =
(I1,sim1) wheresim1 is the identity.

Let O ··= NDng(Rp), and define a|O|-ary relationR|O; for convenience, we index its positions by
O. BecauseD is unsafe, by Lemma F.5,R|O has no unary key inΣO

FD. Apply the Dense Interpretations
Theorem (Theorem VII.7) toR|O andΣO

FD with the additional condition of Corollary F.3, takingK |J1| as
the constant. We thus obtain an instanceID ofR|O that satisfiesΣO

FD and such that, lettingN ··= |dom(ID)|,
we have|ID| ≥ NK |J1|. Let I ′D ⊆ ID be an subinstance of sizeN of ID such that dom(I ′D) = dom(ID),
that is, each element of dom(ID) occurs in some fact ofI ′D. This can clearly be ensured by picking, for
any element of dom(ID), one fact ofID where it occurs, removing duplicate facts, and completing with
other arbitrary facts ofID to haveN distinct facts. Number the facts ofI ′D asF ′

1, . . . ,F
′
N.

We createN− 1 disjoint copies ofJ1, numberedJ2 to JN. We callJ′ = (I ′,sim) the disjoint union
J1 ⊔ ·· · ⊔ JN. It is clear thatJ′ is indeed an aligned superinstance ofI ′0, whereI ′0 is formed of theN
disjoint copies ofI0, and I ′0 is clearly ak-sound superinstance ofI0 for CQ. For 1≤ i ≤ N, we call

48



Fi = R(ai) the fact ofIi that corresponds to the achieverF in Chase(I0,ΣUID). In particular, for all
1≤ i ≤ N, we have thatsim(ai

j) = b j for all j, andai
p is the only element ofFi that also occurs in other

facts ofJi .
We consider the applicationf that mapsai

j , for 1≤ i ≤ N andRj ∈ O, to πRj (F ′
i ). This applicationf

is well-defined, because theai
j are pairwise distinct. We extendf to dom(I ′), and call the extensionf ′,

by setting f ′(a) ··= a if a is not in the domain off . We callI the image ofI ′ under f ′. In other words,
I is the underlying instance ofJ′ except that elements at positions ofO in the factsFi were identified
so that the projections toO of the f ′(Fi) are isomorphic to theF ′

i . Becauseai
j occurs only inFi for all

Rj 6= Rp, andRp /∈ O, this means that the identified elements only occurred in theFi in I ′.
We now buildJ = (I ,sim) obtained by definingsim from thesimi as follows: any elementa not in

the domain off is mapped tosimi(a) for the onei such thata∈ dom(Ii), and anya in the domain of
f is mapped tosimi(a′) for any preimage ofa′ by f . All that remains to show is thatJ is indeed an
aligned superinstance ofI ′0 satisfying the required conditions.

We note that it is immediate thatJ is a superinstance ofI ′0, as the achieverF is not a fact ofI0, so that
dom(I0) is not in the domain off . It is clear thatJ hasN |J1| facts, because, asRp /∈ O, no facts can be
identified by f ′. We now claim thatJ is an aligned superinstance ofI ′0, and thatE, defined as the set of
the tuples ofID, is an envelope forI ′ andD. The fact that|E|= K |J| is immediate.

The fact thatsim is ak-bounded simulation fromJ toChase(I ′0,ΣUID) is by induction. The case ofk=
0 is trivial. The induction case is trivial for all facts except for theh′(Fi), because theai

j only occurred
in I in the factsFi, by our assumption that theFi have no children in theIi and by the fact that the
exported position ofF is Rp /∈O. Consider now one factF ′ =R(c) of I ′ which is the image byf ′ of aFi.
Choose 1≤ p≤ |R|. We show that there exists a factF ′′ = R(d) of Chase(I ′0,ΣUID) such thatsim(cp) =
dp and for all 1≤ q≤ |R| we have(I ,cq)≤k−1 (Chase(I ′0,ΣUID),dq), which by induction hypothesis is
implied by sim(cq) ≃k dq. Let ai0

j0 be the preimage ofap used to definesim(ap); by the condition of
Corollary F.3, we must havej0 = p. Consider the factF ′′ = R(d) of Chase(I ′0,ΣUID) corresponding to

Fi0 in I . By definition,sim(cp) = sim(ai0
j0
) = dp. Fix now 1≤ q≤ |R|. Let a

i′0
j ′0

used to definesim(cq);

again j ′0 = q andsim(cq) is πRq(F ′′′) for the factF ′′′ = R(e) of Chase(I ′0,ΣUID) corresponding toFi′0
in

I . But as bothF ′′′ andF ′′ are copies of the same achiever factF of Chase(I0,ΣUID), we havedq ≃k eq,
so thatsim(cq)≃k dq, what we wanted to show. This proves thatsim is indeed ak-bounded simulation
from J to Chase(I0,ΣUID).

We show thatJ satisfiesΣFD. As I satisfiesΣFD, any new violation ofΣFD in I ′ relative toI must
include some factF = h′(F ′

i0), and some factF ′ overlapping withF, so necessarilyF ′ = h′(F ′
i1) for

somei1 by construction ofI ′, andOVL(F,F ′)⊆ O. We now use Lemma F.4 to deduce that we cannot
haveOVL(F,F ′)(O, soOVL(F,F ′) =O. By our definition off and of theF ′

i this implies thatF ′
i0 =F ′

i1,
a contradiction becauseF 6= F ′.

Thus, from the above, and as the technical conditions of the definition of aligned superinstances are
clearly respected,J is indeed an aligned superinstance ofI ′0.

Last, we check thatE is indeed an envelope. Indeed, it satisfiesΣO
FD by construction, so the first

two conditions are respected. The third condition is respected by the condition of Corollary F.3, and
because thef (ai

j) always occur at positionRj in some fact ofI ′D, as we constructedI ′D such that
dom(I ′D) = dom(ID). The last condition is true because the envelope elements are only used in the
f (Fi), and thesim-images of thef (Fi) are copies inChase(I ′0,ΣUID) of the same achiever factF in
Chase(I0,ΣUID).

Hence,J is indeed an aligned superinstance of ak-soundI ′0 that satisfiesΣFD and has an envelope of
sizeK |J|, proving the desired claim.
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We now prove the main result by buildingI ′0 and the aligned superinstanceJ = (I ,sim) of I ′0 that
has a global envelopeE . As AFactCl is finite, we build oneJD per D ∈ AFactCl. WhenD is unsafe,
we use the previous lemma. WhenD = (Rp,C) is safe, we just take a single copyJD of the truncated
chase to achieve the classD, and take as the only fact of the envelope the projection toNDng(Rp) of
the fact ofJD corresponding to the achiever ofD in Chase(I0,ΣUID). AsAFactCl is finite and its size is
a constant, we can ensure that|E(D)| for all unsafeD ∈ AFactCl is≥ (K+1) |I |, by taking sufficiently
largeK when we apply Lemma F.6 for each unsafe class.

Let J be the disjoint union of theJD. EachJD is an aligned superinstance of an(I ′0)D which is a
k-sound superinstance ofI0. Hence,J is an aligned superinstance of the union of the(I ′0)D which is
alsok-sound. There are no violations ofΣFD in J because there are none in any of theJD, and the union
is disjoint. The disjointness of domains of envelopes is because theJD are disjoint. It is easy to see that
J is (K |I |)-envelope-saturated, because|E(D)| ≥ (K+1) |I | for all unsafeD ∈ AFactCl, so the number
of remaining facts of each envelope for an unsafe class is≥ K |I | (every fact ofI eliminates at most one
fact in each envelope). Hence, the proposition is proven.

F.2. Proof of the Dense Interpretations Theorem (Theorem VII.7)

Remember that we want to show:

Theorem VII.7 (Dense interpretations). For any setΣFD of FDs over a relation R with no unary key,
and K∈ N, there exists a non-empty instance I of R that satisfiesΣFD and has at least K|dom(I)| facts.

Fix the relationR, and letΣFD be an arbitrary set ofFDs which we assume is closed underFD

implication. LetΣUFD be theUFDs implied byΣFD; it is also closed underFD implication. Recall the
definition ofOVL (Definition F.1). We introduce a notion ofsafe overlapsfor ΣUFD, which depends
only onΣUFD but (we will show) is a sufficient condition to satisfyΣFD:

Definition F.7. We say a subset O⊆ Pos(R) is safe for ΣUFD if O is empty or for every Rp ∈ Pos(R)\O,
there exists Rq ∈ Pos(R) such that the unary key dependency Rq → O is implied byΣUFD but theUFD
Rq → Rp does not hold inΣUFD.

We say that an instance I has thesafe overlaps property (forΣUFD) if for every F 6=F ′ of I,OVL(F,F ′)
is safe.

We now claim the following lemma, and its immediate corollary:

Lemma F.8. If O ⊆ Pos(R) is safe forΣUFD then there is noFD φ : RL → Rr in ΣFD such that RL ⊆ O
but Rr /∈ O.

Proof. If O is empty the claim is immediate. Otherwise, assume to the contrary the existence of such
anFD φ . As Rr /∈ O andO is safe, there isRq ∈ Pos(R) such thatRq → O holds inΣUFD but Rq → Rr

does not hold inΣUFD. Now, asRL ⊆ O, we know thatRq → RL holds inΣUFD, so that, by transitivity
of ΣFD, φ ′ : Rq → Rr holds inΣFD. As φ ′ is aUFD, this implies it holds inΣUFD, a contradiction.

Corollary F.9. For any instance I, if I has the safe overlaps property forΣUFD, then I satisfiesΣFD.

Proof. Considering two factsF andF ′ in I , asOVL(F,F ′) is safe, we know that for anyFD φ : RL →Rr

in ΣFD, we cannot haveRL ⊆ O but Rr /∈ O. Hence,F andF ′ cannot be a violation ofφ .

Thus, it suffices to show the following generalization of theDense Interpretations Theorem:
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Theorem F.10.Let R be a relation andΣUFD be a set ofUFDs over R. Let D be the number of positions
of the smallest key of R forΣUFD: formally, D ··= |K|, where K⊆ Pos(R) is such that RK → Rp holds
in ΣUFD for all Rp ∈ Pos(R), and K has minimal cardinality among all subsets ofPos(R) with this
property. Let x be D

D−1 if D > 1 and1 otherwise.
For every N≥ 1, there exists a finite instance I of R such that|dom(I)| is O(N), |I | is Ω(Nx), and I

has the safe overlaps property forΣUFD.

It is clear that this theorem implies the Dense Interpretations Theorem, because ifR has no unary
key for ΣFD thenD > 1 and thusx> 1, which implies that, for anyK, by taking a sufficiently largeN,
we can obtain an instanceI for R with N elements andKN facts that has the safe overlaps property for
ΣUFD; now, by Lemma F.9, this implies thatI satisfiesΣFD.

We will now prove Theorem F.10. Fix the relationR and set ofUFDs ΣUFD. The case ofD = 1
is vacuous and can be eliminated directly (consider the instance{R(ai , . . . ,ai) | 1 ≤ i ≤ N}). Hence,
assume thatD > 1, and letx ··= D

D−1.

We first show the claim on a specific relationR0 and setΣ0
UFD of UFDs. We will then generalize

the construction to arbitrary relations andUFDs. Let T0 ··= {1, . . . ,D}, and consider a bijectionν :
{1, . . . ,2D}→P(T0)\{ /0}. LetR0 be a(2D−1)-ary relation, and takeΣ0

UFD
··= {Ri → Rj | ν(i)⊆ ν( j)}.

Note thatΣ0
UFD is clearly closed under implication ofUFDs. FixN ∈N, and let us construct an instance

I0 with O(N) elements andΩ(Nx) facts.
Fix n ··= ⌊N1/(D−1)⌋. LetF be the set of partial functions fromT0 to{1, . . . ,n}, and writeF =Ft⊔Fp,

whereFt andFp are respectively the total and the strictly partial functions. We takeI0 to consist of
one factFf for eachf ∈ Ft, whereFf = R0(af ) is defined as follows: for 1≤ i ≤ 2D, af

i
··= f|T0\ν(i). In

particular:
• af

ν−1(T0)
, the element ofFf at the position mapped toT0 ∈P(T0)\{ /0}, is the strictly partial func-

tion that is nowhere defined;
• af

{i}, the element ofFf at the position mapped to{i} ∈P(T0)\{ /0}, is the strictly partial function
equal tof except that it is undefined oni.

Hence, dom(I0) = Fp (because /0 is not in the image ofν), so that|dom(I0)|= ∑0≤i<D

(D
i

)

ni . Remem-
bering thatD is a constant, this implies that|dom(I0)| is O(nD−1), so it is O(N) by definition ofn.
Further, we claim that|I0|= |Ft|= nD = Nx. To show this, consider two factsFf andFg, and show that
Ff = Fg implies f = g, so there are indeed|Ft| different facts inI0. As πν−1({1})(Ff ) = πν−1({1})(Fg),
we havef (t) = g(t) for all t ∈ T0\{1}, and looking atπν−1({2})(Ff ) andπν−1({2})(Fg) concludes (here
we use the fact thatD ≥ 2). Hence, the cardinalities ofI0 and of its domain are suitable.

We must now show thatI0 has the safe overlaps property. For this we first make the following general
observation:

Lemma F.11. LetΣUFD be any conjunction ofUFDs and I be an instance such that I|= ΣUFD. Assume
that, for any pair of facts F6= F ′ of I that overlap, there exists Rp ∈ OVL(F,F ′) which is a unary key
for OVL(F,F ′). Then I has the safe overlaps property forΣUFD.

Proof. ConsiderF,F ′ ∈ I andO ··= OVL(F,F ′). If F = F ′, thenO = Pos(R), andO is clearly safe.
Otherwise, ifF 6= F ′, let Rp ∈ Pos(R)\O. Let Rq ∈ O be the unary key ofO. We know thatRq → O
holds inΣUFD, so to show thatO is safe it suffices to show thatφ : Rq → Rp does not hold inΣUFD.
However, if it did, then asRq ∈ O andRp /∈ O, F andF ′ would witness a violation ofφ , contradicting
the fact thatI satisfiesΣUFD.

So we show thatI0 satisfiesΣ0
UFD and that every non-empty overlap between facts ofI0 has a unary

key.
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First, to show thatI0 satisfiesΣ0
UFD, observe that wheneverφ : Ri

0 → Rj
0 holds inΣUFD, thenν(i) ⊆

ν( j), so that, for any factF of I0, for any 1≤ t ≤ T0, whenever(π j(F))(t) is defined, so is(πi(F))(t),
and we have(π j(F))(t) = (πi(F))(t). Hence, lettingF andF ′ be two facts ofI0 such thatπi(F) =
πi(F ′), we know thatπ j(F) is defined iffπ j(F ′) is (as this only depends onj), and, if both are defined,
the previous observation shows thatπ j(F) = π j(F ′). Hence,F andF ′ cannot witness a violation ofφ .

Second, considering two factsFf = R0(af ) andFg = R0(ag), with f 6= g so thatFf 6= Fg, we show
that if OVL(Ff ,Fg) is non-empty then it has a unary key. LetO ··= {t ∈ T0 | f (t) = g(t)}, and let
X = T0\O; we haveX 6= /0, because otherwisef = g, so we can definep ··= ν−1(X). We will show that
OVL(Ff ,Fg) = {Ri ∈ Pos(R0) | X ⊆ ν(i)}. This implies thatRp ∈ OVL(Ff ,Fg) and thatRp is a unary
key ofOVL(Ff ,Fg), because, for allRq ∈ OVL(Ff ,Fg), X ⊆ ν(Rq), so thatRp → Rq holds inΣUFD.

Indeed, considerRi such thatX ⊆ ν(i). ThenT0\ν(i) ⊆ T0\X, so that, becauseaf
i = f|T0\ν(I) and

ag
i = g|T0\ν(I), we haveaf

i = ag
i by definition ofO = T0\X. ThusRi ∈ OVL(Ff ,Fg). Conversely, if

Ri ∈ OVL(Ff ,Fg), then we haveaf
i = ag

i , so by definition ofO we must haveT0\ν(i) ⊆ O′ = T0\X,
which impliesX ⊆ ν(i).

Hence,I0 is a finite instance ofΣUFD which satisfies the safe overlaps property and containsO(N)
elements andΩ(ND/(D−1)) facts. This concludes the proof of Theorem F.10 for the specific case ofR0

andΣ0
UFD.

Let us now show the claim for the actualR andΣUFD. Let K be a key ofR of minimal cardinality,
so that|K| = D. Let λ be any bijective labeling fromK to T0. Extendλ to a functionµ from Pos(R)
to P(T0)\{ /0} such that, for everyRp ∈ Pos(R) andRk ∈ K, we haveλ (Rk) ∈ µ(Rp) iff Rk = Rp or
Rk → Rp holds inΣUFD.

Now, create the instanceI of R from I0 by creating, for every factF0 = R0(a) of I0, a factF = R(b)
in I , with bi = aν−1(µ(Ri)) for all 1≤ i ≤ |R|.

We do not create duplicate facts by the same argument as before, considering the projection of
the facts ofI to Rk1 6= Rk2 in K, becauseµ(Rk1) = {λ (Rk1)} and µ(Rk2) = {λ (Rk2)} (otherwise this
contradicts the minimality ofK). HenceI , asI0, has a suitable number of facts, and a suitable domain
cardinality because dom(I)⊆ dom(I0).

Let us now show that overlaps are safe inI . Consider two factsF,F ′ of I that overlap, and let
O ··=OVL(F,F ′). We first claim that there exists /0( K′ ⊆ K, such that, lettingX′ ··= {λ (Rk) | Rk ∈ K′},
we haveOVL(F,F ′) = {Ri ∈ Pos(R) | X′ ⊆ µ(Ri)}. Indeed, lettingFf andFg be the facts ofI0 used
to createF andF ′, we previously showed the existence of /0( X ⊆ T0 such thatOVL(Ff ,Fg) = {Ri ∈
Pos(R0) | X ⊆ ν(i)}. Our definition ofF andF ′ from Ff andFg makes it clear that we can satisfy the
condition by takingK′ ··= λ−1(X), so thatX′ = X.

Consider nowRp ∈ Pos(R)\O. We cannot haveX′ ⊆ µ(Rp), otherwiseRp ∈ O. Hence, there exists
Rk ∈ K′ such thatλ (Rk) /∈ µ(Rp). This implies thatRk → Rp does not hold inΣUFD. However, as
Rk ∈ K′, we haveλ (Rk) ∈ µ(Rq) for all Rq ∈ O, so thatRk → O holds inΣUFD. This proves thatO=
OVL(F,F ′) is safe. Hence,I has the safe overlaps property, which concludes the proof.

F.3. Proof of Lemma VII.9 (Envelope-thrifty chase steps satisfy ΣFD)

Lemma VII.9. For n > 0, for any n-envelope-saturated aligned superinstance J that satisfiesΣFD,
the result J′ of an envelope-thrifty chase step on J is an(n−1)-envelope-saturated superinstance that
satisfiesΣFD.

Consider an application of an envelope-thrifty chase step:let τ : Rp ⊆ Sq be theUID, let O ··=
NDng(Sq), let J = (I ,sim) be the aligned superinstance ofI0, let Fw = S(b′) the chase witness, let
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D = (Sq,C) be the fact class, letFn =S(b) be the new fact to be created, and lett be the remaining tuple
of E(D) used to defineFn.

We first check that envelope-thrifty chase steps are well-defined in the sense that the fact classD =
(Sq,C) is indeed achieved inChase(I0,ΣUID), so it is inAFactCl. To see why, observe thatFw is a fact
of Chase(I0,ΣUID) whose fact class is(Sq,C). Indeed, by Lemma D.2,b′q is the exported element ofFw,
and clearlyb′i ∈Ci for all Si ∈ Pos(S). Hence indeedD ∈ AFactCl.

It is then clear that envelope-thrifty chase steps are well-defined, in the sense that they are indeed
thrifty chase steps: elements reused from the envelopes already occur at the positions where they are
used in the new factFn. Further, theirsim-image is the right one, by definition of an envelope.

We first prove thatJ′ is still an aligned superinstance. This is shown exactly as in Lemma V.9,
except for the fact thatJ′ |= ΣUFD which was specific to fact-thrifty chase steps. We show instead
thatJ′ |= ΣFD, using the assumption thatJ |= ΣFD. Recall the definition ofOVL (Definition F.1), and
assume by contradiction the existence of a violation ofΣFD in J′. The violation must be betweenFn

and an existing factF = S(c). However, because only the elements at positions inO already occur at
their position, we must haveOVL(Fn,F) ⊆ O. As πO(Fn) was defined using elements of dom(E(D)),
takingSr ∈OVL(Fn,F)⊆O, we havecr = br ∈ πSr (E(D)), so that, by definition ofE(D), we know that
πO(c) is a tuple ofE(D). If OVL(Fn,F ′′)( O then we have a contradiction by applying Lemma F.4 to
t andπO(c) in E(D). HenceOVL(Fn,F ′′) = O So, if D is unsafe, we have a contradiction becauseF
witnesses thatt was not a remaining tuple, so we cannot have used it to defineFn. If D is safe, there is
noFD RL → Rr of ΣFD with RL ⊆ O andRr /∈ O, soF andFn cannot violateΣFD, a contradiction again.

We now prove thatE is still a global envelope ofJ′ after performing an envelope-thrifty chase step.
The condition on the disjointness of the envelope domains only concernsE , which is unchanged. Hence,
we need only show that, for anyD′ ∈ AFactCl, E(D′) is still an envelope. Except the last one, all
conditions of the definition of envelopes either concern only the envelopeE(D′), which is unchanged,
or they are preserved when more facts are created inJ′. The last condition needs only to be checked
about the new factFn created in this chase step.

Except for the elements ofFn at positions inO, all elements ofFn did not occur at the positions
where they occur inFn, by definition of a thrifty chase step. So they cannot be elements of dom(E)
occurring inFn at the one position where they occur in the one envelope wherethey occur, because we
know that elements from any envelope already occur inJ at that position. So we only need to check the
condition for thebr for Sr ∈ O. But because the envelopes ofE are pairwise disjoint and as thebr are
all in dom(E(D)), we only need to check the condition forE(D). Now, t witnesses thatπO(b) ∈ E(D).
HenceE is still a global envelope ofJ′.

Last, to see that the resultingJ′ is (n−1)-envelope-saturated, it suffices to observe that the new fact
Fn witnesses that, for each unsafe classD ∈ AFactCl, the remaining tuples ofE(D) for J′ are those of
E(D) for J minus at most one tuple (namely, some projection ofFn). This concludes the proof.

F.4. Proof of the Envelope-Thrifty Completion Proposition (Proposition VII.10)

Proposition VII.10 (Envelope-thrifty completion). For any envelope-saturated aligned superinstance
J of I0 that satisfiesΣFD, we can obtain by envelope-thrifty chase steps an aligned superinstance J′ of
I0, such that J′ is either envelope-exhausted or satisfiesΣ.

The completion process for envelope-thrifty chase steps isdefined in the same way as for fact-thrifty
chase steps, except that the elements reused at non-dangerous positions are different. By definition
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of thrifty chase steps, the choice of elements reused at those positions cannot make any newUID ap-
plicable, or satisfy anyUID, because the elements thus reused are required to already occur at the
positions where they are used in the new fact. Further, envelope-thrifty chase steps do not introduce
UFD violations (in fact, they do not introduceFD violations), as follows from Lemma VII.9. Hence,
we can indeed define the completion process for envelope-thrifty chase steps exactly like the comple-
tion process for fact-thrifty chase steps, are long as the instance is envelope-saturated. Whenever an
envelope-exhausted instance is obtained at any point of theprocess, we abort and set it to be the final
instance.

Assuming that we do not reach any envelope-exhausted instance, the fact thatE is still a global
envelope of the resultJ′ of the envelope-thrifty completion process, and thatJ′ satisfiesΣFD in addition
to ΣUID , is by Lemma VII.9.

F.5. Proof of the Envelope Blowup Lemma (Lemma VII.11)

Lemma VII.11 (Envelope blowup). There exists B∈N depending only on k andΣU such that, for any
aligned superinstance J= (I ,sim) of I0, and global envelopeE , letting J′ = (I ′,sim′) be the result of
the envelope-thrifty completion process, we have|I ′|< B|I |.

We first observe that applying a chase round to an aligned superinstanceJ = (I ,sim) of I0 by any
form of thrifty chase steps (Definition V.8) only increases its size by a multiplicative constant. This is
because|dom(I)| ≤ |σ | · |I |, and the number of facts created per element ofI in a chase round is at most
|Pos(σ)|.

Remember that the envelope-completion process starts by constructing an ordered partitionP =
(P1, . . . ,Pn) of ΣUID (Definition VI.1). ThisP does not depend on the aligned superinstance. Hence,
as we satisfy theUIDs of eachPi in turn, if we can show that the instance size only increases by a
multiplicative constant for each class, then the blow-up for the entire process is by a multiplicative
constant (obtained as the product of the constants for eachPi).

For trivial classes, we apply one chase round by fresh envelope-thrifty chase steps (Corollary VI.4),
so the blowup is by a multiplicative constant by our initial observation.

For non-trivial classes, we apply the Fact-Thrifty Completion Proposition (Proposition V.10), mod-
ified to use envelope-thrifty rather than fact-thrifty chase steps (but the exact same steps are applied).
Remember that this proposition first ensuresk-reversibility by applyingk+ 1 envelope-thrifty chase
rounds (Proposition D.4) and then makes the result satisfyΣUID using the Guided Chase Lemma
(Lemma D.5). Ensuringk-reversibility only implies a blowup by a multiplicative constant, because
it means applyingk+1 envelope-thrifty chase rounds. Hence, we focus on the Guided Chase Lemma.

The lemma starts by constructing a balanced pssinstancePusing the Balancing Lemma (Lemma IV.9),
and aΣU-compliant piecewise realizationPI of P by the Realizations Lemma (Lemma IV.16), and then
performs envelope-thrifty chase steps to satisfyΣUID following PI. We know that, whenever we apply
a envelope-thrifty chase step to an elementa in the guided chase,a occurs after the chase step at a new
position where it did not occur before. Hence, it suffices to show that|dom(P)| is within a constant
factor of|J|, because then we know that the final number of facts once the guided chase is over will be
≤ |dom(P)| · |Pos(σ)|.

To show this, remember that dom(P) = dom(J)⊔H, whereH is the helper set. Hence, we only
need to show that|H| is within a multiplicative constant factor of|J|. From the proof of the Balancing
Lemma, we know thatH is a disjoint union of≤ |Pos(σ)| sets whose size is linear in|dom(J)| which
is itself≤ |σ | · |J|. Hence, the Guided Chase Lemma only gives rise to a blowup by aconstant factor.
As we justified, this implies the same about the entire completion process, and concludes the proof.
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G. Proofs for Section VIII: Cyclic Queries

In this section, we extend our construction of superinstances that satisfyΣ and arek-sound forACQ, to
superinstances that arek-sound forCQ while still satisfyingΣ.

G.1. Proof of the Simple Product Lemma (Lemma VIII.5)

Lemma VIII.5 (Simple product). Let I be a finite superinstance of I0 and G a finite(2k+1)-acyclic
group generated byΛ(I). If I is k-sound forACQ and k-instance-sound, then(I , I0)⊗G is k-sound for
CQ.

Fixing the superinstanceI of I0 that is k-sound forACQ and k-instance-sound, and the(2k+ 1)-
acyclic groupG generated byΛ(I), considerI ′ ··= (I , I0)⊗G, which is a superinstance ofI0 (up to our
identification of(a,e) to a for a∈ dom(I0), wheree is the neutral element ofG). We must show thatI ′

is k-sound forCQ.
We start by proving a simple lemma:

Lemma G.1. For anyCQ q and instance I, if I|= q and some match h of q in I maps two different
atoms of q to the same fact F, then there is a strictly smaller q′ which entails q and has a match h′ in I
such that, seeing matches as subinstances of I,dom(h′)⊆ dom(h).

Proof. Fix q, I , h, and letA= R(x) andA′ = R(y) be the two atoms ofq mapped to the same factF by
h. NecessarilyA andA′ are atoms for the same relationR of the factF, and ash(A) = h(A′) we know
thath(xi) = h(yi) for all Ri ∈ Pos(R).

Let dom(q) be the set of variables occurring inq. Consider the applicationf from dom(q) to dom(q)
defined byf (yi) = xi for all i, and f (x) = x if x does not occur inA′. Observe that this ensures that
h(x) = h( f (x)) for all x ∈ dom(q). Let q′ = f (q) be the query obtained by replacing every variable
x in q by f (x), and, asf (A′) = f (A), removing one of those duplicate atoms so that|q′| < |q|. Let
h′ = h|dom(q′). Clearly the image ofh′ is a subset of that ofh, and to see why this is a match ofq′

observe that any atomf (A′′) of q′ is homomorphically mapped byh′ to h(A′′) becauseh′( f (x)) = h(x)
for all x soh′( f (A′′)) = h(A′′).

To see whyq′ entailsq, observe thatf defines a homomorphism fromq to q′, so that, for any match
h′′ of q′ on an instanceI ′, h′′ ◦ f is a match ofq on I ′.

Fix now aCQ q such that|q| ≤ k, and assume thatI ′ |= q: let h be a match ofq in I . Let us show that
Chase(I0,ΣUID) |= q.

Let pr be the application fromI ′ to I defined bypr : (a,g) 7→ a for all a∈ dom(I) andg∈ G. It is
clear thatpr is a homomorphism fromI ′ to I that maps dom(I0)×G to dom(I0). Hence, ifh involves
some element of dom(I0)×G, thenq has a match inI involving an element ofI0. Hence, asI is
k-instance-sound,Chase(I0,ΣUID) |= q. We accordingly assume thath does not involve an element
of dom(I0)×G.

If we can show that there is a queryq′ of ACQ, |q′| ≤ k, such thatq′ entailsq andI |= q′, then, as
I is k-sound forACQ, this suffices to conclude thatChase(I0,ΣUID) |= q′, henceChase(I0,ΣUID) |= q
becauseq′ entailsq. So by way of contradiction we assume thatq is a query with a match ih n I ′

involving no element of dom(I0)×G such that there is noq′ ∈ ACQ, |q′| ≤ k, whereq′ entailsq and
I |= q′; and we take this counterexample queryq to be of minimal size.

In particular, this means we assume thatq is not inACQ, otherwise we could takeq′ = q, because
I |= q, as evidenced bypr◦h. So consider a Berge cycleC of q, of the formA1,x1,A2,x2, . . . ,An,xn,
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where theAi are pairwise distinct atoms and thexi pairwise distinct variables, and for all 1≤ i ≤ n,
variablexi occurs at positionqi of atomAi and positionpi+1 of Ai+1, with addition modulon ··= |C|.
We assume without loss of generality thatpi 6= qi for all i. However, we do not assume thatn≥ 2: either
n≥ 2 andC is really a Berge cycle according to our previous definition,or n= 1 and variablex1 occurs
in atomA1 at positionsp1 6= q1, which corresponds to the case where there are multiple occurrences of
the same variable in an atom.

For 1≤ i ≤ n, we writeFi = Ri(ai) the image ofAi by h in I ′; by definition ofI ′, becauseh involves
no element ofI0×G and hence no fact ofI0×G, there is a factF ′

i = Ri(bi) of I andgi ∈ G such that

ai
j = (bi

j ,gi · l
F ′

i
j ) for Rj

i ∈ Pos(Ri). Now, for all 1≤ i ≤ n, ash(xi) = ai
qi
= ai+1

pi+1 for all 1 ≤ i ≤ n,

we deduce by projecting on the second component thatgi · l
F ′

i
qi = gi+1 · l

F ′
i+1

pi+1, so that, by collapsing the

equations of the cycle together, l
F ′

1
q1 · (l

F ′
2

p2)
−1 · · · · · l

F ′
n−1

qn−1 · (l
F ′

n
pn)

−1 · lF
′
n

qn · (l
F ′

1
p1)

−1 = e.
As the girth ofG underΛ(I) is ≥ 2k+1, and this product contains 2n≤ 2k elements, we must have

either l
F ′

i
qi = l

F ′
i+1

pi+1 for somei, or l
F ′

i
pi = l

F ′
i

qi for somei. The second case is impossible because we assumed

that pi 6= qi for all 1≤ i ≤ n. Hence, necessarily l
F ′

i
qi = l

F ′
i+1

pi+1, so in particularF ′
i = F ′

i+1. Hence the atoms
Ai 6= Ai+1 of q are mapped byh to the same factF ′

i = F ′
i+1. We conclude by Lemma G.1 that there is

a strictly smallerq′ which entailsq and has a match inI ′ which is a submatch ofh; so in particular it
involves no element of dom(I0)×G. Now, by minimality ofq, q′ cannot be a counterexample query.
So there isq′′ ∈ ACQ, |q′′| ≤ k, whereq′′ entailsq′ andI |= q′′. Now, asq′′ entailsq′ andq′ entailsq,
thenq′′ entailsq, so this contradicts the fact thatq was a counterexample.

Hence, there is no such counterexample queryq, andI ′ is indeedk-sound forCQ. This concludes
the proof.

G.2. Proof of Lemma VIII.8 (Lifting k-bounded simulations to the quotient)

Lemma VIII.8. Any k-bounded simulation from an instance I to an instance I′ defines a k-bounded
simulation from I/≃k to I′.

Fix the instanceI and thek-bounded simulationsim to an instanceI ′, and considerI ′′ ··= I/≃k.
We show that there is ak-bounded simulationsim′ from I ′′ to I , becausesim ◦ sim′ would then be a
k-bounded simulation fromI ′′ to I ′, the desired claim. We definesim′(A) for all A ∈ I ′′ to bea for
any membera∈ A of the equivalence classA, and show thatsim′ thus defined is indeed ak-bounded
simulation.

We will show the stronger result that(I ′′,A)≤k (I ,a) for all A∈ dom(I ′′) and for anya∈ A. We do
it by proving, by induction on 0≤ k′ ≤ k, that(I ′′,A)≤k′ (I ,a) for all A∈ dom(I ′′) anda∈ A. The case
k′ = 0 is trivial. Hence, fix 0< k′ ≤ k, assume that(I ′′,A) ≤k′−1 (I ,a) for all A∈ dom(I ′′) anda∈ A,
and show that this is also true fork′. ChooseA∈ dom(I ′′), a∈ A, and show that(I ′′,A) ≤k′ (I ,a). To
do so, consider any factF = R(A) of I ′′ such thatAp = A for someRp ∈ Pos(R). Let F ′ = R(a′) be
a fact of I that is a preimage ofF by χ≃k, so thata′q ∈ Aq for all Rq ∈ Pos(R). We havea′p ∈ A and
a∈ A, so thata′p ≃k a holds inI . Hence, in particular we have(I ,a′p)≤k′ (I ,a) becausek′ ≤ k, so there
exists a factF ′′ = R(a′′) of I such thata′′p = a and(I ,a′q) ≤k′−1 (I ,a′′q) for all Rq ∈ Pos(R). We show
that F ′′ is a witness fact forF. Indeed, we havea′′p = a. Let us now chooseRq ∈ Pos(R) and show
that (I ′′,Aq) ≤k′−1 (I ,a′′q). By induction hypothesis, asa′q ∈ Aq, we have(I ′′,Aq) ≤k′−1 (I ,a′q), and as
(I ,a′q) ≤k′−1 (I ,a′′q), by transitivity we have indeed(I ′′,Aq) ≤k′−1 (I ,a′′q). Hence, we have shown that
(I ′′,A)≤k′ (I ,a).

By induction, we conclude that(I ′′,A)≤k (I ,a) for all A∈ dom(I ′′) anda∈ A, so that there is indeed
ak-bounded simulation fromI ′′ to I , which, as we have explained, implies the desired claim.

56



G.3. Proof of the Cautiousness Lemma (Lemma VIII.10)

Lemma VIII.10 (Cautiousness). The superinstance If of I0 constructed by the Acyclic Universal Mod-
els Theorem (Theorem VII.1) is cautious forχ≃k.

Let Jf = (If ,sim) be the aligned superinstance ofI0 constructed by the Acyclic Universal Models
Theorem (Theorem VII.1), and show that it is cautious forχ≃k.

We first observe that the definition of cautiousness (Definition VIII.9) can be generalized to apply to
any function, and not just homomorphisms. In this case, writing F = R(a) andF ′ = R(a′), we define
cautiousness as requiring, instead ofh(F) = h(F ′), thath(ai) = h(a′i) for all 1≤ i ≤ |R|,

Now, let χ ′
≃k

be the homomorphism fromChase(I0,ΣUID) to its quotient by≃k. (We distinguish it
from χ≃k, which is the homomorphism fromIf to If/≃k.) We first show that our construction ensures
the following:

Lemma G.2. If is cautious forχ ′
≃k

◦ sim.

In other words, whenever two factsF = R(a) andF ′ = R(b) overlap inIf and are not both inI0, then,
for any positionRp ∈ Pos(R), we havesim(ap)≃k sim(bp) in Chase(I0,ΣUID).

Proof. In the proof of the Acyclic Universal Models Theorem (Theorem VII.1), If is constructed by
first constructing an instanceI using the Sufficiently Envelope-Saturated Solutions Proposition (Propo-
sition VII.5), and then completingI using the Envelope-Thrifty Completion Proposition (Proposi-
tion VII.10).

Thus, we first check that this claim holds forI . Indeed, we check it for each instance constructed in
Lemma F.6, and the only overlapping facts in each such instance which are not inI0 are theh(Fi), which
all map to≃k-equivalentsim-images. Hence, asI is the disjoint union of the instances constructed in
Lemma F.6, we deduce that the claim holds forI .

Second, in the proof of the Envelope-Thrifty Completion Proposition, we only perform envelope-
thrifty chase steps. By their definition, whenever we createa new factFn for a fact classD, the only
elements ofFn that can be part of an overlap betweenFn and an existing fact are envelope elements,
appearing at the one position at which they appear inE(D). Then, by the last condition in the definition
of envelopes (Definition VII.2), we deduce that the two overlapping facts achieve the same fact class,
which is what we wanted to show.

We now want to show that two elements inJf having≃k-equivalentsim images inChase(I0,ΣUID)
must themselves be≃k-equivalent inJf. We do it by showing that, in fact, for anya∈ dom(Jf), not only
do we have(If ,a)≤k (Chase(I0,ΣUID),sim(a)), but we also have the reverse:(Chase(I0,ΣUID),sim(a))≤k

(If ,a). In other words, intuitively, the facts of the chase must be “mirrored” in If.
We define theancestryAF of a factF in Chase(I0,ΣUID) asI0 plus the facts of the path in the chase

forest that leads toF (if F ∈ I0 thenAF is just I0). TheancestryAa of a∈ dom(Chase(I0,ΣUID)) is
that of the fact wherea was introduced.

We now claim the following:

Lemma G.3. For any a∈ dom(If), there is a homomorphism ha fromAsim(a) to If such that ha(sim(a))=
a.

Proof. We prove that this property holds onIf, by first showing that it is true of the instance constructed
in the Sufficiently Envelope-Saturated Solutions Proposition (Proposition VII.5). This is clearly the
case because the instances created by Lemma F.6 are just truncations of the chase where some elements
are identified.
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Second, we show that the property is maintained by the construction of the Envelope-Thrifty Com-
pletion Proposition. We show the stronger claim that it is preserved by any thrifty chase step (Defi-
nition V.8). Consider a thrifty chase step where, in a stateJ1 = (I1,sim1) of the construction of our
aligned superinstance, we apply aUID τ : Rp ⊆ Sq to a factFa= R(a) to create a factFn = S(b) and ob-
tain the aligned superinstanceJ2 = (I2,sim2). Consider the chase witnessFw = S(b′). By Lemma D.2,
b′q is the exported element betweenFw and its parent inChase(I0,ΣUID). So we know that for anyi 6= q,
we haveAb′i

=Ab′q ⊔{Fw}.
We need to show that the property holds for thebi that are fresh (otherwise we already know that the

property is satisfied, as adding more facts cannot violate the property inJ2 on an element for which it
held inJ1). So, if none of thebi are fresh, there is nothing to do. Otherwise, choosei such thatbi is
fresh. By the definition of thrifty chase steps, we have setsim(bi) ··= b′i . Becauseap = bq is in dom(I1),
we know that there is a homomorphismhbq from Asim(bq) = Ab′q to I1 such that we haveh(b′q) = bq.
We extendhbq to the homomorphismhbi from Ab′i

=Ab′q ⊔{Fw} to I2 such thathbi (b
′
i) = bi , by setting

hbi (Fw) ··= Fn andhbi (F) ··= h(F) for any otherF of Ab′i
; we can do this because, by definition of the

chase,Fw shares no element with the other facts ofAb′i
(that is, withAb′q), exceptb′q for which our

definition coincides with the existing image. This proves the claim.

We claim that this property implies the following:

Corollary G.4. For any a∈ dom(If), there is a homomorphism ha fromChase(I0,ΣUID) to If such that
ha(sim(a)) = a.

Proof. Choosea ∈ dom(If) and let us constructha. Let h′a be the homomorphism fromAsim(a) to
If with h′a(sim(a)) = a whose existence was proved in Lemma G.3. Now start by settingha ··= h′a,
and extendh′a to be the desired homomorphism, fact by fact, using the property that If |= ΣUID : for
any b ∈ dom(Chase(I0,ΣUID)) not in the domain ofh′a but which was introduced in a factF whose
exported elementc is in the current domain ofh′a, let us extendh′a to the elements ofF in the following
way: consider the parent factF ′ of F and its match byh′a, let τ be theUID used to createF ′ from
F, and, becauseIf |= τ , there must be a suitable factF ′′ to extendh′a to all elements ofF by setting
h′a(F) ··= F ′′; this is consistent with the image ofc previously defined inh′a. Performing this process
allows us to define the desired homomorphismha.

Clearly this result implies:

Corollary G.5. For any a∈ dom(If), we have(Chase(I0,ΣUID),sim(a)) ≤k (If,a).

Proof. Consider the restriction ofha to the neighborhood at distancek in the Gaifman graph ofsim(a).

We are now ready to show our desired claim:

Lemma G.6. For any a,b∈ dom(If), if sim(a)≃k sim(b) in Chase(I0,ΣUID), then a≃k b in If.

Proof. Fix a,b ∈ dom(If). We have(If ,a) ≤k (Chase(I0,ΣUID),sim(a)) becausesim is a k-bounded
simulation; we have(Chase(I0,ΣUID),sim(a))≤k (Chase(I0,ΣUID),sim(b)) becausesim(a)≃k sim(b);
and we have(Chase(I0,ΣUID),sim(b)) ≤k (If,b) by Corollary G.5. By transitivity, we have(If,a) ≤k

(If ,b). The other direction is symmetric, so the desired claim follows.

We prove Lemma VIII.8 immediately from Lemma G.2 and Lemma G.6.
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G.4. Proof of the Mixed Product Preservation Lemma (Lemma VIII.12)

Lemma VIII.12 (Mixed product preservation). For anyUID or FD τ , if I |= τ and I is cautious for h,
then(I , I0)⊗h G |= τ .

Write Im ··= (I , I0)⊗h G.
If τ is aUID, the claim is immediate even without the cautiousness hypothesis. (In fact, the analogous

claim could even be proven for the simple product.) Indeed, for anya∈ dom(I) andRp ∈ Pos(σ), if
a ∈ πRp(I) then (a,g) ∈ πRp(Im) for all g ∈ G; conversely, ifa /∈ πRp(I) then(a,g) /∈ πRp(Im) for all
g∈G. Hence, lettingτ : Rp ⊆Sq be aUID of ΣUID , if there is(a,g)∈ dom(Im) such that(a,g)∈ πRp(Im)
but (a,g) /∈ πSq(Im) thena∈ πRp(I) buta /∈ πSq(I). Hence any violation ofτ in Im implies the existence
of a violation ofτ in I , so we conclude becauseI |= τ .

Assume now thatτ is aFD φ : RL → Rr . Assume by contradiction that there are two factsF1 = R(a)
andF2 = R(b) in Im that violateφ , i.e., we haveal = bl for all l ∈ L, but ar 6= br . Write ai = (vi , fi)
andbi = (wi,gi) for all Ri ∈ Pos(R). ConsiderF ′

1
··= R(v) andF ′

2
··= R(w) the facts ofI that are the

images ofF1 and F2 by the homomorphism fromIm to I that projects on the first component. As
I |= τ , F ′

1 andF ′
2 cannot violateφ , so asvl = wl for all l ∈ L, we must havevr = wr . Further, we have

πRl0(F
′
1) = πRl0(F

′
2) for any l0 ∈ L; hence, asI is cautious forh, eitherF ′

1,F
′
2 ∈ I0 or h(F ′

1) = h(F ′
2).

In the first case, by definition of the mixed product, there aref ,g ∈ G such thatfi = f andgi = g
for all Ri ∈ Pos(R). Thus, taking anyl0 ∈ L, as we haveal0 = bl0, we havefl0 = gl0, so f = g, which
implies thatfr = gr . Hence, asvr = wr , we have(vr , fr) = (wr ,gr), contradicting the fact thatar 6= br .

In the second case, ash is the identity onI0 and mapsI\I0 to I ′\I0, h(F ′
1) = h(F ′

2) implies that either
F ′

1 andF ′
2 are both facts ofI0 or they are both facts ofI\I0; but we have already excluded the former

possibility in the first case, so we assume the latter. LetF beh(F ′
1). By definition of the mixed product,

there aref ,g ∈ G such thatfi = f · lh(F)i andgi = g · lh(F)i for all Ri ∈ Pos(R). Picking l0 ∈ L, from

al0 = bl0, we deduce thatf · lh(F)l0
= g· lh(F)l0

, which simplifies tof = g. Hence,fr = gr and we conclude
like in the first case.

G.5. Proof of the Mixed Product Homomorphism Lemma (Lemma VIII.13)

Lemma VIII.13 (Mixed product homomorphism). There is a homomorphism from(I , I0)⊗hG to(I ′, I0)⊗
G which is the identity on I0×G.

We use the homomorphismh : I → I1 to define the homomorphismh′ from Im ··= (I , I0)⊗h G to
Ip ··= (I , I0)⊗G by h′((a,g)) ··= (h(a),g) for every(a,g) ∈ dom(I)×G.

Consider a factF = R(a) of Im, with ai = (vi ,gi) for all Ri ∈ Pos(R). Consider its imageF ′ = R(v)
by the homomorphism fromIm to I obtained by projecting to the first component, and the imageh(F ′)
of F ′ by the homomorphismh. Ash|I0 is the identity andh|(I\I0) maps toI1\I0, h(F ′) is a fact ofI0 iff
F ′ is. Now by definition of the simple product it is clear thatIp contains the facth′(F) (it was created
in Ip from h(F ′) for the same choice ofg∈ G).

The fact thath is the identity onI0 also ensures thath′ is the identity onI0×G.

59


	I Introduction
	II Background
	III Main Result and Overall Approach
	III.1 Rephrasing with universal models
	III.2 Restricting to ACQ s, UFD s, and reversible constraints

	IV Weak-Soundness and Reversible UID s
	IV.1 Binary signatures and balanced instances
	IV.2 Arbitrary arity and piecewise realizations

	V k-Soundness and Reversible UID s
	V.1 Aligned superinstances and fact-saturation
	V.2 Fact-thrifty completion

	VI Arbitrary UID s: Lifting Assumption reversible
	VII Higher-Arity FD s
	VII.1 Envelopes and saturation
	VII.2 Envelope-thrifty chase steps

	VIII Cyclic Queries
	VIII.1 Simple product
	VIII.2 Mixed product

	IX Conclusion
	A Details about the UID chase and Unique Witness Property
	B Proofs for Section ??: Main Result and Overall Approach
	B.1 Proof of Proposition ?? (Complexity of UQA for FD s and UID s)
	B.2 Proof of the Main Theorem (Theorem ??) from the Universal Models Theorem (Theorem ??)
	B.3 Proof of Corollary ?? (Complexity of FQA for FD s and UID s)

	C Proofs for Section ??: Weak-Soundness and Reversible UID s
	C.1 Proof of Proposition ?? (Satisfying UID s in balanced instances)
	C.2 Proof of the Balancing Lemma (Lemma ??)
	C.3 Proof of the Binary Realizations Lemma (Lemma ??)
	C.4 Proof of Lemma ``Binary realizations are completions'' (Lemma ??)
	C.5 Proof of the Realizations Lemma (Lemma ??)
	C.6 Proof of the Relation-Saturated Solutions Lemma (Lemma ??)
	C.7 Proof of Lemma ``Using realizations to get completions'' (Lemma ??)

	D Proofs for Section ??: k-Soundness and Reversible UID s
	D.1 Proof of Lemma ?? (ACQ s are preserved through k-bounded simulations)
	D.2 Proof of Lemma ?? (AFactCl is finite)
	D.3 Proof of the Fact-Saturated Solutions Lemma (Lemma ??)
	D.4 Proof of the Fact-Thrifty Chase Steps Lemma (Lemma ??)
	D.5 Proof of the Fact-Thrifty Completion Proposition (Proposition ??)
	D.6 Proof of Proposition ``Ensuring n-reversibility'' (Proposition ??)
	D.7 Proof of the Guided Chase Lemma (Lemma ??)
	D.8 Proof of the Chase Locality Theorem (Theorem ??)

	E Proofs for Section ??: Arbitrary UID s: Lifting Assumption Reversible
	E.1 Finite closure computation algorithm
	E.2 Proof of Lemma ?? (New violations follow )
	E.3 Proof of Corollary ?? (Dealing with trivial classes)
	E.4 Proof of Lemma ?? (Existence of manageable partitions)
	E.5 Proof of the SCC Structure Lemma (Lemma ??)
	E.6 Proof of the Inverse-Sequential Topological Sort Proposition (Proposition ??)
	E.7 Proof of the Manageable Partitions From Sorts Proposition (Proposition ??)

	F Proofs for Section ??: Higher-Arity FD s
	F.1 Proof of the Sufficiently Envelope-Saturated Solutions Proposition (Proposition ??)
	F.2 Proof of the Dense Interpretations Theorem (Theorem ??)
	F.3 Proof of Lemma ?? (Envelope-thrifty chase steps satisfy FD)
	F.4 Proof of the Envelope-Thrifty Completion Proposition (Proposition ??)
	F.5 Proof of the Envelope Blowup Lemma (Lemma ??)

	G Proofs for Section ??: Cyclic Queries
	G.1 Proof of the Simple Product Lemma (Lemma ??)
	G.2 Proof of Lemma ?? (Lifting k-bounded simulations to the quotient)
	G.3 Proof of the Cautiousness Lemma (Lemma ??)
	G.4 Proof of the Mixed Product Preservation Lemma (Lemma ??)
	G.5 Proof of the Mixed Product Homomorphism Lemma (Lemma ??)


