

University of Birmingham

A Complete Axiomatization of MSO on Infinite Trees
Das, Anupam; Riba, Colin

DOI:
10.1109/LICS.2015.44

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Das, A & Riba, C 2015, A Complete Axiomatization of MSO on Infinite Trees. in 2015 30th Annual ACM/IEEE
Symposium on Logic in Computer Science ., 7174898, Proceedings - Symposium on Logic in Computer
Science, Institute of Electrical and Electronics Engineers (IEEE), pp. 390-401, 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6/07/15.
https://doi.org/10.1109/LICS.2015.44

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
A. Das and C. Riba, "A Complete Axiomatization of MSO on Infinite Trees," 2015 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, Kyoto, Japan, 2015, pp. 390-401, doi: 10.1109/LICS.2015.44.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. May. 2024

https://doi.org/10.1109/LICS.2015.44
https://doi.org/10.1109/LICS.2015.44
https://birmingham.elsevierpure.com/en/publications/c9f6fa2e-bbfd-4af1-b84f-dd9c7194b61f

A complete axiomatization of MSO on infinite trees
Anupam Das Colin Riba

Laboratoire LIP, ENS de Lyon, CNRS, Inria, UCBL, Université de Lyon

Abstract—We show that an adaptation of Peano’s axioms for
second-order arithmetic to the language of MSO completely
axiomatizes the theory over infinite trees. This continues a line of
work begun by Büchi and Siefkes with axiomatizations of MSO
over various classes of linear orders.

Our proof formalizes, in the axiomatic theory, a translation
of MSO formulas to alternating parity tree automata. The main
ingredient is the formalized proof of positional determinacy for
the corresponding parity games which, as usual, allows us to
complement automata in order to deal with negation of MSO
formulas. The Comprehension Scheme of monadic second-order
logic is used to obtain uniform winning strategies, whereas most
usual proofs of positional determinacy rely on forms of the Axiom
of Choice or transfinite induction.

I. INTRODUCTION

Rabin’s tree theorem [9], that the monadic theory of two
successors (S2S) is decidable, is one of the most powerful
results known concerning the decidability of logics. In this
paper, we present a complete axiomatization of S2S, i.e. a set
of sound MSO formulas from which one can infer all of S2S.
Our axiomatization can be seen as a subsystem of second-order
Peano arithmetic (PA2).

We continue a line of work begun by Büchi and Siefkes,
who gave axiomatizations of MSO on various classes of linear
orders (see e.g. [11], [2]). These works essentially rely on
formalizations of automata in the logic. A major result in
the axiomatic treatment of logics over infinite structures is
Walukiewicz’s proof of completeness of Kozen’s axiomatiza-
tion of the modal µ-calculus [16]. More recent works include
complete axiomatizations of MSO and the modal µ-calculus
over finite trees [13], [5]. These works (as well as the recent
reworking [10] of Siefkes’s completeness proof of MSO on ω-
words [11]), rely on model-theoretic techniques, which allow
elegant reformulations of algebraic approaches. For the case
of infinite trees the algebraic approach (in [1]) appears to
be much more complicated. We therefore directly formalize
a translation of formulas to automata in the axiomatic theory.

There are several ways to translate MSO formulas to
automata (see e.g. [6], [14], [17]). We choose to translate
formulas to alternating parity automata. The two non-trivial
steps in the translation of formulas to alternating automata are
negation and existential quantification. Negation requires the
complementation of automata while, for existential quantifiers,
we simulate an alternating automaton by an equivalent non-
deterministic one (nondeterminization) whence we can obtain
an automaton computing the appropriate projection.

Work partially funded by the ANR Blanc project RÉCRÉ.

Recall that alternating (tree) automata generalize nonde-
terministic automata by admitting positive boolean formulas
as transitions. We adopt (a special case of) the presentation
of [17], in which transitions are represented using a double
powerset (corresponding to irredundant disjunctive normal
forms), which allows for a smooth treatment of complemen-
tation and nondeterminization.

Working in the language of MSO imposes some constraints
on the formalization. This is mainly due to the fact that
it is not possible to compare the length of tree positions,
since this would allow us to define a Choice formula on tree
positions, contradicting [7] (see also [3]). Consequently, when
formalizing acceptance of tree automata, we can only deal with
positional strategies, i.e. those dependent on only the current
position of the game, not the entire history of the play.

It is well-known (see e.g. [4], [8], [17]) that nonde-
terminization of alternating automata is strongly linked to
McNaughton’s Theorem (the determinization of ω-word au-
tomata). At this point, we rely on already known axiomatiza-
tions of MSO on ω-words [11], [10]. These provide, for each
formula of MSO on trees defining an ω-regular language, a
(provably equivalent) formula describing a deterministic ω-
word automaton recognizing this language.

Our main difficulty concerns complementation. As usual we
rely on positional determinacy of parity games, and we show
that our axiomatization of MSO proves that acceptance games
of alternating (parity) automata are positionally determined.
Our proof formalizes a variant of the positional determinacy
argument of [14]. The main difficulty is the obtainment of
uniform winning strategies: from a set of positions from which,
say, player Eloise has a winning strategy, the problem of
computing a strategy for Eloise which is winning from all
positions of that set. This property is naturally proved using
the Axiom of Choice or some form of transfinite induction,
which are unavailable in our axiomatization. Nonetheless, for
the restricted type of game graphs induced by tree automata,
we show that the Comprehension axiom scheme, together with
induction on tree positions, allows us to build such a strategy.

It is well-known that SkS, the monadic theory of k-ary trees,
can be embedded in S2S [9]. However, it does not seem as
direct to use such an embedding to obtain an axiomatization of
SkS from an axiomatization of S2S. Therefore, in this work,
we axiomatize the MSO theory of the full infinite D-ary tree,
for an arbitrary finite ordered set D. We denote by MSOD the
corresponding formal system.

As expected, formalization in (subsystems of) arithmetic
involves a lot of coding. But since MSO on infinite trees is a

decidable logic, it does not admit the usual primitive recursive
codings (see e.g. [12]), and so we use Boolean codings of finite
structures instead. We work in an extension of MSOD which
we call bounded FSOD. FSOD (‘functional second-order
logic’) is just an extension of MSOD by function symbols
and a Choice axiom scheme. In bounded FSOD functions are
required to range over finite sets only, and we show that this
system is directly interpretable in MSOD. This setting allows
us to smoothly handle much of the bureaucracy caused by the
finite Boolean codings required by the formalization.

We also often use Henkin models. Thanks to the correspond-
ing completeness result, they allow us to reason in genuine
mathematical structures rather than at the syntactic level of
formal proofs. This eases the presentation of some arguments.

A potentially interesting aspect of this work is the possibility
of new decision procedures for MSO on infinite trees based
on proof search. This seems quite remarkable since, besides
the algebraic approach of [1], the only known approaches to
Rabin’s theorem proceed first via translation of formula to
automata. We elaborate on this in Sect. VII.

Organization of the paper

We present our axiomatization in Sect. II. In Sect. III we
gather the required logical tools, in particular basic facts
about MSOD and its relation to MSO on ω-words, and the
system FSOD and its relation to MSOD. The formalization of
alternating parity tree automata is then presented in Sect. IV,
which also contains (assuming positional determinacy of parity
games) proofs of the correctness of basic operations on au-
tomata. The proof of the completeness of our axiomatization,
based on the formalized translation of formulas to automata,
is then assembled in Sect. V. Section VI contains our main
technical contribution, the proof of positional determinacy. We
elaborate on possible further directions in Sect. VII and give
concluding remarks in Sect. VIII.

II. AN AXIOMATIZATION OF MSO ON INFINITE TREES

Throughout this work we fix given countable sets Vι =
{x, y, z, . . . } and Vo = {X,Y, Z, . . . } of individual and
monadic variables, respectively. We also fix a nonempty set
D of the form [n] := {0, . . . , n− 1} for some n ∈ N.

A. The system MSOD

Definition II.1 (Language of MSOD). The individual terms of
MSOD, denoted a, b, etc. are built from individual variables
and the symbols ε̇ (nullary, intended to denote the root of the
tree) and Sd for each d ∈ D (all unary, intended to denote
immediate successors).

The formulas, denoted φ, ψ ∈ ΛD, are built from atomic
formulas of the form Xa by means of negation ¬φ, disjunction
φ ∨ ψ and existential quantifications ∃x.φ and ∃X.φ.

We may also write a ∈̇ X rather than Xa for convenience.

The symbols ∧,→,←→,∀x and ∀X are defined as usual. We
often omit brackets to reduce syntax, in particular interpreting
sequences of implications by associating brackets to the right,
e.g. φ→ ψ → χ is interpreted as φ→ (ψ → χ).

TABLE I
AXIOMS FOR MSOD

Tree axioms: ∀x¬(Sd(x)
.
= Sd′ (x)) (for each d 6= d′ ∈ D)

For each d ∈ D:

∀xy(Sd(x)
.
= Sd(y)→ x

.
= y) ∀x¬(Sd(x)

.
= ε̇)

Induction:

∀X

Xε̇→ ∀y ∧
d∈D

(Xy → XSd(y))→ ∀yXy


Comprehension: for all formula φ,

∃X∀y [Xy ←→ φ] (X /∈ FV(φ))

1) Axiomatization: Provability in MSOD is obtained by
deduction in the predicate calculus (rules of Table II, where
Γ denotes a finite multiset of formulas), using the axioms of
Table I, where the (x

.
= y) is defined as ∀X(Xx → Xy).

We write Γ `MSOD φ if Γ ` φ is derivable in MSOD and
MSOD ` φ for `MSOD φ.

2) Interpretation: MSOD is interpreted in the standard
model TD of the D-ary tree D∗ as expected: individual
variables x ∈ Vι range over tree positions D∗, ε̇ is interpreted
by the root ε ∈ D∗, successors Sd map a ∈ D∗ to a · d ∈ D+

and monadic variables X ∈ Vo range over P(D∗).
Our axiomatization is sound, in the following sense:

Fact II.2. If MSOD ` φ then TD |= φ.

B. Main result

The main result of this paper is that the axiomatization
MSOD is complete with respect to MSO on the infinite D-ary
tree. This is an immediate consequence, via Fact II.2 above,
of the following result, which is our main contribution:

Theorem II.3 (Completeness of MSOD). For every closed
formula φ of MSOD, either MSOD ` φ or MSOD ` ¬φ.

Corollary II.4. For every closed formula φ of MSOD,
MSOD ` φ if and only if TD |= φ.

The argument for Thm. II.3 can be outlined as follows:
we prove in MSOD that every formula is equivalent to a
formula representing a tree automaton. For closed formulas
the corresponding automata work on the singleton alphabet,
and in this case we show that, for any automaton A, MSOD
proves that the unique tree on this alphabet is accepted either
by A or by its ‘complement’ automaton.

III. A LOGICAL TOOLBOX

We introduce the various tools and concepts used to formal-
ize the completeness argument and proofs in later sections.

A. Henkin completeness

We recall the notion of Henkin models and their correspond-
ing completeness results. These allow us to reason in genuine
mathematical structures rather than at the syntactic level of
formal proofs, thus easing the presentation of some arguments.

TABLE II
DEDUCTION RULES

Rules for Propositional Logic

Γ ` φ ∨ ¬φ Γ, φ ` φ
Γ ` φ Γ ` ¬φ

Γ ` ψ

Γ ` φ
Γ ` φ ∨ ψ

Γ ` ψ
Γ ` φ ∨ ψ

Γ ` φ ∨ ψ Γ, φ ` ϕ Γ, ψ ` ϕ
Γ ` ϕ

Rules for First-Order Logic
(where either X ∈ Vι and Y is a term, or X ,Y ∈ Vo)

Γ ` φ[Y/X]

Γ ` ∃Xφ

Γ ` ∃Xφ Γ, φ ` ψ
Γ ` ψ

(X /∈ FV(Γ, ψ))

A Henkin structure M for monadic second-order order logic
is given by a set Mι of individuals and a set Mo ⊆ P(Mι)
of monadic predicates (over which individual variables x, y, z
etc. and monadic variables X , Y , Z etc. range, respectively).

A Henkin structure for MSOD is a Henkin structure M
equipped with a constant εM ∈Mι and functions SMd : Mι →
Mι for each d ∈ D. Such a structure is a Henkin model of
MSOD if it satisfies all the axioms of MSOD, and if moreover
M |= a

.
= b iff a = b for all a, b ∈Mι.

As usual, we have the following property (see e.g. [15]):

Theorem III.1 (Henkin Completeness). Given a closed for-
mula φ of MSOD, we have that MSOD ` φ iff M |= φ for
all Henkin models M of MSOD.

B. Some basic facts on MSOD

First, MSOD proves the usual axioms ∀x(x
.
= x) and

∀X∀xy [x
.
= y → Xx→ Xy] on the defined equality .

=.
The prefix order is definable as,

(x ≤̇ y) := ∀X [Up(X)→ Xx→ Xy]

where Up(X) :=
∧
d∈D ∀x [Xx→ X(Sd(x))]. The strict

prefix order is (x <̇ y) := (x ≤̇ y) ∧ ¬(x
.
= y).

We give some common important facts below.

Proposition III.2. The following are provable in MSOD:
(i) ≤̇ is reflexive, transitive, antisymmetric, and form a tree

domain with root ε̇:

∀x(ε̇ ≤̇ x) ∀xyz[y ≤̇ x→ z ≤̇ x→ (y ≤̇ z ∨ z ≤̇ y)]

(ii) <̇ is antireflexive, symmetric and unbounded.
(iii) <̇-induction:

∀X [∀x (∀y(y <̇ x→ Xy)→ Xx)→ ∀xXx]

(iv) Every non <̇-minimal element has a predecessor:

∀x [∃y(y <̇ x)→ ∃y (y <̇ x ∧ ¬∃z(y <̇ z <̇ x))]

We now give a particularly useful consequence of <̇-induction:

Proposition III.3 (Recursion Theorem). Let φ(X,x) be a
formula such that MSOD proves:

∀x∀XY [∀y <̇ x(Xy ←→ Y y)→ (φ(X,x)←→ φ(Y, x))]

Then MSOD also proves ∃!X∀x[Xx←→ φ(X,x)].

We define Path∞(X), that X is an infinite path, as follows:

Ub(X) ∧ Lin(X)∧
∀xyz

[
Xx→ Xy → x ≤̇ z ≤̇ y → Xz

] (1)

where Ub(X) is ∀x [Xx→ ∃y(Xy ∧ x <̇ y)] and Lin(X) is
∀xy

[
Xx→ Xy → (x ≤̇ y ∨ y ≤̇ x)

]
.

One of the most important properties of infinite paths in
MSOD is Prop. III.5 below.

C. MSO on ω-words

For D = [1] = {0}, the standard model TD is the standard
model (N,P(N), (n 7→ n + 1)) of ω-words, and MSOD
completely axiomatizes its MSO theory [11]. We shall use
a stronger fact, namely that for any finite D, relativization to
any (provably) infinite path of MSOD gives the MSO theory
of ω-words.

Definition III.4 (Relativization). Given two formulas φ and
ψ(y) with disjoint free variables, the relativization of φ to
ψ(y), denoted φψ(y) (or simply φψ when y is clear from the
context), is obtained by recursively replacing in φ every first-
order quantification ∃xϕ by ∃x(ψ(x) ∧ ϕψ(y)).

Proposition III.5. If φ is a closed MSO formula φ built
on the purely relational language consisting of only <̇, then
Path∞(X) `MSOD φX(−) if and only if (N,P(N), <) |= φ.

MSO formulas built as in Prop. III.5 are the same as those
considered in the axiomatization of MSO on ω-words of [10].

D. Functional second-order logic

In this section we present an extension of MSOD with unary
function symbols and a Choice axiom scheme, denoted FSOD.
It is in this system that we will conduct the proofs in later
sections. In particular we show that, when the codomains of
these functions are provably finite we have only a conservative
extension of MSOD.

Definition III.6 (The system FSOD). The language of FSOD
is that of MSOD together with countably many unary function
symbols f, g etc. We allow quantification over these symbols,
i.e. if φ is a formula then ∃fφ is a formula, and extend the
notion of ‘free variable’ appropriately. Terms of FSOD are
permitted to include function symbols. A term is closed if it
contains no free variables.

The rules of FSOD extend MSOD as follows:
• In the ‘∃’ rules in Table II, the symbols X ,Y are further

allowed to be function symbols.
• We add the Choice axiom scheme,

∀x∃yφ → ∃f∀xφ[f(x)/y] (for f /∈ FV(φ)) (2)

Henkin completeness (Thm. III.1) extends to FSOD with
respect to the following notion of model: A Henkin structure
for FSOD is a Henkin structure M for MSOD equipped with
an additional set of functions Mι→ι ⊆MιM

ι

, over which the
function variables f , g etc. range. Such a structure is a model
of FSOD if it is a model of MSOD and satisfies the additional
axioms of FSOD.

Our main use for Choice is to define new functions in
FSOD. In these cases, it is often implicit that we might be
using the following consequence of it, a version of compre-
hension for functions.

Definition III.7 (Functional Comprehension). We define the
Functional Comprehension schema, where f /∈ FV(φ), as

∀x∃!yφ → ∃f∀xy (f(x) =̇ y ←→ φ) (3)

We show that Functional Comprehension is valid in FSOD:

Proposition III.8. FSOD ` (3).

Proof. We reason inside an arbitrary Henkin model of FSOD.
By the antecedent of (3), we have that ∀x.∃y.φ, whence we
can apply Choice to obtain,

∃f.∀x.φ[f(x)/y] (4)

which implies the left-right direction of the succedent of (3).
Now let f be the function witnessing (4) above. We have

that φ[f(x)/y], but again by the antecedent of (3) we have that
any witness for ∀x.∃y.φ is unique, and so equal to f(x), giving
the right-left direction of the equivalence required.

In the definition of boundedness below, it may seem that
we use an odd bounding relation (the newly defined ‘E’). In
fact it does not matter which relation we use, as long as it
is well-founded, but this convention allows us to present the
interpretation of FSOD in MSOD, Def. III.11, without the
need for cumbersome codings. 1

Definition III.9 (Boundedness). For words σ, τ ∈ 2∗, let us
write σ E τ if |σ| = |τ | and σ is lexicographically less than
or equal to τ .

In FSOD we define the following:

x Ė σ :=
∨
τEσ

x = τ

where σ, τ ∈ 2∗ and σ, τ are the corresponding terms built
using ε̇, S0 and S1.

We define ‘bounded’ functional quantifiers as follows, where
b is a closed term built using ε̇, S0 and S1:

∃f Ė b.φ : ∃f.(∀x.f(x) Ė b) ∧ φ
∀f Ė b.φ : ∀f.(∀x.f(x) Ė b)→ φ

1These might be required if the relation compares strings of different length.

A formula is bounded if it is logically equivalent to one where
each function quantifier is bounded by a closed term.

An FSOD-proof is bounded if every formula occurring in it
is bounded.

Notice, in particular, that an instance of Functional Com-
prehension is bounded if its Comprehension formula (φ in (3)
above) is bounded.

Our aim in this section is to obtain the following result:

Theorem III.10. Bounded FSOD is interpretable in MSOD.

It might serve as helpful intuition to consider 0 and 1
as defined truth constants standing for falsum and truth,2

respectively. We can then associate vectors of formulas with
bit strings specifying their respective truth values, as below.

Definition III.11 (Interpretation). For a tuple
#–

X =
(X1, . . . , Xk) and a bit string σ ∈ 2k we define:

#–

Xx←→ σ :=

k∧
i=1

Xix←→ σi

The interpretation 〈·〉 of FSOD-formulas commutes with the
connectives ¬,∨ and ∃ over individual and set variables. We
define 〈∃f Ė σ.φ〉 as,

∃X1, . . . , X|σ|.〈φ〉f,σ

where 〈φ〉f,σ is obtained from 〈φ〉 by replacing all atomic
subformulas of the form Xf(a) by:∨

τEσ

Xτ ∧ (
#–

Xa←→ τ)

In order to show that this interpretation is correct, i.e.
preserves validity, it will be helpful for us to establish a partial
converse to Prop. III.8. Let us denote by FSO′D the system
obtained from FSOD by omitting the Choice schema (2).

Proposition III.12. If φ is bounded, then FSO′D ` (3)→ (2).

Proof. Working in an arbitrary model of FSO′D. Notice that
any bounded instance of Choice has antecedent of the form
∀x.∃y Ė σ.φ(x, y). In particular we can find the least τ E σ
such that φ(x, τ) by propositional logic, i.e. we have:

∀x.∃!y.[φ(x, y) ∧ ∀z.(φ(x, z)→ y Ė z)]

Now we can apply (bounded) (3) to obtain,

∃f Ė σ.∀x, y.f(x) = y ←→ (φ(x, y) ∧ (∀zφ(x, z).y ≤ z))

whence we can deduce by first-order logic,

∃f Ė σ.∀x.φ(x, f(x))

which is equivalent to the succedent required.

Theorem III.13. The interpretation 〈·〉 is correct, i.e. if
bounded-FSOD ` φ then MSOD ` 〈φ〉.

2For example by defining 0 as (ε̇ =̇ S0(ε̇)) and 1 as ¬0.

Proof. We extend 〈·〉 locally to FSOD-proofs, replacing each
formula with its interpretation under 〈·〉, showing that each
proof rule of FSOD can be simulated in MSOD under 〈·〉.

It suffices to consider only the function rules. Instances of
the ∃ rule are simply translated to many instances of ∃ on set
variables, and so it remains to deal with Choice.

By Prop. III.12 and boundedness we will deal with bounded
Functional Comprehension steps instead, which we can as-
sume have the following form:

∀x.∃!y Ė σ.φ(x, y)
→ ∃f Ė σ.∀xy . f(x) =̇ y ←→ φ(x, y)

(5)

Now notice that, by the translation above and previously
introduced notation, up to equivalence under first-order logic
the succedent of (5) is interpreted as:

∃ #–

X.∀x.
∨
τEσ

〈φ(x, τ)〉 ∧ (
#–

Xx←→ τ) (6)

Working in an arbitrary Henkin model of MSOD, we deduce
(6) assuming the interpretation of the antecedent of (5):

∀x.∃!y.
∨
τEσ

y =̇ τ ∧ 〈φ(x, y)〉 (7)

First, by Comprehension, define sets Xi such that x ∈ Xi iff

∨
τEσ
τi=1

∧
j 6=i

Xjx←→ τj

 ∧ 〈φ(x, τ)〉

for i = 1, . . . , |σ|. Now, if any of the Xix are true then, by
construction we have 〈φ(x, τ)〉 for some unique τ Ė σ with
τi = 1 and

#–

Xx←→ τ .
If no Xix is true then we have that

#–

Xx←→ 0|σ|. However
we also have that 〈φ(x, τ〉 is not true for any τ containing a
1, and so we must have 〈φ(x, 0|σ|)〉 by (7).

Corollary III.14. Bounded FSOD is a conservative extension
of MSOD.

From now on we say ‘Comprehension’ to refer to either
Comprehension or Functional Comprehension.

E. Some remarks on codings of finite objects

Throughout this work we refer to a binary coding p·q of
finite objects. For technical reasons, this coding will be context
dependent, and we elaborate further on this now.

We assume that all finite objects we use are enumerated and
that 2k contains codes of the first 2k objects. Notice that this
means there are infinitely many codes for the same object:
one of each sufficiently large length. In a given formula, p·q
should map each object to its code of smallest length that also
admits a code for every other object occurring in the formula.3

For an n-ary relation R and objects r1, . . . , rn let
R̈ (pr1q, . . . , prnq) be the truth value of R(r1, . . . , rn).

3This is due to the bounding relation E that we use in the definition of
boundedness, which only compares strings of the same length.

Similarly, given closed terms a1, . . . , an, let R̈ (a1, . . . , an)
denote the following Boolean formula computing R:

∨
#–r ∈R

n∧
i=1

ai =̇ priq

We similarly use this ‘double dot’ notation for infix and other
relation symbols when speaking about the codes of objects.

Since the syntax p·q is quite heavy, we will systematically
admit a certain abuse of this notation: we associate every finite
object we use with the closed term computing its code, e.g.
we associate [n] = {0, . . . , n− 1} with p[n]q.

In light also of the aforementioned comments on bounding,
we give some examples of the expressions we later use.

For a finite set K, with k ranging over its elements, we may
write the following:

x =̈ k := x =̇ pkq

∀x ∈̈ K . φ := ∀x.
∧
k∈K

x =̇ pkq→ φ[pkq/x]

∃X ⊆̈ K.φ := ∃X.
∨

L⊆K
∀x.(x ∈̇ X ←→ x ∈̈ L) ∧ φ

We may also write,

f to K := ∀x .
∨
k∈K

f(x) =̈ pkq

and so, for example, the following expression,

∃f to LK . ∀y, z ∈̈ K . f(x)(y) =̈ f(x)(z)→ y =̈ z

is read, using our abuse of notation, as,

∃f.
∨

F∈LK
f(x) =̈ F ∧

∧
k,k′∈K

F (k) =̈ F (k′)→ k =̈ k′

stating that there is a function f that, on input x, outputs the
code of an injection from K to L.4

All of these expressions are considered bounded, due to
equivalence under first-order logic.

Notice also that the use of the double dot notation should
prevent ambiguity in such circumstances, although we retain
the code notation in the case that it eases parsing of a formula.

IV. GAMES, AUTOMATA AND CLOSURE UNDER LOGICAL
OPERATIONS

The focus of this section is to define automata accepting
infinite tree languages, define their acceptance using abstract
games, and use this setting to show that the ω-regular tree
languages are closed under basic logical operations.

Throughout this and later sections, we freely switch between
meta-mathematical reasoning and working inside a model,
taking advantage of the results in the previous section.

4It also states that, on any input, the output is a function from K to L.

A. Abstract games

In this section we introduce concepts and notation to deal
with abstract games over a product of the infinite tree D∗.

Recall that we may abuse notation by using meta-notation
for a finite set in place of the term computing its code.

Let us fix disjoint finite sets P and O of proponent (or
“Eloise”) and opponent (or “Abelard”) labels, respectively.
In fact these will be parameters at the meta-level, and this
becomes relevant in Sect. IV-D4.

Definition IV.1 (Game positions). A game position is a pair
(x, y) such that, y ∈̈ P t O, and a set of game positions is a
pair (X, f) such that ∀x ∈̇ X.f(x) ⊆̈ P t O.

We reserve variables u, v, w etc. to vary over game positions
and U, V,W etc. to vary over sets of game positions, and we
use the following notation,

(x, y) =̇ (x′, y′) := x =̇ x′ ∧ y =̈ y′

(x, y) ∈̇ (X, f) := x ∈̇ X ∧ y ∈̈ f(x)

(X, f) ⊆̇ (Y, g) := X ⊆̇ Y ∧ ∀x ∈̇ X.f(x) ⊆̈ g(x)

∃v.φ := ∃x.∃y ∈̇ P t O . φ[(x, y)/v]

∃V.φ := ∃X.∃f to P(P t O) . φ[(X, f)/V]

where, in the ∃ cases, we choose x,X, f not free in φ.
We define fP and fO by Comprehension, denoting the P and

O parts of the range of f respectively, i.e.:

fP(x) =̇ f(x) ∩̈ P
fO(x) =̇ f(x) ∩̈ O

We use other standard set-theoretic and quantifier notations
for game positions, defined accordingly from the above.

Recall that D is the finite set of tree directions. Below we
define games as a labeling of the nodes in D∗. Each node is
thus associated with a finite set of proponent moves, a relation
from P to O, and a finite set of opponent moves, a relation
from O to D × P. A play is thence obtained by alternating
compatible proponent and opponent moves, and traces a path
in the tree by the opponent’s choices of directions d ∈ D.

Definition IV.2 (Games and plays). We define games, or edge
functions, as follows:

Game(e,P,O) := ∀x . e(x) ⊆̈ (P× O) ∪ (D × O× P)

We define eP and eO by Comprehension, denoting the parts of
e consisting of just P-edges and just O-edges respectively. I.e.

eP(x) =̇ e(x) ∩̈ P(P× O)
eO(x) =̇ e(x) ∩̈ P(D × O× P)

We use the following notation,

(x, a)
eP
// (y, b) := x =̇ y ∧ (a, b) ∈̈ eP(x)

(x, a)
eO
// (y, b) :=

∨
d∈D

Sd(x) =̇ y ∧ (d, a, b) ∈̈ eO(x)

and: u
e
// v := u

e0
// v ∨ u

e1
// v.

We may further write the following:5

V : u
ω

e
// ∞ := u ∈̇ V ∧ ∀v ∈ V.∃!w ∈̇ V . v

e
// w

u
∗
e
// v := ∃V : u

ω

e
// ∞ . v ∈̇ V

We define a play V from u of a game e, as follows:

Play(V, u, e) :=

Game(e,P,O)

∧ V : u
ω

e
// ∞

∧ ∀v ∈̇ V . u
∗
e
// v

Notice that our definition of play is somewhat specific to the
tree-like setting that we are in. E.g. For general game graphs
the notion of play we have defined does not determine a unique
starting position in a play that is cyclic. Notice also that we
insist our plays are deadlock-free, i.e. all plays are infinite.

B. Automata, acceptance and winning
We use a notion of an alternating automaton that is essen-

tially a special case of that used in [17]. We typically consider
parity acceptance conditions, or ‘Rabin chain’ acceptance, but
present automata with arbitrary conditions below.

Informally, an alternating automaton is to an automaton
what an alternating Turing machine is to a Turing machine:
the transition function may code arbitrary boolean conditions
on the state and letter read.

In what follows, we fix a finite alphabet Σ.

Definition IV.3 (Alternating tree automata). An alternating
tree automaton is a tuple:

A = (Q, qı, δ,Ω) (8)

where Q is a finite set of ‘states’, qı ∈ Q is the ‘initial’ state,
Ω ⊆ Qω is the acceptance condition and δ is the ‘transition
function’, having the following format:

δ : Q× Σ→ P(P(Q×D))

To define what it means for an automaton to accept a tree,
we refer to the notions of game introduced earlier.

Let us fix an automaton A, as specified in (8). In what
follows we will specialize the concepts of Sect. IV-A by setting
P = Q and O = P(Q×D).

We use the function variable t as a parameter coding some
Σ-labelled tree, i.e. we intend that ∀x.t(x) ∈̈ Σ.

Definition IV.4 (Acceptance games). We define the acceptance
game eA,t of A on t by Comprehension as follows:6

eA,tP (x) =̈ {(q, γ) | γ ∈̈ δ(q, t(x))}
eA,tO (x) =̈ {(d, γ, q) | (q, d) ∈̈ γ}
eA,t(x) =̇ eA,tP (x) ẗ eA,tO (x)

5We point out that, while there is an existential set quantifier ∃V in

Play(V, u, e) from the use of u
∗
e
// v, it is not difficult to see that this

is not necessary. This is an important consideration if one is concerned with
the quantifier complexity of such concepts.

6Technically, in this definition, the occurrence of δ (as well as that of c in
the definition of Parc below) should be double-dotted, since it is a relation
over the code represented by the term t(x). However we choose to abuse
notation once more in favor of keeping the syntax light.

A parity condition is given by a mapping from the finite
set P of proponent labels to N. An infinite P-sequence, e.g.
induced by a labeled path in D∗, is winning under this
condition if the least number associated with some label in
P occuring infinitely often in the sequence is even.

Recall the definition of an infinite path, Path∞(·), from (1).

Definition IV.5 (Parity). Let c : P → [0, n] and (X, f) be a
set of game positions.7 We define Parc(X, f) as follows:

Path∞(X) ∧ ∀x.∃!y.y ∈̈ f(x)

∧
bn2 c∨
i=0

[
∀x ∈ X.∃y ∈ X . y ≥ x ∧ c(fP(y)) =̈ 2i

∧ ∃x ∈ X.∀y ∈ X . y ≥ x→ c(fP(y)) ≥̈ 2i

]
C. Strategies

Acceptance for an automaton will be defined by the exis-
tence of a winning P-strategy under the parity condition above.
Games with such conditions are known to be positionally
determined: there is a winning strategy for P or O that is
history-free, i.e. one whose moves are dependent only on
the current position and not on the history of the play. This
choice of condition is ultimately why we are able to express
acceptance in bounded FSOD (and so MSOD).

Recall that, in bounded FSOD, we cannot define a relation
comparing the length of tree positions, since this would allow
us to define a Choice formula on tree positions, contradict-
ing [7] (see also [3]).

Consequently, when formalizing acceptance of tree au-
tomata, we can only deal with positional strategies. Indeed,
general strategies have to be represented by trees of arbitrary
finite branching (possibly different from D). Such trees can
be represented in bounded FSOD, but it seems that (without
length comparison) we cannot define a formula relating a play
in such a strategy to its underlying position in the input tree.

However, positional strategies in acceptance games for D-
ary trees can be described by D-ary trees labeled by functions
on finite sets, specify the local moves admitted by the strategy.
This allows us to adequately define a bounded FSOD formula
relating a play in a positional strategy to its underlying input
tree position.89

What we call a ‘winning strategy’ below corresponds,
in fact, to this notion of positional winning strategy. We
parametrize this notion by some winning condition W(V).

Definition IV.6 (Winning strategies). We define the formula,

WinStrat(s, v, e,W)

as follows:

s to OP ∧ ∀x . s(x) ⊆̈ eP(x)

∧ ∀V 3̇ v.(Play(V, v, s ẗ eO)→W(V))
7Below we actually abuse notation by associating a singleton {q} with its

only element q. This could be rectified by defining c instead as a function
{{q} : q ∈ P} → [0, n].

8The complementation construction used in [14] relies on this.
9Another possibility would have been to instead use games with the more

general Muller conditions, which are known to be determined with strategies
of uniformly bounded finite memory. But formalizing this in bounded FSOD
(and proving determinacy) would have been significantly more complicated.

Notice that s is seen here as inducing a subgame of e, i.e. if
Game(e,P,O) then also Game(s ẗ eO,P,O), one in which
there is always a unique choice of move by P.

Definition IV.7. For an automaton A with acceptance condi-
tion specified by an FSOD formula W(V), we define,

t ∈ L(A) := ∃s to OP . WinStrat(s, ι, eA,t,W)

where ι =̇ (ε, qı).

D. Logical operations on automata in FSO

In this section, we present formalized constructions for the
operations of complementation, finite union and projection.
Finite union is, as usual, easy. Complementation relies on
positional determinacy of (parity) acceptance games, whose
formalized proof is deferred to Sect. VI.

For projection, we use the nondeterminization construction
of [17]. It cleanly distinguishes the powerset construction on
alternating tree automata from the definition of the resulting
acceptance condition, for which we rely on the embedding of
MSO on ω-words in MSOD provided by Prop. III.5.

We work in bounded FSOD, relying on Th. III.13. We freely
use the Recursion Theorem in bounded FSOD (obtained from
the analogous result for MSOD, Prop. III.3, by Thm. III.13).

1) Singleton alphabet: We sketch a proof of the following:

Lemma IV.8. If A is an automaton over the singleton alpha-
bet {∅}, then in FSOD we have that t to {∅} ` t ∈ L(A)
or t to {∅} ` t /∈ L(A).

The main point here is that it is easy to check whether an
automaton without an input accepts or not. Any automaton
over the singleton alphabet 20 = {∅} can be rewritten to an
automaton without an input, by replacing the input parameter
for {∅}∗ and reducing as appropriate.

From the point of view of the acceptance game, the op-
ponent O does not any more care which direction is chosen,
since every successive node will be labeled by ∅. In this way
we can view the game from any tree position as follows:

P-moves : {(q, γ) | γ ∈ δ(q,∅)}
O-moves : {(γ, q) | (q, d) ∈ γ for some d ∈ D.}

Now, this game has only finitely many states and is necessar-
ily positionally determined. Moreover, there are only finitely
many strategies and they can be checked for winningness by
loop-detection in an exhaustion of their plays.

This can be expressed by a finite quantifier-free formula
over FSOD and so the existence or otherwise of a winning
strategy has a purely propositional proof in FSOD.

2) Complement: Consider an automaton A = (Q, qı, δ,W)

and define Ã = (Q, qı, δ̃, W̃), where,

W̃(V) := ¬W(V)

δ̃(q, a) := {γ ∈ P(Q×D) | γ ∩ γ′ 6= ∅ for all γ′ ∈ δ}

Lemma IV.9. FSOD ` t ∈ L(Ã)←→ t /∈ L(A).

Proof. This follows almost immediately from positional de-
terminacy, Thm. VI.12. It only remains to show that FSOD
proves that eÃ,t =̇ ẽA,t, which is a simple exercise.

3) Union: Consider automata Ai = (Qi, q
ı
i, δi,Wi) for i ∈

{1, 2}. Define A∪ as (Q1 tQ2 t {qı}, qı, δ∨,W∨), where
• δ∨(qı, a) := δ1(qı1, a) ∪ δ1(qı2, a) for a ∈ Σ.
• δ∨(q,a) := δi(q, a) for q ∈ Qi
• W∨(V) :=W1(V) ∨W2(V).

Lemma IV.10. The following is provable in FSOD.

t ∈ L(A∪)←→ (t ∈ L(A1) ∨ t ∈ L(A2))

4) Projection: We now sketch the proof of the following:

Lemma IV.11. For a parity automaton A, there is a parity
automaton A∃ such that,

t to Σ× {0, 1}, u to Σ, (πΣt = u) `
u ∈ L(A∃)←→ t ∈ L(A)

where (πΣt = u) stands for:

∀x [(t(x) =̈ (u(x), 0)) ∨ (t(x) =̈ (u(x), 1))]

We first translate a parity automaton to a nondeterministic
automaton with an alternative acceptance condition, whence
projection is simple to define, before converting back to a
parity automaton.

a) Nondeterminization of an automaton: Consider an
automaton A = (Q, qı, δ,W) on alphabet Σ. We will first
build an equivalent nondeterministic automaton

AND = (P(Q×Q), {(qı, qı)}, δND,WND)

as follows. Consider q ∈ P(Q × Q) and a ∈ Σ and let
q�2 := {q1, . . . , qn}. Following [17], we let γND ∈ δND(q, a)
whenever there are γ1 ∈ δ(q1, a), . . . , γn ∈ δ(qn, a) such that,

γND = {(qd, d) | d ∈ D}

where, for each d ∈ D:

qd = {(qk, q) | 1 ≤ k ≤ n and (q, d) ∈ γk}

For the acceptance condition of AND, the natural choice
(from [17]) is to take the set of sequences (qn)n∈N such
that for every (qn)n∈N ∈ Qω with qn+1 = (qn, qn+1), the
sequence (qn)n∈N satisfies the parity condition of A. This
is definable by an FSOD formula. In order to fit in our
framework, we actually take for WND the collection of plays
(X, f) such that (X, fP) satisfies the above requirement.

Note that AND is nondeterministic, but in general not a
parity automaton. By formalizing the argument of [17] (using
the Recursion Theorem), we get:

Lemma IV.12. For a parity automaton A:

FSO2 ` t ∈ L(A)←→ t ∈ L(AND)

Note that AND does not a priori generate positionally
determined games. However, since A is a parity automaton, a

winning P strategy witnessing t ∈ L(A) can be assumed to
be positional, and so the corresponding winning P strategy for
t ∈ L(AND) will be positional. In the context of Lem. IV.12,
the converse direction follows from the fact that by definition
of acceptance in our setting, t ∈ L(AND) implies that there is
a winning positional P strategy, which is then easily mapped
to a winning positional P strategy witnessing t ∈ L(A).

b) Conversion to parity automaton: In order to maintain
compatibility with the rest of our structural induction (e.g.
closure under complements), we need to convert our nondeter-
ministic automaton to one with a parity acceptance condition.

As noted in [17], the acceptance condition of AND is an ω-
regular language, which can thus be recognized by a determin-
istic parity ω-word automaton, say D = (QD, q

ı
D, δD,WD) on

the alphabet P(Q×Q).
Following [17], we let

And := (P(Q×Q)×QD, (qıAND , qıD), δnd,Wnd)

where δnd((q, q), a) := (δAND(q, a), δD(q, δAND(q, a))), and
Wnd is generated by the parity condition cnd which assigns to
state (q, q) the priority of q under the parity condition WD.

By showing that AND and And accept the same languages,
along with Lemma IV.12, we obtain Lemma IV.11 by the usual
projection operation on nondeterministic automata, whose
formalization is straightforward.

Proposition IV.13. For a parity automaton A:

FSO2 ` t ∈ L(AND)←→ t ∈ L(And)

Proof. By definition of δnd, one can easily map a strategy,

snd to P(QAND ×QD ×D)QAND×QD

on eAnd,t to a strategy,

sND to P(QAND ×D)QAND

on eA
ND,t and vice-versa. The point is to show that both

strategies are equally winning.
Consider a (necessarily infinite) play Vnd of snd and a

(necessarily infinite) play V ND of sND, both from the initial
positions of these games.

We need to show that:

FSOD ` WND(XND, fND)←→ Parcnd(Xnd, fnd)

Consider the closed formula without parameters obtained
by prefixing

WND(XND, fND)←→ Parcnd(Xnd, fnd)

with suitably relativized universal quantifiers, and rewrite this
formula to an FSOD-equivalent formula ψ on the purely
relational vocabulary consisting only of the symbol <̇.

By construction of the formula Play, in MSOD we have,

ψ ←→ ∀X[Path∞(X)→ ψX]

since by Def. IV.2 and Def. IV.1, we have that Vnd =
(Xnd, fnd) and V ND = (XND, fND) where, by Def. IV.4,
Xnd and XND are linearly ordered sets with least element ε̇.

Then, by construction of D, ψ holds in the standard model
of infinite words and we conclude by Prop. III.5.

V. COMPLETENESS ARGUMENT

This short section gathers the preceding results to prove our
main result, Thm. II.3. Recall that we proceed by formalizing
a translation of formulas to automata. We begin by putting
MSOD formulas into a convenient form for this translation,
namely with a purely relational vocabulary and only monadic
variables. We then give a proof of Thm. II.3.

A. Reduced syntaxes of MSOD

For the translation of formulas to automata, it is useful and
customary to work with formulas on a slightly different syntax.

1) Relational syntax: We first restrict to a purely relational
vocabulary. It is based on the defined formulas Sd(x, y) :=
(Sd(x)

.
= y) for each d ∈ D. The relational formulas φ, ψ ∈

ΛRD are built from atomic formulas Xy and Sd(x, y) by means
of ¬, ∨, ∃x and ∃X .

To each formula φ ∈ ΛD we associate a formula φR as
follows. For a a term of MSOD, define the formula (z , a)
by structural induction on a:

(z , y) := (z
.
= y) (z , ε̇) := ¬∃z′

∨
d∈D Sd(z

′, z)

(z , Sd(a)) := ∃z′[z′ , a ∧ Sd(z
′, z)]

Then, φR is obtained from φ by replacing each atomic Xa,
where a is not a variable, by ∃z[(z , a) ∧Xz], where z is a
fresh variable. Note that MSOD ` (z , a)←→ (z

.
= a).

Lemma V.1. For every formula φ ∈ ΛD, we have MSOD `(
φ←→ φR

)
.

2) Individual-free syntax: The next step is to get rid of
individual quantifiers. Consider the defined formulas:

(X ⊆̇ Y) := ∀x(Xx→ Y x)
Sd(X,Y) := ∃xy [Xx ∧ Y y ∧ Sd(x, y)]

The individual-free formulas φ, ψ ∈ Λ0
D are built from atomic

formulas (X ⊆̇ Y) and Sd(X,Y) by means of negation,
disjunction and monadic second-order quantification ∃X only.

Let φ ∈ ΛRD with FV(φ) = {x1, . . . , xp, Y1, . . . , Yq}. We
inductively associate to φ a formula φ0 ∈ Λ0

D with free
variables {X1, . . . , Xp, Y1, . . . , Yq} as follows: we define,

(∃xp+1φ)0 := ∃Xp+1

[
Sing(Xp+1) ∧ φ0

]
where Sing(X) is defined as,

¬(X
.
= ∅) ∧ ∀Y

[
Y ⊆̇ X →

(
Y

.
= ∅ ∨X ⊆̇ Y

)]
with (X

.
= ∅) := ∀Y (X ⊆̇ Y). The other inductive cases are

defined as follows:
(Yjxi)

0 := Xi ⊆̇ Yj (Sd(xi, xj))
0 := Sd(Xi, Xj)

(¬φ)0 := ¬φ0 (φ ∨ ψ)0 := φ0 ∨ ψ0

(∃Yq+1φ)0 := ∃Yq+1 φ
0

Lemma V.2. For every formula φ ∈ ΛRD with FV(φ) =
{ #–x ,

#–

Y }, we have
–

Xx,Sing(
#–

X) `MSOD

(
φ←→ φ0

)
.

Putting everything together we have:

Corollary V.3. For every closed formula φ ∈ ΛD, there is a
closed formula ψ ∈ Λ0

D such that MSOD ` (φ←→ ψ).

B. From formulas to automata

We now give the interpretation of formulas to automata.
To each formula φ ∈ Λ0

D and sequence of distinct monadic
variables X1, . . . , Xn such that FV(φ) ⊆ {X1, . . . , Xn} we
associate an automaton by induction on φ as usual.

Let L(A)[
#–

X] denote the interpretation of t ∈ L(A) in
Def. IV.7 under Def. III.11 for a function t to 2|

#–
X|.

For the atomic formulas of Λ0
D, we use the following facts:

Lemma V.4. Given X1, . . . , Xn and i, j ∈ {1, . . . , n}, there
is an automaton A on the alphabet 2n such that,

MSOD ` ∀X1, . . . , Xn

(
(Xi ⊆̇ Xj)←→ L(A)[X1, . . . , Xn]

)
Lemma V.5. Given X1, . . . , Xn, i, j ∈ {1, . . . , n} and d0 ∈
D, there is an automaton A on the alphabet 2n such that

MSOD ` ∀X1, . . . , Xn (Sd0(Xi, Xj)←→ L(A)[X1, . . . , Xn])

Proposition V.6. Consider a formula φ ∈ Λ0
D and a sequence

of distinct monadic variables X1, . . . , Xn containing the free
variables of φ.

There is an automaton A on the alphabet 2n such that

MSOD ` ∀X1, . . . , Xn (φ←→ L(A)[X1, . . . , Xn])

Proof. For the atomic formulas we use Lemmas V.4 and V.5
respectively. For the logical connectives ¬, ∨ and ∃X , we use
Lemmas IV.9, IV.10 and IV.11 respectively. At each step we
rely on Thm. III.13 for the interpretation of bounded FSOD
formulas in MSOD.

C. Completeness of MSOD

We can now prove Theorem. II.3.

Proof of Thm. II.3. Consider a closed formula φ ∈ ΛD. By
Cor. V.3, there is a closed formula ψ ∈ Λ0

D such that:

MSOD ` φ←→ ψ

By Prop. V.6, there is an automaton A on the singleton
alphabet such that:

MSOD ` φ←→ L(A)[] (9)

By Lem. IV.8 we have that in FSOD either t to {∅} ` t ∈
L(A) or t to {∅} ` t /∈ L(A). Hence, by (9) above along with
the interpretation of Def. III.11, we have that either MSOD `
φ or MSOD ` ¬φ, as required.

VI. POSITIONAL DETERMINACY

The goal of this section is to prove that abstract games, as
defined in our setting, with parity winning conditions are po-
sitionally determined, provably in FSOD and so also MSOD.
This result is critical to show that the languages recognized
by alternating tree automata are closed under complement, cf.
Lemma IV.9.

Our approach essentially follows that occurring in [14], dif-
fering only in the construction of uniform winning strategies.
For brevity, here we only present some intermediate results
required for the formalization of the argument.

A. Topology of abstract games

Before we proceed we need to introduce some terminology
on the topology of abstract games. We express all concepts
from the point of view of player P, for simplicity. This is
sufficient since we will be able to switch to a dual game where
the roles of P and O are morally switched.

In line with the notational conventions of Def. IV.1 and
IV.2, we use subscripts P and O on variables for sets of game
positions to denote the subsets of P-positions and O-positions
respectively. I.e., for a set of game positions V , we apply
Comprehension to define:10

(x, y) ∈̇ VP ←→ y ∈̈ P ∧ (x, y) ∈̇ V
(x, y) ∈̇ VO ←→ y ∈̈ O ∧ (x, y) ∈̇ V

Of course, as one would expect, we have that V =̇ VP ṫ VO.

Definition VI.1 (Subsets of game positions). We define the
complement Ṽ of a set of game positions V by Comprehension
as follows:

(x, y) ∈̇ Ṽ ←→ (y ∈̈ P t O ∧ ¬(x, y) ∈̇ V)

We define the reachability condition with respect to U :

ReachU (V) := ∃v.(v ∈̇ U ∧ v ∈̇ V)

For a winning condition W(V) and game e we define the
winning set V e,W by Comprehension as follows:

v ∈̇ V e,W ←→ ∃s to OP.WinStrat(s, v, e,W)

Finally, a trap V under a game e is defined as follows:

Trap(V, e) :=
∀u ∈̇ VP . ∀v . (u

eP
// v → v ∈̇ VO)

∧ ∀u ∈̇ VO . ∃v . (u
eO
// v ∧ v ∈̇ VP)

An important observation is that, in deadlock-free games,
traps induce deadlock-free subgames: each player always has
a valid move that remains in the trap.

Proposition VI.2. FSOD proves the following:

∃UPlay(U, v, e) ∧ Trap(V, e) ∧ v ∈̇ V
→ ∃U ′ ⊆̇ V . Play(U ′, v, e)

Let us denote the corresponding subgame by e�V , obtained
by Comprehension as follows:

u
e�V
// v ←→ (u ∈̇ V ∧ v ∈̇ V ∧ u

e
// v) (10)

We also have that complements of winning sets under
reachability are traps.

Proposition VI.3. FSOD ` Trap(Ṽ e,ReachU , e)

We now wish to show that plays differing on only finitely
many game positions are equi-winning. As a consequence we
have that parity winning sets are closed under reachability.

10Here we are technically applying Comprehension for function and set
variables, due to the translation of variables for game positions.

Definition VI.4. We write X ∼̇ Y if X and Y are paths
differing on only a finite set, i.e.:

Path∞(X)
∧ Path∞(Y)
∧ ∃x ∈̇ X ∩̇ Y . ∀y ≥̇ x . (y ∈̇ X ←→ y ∈̇ Y)

(11)

We extend this definition to sets of game positions,
(X, f) ∼̇ (Y, g), as follows:

X ∼̇ Y
∧ ∀x ∈̇ X . ∃!y . y ∈̈ f(x)
∧ ∀x ∈̇ Y . ∃!y . y ∈̈ g(x)
∧ ∃x ∈̇ X ∩̇ Y . ∀y ≥ x . f(y) =̈ g(y)

(12)

Lemma VI.5. FSOD ` (U ∼̇ V ∧ Parc(U))→ Parc(V).

We can use this lemma to show that winning sets under
parity conditions are already winning sets under reachibility
conditions, helping us to induce subgames later.

Theorem VI.6. FSOD ` V e,Parc =̇ V e,ReachV
e,Parc

.

B. Main result

We give the main argument of positional determinacy,
assuming the existence of uniform winning strategies:

Theorem VI.7 (Uniformity). FSOD proves the following,

∃s to OP.∀v ∈̇ V e,W .WinStrat(s, v, e,W)

for W ∈ {Par,Reach}.

We give a construction of such strategies in the next section.

Definition VI.8 (Dual and union games). Let e, e′ be games
on label sets P and O, we define the dual game ẽ by
Comprehension as follows:

ẽP(x) =̈ {(q, γ) ∈ P× O : (q, γ′) ∈̈ eP(x)⇒ γ ∩ γ′ 6= ∅}
ẽO(x) =̈ {(d, γ, q) ∈ D × O× P : (q, d) ∈ γ}
ẽ(x) =̈ ẽP(x) ẗ ẽO(x)

We also define the union game e ∪̈ e′ by Comprehension:

(e ∪̈ e′)(x) = e(x) ∪̈ e′(x)

Our notion of duality commutes with arbitrary restrictions:

Proposition VI.9. FSOD ` ẽ�V =̇ ẽ�V .

In the general case, for arbitrary V , the restricted games
might not be deadlock-free.

Definition VI.10 (Dual and equivalent parity conditions). Let
c, c′ : P→ [0, n] be parity functions. We say that c and c′ are
equivalent if:

1) c(q) < c(q′) iff c′(q) < c′(q′).
2) c(q) is even iff c′(q) is even.
We also define c̃, the dual of c, by c̃(q) = c(q) + 1.

As expected, we can prove in FSOD that equivalent parity
conditions are equi-winning and that dual conditions are
winning on complementary sets.

Proposition VI.11. Let c be a parity function P→ [0, n]. We
have that FSOD ` Parc(V)←→ ¬Parc̃(V).

If c′ is a parity function equivalent to c then FSOD `
Parc(V)←→ Parc

′
(V).

In particular we can assume, without loss of generality, that
each parity function has image [0, n) or (0, n] for some n.

We are now ready to present our main result, for which we
give only a brief outline of a proof, working in an arbitrary
Henkin model of FSOD.

Theorem VI.12. FSOD proves the following:

∀v.
(

Game(e,P,O)→
[

∃s.WinStrat(v, s, e,Parc)

∨ ∃s.WinStrat(v, s, ẽ,Parc̃)

])
Proof sketch. The argument is by an external induction on the
size of the image of c. Assuming the image of c is [0, n) and
c̃ is (0, n], by Prop. VI.11, we show that the complement of
the winning set for ẽ, say V , is the winning set for e.

Notice that V is a trap in ẽ by Thm. VI.6 and Prop. VI.3,
so let us restrict to the subgame e�V , appealing to Prop. VI.9.

If v ∈ V is in the winning set under reachability, say R0,
for the set of positions colored 0 by c, say C0, then let us
associate v with the uniform strategy winning this reachability
game. Otherwise, v is in a trap, say U , in e with no 0-colored
positions, and so we can associate v with the uniform strategy
winning in e�U , by the inductive hypothesis.11 Since these
two sets of positions are disjoint, we can take the union of the
two uniform strategies to give a uniform strategy sV for V .

Now, any play P in V under sV either visits R0 infinitely
often or it eventually remains in U . In the former case P must
also visit C0 infinitely often by the reachability strategy, and
is winning by definition of Parc, and in the latter case P is
winning by the strategy for e�U , concluding our proof.

C. Construction of uniform strategies
In this section we give the construction of the uniform win-

ning strategies that we required for the positional determinacy
proof, Thm. VI.12. For arbitrary parity games, this seems
to require the Axiom of Choice or transfinite well-orderings,
which are unavailable in the setting of FSOD and MSOD. In
our argument, we instead rely on the fact that the game graph
induced by a tree automaton is a product of trees, from which
we can make use of the underlying tree order.

In what follows let us fix a well-order, ≤, on OP and
parametrise our results by some winning condition W ∈
{Par,Reach} on a game e.

Definition VI.13 (Ordering strategies). For an individual
symbol x, we define s ≤̇x s′ as:

∃y ≤̇ x.∃z ∈̈ P ẗ O.

WinStrat(s, (y, z), e,Parc)

∧

 ∀y
′ ≤̇ x.∀z ∈̈ P ẗ O.(

WinStrat(s′, (y′, z′), e,Parc)

→ y <̇ y′ ∨ (y =̇ y′ ∧ s(y) ≤̈ s(y′))

) 
11Recall that we already have that v is not in the winning set for ẽ.

We also define a ‘least’ strategy with respect to a formula φ:12

Leastx(s, φ, f) := φ[f/s] ∧ ∀g.(φ[g/s]→ f ≤̇x g)

Finally we give a definition of the uniform strategy from a
winning position.

Definition VI.14 (Uniform strategies). We define sun(x) =̇ y
by Comprehension as follows:

y ∈̈ OP

∧ ∀z ∈̈ P . ∀f .(
Leastx(s,WinStrat(s, (x, z), e,W), f)

→ y(z) =̈ f(z)

)
The idea here is that a “minimal” winning strategy from

some game position (x, l) is a strategy, winning from (x, l),
such that the first tree node ≤ x from which this strategy is
winning (for some label in PtO) is minimal among the set of
such tree nodes induced by each strategy winning from (x, l).
If there is not a unique such minimal strategy, i.e. there are
distinct strategies associated with the same minimal first tree
node, we make a choice by invoking the well-order ≤ on OP.

In this way, the game position witnessing the minimality of
the current strategy can only decrease during a play. Hence
each play of the uniform strategy eventually converges to a
play of some winning strategy, whence we invoke Lemma VI.5
to deduce that it is winning.

Theorem VI.15. FSOD proves the following:

v ∈̇ V e,W →WinStrat(sun, v, e,W) (13)

VII. FURTHER WORK

A. On the proof-theoretic strength of MSO

An important future line of research is to determine the
proof-theoretic strength of MSO (over words or trees) as
a subsystem of PA2. For this, it is customary to compare
subsystems of PA2 obtained by restricting the Comprehension
scheme to formulas of given logical complexity [12].

We conjecture that the axiomatization of MSO on ω-words
can be carried out in a system called Weak Koening Lemma.
For the case of trees, the topological complexity of MSO
suggests that at least ∆1

2-Comprehension is required.
We point out that perhaps our most interesting use of

Comprehension was in the definition of sun in Def. VI.14, on
a Π1

2 MSO formula (under the interpretation of Def. III.11).

B. Some remarks on proof search

One outcome of this work is the possibility to implement
decision procedures for SnS based on proof search. Our main
result, the complete axiomatization, can be seen as a ‘proof
of concept’ for this approach:

Algorithm VII.1. Under an input closed MSOD-formula φ,
enumerate all MSOD-proofs until one with conclusion φ or
¬φ is reached.

12This formula should be read, “the least strategy s, with respect to x,
satisfying a formula φ(s) is f .”

Of course, this is not a very sophisticated algorithm, and
it is worth restating that its correctness is itself due to
the usual automata-logics argument. However the algorithm,
nonetheless, makes no mention of automata and so can be
adapted and improved purely in the setting of proof theory.
In this sense, the algorithm is the first of its kind: a decision
procedure for SnS that remains internal to the language.

We now state some ideas for future work on how to adapt
this proof search procedure. They are fundamentally linked to
notions of proof-theoretic strength explained above.

a) Complexity of nonlogical rules: At the heart of the
difficulty of proof search is the complexity of Induction and
Comprehension formulas used, i.e. proof-theoretic strength
as we previously discussed.13 This is due to the ‘free-cut
elimination’ theorem, allowing a proof to be transformed into
one where all formulas occurring are subformulas14 of the
conclusion, an axiom, or a nonlogical step.

b) Towards a terminating bottom-up proof search pro-
cedure: An interesting course of future work would be to
conduct a bona fide proof search procedure, starting from the
conclusion and building the proof bottom-up.

Progress towards this might be made by the following
related goals:

1) Eliminate as many cuts as possible.
2) Eliminate as many nonlogical steps as possible.
One avenue worth considering is that there are implemen-

tations of Comprehension as inference rules which admit cut-
reduction steps. Usually the problem with this approach is
that these steps do not terminate, but due to the inherent
decidability of SnS, and termination of proof-search in MSOD,
perhaps there is some hope to adapt the cut-reductions to
achieve termination.

One could also choose to work in the FSO setting. Here,
since Choice is valid in the standard model of MSOD (and
indeed is an axiom of FSOD), one can apply Choice eagerly
via Skolemization, eliminating the consideration of where it
might occur in a proof. The trade-off here is the added diffi-
culty of working with function symbols, but this is nonetheless
a trade-off worth exploring.

c) Proof interaction and verification: Even without any
improvement on the proof search algorithm, the very presence
of a proof theory admits the possibility of interactive proofs,
ones where a user may state as much or as little of the proof
information to a proof assistant. For example, if the user gives
all required Comprehension formulas then the rest of the proof
can be reconstructed bottom-up quite efficiently.

In the same vein, a complete axiomatization provides a
means to communicate proofs that can be checked efficiently,
rather than having to redecide formulas. Such a tool might be
useful for cyclic theorem provers, where correctness criteria
boil down to checking the inclusion between Büchi automata,
a priori a very complex procedure.

13Due to our formulation of Induction, however, this complexity is devolved
to just the instances of Comprehension in a proof.

14In the usual ‘wide’ sense when working in first-order logic.

VIII. CONCLUDING REMARKS

We presented a complete axiomatization of MSO on D-ary
trees, for D an arbitrary non-empty finite set. Our axiomatiza-
tion is a natural subsystem of PA2. This provides an interesting
basis to study proof-theoretical aspects of MSO, and also paves
the way for new decision procedures for MSO formulas; this
will be the object of future investigations.

ACKNOWLEDGMENTS

Early stages of this work greatly benefited from the partic-
ipation of Alexander Kreuzer, who suggested a formalization
of the algebraic approach of [1] instead of the translation of
formulas to automata. Such algebraic tools might be useful
for further work on proof-theoretic complexity and for the
axiomatization of MSO on the countably branching tree N∗.

This work also benefited from regular discussions with
Thomas Colcombet and Arnaud Carayol.

REFERENCES

[1] A. Blumensath, “An algebraic proof of Rabin’s Tree Theorem,” Theor.
Comput. Sci., vol. 478, pp. 1–21, 2013.

[2] J. R. Büchi and D. Siefkes, “Axiomatization of the Monadic Second
Order Theory of ω1,” in Decidable Theories II : The Monadic Second
Order Theory of All Countable Ordinals, ser. LNM, J. R. Büchi and
D. Siefkes, Eds. Springer, 1973, vol. 328, pp. 129–217.

[3] A. Carayol and C. Löding, “MSO on the Infinite Binary Tree: Choice
and Order,” in CSL, ser. Lecture Notes in Computer Science, vol. 4646.
Springer, 2007, pp. 161–176.

[4] E. A. Emerson and C. S. Jutla, “Tree Automata, Mu-Calculus and
Determinacy (Extended Abstract),” in FOCS. IEEE Computer Society,
1991, pp. 368–377.

[5] A. Gheerbrant and B. ten Cate, “Complete Axiomatizations of Fragments
of Monadic Second-Order Logic on Finite Trees,” Logical Methods in
Computer Science, vol. 8, no. 4, 2012.

[6] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata, Logics, and Infinite
Games: A Guide to Current Research, ser. Lecture Notes in Computer
Science, vol. 2500. Springer, 2002.

[7] S. Gurevich and S. Shelah, “Rabin’s Uniformization Problem,” J. Symb.
Log., vol. 48, no. 4, pp. 1105–1119, 1983.

[8] D. E. Muller and P. E. Schupp, “Simulating Alternating Tree Automata
by Nondeterministic Automata: New Results and New Proofs of the
Theorems of Rabin, McNaughton and Safra,” Theor. Comput. Sci., vol.
141, no. 1&2, pp. 69–107, 1995.

[9] M. O. Rabin, “Decidability of Second-Order Theories and Automata on
Infinite Trees,” Transactions of the American Mathematical Society, vol.
141, pp. 1–35, 1969.

[10] C. Riba, “A model theoretic proof of completeness of an axiomatization
of monadic second-order logic on infinite words,” in Proceedings of
IFIP-TCS’12, 2012.

[11] D. Siefkes, Decidable Theories I : Büchi’s Monadic Second Order
Successor Arithmetic, ser. LNM. Springer, 1970, vol. 120.

[12] S. Simpson, Subsystems of Second Order Arithmetic, 2nd ed., ser.
Perspectives in Logic. Cambridge University Press, 2010.

[13] B. ten Cate and G. Fontaine, “An Easy Completeness Proof for the
Modal µ-Calculus on Finite Trees,” in FOSSACS, ser. Lecture Notes in
Computer Science, vol. 6014. Springer, 2010, pp. 161–175.

[14] W. Thomas, “Languages, Automata, and Logic,” in Handbook of Formal
Languages, G. Rozenberg and A. Salomaa, Eds. Springer, 1997, vol.
III, pp. 389–455.

[15] D. van Dalen, Logic and Structure, 4th ed., ser. Universitext. Springer,
2004.

[16] I. Walukiewicz, “Completeness of Kozen’s Axiomatisation of the Propo-
sitional µ-Calculus,” Information and Computation, vol. 157, no. 1-2,
pp. 142–182, 2000.

[17] ——, “Monadic second-order logic on tree-like structures,” Theor.
Comput. Sci., vol. 275, no. 1-2, pp. 311–346, 2002.

