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Abstract—Eilenberg’s variety theorem, a centerpiece of alge-
braic automata theory, establishes a bijective correspondence
between varieties of languages and pseudovarieties of monoids.
In the present paper this result is generalized to an abstract pair
of algebraic categories: we introduce varieties of languages in a
categoryC , and prove that they correspond to pseudovarieties of
monoids in a closed monoidal categoryD , provided that C and
D are dual on the level of finite objects. By suitable choices of
these categories our result uniformly covers Eilenberg’s theorem
and three variants due to Pin, Poĺak and Reutenauer, respectively,
and yields new Eilenberg-type correspondences.

Index Terms—Eilenberg’s theorem, varieties of languages,
monoids, duality, automata, coalgebra, algebra.

I. I NTRODUCTION

Algebraic automata theory investigates the relation between
regular languages and algebraic structures like monoids, semi-
groups, or semirings. A major result concernsvarieties of
languages. These are classes of regular languages closed under

(a) boolean operations (union, intersection and complement),
(b) derivatives, i.e., with every languageL ⊆ Σ∗ a variety

contains itsleft derivativesa−1L = {w ∈ Σ∗ : aw ∈ L}
and right derivativesLa−1 = {w ∈ Σ∗ : wa ∈ L} for
all a ∈ Σ, and

(c) preimages under monoid morphismsf : ∆∗ → Σ∗.

Eilenberg proved in his monograph [12] that the lattice of all
varieties of languages is isomorphic to the lattice of allpseu-
dovarieties of monoids, these being classes of finite monoids
closed under finite products, submonoids and homomorphic
images. Several variants of Eilenberg’s theorem are known in
the literature, altering the closure properties in the definition of
a variety and replacing monoids by other algebraic structures.
Pin [18] introducedpositive varieties of languageswhere in (a)
the closure under complement is omitted, and he proved a bi-
jective correspondence to pseudovarieties oforderedmonoids.
Later Polák [20] further weakened (a) by also omitting closure
under intersection, and the resultingdisjunctive varieties of
languagescorrespond to pseudovarieties of idempotent semir-
ings. Reutenauer [22] studied a concept of variety where
(a) is replaced by closure under symmetric difference, and
obtained a correspondence to pseudovarieties of algebras over
the binary fieldZ2. (In fact Reutenauer considered algebras
over arbitrary fieldsK and varieties of formal power series

Stefan Milius acknowledges support by the Deutsche Forschungsgemein-
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in lieu of languages). Finally, a new Eilenberg-type theorem
we derive below deals with varieties of languages defined by
closure under intersection and symmetric difference in lieu of
(a), and relates them to pseudovarieties of monoids with0.

In this paper a categorical result is presented that covers
Eilenberg’s theorem and all its variants uniformly, and exhibits
new applications. Our overall approach to algebraic automata
theory may be subsumed by the “equation”

automata theory = duality + monoidal structure.

The idea is to take a categoryC (where automata and
languages live) and a closed monoidal categoryD (where
monoids live) with the property thatC and D are predual.
Specifically, in our settingC and D will be locally finite
varieties of algebras or ordered algebras (i.e., all finitely
generated algebras are finite), and preduality means that the
full subcategories of finite algebras are dually equivalent.
Moreover, the monoidal structure ofD is given by the usual
tensor product of algebras.

All the Eilenberg-type correspondences mentioned above fit
into this categorical framework. For example, the categoriesC

of boolean algebras andD of sets are predual via Stone duality,
and D-monoids are ordinary monoids: this is the setting of
Eilenberg’s original result. The categoryC of distributive
lattices with0 and 1 is predual to the categoryD of posets
via Birkhoff duality [7], andD-monoids are ordered monoids,
which leads to Pin’s result for pseudovarieties of ordered
monoids [18]. The categoryC of join-semilattices with0
is self-predual (i.e., one takesD = C ), and D-monoids
are precisely idempotent semirings. This is the framework
for Polák [20]. For Reutenauer’s result [22] one takes the
categoryC of vector spaces over a finite fieldK which is
also self-predual (i.e.,D = C ), and observes thatD-monoids
are preciselyK-algebras. Lastly, our new example concerning
pseudovarieties of monoids with0 takes asC non-unital
boolean rings and asD pointed sets.

Apart from preduality, the heart of the matter is a coal-
gebraic characterization of the closure properties defining
varieties of languages. We model deterministicΣ-automata in
a locally finite varietyC as coalgebrasQ → TΣQ for the
endofunctor

TΣ : C → C , TΣQ = OC ×QΣ,
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whereOC is a fixed two-element algebra inC representing
final and non-final states. In particular, the set of all regular
languages overΣ carries the structure of aTΣ-coalgebra whose
transitions are given by left derivativesL → a−1L for a ∈ Σ,
and whose final states are the languages containing the empty
word. This coalgebra admits an abstract characterization as
the rational fixpoint̺TΣ of TΣ, i.e., the terminal locally finite
coalgebra. To get a grasp onall regular languages, independent
of a particular alphabet, we introduce the functor

̺T : Setopf → C

that maps each finite alphabetΣ to ̺TΣ, and each letter
substitutionh : ∆ → Σ to the morphism̺ TΣ → ̺T∆ taking
preimages under the free monoid morphismh∗ : ∆∗ → Σ∗.

Consider now a varietyV of languages in Eilenberg’s sense
(this is the caseC = boolean algebras), and denote byV Σ
the languages over the alphabetΣ contained inV . Then
the closure condition (a) and the restriction of (c) tolength-
preservingmonoid morphisms (those of the formh∗) state
precisely that the mapΣ 7→ V Σ defines a subfunctor

V ֌ ̺T.

Closure under left derivatives means thatV Σ is a subcoalgebra
of ̺TΣ. Finally, as we will demonstrate below, closure under
right derivatives and preimages of arbitrary monoid morphisms
amounts categorically to the existence of certain coalgebra
homomorphisms. This expresses the closure properties of a
variety of languages fully coalgebraically.

In our general setting of two predual categoriesC and D

a variety of languages inC is thus a subfunctorV ֌ ̺T ,
subject to additional closure properties which are characterized
by means of coalgebraic concepts. Dualizing these properties
leads to the notion of apseudovariety ofD-monoids: a class
of finite D-monoids closed under finite products, submonoids
and homomorphic images. Our main result is the

Generalized Eilenberg Theorem.Varieties of languages in
C correspond bijectively to pseudovarieties ofD-monoids.

All Eilenberg-type theorems mentioned above emerge as
special cases by the corresponding choices ofC andD .

On our way to proving the Generalized Eilenberg Theorem
we will also establish a bijective correspondence between
object-finitevarieties of languages inC (those varieties with
V Σ finite for all Σ) and locally finite varieties (rather than
pseudovarieties!) ofD-monoids. In the case of (ordered)
monoids this has been shown by Klı́ma and Polák [16], and to
the best of our knowledge it is a new result in all other cases.

Although our emphasis lies on varieties oflanguages, all
our results hold more generally for Moore automata in lieu of
acceptors, and hence for varieties of regular behaviors in lieu
of regular languages – one simply replaces the two-element
algebraOC in the above definition ofTΣ by an arbitrary finite
algebra inC . We briefly explain this at the end of the paper.

Related Work.Our paper lays a common ground for Eilen-
berg’s original variety theorem [12] and its variants due to

Pin [18], Polák [20] and Reutenauer [22]. In our previous
paper [1] we proved alocal Eilenberg theorem where one
considers classes of regular languages over a fixed alphabetΣ
versus classes of finiteΣ-generatedD-monoids in our general
setting of predual categoriesC and D . The main technical
achievement of [1] was the insight that finite subcoalgebras
of ̺TΣ closed under right derivatives dualize to finiteΣ-
generatedD-monoids. Our work was inspired by Gehrke,
Grigorieff and Pin [13] who proved a bijective correspondence
between local varieties of languages and classes of finite (or-
dered)Σ-generated monoids presented by profinite identities.
This result provides a local view of Reiterman’s theorem [21]
characterizing pseudovarieties of monoids in terms of profinite
identities.

Somewhat surprisingly, it has only been in recent years
that the fundamental role of duality in algebraic automata
theory was fully recognized. Most of the work along these
lines concerns the connection between regular languages and
profinite algebras. Rhodes and Steinberg [23] view the regular
languages overΣ as a comonoid (rather than just a coalgebra)
in the category of boolean algebras, and this comonoid is
shown to dualize to the free profinite semigroup onΣ. Similar
results for free profinite monoids can be found in the afore-
mentioned work of Gehrke et al. which built on previous work
of Almeida [3] and Pippenger [19].

Acknowledgements.The authors are grateful to Mai Gehrke,
Paul-André Melliès and Libor Polák for useful discussions on
the topic of our paper.

II. PREDUALITY, MONOIDS AND LANGUAGES

In this section we set the scene of predual categories
C and D , and introduce varieties of languages inC and
pseudovarieties ofD-monoids. The reader is assumed to be
familiar with basic category theory and universal algebra.

A. Predual categories

Our categories of interest are varieties of algebras and
varieties of ordered algebras. Given a finitary signatureΓ,
a variety of Γ-algebras is a full subcategoryA of AlgΓ,
the category ofΓ-algebras and homomorphisms, closed under
quotients (= homomorphic images), subalgebras and products.
Equivalently, by Birkhoff’s HSP theorem [6] a variety of
algebras is a class ofΓ-algebras specified by equationst1 = t2
betweenΓ-terms. The forgetful functorA → Set of a variety
has a left adjoint assigning to every setX the free algebra
overX .

Analogously, letAlg≤Γ be the category of allorderedΓ-
algebras. These areΓ-algebras with a partial order on the
underlying set such that allΓ-operations are order-preserving.
Morphisms ofAlg≤Γ are order-preserving homomorphisms.
This category has a factorization system of surjective homo-
morphisms and injective order-embeddings. Thus the concept
of a subalgebraof an algebraA in A means that the order is
inherited fromA, whereas aquotientof A is represented by
any surjective order-preserving homomorphism with domain
A. A variety of orderedΓ-algebrasis a full subcategoryA
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of Alg≤Γ closed under quotients, subalgebras and products.
Equivalently, by the ordered version of Birkhoff’s theorem
due to Bloom [8],A is specified by inequalitiest1 ≤ t2
betweenΓ-terms. (Recall that ift1 and t2 lie in TΓX , the
discretely ordered algebra ofΓ-terms over variablesX , then
an orderedΓ-algebraA satisfiest1 ≤ t2 provided that every
homomorphismh : TΓX → A fulfils h(t1) ≤ h(t2).) Again,
the forgetful functorA → Set has a left adjoint constructing
free algebras.

Definition II.1. Given a varietyA of (ordered) algebras we
denote byAf the full subcategory of all finite algebras.A

is called locally finite if all free algebras on finitely many
generators are finite.

In our applications we will encounter the locally finite
varieties listed below. We viewPos as a variety of ordered
algebras (over the empty signature) and all other categories as
varieties of non-ordered algebras.

Set sets and functions
Set⋆ pointed sets and point-preserving functions
Pos partially ordered sets and order-preserving maps
BA boolean algebras and boolean homomorphisms
BR non-unital boolean rings (i.e., non-unital rings

(R,+, ·, 0) satisfying the equationx ·x = x) and
ring homomorphisms

DL01 distributive lattices with0 and 1 and lattice
homomorphisms preserving0 and1

JSL0 join-semilattices with0 and semilattice homo-
morphisms preserving0

K-Vec vector spaces over a finite fieldK and linear
maps

Here is the central concept for our categorical approach to
algebraic automata theory:

Definition II.2. Two locally finite varieties of (ordered) alge-
brasC andD are calledpredualif their full subcategoriesCf

andDf of finite algebras are dually equivalent.

In what follows C will be a locally finite variety of
algebras (where varieties of languages are formed), andD

will be a locally finite variety of algebras or ordered algebras
(where varieties of monoids are formed). Let us establish
some notation for this setting. The preduality ofC and D

is witnessed by an equivalence functorC
op
f

≃
−→ Df whose

action on objects and morphisms we denote by

Q 7→ Q̂ and h 7→ ĥ.

The varietiesC andD come equipped with forgetful functors

|−| : C → Set and |−| : D → Set.

Finally, we write 1C and 1D for the free algebras on one
generator inC andD , respectively, andOD andOC for their
dual algebras:

OD = 1̂C and ÔC
∼= 1D .

Remark II.3. The last item is understood as a fixed choice of
an algebraOC in Cf along with an isomorphismi : ÔC

∼=
−→

1D . It follows that |OC | and |OD | are isomorphic:

|OC | ∼= Set(1, |OC |) (canonically)
∼= C (1C , OC ) (def. 1C )

∼= D(ÔC , OD) (by duality)
∼= D(1D , OD) (composition withi−1)
∼= Set(1, |OD |) (def. 1D)
∼= |OD | (canonically)

To simplify the notation we identify the underlying sets ofOC

andOD via this isomorphism and thus assume|OC | = |OD |.

Assumptions II.4. For the rest of this paper we fix two predual
locally finite varietiesC andD with the following properties:

(i) C is a locally finite variety of algebras.
(ii) D is a locally finite variety of algebras or ordered

algebras.
(iii) Epimorphisms inD are surjective.
(iv) D is entropic: for any two algebrasA andB in D , the set

[A,B] of homomorphisms fromA toB is an algebra inD
with the pointwise algebraic structure, i.e., a subalgebra
of the powerB|A| =

∏
a∈|A|B.

(v) |OC | = |OD | = {0, 1}.

Condition (iv) means precisely that all operations of the
variety D commute, see e.g. [10, Theorem 3.10.3]: given an
m-ary operationσ and ann-ary operationτ in the signature of
D and variablesxij (i = 1, . . . ,m, j = 1, . . . , n), the equation

σ(τ(x11 , . . . , x1n), . . . , τ(xm1, . . . , xmn))

= τ(σ(x11, . . . , xm1), . . . , σ(x1n, . . . , xmn))

holds in D . Condition (v) can be lifted to get a theory of
regular behaviors in lieu of regular languages, cf. SectionV.

Example II.5. The following pairs of categoriesC and D

satisfy our assumptions:

C BA DL01 JSL0 Z2-Vec BR

D Set Pos JSL0 Z2-Vec Set⋆

(a) C = BA is predual toD = Set via Stone duality [24]:
given a finite boolean algebraQ, the setQ̂ consists of all
atoms ofQ, and given a homomorphismh : Q → R in BAf ,
the dual function̂h : R̂ → Q̂ in Setf is defined by

ĥ(r) =
∧

{q ∈ Q : h(q) ≥ r}. (1)

We choose

1C =

⊤
�� ❃❃

1
❃❃

0
��

⊥

1D = {1} OC =

1

0

OD ={0, 1}
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Here1 is the generator of the one-generated free algebra1C

and ÔC = {1} = 1D . Hence the isomorphismŝOC
∼= 1D

and |OC | ∼= |OD | of Remark II.3 are identity maps.
(b) C = DL01 is predual toD = Pos via Birkhoff

duality [7]: Q̂ is the poset of all join-irreducible elements
of a finite distributive latticeQ (ordered as inQ), and every
homomorphismh : Q → R in (DL01)f yields a monotone
function ĥ : R̂ → Q̂ by the formula (1) above. We choose

1C =

0

1

⊥

1D = {1} OC =

1

0

OD =

0

1

Note that 0 is the top element of1C and OD . Again the
isomorphismŝOC

∼= 1D and |OC | ∼= |OD | are identity maps.
(c) The categoryC = JSL0 is self-predual, see [15], so

we can takeD = JSL0. The dual equivalence associates to
each finite semilatticeQ = (X,∨, 0) its opposite semilattice
Q̂ = (X,∧, 1), and to each homomorphismh : Q → R in
(JSL0)f the homomorphism̂h : Q̂ → R̂ with

ĥ(r) =
∨

{q ∈ Q : h(q) ≤ r}

where the join is formed inQ. We choose

1C =

0

1

1D =

0

1

OC =

1

0

OD =

1

0

The isomorphismŝOC
∼= 1D and |OC | ∼= |OD | are identity

maps. Epimorphisms inJSL0 are surjective, as proved in [14].
(d) The categoryC = Z2-Vec of vector spaces over

the binary fieldZ2 = {0, 1} is also self-predual, soD =
Z2-Vec. The dual equivalence assigns to each finite (i.e. finite-
dimensional)Z2-vector spaceQ its dual spaceQ̂ = [Q,Z2].
For every linear maph : Q → R in (Z2-Vec)f the dual map
ĥ : R̂ → Q̂ takesu : R → Z2 to u · h. We choose

1C = OC = Z2 and 1D = OD = [Z2,Z2].

The isomorphism̂OC
∼= 1D is identity, and the isomorphism

|OC | ∼= |OD | identifies the element1 ∈ |OC | = |Z2| with
id ∈ |OD | = [Z2,Z2]. Epimorphisms inZ2-Vec split and
hence are surjective.

(e) An interesting variation on (a) is the preduality of
C = BR and D = Set⋆. Recall that we considernon-
unital boolean rings (this is Birkhoff’s original definition of
a boolean ring, see [5]) and homomorphisms preserving+, ·
and 0. Every finite non-unital boolean ring(Q,+, ·, 0) can
be viewed as a boolean algebra withx ∧ y = x · y and
x ∨ y = x+ y + x · y. The preduality ofBR andSet⋆ takes
Q to the pointed set̂Q = {⋆, q1, . . . qn} whereq1, . . . , qn are
the atoms ofQ. A homomorphismh : Q → R in BRf is
mapped to the function̂h : R̂ → Q̂ with ĥ(r) defined by (1)

if r 6= ⋆ and someq ∈ Q with h(q) ≥ r exists, and otherwise
ĥ(r) = ⋆. We choose

1C = OC = {0, 1} and 1D = OD = {⋆, 1}.

The isomorphism̂OC
∼= 1D is identity, and the isomorphism

|OC | ∼= |OD | identifies0 ∈ |OC | with ⋆ ∈ |OD |.

The preduality ofC andD allows us to model deterministic
automata both as coalgebras and as algebras for suitable
endofunctors onC andD . Fix a finite input alphabetΣ and
consider first the endofunctor onC

TΣQ = OC ×QΣ = OC ×
∏

Σ

Q.

A TΣ-coalgebra(Q, γ) consists of an objectQ in C together
with a morphismγ : Q → TΣQ. By the universal property of
the product, to give aTΣ-coalgebra means to give morphisms
γa : Q → Q for eacha ∈ Σ, respresenting transitions, and
a morphismγout : Q → OC representing final states. Hence
TΣ-coalgebras are deterministicΣ-automata inC without an
initial state, often denoted as triples

Q = (Q, γa, γout).

A homomorphismh : (Q, γ′) → (Q′, γ′) of TΣ-coalgebras is
a morphismh : Q → Q′ in C with γ′ · h = TΣh · γ, which
means that the following diagram commutes for alla ∈ Σ:

Q
γa //

h

��

Q

h

��

γout

  ❇
❇❇

❇❇
❇❇

❇

Q′

γ′
a

// Q′

γ′
out

// OC

We write
CoalgTΣ and Coalgf TΣ

for the categories of (finite)TΣ-coalgebras and homomor-
phisms. The functorTΣ has an associated endofunctor onD

LΣA = 1D +
∐

Σ

A

which is predual to TΣ in the sense that the restrictions

TΣ : Cf → Cf and LΣ : Df → Df ,

to finite algebras are dual. That is, the diagram below com-
mutes up to natural isomorphism:

C
op
f

(̂−)

��

T
op

Σ // C
op
f

(̂−)

��

Df
LΣ

// Df

Dually to the concept of aTΣ-coalgebra, anLΣ-algebra(A,α)
is an objectA in D together with a morphismα : LΣA → A.
Equivalently, anLΣ-algebra is given by morphismsαa : A →
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A for a ∈ Σ, representing transitions, and a morphismαin :
1D → A selecting an initial state.LΣ-algebras are denoted as

A = (A,αa, αin)

and can be viewed as deterministicΣ-automata inD without
final states. Ahomomorphismh : (A,α) → (A′, α′) of LΣ-
algebras is aD-morphismh : A → A′ with h · α = α′ · LΣh.
We write

AlgLΣ and Algf LΣ

for the categories of (finite)LΣ-algebras and homomorphisms.
From the preduality ofTΣ andLΣ we immediately conclude:

Lemma II.6. Coalgf TΣ andAlgf LΣ are dually equivalent
categories. The dual equivalence is given on objects and
morphisms by

(Q, γ) 7→ (Q̂, γ̂) and h 7→ ĥ.

In triple notation this dual equivalence maps a finiteTΣ-
coalgebra(Q, γa, γout) to its dual LΣ-algebra (Q̂, γ̂a, γ̂out).
Hence finiteTΣ-coalgebras and finiteLΣ-algebras are essen-
tially the same structures, and both can be understood as finite
automata with additional (ordered) algebraic structure.

Example II.7. (a) Let C = BA and D = Set. ThenLΣ-
algebras are the usual concept of a deterministic automaton
without final states. ATΣ-coalgebra is a deterministicΣ-
automaton with a boolean algebra structure on the state set
Q such that (i) all transitionsγa : Q → Q are boolean
homomorphisms and (ii) the final states form an ultrafilter, de-
termined by the preimage of1 under the morphismγout : Q →
OC = {0, 1}. For finite automata (ii) means that precisely one
atom i ∈ Q is final and all final states form the upper set
↑ i = {q ∈ Q : q ≥ i}. The dual equivalence of the previous
lemma takes a finite boolean automatonQ = (Q, γa, γout) to
the automaton̂Q = (Q̂, γ̂a, γ̂out) in Set whose states are the
atoms ofQ. The unique atomic final statei ∈ Q is the initial
state ofQ̂, and there is a transitionx

a
→ x′ in Q̂ iff

x′ =
∧

{y : y
a
→ y′ in Q for somey′ ≥ x}.

(b) The caseC = DL01 andD = Pos is analogous. Here
LΣ-algebras areordereddeterministic automata without final
states.TΣ-coalgebras carry a distributive lattice structure on
Q, and again for finiteQ the final states form an upper set↑ i.

Remark II.8. We frequently need to factorize (co-)algebra
homomorphisms into a surjective and an injective part. For
the varietyC we choose the factorization system

(strong epi,mono) = (surjective, injective).

Recall that an epimorphisme is called strong if it has the
diagonal fill-in property w. r. t. all monomorphismsm: given
morphismsu, r with r · e = m ·u there existsd with u = d · e.
Since the functorTΣQ = OC×QΣ preserves monomorphisms,
this factorization system ofC lifts to CoalgTΣ: every coal-
gebra homomorphismh : (Q, γ) → (Q′, γ′) factorizes as a
quotient coalgebraof (Q, γ) followed by asubcoalgebraof

(Q′, γ′), by which we mean that the underlying morphism inC

is a strong epimorphism (or a monomorphism, respectively).
Dually, in D we consider the factorization system

(epi, strong mono).

If D is a variety of algebras, this is just the (surjective,
injective)-factorization system as epimorphisms inD are
surjective by Assumption II.4(iii). In caseD is a variety
of ordered algebras, we get the (surjective, injective order-
embedding)-factorization system, which is clearly the “right”
one for ordered algebras. SinceLΣ = 1D +

∐
Σ A preserves

epimorphisms, the factorization system ofD lifts to AlgLΣ:
every LΣ-algebra homomorphismh : (A,α) → (A′, α′)
factorizes as aquotient algebraof (A,α) followed by a
subalgebraof (A′, α′), i.e., the underlying morphism inD
is an epimorphism (or a strong monomorphism, respectively).

B. D-Monoids

Our Assumption II.4(iv) thatD be entropic admits a more
categorical interpretation. Given objectsA, B and C in D ,
a bimorphismis a functionf : |A| × |B| → |C| such that
f(a,−) : B → C andf(−, b) : A → C are morphisms ofD
for all a ∈ A and b ∈ B. A tensor productof A andB is a
universal bimorphismt : |A| × |B| → |A⊗B|, i.e., for every
bimorphismf : |A| × |B| → |C| there is a unique morphism
f ′ in D making the diagram below commute.

|A| × |B|

f
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲

t // |A⊗B|

|f ′|

��
✤

✤

✤

|C|

As shown in [4], tensor products exist in any variety of
(ordered) algebras, and “entropic” means precisely thatD =
(D ,⊗,1D) is a symmetric monoidal closed category. In partic-
ular, as in any monoidal category, we have a notion ofmonoid
in D . In our setting this means the following:

Definition II.9. A D-monoid (D, ◦, i) consists of an object
D of D and a monoid structure(|D|, ◦, i) on its underlying
set |D| whose multiplication is a bimorphism, i.e., for every
x ∈ |D| both x ◦ – and – ◦ x are endomorphisms ofD in
D . A morphismh : (D, ◦, i) → (D′, ◦′, i′) of D-monoids is a
morphismh : D → D′ in D preserving the monoid structure.
The D-monoids and their morphisms form a category

D-Mon.

Observe thatD-Mon is a variety of (ordered) algebras:
add ◦ and i to the signature ofD , and add the monoid
axioms and equations expressing that◦ is a bimorphism to
the (in)equalities presentingD . The factorization system of
D , see Remark II.8, lifts toD-Mon. Hence asubmonoid
of a D-monoidD is a D-monoid morphism intoD carried
by a strong monomorphism inD , and aquotient monoidof
D is a D-monoid morphism with domainD carried by an
epimorphism inD .
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Examples II.10. For our categoriesD of Example II.5 the
D-monoids are characterized as follows:

(a) D = Set: (ordinary) monoids.
(b) D = Pos: ordered monoids.
(c) D = JSL0: idempotent semirings, i.e., semirings

(S,+, ·, 0) satisfying the equationx + x = x. Indeed, this
means precisely that(S,+, 0) is a semilattice, and the dis-
tributive laws of a semiring express that the multiplication
preserves+ and0 in each variable, so that it is a bimorphism.

(d) D = Z2-Vec: Z2-algebras in the classical sense of
algebras over a field, i.e., aZ2-algebra is a vector space over
Z2 together with a monoid structure whose multiplication is
distributive (= linear in each variable).

(e) D = Set⋆: monoids with0, i.e., monoids containing an
element0 such thatx ◦ 0 = 0 ◦ x = 0 for all x. Morphisms
of D-Mon are monoid morphisms preserving0.

Definition II.11. A pseudovariety ofD-monoidsis a class
of finite D-monoids closed under submonoids, quotients and
finite products.

On our way to proving the generalized Eilenberg theorem
we will encounter monoids with a specified set of generators.
To this end we need to describe the freeD-monoids. We write

Ψ : Set → D

for the free algebra functor, that is, the left adjoint of the
forgetful functor|−| : D → Set. For notational simplicity we
assume thatX is a subset of|ΨX |, and the universal map
is the inclusionX ֌ |ΨX |. (For nontrivial varietiesD of
(ordered) algebras such a choice ofΨX is always possible.)

Proposition II.12 (see [1], Prop. 4.22). The freeD-monoid on
a finite setΣ is theD-monoid(ΨΣ∗, •, ε) with multiplication
• extending the concatenation of words overΣ, and universal
mapΣ ֌ Σ∗

֌ |ΨΣ∗|. That is, every mapf : Σ → |D| into
a D-monoidD extends uniquely to aD-monoid morphismf :

Σ // //

f
!!❈

❈❈
❈❈

❈❈
❈❈

|ΨΣ∗|

|f |

��
✤

✤

✤

|D|

Examples II.13. In our categoriesD of Example II.5 the free
D-monoidsΨΣ∗ on Σ are characterized as follows:

(a) D = Set: the usual free monoidΣ∗.
(b) D = Pos: the free ordered monoidΣ∗ (discretely

ordered).
(c) D = JSL0: the free idempotent semiringPfΣ

∗, carried
by the set of finite languages overΣ. The semilattice structure
is union and∅, the monoid multiplication is the concatenation
L1 • L2 = L1L2 of languages, and the monoid unit is{ε}.

(d) D = Z2-Vec: the freeZ2-algebraPfΣ
∗. Its vector

addition is the symmetric differenceL1⊕L2 = (L1\L2)∪(L2\
L1), and the zero vector is∅. The monoid unit is again{ε},
and the monoid multiplication isZ2-weighted concatenation
of languages:L1 • L2 consists of all wordsw having an odd
number of decompositionsw = w1w2 with wi ∈ Li.

(e) D = Set⋆: the free monoid with0. This is the monoid
Σ∗ + {0} arising fromΣ∗ by adding a zero element.

Definition II.14. (a) A D-monoid is calledΣ-generatedif a
set of generators indexed byΣ is given in it. Equivalently: if it
is a quotient monoid of the freeD-monoidΨΣ∗. Morphisms
of Σ-generatedD-monoids are required to preserve the given
generators. That is, given twoΣ-generatedD-monoidsek :
ΨΣ∗

։ (Dk, ◦k, ik), k = 1, 2, a morphism ofΣ-generated
D-monoids is aD-monoid morphismf : (D1, ◦1, i1) →
(D2, ◦2, i2) with e2 = f · e1.

(b) The subdirect productof two Σ-generatedD-monoids
ek : ΨΣ∗

։ (Dk, ◦k, ik) is theD-submonoid of their product
which is the image of〈e1, e2〉 : ΨΣ∗ → D1 ×D2.

Definition II.15. By a pseudovariety ofΣ-generatedD-
monoids is meant a collection of finiteΣ-generatedD-
monoids closed under subdirect products and quotients.

In other words, ifL denotes the poset of all finite quotients
of ΨΣ∗ in D-Mon, then a pseudovariety is a subposet
closed under finite joins (= subdirect products) and closed
downwards (i.e., under quotients). Here we use the ordering
of quotientse : ΨΣ∗

։ D wheree1 ≤ e2 iff e1 factorizes
throughe2.

Remark II.16. Every Σ-generatedD-monoid e : ΨΣ∗
։

(D, ◦, i) defines theassociatedLΣ-algebra α : LΣD → D

with the same objectD of states, initial statee(ε) and
transitions given by right multiplicationαa(d) = d ◦ e(a) for
a ∈ Σ. In particular, the associatedLΣ-algebra of the freeD-
monoidΨΣ∗ has the initial stateε and the transitions−•a for
a ∈ Σ. This means that the aboveLΣ-algebra structure ofD is
the unique one that makese a homomorphism ofLΣ-algebras.

As shown in [1, Prop. 4.29],ΨΣ∗ is the initialLΣ-algebra:
for everyLΣ-algebra(A,α) there exists a uniqueLΣ-algebra
homomorphism

eA : ΨΣ∗ → A.

Its restriction toΣ∗ computes the action ofA on wordsw ∈
Σ∗:

eA(w) = αw · αin : 1D → A.

Here we use the notation

αw = αan
· · ·αa1

: A → A for w = a1 · · · an.

Analogously, for coalgebras(Q, γ) we putγw = γan
· · · γa1

.

SinceΣ-generated monoids areLΣ-algebras one may ask
for the converse: given anLΣ-algebra, is it associated to
someΣ-generated monoid? In the next subsection we will
see that this question is, by duality, directly related to closure
properties of classes of regular languages.

C. Languages

Our categorical approach to varieties of languages starts
with a characterization of the regular languages over a fixed
alphabetΣ by a universal property. Let us call aTΣ-coalgebra
Q locally finite if it is a filtered colimit of finite coalgebras. Or
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equivalently, if every stateq ∈ Q lies in a finite subcoalgebra
of Q. As shown in [17], the terminal locally finite coalgebra
̺TΣ – characterized by the property that every locally finite
coalgebra has a unique homomorphism into it – is the filtered
colimit of the diagram

Coalgf TΣ ֌ CoalgTΣ

of all finite coalgebras. Its coalgebra structure is an isomor-
phism

̺TΣ
∼= TΣ(̺TΣ),

which is why̺TΣ is also called therational fixpointof TΣ.

Proposition II.17 (see [1], Cor. 2.11). ̺TΣ is carried by the
set of all regular languages overΣ. The transition morphisms
are carried by left derivativesL 7→ a−1L for all a ∈ Σ,
and the final states are precisely the languages containing the
empty set. For any locally finite coalgebra(Q, γ) the unique
homomorphismLQ : Q → ̺TΣ maps a stateq ∈ Q to the
language accepted byq:

LQ(q) = {w ∈ Σ∗ : γout · γw(q) = 1}.

Example II.18. Continuing our Examples II.5,̺TΣ has the
following algebraic structure as an object of the varietyC :

(a) ForC = BA the boolean algebra structure is∪, ∩, (−),
∅ andΣ∗.

(b) For C = DL01 the lattice structure is∪, ∩, ∅ andΣ∗.
(c) For C = JSL0 the semilattice structure is∪ and∅.
(d) For C = Z2-Vec the vector addition is symmetric

differenceL ⊕M = (L \M) ∪ (M \ L) and the zero vector
is ∅.

(e) For C = BR the multiplication is∩, the addition is
symmetric difference⊕, and the zero element is∅.

Definition II.19. By a local variety of languagesover Σ in
C is meant a subcoalgebraQ →֒ ̺TΣ of the rational fixpoint
closed under right derivatives, i.e.,L ∈ |Q| implies La−1 ∈
|Q| for all a ∈ Σ.

Note that a local variety is closed under left derivatives
automatically, being a subcoalgebra of̺TΣ. Closure under
right derivatives also admits a fully coalgebraic description:

Notation II.20. Given a TΣ-coalgebra(Q, γ) and an input
a ∈ Σ, denote by(Q, γ)a the TΣ-coalgebra with the same
states and transitions, but whose final-state morphism isγout ·
γa : Q → OC .

Proposition II.21 (see [1], Prop. 4.3). A subcoalgebra(Q, γ)
of ̺TΣ is a local variety iff aTΣ-coalgebra homomorphism
from (Q, γ)a to (Q, γ) exists for everya ∈ Σ.

Proposition II.22 (see [1], Prop. 3.24 and 4.32). A finiteTΣ-
coalgebraQ is a subcoalgebra of̺TΣ iff its dualLΣ-algebra
Q̂ is a quotient algebra ofΨΣ∗. In this case,Q is a local
variety iff Q̂ is the associatedLΣ-algebra of some finiteΣ-
generatedD-monoid.

In other words, for any finite coalgebraQ the uniqueTΣ-
coalgebra homomorphismLQ : Q → ̺TΣ of Proposition

II.17 is injective iff the uniqueLΣ-algebra homomorphism
e
Q̂

: ΨΣ∗ → Q̂ of Remark II.16 is surjective. Moreover,
if Q ֌ ̺TΣ is a local variety of languages, there exists
a (unique) monoid structure on̂Q making e

Q̂
a D-monoid

morphism. In this case we call̂Q the dual Σ-generatedD-
monoid ofQ.

Proposition II.22 was the basis of the main result of [1].
Observe that the set of all local varieties of languages over
Σ in C forms a complete lattice whose meet is intersection.
Analogously for the set of all pseudovarieties ofΣ-generated
D-monoids.

Theorem II.23 (Local Eilenberg Theorem [1], Thm. 4.36).
The lattice of all local varieties of languages overΣ in C is
isomorphic to the lattice of all pseudovarieties ofΣ-generated
D-monoids.

Local varieties of languages are local in the sense that a
fixed alphabetΣ is considered. To get a global (alphabet-
independent) view of all regular languages, we extend the map
Σ 7→ ̺TΣ to a functor̺ T : Setopf → C . Observe first that for
everyh : ∆ → Σ in Setf there is a morphismQh : QΣ → Q∆

given by precomposition withh. Hence we can turn eachTΣ-
coalgebra(Q, γ) into theT∆-coalgebra(Q, γ)h with the same
statesQ and coalgebra structure

Q
γ
−→ OC ×QΣ id×Qh

−−−−→ OC ×Q∆.

This is a familiar construction for deterministic automata: if
some stateq ∈ Q accepts the languageL ⊆ Σ∗ in (Q, γ),
then it accepts the language(h∗)−1(L) ⊆ ∆∗ in (Q, γ)h. Here
h∗ : ∆∗ → Σ∗ denotes the free extension ofh to a monoid
morphism.

The coalgebra(Q, γ)h is locally finite if (Q, γ) is, as every
subcoalgebra of(Q, γ) is also a subcoalgebra of(Q, γ)h. In
particular,(̺TΣ)

h is locally finite, so there is a uniqueT∆-
coalgebra homomorphism̺Th : (̺TΣ)

h → ̺T∆ into the
terminal locally finiteT∆-coalgebra. The morphism̺Th forms
preimages under the monoid morphismh∗:

̺Th(L) = (h∗)−1(L) for all L ∈ |̺TΣ|.

Definition II.24. The rational functor ̺T : Set
op
f → C

assigns to every finite alphabetΣ the rational fixpoint̺ TΣ and
to every maph : ∆ → Σ the morphism̺ Th : ̺TΣ → ̺T∆.

In the classical caseC = BA, the rational functor maps
each finite alphabetΣ to the boolean algebra of regular
languages overΣ. A variety V of languages in Eilenberg’s
sense (see Introduction) is thus a subfunctor1 V ֌ ̺T that
assigns to every finite alphabetΣ a local varietyV Σ ֌ ̺TΣ,
and is closed under preimages of monoid morphismsf :
∆∗ → Σ∗. To formulate the preimage condition categorically,
we identify any languageL ⊆ Σ∗ with its characteristic

1Recall that asubfunctorof a functorF : A → B is a natural transforma-
tion m : F ′ ֌ F with monomorphic componentsmA : F ′A ֌ FA. To
specifyF ′ is suffices to give the object mapA 7→ F ′A and monomorphisms
mA such that, for eachf : A → A′ in A , the morphismFf ·mA factorizes
throughmA′ . This uniquely determines the action ofF ′ on morphisms.
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function L : Σ∗ → {0, 1} in D = Set. Then the preimage
of L under f is precisely the language represented by the
composite functionL · f : ∆∗ → {0, 1}. Thus the missing
condition on our subfunctorV is the following: for every
languageL ∈ V Σ we haveL · f ∈ V∆. Let us now extend
these considerations to our general setting.

Notation II.25. Using the adjunctionΨ ⊣ |−| : D → Set,
we identify any languageL : Σ∗ → {0, 1} = |OD | with the
corresponding morphismL : ΨΣ∗ → OD of D . Thepreimage
of L under aD-monoid morphismf : Ψ∆∗ → ΨΣ∗ is the
languageL · f : Ψ∆∗ → OD over the alphabet∆.

Definition II.26. (a) A subfunctorV ֌ ̺T of the rational
functor isclosed under preimagesif, for everyD-monoid mor-
phismf : Ψ∆∗ → ΨΣ∗ and every languageL : ΨΣ∗ → OD

in V Σ, the languageL · f lies in V∆.
(b) By a variety of languagesin C is meant a subfunctor

V ֌ ̺T closed under preimages such thatV Σ is a local
variety of languages for every alphabetΣ ∈ Setf .

In Theorem III.16 below we give a fully coalgebraic char-
acterization of preimage closure.

Examples II.27. (a) The caseC = BA and D = Set

captures the original concept of Eilenberg [12]: a variety of
languages inBA forms boolean subalgebrasV Σ of ̺TΣ,
closed under derivatives and preimages of monoid morphisms
f : ∆∗ → Σ∗.

(b) In the caseC = DL01 and D = Pos we just drop
closure under complement: a variety of languages inDL01

forms sublatticesV Σ of ̺TΣ closed under derivatives and
preimages of monoid morphismsf : ∆∗ → Σ∗. This is the
concept of apositive variety of languagesstudied by Pin [18].

(c) Let C = D = JSL0. Given a languageL ⊆ Σ∗, the
corresponding semilattice morphismL : PfΣ

∗ → {0, 1} takes
a finite language{w1, . . . , wk} to 1 iff wi ∈ L for somei (this
follows from {w1, . . . , wk} =

∨k
i=1{wi}). The preimage ofL

under a semiring morphismf : Pf∆
∗ → PfΣ

∗ corresponds
to the languageM ⊆ ∆∗ of all wordsu ∈ ∆∗ for which f(u)
contains some word ofL. A variety of languages inJSL0

forms subsemilatticesVΣ of ̺TΣ closed under derivatives and
preimages of semiring morphismsf : Pf∆

∗ → PfΣ
∗ . This

is the notion of variety introduced by Polák [20].
(d) If C = D = Z2-Vec, the linear mapL : PfΣ

∗ →
{0, 1} corresponding toL ⊆ Σ∗ takes{w1, . . . , wk} ∈ PfΣ

∗

to 1 iff wi ∈ L for an odd number ofi = 1, . . . , k. Thus the
preimage ofL under aZ2-algebra morphismf : Pf∆

∗ →
PfΣ

∗ corresponds to the languageM ⊆ ∆∗ of all words
u ∈ ∆∗ for which f(u) contains an odd number of words of
L. A variety of languages inZ2-Vec forms linear subspaces
V Σ of ̺TΣ closed under derivatives and preimages ofZ2-
algebra morphismsf : Pf∆

∗ → PfΣ
∗ . This notion of a

variety was introduced by Reutenauer [22]; see also Section
V.

(e) Finally, let C = BR and D = Set⋆. The preimage
of L ⊆ Σ∗ under a zero-preserving monoid morphismf :
∆∗ + {0} → Σ∗ + {0} consists of all wordsw ∈ ∆∗ for

which f(w) lies in L. A variety of languages inBR forms
subringsV Σ of ̺TΣ closed under derivatives and preimages
of zero-preserving monoid morphisms.

See the table in Section IV for a summary of our examples.
The set of all varieties of languages inC is a complete lattice
since any intersection of varieties (formed objectwise) isa
variety. The same holds for the set of all pseudovarieties
of D-monoids. Our main result, theGeneralized Eilenberg
Theorem(see Theorem IV.5), states that these two lattices are
isomorphic. The rest of the paper is devoted to the proof.

III. C OALGEBRAIC AND ALGEBRAIC LANGUAGE

ACCEPTANCE

In this section we compare the languages accepted by a
finite TΣ-coalgebra inC with those accepted by its dual finite
LΣ-algebra inD .

Notation III.1. (a) Recall |OC | = |OD | = {0, 1} from

Asssumption II.4(v), and let1C

1OC−−−→ OC and1D

1OC−−−→ OD

denote the morphisms choosing the element1. Note that
1̂OC

= 1OD
by Remark II.3.

(b) Recall from Proposition II.17 that a stateq : 1C → Q

of a finite TΣ-coalgebra(Q, γ) accepts the language

LQ(q) = {w ∈ Σ∗ : γout · γw · q = 1OC
}

that we identify with the corresponding morphism ofD

LQ(q) : ΨΣ∗ → OD ,

see Notation II.25. Dually, for anyLΣ-algebra(A,α) equipped
with a morphismαout : A → OD (representing a choice of
final states), we define thelanguage accepted byαout by

LA(αout) = {w ∈ Σ∗ : αout · αw · αin = 1OD
}.

Using the uniqueLΣ-algebra homomorphismeA : ΨΣ∗ → A

of Remark II.16, this language corresponds to the morphism
of D

LA(αout) = αout · eA : ΨΣ∗ → OD .

Definition III.2. The mapΣ∗ → Σ∗ reversing words extends
uniquely to a morphism ofD

revΣ : ΨΣ∗ → ΨΣ∗.

The reversalof a languageL : ΨΣ∗ → OD is the language
L · revΣ.

Observe thatrevΣ is a D-monoid morphism

revΣ : ΨΣ∗ → (ΨΣ∗)op,

where(ΨΣ∗)op is the reversed monoid ofΨΣ∗ with multipli-
cationx •op y = y • x.

Lemma III.3. Let (Q, γ) be a finiteTΣ-coalgebra and(Q̂, γ̂)
its dual LΣ-algebra. Then the language accepted by a state
q : 1C → Q is the reversal of the language accepted by
q̂ : Q̂ → OD :

L
Q̂
(q̂) = LQ(q) · revΣ.
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Proof: A stateq : 1C → Q accepts a wordw = a1 · · · an
iff

γout · γan
· . . . · γa1

· q = 1OC
.

This is dual to the equation

q̂ · γ̂a1
· . . . · γ̂an

· γ̂out = 1̂OC
= 1OD

,

which states precisely that̂q accepts the wordwrev = an · · · a1
in theLΣ-algebraQ̂. It follows that the two morphismsL

Q̂
(q̂)

andLQ(q) · revΣ agree onΣ∗, hence they are equal.
One of the cornerstones of our Generalized Eilenberg The-

orem in Section IV is a coalgebraic characterization of the
closure under preimages, see Definition II.26. To this end we
introduce first the preimageAf of anLΣ-algebraA, and then
the preimageQf of a locally finiteTΣ-coalgebraQ.

Notation III.4. (a) Let A be an object ofD . The object
[A,A] of endomorphisms, see Assumption II.4(iv), forms a
D-monoid with multiplication

[A,A]× [A,A] → [A,A], (f, g) 7→ g · f,

given by functional composition and unitidA.
(b) For anLΣ-algebra(A,α) the notationαw : A → A for

wordsw ∈ Σ∗ (see Remark II.16) is extended toαx : A → A

for all x ∈ |ΨΣ∗| as follows: sinceΨΣ∗ is the freeD-monoid
on Σ (see Proposition II.12), the function

Σ → D(A,A), a 7→ αa,

extends to a uniqueD-monoid morphismΨΣ∗ → [A,A] that
we denote byx 7→ αx.

Definition III.5. Let f : Ψ∆∗ → ΨΣ∗ be a D-monoid
morphism. For everyLΣ-algebra(A,α) we define itspreimage
under f as theL∆-algebra(A,α)f = (A,αf ) on the same
statesA, with the same initial state,αf

in
= αin, and with

transitionsαf
b = αf(b) for all b ∈ ∆.

Example III.6. (a) If D = Set orPos, we are given a monoid
morphismf : ∆∗ → Σ∗. EveryLΣ-algebraA yields anL∆-
algebra with transitionsαf

b = αf(b) = αan
· . . . · αa1

for
f(b) = a1 · · · an.

(b) If D = JSL0, we are given a semiring morphismf :
Pf∆

∗ → PfΣ
∗. If the valuef(b) is a single word,f(b) =

{w}, then the corresponding transition is againα
f
b = αw. In

generalf(b) = {w1, . . . , wk}, and sinceα(–) is a semilattice
homomorphism, we conclude thatαf

b = αw1
∨ · · · ∨αwk

(the
join in [A,A]).

(c) Analogously forD = Z2-Vec: if f(b) = {w1, . . . , wk},
thenαf

b = αw1
⊕ · · · ⊕ αwk

(vector addition in[A,A]).
(d) If D = Set⋆ a zero-preserving monoid morphismf :

∆∗ + {0} → Σ∗ + {0} is given. The mapαf
b is defined as in

(a) if f(b) 6= 0, and otherwiseαf
b (x) = ⋆A for all x ∈ |A|,

where⋆A is the point ofA ∈ Set⋆.

Lemma III.7. Let f : Ψ∆∗ → ΨΣ∗ be a D-monoid
morphism.

(a) f is also anL∆-algebra homomorphismf : Ψ∆∗ →
(ΨΣ∗)f .

(b) EveryLΣ-algebra homomorphismh : A → A′ is also
an L∆-algebra homomorphismh : Af → (A′)f .

(c) Given anLΣ-algebraA we have, in Remark II.16,

eAf = eA · f : Ψ∆∗ → Af .

Proof: (a) Sincef(ε) = ε the initial state ofΨ∆∗ is
mapped to the one of(ΨΣ∗)f . For anya ∈ ∆, thea-transitions
in Ψ∆∗ and(ΨΣ∗)f are−•a and−•f(a), respectively. Hence
preservation of transitions amounts to the equationf(x•a) =
f(x) • f(a) for all x ∈ Ψ∆∗, which holds becausef is a
D-monoid morphism.

(b) We clearly haveh · αf
in
= h · αin = α′

in
= (α′)f

in
. From

h ·αw = α′
w ·h for all w ∈ Σ∗ we can concludeh ·αx = α′

x ·h
for all x ∈ |ΨΣ∗|. Indeed, both sides defineD-morphisms
ΨΣ∗ → [A,A′] in the variablex which agree onΣ∗. Thus
they are equal. In particular, we have the desired equation
h · αf(a) = α′

f(a) · h for all a ∈ ∆.
(c) Ψ∆∗ is the initialL∆-algebra, and by (a) and (b) both

sides areL∆-algebra homomorphisms.

Corollary III.8. LetA be anLΣ-algebra andαout : A → OD

an output morphism. Thenαout accepts inAf the preimage
of the language it accepts inA:

LAf (αout) = LA(αout) · f : Ψ∆∗ → OD .

Proof: Both sides are equal toαout · eA · f .

Notation III.9. For any D-monoid morphismf : Ψ∆∗ →
ΨΣ∗ we denote byf † the D-monoid morphism

Ψ∆∗ rev∆−−−→ (Ψ∆∗)op
f
−→ (ΨΣ∗)op

revΣ−−→ ΨΣ∗.

Definition III.10. Let f : Ψ∆∗ → ΨΣ∗ be a D-monoid
morphism. For every finiteTΣ-coalgebra(Q, γ) we define its
preimage underf as theT∆-coalgebra(Q, γ)

f
= (Q, γf)

whose dual is the preimage of the dualLΣ-algebra(Q̂, γ̂)
underf †. Shortly:

Q̂f = Q̂f†

.

If f = Ψh∗ for a functionh : ∆ → Σ, it is easy to see that
the coalgebraQf of the previous definition coincides with the
coalgebraQh introduced for the definition of̺T (see II.24).

Example III.11. The preimage of(Q, γ) underf : Ψ∆∗ →
ΨΣ∗ has the same states and final states, and the transitions
are given as follows:

(a) Let C = BA, DL01 andf : ∆∗ → Σ∗. Letting αa =

γ̂a we get, by Example III.6(a), the formulaαf†

b = αa1
· . . . ·

αan
wheref(b) = a1 · · · an (i.e., f †(b) = an · · ·a1). Since

γ̂
f
b = α

f†

b it follows that γf
b = γan

· . . . · γa1
= γf(b).

(b) Let C = JSL0 andf : Pf∆
∗ → PfΣ

∗. We claim that
γ
f
b = γw1

∨ · · · ∨ γwk
wheref(b) = {w1, . . . , wn} and the

join is taken in[Q,Q] (i.e., pointwise). Indeed, observe that the
maph 7→ ĥ gives a semilattice isomorphism[Q,Q] ∼= [Q̂, Q̂].
Letting αa = γ̂a, this isomorphism mapsγwi

to αwrev
i

, and
henceγw1

∨ · · · ∨ γwk
to αwrev

1
∨ · · · ∨ αwrev

n
. By Example

III.6(b) this morphism isαf†

b sincef †(b) = {wrev
1 , . . . , wrev

n }.
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(c) If C = Z2-Vec and f : Pf∆
∗ → PfΣ

∗, thenγ
f
b =

γw1
⊕· · ·⊕γwk

wheref(b) = {w1, . . . , wk}. Indeed, the map
h 7→ ĥ gives an isomorphism of vector spaces[Q,Q] ∼= [Q̂, Q̂].
Letting αa = γ̂a this isomorphism mapsγwi

to αwrev
i

, and
henceγw1

⊕ · · · ⊕ γwk
to αwrev

1
⊕ · · · ⊕ αwrev

n
. By Example

III.6(c) this morphism isαf†

b .
(d) If C = BR and f : ∆∗ + {0} → Σ∗ + {0}, then

γ
f
b = γf(b) if f(b) 6= 0, and otherwiseγf

b is the zero map.
The argument is similar to (a).

Proposition III.12. The language accepted by a stateq of
the coalgebraQf is the preimage underf of the languageq
accepts inQ:

LQf (q) = LQ(q) · f.

Proof: This follows from the computation

LQf (q) = L
Q̂f (q̂) · rev∆ (Lemma III.3)

= L
Q̂f† (q̂) · rev∆ (def.Qf )

= L
Q̂
(q̂) · f † · rev∆ (Corollary III.8)

= L
Q̂
(q̂) · revΣ · f · rev∆ · rev∆ (def. f †)

= L
Q̂
(q̂) · revΣ · f

= LQ(q) · f (Lemma III.3).

Example III.13. If Q is finite subcoalgebra of̺TΣ thenQf

is the T∆-coalgebra of all languagesL : ΨΣ∗ → OD in Q

with transitions given by left derivativesγa(L) = f(a)−1L for
a ∈ ∆. Here we extend the notationw−1L for left derivatives
from wordsw ∈ Σ∗ to all elementsx of ΨΣ∗ as follows: let
lx : ΨΣ∗ → ΨΣ∗ be the left translation,lx(y) = x • y, then
the left derivativex−1L of a languageL : ΨΣ∗ → OD is
L · lx.

We now extend the preimage concept from finite coalgebras
to locally finite ones. ATΣ-coalgebraQ is locally finite iff it is
the filtered colimit of the diagram of all its finite subcoalgebras
Qi ֌ Q (whose connectingTΣ-coalgebra homomorphisms
di,j : Qi → Qj are inclusion maps). Given anyD-monoid
morphismf : Ψ∆∗ → ΨΣ∗, everydi,j is also aT∆-coalgebra
homomorphismdi,j : Q

f
i → Q

f
j by the dual of Lemma

III.7(b). Hence the coalgebrasQf
i and homomorphismsdi,j

form a filtered diagram inCoalg T∆.

Definition III.14. For everyD-monoid morphismf : Ψ∆∗ →
ΨΣ∗ and every locally finiteTΣ-coalgebraQ we denote byQf

the filtered colimit of the diagram of allQf
i , whereQi ranges

over all finite subcoalgebras ofQ.

Example III.15. If Q is a finite subcoalgebra of̺TΣ then the
languages accepted byQf are precisely the languagesL · f
with L ∈ |Q|. This follows from the Proposition III.12 and the
fact that every stateL of Q accepts precisely the languageL.
Since̺TΣ is the filtered colimit of its finite subcoalgebrasQ,
an analogous description holds for(̺TΣ)

f . Hence the unique
T∆-coalgebra homomorphismh : (̺TΣ)

f → ̺T∆ maps every
languageL in ̺TΣ to its preimageL · f .

Recall from Definition II.26 the concept of closure under
preimages. This can now be formulated coalgebraically, much
in the spirit of Proposition II.21.

Theorem III.16. A subfunctorV of the rational functor̺ T

is closed under preimages iff for everyD-monoid morphism
f : Ψ∆∗ → ΨΣ∗ there exists aT∆-coalgebra homomorphism
from (V Σ)f to V∆.

Proof: Suppose thatk : (V Σ)f → V∆ is aT∆-coalgebra
homomorphism. Composed with the inclusioni : V∆ →֒ ̺T∆

it yields the homomorphismh of Example III.15 restricted
to (V Σ)f – this follows from̺T∆ being the terminal locally
finite T∆-coalgebra. Thusi ·k takes every languageL of |V Σ|
to L · f , proving thatL · f lies in V∆.

For the converse, suppose thatV is closed under preimages.
Then the homomorphismh of Example III.15 has a restriction
h0 : (V Σ)f → V∆. Thath0 is a coalgebra homomorphism is
a consequence of the following homomorphism theorem for
coalgebras: ifg : Q → R and i : R′

֌ R areTΣ-coalgebra
homomorphisms such thati is injective andg = i · k for
some morphismk in C , thenk is a coalgebra homomorphism.
This follows easily from the observation thatTΣ preserves
monomorphisms.

IV. GENERALIZED EILENBERG THEOREM

In this section we present our main result, the Generalized
Eilenberg Theorem. First we consider two “finite” versions of
this theorem, proved by Klı́ma and Polák [16] for the cases
C = BA andC = DL01.

Definition IV.1. A variety V of languages inC is called
object-finiteif V Σ is finite for every alphabetΣ.

In the next theorem we will consider locally finite varieties
of D-monoids, see Definition II.1. Recall that, in comparison
to the pseudovarietiesof Definition II.11, varieties ofD-
monoids may contain infinite monoids and are closed under
finite and infinite products. All locally finite varieties ofD-
monoids form a lattice whose meet is intersection. The same
holds for all object-finite varieties of languages where the
intersection is taken objectwise.

Theorem IV.2 (Generalized Eilenberg Theorem for Object-
Finite Varieties). The lattice of all object-finite varieties of
languages inC is isomorphic to the lattice of all locally finite
varieties ofD-monoids.

Proof sketch: Given a varietyV of languages inC ,
denote byeΣ : ΨΣ∗

։ V̂ Σ the dual finiteΣ-generated
monoid of the local varietyV Σ ֌ ̺TΣ, see Theorem II.22.
Let V @ be the class of allD-monoidsD such that every
D-monoid morphismh : ΨΣ∗ → D, whereΣ is any finite
alphabet, factorizes (necessarily uniquely) througheΣ:

h = (ΨΣ∗ eΣ // // V̂ Σ
h′

//❴❴❴❴ D ).

A routine calculation shows thatV @ is a variety ofD-monoids
whose free monoid onΣ is V̂ Σ. Since V̂ Σ is finite, V @ is
locally finite.

10



Conversely, for a locally finite varietyW of D-monoids
(with free monoidseΣ : ΨΣ∗

։ DΣ), we obtain an object-
finite variety of languagesW�

֌ ̺T with W�Σ defined by
Ŵ�Σ = DΣ for all Σ.

The constructionsV 7→ V @ andW 7→ W� are mutually
inverse and hence define the desired lattice isomorphism.

Definition IV.3. An object-finite varietyV of languages inC
is calledsimpleif it is generated by a single alphabetΣ. That
is, given any varietyV ′ such thatV Σ is a local subvariety
of V ′Σ, then V is a subfunctor ofV ′. A pseudovariety of
D-monoids is calledsimple if it is is generated by a single
finite D-monoidD, i.e., all members of the pseudovariety are
submonoids of quotients of finite powersDn (n < ω).

Theorem IV.4 (Generalized Eilenberg Theorem for Simple
Varieties). The poset of all simple varieties of languages in
C is isomorphic to the poset of all simple pseudovarieties of
D-monoids.

Proof sketch: For every locally finite varietyW of D-
monoids the classWf of finite members ofW forms a pseu-
dovariety ofD-monoids. The isomorphismV 7→ V @ in the
proof of Theorem IV.2 restricts to one between simple varieties
of languages and simple pseudovarieties ofD-monoids, that
is, V is simple iff (V @)f is simple.

Our main result now follows from Theorem IV.4 by a
completion process. Recall that acpo is a poset with directed
joins. By a free cpo-completionof a posetP 0 is meant a cpo
P containingP 0 as a subposet such that

(C1) every elementx of P 0 is compact inP (that is,
wheneverx lies under a directed join

∨
pi of elements of

P , thenx ≤ pi for somei), and
(C2) the closure ofP 0 under directed joins is all ofP .

These two properties determineP uniquely up to isomorphism.
ConcretelyP can be constructed as the set of all ideals (=
directed down-sets) ofP 0, ordered by inclusion.

Theorem IV.5 (Generalized Eilenberg Theorem). The lattice
of all varieties of languages inC is isomorphic to the lattice
of all pseudovarieties ofD-monoids.

Proof sketch: One proves that
(1) the latticeLC of all varieties of languages inC is a

free cpo-completion of the posetL 0
C

of all simple varieties
of languages, and

(2) the latticeLD of all pseudovarieties ofD-monoids
is a free cpo-completion of the posetL 0

D
of all simple

pseudovarieties.
This requires a verification of the properties (C1) and (C2)

above. SinceL 0
C

∼= L 0
D

by Theorem IV.4, and free cpo-
completions are unique up to isomorphism, it follows that
LC

∼= LD .
For our five predualities of Example II.5 we thus

obtain the concrete correspondences in the table be-
low as special cases of the Generalized Eilenberg The-
orem. The second column describes theC -algebraic op-
erations under which varieties of languages are closed

(in addition to closure under derivatives and preim-
ages), and the fourth column characterizes theD-monoids.

CATEGORY
C

var. of languages
are closed under

CATEGORY
D

D-monoids

BA ∪, ∩, (–), ∅, Σ∗ Set monoids

DL01 ∪, ∩, ∅, Σ∗ Pos
ordered
monoids

JSL0 ∪, ∅ JSL0
idempotent
semirings

Z2-Vec ⊕, ∅ Z2-Vec Z2-algebras

BR ⊕, ∩, ∅ Set⋆
monoids
with 0

The casesC = BA, DL01 andZ2-Vec are due to Eilen-
berg [12], Pin [18] and Reutenauer [22], respectively. The case
C = JSL0 is “almost” the result of Polák [20]: hisdisjunctive
varieties of languagesare required to containΣ∗ for every
Σ, and he considers semirings without0. In our setting this
would mean to take the predual categoriesC = JSL01 (join-
semilattices with0 and 1) and D = JSL (join-semilattices).
We opted for the more symmetric predualityC = D = JSL0

as semirings are usually considered with a zero element. The
last example,C = BR, is a new variant of Eilenberg’s
theorem.

V. VARIETIES OFREGULAR BEHAVIORS

Although all our results so far concerned acceptors and
varieties of languages they accept, we can with little effort
generalize the whole theory to Moore automata, where the
output morphismγout has, in lieu of{0, 1}, any finite setO
(of outputs) as codomain. The role of languages overΣ is now
taken over by functionsβ : Σ∗ → O, and the role of regular
languages byregular behaviors, i.e, thoseβ realized by a state
of some finite Moore automaton.

Given a fixed finite setO of outputs, all we need to change
in the previous text is Assumption II.4(v) which is replaced
by |OC | = O, whereOC is the object dual to1D . For the
objectOD dual to1C we can assume, as in Remark II.3, that
|OC | = |OD |. Moore automata are modeled as coalgebras for
the endofunctor onC

TΣQ = OC ×QΣ.

Example V.1 (Linear weighted automata). Let C = D be the
categoryK-Vec of vector spaces over a finite fieldK. Here
OC = K, the one-dimensional space. Thus, aTΣ-coalgebra
is a linear weighted automaton: it consists of a vector space
Q of states, a linear output functionγout : Q → K and linear
transitionsγa : Q → Q for a ∈ Σ.

The rational fixpoint̺ TΣ of the functorTΣ is carried by
the set of all regular behaviorsβ : Σ∗ → O (that we identify
with the corresponding morphismsβ : ΨΣ∗ → OD in D). Its
output map assigns the value at the empty word,γout(β) =
β(ε), and its transitions are given byleft derivativesγa(β) =
β(a · –) for all a ∈ Σ. Symmetrically, theright derivativesof
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β are the functionsβ(− ·a) for a ∈ Σ. We define therational
functor ̺T : Setopf → C in complete analogy to Definition
II.24.

Definition V.2. A subfunctorV →֒ ̺T is closed under preim-
agesif for every D-monoid morphismf : Ψ∆∗ → ΨΣ∗ and
every behaviorβ : ΨΣ∗ → OD in V Σ the behaviorβ · f lies
in V∆. A variety of behaviors inC is a subfunctorV →֒ ̺T

closed under preimages and (left and right) derivatives.

Example V.3 (Varieties of rational power series). If C = D =
K-Vec, the coalgebra̺TΣ consists of all rational power series
β : Σ∗ → K, i.e., behaviors of linear weighted automata.
Moreover,D-monoids are precisely algebras over the field
K, and the freeK-algebraΨΣ∗ is carried by the set of all
functionsΣ∗ → K with finite support. Given a morphism
f : Ψ∆∗ → ΨΣ∗ of freeK-algebras, the preimage of a power
seriesβ : Σ∗ → K underf is

β′ : ∆∗ → K, β′(w) =
∑

v∈Σ∗

f(w)(v) · β(v).

(This sum is well-defined becausef(w) : Σ∗ → K has
finite support.) A variety of behaviors inK-Vec forms linear
subspacesV Σ of ̺TΣ closed under derivatives and preimages
of K-algebra morphisms. This coincides with the concept of
a variety of rational power seriesintroduced by Reutenauer
[22]. His Theorem III.1.1 is therefore a special case of

Theorem V.4 (Generalized Eilenberg Theorem for Regular
Behaviors). The lattice of all varieties of behaviors inC is
isomorphic to the lattice of all pseudovarieties ofD-monoids.

VI. CONCLUSIONS ANDFUTURE WORK

In the present paper we demonstrated that Eilenberg’s
variety theorem, a central result of algebraic automata theory,
holds at the level of an abstract duality between (algebraic)
categories. Our result covers uniformly several known exten-
sions and refinements of Eilenberg’s theorem and also provides
a new Eilenberg-type correspondence for pseudovarieties of
monoids with0.

In the future we intend to classify all predual pairs(C ,D)
satisfying our Assumptions II.4 above. Using thenatural
duality framework of Clark and Davey [11], we expect to show
that only finitely many Eilenberg theorems exist for every fixed
finite output setO.

We also believe that more can be said about the relation-
ship between local varieties of languages and varieties of
languages. By studying languages and monoids in a setting
of Grothendieck fibrations, it seems possible that the global
Eilenberg theorem turns out to be an instance of the local one–
or that both theorems are instances of one and the same result.
This might lead to independent proofs of our results, and at
the same time to a more abstract and hence illuminating view
of the concepts involved.

Another important direction is the connection of regular
languages to profinite algebras. All results mentioned in the
Related Work can be interpreted in the setting(C ,D) =
(BA,Set) or (DL01,Pos), and we aim to extend them to

general pairs of predual categories. This will require the gen-
eralization of two core concepts of algebraic automata theory,
the syntactic (ordered) monoid associated to a regular language
and the free profinite (ordered) monoid on an alphabetΣ, to
a notion ofsyntacticD-monoidand free profiniteD-monoid,
respectively. We conjecture that the free profiniteD-monoid
on Σ arises as the limit of all quotient monoids ofΨΣ∗,
and hope to derive a generalized Reiterman theorem. In the
classical setting the theorems of Eilenberg and Reiterman are
two key ingredients in a great success of algebraic automata
theory: these results allow to specify classes of regular lan-
guages (e.g. the star-free languages) by profinite identities,
which leads to decidability results for such classes. Perhaps,
new such results are enabled through subsequent work in our
generalized setting.

Finally, we are interested in extending our results from
regular languages and Moore behaviors to other notions of
rational behavior, such asω-regular languages or regular tree
languages. Here the role of monoids is taken over by two-
sorted algebras calledWilke algebras(or right binoids, see
Wilke [25]) andforest algebras(introduced by Bojanczyk and
Walukiewicz [9]), respectively. The main challenge will beto
identify the proper categorical model for the corresponding
acceptors, Büchi automata and tree automata.
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APPENDIX A
PROOFS

This appendix provides all proofs we omitted due to space
limitations, along with some technical lemmas required for
these proofs.

Remark A.1. (a) Recall that an objectA of a categoryA
is called finitely presentableif its hom-functor A (A, –) :
A → Set preserves filtered colimits. IfA is a locally finite
variety of (ordered) algebras, the finitely presentable objects
are precisely the finite algebras.

(b) Every finiteTΣ-coalgebra is a finitely presentable object
of Coalg TΣ, see [2]. Hence, given a filtered colimit cocone
c′i : Q′

i → Q′ (i ∈ I) in CoalgTΣ, every coalgebra
homomorphismh : Q → Q′ with finite domainQ factorizes
(in CoalgTΣ) through somec′i:

Q
h //

h′

��
❄

❄
❄

❄
Q′

Q′
i

c′i

OO

Remark A.2. The forgetful functorCoalg TΣ → C preserves
and creates colimits. The latter means that, given a diagram
(Qi, γi) (i ∈ I) of TΣ-coalgebras and a colimit cocone(ci :
Qi → Q)i∈I in C , there is a uniqueTΣ-coalgebra structureγ
onQ for which the mapsci areTΣ-coalgebra homomorphisms
ci : (Qi, γi) → (Q, γ). Moreover,(ci) is a colimit cocone in
Coalg TΣ.

The uniqueness ofγ gives rise to a useful proof principle:
if two coalgebra structuresγ andγ′ on Q are given such that
eachci is a coalgebra homomorphismci : (Qi, γi) → (Q, γ)
andci : (Qi, γi) → (Q, γ′), it follows thatγ = γ′.

The preimage constructionQf , see Definition III.14, has
the following equivalent formulation:

Construction A.3. For every locally finite TΣ-coalgebra
(Q, γ) and D-monoid morphismf : Ψ∆∗ → ΨΣ∗ we
construct aT∆-coalgebra(Q, γ)f as follows:

(1) Express(Q, γ) as a filtered colimitci : (Qi, γi) →
(Q, γ) (i ∈ I) of finite TΣ-coalgebras.

(2) Let γf be the uniqueT∆-coalgebra structure onQ
for which all ci : (Qi, γi)

f → (Q, γf) are T∆-coalgebra
homomorphism, see Remark A.2. Put

(Q, γ)f := (Q, γf ).

The following lemma summarizes some important proper-
ties of this construction.

Lemma A.4. Let (Q, γ) be a locally finiteTΣ-coalgebra and
f : Ψ∆∗ → ΨΣ∗ a D-monoid morphism.

(a) The coalgebra structure of(Q, γ)f is independent of the
choice of the colimit cocone(ci) in Construction A.3.

(b) If f = Ψf∗
0 for somef0 : ∆ → Σ, then(Q, γ)f has the

coalgebra structure

Q
γ
−→ OC ×QΣ id×Qf0

−−−−−→ OC ×Q∆, (2)

c.f. the definition of the rational functor̺T (Definition II.24).
(c) Every homomorphismh : Q → Q′ of locally finite TΣ-
coalgebras is also a homomorphismh : Qf → (Q′)f of T∆-
coalgebras.

(d) For anyD-monoid morphismg : ΨΓ∗ → Ψ∆∗,

(Qf )g = Qf ·g.

(e) The construction(−)f commutes with coproducts: given
locally finiteTΣ-coalgebrasQj (j ∈ J), we have

(
∐

j

Qj)
f =

∐

j

Q
f
j .

Proof: (a) Supposeγf has been defined by means of the
cocone(ci), and another filtered colimit cocone

c′j : (Q
′
j , γ

′
j) → (Q, γ) (j ∈ J)

with Q′
j finite is given. By Remark A.2 it suffices to show

that the mapsc′j are T∆-coalgebra homomorphismsc′j :

(Q′
j , γ

′
j)

f → (Q, γf ).
Given j ∈ J , there exists by Remark A.1 aTΣ-coalgebra

homomorphismg : (Q′
j , γ

′
j) → (Qi, γi) with ci · g = c′j for

somei. It follows that c′j is a T∆-coalgebra homomorphism,
being the composite of theT∆-coalgebra homomorphisms

(Q′
j , γ

′
j)

f g
−→ (Qi, γi)

f ci−→ (Q, γf ).

Indeed,g is a T∆-coalgebra homomorphism using the defini-
tion of Qf for finite Q (Definition III.10) and Lemma III.7(b),
andci is one by the definition ofγf .

(b) Given anLΣ-algebra(A,α) theL∆-algebra(A,α)f (see
Definition III.5) has the transitionsαf

a = αf0(a) for a ∈ ∆.

Hence, for a finiteTΣ-coalgebra(Q, γ), theL∆-algebraQ̂f =

Q̂f†

= Q̂f has transitionŝγf0(a) : Q̂ → Q̂ for a ∈ ∆. Dually
Qf has the transitionsγf0(a) : Q → Q, which are precisely
the transitions corresponding to the coalgebra structure (2).

In the case where(Q, γ) is just locally finite, express(Q, γ)
as a filtered colimitci : (Qi, γi) → (Q, γ) (i ∈ I) of finite
TΣ-coalgebras, and consider the diagram below:

Q
γ

// OC ×QΣ id×Qf0

// OC ×Q∆

Qi

ci

OO

γi

// OC ×QΣ
i

id×Q
f0
i

//

TΣci

OO

OC ×Q∆
i

T∆ci

OO

This diagram commutes becauseci is a TΣ-coalgebra homo-
morphism and by naturality. The lower row is the coalgebra
structure of(Qi, γi)

f by the first part of the proof. Hence
ci is a T∆-coalgebra homomorphism from(Qi, γi)

f to the
coalgebra in the upper row, which implies that the upper row
defines the coalgebra structure of(Q, γ)f .

(c) ExpressQ and Q′ as filtered colimitsci : Qi → Q

(i ∈ I) andc′j : Q
′
j → Q′ (j ∈ J) of finite TΣ-coalgebras. By

Remark A.1 there exists for everyi ∈ I someTΣ-coalgebra
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homomorphismg : Qi → Q′
j for which the diagram below

commutes:
Q

h // Q′

Qi

ci

OO

g
// Q′

j

c′j

OO

It follows that h · ci : Q
f
i → (Q′)f is a T∆-coalgebra

homomorphism, being the composite of theT∆-coalgebra

homomorphismsQf
i

g
−→ (Q′

j)
f

c′j
−→ (Q′)f (one uses the

same argument as in point (a)). Since the morphismsci are
jointly epimorphic inC , it follows that h is a T∆-coalgebra
homomorphismh : Qf → (Q′)f .

(d) (i) We first show that for allLΣ-algebras(A,α) we have

(Af )g = Af ·g.

Indeed, both algebras have statesA and initial statesαin. To
see that they have the same transitions, consider the diagram
below, cf. Notation III.4 and Definition III.5.

ΨΣ∗ x 7→αx // [A,A]

ΨΓ∗

f ·g

OO

g
// Ψ∆∗

y 7→αf
y

OO

f▲▲▲▲▲

ee▲▲▲▲▲
(3)

The upper triangle commutes by the definition ofαf . Hence,
for all a ∈ Γ,

(αf ·g)a = αfg(a) (def.αf ·g)

= (αf )ga (diagram (3))

= ((αf )g)a def. (αf )g

(ii) If Q is a finiteTΣ-coalgebra we conclude from (i):

Q̂f ·g = Q̂(f ·g)† = Q̂f†·g†

= (Q̂f†

)g
†

= (̂Qf )g,

soQf ·g = (Qf )g.
(iii) Now let Q be locally finite, and expressQ as a filtered

colimit ci : Qi → Q (i ∈ I) of finite TΣ-coalgebras. Hence
by (c) we haveTΓ-coalgebra homomorphismsci : Qf ·g

i →

Qf ·g and ci : (Q
f
i )

g → (Qf )g, whereQf ·g
i = (Qf

i )
g by (ii)

above. It follows thatQf ·g and(Qf )g have the same coalgebra
structure.

(e) (i) We first prove that, for each family ofLΣ-algebras
(Aj , αj) (j ∈ J),

(
∏

j

Aj)
f = (

∏

j

A
f
j ).

Clearly the algebras on both sides of the equation have the
same states

∏
j Aj and the same initial state. Concerning the

transitions, consider the commutative diagram below:

Ψ∆∗ f
// ΨΣ∗

a 7→
∏

(αj)a
//

〈a 7→(αj)a〉
((❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘ [
∏

Aj ,
∏

Aj ]

∏
[Aj , Aj ]

(fj) 7→
∏

fj

OO

The upper and lower path define the transitions of(
∏

j Aj)
f

and
∏

j A
f
j , respectively. Hence they have the same transitions.

(ii) Suppose now thatJ is finite and finiteTΣ-coalgebras
Qj are given. Then we conclude from (i) and duality:

̂
(
∐

j

Qj)f = (
∐̂

Qj)
f†

= (
∏

Q̂j)
f†

=
∏

Q̂j

f†

=
∐̂

Q
f
j .

The statement for arbitraryJ and locally finite coalgebrasQj

now follows from the fact that filtered colimits and coproducts
commute inCoalgTΣ, and every infinite coproduct is a
filtered colimit of finite ones.

Remark A.5. Recall thehomomorphism theoremfor coalge-
bras: if aTΣ-coalgebra homomorphismg : Q → R factorizes
in C through a subcoalgebrai : R′

֌ R, then the factorizing
morphismg′ is a coalgebra homomorphism.

R

Q

g
??⑧⑧⑧⑧

g′

//❴❴❴❴ R′
``
i

``❅❅❅❅

This follows easily from the observation thatTΣ preserves
monomorphisms.

Remark A.6. Note that locally finiteTΣ-coalgebras are closed
under subcoalgebras. Indeed, suppose thati : Q′

֌ Q is
a TΣ-coalgebra homomorphism, whereQ is locally finite.
Now for every q ∈ |Q′| we have a finite subcoalgebraQ0

of Q containingq. SinceTΣ preserves intersections we can
conclude thatQ0 ∩Q′ is a subcoalgebra ofQ′ containingq.

Lemma A.7. A family of subcoalgebrasmΣ : V Σ ֌ ̺TΣ

(Σ ∈ Setf ) forms a subfunctor of̺ T iff, for every function
f0 : ∆ → Σ in Setf , a TΣ-coalgebra homomorphism from
(V Σ)f to V∆ exists, wheref = Ψf∗

0 .

Proof: Suppose that theV Σ form a subfunctorV ֌ ̺T ,
and letf0 : ∆ → Σ. Then we have the commutative diagram
below with g = V f0:

̺TΣ

̺Tf0 // ̺T∆

V Σ
OO

mΣ

OO

g
// V∆

OO
m∆

OO

By definition, ̺Tf0 is a T∆-coalgebra homomorphism̺Tf0 :
(̺TΣ)

f → ̺T∆, and by Lemma A.4(b),mΣ is aT∆-coalgebra
homomorphismmΣ : (V Σ)f → (̺TΣ)

f . The homomorphism
theorem then implies thatg is aT∆-coalgebra homomorphism
from (V Σ)f to V∆.

Conversely, given aT∆-coalgebra homomorphismg :
(V Σ)f → V∆, the above square commutes because both
̺Tf0 · mΣ and m∆ · g are T∆-coalgebra homomorphisms
from (V Σ)f into the terminal locally finiteT∆-coalgebra̺ T∆.
Note that(V Σ)f is locally finite becauseV Σ is locally finite,
being a subcoalgebra of the locally finite coalgebra̺TΣ, see
Remark A.6.
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Remark A.8. Dually to Remark A.5, we have the following
homomorphism theorem forLΣ-algebras: if anLΣ-algebra
homomorphismf : A → C factorizes inD through anLΣ-
quotient algebrae : A ։ B, then the factorizing morphismf ′

is anLΣ-algebra homomorphism.

A
e
~~~~⑦⑦
⑦⑦

f

  
❅❅

❅❅

B
f ′

//❴❴❴❴ C

The analogous statement holds forD-monoid morphisms.
SinceAlgLΣ andD-Mon are varieties of (ordered) algebras,
this is a special case of the well-known homomorphism
theorem of universal algebra.

Lemma A.9. Let Q ֌ ̺TΣ and Q′
֌ ̺T∆ be finite local

varieties of languages, andf : Ψ∆∗ → ΨΣ∗ a D-monoid
morphism. Then there exists aT∆-coalgebra homomorphism
from h : Qf → Q′ iff there exists aD-monoid morphismg
making the following square commute:

Ψ∆∗ f†

//

e
Q̂′

����

ΨΣ∗

e
Q̂

����

Q̂′
g

// Q̂

(4)

In this case, we haveg = ĥ.

Proof: Given aT∆-coalgebra homomorphismh : Qf →
Q′ we have, by Lemma III.7, the following square ofL∆-
algebra homomorphisms

Ψ∆∗ f†

//

e
Q̂′

����

(ΨΣ∗)f
†

e
Q̂

����

Q̂′
g

// Q̂f†

(5)

whereg = ĥ. This diagram commutes becauseΨ∆∗ is the
initial L∆-algebra. Therefore the square (4) commutes. That
g is a D-monoid morphism follows from Remark A.8.

Conversely, given a morphismg for which (4) commutes,
theng : Q̂′ → Q̂f†

= Q̂f is anL∆-algebra homomorphism by
(5) and Remark A.8, so dually aT∆-coalgebra homomorphism
Qf → Q′ exists.

Notation A.10. Let V be an object-finite variety of languages
in C .

(a) We denote byeΣ : ΨΣ∗
։ V̂ Σ the Σ-generatedD-

monoid corresponding to the local varietyV Σ.
(b) SinceV is closed under preimages, we have a (unique)

T∆-coalgebra homomorphismV f : (V Σ)f → V∆ for every
D-monoid morphismf : Ψ∆∗ → ΨΣ∗, see Theorem III.16.
This notation is in good harmony with the functor notation
for V : for a functionf0 : ∆ → Σ and the correspondingD-
monoid morphismf = Ψf∗

0 : Ψ∆∗ → ΨΣ∗ we haveV f0 =
V f : indeed, both maps areT∆-coalgebra homomorphisms
from (V Σ)f to V∆ and for theT∆-coalgebra homomorphism

i : V∆ ֌ ̺T∆ we have thati ·V f0 = i ·V f : (V Σ)f → ̺T∆

agree by the finality of̺ T∆; now use thati is monomorphic
to concludeV f0 = V f .

(c) We denote byV @ the class of allD-monoidsD such
that everyD-monoid homomorphismh : ΨΣ∗ → D, whereΣ
is any finite set, factorizes (necessarily uniquely) through eΣ.

ΨΣ∗

eΣ
����

h

!!❈
❈❈

❈❈
❈❈

❈❈

V̂ Σ //❴❴❴ D

Proposition A.11. V @ is a locally finite variety ofD-monoids
whose freeD-monoid onΣ is V̂ Σ for every finite setΣ.

Proof: (1) We first verify thatV @ is a variety of D-
monoids.

(a) Closure under products: letπi :
∏

i∈I Di → Di be a
product of monoidsDi ∈ V @. Given a monoid morphism
h : ΨΣ∗ →

∏
i∈I Di every morphismπi · h : ΨΣ∗ → Di

factorizes asπi · h = ki · eΣ for someki : V̂ Σ → Di. Hence
〈ki〉 : V̂ Σ →

∏
Di is the desired morphism withh = 〈ki〉·eΣ.

(b) Closure under submonoids: givenm : D ֌ D′

with D′ ∈ V @ and a monoid morphismh : ΨΣ∗ → D,
the homomorphismm · h factorizes througheΣ in D-Mon.
Consequentlyh factorizes througheΣ due to diagonal fill-in:

ΨΣ∗ eΣ // //

h

��

V̂ Σ

||②
②
②
②
②

k

��

D
m

// D′

.

ThusD ∈ V @.
(c) Closure under quotients: givene : D ։ D′ with D ∈

V @ and a homomorphismh : ΨΣ∗ → D′, choose a splitting
of e in Set, i.e., a functionu : |D′| → |D| with e · u = id.
Let η : Σ ֌ |ΨΣ∗| denote the universal map of the free
monoid ΨΣ∗, and extend the mapu · h · η : Σ → |D| to
a homomorphismk : ΨΣ∗ → D, which then factorizes as
k = k′ ·eΣ becauseD is in V @. Then theD-monoid morphism
e · k′ : V̂ Σ → D′ is the desired factorization ofh.

Σ //
η

// ΨΣ∗

h

❉❉
❉

!!❉
❉❉

❉❉
❉❉k

��

eΣ // // V̂ Σ

k′
③③

}}③③
③③
③③
③

D
e // //

D′oo
u

oo

Indeed, using freeness of theD-monoidΨΣ∗ and sinceu is
injective it suffices to prove thatu · h · η = u · e · k′ · eΣ · η in
Set, which holds because

u · h · η = u · e · u · h · η (e · u = id)

= u · e · k · η (def. k)

= u · e · k′ · eΣ · η (def. k′).

(2) TheD-monoid V̂∆ lies in V @ for all finite ∆. Indeed,
given a D-monoid morphismh : ΨΣ∗ → V̂∆ whereΣ is
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finite, we can choose a splitting inSet (a functionu : |V̂∆| →
|Ψ∆∗| with e∆ · u = id), and extendu · h · η to a D-monoid
morphismf : ΨΣ∗ → Ψ∆∗. By Lemma A.9 there is aD-
monoid morphismg : V̂ Σ → V̂∆ such thatg · eΣ = e∆ · f .

Σ //
η

// ΨΣ∗

eΣ
����

f
//

h

##❋
❋❋

❋❋
❋❋

❋❋
Ψ∆∗

e∆
����

V̂ Σ
g

// V̂∆

OO
u

OO

We claim thatg is the desired factorization, i.e.,g · eΣ = h.
Using freeness of theD-monoidΨΣ∗ and sinceu is injective
it suffices to proveu · g · eΣ · η = u · h · η in Set, and indeed
we have

u · g · eΣ · η = u · e∆ · f · η (def. g)

= u · e∆ · u · h · η (def. f )

= u · h · η (e∆ · u = id).

(3) From the definition ofV @ and (2) above we immediately
conclude that̂V∆ is the free monoid on a finite set∆ in the
varietyV @. Hence, sincêV∆ is finite, V @ is a locally finite
variety of D-monoids.

Proof of Theorem IV.2:The above mapV 7→ V @ defines
the desired isomorphism. To see this, we describe its inverse
W 7→ W�. Let W be a locally finite variety ofD-monoids
with free monoidseΣ : ΨΣ∗

։ DΣ in W . Define an object-
finite variety W� of languages inC by forming, for each
finite Σ, the dual local varietyW�Σ →֒ ̺TΣ of eΣ, i.e.,
Ŵ�Σ ∼= DΣ. To verify that W� is a subfunctor of̺T ,
consider a functionf0 : ∆ → Σ in Setf and the corresponding
D-monoid morphismf = Ψf∗

0 : Ψ∆∗ → ΨΣ∗. SinceD∆

is the free monoid on∆ in W , we get a uniqueD-monoid
morphismg : V∆ → VΣ with with g · e∆ = eΣ · f . By
Lemma A.9 we dually get aT∆-coalgebra homomorphism
(W�Σ)f → W�∆, which implies thatW� is a subfunctor
of ̺T by Lemma A.7.

From Proposition A.11 and the definition of(−)@ and(−)�

it is clear that(V @)� = V . To show that(W�)@ = W , ob-
serve first that the varieties(W�)@ andW have by definition
the same finitely generated freeD-monoidsDΣ, and hence
contain the same finiteD-monoids. Moreover, both varieties
are locally finite and hence form the closure (in the category
D-Mon) of their finite members under filtered colimits. It
follows that (W�)@ = W , as claimed.

We conclude thatV 7→ V @ defines a bijection between
the lattices of object-finite varieties of languages (ordered by
objectwise inclusion) and locally finite varieties ofD-monoids
(ordered by inclusion). Moreover, clearly this bijection pre-
serves and reflects the order, so it is a lattice isomorphism.

We now turn to the Eilenberg theorem for simple varieties.
For the proof we need to extend the right-derivative construc-
tion of Notation II.20.

Notation A.12. Let (A,α) be anL∆-algebra andeA : Ψ∆∗ →
A the initial homomorphism, see Remark II.16. Forx ∈ |Ψ∆∗|

let (A,α)x be theL∆-algebra with the same statesA, the same
transitionsαa, but initial stateeA(x). For a finiteT∆-coalgebra
Q we define theT∆-coalgebraQx by

Q̂x = Q̂rev∆(x).

Lemma A.13. Let x ∈ |Ψ∆∗|.
(a) Every homomorphismh : Q → Q′ between finiteT∆-

coalgebras is also a homomorphismh : Qx → Q′
x.

(b) If Q ֌ ̺T∆ is a finite local variety, then aT∆-
coalgebra homomorphism fromQx to Q exists for every
x ∈ Ψ∆∗.

(c) For every finiteTΣ-coalgebraQ and D-monoid mor-
phismf : Ψ∆∗ → ΨΣ∗ we have

(Qf )x = (Qfx)
f .

Proof: For (a) notice first that every homomorphismh :
(A,α) → (A′, α′) of L∆-algebras yields a homomorphism
h : (A,α)x → (A′, α′)x since by initiality ofΨ∆∗ we have
h · eA(x) = eA′(x). Now given a homomorphismh : Q → Q′

between finiteT∆-coalgebras, we have its dualL∆-algebra
homomorphism̂h : Q̂′ → Q̂. Hence, we have theL∆-algebra
homomorphism̂h : Q̂′

x = Q̂′
rev∆(x) → Q̂rev∆(x) = Q̂x and by

duality the desiredT∆-coalgebra homomorphismh : Qx →
Q′

x.
For (b) see [1, Prop. 4.31] and its proof. It remains to prove

(c). We first prove that

(Af )x = (Afx)
f (6)

for all LΣ-algebrasA = (A,α) and D-monoid morphisms
f : Ψ∆∗ → ΨΣ∗. Indeed, both(Af )x and(Afx)

f have states
A and transitionsαfa for a ∈ ∆. Moreover, the initial state
of (Af )x is eAf (x), and the initial state of(Afx)

f is eA(fx).
Hence, by Lemma III.7(c),(Af )x and(Afx)

f have the same
initial state.

Now let Q be a finiteTΣ-coalgebra. Then

(̂Qf )x = (Q̂f )rev∆(x) (def. (−)x)

= (Q̂f†

)rev∆(x) (def.Qf )

= (Q̂f†rev∆(x))
f†

(by (6))

= (Q̂revΣ·f(x))
f†

(def f †)

= (Q̂fx)
f†

(def. Qfx)

= ̂(Qfx)f (def. (−)f ).

Hence(Qf )x = (Qfx)
f , as claimed.

Construction A.14. Let V be a variety of languages inC and
Σ a finite alphabet. Given a finite local varietyi : Q ֌ V Σ
we define a subvarietyV ′

֌ V as follows. To defineV ′∆
for all finite ∆, consider, for everyD-monoid homomor-
phism f : Ψ∆∗ → ΨΣ∗, the T∆-coalgebra homomorphism
V f : (V Σ)f → V∆, see Notation A.10. Then factorize the
coalgebra homomorphism[V f · i] :

∐
f :Ψ∆∗→ΨΣ∗ Qf → V∆

as in Remark II.8:

[V f · i] ≡
∐

f:Ψ∆
∗→ΨΣ

∗

Qf e∆ // // V ′∆ //
m∆ // V∆ . (7)
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Lemma A.15. V ′ is a subfunctor ofV (via them∆’s) and
forms a simple variety withQ ⊆ V ′Σ.

Proof: (1) For every finite alphabetΓ and everyD-
monoid morphismg : ΨΓ∗ → Ψ∆∗ we prove that there exists
a TΓ-coalgebra homomorphism

g′ : (V ′∆)g → V ′Γ with mΓ · g′ = V g ·m∆. (8)

By Lemma A.7, this implies in particular thatV ′ is a
subfunctor of V . Denote by p :

∐
f :Ψ∆∗→ΨΣ∗ Q

f ·g →∐
h:ΨΓ∗→ΨΣ∗ Q

h the TΓ-coalgebra homomorphism whosef -
component is the coproduct injection ofh = f · g. Note that∐

f Q
f ·g = (

∐
f Q

f )g by Lemma A.4. Hence we have the
following diagram ofTΓ-coalgebra homomorphisms:

(
∐

f Q
f )g

e∆ // //

p

��

(V ′∆)g //
m∆ //

g′

��
✤

✤

✤
(V∆)g

V g

��∐
hQ

h
eΓ

// // V ′Γ //
mΓ

// V Γ

(9)

The outside of the diagram commutes because thef -
components of the upper and lower path areTΓ-coalgebra
homomorphisms from the finiteTΓ-coalgebraQf ·g to V Γ ֌

̺TΓ, and̺TΓ is the terminal locally finite coalgebra. The de-
siredTΓ-coalgebra homomorphismg′ is obtained via diagonal
fill-in in Coalg TΓ, see Remark II.8.

(2) V ′∆ is a local variety for every∆. Indeed, by definition
V ′∆ it is a subcoalgebra ofV∆ and hence of̺ T∆. To
prove closure under right derivatives, use Proposition II.21:
sinceV∆ and Q are local varieties, we haveT∆-coalgebra
homomorphismsha : (V∆)a → V∆ for all a ∈ ∆ andTΣ-
coalgebra homomorphismskx : Qx → Q for all x ∈ ΨΣ∗,
see Lemma A.13(b). Moreover,

(
∐

f

Qf )a =
∐

f

(Qf )a =
∐

f

(Qfa)
f

by Lemma A.13(c) and since the construction(−)a clearly
commutes with coproducts. Hence we have the following
diagram ofT∆-coalgebra homomorphisms

(
∐

f:Ψ∆
∗→ΨΣ

∗

Qf )a
e∆ // //

∐
f kfa

��

(V ′∆)a //
m∆ //

h′
a

��
✤

✤

✤

✤
(V∆)a

ha

��∐
f:Ψ∆

∗→ΨΣ∗

Qf
e∆

// // V ′∆ //
m∆

// V∆

.

whose outside commutes by a finality argument analogous to
(1). Diagonal fill-in yields aT∆-coalgebra homomorphismh′

a :
(V ′∆)a → V ′∆, which shows thatV ′∆ is closed under right
derivatives by Proposition II.21.

(3) V ′ is a variety of languages. Indeed, apply Theo-
rem III.16 to conclude from (8) thatV ′ is closed under
preimages. MoreoverQ ⊆ V ′Σ, due to the possibility of
choosingf = idΨΣ∗ in (7) for the case∆ = Σ.

(4) V ′ is object-finite. Note first that for every finite alphabet
∆ there exist only finitely many preimagesQf , where f :
Ψ∆∗ → ΨΣ∗ ranges over allD-monoid morphisms: indeed,
Q is finite and the coalgebraQf has the same set of states
Q. Choosef1, . . . , fn such that eachQf is equal toQfi

for somei. Then consider theT∆-coalgebra homomorphism
t :

∐
f :Ψ∆∗→ΨΣ∗ Q

f →
∐n

i=1 Q
fi whose f -component is

the coproduct injection ofQfi wheneverQf = Qfi . Then
e∆ = u · t for the obvious morphismu :

∐n
i=1 Q

fi → V ′∆.
Thus,u is surjective sincee∆ is, proving thatV ′∆ is finite
(being a quotient of the finite coalgebra

∐n
i=1 Q

fi).
(5) V ′ is simple. Indeed, given a varietyV ′′ of languages

with j : Q ֌ V ′′Σ a local subvariety, we proveV ′
֌ V ′′.

Denote byu′
∆ : V ′∆ ֌ ̺T∆ and u′′

∆ : V ′′∆ ֌ ̺T∆ the
embeddings and byV ′′f : (V ′′Σ)f → V ′′∆ theT∆-coalgebra
homomorphism of Theorem III.16. Then the square

∐
f:Ψ∆

∗→ΨΣ
∗

Qf e∆ // //

[V ′′f ·j]

��

V ′∆
��

u′
∆

��~~⑤
⑤
⑤
⑤
⑤

V ′′∆ //

u′′
∆

// ̺T∆

commutes due to̺ T∆ being the terminal locally finite
T∆-coalgebra. Diagonal fill-in yields the desired embedding
V ′∆ ֌ V ′′∆.

Remark A.16. For every locally finite varietyW of D-
monoids the setWf of all finite members ofW is clearly a
pseudovariety ofD-monoids. Conversely, for every pseudova-
riety W , we denote by〈W 〉 the variety generated byW , i.e.,
the closure ofW under (infinite) products, submonoids and
quotient monoids.

Lemma A.17. For every simple pseudovarietyW of D-
monoids, the variety〈W 〉 is locally finite and〈W 〉f = W .
In particular, the simple pseudovarieties ofD-monoids form a
(full) subposet of all locally finite varieties ofD-monoids via
the order-embeddingW 7→ 〈W 〉.

Proof: Suppose that the pseudovarietyW is generated by
the finite D-monoidD. Then it is easy to see that also the
variety 〈W 〉 is generated byD, i.e., 〈W 〉 = 〈D〉. Fix a finite
set Σ and consider all functionsu : Σ → |D|. They define
a function〈u〉 : Σ → |D||D|Σ that extends uniquely to aD-
monoid morphismg : ΨΣ∗ → D|D|Σ . Letting g = m · e be is
its factorization inD-Mon, we get the commutative diagram
below:

Σ

u

��

〈u〉

""❊
❊❊

❊❊
❊❊

❊
//

η
// ΨΣ∗

g
��

e // // FΣ{{

m{{✇✇
✇✇
✇✇
✇✇

D D|D|Σ

πu

oo

This shows thatFΣ (with universal mape · η) is the free
Σ-generatedD-monoid in 〈W 〉: it has the universal property
w.r.t. D by the above diagram, and hence it has the universal
property w.r.t. all monoids in〈W 〉 = 〈D〉. MoreoverFΣ lies
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in W , being a submonoid of a finite power ofD. This implies
that every finite monoid in〈W 〉 lies inW , since it is a quotient
of a finitely generated free monoid.

We conclude that〈W 〉 is locally finite and〈W 〉f = W ,
and this equation implies immediately thatW 7→ 〈W 〉 is an
injective order-embedding

Proof of Theorem IV.4:Recall the isomorphismV 7→ V @

between object-finite varieties of languages inC and locally
finite varieties ofD-monoids from the proof of Theorem IV.2.
In view of Lemma A.17 it suffices to show that this isomor-
phism restricts to one between simple varieties of languages
and simple pseudovarieties ofD-monoids, that is,

V is simple iff (V @)f is simple.

(⇒) If V is a simple variety of languages, generated by
Σ, we prove that the pseudovariety(V @)f is generated by
theD-monoidV̂Σ. First apply Construction A.14 to the finite
local varietyQ = V Σ. Then for the resulting varietyV ′ we
haveV ′ = V . Indeed,V ′ ⊆ V follows from Lemma A.15,
and V ⊆ V ′ holds becauseV is generated byΣ. It follows
that for every∆ the morphismm∆ in Construction A.14
is an isomorphism, or equivalently, the family of morphisms
V f : (V Σ)f → V∆, wheref ranges over allD-monoid mor-
phismsf : Ψ∆∗ → ΨΣ∗ is collectively strongly epimorphic
in C . As in the the proof of Lemma A.15 we choose finitely
many homomorphismsf1, . . . , fn : Ψ∆∗ → ΨΣ∗ with h =
[V fi] :

∐n
i=1(V Σ)fi ։ V∆ a strong epimorphism. Dually,

by Lemma A.9 we get aD-submonoid̂h : V̂∆ ֌

∏n
i=1 V̂ Σ.

We conclude that every finitely generated free monoid̂V∆ of
the pseudovarietyV @ is a D-submonoid of a finite power of
V̂ Σ. Consequently(V @)f is generated bŷV Σ.

(⇐) If V is an object-finite variety of languages such that
(V @)f (and hence alsoV @) is generated by a single finite
D-monoidD, we prove thatV is simple. PutΣ = |D|, then
sinceD is a quotient of the freeΣ-generated monoid̂V Σ in
V @, it follows that the pseudovariety(V @)f is also generated
by V̂ Σ. Thus, everyD-monoid in (V @)f is a quotient of a
submonoid of a finite power̂V Σ

n
. Consequently, every free

algebraV̂∆ of V @ is a submonoid of a finite power̂V Σ
n
.

(Indeed, given a quotiente : D′
։ V̂∆ and a submonoid

i : D′
֌ V̂ Σ

n
, choose a splittingu : |V̂∆| → |D′|, e ·u = id,

in Set. Since V̂∆ is free, we get aD-monoid morphism
h : V̂∆ → D′ which on the generators coincides withu.
Then e · u = id implies e · h = id, hencei · h : V̂∆ → V̂ Σ

n

is a submonoid.) Consequently, by composition with the
projections V̂ Σ

n
→ V Σ we obtain a collectively monic

collection g1, . . . , gn : V̂∆ → V̂ Σ of D-monoid morphisms.
ChooseD-monoid morphismsf1, . . . , fn : Ψ∆∗ → ΨΣ∗

with eΣ · fi = gi · e∆ (by starting with a splittingeΣ · v = id

in Set and extendingv · gi · e∆ · η : ∆ → |ΨΣ∗| to a D-
monoid morphism). By Lemma A.9 we get a collection ofT∆-
coalgebra homomorphismshi : (V Σ)f

†
i → V∆ that is collec-

tively strongly epic. Hence the corresponding homomorphism
[hi] :

∐n
i=1(V Σ)f

†
i ։ V∆ is a strong epimorphism inC . We

conclude thatV is a simple variety generated byΣ: if V ′ is

any variety suchj : V Σ ֌ V ′Σ is a local subvariety, then
j is a T∆-coalgebra homomorphismj : (V Σ)f

†
i ֌ (V ′Σ)f

†
i

for everyi by Lemma A.4. Thus we have the diagram ofT∆-
coalgebra homomorphisms

∐
i(V Σ)f

†
i

∐
j

��

[hi]
// V∆!!

!!❇
❇❇

❇❇
❇❇

❇❇
❇

��
✤

✤

✤

∐
i(V

′Σ)f
†
i // V ′∆ // // ̺T∆

where the morphism
∐

i(V
′Σ)f

†
i → V ′∆ exists by closure of

V ′ under preimages. Diagonal fill-in shows thatV∆ ֌ V ′∆.

Lemma A.18. Let V be a simple variety of languages inC .
If V is generated by an alphabetΣ, thenV is generated by
any alphabet∆ with |∆| ≥ |Σ|.

Proof: Let V ′ be any variety withV∆ ⊆ V ′∆. SinceV is
generated byΣ, it suffices to showV Σ ⊆ V ′Σ – thenV ⊆ V ′

follows. Observe first that there existD-monoid morphismse :
Ψ∆∗

։ ΨΣ∗ andm : ΨΣ∗ →֒ Ψ∆∗ with e·m = id. Indeed, if
Σ 6= ∅, choose functionsm0 : Σ →֒ ∆ ande0 : ∆ ։ Σ with
e0 ·m0 = id in Set and pute = Ψe∗0 andm = Ψm∗

0. If Σ = ∅,
consider the two (unique) monoid morphismsm′ : ∅∗ → ∆∗

ande′ : ∆∗ → ∅∗ (satisfyinge′ ·m′ = id), and pute = Ψe′

and m = Ψm′. It is easy to see thate and m are indeed
D-monoid morphisms.

Now letL ∈ V Σ. By closure ofV under preimages we have
L · e ∈ V∆ ⊆ V ′∆. SinceV ′ is also closed under preimages,
we concludeL = L · e ·m ∈ V ′Σ and thusV Σ ⊆ V ′Σ.

Proof of Theorem IV.5:(1) LetLC denote the poset of all
varieties of languages inC andL 0

C
its subposet of all simple

ones. We prove thatLC is the free cpo-completion ofL 0
C

.
Note first thatLC is a complete lattice (in particular, a cpo)
because an objectwise intersection of varieties of languages
Vi (i ∈ I) is a varietyV . Indeed, the functorTΣQ = OC ×
QΣ clearly preserves (wide) intersections, thus an intersection
of subcoalgebras of̺TΣ in C is again a subcoalgebra. And
sinceC is a variety of algebras, intersections inC are formed
on the level ofSet. Now, from VΣ =

⋂
i∈I ViΣ it clearly

follows thatV Σ is closed under derivatives. And closure under
preimages is also clear: givenL in |V Σ| andf : Ψ∆∗ → ΨΣ∗

in D-Mon, we haveL ·f in |Vi∆| for all i, thusL ·f ∈ |V∆|.
Observe that also an objectwise directed union of varieties

is a variety. The argument is the same: sinceC is a variety of
algebras, directed unions are formed on the level ofSet.

It remains to verify the conditions (C1) and (C2) of a free
cpo-completion.

(C1) Every simple varietyV is compact inLC . Indeed,
suppose thatV is generated byΣ, and letV ′ =

⋃
i∈I Vi be a

directed union withV ⊆ V ′. ThenV Σ a local subvariety of
V ′Σ, and sinceV Σ is finite and|V ′Σ| =

⋃
i∈I |ViΣ| in Set,

there existsi with V Σ a local subvariety ofViΣ. Therefore
V ⊆ Vi becauseV is simple.
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(C2) Every varietyV of languages is the directed join
(i.e. directed union) of its simple subvarieties. To show that the
set of all simple subvarieties ofV is indeed directed, suppose
that two simple subvarietiesV0 and V1 of V are given. By
Lemma A.18 we can assume that both varieties are generated
by the same alphabetΣ. In [1, Corollary 4.5] we proved that
any finite subset of a local varietyQ′

֌ ̺TΣ is contained in a
finite local subvarietyQ ֌ Q′. LettingQ′ = VΣ, this implies
thatV Σ has a finite local subvarietyQ containingV0Σ∪V1Σ.
Now apply Construction A.14 toQ to get a simple variety
V ′ ⊆ V containingV0 andV1.

Finally, by [1, Corollary 4.5] and Construction A.14 again,
every language inV is contained in a simple subvariety ofV .
HenceV is the desired directed union.

(2) Let LD denote the poset of all pseudovarieties ofD-
monoids andL 0

D
its subposet of all simple ones. We again

prove thatLD is a free cpo-completion ofL 0
D

. First,LD is a
complete lattice (in particular, a cpo) because an intersection of
pseudovarieties is a pseudovariety. Observe that also a directed
union of pseudovarieties is a pseudovariety. It remains to verify
(C1) and (C2).

(C1) Every simple pseudovarietyW , generated by a finite
D-monoidD, is compact inLD . Indeed, if a directed join
(i.e. directed union) of pseudovarieties

⋃
i∈I Wi containsW

then someWi containsD and henceW .
(C2) Every pseudovarietyW of D-monoids is a directed

union of simple ones. Indeed, clearlyW is the union of its
simple subvarieties, and this union is directed because two
simple subvarietiesW1,W2 ⊆ W (generated byD1 andD2,
respectively) are contained in the simple subvariety ofW

generated byD1 ×D2.
(3) From Theorem IV.4 we know thatL 0

C
∼= L 0

D
. SinceLC

is the free cpo-completion ofL 0
C

by (1), andLD is the free
cpo-completion ofL 0

D
by (2), the uniqueness of completions

givesLC
∼= LD .

APPENDIX B
PREDUALITIES

In this appendix we prove in detail the preduality of
JSL01 andJSL (the basis of Poláks original Eilenberg-type
correspondence [20]) and the preduality ofBR andSet⋆ (the
basis of our new Eilenberg-type correspondence).

Theorem B.1. JSL01 andJSL are predual.

Proof: The desired dual equivalencê(−) : (JSL01)
op
f

≃
−→

JSLf is defined on objects by

Q = (Q,∨, 0, 1) 7→ Q̂ = (Q \ {1},∧)

and on morphismsh : Q → R by

ĥ : R̂ → Q̂, ĥr =
∨

hq≤r

q,

where q ranges overQ. Here and in the following, the
symbols∨, ∧, ≤, 0 and 1 are always meant with respect
to the order ofQ or R. We need to verify that̂(−) is (a)
a well-defined functor, (b) essentially surjective, (c) faithful

and (d) full.

(a1) ĥ is well-defined as a function, that is, it maps the set
R̂ = R \ {1} to Q̂ = Q \ {1}. Indeed, we have for allr ∈
R \ {1}:

h(ĥr) = h(
∨

hq≤r

q) =
∨

hq≤r

hq ≤ r (∗)

which impliesĥr 6= 1 becauseh1 = 1.

(a2) ĥ is aJSL-morphism, that is,̂h(r∧ r′) = ĥr∧ ĥr′ holds
for all r, r′ ∈ R \ {1}. Here “≤” follows from the (obvious)
monotonicity ofĥ. For the converse we compute

h(ĥr ∧ ĥr′) ≤ h(ĥr) ∧ h(ĥr′) ≤ r ∧ r′.

The first inequality uses monotonicity ofh and the second one
uses(∗). Henceĥr ∧ ĥr′ is among the elementsq in the join
ĥ(r ∧ r′) =

∨
hq≤r∧r′ q, which impliesĥr ∧ ĥr′ ≤ ĥ(r ∧ r′).

(a3) The assignmenth 7→ ĥ trivially preserves identity mor-
phisms. For preservation of composition we considerh : Q →
R and k : R → S in (JSL01)f and showk̂h(s) = ĥ · k̂(s)
for all s ∈ S \ {1}, i.e.,

∨

kh(q)≤s

q =
∨

hq≤k̂s

q.

This equation holds because, for allq ∈ Q, the inequalities
kh(q) ≤ s andhq ≤ k̂s are equivalent. Indeed, ifkh(q) ≤ s

thenhq ≤
∨

kr≤s r = k̂s. Conversely, ifhq ≤ k̂s then

k(hq) ≤ k(k̂s) = k(
∨

kr≤s

r) =
∨

kr≤s

kr ≤ s,

using thatk is monotone and preserves joins.

(b) On the level of posets the constructionQ 7→ Q̂ first
removes the top element and then reverses the order.
Conversely, we can turn any semilattice2 P in JSLf to a
semilatticeP in (JSL01)f by first adding a new bottom
element and then reversing the order. Up to isomorphism these
two constructions are clearly mutually inverse, soP̂ ∼= P for
all P . This proves that̂(−) is essentially surjective.

(c) Given h : Q → R in (JSL01)f we claim that, for all
q ∈ Q,

hq =
∧

q≤ĥr

r (∗∗)

wherer ranges overR \ {1}. This immediately implies that
(̂−) is faithful. To show “≤” let r ∈ R \ {1} with q ≤ ĥr.
Sinceh is monotone and preserves joins, we have

hq ≤ h(ĥr) = h(
∨

hq′≤r

q′) =
∨

hq′≤r

hq′ ≤ r.

2Note that any nonempty finite semilattice necessarily has a top element,
namely the (finite) join of all of its elements.
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For the converse note that

q ≤
∨

hq′≤hq

q′ = ĥ(hq).

Hencehq is one of the elementsr occuring in the meet (∗∗),
which means that this meet is≤ hq.

(d) Given g : R̂ → Q̂ in JSLf we need to findh : Q → R

in (JSL01)f with g = ĥ. First extendg : R \ {1} → Q \ {1}
to a mapg : R → Q by settingg1 = 1. Then g preserves
all meets ofR becauseg preserves all non-empty meets of
R \ {1}. Inspired by (c) we define

hq =
∧

q≤gr

r,

wherer ranges overR. Let us show thath indeed defines a
JSL01-morphism. First,h preserves0 and1 because

h0 =
∧

0≤gr

r =
∧

r

r = 0,

and
h1 =

∧

1≤gr

r = 1

In the last equation we use thatg1 = 1, and no other element
of R is mapped to1 by g since the codomain ofg is Q \ {1}.
For preservation of joins,h(q∨q′) = hq∨hq′ for all q, q′ ∈ Q,
first note that “≥” follows from the (obvious) monotonicity of
h. For the other direction we compute

q ≤
∧

q≤gr

gr = g(
∧

q≤gr

r) = g(hq)

and analogouslyq′ ≤ g(hq′). Hence

q ∨ q′ ≤ g(hq) ∨ g(hq′) ≤ g(hq ∨ hq′).

The last step uses the monotonicity ofg. Sohq∨hq′ is among
the elementsr in the meet definingh(q ∨ q′) =

∧
q∨q′≤gr r,

which impliesh(q ∨ q′) ≤ hq ∨ hq′.
Finally, we proveg = ĥ, i.e.,

gr =
∨

hq≤r

q

for all r ∈ R \ {1}. To show “≥” take anyq ∈ Q satisfying
hq ≤ r. Then

q ≤
∧

q≤gr′

gr′ = g(
∧

q≤gr′

r′) = g(hq) ≤ gr = gr.

For “≤” note first that

h(gr) =
∧

gr≤gr′

r′ ≤ r.

The last step uses thatr is one of the elementsr′ over which
the meet is taken. Hencegr is one of the elementsq in the
join

∨
hq≤r q, so gr ≤

∨
hq≤r q.

Remark B.2. (a) Every non-unital boolean ring is a distribu-
tive lattice with 0 where the meet is multiplication and the

join is x ∨ y = x + y + x · y. Hence everyfinite non-unital
boolean ring has a unit1, the join of all its elements. However,
homomorphisms between finite non-unital boolean rings need
not preserve the unit.

(b) The categoryUBR of unital boolean rings and unit-
preserving ring homomorphisms is isomorphic to the category
BA of boolean algebras (and hence predual toSet). Recall
that under this isomorphism+ corresponds to exclusive dis-
junction and· to conjuction.

Theorem B.3. BR andSet⋆ are predual.

Proof: Recall that(Set⋆)f is equivalent to the Kleisli
category of the monadZ 7→ Z+1 onSetf . The dual comonad
on UBRf ≃ Set

op
f is MX = X × 2 (where2 = {0, 1} is

the two-element boolean ring) with counit

X × 2
εX−−→ X, εX(x, b) = x,

and comultiplication

X × 2
δX−−→ X × 2× 2, δX(x, b) = (x, b, b),

and it suffices to show that the Co-Kleisli categoryKl(M) of
this comonad is isomorphic toBRf . The desired isomorphism

I : Kl(M)
∼=
−→ BRf is identity on objects and takes a Kleisli

morphismf : X × 2 → Y to theBRf -morphism

If : X → Y, If(x) = f(x, 0).

It remains to verify thatI is a well-defined full and faithful
functor.

(1) If is clearly aBRf -morphism since0 + 0 = 0 and
0 · 0 = 0.

(2) I preserves identities: the identity morphism ofX ∈
Kl(M) is εX , and

IεX(x) = εX(x, 0) = x = idX(x).

(3) I preserves composition: the composition of Kleisli
morphismsf : X × 2 → Y and g : Y × 2 → Z is
g • f : X × 2 → Z where

g • f(x, b) = g ◦Mf ◦ δX(x, b) = g(f(x, b), b).

Therefore

I(g • f)(x) = g • f(x, 0)

= g(f(x, 0), 0)

= g(If(x), 0)

= Ig(If(x))

= Ig ◦ If(x)

(4) I is faithful: let f, g : X×2 → Y be Kleisli morphisms
with If = Ig, i.e., f(x, 0) = g(x, 0) for all x. Then

f(x, 1) = f(x, 0) + f(1, 1) + f(1, 0)

= f(x, 0) + 1 + f(1, 0)

= g(x, 0) + g(1, 1) + g(1, 0)

= g(x, 1)
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which impliesf = g.
(5) I is full: let f : X → Y be aBRf -morphism. We claim

that the map

g : X × 2 → Y, g(x, b) = f(x) + b+ b · f(1),

is aUBRf -morphism withIg = f . First, the equationIg = f

clearly holds:

Ig(x) = g(x, 0)

= f(x) + 0 + 0 · f(1)

= f(x).

To show thatg is aUBRf -morphism we compute

g(0, 0) = f(0) + 0 + 0 · f(1) = 0 + 0 + 0 = 0

and

g(1, 1) = f(1) + 1 + 1 · f(1)

= f(1) + f(1) + 1 = 0 + 1 = 1.

Further,

g(x, b) + g(x′, b′)

= (f(x) + b+ b · f(1)) + (f(x′) + b′ + b′ · f(1))

= f(x+ x′) + b+ b′ + (b+ b′) · f(1)

= g(x+ x′, b+ b′)

and

g(x, b) · g(x′, b′)

= (fx+ b+ b · f(1)) · (fx′ + b′ + b′ · f(1))

= fx · fx′ + (fx · b′ + fx · b′ · f(1))

+ (b · fx′ + b · fx′ · f(1))

+ (b · b′ · f(1) + b · b′ · f(1) · f(1))

+ b · b′ + b · b′ · f(1)

= fx · fx′ + (fx · b′ + fx · b′) + (b · fx′ + b · fx′)

+ (b · b′ · f(1) + b · b′ · f(1)) + b · b′ + b · b′ · f(1)

= f(x · x′) + b · b′ + b · b′ · f(1)

= g(x · x′, b · b′).

In the third step we usefx · f(1) = fx, fx′ · f(1) = fx′

and f(1) · f(1) = f(1), and in the fourth step the equation
u+ u = 0.

Remark B.4. By composing the equivalences

BRf ≃ Kl(M) ≃ (Kl(Z 7→ Z + 1))op ≃ (Set⋆)
op
f

of the above proof, one obtains the explicit description of the
preduality betweenBR andSet⋆ in Example II.5(e).
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