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Abstract—Eilenberg’s variety theorem, a centerpiece of alge- in lieu of languages). Finally, a new Eilenberg-type theore
braic automata theory, establishes a bijective corresporehce we derive below deals with varieties of languages defined by
between varieties of languages and pseudovarieties of mads.  ¢ngre under intersection and symmetric difference in Gé

In the present paper this result is generalized to an abstracpair L : .
of algebraic categories: we introduce varieties of languags in a (2), and relates them to pseudovarieties of monoids With

category %, and prove that they correspond to pseudovarieties of ~ In this paper a categorical result is presented that covers
monoids in a closed monoidal category7, provided that " and Eilenberg’s theorem and all its variants uniformly, andibith

2 are dual on the level of finite objects. By suitable ’choices of new applications. Our overall approach to algebraic autama
these categories our result uniformly covers Eilenberg’'sheorem theory may be subsumed by the “equation”

and three variants due to Pin, Pohk and Reutenauer, respectively,
and yields new Eilenberg-type correspondences. . .
Index Terms—Eilenberg’s theorem, varieties of languages, automata theory = duality + monoidal structure.
monoids, duality, automata, coalgebra, algebra.
The idea is to take a category’ (where automata and

. INTRODUCTION languages live) and a closed monoidal categary(where

Algebraic automata theory investigates the relation betweMonoids live) with the property that” and & are predual
regular languages and algebraic structures like monoiasi-s SPecifically, in our settings” and 7 will be locally finite
groups, or semirings. A major result concevarieties of varieties of algebras orlo_rdered algebras. (i.e., all fipitel
languagesThese are classes of regular languages closed ungigperated algebras are finite), and preduality means teat th

. . . full subcategories of finite algebras are dually equivalent

(a) boolean operations (union, intersection and compléme . L
- . ; N : oreover, the monoidal structure ¢f is given by the usual

(b) derivatives, i.e., with every languade C >* a variety

contains itsleft derivativesa 'L = {w € ¥* : aw € L} ter;\s”orhpr(é(_jluctbof algebras. q ioned above i
and right derivativesLa~! — {w € ¥* : wa € L} for . the Eilenberg-type correspondences mentioned above fit
alaes and into this categorical framework. For example,.the catezpyi _

(c) preimages under monoid morphisths A* — X*. of boolean algebras ard of sets are predual via Stone duality,

Eilenb din hi FT121 that the lattice of nd Z-monoids are ordinary monoids: this is the setting of
llenberg proved in nis monograpn | ] that t € attice ilenberg’s original result. The categofy of distributive
varieties of languages is isomorphic to the lattice ofpaiéu-

e : ) L . lattices with0 and 1 is predual to the category of posets
dovarieties of monoidshese being classes of finite monoidg,_ giryhoff duality [7], andZ-monoids are ordered monoids

_closed under finite _products,_submor?mds and homomorpWﬁiCh leads to Pin’s result for pseudovarieties of ordered
images. Several variants of Eilenberg’s theorem are knownrhonoids [18]. The categor# of join-semilattices with0
the literature, altering the closure properties in the dkiim of is self-prédual (ie., one take§ — %), and 2-monoids
a.va_riet){ and replacin_g. mono?d; by other algebraic gtresturare precisely idemr,)otent semirings. Tﬁis is the framework
Pin [18] introducedpositive varieties of languageehere in (a) for Polak [20]. For Reutenauer’s result [22] one takes the

_thet_closure unde:jcomplement ljs om_|ttte_d, ;réd r('je prov_zd a tegory% of vector spaces over a finite fiell which is
Jective correspondence fo pseudovarietiesioeredmonolds. 45, self.predual (i.eZ = %), and observes tha#-monoids

Later Pplak [20], further weakened (a)_ k.’y als_o Om'“_'”g_ okes are preciselyK-algebras. Lastly, our new example concerning
under intersection, and the resultinijsjunctive varieties of

| d d o fid n@seudovarieties of monoids with takes as% non-unital
anguagescorrespond to pseudovarieties of idempotent se Golean rings and a pointed sets.

: 5 X .
INgs. Reutenaueil[P2] studied a concept_of yanety WhereApart from preduality, the heart of the matter is a coal-
(a) is replaced by closure under symmetric difference, and

obtained a correspondence to pseudovarieties of algebeas (g;ebram characterization of the closure properties definin

: : ; varieties of languages. We model determinisfi@utomata in
the binary fieldZ,. (In fact Reutenauer considered algebras - >

. ; - - a locally finite varietyé as coalgebrag) — Tx(@ for the
over arbitrary fieldsK and varieties of formal power Seres, - Jofunctor
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where O¢ is a fixed two-element algebra & representing Pin [1&], Polak [20] and Reutenauer [22]. In our previous
final and non-final states. In particular, the set of all ragulpaper [1] we proved docal Eilenberg theorem where one
languages ovex carries the structure of Bs-coalgebra whose considers classes of regular languages over a fixed alphabet
transitions are given by left derivativds— o' L for a € ¥, versus classes of finit-generated7-monoids in our general
and whose final states are the languages containing the enggtifing of predual categorieé6 and 2. The main technical
word. This coalgebra admits an abstract characterization achievement of( [1] was the insight that finite subcoalgebras
therational fixpointoTs, of Ty, i.e., the terminal locally finite of 7% closed under right derivatives dualize to finite-
coalgebra. To get a grasp ati regular languages, independengeneratedZ-monoids. Our work was inspired by Gehrke,
of a particular alphabet, we introduce the functor Grigorieff and Pin|[[13] who proved a bijective corresponcien
between local varieties of languages and classes of finite (o
dered)>:-generated monoids presented by profinite identities.
that maps each finite alphab&t to ¢7%, and each letter This result provides a local view of Reiterman’s theoren] [21
substitution : A — ¥ to the morphismeTy, — oTx taking Characterizing pseudovarieties of monoids in terms of pitefi
preimages under the free monoid morphism: A* — x*.  identities.

Consider now a variety’ of languages in Eilenberg’s sense Somewhat surprisingly, it has only been in recent years
(this is the case&’ = boolean algebras), and denote By  that the fundamental role of duality in algebraic automata
the languages over the alphabBt contained inV. Then theory was fully recognized. Most of the work along these
the closure condition (a) and the restriction of (c)lémgth- lines concerns the connection between regular languages an
preservingmonoid morphisms (those of the forir) state Profinite algebras. Rhodes and Steinberg [23] view the eegul

oT : Set?” — ¢

precisely that the maf — V¥ defines a subfunctor languages oveX as a comonoid (rather than just a coalgebra)
in the category of boolean algebras, and this comonoid is
Vo— oT. shown to dualize to the free profinite semigroupXnSimilar

results for free profinite monoids can be found in the afore-
e(pentioned work of Gehrke et al. which built on previous work
of Almeida [3] and Pippengel [19].

Closure under left derivatives means that is a subcoalgebra
of ¢oT%. Finally, as we will demonstrate below, closure und
right derivatives and preimages of arbitrary monoid mospts
amounts categorically to the existence of certain coalebkcknowledgement§he authors are grateful to Mai Gehrke,
homomorphisms. This expresses the closure properties oPaul-André Mellies and Libor Polak for useful discussmn
variety of languages fully coalgebraically. the topic of our paper.

In our general setting of two predual categor#sand 2
a variety of languages ir¢” is thus a subfunctol” — 0T,
subject to additional closure properties which are charamtd I this section we set the scene of predual categories
by means of coalgebraic concepts. Dualizing these pragert¢’ and &, and introduce varieties of languages # and
leads to the notion of pseudovariety of/-monoids a class pseudovarieties of7-monoids. The reader is assumed to be
of finite Z-monoids closed under finite products, submonoidamiliar with basic category theory and universal algebra.
and homomorphic images. Our main result is the

Il. PREDUALITY, MONOIDS AND LANGUAGES

A. Predual categories

Generalized Eilenberg Theorem.Varieties of languages in  Our categories of interest are varieties of algebras and
¢ correspond bijectively to pseudovarieties@fmonoids.  varieties of ordered algebras. Given a finitary signatlire

All Eilenberg-type theorems mentioned above emerge %svariety of [-algebrasis a full subcategory of AlgT,

special cases by the corresponding choice® aind 7. e category of'-algebras and homomorphisms, closed under

On our way to proving the Generalized Eilenberg TheoreEwUOt.ients (= homomorphic images), subalgebras anq praduct
we will also establish a bijective correspondence betwe [gwg/aler?tly, t;y Bld;l;hloffz HSP th.?o:jel;n [6] at' varftz/ of
object-finitevarieties of languages i (those varieties with algebras Is a class dralgebras specified by equations= 72

. - L betweernl-terms. The forgetful functoey — Set of a variety
VX finite for all ¥) and locally finite varieties (rather than - S
pseudovarieties!) ofZ-monoids. In the case of (ordered as a left adjoint assigning to every sktthe free algebra

. . . ¥ X.
monoids this has been shown by Klima and Pdlak [16], and 65"
the best of our knowledge it is a new result in all other Case?Analogoust, letAlg <I" be the category of albrderedI-

Although our emphasis lies on varieties lahguages all algebras These arel-algebras with a partial order on the

. derlying set such that all-operations are order-preserving.
our results hold more generally for Moore automata in lieu " . .
7 L orphisms of Alg <I" are order-preserving homomorphisms.
acceptors, and hence for varieties of regular behaviorin | =

: Tt}is category has a factorization system of surjective homo
of regular languages — one simply replaces the two-elemen

algebra0« in the above definition of x; by an arbitrary finite morphisms and injective order_—embeddings. Thus the C“r?cep

algebra in%. We briefly explain this at the end of the paperf)f as_ubalgebraof an algebrad n o means that the order is
inherited from A, whereas ajuotientof A is represented by

Related Work.Our paper lays a common ground for Eilenany surjective order-preserving homomorphism with domain

berg’s original variety theorem [12] and its variants due td. A variety of orderedl'-algebrasis a full subcategoryy



of Alg <I" closed under quotients, subalgebras and produ&emark I1.3. The last item is understood as a fixed choice of
Equivalently, by the ordered version of Birkhoff's theorenan algebraO+ in ¢ along with an isomorphism : Oy —
due to Bloom [[8], <7 is specified by inequalities; < ¢2 1g. It follows that|O«| and|O4| are isomorphic:
betweenI'-terms. (Recall that ift; and ¢, lie in Tt X, the

discretely ordered algebra @tterms over variables(, then |O| = Set(1,|0«) (canonically
an ordered -algebraA satisfiest; < t, provided that every =% (1¢,0%) (def. 1)
homomorphismh : Tr X — A fulfils h(t1) < h(t2).) Again, ~ 9(0y,04) (by duality)
the forgetful functore — Set has a left adjoint constructing ~ . .
>~ 9(19,09) (compasition withi ™)
free algebras.
o _ . = Set(1,|0g]|) (def.14)
Definition I.1. Given a variety« of (ordered) algebras we ~ .
>~ |0g| (canonically

denote by, the full subcategory of all finite algebras?
is called locally finite if all free algebras on finitely many To simplify the notation we identify the underlying sets@§
generators are finite. and Og4 via this isomorphism and thus assufig;| = |Og|.

In our applications we will encounter the locally finiteAssumptions I1.4. For the rest of this paper we fix two predual
varieties listed below. We viewos as a variety of ordered locally finite varietiess’ and 2 with the following properties:
algebras (over the empty signature) and all other categage (i) « is a locally finite variety of algebras.

varieties of non-ordered algebras. (i) 2 is a locally finite variety of algebras or ordered
algebras.
Set sets and functions (iif) Epimorphisms inZ are surjective.
Set,  pointed sets and point-preserving functions  (iv) Z is entropic for any two algebrasl and B in &, the set
Pos partially ordered sets and order-preserving maps  [4, B] of homomorphisms froml to B is an algebra iy
BA boolean algebras and boolean homomorphisms with the pointwise algebraic structure, i.e., a subalgebra
BR non-unital boolean rings (i.e., non-unital rings of the powerB4l =], 4 B.

(R,+,-,0) satisfying the equatiom-z = z) and (V) |O%|=]02|={0,1}.
ring homomorphisms

DL, distributive lattices with0 and 1 and lattice
homomorphisms preservirigand 1

JSLg join-semilattices with0 and semilattice homo-

Condition (iv) means precisely that all operations of the
variety 2 commute, see e.g. [10, Theorem 3.10.3]: given an
m-ary operatiore and ann-ary operationr in the signature of

. . 2 and variables:;; (i =1,...,m, j =1,...,n), the equation
morphisms preserving '
K-Vec vector spaces over a finite fielX and linear o(T(x11, -5 T1n)y - s T( X1y« -, Tnn))
maps =7(0(11, -, Tm1), -+, 0(T1ny - - - Tan))
Here is the central concept for our categorical approach #g!ds in 2. Condition (v) can be lifted to get a theory of
algebraic automata theory: regular behaviors in lieu of regular languages, cf. Sed¥bn

Definition 11.2. Two locally finite varieties of (ordered) alge-Example 11.5. The following pairs of categorie$’ and 7
bras# and 7 are calledpredualif their full subcategoriess; ~Satisfy our assumptions:

and Z; of finite algebras are dually equivalent. ¢ BA DLy JSL, Zs-Vec BR

In what follows ¥ will be a locally finite variety of 9 Set Pos JSL, Zs-Vec Set,
algebras (where varieties of languages are formed), @nd
will be a locally finite variety of algebras or ordered alggbr (a) ¥ = BA is predual toZ = Set via Stone duality[[24]:
(where varieties of monoids are formed). Let us establigfiven a finite boolean algebr@, the set@ consists of all
some notation for this setting. The preduality 6fand 2  atoms ofQ, and given a homomorphisi: Q — R in BA;,

is witnessed by an equivalence functsf” = %; whose the dual functiom: : B — O in Set; is defined by
action on objects and morphisms we denote by

0 n h(r) = €Q:h(q) >rl). 1
Q—Q and hw— h. (r)=/N\{a€@Q:h(g)>r} 1)
The varietiesg and 2 come equipped with forgetful functorsWe choose
|-|: ¢ — Set and |-|: %2 — Set. T )
VAN
Finally, we write 1 and 1, for the free algebras on one 1l =1 < 0 1lg={1} O¢= ‘ Oy ={0,1}
generator i’ and 2, respectively, and)y and O for their N 0

dual algebras:

O@Z]Tc} and 6;%1@.



Here1 is the generator of the one-generated free algabra if r # x and some; € Q with h(q) > r exists, and otherwise
and O¢ = {1} = 1. Hence the isomorphism8, = 1, &(r) = +. We choose
and|O«| & |O4| of RemarIL3 are identity maps.

(b) ¥ = DL is predual toZ = Pos via Birkhoff ly = O¢ ={0,1} and 19 =0y = {x1}.
duality [7]: @ is the poset of all join-irreducible element ; T
of a finite distributive latticel) (ordered as inQ), and every “The isomorphisiO =
homomorphismi : Q — R in (DLo1); yields a monotone

function : B — Q by the formula (1) above. We choose The preduality of¢ andZ allows us to model deterministic
automata both as coalgebras and as algebras for suitable

endofunctors or¥” and 2. Fix a finite input alphabeE and
consider first the endofunctor ofi

TsQ = Oy x Q¥ = O¢ x [] @
b))

14 is identity, and the isomorphism
|O¢| = |Og| identifies0 € |O¢| with x € [Og|.

1
1y = 19 = {1} O¢= ‘ Og =
0

-—-—-o
_—0

A Tx-coalgebra(Q, v) consists of an objed in ¢ together
with a morphismy : Q — Tx Q. By the universal property of

(c) The categorys’ — JSL, is self-predual, seé [15], so the product, to give &x-coalgebra means to give morphisms

we can takeZ = JSL,. The dual equivalence associates téan;ocg ;SQ for.egciaoe Er,er?tsegtraisti?]mlggatlri?jtlggnls—ieirég
each finite semilattic€) = (X, V,0) its opposite semilattice PRISMou : v Tep g -

- o .~ Tx-coalgebras are deterministic-automata inf¢’” without an
(C?JS_L ()X ’tﬁélr)l,o;r:)dm?r;rﬁ(s:r%hcgim}%r\?vri]tﬁm. Q@ — Rin initial state, often denoted as triples
0)f :

o~ Q = (Q77a770ut)-
h(r)=\/{g€ Q:h(q) <r}
o _ A homomorphisnk : (Q,~') — (Q',+') of Tx-coalgebras is
where the join is formed irf). We choose a morphismh : Q — Q' in € with v/ - h = Txh - 4, which
means that the following diagram commutes foralt >:

Note that0 is_the top element of14 and O4. Again the
isomorphism®¢ = 14 and |O«| = |O4| are identity maps.

0 0 1
1y = ly= | Ov=| 09=
1 1 0

Q—-Q

|

Q' T> Q' v—’> O«
a out

oS —r

The isomorphism®s = 1, and |O%| = |O4| are identity
maps. Epimorphisms idSL are surjective, as proved in [14]. ]
(d) The category¢ = Zs-Vec of vector spaces over V& Write
the binary fieldZ, = {0,1} is also self-predual, s@ = CoalgTy, and Coalg;Tx
Z2-Vec. The dual equivalence assigns to each finite (i.e. fini
dimensional)Z.-vector space) its dual space&) = [Q, Zs].
For every linear mag : Q — R in (Z2-Vec); the dual map
h:R— Q takesu : R — Zs to u - h. We choose LZA=1@+HA
b))

tf%_r the categories of (finite)z-coalgebras and homomor-
phisms. The functofy, has an associated endofunctor @n

1y =04 =7Zs and 1g = Og = [Zs,Zs). o ] o
- which is predualto T%; in the sense that the restrictions
The isomorphisnO¢ = 14 is identity, and the isomorphism
|O¢| = |Og| identifies the element € |O«| = |Z2| with
id € |Og| = [Z2,Z]. Epimorphisms inZz-Vec split and , finite algebras are dual. That is, the diagram below com-

hence are surjective. _ _ mutes up to natural isomorphism:
(e) An interesting variation on (a) is the preduality of

Ty : cgf — (gf and Ly : _@f — _@f,

% = BR and 2 = Set,. Recall that we considenon- op Ts¥ o

: : A - - Cr —— 6.
unital boolean rings (this is Birkhoff's original definition of f f
a boolean ring, se¢ [5]) and homomorphisms preserving ﬁl lﬁ
and 0. Every finite non-unital boolean ringd@, +,-,0) can
be viewed as a boolean algebra withh y = z -y and Dy L—E>9f

rVy=z+y+x-y. The preduality ofBR andSet, takes

Q to the pointed se@ = {*,q1,...q,} Whereqi,...,q, are Dually to the concept of &-coalgebra, aL.s.-algebra(A4, «)
the atoms of@. A homomorphisnv: : @ — R in BRy is is an object4 in & together with a morphism : Ly A — A.
mapped to the function : R — Q with h(r) defined by (1) Equivalently, anLx-algebra is given by morphisms, : A —

4



A for a € X, representing transitions, and a morphisgp :  (Q’,~’), by which we mean that the underlying morphisn¥in
14 — A selecting an initial stateLx;-algebras are denoted ads a strong epimorphism (or a monomorphism, respectively).
Dually, in 2 we consider the factorization system
A= (A aq,ain)

and can be viewed as deterministieautomata inZ without (epi, strong monp
final states. Ahomomorphisnh : (A,a) — (A’,a') of Ls- If 2 is a variety of algebras, this is just the (surjective,
algebras is @-morphismh : A — A" with h-a = o' - Lsh. injective)-factorization system as epimorphisms  are
We write surjective by Assumptiof_1ll4(iii). In case? is a variety

AlgLy and Alg;Lsx of ordered algebras, we get the (surjective, injective erde

for the categories of (finite)s-algebras and homomorphismsembGdd'm‘:])_factorlzatlon system, which is clearly thehd

. . : _one for ordered algebras. Sinég; = 14 + [ [, A preserves
From the preduality ofz and Lz we immediately conclude: epimorphisms, the factorization system #flifts to Alg Lyx:

Lemma Il.6. Coalg; Ty andAlg; Ly are dually equivalent every Ly-algebra homomorphisnt : (4,a) — (4',a)
categories. The dual equivalence is given on objects afattorizes as aguotient algebraof (A, «) followed by a
morphisms by subalgebraof (A’,«'), i.e., the underlying morphism ¥
~ ~ is an epimorphism (or a strong monomorphism, respectively)
(@,7)—(Q,7) and h— h.

. . . . , B. 2-Monoids
In triple notation this dual equivalence maps a firitg-
coalgebra(Q, va, Yout) t0 its dual Ly-algebra (@ﬂ;@)_ Our Assumptior TL4(iv) thatZ be entropic admits a more
Hence finiteT;-coalgebras and finités-algebras are essencategorical interpretation. Given objects B and C' in 2,
tially the same structures, and both can be understood &s fid bimorphismis a functionf : |A| x |[B| — |C| such that

automata with additional (ordered) algebraic structure. ~ f(a,—) : B — C and f(—,b) : A — C are morphisms ot/
for all a € A andb € B. A tensor producof A and B is a

Example I1.7. (a) Let¢ = BA and ¥ = Set. Then Ls- ynjversal bimorphisnt : |A| x |B| — |A ® B|, i.e., for every

algebras are the usual concept of a deterministic aUtomaB?l‘ﬁorphismf . |A| x |B| — |C| there is a unique morphism
without final states. ATx-coalgebra is a deterministi&- ¢ i, 2 making the diagram below commute.

automaton with a boolean algebra structure on the state set

Q@ such that (i) all transitionsy, : Q@ — @ are boolean |A] x |B| _t |A® B
homomorphisms and (ii) the final states form an ultrafilter, d [
termined by the preimage afunder the morphisny,,: : Q@ — \ LIf
O« = {0, 1}. Forfinite automata (ii) means that precisely one |é|

atom: € @ is final and all final states form the upper set

ti={q € @ : ¢ > i}. The dual equivalence of the previousns shown in [[4], tensor products exist in any variety of
lemma takes a finite boolean automa@n= (Q,va,%ut) 10 (ordered) algebras, and “entropic” means precisely fhat

the automator®) = (Q,7a,Yout) IN Set whose states are the(, ©, 1) is a symmetric monoidal closed category. In partic-
atoms of@. The unique atomic final statec () is the initial ylar, as in any monoidal category, we have a notiomohoid
state of@), and there is a transition = 2 in Q) iff in 2. In our setting this means the following:

o = N{y:y =y inQ for somey' > z}. Definition 11.9. A 2-monoid (D, o,4) consists of an object
D of 2 and a monoid structurf D], o,7) on its underlying

I (b)l Tle Cases’ j Dg‘&l and‘_@,:.POS IS analogprL]Js. Hfgrel set|D| whose multiplication is a bimorphism, i.e., for every
s-algebras arerdereddeterministic automata without final - ID| both z o — and — o are endomorphisms ab in

states.Tx-coalgebras carry a distributive lattice structure N morphismh : (D, o,4) — (D',',i’) of Z-monoids is a
Q. and again for finite) the final states form an upper sei morphismh : D — D”in7 9 prese;vir’lg the monoid structure.

Remark 11.8. We frequently need to factorize (co-)algebrdhe Z-monoids and their morphisms form a category
homomorphisms into a surjective and an injective part. For IM
the variety4” we choose the factorization system von.

Observe that?-Mon is a variety of (ordered) algebras:
add o and i to the signature of7, and add the monoid
Recall that an epimorphisma is called strong if it has the axioms and equations expressing thais a bimorphism to
diagonal fill-in property w.r.t. all monomorphisms: given the (in)equalities presenting. The factorization system of
morphismsy, r with 7-e = m - u there existsl with u = d-e. 2, see Remark 1118, lifts taZ-Mon. Hence asubmonoid
Since the functofxsQ = O« x Q> preserves monomorphismspf a Z-monoid D is a 2-monoid morphism intaD carried
this factorization system o¥ lifts to CoalgTx: every coal- by a strong monomorphism i@, and aquotient monoidof
gebra homomorphism : (Q,~v) — (Q',~') factorizes as a D is a 2-monoid morphism with domairD carried by an
quotient coalgebreof (Q,~) followed by asubcoalgebraof epimorphism inZ.

(strong epimono = (surjectiveinjective).



Examples 11.10. For our categorie®? of Example[1L5 the
Z-monoids are characterized as follows:

(a) 2 = Set: (ordinary) monoids.

(b) 2 = Pos: ordered monoids.

(c) 2 = JSLy: idempotent semirings, i.e., semiring

(S,+,-,0) satisfying the equation: + = = z. Indeed, this

means precisely thatS, +,0) is a semilattice, and the dis-
tributive laws of a semiring express that the multiplicatio
preservest and0 in each variable, so that it is a bimorphism

(d) 9 = Za-Vec: Zsy-algebras in the classical sense o
algebras over a field, i.e., &;-algebra is a vector space ove
7.5 together with a monoid structure whose multiplication is

distributive (= linear in each variable).

(e) 2 = Set,: monoids with0, i.e., monoids containing an

element0 such thatz o0 = 0 oz = 0 for all . Morphisms
of 2-Mon are monoid morphisms preservifg

Definition I1.11. A pseudovariety ofZ-monoidsis a class

S

(e) 2 = Set,: the free monoid with). This is the monoid
¥* + {0} arising fromX* by adding a zero element.

Definition 11.14. (a) A 2-monoid is called>-generatedf a
set of generators indexed Byis given in it. Equivalently: if it
IS a quotient monoid of the fre@-monoid ¥'X*. Morphisms
of ¥-generated7-monoids are required to preserve the given
generators. That is, given twh-generatedZ-monoidsey, :
UY* — (Dg, o, ix), k = 1, 2, @ morphism of¥-generated
-monoids is aZ-monoid morphismf : (Dq,01,i1) —
ng, Og,ig) with €y = f - e1.
(b) The subdirect producbf two X-generatedZ-monoids
e : ¥X* — (D, ok, i) is the Z-submonoid of their product
which is the image ofe;, e2) : ¥E* — Dy x Ds.

Definition 11.15. By a pseudovariety ofX-generated Z-
monoids is meant a collection of finiteX-generated 7-
monoids closed under subdirect products and quotients.

of finite #-monoids closed under submonoids, quotients andin other words, ifC denotes the poset of all finite quotients

finite products.

On our way to proving the generalized Eilenberg theore
we will encounter monoids with a specified set of generato

To this end we need to describe the ftdgeamonoids. We write

U :Set -+ 9

of ¥¥* in 9-Mon, then a pseudovariety is a subposet

osed under finite joins={ subdirect products) and closed
g;ownwards (i.e., under quotients). Here we use the ordering
of quotientse : UX* — D wheree; < ey iff e; factorizes
throughes.

Remark 11.16. Every ¥-generatedZ-monoide : ¥X* —

for the free algebra functor, that is, the left adjoint of théD,o,:) defines theassociatedLx-algebrac : Ly D — D

forgetful functor|—| : 2 — Set. For notational simplicity we

with the same objectD of states, initial statee(s) and

assume thatX is a subset of X |, and the universal map transitions given by right multiplication,,(d) = d o e(a) for

is the inclusionX — |UX|. (For nontrivial varieties? of
(ordered) algebras such a choiceloX is always possible.)

Proposition 11.12 (seel[1], Prop. 4.22)The freeZ-monoid on
a finite set® is the Z-monoid(¥X*, e, ¢) with multiplication
e extending the concatenation of words ovgrand universal
mapX — X* — |UX*|. That is, every mag : ¥ — |D| into
a 2-monoid D extends uniquely to &-monoid morphisry:

S Y|

[
=
X Jfl

D]

Examples 11.13. In our categories? of ExampldIL5 the free
2-monoids¥X* on X are characterized as follows:

(a) 2 = Set: the usual free monoidl*.

(b) 2 = Pos: the free ordered monoid* (discretely
ordered).

(c) Z = JSLy: the free idempotent semiririg;>*, carried

a € X. In particular, the associateldy-algebra of the freez-
monoid¥X* has the initial state and the transitions-ea for
a € X. This means that the abovig;-algebra structure ab is
the unique one that makesa homomorphism of.s;-algebras.

As shown in [1, Prop. 4.29X* is the initial Ly-algebra:
for every Ly-algebra(A, «) there exists a uniqués-algebra
homomorphism

eqUY* — A

Its restriction to>* computes the action of on wordsw €
DI
ea(w) = - ain : 19 = A.

Here we use the notation

Qy =Qq, " Qg : A— A forw=ay---ay,.

n

Analogously, for coalgebra&), v) we puty, = va, « - Ya, -

Since Y-generated monoids arks-algebras one may ask
for the converse: given ail.s-algebra, is it associated to

by the set of finite languages ovEr The semilattice structure some X-generated monoid? In the next subsection we will
is union andz, the monoid multiplication is the concatenatiorsee that this question is, by duality, directly related wsake

L, e Ly = L1 L, of languages, and the monoid unit{is}.
(d) 2 = Z,-Vec: the freeZ,-algebraPsX*. Its vector

addition is the symmetric differende @ Lo = (L1\L2)U(L2\

L;), and the zero vector ig. The monoid unit is agaige},

properties of classes of regular languages.

C. Languages
Our categorical approach to varieties of languages starts

and the monoid multiplication iZ.-weighted concatenationwith a characterization of the regular languages over a fixed

of languagesZ; e L, consists of all wordsv having an odd
number of decompositions = w;ws with w; € L;.

alphabetf by a universal property. Let us calli3;-coalgebra
Q locally finiteif it is a filtered colimit of finite coalgebras. Or



equivalently, if every state € @ lies in a finite subcoalgebrallL17 is injective iff the uniqueLsx-algebra homomorphism

of Q. As shown in[17], the terminal locally finite coalgebras : ¥X* — (@ of Remark[Il.I6 is surjective. Moreover,
oTx — characterized by the property that every locally finitd @ — oT% is a local variety of languages, there exists
coalgebra has a uniqgue homomorphism into it — is the filterad(unique) monoid structure o making eg @ 2-monoid

colimit of the diagram morphism. In this case we caf) the dual $-generatedZ-
monoid ofQ.

Proposition[I.2P was the basis of the main result [df [1].
of all finite coalgebras. Its coalgebra structure is an isom@hserve that the set of all local varieties of languages over
phism Y in ¥ forms a complete lattice whose meet is intersection.

oTs = Tx(oTx), Analogously for the set of all pseudovarietiesX{generated
2-monoids.

Theorem 11.23 (Local Eilenberg Theorem [1], Thm. 4.36)
The lattice of all local varieties of languages ovErin ¢ is
isomorphic to the lattice of all pseudovarietiesXgenerated

Coalg; T, — Coalg Ty,

which is why oT%; is also called theational fixpointof T,.

Proposition 11.17 (see [1], Cor. 2.11) oT%; is carried by the
set of all regular languages ovet. The transition morphisms
are carried by left derivatived. — o~ 'L for all a € X, ]
and the final states are precisely the languages contairting {Z-monoids.
empty set. For any locally finite coalgeb(&),~) the unique  Local varieties of languages are local in the sense that a
homomorphisnLq : @ — oTx maps a statey € Q to the fixed alphabet® is considered. To get a global (alphabet-
language accepted hy independent) view of all regular languages, we extend the ma
_ . . _ Y — oT to a functoroT : Set?’ — €. Observe first that for
Lol@) = {w € B+ vou - 7u(a) = 1}. everyh : A — Y in Set; there {s a morphisf®” : Q= — Q4
Example 11.18. Continuing our Examples Tl57% has the given by precomposition witth. Hence we can turn eachs-

following algebraic structure as an object of the variety  coalgebrgQ, 7) into theTx-coalgebrg @, ~)" with the same
(a) For¢ = BA the boolean algebra structuretisn, (—), states) and coalgebra structure

@ andX*.
(b) For ¢ = DLy, the lattice structure is), N, @ and X*. QL Oy x Q” M O x Q4.
(c) For¥ = JSL, the semilattice structure is and . . . . N .
(d) For ¢ = Zs-Vec the vector addition is symmetricTh's is a familiar construction for deterministic automaifa
differenceL @ M = (L\ M) U (M \ L) and the zero vector SOMe state; € @ accepts the Ilanguagé < X% in h(Qﬁ),
is o then it accepts the language*) ' (L) C A* in (Q,~)". Here
(e) For¢ = BR the multiplication isn, the addition is " @ &" — X7 denotes the free extension bfto a monoid
morphism.
o _ _ The coalgebrd@, )" is locally finite if (Q,~) is, as every
De_f|n|t|0n [1.19. By alocal variety of Ianguagesve_rZ in subcoalgebra ofQ,~) is also a subcoalgebra ¢, v)". In
¢ is meant a subcoalgeb@d — ¢T of the rational fixpoint particular, (¢o7%)" is locally finite, so there is a unigquea-
closed under right derivatives, i.el, € |Q| implies La™' € coalgebra homomorphismT}, : (oTs)" — oTa into the
Q| for all a € %. terminal locally finiteTx -coalgebra. The morphise®}, forms

Note that a local variety is closed under left derivativeRr€images under the monoid morphisrm
gutomatilcall_y, being a su.bcoalgebra afs. Cl_osure .u.nder oTh(L) = (h*)"Y(L) for all L € |oT%|.
right derivatives also admits a fully coalgebraic desdipt

symmetric differencep, and the zero element is.

. . . Definition 11.24. The rational functor o7" : Set}” — ¢
Notation 11.20. Given aTy-coalgebra(Q,~) and an input aggigns to every finite alphab®tthe rational fixpointTs and

a € %, denote by(Q,v), the Tx-coalgebra with the same, every maph : A — % the morphismoT}, : oTs — oTa.
states and transitions, but whose final-state morphistg,is
Yo : Q = Ox. In the classical cas& = BA, the rational functor maps

. each finite alphabet. to the boolean algebra of regular
Proposition 11.21 (see [1], Prop. 4.3)A subcoalgebrd®, ) |anguages oveE. A variety V of languages in Eilenberg’s
of ¢Tx, is a local variety iff aT:-coalgebra homomorphism genge (see Introduction) is thus a subfufbtér— o7 that
from (@, 7), to (Q,~) exists for every: € 3. assigns to every finite alphabBta local varietyV' ¥ — 0T,
Proposition 11.22 (see [1], Prop. 3.24 and 4.32) finite 7y,- and is closed under preimages of monoid morphisfns
coalgebraQ is a subcoalgebra 075, iff its dual Ly-algebra A* — X*. To formulate the preimage condition categorically,
Q is a quotient algebra oft=*. In this case,Q is a local We identify any languagd, C X" with its characteristic
variety iff Q) is the associated.s-algebra of some finite:- 1R _ .

ecall that ssubfunctorof a functorF' : &7 — 4 is a natural transforma-

generatedZ-monoid. tion m : F’ > F with monomorphic componentsy4 : F'A — FA. To

. . specify F’ is suffices to give the object mafy — F’ A and monomorphisms
In other words, for any finite coalgebi@ the uniqueTs- m 4 such that, for eaclf : A — A’ in &/, the morphismF' f - m 4 factorizes

coalgebra homomorphismig : Q — Tx of Proposition throughm 4. This uniquely determines the action 87 on morphisms.



function L : ¥* — {0,1} in 2 = Set. Then the preimage which f(w) lies in L. A variety of languages iBBR forms

of L under f is precisely the language represented by thaubringsV'Y of oT% closed under derivatives and preimages
composite functionL - f : A* — {0,1}. Thus the missing of zero-preserving monoid morphisms.

condition on our subfunctol” is the following: for every
languagel € VX we havelL - f € VA. Let us now extend
these considerations to our general setting.

See the table in Sectidn1V for a summary of our examples.
The set of all varieties of languages#is a complete lattice
since any intersection of varieties (formed objectwisegis
Notation 11.25. Using the adjunctiont - |—| : 2 — Set, variety. The same holds for the set of all pseudovarieties
we identify any languagd. : ¥* — {0,1} = |Og| with the of 2-monoids. Our main result, th&eneralized Eilenberg
corresponding morphisih : ¥¥* — Og of 2. Thepreimage Theorem(see Theorem 1VI5), states that these two lattices are
of L under aZ-monoid morphismf : YA* — ¥X* is the isomorphic. The rest of the paper is devoted to the proof.

languageL - f : YA* — Og4 over the alphabed.
IIl. COALGEBRAIC AND ALGEBRAIC LANGUAGE

Definition 11.26. (a) A subfunctorV — oT of the rational ACCEPTANCE
functor isclosed under preimagef for every -monoid mor-
phism f : YA* — U¥* and every languagé : ¥>* — Og
in VX, the languagd. - f lies in VA.

(b) By avariety of language$n ¢ is meant a subfunctor
V — oT closed under preimages such tHaE is a local Notation lll.1. (a) Recall|O¢| = [0z = {0,1} from

variety of languages for every alphab¥etc Set;. Asssumptio ILA(v), and let 1°_<f> Oy and1y 1°_<f> Oy

In Theoren{TILI6 below we give a fully coalgebraic cha/denote the morphisms choosing the eleméntNote that

acterization of preimage closure. lo, = lo, by RemarK1L3.
(b) Recall from Proposition 1.7 that a stage 1+ — Q

Examples 11.27. (a) The case¢’ = BA and 4 = Set of a finite Tx:-coalgebra(Q, ) accepts the language
captures the original concept of Eilenbergl[12]: a variety o

languages inBA forms boolean subalgebrdsy of oT%, Lo(q) ={w e X" Yout Y- ¢ =lo,}
closed under derivatives and preimages of monoid morphisgas; /e identify with the corresponding morphism @f
fA* = X

(b) In the cases’” = DL(; and ¢ = Pos we just drop Lo(g) : 2" — Og,

closure under complement: a variety of language®ihy; . .
forms sublatticesV'Y of ¢T% closed under derivatives and>c® NotatioIL25. Dually, for ang=-algebra(4, ) equipped

. . , - with a morphisma,,: : A — Og (representing a choice of
preimages of monoid morphismi: A* — ¥*. This is the _ !
concept of goositive variety of languagestudied by Pin[[18]. final states), we define thlanguage accepted byo.: by

In this section we compare the languages accepted by a
finite T;-coalgebra irg with those accepted by its dual finite
Lx-algebra in2.

(c) Let (5 =9 = JS_LO. Giveq a languagd, C ¥*, the La(aou) = {w € T* : qout - vy * tin = 1o, }-
corresponding semilattice morphiskn: P;~* — {0, 1} takes ] ) ] .
a finite languagéw, . . ., wy} to 1iff w; € L for somei (this YSINg the uniquels-algebra homomorphism, : W2* — A
follows from {wr, . .., wy} = \/’-il{wz'})- The preimage of. of Remark[IL.16, this language corresponds to the morphism
under a semiring morphisrfi : PA* — P;¥* corresponds of 7 .
to the language/ C A* of all wordsu € A* for which f(u) La(aow) = aout - €4 : ¥E" = Og.

contains some word of. A variety of languages iFSLo  pefinition 11l.2. The mapS* — £* reversing words extends
forms subsemilattice™>: of o7 closed under derivatives andypiquely to a morphism o7

preimages of semiring morphisnys: PyA* — P;3* . This
is the notion of variety introduced by Pol&k [20]. revs : UX* — UX"
(d) If € = 9 = Z»-Vec, the linear mapL : PsX* —
{0,1} corresponding td. C ¥* takes{ws,...,wx} € PyX*
to 1 iff w; € L for an odd number of = 1,... k. Thus the
preimage ofL under aZs-algebra morphisny : PsA* — Observe thatevy, is a Z-monoid morphism
Ps¥* corresponds to the language C A* of all words . o
ufe A* for which f(u) contains an odd number of words of revs : WBT — (UXT),
L. A variety of languages iZ.>-Vec forms linear subspaceswhere(¥X*)°? is the reversed monoid ofX* with multipli-
VX of oTx closed under derivatives and preimagesZaft cationz P iy = y e z.
algebra morphismg : P;A* — Py¥* . This notion of a

variety was introduced by Reutenaugr![22]; see also Sectippmma Ill-3. Let (Q,7) be afiniteTs-coalgebra and @, 7)
W/ its dual Ly-algebra. Then the language accepted by a state

() Finally, let4 — BR and 2 — Set,. The preimage ¢ : 1¢ — Q is the reversal of the language accepted by

of L C ¥* under a zero-preserving monoid morphign: ¢ = Oz .
A* 4+ {0} — X* + {0} consists of all wordsw € A* for L5(q) = La(q) - revs.

The reversalof a languagel : ¥3* — Og4 is the language
L - revs,.



Proof: A stateq : 14 — @Q accepts awor@h = ay - - - a, (b) Every Lx-algebra homomorphismh : A — A’ is also

iff an L x-algebra homomorphism : Af — (A")/.
Yout * Yan -+ Va1 - ¢ = Log- (c) Given anLg-algebra A we have, in Remaifk 1116,
This is dual to the equation ear =eq-f:UA* — AT
G A+ Aan Yot = 1o, = 1oy, Proof: (a) Since f(¢) = ¢ the initial state ofUA* is

mapped to the one ¢l %)/, For anya € A, thea-transitions
in WA* and(¥X*)f are—ea and—e f(a), respectively. Hence
preservation of transitions amounts to the equafigne a) =
Hdz) @ f(a) for all z € WA*, which holds becaus¢ is a

which states precisely thataccepts the word"*’ = a,, - - - a;

in the Ly-algebra@). It follows that the two morphismE@(qA)

and Lg(q) - revs, agree onz*, hence they are equal. [
One of the cornerstones of our Generalized Eilenberg T \ X

orem in Sectio 1V is a coalgebraic characterization of thé-Monoid morphism. ; ) ot

closure under preimages, see Definition 11.26. To this end we(®) We /clearly have: - aj, = h - ain = ofy = (@');,. F/rom

introduce first the preimagé’ of an Ly-algebrad, and then /" ®w = &yt for all w € ¥* we can concludé - a; = a; -/

the preimage) of a locally finite Tx-coalgebrag. for all z € |\IJE_*|. Indeeo_l, both siqles defin@-morphisms
UY* — [A, A’] in the variablex which agree on2*. Thus

Notation 1ll.4. (a) Let A be an object ofZ. The object they are equal. In particular, we have the desired equation
[A, A] of endomorphisms, see Assumptionlll.4(iv), forms @ . Qfay =y - hforalla € A.

Z-monoid with multiplication (c) WA* is the initial La-algebra, and by (a) and (b) both
(A, A % [A,A] = [A A, (f.g) s g-f sides arel.A-algebra homomorphisms. O
given by functional composition and urii 4. Corollary 1I.8. LgtA be anLx-algebra ".’mdo“’“t A — Oz
(b) For anLy-algebra(A, a) the notationa,, : A — A for an output morpmsm. Them.out accepts inA/ the preimage
wordsw € X* (see RemarkT[.16) is extendeddq. : A — A of the language it accepts if:
for all z € |¥X*| as follows: sincel ¥* is the freeZ-monoid Las(oout) = La(oow) - f 1 WA* = O,
on X (see Proposition 11.12), the function

Proof: Both sides are equal tQ,: - €4 - f. O
Y= 9(44), a— ag, a oue €4 f

) i ) Notation I11.9. For any Z-monoid morphismf : WA* —
extends to a uniqu&-monoid morphismi¥* — [A, A] that gy \we denote byf' the Z-monoid morphism

we denote byr — «,. ;

« reva £\ 0 J £\ 0 revy *
Definition 1Il.5. Let f : YA* — ¥X* be a £-monoid A (TAT)P = (TZF)* T
morphism. For every.s-algebra A, o) we define itpreimage pefinition 11.10. Let f : WA* — ¥X* be a Z-monoid

under f as theLa-algebra(4,a)’ = (A,a’) on the same morphism. For every finitd-coalgebraQ, 7) we define its
states A, with the same initial stateaf] = ain, and With preimage underf as theTa-coalgebra(Q,~)" = (Q,7/)

transitionsa = a for all b € A. whose dual is the preimage of the dubj-algebra(Q,7)

Example lI.6. (a) If 2 = Set or Pos, we are given a monoid under f*. Shortly: .

morphismf : A* — ©*. Efverng-aIgebraA yields anLa- QI =Q".

?I(gb()ebra with transition®y, = ay) = Qa, - ... " Ca, fOr If f = Wh* for a functionh : A — %, it is easy to see that
=qay--ap.

the coalgebra)’ of the previous definition coincides with the

(b) If 2 = JSLy, we are given a semiring morphisjh: coalgebraR” introduced for the definition 0p7" (see1.24).

PrA* — PyX*. If the value f(b) is a single word,f(b) =
{w}, then the corresponding transition is agaifi = «,,. In  Example 1ll.11. The preimage ofQ,~) under f : WA* —
generalf (b) = {wi, ..., w;}, and sincen_) is a semilattice VX~ has the same states and final states, and the transitions
homomorphism, we conclude thaf = a, V-V ay,, (the are given as follows:
join in [A, A]). (@) Let¥ = BA, DLg; and f : A* — ¥*, TLetting o

(c) Analogously for? = Z,-Vec: if f(b) = {wr,...,wp}, 7a We get, by ExamplETI6(a), the formute) = ay, - ...
thenoy = ay, ® -+ @ o, (vector addition in[A, A)). aq, Where f(b) = ai---ay (i€, fT(b) = a,---a;). Since

*(d) If 9 = ?et* a ;erq-preserving mofn(_)id mprphisﬁ13 %f _ ag* it follows that%{ = Yan "+ Va1 = V)~
A"+ {0} — ¥+ + {0} is given. 'frhe mapy, is defined as in () Let¥ = JSL, and f : P;A* — P;x*. We claim that
(@) if f(b) # 0, and otherwisey; (x) = x4 for all z € |A], A = Yy V-V, Where f(b) = {wy, ..., w,} and the

wherex, is the point ofA € Set,. join is taken in[Q, Q] (i.e., pointwise). Indeed, observe that the
Lemma IIL.7. Let f : WA* — UY* be a Z-monoid maph — h gives a semilattice isomorphisf@, Q] = [Q, Q).
morphism. Letting i, = 74, this isomorphism maps,, to e, and
(a) f is also anLa-algebra homomorphisnf : TA* — henceyy, V.-V yy, 10 ayrer V- -+ V anrev. By Example
(U7, [IT.61b) this morphism iSaf sinceft(b) = {wi, ..., wiv}.



(c) If € = Zz2-Vec and f : PyA* — P;E*, then 7{ = Recall from Definition[IL.26 the concept of closure under
Yy D+ DY, Wheref(b) = {w1,...,wy}. Indeed, the map preimages. This can now be formulated coalgebraically,tmuc
h — h gives an isomorphism of vector spa¢é€s Q] = [Q, Q]. in the spirit of Propositiof 1L.21.

Letting a, = 7, this isomorphism maps,,, to a,re, and

Theorem 111.16. A subfunctorl/ of the rational functoroT
hencey,, @ - -+ @ Yu, 0 ayree @ - -+ @ arev. By Example

: S T is closed under preimages iff for evegg-monoid morphism

[L6lc) this morphism isay . f: WA* — UY* there exists &x-coalgebra homomorphism
d) If € = BR and f : A" + {0} — X* + {0}, then from (V)/ to VA.

v = 5w if f(b) # 0, and otherwisey] is the zero map.

The argument is similar to (a). Proof: Suppose that : (VX)/ — VA is aTa-coalgebra

homomorphism. Composed with the inclusionV A «— oTa
Proposition 111.12. The language accepted by a stateof it yields the homomorphisnk of Example[IIl.I% restricted
the coalgebra®)/ is the preimage undef of the language; to (V)7 — this follows fromoTa being the terminal locally

accepts inQ: finite Ta-coalgebra. Thus- k takes every languagg of |V'X|
Lo (q) = Lolq) - f. to L - f, proving thatL - f lies in VA.
For the converse, suppose thais closed under preimages.
Proof: This follows from the computation Then the homomorphisita of ExampldIIl.I5 has a restriction
. ho : (V) — VA. Thathy is a coalgebra homomorphism is
Loi(a) = L@‘ (qz' reva (Lemm) a co(nse(;uence of the following homomorphism theorem for
= Lgsi(q) - reva (def. Q) coalgebras: ify : Q — R andi : R — R are Tx-coalgebra
=L5(@) - f1-reva (Corollary[IIL8) homomorphisms such thatis injective andg = i - k for
= L5(q) -revs - f -reva -reva  (def. fT) some morphisnk in ¢, thenk is a coalgebra homomorphism.
=Lg(@) -revs - f This follows easily from the observation thd preserves
=Lolg) - f (LemmalL3). monomorphisms. 0

0 IV. GENERALIZED EILENBERG THEOREM

In this section we present our main result, the Generalized
Eilenberg Theorem. First we consider two “finite” versiorfis o

with transitions given by left derivatives, (L) — f(a)~LL for this theorem, proved by Klima and Polék [16] for the cases

a € A. Here we extend the notatian-L L for left derivatives ¢ — B @d¢ = DLor.
from wordsw € ¥* to all elementsr of ¥X* as follows: let Definition IV.1. A variety V' of languages iné is called
l, : UX* — UY* be the left translation, (y) = x e y, then object-finiteif VX is finite for every alphabeXl.

H o —1 . * i
tLhi left derivativez™"L of a languagel. : ¥x* — Og is In the next theorem we will consider locally finite varieties
z of 2-monoids, see Definition I11. Recall that, in comparison

We now extend the preimage concept from finite coalgebrits the pseudovarietiesof Definition [IL.11, varieties ofZ-
to locally finite ones. ATx;-coalgebra? is locally finite iff itis  monoids may contain infinite monoids and are closed under
the filtered colimit of the diagram of all its finite subcoatigas finite and infinite products. All locally finite varieties a@-
Q; — Q (whose connectinds-coalgebra homomorphismsmonoids form a lattice whose meet is intersection. The same
di; : Qi — Q; are inclusion maps). Given any-monoid holds for all object-finite varieties of languages where the
morphismf : WA* — UX*, everyd; ; is also al'a-coalgebra intersection is taken objectwise.

homomorphismd; ; : Q@ — Q] by the dual of Lemma reorem 1v2 (Generalized Eilenberg Theorem for Object-
[IL7Ib). Hence the coalgebrag! and homomorphismd; ;  Finite Varieties) The lattice of all object-finite varieties of
form a filtered diagram irfCoalg Ta. languages ir¢ is isomorphic to the lattice of all locally finite
varieties of 2-monoids.

Example 111.13. If @ is finite subcoalgebra ofTs, then @/
is the Ta-coalgebra of all languages : ¥¥* — Og in Q

Definition 1ll.14. For everyZ-monoid morphisny : VA* —

w¥* and every locally finité/:-coalgebra) we denote by)/ Proof sketch: Given a varietyV of languages in¢,
the filtered colimit of the diagram of adJ)f, whereQ; ranges denote byey : UX* — VY the dual finite ©-generated
over all finite subcoalgebras ¢}. monoid of the local variety/S — oT%, see Theorer I.22.

Example 111.15. If @ is a finite subcoalgebra @fly; then the Let V© _be the c_Iass of all?-monmdsD suc_h that every
languages accepted ky’ are precisely the languagds. f 2-monoid morphlsmh Uy — D,_WhereE is any finite

with L € |Q|. This follows from the Proposition TI.12 and the2lPhabet, factorizes (necessarily uniquely) through

fact that every statd, of (Q accepts precisely the language . e s

SinceoTy; is the filtered colimit of its finite subcoalgebrgs h= (0% V- == 2D).
an analogous description holds f@7x)/. Hence the unique A routine calculation showst/hévt@ is a variety ofZ-monoids
Ta-coalgebra homomorphisi: (o7%)/ — o¢TA maps every whose free monoid ot is VY. Since VY is finite, V¢ is

languageL in oT%; to its preimagel - f. locally finite.
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Conversely, for a locally finite variety¥ of Z-monoids (in addition to closure under derivatives and preim-
(with free monoidses, : ¥¥* — Dy), we obtain an object- ages), and the fourth column characterizes hanonoids.

finite variety of language$/’™ — o7 with WY defined by
I/I//D\Z — Do forall = CATEGORY |var. of languages CATEGORY J-monoids
= ¢ are closed under 2

The constructiond” — V¢ and W — W5 are mutually — " .
inverse and hence define the desired lattice isomorphism. BA un(-), 2,3 Set monoids
Definition 1V.3. An object-finite varietyl” of languages ir¢’ DL, U, n, g, ¥ Pos n%dr?or%i
is calledsimpleif it is generated by a single alphab®t That .
is, given any varietyV’ such thatVX is a local subvariety JSLg U, @ JSLg 'ggmﬁ?ntegt
of V'Y, thenV is a subfunctor oft’’. A pseudovariety of g
2-monoids is callecsimpleif it is is generated by a single| Zz2-Vec ®, o Zy-Vec | Zy-algebras
finite 2-monoid D, i.e., all members of the pseudovariety are monoids
submonoids of quotients of finite powels® (n < w). BR ® N 2 Set. with 0

Theorem IV.4 (Generalized Eilenberg Theorem for Simple The case¥ = BA, DLy, andZ,-Vec are due to Eilen-
Varieties) The poset of all simple varieties of languages inerg [12], Pin[[18] and Reutenau&r [22], respectively. Thasec
% is isomorphic to the poset of all simple pseudovarieties @f = JSL, is “almost” the result of Polak [20]: hidisjunctive
Z-monoids. varieties of languagesre required to contailx* for every
¥, and he considers semirings withdutIn our setting this
would mean to take the predual categor€s= JSLo (join-
semilattices with0 and 1) and 2 = JSL (join-semilattices).
We opted for the more symmetric preduality= 2 = JSLg

of languages and simple pseudovarietieszofmonoids, that as semirings are usually considered with a zero element. The
’ last example,¥ = BR, is a new variant of Eilenberg’s

is, V is simple iff (V) is simple.

Our main result now follows from Theorein 1V.4 by atheorem.
completion process. Recall thatpois a poset with directed V. VARIETIES OEFREGULAR BEHAVIORS
joins. By afree cpo-completionf a posetP? is meant a cpo
P containingP? as a subposet such that

(C1) every element: of P° is compact inP (that is,
wheneverz lies under a directed joiy/ p; of elements of
P, thenz < p; for somei), and

(C2) the closure ofP° under directed joins is all oP.
These two properties determifeuniquely up to isomorphism.
Concretely P can be constructed as the set of all ideals
directed down-sets) aP, ordered by inclusion.

Proof sketch: For every locally finite variety of 2-
monoids the clas$l’; of finite members oV forms a pseu-
dovariety of 2-monoids. The isomorphisiy — V' in the
proof of Theoreni IV.P. restricts to one between simple viaset

Although all our results so far concerned acceptors and
varieties of languages they accept, we can with little ¢ffor
generalize the whole theory to Moore automata, where the
output morphismy,,: has, in lieu of{0,1}, any finite setO
(of outputs) as codomain. The role of languages avés now
taken over by functiong : ¥* — O, and the role of regular
languages byegular behaviorsi.e, thoses realized by a state
of some finite Moore automaton.

Given a fixed finite se© of outputs, all we need to change
Theorem IV.5 (Generalized Eilenberg TheoreniJhe lattice in the previous text is Assumptidn_I].4(v) which is replaced
of all varieties of languages if’ is isomorphic to the lattice by |[O«| = O, where O« is the object dual tal 5. For the
of all pseudovarieties o&-monoids. objectO4 dual tol4 we can assume, as in Remarklll.3, that
|O%| = |O%|. Moore automata are modeled as coalgebras for
the endofunctor or¥’

Proof sketch: One proves that
(1) the lattice% of all varieties of languages i is a
free cpo-completion of the poset’y of all simple varieties TsQ = O¢ x Q.
of languages, and
(2) the lattice.Z» of all pseudovarieties ofZ7-monoids
is a free cpo-completion of the poset), of all simple

Example V.1 (Linear weighted automata) et ¥ = 2 be the
categoryK-Vec of vector spaces over a finite field. Here
O« = K, the one-dimensional space. Thus7a-coalgebra

pseudovarieties, is alinear weighted automatorit consists of a vector space
This requires a verification of the properties (C1) and (C g ; SP
of states, a linear output functiopn,; : Q@ — K and linear

above. SinceZ? = Z9 by Theorem[1V#, and free cpo- >

completions arg uniqug up to isomorphism, it follows thé[ansmons% 1@ Qforaex.

L =2 Ly. O The rational fixpointoTs, of the functorTy; is carried by
For our five predualities of Examplé_1.5 we thughe set of all regular behavios: * — O (that we identify

obtain the concrete correspondences in the table Math the corresponding morphisnts: U3* — Og in 2). Its

low as special cases of the Generalized Eilenberg Thexput map assigns the value at the empty wegds(8) =

orem. The second column describes thealgebraic op- ((e), and its transitions are given ligft derivativesy,(8) =

erations under which varieties of languages are closgda-—) for all a € 3. Symmetrically, theight derivativesof
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B are the functiong(— - a) for a € ¥. We define theational general pairs of predual categories. This will require tea-g
functor oT : Set;” — ¥ in complete analogy to Definition eralization of two core concepts of algebraic automatariheo
24 the syntactic (ordered) monoid associated to a regulaukzgg
and the free profinite (ordered) monoid on an alphabeto
a notion ofsyntactic Z-monoidand free profinite Z-monoid
respectively. We conjecture that the free profirmitemonoid
on X arises as the limit of all quotient monoids @fX*,
and hope to derive a generalized Reiterman theorem. In the
classical setting the theorems of Eilenberg and Reiterman a
Example V.3 (Varieties of rational power series)f ¥ = 2 = two key ingredients in a great success of algebraic automata
K-Vec, the coalgebraTx; consists of all rational power seriestheory: these results allow to specify classes of regular la
8 : ¥* — K, i.e., behaviors of linear weighted automatguages (e.g. the star-free languages) by profinite idestfiti
Moreover, Z-monoids are precisely algebras over the fieldhich leads to decidability results for such classes. Rerha
K, and the freeK-algebra?X* is carried by the set of all new such results are enabled through subsequent work in our
functions ¥* — K with finite support. Given a morphism generalized setting.
f: VA" — U™ of free K-algebras, the preimage of a power Finally, we are interested in extending our results from
seriesf : ¥* — K under f is regular languages and Moore behaviors to other notions of
rLA* rroN rational behavior, such as-regular languages or regular tree
A" =K, fw)= Z Fw)(v) - B(v). languages. Here the role of monoids is taken over by two-
et sorted algebras callewvilke algebras(or right binoids see
(This sum is well-defined becausf(w) : ¥* — K has wjjke [25]) andforest algebragintroduced by Bojanczyk and
finite support.) A variety of behaviors IK-Vec forms linear \y;ajukiewicz [9]), respectively. The main challenge will te
subspace¥’Y of ¢Tx closed under derivatives and preimagegientify the proper categorical model for the correspogdin

of K-algebra morphisms. This coincides with the concept @fceptors, Biichi automata and tree automata.
a variety of rational power serientroduced by Reutenauer

Definition V.2. A subfunctorV < oT is closed under preim-
agesif for every 2-monoid morphismf : YA* — ¥¥* and
every behavios : ¥X* — Og in VY the behaviors - f lies
in VA. A variety of behaviors ir¢” is a subfunctod” — oT
closed under preimages and (left and right) derivatives.
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APPENDIX A c.f. the definition of the rational functarT' (Definition[I[.24).
PROOFS (c) Every homomorphism : Q — Q' of locally finite T%-

This appendix provides all proofs we omitted due to spa&@algebras is also a homomorphigim Q7 — (Q")! of Ta-

limitations, along with some technical lemmas required fé&oalgebras.
these proofs. (d) For any 2-monoid morphisny : UT"* — WA*,

Remark A.1. (a) Recall that an objectl of a category Q) = Q7.
is called finitely presentablef its hom-functor «7(A,—-) :
o/ — Set preserves filtered colimits. lf7 is a locally finite  (€) The constructioi—)/ commutes with coproducts: given
variety of (ordered) algebras, the finitely presentableectsj locally finite Tx-coalgebras; (j € J), we have
are precisely the finite algebras.
(b) Every finiteTx-coalgebra is a finitely presentable object (H Qj)f = H ij
of Coalg T, see [[2]. Hence, given a filtered colimit cocone J J
¢+ Q) — @ (i € I)in CoalgTs, every coalgebra

homomorphisnt. : Q — Q' with finite domain(Q factorizes
(in CoalgTx) through some:

Proof: (a) Suppose// has been defined by means of the
cocone(c;), and another filtered colimit cocone

¢ (Q575) = (@) (GEJ)

h , J
Q—Q
AN , with @’ finite is given. By Remark Al2 it suffices to show
N “ that the mapsc; are Ta-coalgebra homomorphisms;

Given j € J, there exists by Remalk A.1 Bs-coalgebra
Remark A.2. The forgetful functoiCoalg Ts; — ¢ preserves homomorphismy : (Q%, 7)) — (Qs,7) with ¢; - g = ¢, for
and creates colimits. The latter means that, given a diagragine; It follows thatjc’;. IS aTA-c’oaIgebra homomo?phism,

(Qi,7:) (@ € 1) of Tx-coalgebras and a colimit cocore; @ pejng the composite of théx-coalgebra homomorphisms
Q: = Q)icr In €, there is a uniquéx.-coalgebra structure

on @ for which the maps; areTg-coaI_gebra hpmomorphis_ms (Q;,W})'f EN (Qi, ) =5 (Q,47).
¢+ (Qi,vi) — (@,~). Moreover,(c¢;) is a colimit cocone in
Coalg 7. Indeed,g is a Ta-coalgebra homomorphism using the defini-

The uniqueness of gives rise to a useful proof principle:tion of @/ for finite @ (Definition[I[.10) and LemmaTILl7(b),
if two coalgebra structures and~’ on @ are given such that andc¢; is one by the definition of/.
eachc; is a coalgebra homomorphise : (Q;,v:) — (Q,7) (b) Given anLx-algebra( A, o) the La-algebra(A, o)f (see
andc; : (Qi,vi) — (Q,~"), it follows thaty = ~'. Definition lIL5) has the transitions] = oy, () for a€ A.
Hence, for a finitels;-coalgebra @, ), the LA -algebra@Q/ =
Q" = Q' has transitionsyz, () : Q — Q for a € A. Dually
. o Q' has the transitions, ,) : @ — @, which are precisely
Construction A.3. For every locally finite Tx-coalgebra the transitions corresponding to the coalgebra strucBye (
(Q;7) and Z-monoid morphismf : WA* — WX we  |jthe case wheréQ, ~) is just locally finite, expresg, v)
construct al’s-coalgebra(Q, v)' as follows: as a filtered colimite; : (Qy,v:) — (Q,v) (i € I) of finite

(1) Express(Q,v) as a filtered colimitc; : (Qi,7:) = Ty -coalgebras, and consider the diagram below:
(Q,v) (i € I) of finite T;-coalgebras.

(2) Let 47 be the uniqueTa-coalgebra structure oW v 5 idxQf0 A
for which all ¢; : (Qi,v) — (Q,+7) are Ta-coalgebra Q Oz x Q O¢ x Q
homomorphism, see Remdrk’A.2. Put QT TTEQ TTAQ

@) =(Q.7).

The following lemma summarizes some important proper-

The preimage constructio@/, see Definition II.T4, has
the following equivalent formulation:

Qi —— O¢ X Q7 — O¢ x Q7
‘ idxQ;°

ties of this construction. This diagram commutes becauseis a T5-coalgebra homo-
Lemma A.4. Let (Q,~) be a locally finiteT;-coalgebra and morphism and by naturality. The lower row is the coalgebra
f:UA* - UY* a Z-monoid morphism. structure of (Q;,~;)/ by the first part of the proof. Hence
(a) The coalgebra structure ¢f),~)/ is independent of the ¢: is @ Ta-coalgebra homomorphism frorfQ;, v;)/ to the
choice of the colimit cocong:;) in Constructiof AB. coalgebra in the upper row, which implies that the upper row
(b) If f = Wz for somefy : A — 3, then(Q,~) has the defines the coalgebra structure (6§, 7).
coalgebra structure (c) Express@ and Q' as filtered colimitse; : Q; — Q
o (i € I) andc] : Q) — Q' (j € J) of finite Tx-coalgebras. By
QL Oy x QF dxQP, O% x Q%, (2) Remark Al there exists for evelye I someTx-coalgebra
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homomorphismy : Q; — Q) for which the diagram below The upper and lower path define the transition:{ﬁfj A

commutes: . and][; A{ respectively. Hence they have the same transitions.
Q—— Q' (i) Suppose now that/ is finite and finiteTs-coalgebras
T T . Q; are given. Then we conclude from (i) and duality:
T T A gt it ~f" IT A7
Q——q, ([Ie) =@ en” =dle)” =11e =119/

J

It follows that h - ¢; : Q{ — (@) is a Tx-coalgebra The statement for arbitrary and locally finite coalgebrag;
homomorphism, being the composite of tfié -coalgebra now follows from the fact that filtered colimits and coprothic
commute in Coalg Ty, and every infinite coproduct is a

homomorphismsQ! % (0)f 25 (Q')/ (one uses the
b S9; (QJ) (@) ( filtered colimit of finite ones. O

same argument as in point (a)). Since the morphismare
jointly epimorphic in¢’, it follows that’ is a Tx-coalgebra Remark A.5. Recall thehomomorphism theorefior coalge-

homomorphismh : Q7 — (Q"). bras: if aTx-coalgebra homomorphisg: Q — R factorizes
(d) (i) We first show that for alLx--algebrag 4, o) we have in ¢ through a subcoalgebia R’ — R, then the factorizing
(AT)9 = AT9. morphismg’ is a coalgebra homomorphism.
Indeed, both algebras have statésand initial statesy;,. To g R ;
see that they have the same transitions, consider the diagra /
below, cf. Notatiori [I.4 and Definitiof TIT15. Q- 7 R
% Ty
£22 \—> (4, A] This follows easily from the observation th@d preserves
g f ysal 3) monomorphisms.
| ]

Remark A.6. Note that locally finitel's;-coalgebras are closed
under subcoalgebras. Indeed, suppose thatQ’ — @ is

The upper triangle commutes by the definitioncdf. Hence, & Tx-coalgebra homomorphism, whex@ is locally finite.

I — WA*

forallaeTl Now for everyq € |Q’| we have a finite subcoalgebr@,
, , of () containingq. SinceTs preserves intersections we can
(@) = apga) (def. /) conclude that), N @’ is a subcoalgebra ap’ containingg.
— (] i
= (a)ga (diagram [(8)) Lemma A.7. A family of subcoalgebrasiy, : VY »— oT%
= ((ah)9), def. (af)? (2 € Sety) forms a subfunctor opT iff, for every function

fo: A = ¥ in Sety, a Tx-coalgebra homomorphism from

(ii) If Q is a finite Ts-coalgebra we conclude from (i): (VE)F to VA exists, wheref — W [

g — oot — ot — (oMt = (0f)
QFv=QV =Q7 = Q") = (@), Proof: Suppose that th&> form a subfunctoV — oT,
soQf9 = (QF)s. and letfy : A — X. Then we have the commutative diagram

(iii) Now let @ be locally finite, and expres9 as a filtered below with g =V fo:
colimit ¢; : Q; — Q (¢ € I) of finite Tx-coalgebras. Hence

by (c) we haveTr-coalgebra homomorphisms : Q{“’ — oTs ﬂ> oTa

Q79 ande; - (Q1)9 — (Q7)7, whereQ! 7 = (Qf)9 by (ii)

above. It follows that)/*¢ and(Q”)? have the same coalgebra sz ImA

structure. VY — S VA

(e) (i) We first prove that, for each family dfs-algebras J
(A4j,05) (4 € J), By definition, T, is a Ta-coalgebra homomorphiswily, :
/ f (oTx)f — oTa, and by LemmaAl4(b)ns is aTa-coalgebra
(H Aj) = (H 45)- homomorphismmy, : (VE)/ — (¢T%)/. The homomorphism
J J

theorem then implies thatis a’Ta-coalgebra homomorphism
Clearly the algebras on both sides of the equation have them (V'X)7 to VA.
same stateﬂj A; and the same initial state. Concerning the Conversely, given ala-coalgebra homomorphisny

transitions, consider the commutative diagram below: (V) — VA, the above square commutes because both
; e TI(0)e 0Ty, - ms and mpa - g are Ta-coalgebra homomorphisms
TA* Uy I14,,1T4;] from (VX)) into the terminal locally finitél s -coalgebrapTa.
Note that(V'X)/ is locally finite becaus& Y is locally finite,
(a(0s)a) T(ff)*)nfj being a subcoalgebra of the locally finite coalgebfa, see
TIIA;, Aj] RemarlA®. O
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Remark A.8. Dually to Remark’/Ab, we have the followingi : VA ~— oTa we have thai-Vfy =i-Vf: (VE) = oTa

homomorphism theorem foLy-algebras: if anLs-algebra agree by the finality obTa; now use that is monomorphic

homomorphismf : A — C factorizes inZ through anLs- to concludeV f, = V f.

quotient algebra : A — B, then the factorizing morphisnff (c) We denote by ® the class of allz-monoidsD such

is an Ly-algebra homomorphism. that everyZ-monoid homomorphism : ¥¥* — D, whereXx
is any finite set, factorizes (necessarily uniquely) thioug.

A
/N

B- - -3C l )
I es
The analogous statement holds fér-monoid morphisms. VY- — 5D

SinceAlg Ly and Z-Mon are varieties of (ordered) algebras
this is a special case of the well-known homomorphis
theorem of universal algebra.

Il‘ﬁroposmon Al1ll.V@isa locally finite variety o£7-monoids
whose freez-monoid onY is VY for every finite sek.

Lemma A.9. Let Q — oTs and Q' — oTa be finite local Proof: (1) We first verify thatV® is a variety of 2-

varieties of languages, and : WA* — ¥X* a Z-monoid MOnoids.

morphism. Then there existsZa -coalgebra homomorphism (@) Closure under producés: let : [[,e; Di — Di be a
from h : QF — ' iff there exists aZ-monoid morphisny product of monoidsD; € V©. Given a monoid morphism

making the following square commute: h: \I’E* — Ilie; Ds every morphismr; - o : ¥X* — D;
factorizes asr; - h = k; - ex; for somek; : VY — D,. Hence

DA /! Py (ki) VS - 11 D; is the desired morphism with = (k;)-ex.
(b) Closure under submonoids: given : D — D'
Ql L‘:c@ (4) with D’ € V© and a monoid morphisnk : UX* — D,
o~ ~ the homomorphismn - h factorizes througkes, in 2-Mon.
Q g Q Consequently, factorizes througles, due to diagonal fill-in:
In this case, we havg = h. DI v S i
Ve
Proof: Given aTa-coalgebra homomorphisin: Q7 — hl e Jk
Q' we have, by Lemmalll7, the following square @f- e
algebra homomorphisms D——D'
N CEAN (wx*)/! ThusD € V.
(c) Closure under quotients: given: D — D’ with D e
Qi le@ (5) V@ and a homomorphisrh : ¥X* — D', choose a splitting
of e in Set, i.e., a functionu : |D’| — |D| with e - u = id.

Q' —>th Letp : ¥ — |UX*| denote the universal map of the free
monoid ¥X*, and extend the map - h-n : ¥ — |D] to

whereg = h. This diagram commutes because\* is the a homomorphismk: : WS* — D, which then factorizes as
initial L A-algebra. Therefore the squafé (4) commutes. That= i/.ey, because is in V. Then theZ-monoid morphism

g is a Z-monoid morphism follows from Remafk A.8. e-k': VY — D' is the desired factorization df.
Conversely, given a morphism for which (@) commutes, 0 ox .

theng : Q’ — QJ” Qf is an L A-algebra homomorphism by b vy /VE

(B) and Remark’/Al8, so duallyBx-coalgebra homomorphism N hoow

Q7 — Q' exists. O k

il;lloct;\tion A.10. Let V be an object-finite variety of languages D Z 5 D

(@) We denote bys, : UX* — VX the X-generated”- |ngeed, using freeness of the-monoid UX* and sinceu is

monoid corresponding to the local varietip.. injective it suffices to prove that-h-n=wu-e-k'-ex -7 in
(b) SinceV is closed under preimages, we have a (uniqug t. which holds because

Ta-coalgebra homomorphisiif : (VX)/ — VA for every

2-monoid morphismf : WA* — ¥¥*, see Theoreri 1I1.16. u-h-m=u-e-u-h-n (e-u=id)

This notation is in good harmony with the functor notation =u-e-k-n (def. k)

for V: for a functionfy : A — X and the corresponding- —u-e-K-eg-n (def. k).
monoid morphismf = ¥ f; : VA* — U¥* we haveV f, =

V f: indeed, both maps ar&-coalgebra homomorphisms (2) The 2- monoid VA lies in V@ for all finite A. Indeed,
from (V'X)f to VA and for theTx-coalgebra homomorphismgiven a 2-monoid morphismi : ¥Y* — VA where¥ is
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finite, we can choose a splitting 8et (a functionu : |X7Z| —
|TA*| with ea - u = id), and extend: - h - n to a Z-monoid
morphismf : ¥¥* — WA*. By LemmalA.9 there is &-
monoid morphisny : V¥ — VA such thaty - ex = ea - f.

gy A

LN

7S .vA

)y

We claim thatg is the desired factorization, i.eg,- e = h.
Using freeness of th&-monoid U'X* and sinceu is injective
it suffices to provew-g-ex -n=wu-h-nin Set, and indeed
we have

=u-ea-u-h-n (def. f)
=u-h-n (ea - u = id).

(3) From the definition of7® and (2) above we immediately
conclude that/A is the free monoid on a finite sét in the
variety V. Hence, sincé/ A is finite, V¢ is a locally finite
variety of 2-monoids. O
Proof of Theorerh IVI2:The above mapy — V@ defines
the desired isomorphism. To see this, we describe its iave
W — W5, Let W be a locally finite variety ofZ-monoids
with free monoidsey, : ¥¥* — Dy in W. Define an object-
finite variety WH of languages ing by forming, for each

let (A, a), be theL o-algebra with the same statds the same
transitionsn,, but initial statee 4 (x). For a finiteT'-coalgebra
Q we define thel's-coalgebra)),. by

Qm = QrevA(m)-
Lemma A.13. Letz € |[TA*|.

() Every homomorphism : Q — Q' between finitel'a -
coalgebras is also a homomorphism @, — Q"

(b) If Q@ — oTa is a finite local variety, then al'a-
coalgebra homomorphism frony, to @ exists for every
r e WA*,

(c) For every finiteTx-coalgebra@ and 2-monoid mor-
phismf : YA* — UYX* we have

(@Q")s = (@)

Proof: For (a) notice first that every homomorphism

(A,a) — (A',a’) of La-algebras yields a homomorphism

h:(A ), = (4,a), since by initiality of PA* we have
h-ea(x) = ea(x). Now given a homomorphisi : @ — Q'
between finite]lA-ggalgeQras, we have its dudls-algebra
homomorphisn. : Q" — Q. Hence, we have thé x-algebra
homomorphisnt: : Q! = Q' reva(z) = Qreva(x) = Qa and by
duality the desiredl’'A-coalgebra homomorphisia : Q, —
!/
'S For (b) seel[l, Prop. 4.31] and its proof. It remains to prove
(c). We first prove that

(AN)e = (Afa) (6)

finite 2, the dual local variety"% — oT% of e, i€, for all Ly-algebrasA = (A4,a) and Z-monoid morphisms
WUY = Dy. To verify that WP is a subfunctor ofoT, f:W¥A* — ¥X*. Indeed, bot{ A7), and(A;,)’ have states
consider a functiorfy : A — 3 in Set; and the corresponding A and transitionsy¢, for a € A. Moreover, the initial state
2-monoid morphismf = U fy : WA* — UX*. Since Da of (A7), is eys(z), and the initial state ofA;,)’ is ea(fz).
is the free monoid om\ in W, we get a uniquez-monoid Hence, by Lemm&aTIl7(c)(A7), and(Ay,)’ have the same
morphismg : VA — Vs with with ¢ - ea = es - f. By initial state.

Lemmal[A.9 we dually get &a-coalgebra homomorphism Now let @ be a finiteTx-coalgebra. Then

(WBx)/ — WHA, which implies thatW™ is a subfunctor

— o~

of oT by LemmaA.Y. Q)2 = (@reva@) (def. (=))
From Propositiof A1 and the definition of )® and(—)™ = (@f'T)re\,A(w) (def. Q)
it is clear that(V®)Y = V. To show that(IW5)® = W, ob- _ 0, ' (by @)
serve first that the varietigdV™=)® and W have by definition T W flreva(@) . y
the same finitely generated fre8-monoids Dy, and hence = (Qrevs-f@)’ (def fT)
contain the same finit&-monoids. Moreover, both varieties _ @;)ﬁ (def. Q2)
are locally finite and hence form the closure (in the category _ ,
2-Mon) of their finite members under filtered colimits. It = (Qfa)! (def. (—)7).

follows that(W5)® = W, as claimed. Hence(Q'), = (Q;)', as claimed.

We conclude that” — V@ defines a bijection between ) .
the lattices of object-finite varieties of languages (oedepy Construction A.14. Let V' be a variety of languages i#f and
objectwise inclusion) and locally finite varieties @tmonoids > @ finite alphabet. Given a finite local variety @ — V'3
(ordered by inclusion). Moreover, clearly this bijectionep We define a subvariety” — V' as follows. To define”’ A
serves and reflects the order, so it is a lattice isomorphidRf, @l finite A, consider, for everyZ-monoid homomor-

7 phism f : WA* — ¥¥*, the Ta-coalgebra homomorphism

We now turn to the Eilenberg theorem for simple varietie¥./ : (VX)” — VA, see Notatiofir AJ0. Then factorize the
For the proof we need to extend the right-derivative comstri$o@lgebra homomorphisW f - i : T];.qn«_g5- Qf = VA
tion of Notation[I[.20. as in Remark ILB:

Notation A.12. Let (A4, o) be anLa-algebraand 4 : VA* —
A the initial homomorphism, see Remark 1l 16. koe |UA*|

O

ma

QI —=»V'A VA .

FUA* SOn*

V-l

(@)
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Lemma A.15. V' is a subfunctor ofi’ (via thema’s) and (4) V' is object-finite. Note first that for every finite alphabet
forms a simple variety witl)) C V'X. A there exist only finitely many preimage3’, where f :
PA* — UX* ranges over alz-monoid morphisms: indeed,
Q is finite and the coalgebr@’/ has the same set of states
Q. Choosefi, ..., f, such that eachQ/ is equal toQ/:
for somei. Then consider th&'A-coalgebra homomorphism
g/ : (V/A)g — VT with mr -g’ = Vg -ma. (8) t: Hf:\I/A*H\I/E* Qf - H?;l in whose f—component is
the coproduct injection of)/: wheneverQ/ = Qfi. Then
By Lemma[AT, this implies in particular that” is @ e, =« -t for the obvious morphism : [/, Qfi — V'A.
subfunctor of V. Denote byp : [[;ya- ux- Q7Y — Thus,u is surjective since:» is, proving thatV’A is finite
II.or-ws- @" the Tp-coalgebra homomorphism whoge  (being a quotient of the finite coalgebfd,"_, Q7).
component is the coproduct injection bf= f - g. Note that (5) V' is simple. Indeed, given a variefy”’ of languages
11, QI = (L, Q7)? by LemmalA%. Hence we have thewith j : Q — V"X a local subvariety, we prove’ — V.

Proof: (1) For every finite alphabel’ and every 2-
monoid morphisny : YI'™* — WA* we prove that there exists
a Tr-coalgebra homomorphism

following diagram of7r-coalgebra homomorphisms: Denote byu)y : V'A — oTa andul : VA — oTa the
. . embeddings and by”f : (V%) — V" A the Ta-coalgebra
(II; @) —— (V'A)? —= (VA)? homomorphism of Theorem TII.16. Then the square
[
| y ng © [1Q7 —25 v'A
Hh Qh er VIF mp vr frvatowst Ve ’ [
[V”f-j]l A
The outside of the diagram commutes because fhe v
components of the upper and lower path diecoalgebra V"A o [N

homomorphisms from the finitér-coalgebra@’/9 to VI — 2

o1, and oTr is the terminal locally finite coalgebra. The deeommutes due topTa being the terminal locally finite
siredTr-coalgebra homomorphispi is obtained via diagonal T'a-coalgebra. Diagonal fill-in yields the desired embedding
fill-in in Coalg T, see RemarkTI]8. VA — V'A. O

(2) VA is a local variety for every\. Indeed, by definition
V'A it is a subcoalgebra of/A and hence ofgTA. To
prove closure under right derivatives, use ProposilioB1l!.
since VA and @ are local varieties, we havénx-coalgebra
homomorphismg:,, : (VA), — VA for all a € A and Tx-
coalgebra homomorphisnis, : Q, — Q for all z € ¥UX*,
see Lemma& A.13(b). Moreover,

Remark A.16. For every locally finite varietylW of 2-
monoids the set¥; of all finite members ofiV is clearly a
pseudovariety of7-monoids. Conversely, for every pseudova-
riety W, we denote byIW) the variety generated by, i.e.,
the closure ofi¥ under (infinite) products, submonoids and
guotient monoids.

Lemma A.17. For every simple pseudovarieti’ of 2-

(H QM) = H(Qf)a = H(Qfa)f monoids, the varietfW) is locally finite and(IW); = W.

Y f Y In particular, the simple pseudovarieties @fmonoids form a

by Lemmal[A.IB(c) and since the construction), clearly (full) subposet of all locally finite varieties @#-monoids via
commutes with coproducts. Hence we have the followird§® order-embeddingl — (W).

diagram ofT'x-coalgebra homomorphisms Proof: Suppose that the pseudovariélyis generated by
the finite 2-monoid D. Then it is easy to see that also the
T1Q7)a _fa (V'A), NULCIN (VA), . variety (W) is generated byD, i.e., (W) = (D). Fix a finite
FrAT v | setX and consider all functions : ¥ — |D|. They define
1, kfal L e a function (u) : & — |D|IPI* that extends uniquely to &-
! monoid morphisny : UX* — DIPI™ Lettingg = m - e be is
\ M its factorization inZ-Mon, we get the commutative diagram
]—[ Qj ea VA ma VA below:
FOA* ST > n e
b Uy b
whose outside commutes by a finality argument analogous to (u) J
(1). Diagonal fill-in yields &' -coalgebra homomorphishj, : “J g m
(V'A), — V'A, which shows that”’A is closed under right D pIDI®

derivatives by Propositiopn T1.21.

(3) V' is a variety of languages. Indeed, apply Thed+his shows thatF'Y (with universal mape - n) is the free
rem [IIL. 18 to conclude from[{8) that’’ is closed under X:-generatedZ-monoid in (W): it has the universal property
preimages. Moreovef) C V'Y, due to the possibility of w.r.t. D by the above diagram, and hence it has the universal
choosingf = idgx- in (@) for the caseA = X. property w.r.t. all monoids ifW) = (D). MoreoverFY lies
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in W, being a submonoid of a finite power 6f. This implies any variety suchj : VX — V'Y is a local subvariety, then

that every finite monoid ifi¥) lies in T, since it is a quotient j is a Th-coalgebra homomorphism: (VE)ff — (V’E)fvT

of a finitely generated free monoid. for everyi by Lemma A4. Thus we have the diagramof-
We conclude that{V) is locally finite and(W); = W, coalgebra homomorphisms

and this equation implies immediately thaf — (W) is an

injective order-embedding O t [l
Proof of Theoreri V|4 Recall the isomorphisi — V@ [L(v=)” V‘
between object-finite varieties of languageségnand locally I jl |
finite varieties ofZ-monoids from the proof of Theorelm IV.2. 1
In view of LemmalA.IV it suffices to show that this isomor- ]_[Z.(V’E)ff VA oTA

phism restricts to one between simple varieties of langsiage

and simple pseudovarieties 6f-monoids, that is, where the morphisnﬂi(V’Z)ﬁ L, /A exists by closure of

V is simple iff (V@)f is simple. V' under preimages. Diagonal fill-in shows tHaf\ — V'A.

O
(=) If V is a simple variety of languages, generated by

¥, we prove that the pseudovariety’ ®); is generated by Lemma A.18. Let V' be a simple variety of languages #i.
the 2-monoid V'Y. First apply Constructiol A.14 to the finitelf V' is generated by an alphabét, thenV is generated by
local varietyQ = VX. Then for the resulting variety” we any alphabetA with [A] > [X].

ha\éeVV/C:V}/H I::jdegd,v’ %/V follows Ir%mb LethrT;d;LIB, Proof: Let V' be any variety with/A C V’A. SinceV is
31” t for OA Sth ecaus hi IS gene_ra(e: )tE " O%SH generated by, it suffices to showY C V'Y — thenV C V/
that Tor every A he morphismima I LONSTUCHONLA.LY 516,y Observe first that there exigt-monoid morphisms :
is an isomorphism, or equivalently, the family of morphsm&,A* o U andm : USF < WA* with e-m — id. Indeed. if
Vf:(VX)f = VA, wheref ranges over alZ-monoid mor- 5 £ @, choose functionsng : ¥ — A andeg : A —» %) wit,h
phismsf : WA* — UY* is collectively strongly epimorphic m _ id in Set and pute = e: andm — Um?. If © = o,
in €. As in the the proof of LemmBa_A.15 we choose finitely on5|0der the two (unique) monocid morphlsm$0 N
many homomorphf|sm$1, oo fn 2 WAT = WXT with b = ande’ : A* — @* (satisfyinge’ - m’ = id), and pute = ¥e’
V] : i, (VE) — VA a strong eplmorph|sm Dually’andm = Um/. It is easy to see that and m are indeed
by LemmaAD we get &-submonoidh : VA — T 2 VE 9.monoid morphisms.

We conclude that every finitely generated free morimﬂ of Now let L € V3. By closure ofi under preimages we have
the pseudovariety’ ® is a Z-submonoid of a finite power of L-ec VA CV'A. SinceV is also closed under preimages,
VE. ConsequentlyV'®); is generated by’ we concludeL = L-e-m € V'S and thusVE C V'S, O

(«) If V is an object-finite variety of languages such that Proof of TheoreriTVI5(1) Let % d

& v denote the poset of all
g )s (e;\(]j-) hence alsd;h )ﬂl/slgenere}tedpbytza_sgglethflnlteva”eties of languages i# and.#Y its subposet of all simple

-monoid D, we prove thaf is simple. Puts = | |/\ €N ones. we prove that/, is the free cpo-completion of/).

S'?@C‘?D is a quotient of the fre@l—gengrated monoitf'Y in - Note first that %, is a complete lattice (in particular, a cpo)
Ve, it follows that the pseudovariey ) is also generated pe .o 1o an objectwise intersection of varieties of langsiag

by VX. Thus, every.@-monoid in (V®); is a quotient of a V; (i € I) is a varietyV. Indeed, the functofxQ = Oy x
submonoid of a finite poweV’S". Consequently, every free > clearly preserves (wide) intersections, thus an inteisect
algebral’A of V® is a submonoid of a finite powerS". of subcoalgebras ofTs; in % is again a subcoalgebra. And
(Indeed given a quotiert : D" — VA and a submonoid since? is a variety of algebras, intersectionsédhare formed
D VY, choose a splitting; : |VA| — |D'|, e-u=1id, on the level ofSet. Now, from V¥ = ,.; ViX it clearly
in Set. Since VA is free, we get aZ-monoid morphism follows thatV'¥ is closed under derivatives. And closure under
h : VA — D’ which on the generators commdes wrth preimages is also clear: givdnin |[VX| andf : TA* — UX*
Thene - u = id impliese - h = id, hencei - h : VA - VY  in 2-Mon, we havel- f in |V;A| for all 4, thusL- f € [VA].
is a submon0|d) Consequently, by composition with the Observe that also an objectwise directed union of varieties
projections vy - V3 we obtain a collectively monic is a variety. The argument is the same: sificés a variety of
collectiongy, ..., g, : VA — V¥ of 2-monoid morphisms. algebras, directed unions are formed on the levebex.
ChooseZ-monoid morphismsfy, ..., fn : VA* — ¥¥* It remains to verify the conditions (C1) and (C2) of a free
with es - f; = g; - ea (by starting with a spIittingez -v=1id cpo-completion.
in Set and extendingy - g; - ea -1 : A — [¥X*|to aZ-  (Cl) Every simple varietyy’ is compact in.%,. Indeed,
monoid morphism). By Lemnia A.9 we get a collectionfof- - suppose thal is generated by, and letV’ = ., Vi be a
coalgebra homomorphisnts : (VX)7. ! = VA that is collec- directed union witht’ C V'. ThenVX a local subvariety of
tively strongly epic. Hence the corresponding homomornphisi’y, and sincel’X is finite and|V'%| = J,,|ViX| in Set,
[hi] ]_[zlzl(VE)fiT — VA is a strong epimorphism i#’. We there existsi with V3 a local subvariety ofi;3. Therefore
conclude thafl” is a simple variety generated By, if V' is V C V; becausé/ is simple.
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(C2) Every varietyVV of languages is the directed joinand (d) full.
(i.e. directed union) of its simple subvarieties. To shout the
set of all simple subvarieties df is indeed directed, suppose(al) n is well- defined as a function, that is, it maps the set
that two simple subvarieties, and V; of V are given. By R = R\ {1} to Q = Q \ {1}. Indeed, we have for alt €
Lemma[A.I8 we can assume that both varieties are generated {1}:
by the same alphabét. In [1, Corollary 4.5] we proved that h(ﬁr) = h( \/ q) = \/ hg <r (%)
any finite subset of a local variety’ — oT%, is contained in a hq<r hq<r
finite local subvariety) — Q’. Letting @’ = VX, this implies
thatV'Y has a finite local subvariet containinglp,X U V;x. Which implieshr # 1 becauseil = 1.
Now apply Construction A.14 t@) to get a simple variety R % PR
V' C V containingV, andV;. (a2) h is aJSL-morphism, that ish(r Ar’) = hr A hr’ holds

Finally, by [1, Corollary 4.5] and Constructién AJ14 againfor all 7" € R \ {1}. Here “<” follows from the (obvious)
every language iV is contained in a simple subvariety Bf. monotonicity ofh. For the converse we compute
HenceV is the desired directed union.

(2) Let .Z5» denote the poset of all pseudovarieties®f h(hr A hr) = h(hr) A h(hr) SERS
monoids andZ7 its subposet of all simple ones. We agaifThe first inequality uses monotonicity sfand the second one
prove that#s is a free cpo-completion of/§. First, # isa uses(x). Hencelr A hr' is among the elementsin the join
complete lattice (in particular, a cpo) because an intéiseof h(r AT') = \/hq<MT, ¢, which |mpl|eshr A hr'! < h(r AT
pseudovarieties is a pseudovariety. Observe that alseetedt B
union of pseudovarieties is a pseudovariety. It remaingtdy (a3) The assignmerit — h trivially preserves identity mor-
(C1) and (C2). phisms. For preservation of composition we consider) —

(C1) Every simple pseudovariety’, generated by a finite g andk : R — S in (JSLoy); and showkh( ) =h-k(s)
Z-monoid D, is compact in.%y. Indeed, if a directed join for all s S\ {1}, i.e.,

(i.e. directed union) of pseudovarietie ., IW; containsiV’
then somé¥; containsD and hencédl’. \/ q= \/ q.
(C2) Every pseudovarietyy of Z-monoids is a directed kh(q)<s hq<ks
union of S|mpl_e Ones. Indeed, cl_eaﬂy IS the union of its This equation holds because, for alle @, the inequalities
simple subvarieties, and this union is directed because tv/%/ ) < s andhg < ks are equivalent. Indeed, ith(q) < s

simple subvarietie$V;, W, C W (generated byD; and D,
. . . : . < = <
respectively) are contained in the simple subvarietyViof then hq - V’WSST Fs. Conversely, ifhq < Fs then

generated byD; x Ds. k(ha) < k(ks) = k r) = kr < s
(3) From Theorern IV} we know th&’) =~ 9. Since. % (ha) < k(ks) (kxs ) k}és -

is the free cpo- complet|0n of by (1), andﬁj is the free

cpo-completion ofZ)) by (2), the unigueness of completiond!Sing thatk is monotone and preserves joins.

gives Ly = L. _ ~
(b) On the level of posets the constructioh — @ first

APPENDIXB removes the top element and then reverses the order.
PREDUALITIES Conversely, we can turn any semilatfic® in JSL; to a
In this appendix we prove in detail the preduality ofemilattice P in (JSLo1); by first adding a new bottom
JSLy; andJSL (the basis of Polaks original Eilenberg-typeelement and then reversing the order. Up to isomorphisnethes
correspondence [20]) and the predualityBR andSet. (the two constructions are clearly mutually inverse, Be= P for
basis of our new Eilenberg-type correspondence). all P. This proves that—) is essentially surjective.

Theorem B.1. JSLo; and JSL are predual. ) ) )
(c) Givenh : Q@ — R in (JSLo1); we claim that, for all

Proof: The desired dual equivalen(?e\) : (JSLo1)?«p = qe€Qq,

JSL; is defined on objects by hq = /\ r (%)
Q=(Q,v,0,1) — Q=(Q\{1}n) a<hr
and on morphismé : Q — R by v/vh\erer ranges overR \ {1}. This immediately implies that
“ N A (—) is faithful. To show <" let » € R\ {1} with ¢ < hr.
h:R—Q, hr= \/ q, Sinceh is monotone and preserves joins, we have
hq<r N
— AN /
where ¢ ranges overQ. Here and in the following, the hq < h(hr) = h( \/ q)= \/ hg <.

symbolsV, A, <, 0 and 1 are always meant with respect ha'sr he'sr

to the ord_er OfQ or R. We need .tO Verify th_a(_) is (a) 2Note that any nonempty finite semilattice necessarily haspaetement,
a well-defined functor, (b) essentially surjective, (c)tH&il namely the (finite) join of all of its elements.
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For the converse note that joinisxVy =x+y+z-y. Hence evenfinite non-unital
boolean ring has a unit, the join of all its elements. However,

7= \/ q' = h(hq). homomorphisms between finite non-unital boolean rings need
ha'<hg not preserve the unit.
Hencehgq is one of the elements occuring in the meet«), (b) The categoryUBR of unital boolean rings and unit-
which means that this meet is hg. preserving ring homomorphisms is isomorphic to the categor

N R BA of boolean algebras (and hence preduaSta). Recall
(d) Giveng : R — Q in JSL; we need to findx : @ — R that under this isomorphism corresponds to exclusive dis-
in (JSLo1)s with g = h. First extendg : R\ {1} — @\ {1} junction and- to conjuction.
to a mapg : R — @ by settinggl = 1. Theng preserves

JTheorem B.3. BR and Set, are predual.
all meets of R becausey preserves all non-empty meets of

R\ {1}. Inspired by (c) we define Proof: Recall that(Set,); is equivalent to the Kleisli
category of the monad — Z+1 onSet ;. The dual comonad
ha= N\ r, on UBR; ~ Set? is MX = X x 2 (where2 = {0,1} is
a=gr the two-element boolean ring) with counit

wherer ranges overR. Let us show that indeed defines a

EX _
JSLg;-morphism. Firsth preserves) and1 because Ax2—= X, ex(z,b) =z,

hO — /\ - /\T —0, and comultiplication
0<gr Xx22 X x2x2, 6x(z,b) = (2,b,b),
and hl — /\ r—1 and it suffices to show that the Co-Kleisli categdy(M ) of
- - this comonad is isomorphic BR . The desired isomorphism

1<gr I~
= I: KI(M) — BRy is identity on objects and takes a Kleisli

In the last equation we use th@t = 1, and no other element morphismf : X x 2 — Y to the BR ;-morphism
of R is mapped tal by g since the codomain af is Q \ {1}. '

For preservation of join$i(qV¢') = hqVhq forall ¢, ¢ € Q, If: X =Y, If(z)=f(z0).
first note that " follows from the (obvious) monotonicity of

h. For the other direction we compute It remains to verify that/ is a well-defined full and faithful

functor.
q< /\ gr =g( /\ r) = g(hq) (1) If is clearly aBR s-morphism since) + 0 = 0 and
q<gr q<gr 0-0=0.

(2) I preserves identities: the identity morphism &f €

KIl(M) is ex, and
/ <G — / <g / ] )
qVq <g(hq)Vg(hg') <g(hqV hq') Iex(z) = ex(z,0) = 2 = idx (2).

The last step uses the monotonicitygfSohqV hq' is among
thg ele_mer_ltsr in the meet definingi(q vV ¢') = A, <4 7
which impliesh(q V ¢') < hq V hq'.

Finally, we proveg = h, i.e.,

and analogously’ < g(hq'). Hence

(3) I preserves composition; the composition of Kleisli
morphismsf : X x2 — Y andg : Y x2 — Z is
ge f: X x2— Z where

o f(x,b)=goMfodx(x,b) = x,b),b).
o=\ a g f(2.b) = goMJodx(r.b) = g(f(x.b).b)
hq<r Therefore
for all » € R\ {1}. To show " take anyq € Q satisfying I(ge f)(z)=ge f(z,0)
hqg <r. Then
= = 9(f(2,0),0)
g< N\ 9" =3 \ ') =1d(hg) <gr=gr = g(If(z),0)
= = = Ig(If(x))
For “<” note first that = Igolf(z)
h(gr) = /\ < (4) I is faithful: let f, g : X x 2 — Y be Kleisli morphisms
gr<gr’ with If = Ig, i.e., f(x,0) = g(x,0) for all z. Then
The last step uses thatis one of the elements over which
the meet is taken. Henag- is one of the elementsg in the 1@, 1) f(@,0)+ f(1,1) + f(1,0)
join\/;,.,.qa,s09r <\, . q O f(z,0)+1+ f(1,0)
Remark B.2. (a) Every non-unital boolean ring is a distribu- - (x,O) +9(1,1) +4(1,0)
tive lattice with 0 where the meet is multiplication and the =g(z,1)
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which impliesf = g.
(5) I'isfull:let f : X — Y be aBR y-morphism. We claim
that the map
g: Xx2=Y, g(x,b)=f(z)+b+b-f(1),
is aUBR ;-morphism with/g = f. First, the equatiotig = f
clearly holds:
Ig(x) = g(x,0)
= f(z)+0+0-f(1)
= f(x).
To show thatg is a UBR ;-morphism we compute
9(0,0) = f(0)+0+0-f(1)=04+0+0=0
and

9(1,1) = f(A)+1+1-f(1)
=f)+f1)+1=0+1=1.

Further,

g(x,b) + g(2',b')
= (f(x) +b+b- f(1) + (f(a") +V +b"- f(1))
=flz+2)Y+o+V +O+V)- f(1)
=gz +2,b+1b)
and

g9(z,b) - g(a',b')
=(fr+b+0b-f(1))- (f2" + 0 +0"- f(1))
=fa-fo' +(fo- b+ fo-b - f(1))
+ (b fa' +b- fa' - f(1))
F OV fA)+0-0" - f(1)- £(1))
+b-0 +b-b - f(1)
=fr-fo'+(fx-V+ fo-b)+(b- fo' +b- f2')
+ b0 f)+b V- f))+b-V +b- - F(1)
=flz-2Y+b- b +0b-b - f(1)
=g(z-2',b-0).
In the third step we usgz - f(1) = fz, fa'- f(1) = fa
and f(1) - f(1) = f(1), and in the fourth step the equation
u+u=0. ]
Remark B.4. By composing the equivalences
BR; ~ KI(M) ~ (KI(Z — Z +1))°" ~ (Set,)}”

of the above proof, one obtains the explicit descriptionhaf t
preduality betweeBR. and Set, in Example[IL5(e).
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