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Abstract

Inspired by computational complexity results for the quantified constraint
satisfaction problem, we study the clones of idempotent polymorphisms of certain
digraph classes. Our first results are two algebraic dichotomy, even “gap”, theorems.
Building on and extending [1], we prove that partially reflexive paths bequeath a
set of idempotent polymorphisms whose associated clone algebra has: either the
polynomially generated powers property (PGP); or the exponentially generated
powers property (EGP). Similarly, we build on [2] to prove that semicomplete
digraphs have the same property.

These gap theorems are further motivated by new evidence that PGP could be the
algebraic explanation that a QCSP is in NP even for unbounded alternation. Along
the way we effect also a study of a concrete form of PGP known as collapsibility, tying
together the algebraic and structural threads from [3], and show that collapsibility is
equivalent to its Π2-restriction. We also give a decision procedure for k-collapsibility
from a singleton source of a finite structure (a form of collapsibility which covers
all known examples of PGP for finite structures).

Finally, we present a new QCSP trichotomy result, for partially reflexive paths
with constants. Without constants it is known these QCSPs are either in NL
or Pspace-complete [1], but we prove that with constants they attain the three
complexities NL, NP-complete and Pspace-complete.

1 Introduction

A great literature of work exists from the past twenty years on applications of universal
algebra in the computational complexity of constraint satisfaction problems (CSPs) and
a number of celebrated results have been obtained through this method. Each CSP is
parameterised by a finite structure B and asks whether an input sentence ϕ holds on B,
where ϕ is a primitive positive sentence, that is where only ∃ and ∧ may be used. For
almost every class of model checking problem induced by the presence or absence of
first-order quantifiers and connectors, we can give a complexity classification [4]: the two
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outstanding classes are CSPs and its popular extension quantified CSPs (QCSPs) for
positive Horn sentences – where ∀ is also present – which is used in Artificial Intelligence
to model non-monotone reasoning or uncertainty.

The outstanding conjecture in the area is that all finite-domain CSPs are either
in P or are NP-complete, something surprising given these CSPs appear to form a
large microcosm of NP, and NP itself is unlikely to have this dichotomy property.
This Feder-Vardi conjecture [5], given more concretely in the algebraic language in [6],
remains unsettled, but is now known for large classes of structures.

The very useful role of algebra in unlocking the computational complexities of QCSP
has also been widely documented (see [7, 8]). Manuel Bodirsky has described the CSP
as a Königsproblem (king among problems) because it is an important computational
problem living at the interface of logic, combinatorics and algebra. The QCSP is a
somewhat less important problem, with weaker links outside of the logical, where it
is formulated. In particular, its combinatorics are unwieldy – for example a totally
satisfactory notion of a core remains elusive [9] – and its algebra is complicated by
the fact that the class of surjective polymorphisms is not closed under composition.
This perhaps explains why the complexity of QCSPs is classified for rather modest
classes of structures, for which only three complexities are observed P, NP-complete
and Pspace-complete.

In the case in which only idempotent polymorphisms are considered – corresponding
relationally to all constants being definable in B – some better behaviour is restored
and it is mostly in this arena that we shall place ourselves. What seems to be a unifying
explanation for a complexity in NP is that it suffices to check an instance ϕ with m
universal variables for a small fraction (polynomial in m and B) of all possible choices for
these m universal variables. This property can be viewed as a special form of quantifier
relativisation in the sense that it suffices to check an instance against restricted Skolem
functions. This fits in well with the classification for model checking for other fragments
of FO where relativisation also characterises the complexity [4].

In Hubie Chen’s [10], a new traverse between algebra and QCSP was discovered.
Chen’s previous work in QCSP tractability largely involved the special notion of
collapsibility [3], but in [10] this was extended to a version of the polynomially generated
powers (PGP) property. This latter ties in with a rich literature of dichotomy (“gap”)
theorems on growth rate of generating sets of direct powers of algebras. The PGP
properly generalises collapsibility and reveals a link to universal algebra that we explore
in this paper and we might argue makes QCSP at least a Fürstenproblem (prince among
problems).

The initial algebraic phenomenon of our study is the growth rate of generating
sets for direct powers of an algebra. That is, for an algebra A we associate a function
fA : N → N, giving the cardinality of the minimal generating sets of the sequence
A,A2,A3, . . . as f(1), f(2), f(3), . . ., respectively. We may say A has the g-generating
property (g-GP for short) if f(m) ≤ g(m) for all m. The question then arises as to the
growth rate of f and specifically regarding the behaviours constant, logarithmic, linear,
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polynomial and exponential. Wiegold proved in [11] that if A is a finite semigroup
then fA is either linear or exponential, with the former prevailing precisely when A
is a monoid. This dichotomy classification may be seen as a gap theorem because no
growth rates intermediate between linear and exponential may occur. We say A enjoys
the polynomially generated powers property (PGP) if there exists a polynomial p so
that fA = O(p) and the exponentially generated powers property (EGP) if there exists a
constant b so that fA = Ω(g) where g(i) = bi.

The PGP implies that the bounded alternation QCSP is in NP rather than the
corresponding level of the polynomial hierarchy one expects in general, provided that
generators may be generated effectively, effective PGP in Chen’s parlance. This should
be clear for Π2-sentences (quantifier prefix of the form ∀?∃?) as it suffices to solve one
CSP per generator, and by induction this holds for bounded alternation. Moreover, for
all known examples it also holds for unbounded alternation. In particular, for known
examples of finite structures, this drop is witnessed by an operation which characterises
a type of collapsibility (from the so-called singleton source), which we shall call a Hubie
operation. When this is present as a polymorphism, it implies a drop to NP also in the
unbounded case as it may be composed in a more involved fashion suitable for working
with Skolem functions, what Chen terms reactive composition.

Hubie Chen proved the first PGP-EGP gap theorem for polymorphism clones in
[10]. Namely, let id-Pol(B)1 be the clone of idempotent polymorphisms of a 3-element
structure B such that id-Pol(B) does not contain a G-set as a factor2. Then either
id-Pol(B) has PGP or it has EGP. Indeed, this result extended the previous observation
of Chen that when id-Pol(B) is the clone of idempotent polymorphisms of a 2-element
structure B, then either id-Pol(B) has PGP or it has EGP. Now, k-Π2-collapsibility
(whose naming will be explained in the sequel) can be seen as a special form of the PGP
in which the generating set for each Am may be taken to be the set of m-tuples which
contain the repetition of a single element from a so-called source set at least m−k times,
the other at most k positions being arbitrary. k-collapsibility can be seen similarly but
manifests slightly differently through the already alluded to reactive composition of
this set of m-tuples. In the 2-element case, the PGP manifests in the special form of
1-collapsibility, but already in the 3-element case there are algebras with the PGP that
are not k-collapsible for any k, though no such example is known for a finite structure
(i.e. with finitely many relations).

When a structure H expanded by all constants is so that QCSP(H) is Pspace-
complete, then (under the complexity-theoretic assumption that NP is different from
Pspace) we can assume that id-Pol(H) does not have effective PGP [8]. Naturally, these
are the places to look to prove EGP results. The QCSP complexity classification for
3-element structures is still open, even in the idempotent case, but this paper builds

1We will view this as at once a set of polymorphisms on domain B and an algebra of operations
over that domain.

2This is a technical assumption that we will not define. When there is a G-set as a factor we know
the corresponding QCSP is NP-hard [6].
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upon Chen’s [10] motivated by the extant complexity classifications for the QCSP for
partially reflexive trees in [1] and semicomplete digraphs in [2]. Thus, the complexity
results lead the algebra, in contrast to the typical modus operandi.

Principal contributions

Complexity to algebra: new PGP-EGP gaps.

For partially reflexive paths we recall the notion of being quasi-loop-connected from [1],
and prove the following algebraic gap.

Theorem 1. Let H be a partially reflexive path. If H is quasi-loop-connected, then
id-Pol(H) has the PGP. Otherwise, id-Pol(H) has the EGP.

Along the way, we also characterise precisely which partially reflexive paths have only
essentially unary polymorphisms.

Building upon and refining [2], we derive a second gap for semicomplete digraphs.

Theorem 2. Let H be a semicomplete digraph. If H has at most one cycle or both a
source and a sink, then id-Pol(H) has the PGP. Otherwise, id-Pol(H) has the EGP.

The PGP: collapsibility and beyond.

We prove that when we have a sufficiently uniform form of effective PGP, based on the
notion of projective sequences of adversaries (an adversary is a set of tuples restricting
the tuple of universal variables), then we also have a drop in complexity to NP even
in the unbounded case. For such sequences of adversaries, we can show that they are
generating iff they are generating via reactive composition. Our proof relies on and
adapts the notion of a canonical Π2-sentence from [12]. The statement of this result,
Theorem 36, is somewhat technical so we state here its concrete application to the
situation of collapsibility.

Corollary 39 (Part of). Let A be a structure, ∅ ( B ⊆ A and p > 0. The following
are equivalent.

(i) A is p-collapsible from source B.

(ii) A is Π2-p-collapsible from source B.

(iii) For every m, the structure A satisfies a canonical Π2-sentence with m · |A| universal
variables.

In the case of a singleton source, which covers all known examples of collapsibility
for finite structures (see also Table 1 which recalls the polymorphisms that are known
to imply collapsibility), then we can refine this further as follows.

Theorem 44 (Part of). (p-Collapsibility from a singleton source). Let p ≥ 1 and
x be a constant in A. The following are equivalent:

4
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(i) A is p-collapsible from {x}.
(ii) A is Π2-p-collapsible from {x}.
(iii) A models a single canonical Π2-sentence which implies that A admits a Hubie

operation as a polymorphism.

This means that we may decide p-collapsibility from a singleton source (the parameter
p > 0 being part of the input).

Back to complexity.

As we have argued already, a uniform form of PGP like p-collapsibility might explain
when a QCSP is in NP. It is natural in this context to allow constants in the structure
not only because it makes things well behaved in the algebra, but also because constants
are needed for the natural algorithm which consists in solving a polynomial number
of CSP instances induced by replacing all but p variables by a constant. Finally, we
apply our earlier results: that collapsibility coincides with its Π2-restriction and that
partially reflexive paths that are not quasi-loop-connected remain Π2-collapsible in the
idempotent case. This morphs the first dichotomy theorem of [1] (cf. Theorem 49.) to
become a new trichotomy theorem. Specifically, the NL cases in the absence of constants
split to become NL and NP-complete cases in the presence of constants.

Theorem 3. Let H be a partially reflexive path expanded with all constants.

Polymorphism Arity Collapsibility

Near unanimity (a.k.a. majority when k = 3) k (k − 1)-collapsibility with
source {x} for any x.

satisfies the identities f(x, y, . . . , y) = . . . = f(. . . , y, x, y . . .) = f(y, . . . , y, x) = y

Dual discriminator. 3 1-collapsibility with source
A.

majority acting as a projection when the 3 argu-
ments are distinct

2-collapsibility with source
{x} for any x.

Mal’tsev 3 1-collapsibility with source
{x} for any x.

m(x, x, y) = m(y, x, x) = y

Hubie operation : remains surjective when any
coordinate is fixed to be x

k (k − 1)-collapsibility with
source {x}.

In particular, the case of so-called semilattice
with unit {x}: a binary idempotent, associative
and commutative polymorphism s that satisfies
s(x, y) = s(y, x) = y for any y.

2 1-collapsibility with source
{x}.

Table 1: Some polymorphisms that imply collapsibility.
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(i) If H is loop-connected, then QCSP(H) is in NL.

(ii) Else, if H is quasi-loop-connected, then QCSP(H) is NP-complete.

(iii) Otherwise, QCSP(H) is Pspace-complete.

Due to space restriction, many proofs have been omitted and can be found in the
appendix.

2 Preliminaries

Throughout we consider only finite relational structures possibly with some constants.
On first reading, the reader might prefer to assume that all constants are present, for
the sake of simplicity; though we can not make this assumption in general as adding
all constants may increase the complexity (compare Theorem 3 with Theorem 49). We
denote by σ our base signature and hereafter unless otherwise specified, a structure will
be a σ-structure. We shall denote by A the domain of a structure A. The canonical
query3 of the structure A is the quantifier-free first-order sentence that has one variable
xa for each element a in A and a conjunction of all the positive facts of A: e.g.
R(a1, a2, . . . , ar) holds in A for some r-ary symbol in σ iff this conjunction contains the
conjunct R(xa1 , xa2 , . . . , xar). Conversely, given a conjunction of positive atoms ϕ, we
denote by Dϕ its canonical database, that is the structure with domain the variables of ϕ
and whose tuples are precisely those that are atoms of ϕ. Let A and B be structures. A
homomorphism h from A to B is a map from A to B such that for every relational symbol
R of arity r and every r-tuple (a1, a2, . . . , ar) of elements of A such that R(a1, a2, . . . , ar)
holds in A we have that R(h(a1), h(a2), . . . , h(ar)) holds in B. The product A ⊗ B is
the structure with domain A×B such that for every relational symbol R of arity r and
every r-tuples (a1, a2, . . . , ar) of elements of A and (b1, b2, . . . , br) of elements of B, we
have that R

(
(a1, b1), (a2, b2), . . . , (ar, br)

)
holds in A⊗B iff both R(a1, a2, . . . , ar) holds

in A and R(b1, b2, . . . , br) holds in B. A constant symbol c is interpreted in A⊗B as the
element (a, b) where a and b are the interpretation of c in A and B, respectively. We write
Ak for the product of k copies of A. A k-ary polymorphism of A is a homomorphism f
from Ak to A. We say that f is idempotent if for any x in A, f(x, x, . . . , x) = x holds.
Equivalently, f is a polymorphism of an extension of A with constants symbols naming
the elements of A. Let id-Pol(A) (resp. sPol(A)) denote the set of idempotent (resp.
surjective) polymorphisms of A. A majority operation is a ternary operation f that
satisfies the identities f(x, x, y) = f(x, y, x) = f(y, x, x) = f(x, x, x) = x. The dual
discriminator (dd) is the particular majority that satisfies dd(x, y, z) = x when x, y, z
are distinct. A Hubie operation is a surjective k-ary operation f , on a set A 3 x, such
that f(x, x, . . . , x) = x and f(x,A, . . . , A) = f(A, x, . . . , A) = . . . = f(A,A, . . . , x) = A.
That is, the restriction of the operation from fixing x in each coordinate position remains

3We actually consider the quantifier-free part of the canonical query. We depart from the usual
definition where an existential sentence is used, as we will often need a different prefix of quantification.
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surjective. When we need to specify x, we speak of a Hubie operation with source x.
A positive Horn sentence (pH-sentence for short) is a sentence of first-order logic with
equality using both quantifiers ∃ and ∀ but only the logical connective ∧. We will only
consider pH sentences in prenex form, that is with all quantifiers in front. In the absence
of the universal quantifier, we speak of a primitive positive sentence (pp-sentence for
short). A Π2-pH sentence is a pH-sentence with quantifier prefix of the form ∀?∃?,
that is a block of universal variables followed by a block of existential variables. Let
A be a finite relational structure (possibly with constants). The quantified constraint
satisfaction problem with structure A, denoted QCSP(A), is the model-checking problem
for pH-sentences over A. That is, it takes as input a pH-sentence ϕ and asks whether
A models ϕ. When A is a structure with constants naming its elements, we may write
QCSPc(A) to stress that all constants are present. Similarly, let CSP(A) denote the
constraint satisfaction problem with structure A defined as above but with pp-sentences.
We will denote by 〈A〉pH the class of relations that are interpretable in A via some
pH-sentence.

Reading the introduction, one could be forgiven for thinking collapsibility is at once
a logical property of structures and a property of algebras. Indeed, Chen [3] defines
a form of collapsibility for each and shows that the algebraic form implies the logical
one (a result reworded here as Theorem 26). One purpose of this paper is to tie these
two definitions together and prove the converse. For formal purposes we will define
collapsibility only in the logical sense. Let A be a structure, B ⊆ A and p ≥ 0. The
structure A is p-collapsible with source B when for all m ≥ 1, for all pH-sentences ϕ
with m universal quantifiers, we have that A |= ϕ iff A |= ψ, for all sentences ψ obtained
by instantiating all but p universal variables of ϕ by some single element x ∈ B. We
assume here that A has all constants from the source set B and will delay to § 4.1
for a more general definition where this assumption is not necessary. A is collapsible
with source B if it is p-collapsible with source B for some p. We define similarly the
analogous notions for the Π2-fragment.

3 New PGP-EGP gaps

Let [n] := {1, . . . , n}. A digraph G has vertex set G, of cardinality |G|, and edge set
E(G). Similarly, an algebra A has domain A. For a digraph H, the distance between
two m-tuples s = (s1, . . . , sm) and t = (t1, . . . , tm) ∈ Hm is the minimal r so that there
are m-tuples z1 = (z1

1 , . . . , z
m
1 ), . . . , zr−1 = (z1

r−1, . . . , z
m
r−1) ∈ Hm such that, for each

i ∈ [m], j ∈ [r − 2], we have E(si, zi1), E(zij , z
i
j+1) and E(zir−1, t

i).

3.1 Partially reflexive paths

Henceforth we consider partially reflexive paths, i.e. paths potentially with some loops
(we will frequently drop the preface partially reflexive). As we are interested in idempo-
tent polymorphisms these paths come with constants naming each of their vertices. For
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a sequence β ∈ {0, 1}∗, of length |β|, let Pβ be the undirected path on |β| vertices such
that the ith vertex has a loop iff the ith entry of β is 1 (we may say that the path P is
of the form β). A path H is quasi-loop-connected if it is of either of the forms

(i) 0a1bα, for b > 0 and some α with |α| = a, or

(ii) 0aα, for some α with |α| ∈ {a, a− 1}.

Where a path satisfies both (i) and (ii), we use formulation (i) preferentially. A path
whose self-loops induce a connected component is further said to be loop-connected. We
will usually envisage the domain of a path with n vertices to be [n], where the vertices
appear in the natural order (and a good behaviour brought by the absence of self-loops
of the quasi-loop connected case is exhibited in the lower numbers). The centre of a
path is either the middle vertex, if there is an odd number of vertices, or between the
two middle vertices, otherwise. The main result of this section was stated as Theorem 1.

Proof of Theorem 1. The PGP cases follow from Lemmas 4, 6 and 7. The EGP cases
follow from Proposition 10.

3.1.1 Partially reflexive paths with the PGP

The loop-connected case is well understood.

Lemma 4. Let H be a partially reflexive path that is loop-connected. Then id-Pol(H)
has the PGP.

Proof. H admits a majority polymorphism (see Lemma 3 of [1]). This is a Hubie
polymorphism of G (where the single element can be chosen arbitrarily), whereupon the
result follows from [3] (see our forthcoming Lemma 42 together with Corollary 39).

The quasi-loop connected case is more technical. Due to space restriction, we will
only present in full half of this case, which will suffice to illustrate the proof principle.
First, we are able to exhibit specific binary idempotent polymorphisms.

Lemma 5. Let P0a1bα, with b > 0, be a quasi-loop-connected path on vertices [n]. For
each y ∈ [n] there is a binary idempotent polymorphism fy of P0a1bα so that fy(1, x) = x
(for all x) and fy(n, 1) = y.

Next, we exhibit specific linear generating set for the powers.

Lemma 6. Let P0a1bα, for b > 0, be a quasi-loop-connected path on vertices [n]. Let A
be the algebra specified by id-Pol(P0a1bα). For each m, Am is generated from the n+ 1
m-tuples (1, 1, . . . , 1), (n, 1, . . . , 1), (1, n, . . . , 1), . . . , (1, 1, . . . , n).

8
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Proof. We will make use of the polymorphisms fy guaranteed to exist by Lemma 5.
Firstly, from (n, 1, . . . , 1) and (1, 1, . . . , 1) we can, for each y, use fy to generate
(y, 1, . . . , 1). And we can similarly build all co-ordinate permutations of this. We
now have the base case in an inductive proof, where our inductive hypothesis will be
that for all k we can build the tuple which has entries y1, . . . , yk with the remaining
entries being 1. The result for k = m implies the lemma, so it remains only to test the
inductive step where we will assume y1, . . . , yk, yk+1 are the first k+ 1 entries of a tuple
continued by 1, . . . , 1 (of course we can build the rest through co-ordinate permutation).
From (1, . . . , 1, n, 1, . . . , 1) and (y1, . . . , yk, 1, . . . , 1) (where n is in the k + 1st position)
we can use fyk+1

to build (y1, . . . , yk, yk+1, 1, . . . , 1). This proves the claim.

Lemma 5 fails for the other type of quasi-loop-connected paths, essentially when
b = 0. This is easily seen to be the case when we take an irreflexive path on an odd
number n of vertices (for an example on paths with an even number of vertices ≥ 4, take
an irreflexive path leading to a single looped vertex at the end). Then no idempotent
polymorphism f may have f(n, 1) = 2 for parity reasons, since odd and even vertices
must be at odd distance in the square of the graph. In fact, Lemma 5 does hold for
quite a few of the remaining cases (e.g. for P0aα when |α| = a and the first entry of α is
1), but the proof requires an alternative construction. This alternative construction and
a proof in the spirit of that of Lemma 6 yields the following result which deals at once
with all the outstanding cases.

Lemma 7. Let P0aα, for |α| ∈ {a, a − 1}, be a quasi-loop-connected path on ver-
tices [n] (that is not of the form P0a1bα with |α| = a). Let A be the algebra specified
by id-Pol(P0aα). For each m, Am is generated from the 2n+ 2 m-tuples (1, 1, . . . , 1),
(2, 2, . . . , 2), (n, 1, . . . , 1), (1, n, . . . , 1), . . . , (1, 1, . . . , n),(n, 2, . . . , 2), (2, n, . . . , 2), . . . , (2, 2, . . . , n).

We remark that if we were not in the idempotent situation (i.e. without constants
in the structure) then the lemmas could have been proved from observations about the
so-called Q-core [9] via the main result of [12] (see Application 41).

3.1.2 Partially reflexive paths with the EGP

By induction on the arity, we prove the following.

Lemma 8. Let α be any sequence of zeros and ones. All idempotent polymorphisms of
P10α01 are projections.

This will suffice to derive EGP for all non-quasi loop connected graphs as we
will be able to pinpoint a suitable copy of P10α01 in all such graphs. But first we
need to appeal to another ingredient, namely the well-known Galois correspondence
Inv(sPol(B)) = 〈B〉pH holding for finite structures B [13], which can be used to derive
the following.

9
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Corollary 9. Suppose A = id-Pol(B), for some finite structure B, and Γ is a generating
set for Am. Let ϕ(v1, . . . , vm) be a formula from 〈B〉pH. If B |= ϕ(x1, . . . , xm) for all
(x1, . . . , xm) ∈ Γ, then B |= ∀v1, . . . , vm ϕ(v1, . . . , vm).

We are now ready to conclude our proof of the PGP/EGP gap for p.r. paths and
establish EGP for the remaining cases.

Proposition 10. Let G be a p.r. path that is not quasi-loop connected. Then id-Pol(G)
has the EGP.

Proof. Number the vertices of G left-to-right over [n] and let p be the leftmost loop and
let q be the rightmost loop. Since G is not quasi-loop connected, p will be to the left of
the centre and q will be to the right of centre. Let µ be max{p, n− q, b q−p−1

2 c}. Let P
and Q be the sets of vertices at distance ≤ µ from p and q, respectively.

A word τ ∈ ((P \ Q) ∪ (Q \ P ))m is a cousin of a word σ ∈ {p, q}m if τ can be
obtained by some local substitutions of p 7→ x ∈ (P \ Q) and q 7→ y ∈ (Q \ P ). A
word τ ∈ Gm is a friend of a word σ ∈ {p, q}m if τ can be obtained by some local
substitutions of p 7→ 1, . . . , p, . . . , p+µ and q 7→ q−µ, . . . , q, . . . , n. The relations friend
and cousin are symmetric. If max{p, n− q} > q − p− 1 then a situation can arise in
which all words {p, q}m are friends of each other (this will not be a problem). However,
it is not hard to see that every word in Gm has a friend in {p, q}m and one can walk to
this friend pointwise in at most µ steps. Further,

(†)


. each word in ((P \Q) ∪ (Q \ P ))m has a unique cousin in {p, q}m; and,
. every word in Gm \ ((P \ Q) ∪ (Q \ P ))m has more than one friend in
{p, q}m.

Note that it is possible that Gm \ ((P \Q)∪ (Q \ P ))m is empty. So let m be given and
suppose there exists a generating set Γ for Gm of size < 2m. It follows from (†) that, for
some τ ∈ {p, q}m, Γ omits τ and all of τ ’s cousins (though it may contain some of τ ’s
non-cousin friends). We will prove that Γ does not generate Gm, by assuming otherwise
and reaching a contradiction using Corollary 9. Let RΓ be the subset of {p, q}m induced
by {p, q}m \ {τ}. Note

(∗) that every element σ ∈ Γ has a friend in RΓ.

Note also that RΓ is pp-definable since {p, . . . , q} is pp-definable and all polymorphisms
of the induced sub-structure given by{p, . . . , q} are projections (this was Lemma 8).

Consider the pH-formula ϕ(x1, . . . , xn) :=

∃x1
1, . . . , x

µ−1
1 , . . . . . . , ∃x1

n, . . . , x
µ−1
n RΓ(x′1, . . . , x

′
n)∧( ∧

i∈[n]

E(xi, x
1
i ) ∧ E(x1

i , x
2
i ) ∧ . . .

∧ E(xµ−2
i , xµ−1

i ) ∧ E(xµ−1
i , xµ−1

i )
)
.

10
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The sentence ∀x1, . . . , xn ϕ(x1, . . . , xn) is false and can be witnessed as false by
taking x to be that word in {1, n}m derived from τ by substituting p 7→ 1 and q 7→ n.
However, consider now that ϕ(y1, . . . , yn) is true for all (y1, . . . , yn) ∈ Γ, precisely
because of property (∗), i.e. when (x1, . . . , xn) is evaluated as σ, choose (xµ−1

1 , . . . , xµ−1
n )

to be evaluated as σ’s friend in RΓ.

3.2 Semicomplete digraphs

Recall that a digraph G is semicomplete if it is irreflexive and for each x 6= y ∈ G we
have either E(x, y) or E(y, x), or both. We will often abuse of the substantive and
speak of semicompletes rather than semicomplete graphs. If we always have precisely
one of E(x, y) or E(y, x), then the digraph is additionally a tournament. In a digraph, a
source (resp., sink) is a vertex of in-degree (resp., out-degree) zero. A digraph is smooth
if it has neither a source nor a sink. For a digraph G we define G+ to be G augmented
with a new sink to which all other vertices have a directed edge. Let y− be the set
{x ∈ G : E(x, y) ∈ G} and y+ be the set {x ∈ G : E(y, x) ∈ G}. In the sequel we use
the notation xi

′
j to indicate the prime of xij (i.e., the prime does not modify just the i).

The main result of this section is the gap theorem stated as Theorem 2.

Proof of Theorem 2. The PGP cases follow from Propositions 11 and 12. The EGP
cases follow from Corollary 24.

3.2.1 Semicomplete graphs with the PGP

Proposition 11. Let G be a semicomplete graph with exactly one cycle and either a
source or a sink, or none, then id-Pol(G) has the PGP.

Proof. If G has neither source nor sink, then it is either the directed 3-cycle DC3 or K2.
Let A :=id-Pol(DC3) or id-Pol(K2). Both of these have the dual discriminator for a
polymorphism which witnesses, for each a in the domain, that Am can be generated from
tuples, for all x ∈ A, of the form (a, a, . . . , a), (x, a, . . . , a), (a, x, . . . , a), . . . , (a, a, . . . , x)
(this latter appears in [3]).

Let us suppose G has a sink but no source (the alternative being a symmetric proof).
Then G was built from DC3 or K2 by the iterative addition of sinks t1, . . . , tk, where
tk is the sink of G. Define f(x, y, z) to be the ternary operation on G that acts as
dual discriminator in the subgraph DC3 or K2 and returns the element ti with the
highest index i whenever the triple (x, y, z) contains an element from {t1, . . . , tk}. It
is straightforward to verify that f is a polymorphism of G. Further, it is a Hubie
polymorphism as is witnessed by any element z in the subgraph DC3 or K2; that is
f(z,G,G) = f(G, z,G) = f(G,G, z) = G. The result follows from [3] (that we will
quote as Lemma 42).

11
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Proposition 12. Let G be a semicomplete graph with both a source and a sink, then
id-Pol(G) has the PGP.

Proof. We will give a Hubie polymorphism of G whereupon the result follows from [3]
(that we will quote as Lemma 42).

Let x, y, z be elements of G distinct from s and t which are the source and sink,
respectively, of G. Define the ternary operation f so that f({{x, s, t}}) = x (we use
multiset notation to indicate any coordinate permutation) extended as a projection on
its first coordinate otherwise (e.g. f(s, t, s) = f(s, t, t) = s and f(x, y, z) = x). It is
easy to see this is a polymorphism, once one notes that in G3 all vertices of the form
{{x, s, t}} are isolated. Furthermore, f is a Hubie operation in both the single elements
s and t.

We will shortly need to talk about variables that are indexed individually over
two dimensions and use overbar to denote columns (top index vary) and underbar
to denote rows (bottom index vary). Suppose id-Pol(A) has the f(m)-GP. Then we
are saying, for each m ∈ N, that there exist k = f(m) tuples x1 = (x1

1, x
2
1, . . . , x

m
1 ),

. . . , xk = (x1
k, x

2
k, · · · , xmk ) so that, for each y = (y1, y2, . . . , ym) there is a k-ary

polymorphism fy of A so that

y = (y1, y2, . . . , ym) = (fy(x
1
1, . . . , x

1
k), . . . , fy(x

m
1 , . . . , x

m
k )).

This can be presented by the following picture for f := fy,

f f · · · f
_ _ · · · _
x1

1 x2
1 · · · xm1

x1
2 x2

2 · · · xm2
...

...
...

x1
k x2

k · · · xmk
^ ^ · · · ^
‖ ‖ ‖
y1 y2 · · · ym

which indicates that f is a homomorphism from (Ak;x1, . . . , xm) to (A; y1, . . . , ym). It
follows of course that all pp-formulas that are true on (Ak;x1, . . . , xm) are also true on
(A; y1, . . . , ym).

The following well-known model-theoretic lemma is in some sense trivial for finite
structures.

Lemma 13. Let A and B be finite structures. If all pp-sentences that are true
(A; a1, . . . , am) are true on (B; b1, . . . , bm), then there is a homomorphism f from A to
B so that f(aj) = (bj) for each j ∈ [m].

12
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3.2.2 Semicompletes with more than one cycle but without sources

It is known from [2] that a smooth semicomplete digraph H with more than one cycle
has only essentially unary polymorphisms, since these are also cores we can immediately
say in this case that id-Pol(H) has the EGP. What remains is to classify semicompletes
with more than one cycle but without sources, and semicompletes with more than one
cycle but without sinks. These situations are symmetric so we will address directly only
the former. We begin with some simple results.

Lemma 14. Let G be a digraph. Let id-Pol(G++) have the f(m)-GP, for some f(m).
Then id-Pol(G+) has the f(m)-GP.

Proof. Let t be the sink in G++ and let t′ be the sink in G+ ⊆ G++. Let m be given
and set k = f(m). Let x1 = (x1

1, x
2
1, . . . , x

m
1 ), . . . , xk = (x1

k, x
2
k, · · · , xmk ) be a set of

generators for id-Pol(G++). Set x′1, . . . , x′k to be the tuples obtained from x1, . . . , xk by
substituting t by t′ and leaving everything else unchanged. We claim that x′1, . . . , x′k is
a set of generators for id-Pol(G+). To prove this then, let y = (y1, y2, . . . , ym) ∈ (G+)

m

be given. We need to prove there is f ′ ∈ id-Pol(G+) so that we have the following.

f ′ f ′ · · · f ′

_ _ · · · _

x1′
1 x2′

1 · · · xm
′

1

x1′
2 x2′

2 · · · xm
′

2
...

...
...

x1′
k x2′

k · · · xm
′

k

^ ^ · · · ^
‖ ‖ ‖
y1 y2 · · · ym

Let 1, . . . , n, n+ 1, n+ 2 enumerate the elements of G++ with G+ being induced on the
subset {1, . . . , n, n+ 1}. For i ∈ [n+ 2], let ik denote the k-tuple of is.

By Lemma 13, it is sufficient to show that all pp-formulas that are true on
((G+)k; 1k, . . . , (n+ 1)k, x1′ , . . . , xm

′
) are also true on (G+; 1, . . . , n+ 1, y1, . . . , ym).

Let ϕ = ∃ wϕ(w, v) be a pp-formula that is true on ((G+)k; 1k, . . . , (n+1)k, x1′ , . . . , xm
′
),

that is, for each j ∈ [k], it is true on (G+; 1, . . . , n + 1, x1′
j , . . . , x

m′
j ). Let wj be

the witnesses for the existential variables of ϕ on this latter structure. Since for
all x ∈ G++ we have E(x, t′) implies E(x, t), we deduce that ϕ is also true on
(G++; 1, . . . , n + 1, x1

j , . . . , x
m
j ), using the same witnesses w0. Now it follows from

fy that ϕ is true on (G++; 1, . . . , n+ 1, y1, . . . , ym), by mapping the tuples w0, . . . , wk
under fy to obtain the witness for w in (G++; 1, . . . , n+ 1, y1, . . . , ym). But, the idem-

potent fy preserves the set {1, . . . , n, n+ 1}, which is pp-definable in G++, so this shows

that the same witnesses show ϕ is also true on (G+; 1, . . . , n+ 1, x1
j , . . . , x

m
j ). The result

follows.

13



From complexity to algebra and back Carvalho, Madelaine and Martin

Corollary 15. Let G be a digraph. If id-Pol(G+) has the EGP then so does id-Pol(G++).

Let G be a semicomplete digraph with more than one cycle and no source. We say
G has the Novi Sad property if there exist vertices p, q ∈ G so that

• for all v ∈ G there is the edge E(v, p) or E(v, q).

Note that the Novi Sad property implies a double edge between p and q, hence this
fails on all tournaments. Importantly for our uses, on irreflexive graphs this property
implies that (picking p′ := q and q′ := p):

• exists p′ ∈ G so that E(p′, p) but not E(p′, q),

• exists q′ ∈ G so that E(q′, q) but not E(q′, p).

The Novi Sad property does not feature in [2].

Specific results imported from [2]. We now need to borrow some definitions and
results from [2]. In that paper the authors usually refer to Pol instead of id-Pol, but
the the objects are always cores expanded by constants, so the two coincide.

Definition 16 (Definition 6 in [2]). Let G be a directed graph. We define the relation
�G on V by x �G y iff x− ⊆ y−.

Proposition 17 (Proposition 9 in [2]). Assume that G is semicomplete. Then �G is a
partial order, �G has the largest element t iff t is a sink, and dually for least elements
and sources.

Definition 18 (Definition 7 in [2]). Let G be a digraph. We define the partition of the
vertex set V into V Gmin, V Gmax, V Gboth and V Gnone so that all vertices in V Gmax are maximal,
but not minimal, in the order �G, all vertices in V Gmin are minimal, but not maximal, in
the order �G, all vertices in V Gboth are both minimal and maximal in the order �G, while
vertices in V Gnone are neither minimal nor maximal in the order �G. When the digraph
G is understood, we will omit the superscript G.

Definition 19 (Definition 8 in [2]). Let G be a digraph. We define the irreflexive
digraph S(G) by:

1. For all x, y ∈ Vmax ∪ Vboth, (x, y), (y, x) ∈ E(S(G)),

2. For all x, y ∈ Vmin, (x, y), (y, x) ∈ E(S(G)),

3. For all x, y ∈ Vnone, (x, y) ∈ E(S(G)) iff (x, y) ∈ E(G).

4. For all x ∈ Vmin and y ∈ Vnone∪Vmax, (x, y) ∈ E(S(G)), but not (y, x) ∈ E(S(G)),

5. For all x ∈ Vnone and y ∈ Vmax, (x, y) ∈ E(S(G)), but not (y, x) ∈ E(S(G)),

6. For all x ∈ Vboth and y ∈ Vnone ∪Vmin, (x, y) ∈ E(S(G)), but not (y, x) ∈ E(S(G)).

Proposition 20 (Proposition 10 in [2]). V
S(G)
min = V Gmin, V

S(G)
max = V Gmax, V

S(G)
both = V Gboth

and V
S(G)
none = V Gnone. Consequently, S(S(G)) = S(G).

14
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Corollary 21 (Corollary 6 in [2]). Let G be a smooth semicomplete digraph which is
not a cycle. Then id-Pol(G+) ⊆ id-Pol(S(G)+).

Applications of results imported from [2].

Theorem 22. Let G be a smooth semicomplete with more than one cycle. There exists
a smooth semicomplete with more than one cycle H so that id-Pol(G+) ⊆ id-Pol(H+)
and H+ has the Novi Sad property.

Proof. Note that |V Gboth ∪ V
G
max| ≥ 2, so we can apply Corollary 21, choosing H = S(G),

with p 6= q chosen as follows: If V Gmax = ∅, this implies that V Gmin = V Gnone = ∅ and
V = V Gboth, and p, q can be chosen arbitrarily; If V Gmax 6= ∅, then we choose p ∈ V Gmax and
q ∈ V Gmax ∪ V Gboth. Then (p, q), (q, p) ∈ E(S(G)) (and this graph has no loops), and there
is an edge from all vertices of S(G), except p, to p.

Main EGP result for semicompletes.

Proposition 23. Let G be a semicomplete digraph with more than one cycle, no source,
and the Novi Sad property. Then id-Pol(G) has the EGP.

Proof. Let p and q, together with p′ and q′, be as guaranteed to exist by the Novi Sad
property. Let U be the unary relation specifying the domain of the smooth semicomplete
digraph with more than one cycle which is obtained from G by removing sinks repeatedly.

A word τ ∈ Gm is said to be a sub-predecessor of a word σ ∈ {p, q}m if τ can
be obtained by some local substitutions of p 7→ x ∈ p− and q 7→ x ∈ q−. If τ is a
sub-predecessor of σ then we may say σ is a sub-successor of τ . Note that every word
τ ∈ Gm has a sub-successor in σ ∈ {p, q}m, by the Novi Sad property. A word τ ∈ Gm
is said to be a predecessor of a word σ ∈ {p, q}m if τ can be obtained by some local
substitutions of p 7→ x ∈ p− \ q− and q 7→ x ∈ q− \ p−. If τ is a predecessor of σ
then we may say σ is a successor of τ . Note that predecessor (resp., successor) imply
sub-predecessor (resp., sub-successor). Now,

(†)


. each word in ((p− \ q−) ∪ (q− \ p−))m has a unique successor in {p, q}m;

and
. every word in Gm\((p−\q−)∪(q−\p−))m has more than one sub-successor

in {p, q}m.

In analogy to the proof of Proposition 10, predecessor/ successor play the role of cousin
and sub-predecessor/ sub-successor play the role of friend.

Let m be given and suppose there exists a generating set Γ for Gm of size < 2m. It
follows from (†) that, for some τ ∈ {p, q}m, Γ omits τ and all of τ ’s predecessors.

We will prove that Γ does not generate Gm, by assuming otherwise and reaching a
contradiction. Let RΓ be the subset {p, q}m \ {τ}. Note

(∗) that every σ ∈ Γ has a sub-successor in RΓ.

15
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Note also that RΓ is pp-definable since U is pp-definable and all polymorphisms of the
sub-structure induced by U are projections (see [2]).

Consider the pH-formula ϕ(x1, . . . , xn) :=

∃x′1, . . . , x′n

∧
i∈[n]

E(xi, x
′
i)

 ∧RΓ(x′1, . . . , x
′
n).

The sentence ∀x1, . . . , xn ϕ(x1, . . . , xn) is false and can be witnessed as false by taking x
to be that word in {p′, q′}m derived from τ by substituting p 7→ p′ and q 7→ q′. However,
consider now that ϕ(y1, . . . , yn) is true for all (y1, . . . , yn) ∈ Γ, precisely because of
property (∗), i.e. when (x1, . . . , xn) is evaluated as σ, choose (x′1, . . . , x

′
n) to be evaluated

as σ’s sub-successor in RΓ.

Corollary 24. Let G be a semicomplete digraph with more than one cycle and either
no source or no sink. Then id-Pol(G) has the EGP.

Proof. From [2] we know that semicomplete digraphs H with more than one cycle and
neither a source nor a sink (smooth) have only essentially unary polymorphisms. It
follows of course that id-Pol(H) has the EGP. The result now follows from Proposition 23
(and its symmetric dual).

4 The PGP: collapsibility and beyond

Throughout this section, we shall be concerned with a relational structure A over a
finite set A of size n. In the few cases when we will require A to have specific constants,
we shall state it explicitly.

4.1 Games, adversaries and reactive composition

We recall some terminology due to Chen [3, 10], for his natural adaptation of the model
checking game to the context of pH-sentences. We shall not need to explicitly play these
games but only to handle strategies for the existential player. An adversary B of length
m ≥ 1 is an m-ary relation over A. When B is precisely the set B1 ×B2 × . . .×Bm for
some non-empty subsets B1, B2, . . . , Bm of A, we speak of a rectangular adversary. Let
ϕ have universal variables x1, . . . , xm and quantifier-free part ψ. We write A |= ϕ�B and
say that the existential player has a winning strategy in the (A, ϕ)-game against adversary
B iff there exists a set of Skolem functions {σx : ‘∃x’ ∈ ϕ} such that for any assignment
π of the universally quantified variables of ϕ to A, where

(
π(x1), . . . , π(xm)

)
∈ B, the

map hπ is a homomorphism from Dψ (the canonical database) to A, where

hπ(x) :=

{
π(x) , if x is a universal variable; and,

σx(π|Yx) , otherwise.

16
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(Here, Yx denotes the set of universal variables preceding x and π|Yx the restriction
of π to Yx.) Clearly, A |= ϕ iff the existential player has a winning strategy in the
(A, ϕ)-game against the so-called full (rectangular) adversary A×A× . . .×A (which
we will denote hereafter by Am). We say that an adversary B of length m dominates
an adversary B′ of length m when B′ ⊆ B. Note that B′ ⊆ B and A |= ϕ�B implies
A |= ϕ�B′ . We will also consider sets of adversaries of the same length, denoted by
uppercase greek letters as in Ωm; and, sequences thereof, which we denote with bold
uppercase greek letters as in Ω =

(
Ωm

)
m∈N. We will write A |= ϕ�Ωm to denote that

A |= ϕ�B holds for every adversary B in Ωm. We call width of Ωm and write width(Ωm)
for
∑

B∈Ωm
|B|. We say that Ω is polynomially bounded if there exists a polynomial

p(m) such that for every m ≥ 1, width(Ωm) ≤ p(m). We say that Ω is effective if there
exists a polynomial p′(m) and an algorithm that outputs Ωm for every m in total time
p′(width(Ωm)).

Let f be a k-ary operation of A and A ,B1, . . . ,Bk be adversaries of length m. We
say that A is reactively composable from the adversaries B1, . . . ,Bk via f , and we write
A E f(B1, . . . ,Bk) iff there exist partial functions gji : Ai → A for every i in [m] and
every j in [k] such that, for every tuple (a1, . . . , am) in adversary A the following holds.

• for every j in [k], the values gj1(a1), gj2(a1, a2), . . . , gjm(a1, a2, . . . , am) are defined

and the tuple
(
gj1(a1), gj2(a1, a2), . . . , gjm(a1, a2, . . . , am)

)
is in adversary Bj ; and,

• for every i in [m], ai = f
(
g1
i (a1, a2, . . . , ai), g

2
i (a1, a2, . . . , ai), . . . , g

k
i (a1, a2, . . . , ai)).

We write A E {B1, . . . ,Bk} if there exists a k-ary operation f such that A E
f(B1, . . . ,Bk)

Remark 25. We will never show reactive composition by exhibiting a polymorphism f
and partial functions gij that depend on all their arguments. We will always be able to
exhibit partial functions that depend only on their last argument.

Reactive composition allows to interpolate complete Skolem functions from partial
ones.

Theorem 26 ([10, Theorem 7.6]). Let ϕ be a pH-sentence with m universal variables.
Let A be an adversary and Ωm a set of adversaries, both of length m.

If A |= ϕ�Ωm and A E Ωm then A |= ϕ.

As a concrete example of an interesting sequence of adversaries, consider the adver-
saries for the notion of p-collapsibility, which we introduced in a purely logical fashion
in the introduction. Let p ≥ 0 be some fixed integer. For x in A, let Υm,p,x be the set of
all rectangular adversaries of length m with p coordinates that are the set A and all the
other that are the fixed singleton {x}. For B ⊆ A, let Υm,p,B be the union of Υm,p,x

for all x in B. Let Υp,B be the sequence of adversaries
(

Υm,p,B

)
m∈N

. We will define a

structure A to be p-collapsible from source B iff for every m and for all pH-sentence ϕ
with m universal variable, A |= ϕ�Υm,p,B

implies A |= ϕ.
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4.2 The Π2-case

For a Π2-pH sentence, the existential player knows the values of all universal variables
beforehand, and it suffices for her to have a winning strategy for each instantiation (and
perhaps no way to reconcile them as should be the case for an arbitrary sentence). This
also means that considering a set of adversaries of same length is not really relevant in
this Π2-case as we may as well consider the union of these adversaries or the set of all
their tuples (see also statement of Corollary 9).

Lemma 27 (principle of union). Let Ωm be a set of adversaries of length m and ϕ a
Π2-sentence with m universal variables. Let O∪Ωm :=

⋃
O∈Ωm

O and Ωtuples := {{t}|t ∈
O∪Ωm}. We have the following equivalence.

A |= ϕ�Ωm ⇐⇒ A |= ϕ�O∪Ωm
⇐⇒ A |= ϕ�Ωtuples

Let A be an adversary and Ωm a set of adversaries, both of length m. We say that
Ωm generates A iff for any tuple t in A , there exists a k-ary polymorphism ft of A and
tuples t1, . . . , tk in Ωtuples such that ft(t1, . . . , tk) = t. We have the following analogue
of Theorem 26.

Proposition 28. Let ϕ be a Π2-pH-sentence with m universal variables. Let A be an
adversary and Ωm a set of adversaries, both of length m.

If A |= ϕ�Ωm and Ωm generates A then A |= ϕ�A .

We will construct a canonical Π2-sentence to assert that an adversary is generating.
Let O be some adversary of length m. Let σ(m) be the signature σ expanded with a
sequence of m constants. For a map µ from [m] to A, we write µ ∈ O as shorthand for
(µ(1), µ(2), . . . , µ(m)) ∈ O. For some set Ωm of adversaries of length m, we consider
the following σ(m)-structure: ⊗

O∈Ωm

⊗
µ∈O

Aµ

where the σ(m)-structure Aµ denotes the expansion of A by m constants as given by
the map µ. Let ϕΩm,A be the Π2-pH-sentence4 created from the canonical query of
the σ-reduct of this σ(m)-structure with the m constants cj becoming variables wj ,
universally quantified outermost, when all constants are pairwise distinct. Otherwise,
we will say that Ωm is degenerate, and not define the canonical sentence.

Note that adversaries such as Υm,p,B corresponding to p-collapsibility are not degen-
erate for p > 0, and degenerate for p = 0.

Proposition 29. Let Ωm be a set of adversaries of length m that is not degenerate.
The following are equivalent.

4For two structures A and B, when Ωm is Am and m is |A|B , B models this canonical sentence iff
QCSP(A) ⊆ QCSP(B) [12]
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(i) for any Π2-pH sentence ψ, A |= ψ�Ωm implies A |= ψ.

(ii) for any Π2-pH sentence ψ, A |= ψ�O∪Ω
implies A |= ψ.

(iii) for any Π2-pH sentence ψ, A |= ψ�Ωtuples
implies A |= ψ.

(iv) A |= ϕO∪Ω,A

(v) A |= ϕΩtuples,A

(vi) Ωm generates Am.

4.3 The unbounded case

Let n denote the number of elements of the structure A. Let B be an adversary
from Ωn·m. We will denote by ProjB the set of adversaries of length m induced by
projecting over some arbitrary choice of m coordinates, one in each block of size n; that
is 1 ≤ i1 ≤ n, n+ 1 ≤ i2 ≤ 2 · n, . . . , n · (m− 1) + 1 ≤ im ≤ n ·m. Of special concern to
us are projective sequences of adversaries Ω satisfying the following for every m ≥ 1,

∀B ∈ Ωn.m ∃A ∈ Ωm

∧
B̃∈ProjB

B̃ ⊆ A (m-projectivity)

As an example, consider the adversaries for collapsibility.

Fact 30. Let B ⊆ A and p ≥ 0. The sequence of adversaries Υp,B are projective.

Example 31. For a concrete illustration consider A = {0, 1, 2} (thus n = 3). We
illustrate the fact that Υp=2,B={0} is projective for m = 4 and some adversary B ∈
Ωn·m = Υp=2,B={0},3·4=12. Adversaries are depicted vertically with horizontal lines
separating the blocks.

B ∈ Ωn·m ProjB A ∈ Ωm

A A A �ZA
0 �A0 �A0 . . . �A0 A

0 �A0 �A0 0

0 0 0 �A0
0 �A0 �A0 . . . �A0 0

0 �A0 �A0 0

0 0 0 �A0
0 �A0 �A0 . . . �A0 0

0 �A0 �A0 0

0 0 �A0 �A0
A �ZA A . . . �ZA A

0 �A0 �A0 0

The adversary A dominates any adversary obtained by projecting the original larger
adversary B by keeping a single position per block.

We could actually consider w.l.o.g. sequences of singleton adversaries.

Fact 32. If Ω is projective then so is the sequence
(⋃

O∈Ωm
O
)
m∈N.
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A canonical sentence for composability for arbitrary pH-sentences with m universal
variables may be constructed similarly to the canonical sentence for the Π2 case,
except that it will have m.n universal variables, which we view as m blocks of n
variables, where n is the number of elements of the structure A. Let O be some
adversary of length m. Let σ(n·m) be the signature σ expanded with a sequence of
n.m constants c1,1, . . . , cn,1, c1,2 . . . , cn,2, . . . c1,m . . . , cn,m. We say that a map µ from
[n] × [m] to A is consistent with O iff for every (i1, i2, . . . , im) in [n]m, the tuple

(µ(i1, 1), µ(i2, 2), . . . , µ(im,m)) belongs to the adversary O. We write A
[n.m]
�O for the set

of such consistent maps. For some set Ωm of adversaries of length m, we consider the
following σ(n.m)-structure: ⊗

O∈Ωm

⊗
µ∈A[n.m]

�O

AO,µ

where the σ(n·m)-structure AO,µ denotes the expansion of A by n.m constants as given
by the map µ. Let ϕn,Ωm,A be the Π2-pH-sentence created from the canonical query
of the σ-reduct of this σ(n.m) product structure with the n.m constants cij becoming
variables wij , universally quantified outermost. As for the canonical sentence of the
Π2-case, this sentence is not well defined if constants are not pairwise distinct, which
occurs precisely for degenerate adversaries.

Lemma 33. Let Ωm be a set of adversaries of length m that is not degenerate. Let A
be a structure of size n. If A models ϕn,Ωm,A then the full adversary Am is reactively
composable from Ωm. That is, A |= ϕn,Ωm,A =⇒ Am E Ωm

Proof. We let each block of n universal variables of the canonical sentence ϕn,Ωm,A
enumerate the elements of A. That is, given an enumeration a1, a2, . . . , an of A, we set
wi,j = ai for every j in [m] and every i in [n].

The assignment to the existential variables provides us with a k-ary polymorphism
(the sentence being built as the conjunctive query of a product of k copies of A) together
with the desired partial maps. A coordinate r in [k] corresponds to a choice of some
adversary O of Ωm and some map µr from [n]× [m] to A, consistent with this adversary.
The partial map gr` : A` → A with ` in [m] (and r in [k]) is given by µr as follows:
gr` (ai1 , . . . , ai`) depends only on the last coordinate ai` and takes value µ(i, `) if ai` = ai.
By construction of the sentence and the property of consistency of such µr with the
adversary O, these partial functions satisfy the properties as given in the definition of
reactive composition.

Lemma 34. Let Ω be a sequence of sets of adversaries that has the m-projectivity
property for some m ≥ 1 such that Ωn·m is not degenerate. The following holds.

(i) A |= ψ�Ωn.m , where ψ = ϕn,Ωm,A

(ii) If for every Π2-sentence ψ with m.n universal variables, it holds that A |= ψ�Ωm.n

implies A |= ψ, then A |= ϕn,Ωm,A.
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Theorem 35. Let Ω be a sequence of sets of adversaries that has the m-projectivity
property for some m ≥ 1 such that Ωn.m is not degenerate. The following chain of
implications holds

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv)

where,

(i) For every Π2-pH-sentence ψ with m.n universal variables, A |= ψ�Ωm.n implies
A |= ψ.

(ii) A |= ϕn,Ωm,A.

(iii) Am E Ωm.

(iv) For every pH-sentence ψ with m universal variables, A |= ψ�Ωm implies A |= ψ.

Proof. The first implication holds by the previous lemma (second item of Lemma 34,
this is the step where we use projectivity). The second implication is Lemma 33. The
last implication is Theorem 26.

Thus, in the projective case, when an adversary is good enough in the Π2-case, it is
good enough in general. This can be characterised logically via canonical sentences or
“algebraically” in terms of reactive composition or the weaker and more usual composition
property (see (vi) below).

Theorem 36 (In abstracto). Let Ω =
(
Ωm

)
m∈N be a projective sequence of adver-

saries, none of which are degenerate. The following are equivalent.

(i) For every m ≥ 1, for every pH-sentence ψ with m universal variables, A |= ψ�Ωm

implies A |= ψ.

(ii) For every m ≥ 1, for every Π2-pH-sentence ψ with m universal variables, A |= ψ�Ωm

implies A |= ψ.

(iii) For every m ≥ 1, A |= ϕn,Ωm,A.

(iv) For every m ≥ 1, A |= ϕO∪Ω,A.

(v) For every m ≥ 1, Am E Ωm.

(vi) For every m ≥ 1, Ωm generates Am.

Remark 37. The above equivalences can be read along two dimensions:

general Π2

logical interpolation (i) (ii)

canonical sentences (iii) (iv)

algebraic interpolation (v) (vi)

In [10], Chen introduces effective PGP and shows that it entails a QCSP to CSP re-
duction, for the bounded alternation QCSP. For concrete examples, such as collapsibility
and switchability, he shows a QCSP to CSP reduction even in the unbounded case [10,
Theorem 7.11]. As a second corollary, we can generalise this last result to effective and
“projective” PGP, though we formulate this in terms of sequence of adversaries.
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Corollary 38. Let A be a structure. Let Ω be a sequence of non degenerate adversaries
that is effective, projective and polynomially bounded such that Ωm generates Am for
every m ≥ 1.

Let A′ be the structure A, possibly expanded with constants, at least one for each
element that occurs in Ω. The problem QCSP(A) reduces in polynomial time to CSP(A′).
In particular, if A has all constants, the problem QCSPc(A) reduces in polynomial time
to CSPc(A).

4.4 Studies of Collapsibility

Let A be a structure, B ⊆ A and p ≥ 0. Recall the structure A is p-collapsible with
source B when for all m ≥ 1, for all pH-sentences ϕ with m universal quantifiers,
A |= ϕ iff A |= ϕ�Υm,p,B

. Collapsible structures are very important: to the best of
our knowledge, they are in fact the only examples of structures that enjoy a form of
polynomial QCSP to CSP reduction. This is different if one considers structures with
infinitely many relations where the more general notion of switchability crops up [10].
Our abstract results of the previous section apply to both switchability and collapsibility
but we concentrate here on the latter. This result applies since the underlying sequence
of adversaries are projective (see Fact 30), as long as p > 0 (non degenerate case).

Corollary 39 (In concreto). Let A be a structure, ∅ ( B ⊆ A and p > 0. The
following are equivalent.

(i) A is p-collapsible from source B.

(ii) A is Π2-p-collapsible from source B.

(iii) For every m, the structure A satisfies the canonical Π2-sentence with m · |A|
universal variables ϕn,Υm,p,B ,A.

(iv) For every m, the structure A satisfies the canonical Π2-sentence with m universal
variables ϕU ,A, where U =

⋃
O∈Υm,p,B

O.

(v) For every m, there exists a polymorphism f of A witnessing that Am E Υm,p,B.

(vi) For every m, for every tuple t in Am, there is a polymorphism ft of A of arity k
at most

(
m
p

)
.|B| and tuples t1, t2, . . . , tk in Υm,p,B such that ft(t1, t2, . . . , tk) = t.

Remark 40. When p = 0, we obtain degenerate adversaries and this is due to the fact
that if a QCSP is permitted equalities, then 0-collapsibility can never manifest (think of
∀x, y x = y).

In [3], Case (v) of Corollary 39 is equivalent to id-Pol(A) being p-collapsible (in the
algebraic sense). It is proved in [3] that if id-Pol(A), is k-collapsible (in the algebraic
sense), then A is k-collapsible. We note that Corollary 39 proves the converse, finally
tying together the two forms of collapsibility.

A fun application of Corollary 39 is an alternative proof of Proposition 12. It is
easy to see that a semicomplete digraph with both a source and a sink is 1-collapsible
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with any singleton source. This is because any input sentence for QCSP(G), involving a
universal variable v in an edge relation E, is false (evaluate as either the source or the
sink, depending on whether v appears as the second or first entry of E, respectively).
The statement of the proposition now follows from Corollary 39, via (i) ⇒ (vi).

Another application of Corollary 39 is the following (compare with § 3.1.1).

Application 41. A partially reflexive path A (no constants are present) that is quasi-
loop connected has the PGP.

The last two conditions of Corollary 39 provide us with a semi-decidability result:
for each m, we may look for a particular polymorphism (v) or several polymorphisms
(vi). Instead of a sequence of polymorphisms, we now strive for a better algebraic
characterisation. We will only be able to do so for the special case of a singleton source,
but this is the only case hitherto found in nature.

Chen uses the following lemma to show 4-collapsibility of bipartite graphs and
disconnected graphs [8, Examples 1 and 2]. Though, we know via a direct argument [14]
that these examples are in fact 1-collapsible from a singleton source.

Lemma 42 (Chen’s lemma [3, Lemma 5.13]). Let A be a structure with a constant x.
If there is a k-ary polymorphism of A such that f is surjective when restricted at any
position to {x}, then A is (k − 1)-collapsible from source {x} (i.e. A has a k-ary Hubie
polymorphism).

An interesting consequence of last section’s formal work is a form of converse of
Chen’s Lemma, which allows us to give an algebraic characterisation of collapsibility
from a singleton source.

Proposition 43. Let x be a constant in A. The following are equivalent:

(i) A is collapsible from {x}.
(ii) A has a Hubie polymorphism with source x.

In the proof of the above, for (i)⇒ (ii)⇒ (i), we no longer control the collapsibility
parameter as the arity of our polymorphism is larger than the parameter we start
with. By inspecting more carefully the properties of the polymorphism f we get as a
witness that A models a canonical sentence, we may derive in fact p-collapsibility by an
argument akin to the one used above in the proof of Chen’s Lemma. We obtain this
way a nice concrete result to counterbalance the abstract Theorem 36.

Theorem 44 (p-Collapsibility from a singleton source). Let x be a constant in
A and p > 0. The following are equivalent:

(i) A is p-collapsible from {x}.
(ii) For every m ≥ 1, the full adversary Am is reactively composable from Υm,p,x.

(iii) A is Π2-p-collapsible from {x}.
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(iv) For every m ≥ 1, Υm,p,x generates Am.

(v) A models ϕn,Υp+1,p,x,A (which implies that A admits a particularly well behaved
Hubie polymorphism with source x of arity (p+ 1)np).

Corollary 45. Given p ≥ 1, a structure A and x a constant in A, we may decide
whether A is p-collapsible from {x}.

Remark 46. We say that a structure A is B-conservative where B is a subset of its
domain iff for any polymorphism f of A and any C ⊆ B, we have f(C,C, . . . , C) ⊆ C.
Provided that the structure is conservative on the source set B, we may prove a similar
result for p-Collapsibility from a conservative source.

Expanding on Remark 40, we note that if we forbid equalities in the input to a
QCSP, then we can observe the natural case of 0-collapsibility, to which now we turn.
This is not a significant restriction in a context of complexity, since in all but trivial
cases of a one element domain, one can propagate equality out through renaming of
variables.

We investigated a similar notion in the context of positive equality free first-order
logic, the syntactic restriction of first-order logic that consists of sentences using only
∃,∀,∧ and ∨. For this logic, relativisation of quantifiers fully explains the complexity
classification of the model checking problem (a tetrachotomy between Pspace-complete,
NP-complete, Co-NP-complete and Logspace) [15]. In particular, a complexity in NP is
characterised algebraically by the preservation of the structure by a simple A-shop (to
be defined shortly), which is equivalent to a strong form of 0-collapsibility since it applies
not only to pH-sentences but also to sentences of positive equality free first-order logic.
We will show that this notion corresponds in fact to 0-collapsibility from a singleton
source. Let us recall first some definitions.

A shop on a set B, short for surjective hyper-operation, is a function f from B to
its powerset such that f(x) 6= ∅ for any x in B and for every y in B, there exists x
in B such that f(x) 3 y. An A-shop5 satisfies further that there is some x such that
f(x) = B. A simple A-shop satisfies further that |f(x′)| = 1 for every x′ 6= x. We
say that a shop f is a she of the structure B, short for surjective hyper-endomorphism,
iff for any relational symbol R in σ of arity r, for any elements a1, a2 . . . , ar in B, if
R(a1, . . . , ar) holds in B then R(b1, . . . , br) holds in B for any b1 ∈ f(a1), . . . , br ∈ f(ar).
We say that B admits a (simple) A-she if there is a (simple) A-shop f that is a she of B.

Theorem 47. Let B be a finite structure. The following are equivalent.

(i) B is 0-collapsible from source {x} for some x in B for equality-free pH-sentences.

(ii) B admits a simple A-she.

(iii) B is 0-collapsible from source {x} for some x in B for sentences of positive equality
free first-order logic.

5The A does not stand for the name of the set, it is short for All.
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The above applies to singleton source only, but up to taking a power of a structure
(which satisfies the same QCSP), we may always place ourselves in this singleton setting
for 0-collapsibility.

Theorem 48. Let B be a structure. The following are equivalent.

(i) B is 0-collapsible from source C

(ii) B|C| is 0-collapsible from some (any) singleton source x which is a (rainbow)
|C|-tuple containing all elements of C.

5 Back to Complexity

The trichotomy of Theorem 3 should be seen as a companion to the following dichotomy
result.

Theorem 49 (Theorem 1 of [1]). Let H be a p.r. path.

(i) If H is quasi-loop-connected, then QCSP(H) is in NL.

(ii) Otherwise, QCSP(H) is Pspace-complete.

Case (i) is proved in 2 steps : a loop connected p.r. path is known to be in NL via a
majority polymorphism and a quasi-loop connected p.r. path is shown to have the same
QCSP via some surjective homomorphisms from powers (via the methodology from
[12]). This means that we can build a Hubie polymorphism for a quasi-loop connected
p.r. path (see Application 41). However, this polymorphism need not be idempotent
and the argument does not extend to p.r. paths with constants.

Using results from both of the previous sections we can now give a proof of Theorem 3.

Proof of Theorem 3. For Cases (i) and (ii), NP membership follows from Corollary 38 as
we established suitable forms of PGP in Lemmas 4, 6 and 7. More specifically, the Ptime
membership of Case (i) is established by the majority polymorphism mentioned in the
proof of Lemma 4 (via [3]). As for Case (ii), we note in passing that collapsibility follows
from Lemmas 6 and 7 which establish item (vi) of Corollary 39. More importantly,
NP-hardness follows from the classification of [16].

For Case (iii), we observe from [1] that we are Pspace-hard even without constants.

We note that the complexity classification for semicomplete digraphs from [2] is
unchanged regardless of whether all constants are present (since semicompletes are
cores).
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6 Conclusion

One important application of our abstract investigation of PGP yields a nice charac-
terisation in the concrete case of collapsibility, in particular in the case of a singleton
source which we now know can be equated with preservation under a single polymor-
phism, namely a Hubie polymorphism. So far, this is the only known explanation for a
complexity of a QCSP in NP which provokes the following question.

Question 1. For a structure A, is it the case that QCSP(A) is in NP iff A admits a
Hubie polymorphism?

In the literature, it is common to study the case of non finite constraint languages.
This means that for an infinite set of relations over the same finite domain Γ we study the
uniform problem QCSP(Γ) which covers all problems QCSP(A) where A is a structure
with relations from Γ.

Typically Γ is taken to be the invariant of some algebra. There is an example of such
a problem QCSP(Γ) with a complexity in NP that is provably not collapsible but enjoys
a property similar to p-collapsibility, namely p-switchability [10], which is a special form
of PGP.

For m ≥ 1 and ı̄ = (i1, i2, . . . , ip) a strictly increasing sequence in [m − 1]p, let
Sı̄,p be the adversary that consists of tuples t ∈ Am such that each of the following
sets contain a single element: {t[j] ∈ A|1 ≤ j ≤ i1}, {t[j] ∈ A|i1 + 1 ≤ j ≤ i2}, . . .,
{t[j] ∈ A|ip + 1 ≤ j ≤ m}. Let Σm,p be the set of all such adversaries Sı̄,p. Let Σp be
the sequence of adversaries

(
Σm,p

)
m∈N.

We say that a structure A is p-switchable iff for every m and for all pH-sentence ϕ
with m universal variable, A |= ϕ�Σm,p implies A |= ϕ.

We say that a set of relations Γ is p-switchable iff every structure A with relations
from Γ is p-switchable.

Our definition of switchability is not exactly the same as that of Hubie Chen who uses
instead a single adversary ∪Sı̄ for each arity. It is a simple exercise to show that both
sequences of adversaries satisfy the hypotheses of Theorem 36. Since the two notions
are of course equivalent in the Π2 case via the principle of union (Lemma 27), they are
therefore equivalent in general. Thus not only we can equate switchability with its Π2

analogue but we can also give a purely syntactic definition of switchability as follows.
A structure A is p-switchable iff, for all m and for all pH formula ϕ with m universal
variables x1, x2, . . . , xm (in this order), A |= ϕ iff for all ı̄ = (i1, i2, . . . , ip) a strictly
increasing sequence in [m− 1]p, A |= ϕ∧ η̄ı where η̄ı is

∧
0≤`1<`2≤p

∧
i`1≤j<k≤i`2

xj = xk.

However, there are two limitations to our result on switchability. Firstly, we do not
have a crisp candidate for a single polymorphism or even a sequence of polymorphisms
that would endow switchability. Secondly, our findings only hold for finite structures,
where it is unclear that switchability plays a natural role. This provokes the following
question.
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Question 2. For every infinite set of relations Γ, is it the case that Γ is switchable iff
it is Π2-switchable?

Going back to collapsibility, regarding the meta-question of deciding whether a
structure is collapsible, one can wonder if the parameter p of collapsibility depends on
the size of the structure A. In particular, this would provide a positive answer to the
following.

Question 3. Given a structure A, can we decide if it is p-collapsible for some p?

A tantalising question remains.

Question 4. Are there any finite algebras, minimal generating sets for whose powers
grow sub-exponentially (e.g. Θ(2

√
i))?

The alternative is that finite algebras exhibit a PGP-EGP gap in general. In a
sequence of three papers Growth rates of algebras, Kearnes, Kiss and Szenderei explore
this question, demonstrating all polynomial growth rates are possible.

Finally, let us return to the foundation for Fürstenproblem and contemplate the
complexity of the QCSP. Let B be a finite structure. At present it is not conjectured
where one might seek to prove the boundary between QCSP(B) being in P and QCSP(B)
being NP-hard, even in the case where all constants are present. Furthermore, settling
this will be at least as hard as settling the similar dichotomy for CSP. However, we
would like to specifically echo the conjecture of Chen in [8] (where it appears written in
two conjectures).

Conjecture. Let B be finite and expanded with all constants; then QCSPc(B) is in
NP iff id-Pol(B) has the PGP.
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International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings, ser. Lecture Notes in Computer Science, M. Milano, Ed., vol. 7514. Springer,
2012, pp. 480–495. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33558-7 36

[10] H. Chen, “Quantified constraint satisfaction and the polynomially generated
powers property,” Algebra universalis, vol. 65, no. 3, pp. 213–241, 2011,
an extended abstract appeared in ICALP B 2008. [Online]. Available: http:
//dx.doi.org/10.1007/s00012-011-0125-4

[11] J. Wiegold, “Growth sequences of finite semigroups,” Journal of the Australian
Mathematical Society (Series A), vol. 43, pp. 16–20, 8 1987, communicated by H. Lausch.
[Online]. Available: http://journals.cambridge.org/article S1446788700028925

[12] H. Chen, F. Madelaine, and B. Martin, “Quantified constraints and containment problems,”
in 23rd Annual IEEE Symposium on Logic in Computer Science, 2008, pp. 317–328.

[13] F. Börner, A. A. Bulatov, H. Chen, P. Jeavons, and A. A. Krokhin, “The complexity of
constraint satisfaction games and qcsp,” Inf. Comput., vol. 207, no. 9, pp. 923–944, 2009.

[14] B. Martin and F. Madelaine, “Towards a trichotomy for quantified H-coloring,” in 2nd
Conf. on Computatibility in Europe, LNCS 3988, 2006, pp. 342–352.

[15] F. R. Madelaine and B. Martin, “A tetrachotomy for positive first-order logic without
equality,” in LICS, 2011, pp. 311–320.

[16] T. Feder, P. Hell, P. Jonsson, A. A. Krokhin, and G. Nordh, “Retractions to pseudoforests,”
SIAM J. Discrete Math., vol. 24, no. 1, pp. 101–112, 2010.

[17] F. R. Madelaine and B. Martin, “The complexity of positive first-order logic without
equality,” in LICS. IEEE Computer Society, 2009, pp. 429–438.

[18] H. Chen, F. R. Madelaine, and B. Martin, “Quantified constraints and containment
problems,” CoRR, vol. abs/1310.1016, 2013.

28

http://arxiv.org/abs/1210.6893
http://dx.doi.org/10.1007/978-3-642-33558-7_36
http://dx.doi.org/10.1007/s00012-011-0125-4
http://dx.doi.org/10.1007/s00012-011-0125-4
http://journals.cambridge.org/article_S1446788700028925


From complexity to algebra and back Carvalho, Madelaine and Martin

Material omitted from § 3.

Partially reflexive paths (c.f.3.1)

Cases with the PGP

In the proof of Lemma 4, we refer to the fact that loop-connected p.r. paths have a
majority polymorphism. In the reference, it is not fully explicit how one builds such a
majority operation, and we highlight it here for the sake of completeness.

Let P be a loop-connected path labelled in ascending natural numerical order. Let L
be the irreflexive component left of the central loops and R be the irreflexive component
right of the loops. If there are no loops let the whole path be in L.

Recall first that the operation median over the elements of P returns the argument
that is neither minimal, nor maximal when the arguments are pairwise distinct, and
behave as a majority operation otherwise.

Define Feder(x, y, z) := median(x, y, z), if all x, y, z have the same parity, and
Feder(x, y, z) :=max of the repeated parity, otherwise (this operation was communicated
to one of the author by email by Tomás Feder, hence its name).

We define f(x, y, z) := Feder(x, y, z), if x, y, z ⊂ L or x, y, z ⊂ R, and f(x, y, z) :=
median(x, y, z), otherwise. This operation f is a majority polymorphism and a poly-
morphism of P.

Lemma 5. Let P0a1bα, with b > 0, be a quasi-loop-connected path on vertices [n]. For
each y ∈ [n] there is a binary idempotent polymorphism fy of P0a1bα so that fy(1, x) = x
(for all x) and fy(n, 1) = y.

Proof. Let y be given. Suppose P0a1bα is of odd length and has centre at position q (the
argument for even length is very similar with central vertices q, q′). Choose p minimal
(1 ≤ p ≤ q) so it is a looped vertex. Let r be so that r − q = q − p, i.e. p and r are
first and last in the block 1b, and we have 1 ≤ p ≤ q ≤ r ≤ n). An idempotent binary
polymorphism on domain [n] may be visualised as a matrix X with leading diagonal
1, . . . , n. We consider the top-left and bottom-left parts of the matrix Xtl and Xbl,
respectively, to include as their farthest right column the central column of the matrix
X at position q. Xtl and Xbl will also overlap on the bottom row of the former which
is the top row of the latter. Let us consider what constraints a polymorphism must
satisfy. Across the whole matrix, diagonal neighbours must be adjacent elements. In
Xtl, in fact, only the diagonals are needed to be considered to satisfy polymorphism.
But in Xbl (indeed the whole bottom half) there may be some horizontal lines that
must satisfy the adjacency condition and in the right half there might be some vertical
lines that need to satisfy this adjacency condition too. To see an example of this we
direct the reader to P00001110110 in Figure 3. We will rebuild Xtl and Xbl to satisfy all
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horizontals, even though we do not need them all, and the right half of the matrix will
satisfy all potential vertical lines.

When viewed as a matrix, the entire right half (from and including the middle
column q) will obey f(u, v) = v. We now turn our attention to Xtl. The farthest right
column of Xtl is already set to q, and we will set the entire bottom row to q. We now
remove these already-set positions and then set the farthest right column and bottom
row of the remainder of Xtl to q − 1. We iterate this until we reach and have done this
for p. Note that this is consistent with idempotency. We have now filled in X other than
a (p− 1)× (p− 1) matrix in the top-left which we call X ′tl and a (q− 1)× (q− 1) matrix
in the bottom-left which we still call Xbl. This is depicted in Figure 1 and satisfies all
local conditions for polymorphism. The matrix X ′tl must additionally satisfy leading
diagonal idempotency and must also satisfy the boundary condition of p against its
right-most column and bottom row. The matrix Xbl must satisfy position (n, 1) being y
and the boundary condition of q against its right-most column and top row.

(Construction of X ′tl.) We explain how to fill in position (1, i) and (i, 1) for i ∈ [p−1]
because each diagonal proceeding towards the centre of the matrix will contain an
increasing arithmetic sequence with step 1. Set (1, i) to be i and (i, 1) to be i (when i is
odd) and i+1 (when i is even). A simple calculation now yields the precise specification:
if λ < µ, set (λ, µ) to µ; if λ > µ, set (λ, µ) to λ (if λ− µ+ 1 is odd) and to λ+ 1 (if
λ− µ+ 1 is even). It is easy to see that this satisfies polymorphism. Indeed, it satisfies
polymorphism on the horizontals where it is not necessary (but will become necessary
for Xbl).

(Construction of Xbl.) The upward diagonal from y at position (n, 1) to q is filled
y, y ± 1 . . . , q, . . . , q. That is, if y ≤ q we increase by one until we reach q and then
repeat q, and if y ≥ q we decrease by one until we reach q and then repeat q.

All rows and columns in Xbl that contain a vertex z ∈ {p, . . . , q, . . . , r} on the
upward diagonal from (n, 1) are now filled in with z. At this point we are left with some
s× s submatrix X ′bl of Xbl not filled in. X ′bl might be empty if y ∈ {p, . . . , q, . . . , r}, but
if X ′bl is not empty then we have the boundary condition of either p or r against its
right-most column and top row. We now fill this in in precisely the dual fashion to our
filling in of X ′tl. We will give the argument when the boundary condition is r (the other
case of boundary p being very similar). We explain how to fill in position (n, i) and
(i, n) for i ∈ {n, . . . , n− s+ 1) because each diagonal proceeding towards the centre of
the matrix will contain a decreasing (increasing if boundary is instead p) arithmetic
sequence with step 1. Set (n, i) to be y− i+ 1 and (i, n) to be i− n+ y (when i is odd)
and i− 1−n+ y (when i is even). It is not hard to see that this satisfies polymorphism,
even on its horizontals.

Two examples, for the graph P0413α with |α| = 4, are given in Figure 2. The
left-hand example is for (n = 11 where p = 5, q = 6, r = 7 and) y = 10; and the
right-hand example is for (n = 11 where p = 5, q = 6, r = 7 and) y = 3.
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1 p · · · q · · · r · · · n
. . .

...
...

...
...

p · · · p · · · q · · · r · · · n
...

...
...

...
...

q · · · q · · · q · · · r · · · n
...

...
...

q · · · r · · · n
...

...
...

y q · · · r · · · n

Figure 1: First part of the construction for the proof of Lemma 5.

1 2 3 4 5 6 7 8 9 10 11
3 2 3 4 5 6 7 8 9 10 11
3 4 3 4 5 6 7 8 9 10 11
5 4 5 4 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
6 6 6 6 6 6 7 8 9 10 11
7 7 7 7 7 6 7 8 9 10 11
7 7 7 7 7 6 7 8 9 10 11
8 7 8 7 7 6 7 8 9 10 11
8 9 8 7 7 6 7 8 9 10 11

10 9 8 7 7 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11
3 2 3 4 5 6 7 8 9 10 11
3 4 3 4 5 6 7 8 9 10 11
5 4 5 4 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
6 6 6 6 6 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
5 5 5 5 5 6 7 8 9 10 11
5 4 5 5 5 6 7 8 9 10 11
3 4 5 5 5 6 7 8 9 10 11

Figure 2: Two polymorphism of the graph P0413α, with α any string of 0s and 1s of
length 4. The lines indicate the boundaries of X ′tl and X ′bl.
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• • • • • • • • • • •

P00001110110 ↑ ↓ P00001110110
2

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

Figure 3: Path P04130120 and its square

Lemma 50. Let P0aα be a quasi-loop-connected path on vertices [n] (that is not of the
form P0a1bα with |α| = a). For each y ∈ [n] there is a binary idempotent polymorphism
fy of P0aα so that fy(1, x) = x (for all x) and either fy(n, 1) = y or fy(n, 2) = y.

Proof. Suppose first that y ∈ {1, 2}. Assume n is even (the argument for the odd case
is very similar). Our proof has similarities to that of Lemma 5. We will rebuild Xtl

roughly as before, but now we rebuild Xbl as a mirror image of Xtl. We will set the
columns n/2 + 1, . . . , n of our matrix to be full columns of n/2 + 1, . . . , n, respectively.
Take the remainder of the matrix, on columns 1, . . . , n/2 and split it into two across
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1 2 3 4 5 6 7 8 9 10
3 2 3 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10

5 6 5 6 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10
3 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
3 2 3 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10
7 6 7 6 5 6 7 8 9 10

7 6 7 6 5 6 7 8 9 10
5 6 5 6 5 6 7 8 9 10
5 4 5 4 5 6 7 8 9 10
3 4 3 4 5 6 7 8 9 10

Figure 4: Examples for the proof of Lemma 50. The line indicates the axis of symmetry
for the mirror image.

its central horizontal. Call the top left Xtl and the bottom left Xbl. We will fill in Xtl

according to the construction of X ′tl from Lemma 5. We will now fill Xbl to be a mirror
image of Xtl in the central horizontal. An example of this is depicted in Figure 4.

Now for general y ∈ {z, z + 1} with z odd, we shift the horizontal split between Xtl

and Xbl downwards (making Xtl larger). The split will be just after row n/2 + (z− 1)/2,
i.e. at z = n−1 the matrix Xbl is empty. We now build Xtl according to the construction
of X ′tl from Lemma 5 and now fill Xbl to be a mirror image of the bottom part of Xtl

in the horizontal just after row n/2 + (z − 1)/2. An example of this is depicted in
Figure 4.

Lemma 7. Let P0aα, for |α| ∈ {a, a− 1}, be a quasi-loop-connected path on vertices
[n] (that is not of the form P0a1bα with |α| = a). Let A be the algebra specified
by id-Pol(P0aα). For each m, Am is generated from the 2n+ 2 m-tuples (1, 1, . . . , 1),
(2, 2, . . . , 2), (n, 1, . . . , 1), (1, n, . . . , 1), . . . , (1, 1, . . . , n),(n, 2, . . . , 2), (2, n, . . . , 2), . . . , (2, 2, . . . , n).

Proof. The proof is as in the Lemma 6 but relies upon Lemma 50 in place of Lemma 5.
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Cases with the EGP

For a digraph H, the distance, dH, between two vertices is the number of edges in a
shortest path connecting them. By Hn we mean the tensor product of H with itself n
times.

We note that polymorphisms do not increase distances in graphs, i.e. if f is an n-ary
polymorphism of H and u, v ∈ Hn then dHn(u, v) ≤ dH(f(u), f(v)).

Lemma 8 is proved by induction on the arity of the polymorphisms. We deal first
with the base case.

Lemma 51. Let α be any sequence of zeros and ones. All idempotent binary polymor-
phisms of P10α01 are projections.

Proof. We label the vertices of P = P10α01 left to right over 0, 1, . . . , t = |P| − 1 and
start by showing that any binary polymorphism f of P must satisfy the following

f(i, j) ≤ max{i, j} and f(i, j) ≥ min{i, j},

with i, j = 0, . . . , t and considering the natural linear ordering of the labelling of vertices
of P . Assume, for a contradiction, that there exist i, j such that f(i, j) = k with k > i, j.
Without loss of generality we assume that i < j. There exists a path of length at most j
from f(i, j) to f(0, 0) = 0, via the vertices f(i− 1, j − 1), . . . , f(0, 1), f(0, 0), but clearly
dH(0, k) = k, so we get a contradiction. Dually, we can show that we also cannot have
k < i, j.

We now show that f|{x,x+k} is, without loss of generality, the first projection, by
induction on k ≥ 1.

There is an edge, in P , from f(0, 1) and from f(1, 0) to f(0, 0) = 0, so f(0, 1), f(1, 0) ∈
{1, 0}. There is also an edge from f(0, 1) to f(1, 0), so they cannot both be equal to 1.
In a similar way we can check that f(t, t− 1), f(t− 1, t) ∈ {t− 1, t} and they cannot
both be equal to t− 1.

We have dH(f(0, 1), f(t − 1, t), dH(f(1, 0), f(t, t − 1) ≤ t − 1, since f(t, t − 1) and
f(t−1, t) cannot both be equal to t−1, this immediately implies that f(1, 0) and f(0, 1)
cannot both be equal to 0. Hence it follows that f|{1,2} must be a projection. Assume,
without loss of generality, that it is the first projection.

To be able to get the correct distances from f(0, 1) to f(t−1, t) we must have that f
restricted to any two consecutive vertices must be the first projection, i.e. f(x, x+1) = x
and f(x+ 1, x) = x+ 1 for all x = 0, . . . , t− 1.

Now, assume that f|{x,x+l} is the first projection, for all l < m and all x = 0, . . . , t− l.
We show that f|{x,x+m} is also the first projection, by induction on x. For the base case
x = 0, we know that there is an edge from f(0,m) to f(0,m−1) and an edge from f(m, 0)
to f(m− 1, 0). By the inductive hypothesis, f(0,m− 1) = 0 and f(m− 1, 0) = m− 1,
so we must have f(0,m) ∈ {1, 0} and f(m, 0) ∈ {m− 2,m− 1,m}.
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Also, there is an edge from f(0,m) to f(1,m − 1), by the inductive hypothesis
f(1,m− 1) = 1, so we must have f(0,m) = 0. We now just need to consider the case
f(m, 0).

Case 1: Suppose that f(m, 0) = m− 2; dH(f(m, 0), f(t, t− (m+ 1)) ≤ t−m, and
by the inductive hypothesis f(t, t − (m + 1)) = t. So dH(f(m, 0), t) ≤ t − m, but
dH(m− 2, t) = t− (m− 2), so we get a contradiction.

Case 2: Suppose that f(m, 0) = m − 1. Since there is an edge from f(m, 0) to
f(m− 1, 0), and f(m− 1, 0) = m− 1 by the inductive hypothesis, it follows that m− 1
must be a loop. Now, there is an edge from f(m, 0) to f(m+1, 1) and from this to f(m, 2).
Since f(m, 2) = m, by the inductive hypothesis. We have that f(m+ 1, 1) ∈ {m− 1,m}.
If f(m + 1, 1) = m − 1 we get a similar contradiction as in Case 1, so we must have
f(m + 1, 1) = m, which also implies that m must be a loop. We now move on to
f(m+ 2, 2) and using the same reasoning we get that m+ 2 must be a loop. Carrying
on in this way we will eventually reach a contradiction since the vertex t− 1 does not
have a loop; unless m = t, in which case f(t, 0) is a loop and we immediately have
f(t, 0) = t.

Hence we must have f(m, 0) = m. This proves the base case.
Assume now that f|{x,x+m} is the first projection for all x < b. We show that

f|{b,b+m} is also the first projection. There are edges from f(b, b+m) and f(b+m, b)
to f(b− 1, b− 1 +m) and f(b− 1 +m, b− 1) respectively. By the inductive hypothesis,
f(b − 1, b − 1 + m) = b − 1 and f(b − 1 + m, b − 1) = b − 1 + m. So we have
f(b, b+m) ∈ {b− 2, b− 1, b} and f(b+m, b) ∈ {b− 2 +m, b− 1 +m, b+m}.

There is an edge from f(b, b + m) to f(b + 1, b + m − 1), and, by the inductive
hypothesis, f(b+ 1, b+m− 1) = b+ 1. So we must have f(b, b+m) ∈ {b, b+ 1, b+ 2},
it immediately follows that f(b, b+m) = b. Like above, in Cases 1 and 2, we can show
that we also must have f(b+m, b) = b+m.

This proves the lemma.

Lemma 8. Let α be any sequence of zeros and ones. All idempotent polymorphisms of
P10α01 are projections.

Proof. Let P = P10α01 and label the vertices of P over [t] with t = |P| left to right. Let
n ≥ 2 be arbitrary and let f(x1, . . . , xn) be any idempotent n-ary polymorphism of P.
We prove the lemma by induction on n, with base case given by Lemma 51.

Assume now that the lemma holds for any n < k, i.e. we have f(x1, . . . , xn) = x1

for any x1, . . . , xn vertices of P and any n < k. Let us consider the case when f is a
polymorphism of arity k. We will show that f(x1, . . . , xk) is also the first projection.

Case 1: x1 is not the left-most nor the right-most element of x1, . . . , xk.
In this case we know that d(f(x1, . . . , xk), f(1, y2, . . . , yk)) ≤ x1−1, where yi = xi−x1

if xi > x1 and it is 1 otherwise. Now at least one of the yis equals to 1, so at this stage
f(1, y2, . . . , yk) matches a polymorphism of arity smaller than k and we can apply the
inductive hypothesis, so that f(1, y2, . . . , yk) = 1. It follows that d(f(x1, . . . , xk), 1) ≤
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x1− 1. In a similar way we obtain that d(f(x1, . . . , xk), f(t, z2, . . . , zk)) ≤ t− x1− 1, so
that d(f(x1, . . . , xk), t) ≤ t− x1 − 1. It follows that f(x1, . . . , xk) = x1.

Case 2: x1 = 1; Assume, wlog, that x2 is the left-most element of x2, . . . , xk and is not
equal to x1. Then d(f(1, x2, . . . , xk), f(1, 1, y3, . . . , yk)) ≤ x2−1, with yi defined as above.
By the inductive hypothesis f(1, 1, y3, . . . , yk) = 1, so that d(f(1, x2, . . . , xk), 1) ≤ x2−1,
hence f(1, x2, . . . , xk) ≤ x2. We show that f(1, x2, . . . , xk) = 1 by induction on x2.
If x2 = 2 then f(1, x2, . . . , xk) ∈ {1, 2}, and we know that there is an edge from
f(1, 2, x3 . . . , xk) to f(2, 1, x3 − 1, . . . , xk − 1). Since there are no loops at 2 and, by
Case 1, f(2, 1, x3 − 1, . . . , xk − 1) = 2, we must have f(1, x2, . . . , xk) = 1.

Assume now that the result holds whenever x2 < z. Then f(1, z, x3, . . . , xk) ≤ z and
there is an arc from this vertex to f(1, z − 1, x3 − 1, . . . , xk − 1), since f(1, z − 1, x3 −
1, . . . , xk − 1) = 1 by the inductive hypothesis, we must have f(1, z, x3, . . . , xk) ∈ {1, 2}.

Suppose, for a contradiction, that f(1, z, x3, . . . , xk) = 2. Since there is an arc from
this vertex to f(2, z− 1, x3− 1, . . . , xk− 1) we have that f(2, z− 1, x3− 1, . . . , xk− 1) ∈
{1, 3}. Now d(f(2, z − 1, x3 − 1, . . . , xk − 1), f(dz/2e + 1, dz/2e, x3 − dz/2e, . . . , xk −
dz/2e) ≤ dz/2e − 1. By Case 1, we know that f(dz/2e+ 1, dz/2e, x3 − dz/2e, . . . , xk −
dz/2e) = dz/2e+ 1. So, we cannot have f(2, z − 1, x3 − 1, . . . , xk − 1) = 1. It follows
that f(2, z − 1, x3 − 1, . . . , xk − 1) = 3, and since there is an arc from this vertex to
f(1, z2, x3, . . . , xk) and, by the inductive hypothesis, f(1, z2, x3, . . . , xk) = 1, we get a
contradiction.

Case 3: x1 is the left-most element of x1, . . . , xk, but is not equal to 1.

In this case we know that d(f(1, x2 − x1, . . . , xk − x1), f(x1, . . . , xk)) ≤ x1 − 1, by
Case 2 we know that f(1, x2−x1, . . . , xk−x1) = 1 it then follows that f(x1, . . . , xk) ≤ x1.
Since we have already seen that f(x1, . . . , xk) ≥ x1, because x1 is the left-most element,
it immediately follows that f(x1, . . . , xk) = x1. This proves the claim.

EGP Methodology via Galois correspondence

The following is a restatement of the backward inclusion of the well-known Galois
correspondence Inv(sPol(B)) = 〈B〉pH holding for finite structures B [13]. This direction
can be proved by induction on the term-complexity of ϕ ∈ 〈B〉pH.

Lemma 52. Let B be a finite structure and suppose there is a k-ary surjective polymor-
phism of B that [pointwise] maps the tuples (x1

1, . . . , x
r
1), . . . , (x1

k, . . . , x
r
k) to (y1, . . . , yr).

Let ϕ be an r-ary relation from 〈B〉pH. If ϕ holds on each of (x1
1, . . . , x

r
1), . . . , (x1

k, . . . , x
r
k)

in B, then ϕ holds on (y1, . . . , yr) in B.

Together with the definition of a generating set, it can be used to derive Corollary 9.

36



From complexity to algebra and back Carvalho, Madelaine and Martin

Material omitted from § 4.

Games, adversaries and reactive composition (c.f.4.1)

Theorem 26. Let ϕ be a pH-sentence with m universal variables. Let A be an
adversary and Ωm a set of adversaries, both of length m.

If A |= ϕ�Ωm and A E Ωm then A |= ϕ.

Proof. We sketch the proof for the sake of completeness. Let Ωm := {B1, . . . ,Bk}
and f and gij be as in the definition of reactive composition and witnessing that
A E f(B1, . . . ,Bk). Assume also that A |= ϕ�Ωm . Given any sequence of play of the
universal player according to the adversary A , that is v1 is played as a1 ∈ A1, v2 is
played as a2 ∈ A2, etc., we ”go backwards through f” via the maps gij to pinpoint

incrementally for each j ∈ [k] a sequence of play v1 = g1
j (a1), v2 = g2

j (a1, a2) etc,
thus yielding eventually a tuple that belongs to adversary Bj . After each block of
universal variables, we lookup the winning strategy for the existential player against
each adversary Bj and ”going forward through f”, that is applying f to the choice of
values for an existential variable against each adversary, we obtain a consistent choice
for this variable against adversary A (this is because f is a polymorphism and the
quantifier-free part of the sentence ϕ is conjunctive positive). Going back and forth we
obtain eventually an assignment to the existential variables that is consistent with the
universal variables being played as a1, a2, . . . , am.

Remark 53. In Chen’s work on QCSP, constants are almost always allowed in the
constraint language. This amounts with our definition to consider a relational structure
A with all its elements named by constants. However, Chen does not necessarily explicitly
add constants to the constraint language and instead moves rapidly to the algebraic
setting and considers algebra. There he insists on additional technical conditions which
preserves constants. For example in the above theorem, he has the additional condition
that f is an idempotent polymorphism. Whenever we will use one of Chen’s result, we
will generalise it as above by considering arbitrary constraint languages and dropping
technical conditions such as idempotency from the statement.

The Π2-case (c.f.4.2)

Lemma 27 (principle of union). Let Ωm be a set of adversaries of length m and ϕ
a Π2-sentence with m universal variables. Let O∪Ω :=

⋃
O∈Ω O and Ωtuples := {{t} ∈

O∪Ω} =
⋃

O∈Ω{{t} ∈ O}. We have the following equivalence.

A |= ϕ�Ωm ⇐⇒ A |= ϕ�O∪Ω
⇐⇒ A |= ϕ�Ωtuples

The forward implications

A |= ϕ�Ωm =⇒ A |= ϕ�O∪Ω
=⇒ A |= ϕ�Ωtuples
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of Lemma 27 hold clearly for arbitrary pH-sentences. The proof is trivial and is a direct
consequence of the following obvious fact.

Fact 54. Let Ωm be a set of adversaries of length m and ϕ a Π2-sentence with m
universal variables.

A |= ϕ�Ωm

m

∀O ∈ Ωm∀t = (a1, . . . , am) ∈ O A |= ϕ�{t}

Remark 55 (following Lemma 27). For a sentence that is not Π2, this does not
necessarily hold. For example, consider ∀x∀y∃z∀w E(x, z) ∧ E(y, z) ∧ E(w, z) on the
irreflexive 4-clique K4. The sentence is not true, but for all individual tuples (x0, y0, w0),
we have ∃z E(x0, z) ∧ E(y0, z) ∧ E(w0, z).

Proposition 28. Let ϕ be a Π2-pH-sentence with m universal variables. Let A be an
adversary and Ωm a set of adversaries, both of length m.

If A |= ϕ�Ωm and Ωm generates A then A |= ϕ�A .

Proof. The hypothesis that Ωm generates A can be rephrased as follows : for each tuple t
in A , {t} E ft(t1, t2, . . . , tk), where t1, t2, . . . , tk belong to Ωtuples. To see this, it remains

to note that the suitable gji ’s from the definition of composition are induced trivially as

there is no choice: for every j in [k] and every i in [m] pick gji (a1, a2, . . . , ai) = ti,j where
ti,j is the ith element of tj . So by Theorem 26, if A |= ϕ�Ωtuples

then A |= ϕ�{t}. As this
holds for any tuple t in A , via the principle of union, it follows that A |= ϕ�A .

Proposition 29. Let Ωm be a set of adversaries of length m that is not degenerate.
The following are equivalent.

(i) for any Π2-pH sentence ψ, A |= ψ�Ωm implies A |= ψ.

(ii) for any Π2-pH sentence ψ, A |= ψ�O∪Ω
implies A |= ψ.

(iii) for any Π2-pH sentence ψ, A |= ψ�Ωtuples
implies A |= ψ.

(iv) A |= ϕO∪Ω,A

(v) A |= ϕΩtuples,A

(vi) Ωm generates Am.

Proof. The first three items are equivalent by Lemma 27 (these implications have the
same conclusion and equivalent premises). The fourth and fifth items are trivially
equivalent since ϕO∪Ω,A and ϕΩtuples,A are the same sentence.

We show the implication from the third item to the fifth. By construction, ϕΩtuples,A
is Π2 and it suffices to show that there exists a winning strategy for ∃ against any
adversary {t} in Ωtuples. This is true by construction. Indeed, note that there exists
a winning strategy for ∃ in the (A, ϕΩtuples,A)-game against adversary {t} iff there is
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a homomorphism from the σ(m)-structure
⊗

t′∈Ωtuples
Aµt′ to the σ(m)-structure Aµt ,

where µt : [m] → A is the map induced naturally by t. The projection is such a
homomorphism.

The penultimate item implies the last one: instantiate the universal variables of
ϕΩtuples,A as given by the m-tuple t and pick for ft the homomorphism from the product
structure witnessing that ∃ has a winning strategy.

Finally, the last item implies the first one by Proposition 28.

The unbounded case (c.f.4.3 )

Lemma 34. Let Ω be a sequence of sets of adversaries that has the m-projectivity
property for some m ≥ 1 such that Ωn.m is not degenerate. The following holds.

(i) A |= ψ�Ωn.m , where ψ = ϕn,Ωm,A

(ii) If for every Π2-sentence ψ with m.n universal variables, it holds that A |= ψ�Ωm.n

implies A |= ψ, then A |= ϕn,Ωm,A.

Proof. The second statement is a direct consequence of the first one. The proof of the
first statement generalises an argument used in the proof of Proposition 29. Consider
any adversary O in Ωn.m. For convenience, we name the positions of this adversary
in a similar fashion to the universal variables of the sentence, namely by a pair (i, j)
in [n]× [m]. By projectivity, there exists an adversary O ′ in Ωm which dominates any
adversary Õ in ProjO (obtained by projecting over an arbitrary choice of one position
in each of the m blocks of size n). In the product structure underlying the formula
ϕn,Ωm,A, we consider the following structure:⊗

µ∈A[n.m]

�O′

AO′,µ

An instantiation of the universal variables of ϕn,Ωm,A according to some tuple t
from the adversary O corresponds naturally to a map µt from [n]× [m] to A. Observe
that our choice of O ′ ensures that this map µt is consistent with O ′. An instantiation
of the universal variables by µt induces a σ(n.m)-structure Aµt and a winning strategy
for ∃ amounts to a homomorphism from the product σ(n.m)-structure underlying the
sentence to this Aµt . Since the component AO′,µt of this product structure is isomorphic
to Aµt , we may take for a homomorphism the corresponding projection. This shows
that A |= ψ�Ωn.m where ψ = ϕn,Ωm,A.

Theorem 36. (In abstracto.) Let Ω be a projective sequence of adversaries, none of
which are degenerate. The following are equivalent.

(i) For every m ≥ 1, For every pH-sentence ψ with m universal variables, A |= ψ�Ωm

implies A |= ψ.
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(ii) For every m ≥ 1, for every Π2-pH-sentence ψ with m universal variables, A |= ψ�Ωm

implies A |= ψ.

(iii) For every m ≥ 1, A |= ϕn,Ωm,A.

(iv) For every m ≥ 1, A |= ϕO∪Ω,A.

(v) For every m ≥ 1, Am E Ωm.

(vi) For every m ≥ 1, Ωm generates Am.

Proof. Propositions 29 establishes the equivalence between (ii), (iv) and (vi) for fixed
values of m (numbered there as (i), (iv) and (vi), respectively).

To lift these relatively trivial equivalences to the general case, the principle of
our current proof no longer preserves the parameter m. The chain of implications of
Theorem 35 translates here, once the parameter is universally quantified, to the chain
of implications

(ii) =⇒ (iii) =⇒ (v) =⇒ (i)

The fact that (i) implies (ii) is trivial6, which concludes the proof.

Corollary 38. Let A be a structure. Let Ω be a sequence of non degenerate adversaries
that is effective, projective and polynomially bounded such that Ωm generates Am for
every m ≥ 1.

Let A′ be the structure A, possibly expanded with constants, at least one for
each element that occurs in Ω. The problem QCSP(A) reduces in polynomial time
to CSP(A′). In particular, if A has all constants, the problem QCSPc(A) reduces in
polynomial time to CSPc(A).

Proof. To check whether a pH-sentence ϕ with m universal variables holds in A, by
Theorem 36, we only need to check that A |= ϕ�B for every B in Ωm. The reduction
proceeds as in the proof of [10, Lemma 7.12], which we outline here for completeness.

Pretend first that we reduce A |= ϕ�B to a collection of CSP instances, one for each
tuple t of B, obtained by instantiation of the universal variables with the corresponding
constants. If x is an existential variable in ϕ, let xt be the corresponding variable in
the CSP instance corresponding to t. We will in fact enforce equality constraints via
renaming of variables to ensure that we are constructing Skolem functions. For any two
tuples t and t′ in B that agree on their first ` coordinates, let Y` be the corresponding
universal variables of ϕ. For every existential variable x such that Yx (the universally
quantified variables of ϕ preceding x) is contained in Y`, we identify xt with xt′ .

6We note in passing and for purely pedagogical reason that the implication (v) to (vi) is also trivial,
while the natural implication (iii) to (iv) will appear as an evidence to the reader once the definition of
the canonical sentences is digested.
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Studies of Collapsibility (c.f.4.4)

p-collapsibility for p > 0

Application 41. A partially reflexive path A (no constants are present) that is
quasi-loop connected has the PGP.

Proof. Indeed, a partially reflexive path A that is quasi-loop connected has the same
QCSP as a partially reflexive path that is loop-connected B [9] since for some ra > 0
there is a surjective homomorphism g from Ara to B and for some rb > 0 there is a
surjective homomorphism h from Brb to A (see main result of [12]). We also know
that B admits a majority polymorphism m [1] and is therefore 2-collapsible from any
singleton source (see Table 1) and that Theorem 39 holds for B. Pick some arbitrary
element a in A such that there is some b in B satisfying g(a, a, . . . , a) = b. Use b as a
source for B.

We proceed to lift (vi) of Corollary 39 from structure B to A, which we recall here
for B : for every m, for every tuple t in Bm, there is a polymorphism ft of B of arity k
and tuples t1, t2, . . . , tk in Υm,2,b such that ft(t1, t2, . . . , tk) = t.

Let gk denote the surjective homomorphism from (Ara)k to Bk that applies g
blockwise. Going back from ti through g, we can find ra tuples ti,1, ti,2, . . . , ti,ra all in
Υm,2,a (adversaries based on the domain of A) such that g(ti,1, ti,2, . . . , ti,ra) = ti. Thus,
we can generate any t̃ in B via ft̃ ◦ (gk) from tuples of Υm,2,a.

Let t̂ be now some tuple of A. By surjectivity of h, let t̃1, t̃2, . . . , t̃rb be tuples of B
such that h(t̃1, t̃2, . . . , t̃rb) = t̂. The polymorphism ofA (ft̃1◦(g

k), ft̃2◦(g
k), . . . , ft̃rb

◦(gk))

shows that Υm,2,a generates t̂. This shows that A is also 2-collapsible from a singleton
source.

Lemma 42. (Chen’s lemma.) Let A be a structure with a constant x. if there is a
k-ary polymorphism of A such that f is surjective when restricted at any position to
{x}, then A is k− 1-collapsible from source {x} (i.e. A as a k-ary Hubie polymorphism).

Proof. We sketch the proof for pedagogical reasons. Via Corollary 39, it suffices to
show that for any m, Am is generated by Υm,k−1,x (instead of the notion of reactive
composition).

Consider adversaries of length m = k for now, that is from Υk,k−1,x. If we apply f
to these k adversaries, we generate the full adversary Ak. With a picture (adversaries

41



From complexity to algebra and back Carvalho, Madelaine and Martin

are drawn as columns):

f


{x} A A . . . A
A {x} A . . . A
...

. . .
...

A . . . A {x} A
A . . . A A {x}

 =


A
A
...
A
A

 = Ak

Expanding these adversaries uniformly with singletons {x} to the full length m, we may
produce an adversary from Υm,k,x. With a picture for e.g. trailing singletons:

f



{x} A A . . . A
A {x} A . . . A
...

. . .
...

A . . . A {x} A
A . . . A A {x}
{x} {x} {x} . . . {x}

...
...

...
...

...
{x} {x} {x} . . . {x}


=



A
A
...
A
A
{x}

...
{x}


Shifting the first additional row of singletons in the top block, we will obtain the family
of adversaries from Υm,k,x with a single singleton in the first k + 1 positions. It should
be now clear that we may iterate this process to derive Am eventually via some term f ′

which is a superposition of f and projections and is therefore also a polymorphism of
A.

Remark 56. An extended analysis of our proof should convince the careful reader that
we may in the same fashion prove retroactive composition (the polymorphism’s action
is determined for a row independently of the others). Thus, appealing to the previous
section is not essential, though it does allow for a simpler argument.

Proposition 43. Let x be a constant in A. The following are equivalent:

(i) A is collapsible from {x}.
(ii) A has a Hubie polymorphism.

Proof. Lemma 42 shows that (ii) implies collapsibility. We prove the converse.
Assume p-collapsibility. By Fact 30, we may apply Theorem 36. For m = p+ 1, item

(v) of this theorem states that there is a polymorphism f witnessing that Ap+1 E Υp+1,p,x

(diagrammatically, we may draw a similar picture to the one we drew at the beginning
of the previous proof). Clearly, f satisfies (ii).

Theorem 44. (p-Collapsibility from a singleton source). Let x be a constant in
A. The following are equivalent:

42



From complexity to algebra and back Carvalho, Madelaine and Martin

(i) A is p-collapsible from {x}.
(ii) For every m ≥ 1, the full adversary Am is reactively composable from Υm,p,x.

(iii) A is Π2-p-collapsible from {x}.
(iv) For every m ≥ 1, Υm,p,x generates Am.

(v) A models ϕn,Υp+1,p,x,A (which implies that A admits a particularly well behaved
Hubie polymorphism with source x of arity (p+ 1)np).

Proof. Equivalence of the first four points appears in Corollary 39, as does the equivalence
with the statement : For every m ≥ 1, A models ϕn,Υm,p,x,A. So they imply trivially
the last point by selecting m = p+ 1.

We show that the last point implies the penultimate one. The proof principle is
similar to that of Chen’s Lemma. As we have argued similarly before, the last point
implies the existence of a polymorphism f . This polymorphism enjoys the following
property (each column represents in fact np coordinates of A):

f


{x} A A . . . A
A {x} A . . . A
...

. . .
...

A . . . A {x} A
A . . . A A {x}

 =


A
A
...
A
A

 = Ap+1

So arguing as in the proof of Chen’s Lemma, we may conclude similarly that for all m,
the full adversary Am is composable from Υm,p,x.

p-collapsibility for p > 0 from a conservative source
We expand on Remark 46.

Theorem 57 (p-Collapsibility from a conservative source). Let B be a subset of
the domain of a structure A. Assume further that A is B-conservative.

The following are equivalent:

(i) A is p-collapsible from B.

(ii) A models ϕn,Υp+1,p,B ,A (which implies that A admits a polymorphism f of arity
|B|(p+ 1)np that remains surjective when a position i is fixed to a suitable source
element bi in B, and that this polymorphism witnesses that Am is reactively
composable from Υm,p,B).

Proof. Just like the case of singleton source, almost all the proof follows directly from
Corollary 39 and similarly we shall only need to prove that the last point implies the
penultimate one via a bootstrapping argument.

As we have argued similarly before, the last point implies the existence of a polymor-
phism f . Let x1, x2, . . . , xb enumerate the elements of the source B. This polymorphism
enjoys the following property (each column represents in fact np coordinates of A):
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f


{x1} {x2} . . . {xb} A A . . . A . . . A A . . . A
A A . . . A {x1} {x2} . . . {xb} . . . A A . . . A
A A . . . A A A . . . A A A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
A A . . . A A A . . . A . . . {x1} {x2} . . . {xb}

 =


A
A
A

.

.

.
A

 = Ap

By conservativity, f(x1, x2 . . . xb, . . . , x1, x2 . . . xb) ∈ B and we may assume w.l.o.g. that
it is in fact equal to x1. So adding this line at the bottom of the above we may
obtain the tuple (Ap, x1) and (similarly for the other permutations of x1 within Ap) :

f


{x1} {x2} . . . {xb} A A . . . A . . . A A . . . A
A A . . . A {x1} {x2} . . . {xb} . . . A A . . . A
A A . . . A A A . . . A A A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
A A . . . A A A . . . A . . . {x1} {x2} . . . {xb}
{x1} {x2} . . . {xb} {x1} {x2} . . . {xb} . . . {x1} {x2} . . . {xb}

 =


A
A
A

.

.

.
A
{x1}


Now, we may recopy the above picture replacing in all columns with x1 at least one
of the two occurrences of x1 by A (we have all permutation of tuples of the form
(Ap, x1)). In particular, we may chose for the last line, the value x2. Assuming
w.l.o.g. that the image of the last line is x2 (by B-conservativity). We obtain that :

f


{x1} {x2} . . . {xb} A A . . . A . . . A A . . . A
A A . . . A {x1} {x2} . . . {xb} . . . A A . . . A
A A . . . A A A . . . A A A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
A A . . . A A A . . . A . . . {x1} {x2} . . . {xb}
{x2} {x2} . . . {xb} {x2} {x2} . . . {xb} . . . {x2} {x2} . . . {xb}

 =


A
A
A

.

.

.
A
{x2}


Iterating this trick, replacing this time the last occurrence of x1 and x2 (from our orig-
inal picture) by x3, we will obtain a value in B that differs from x1 and x2, say x3

w.l.o.g. Eventually, we show that Ap+2 may be generated from Υo+2,p,B. Iterating this
bootstrapping technique for higher arity, we show that for any m, the full adversary
Am may be generated from Υm,p,B.

Corollary 58. Given p ≥ 1, a structure A that is B-conservative, we may decide
whether A is p-collapsible from source B.

0-collapsibility (proofs were omitted fully from paper)

Theorem 47. Let B be a finite structure. The following are equivalent.

(i) B is 0-collapsible from source {x} for some x in B.

(ii) B admits a simple A-she.

(iii) B is 0-collapsible for sentences of positive equality free first-order logic from source
{x} for some x in B.

Proof. The last two points are equivalent [17, Theorem 8] (this result is stated with
A-she rather than simple A-she but clearly, A has an A-she iff it has a simple A-she).
The implication (ii) to (i) follows trivially.

We prove the implication (i) to (ii) by contraposition. Assume that A = [n] =
{1, . . . , n} and suppose that A has no simple A-she. We will prove that A does not admit
universal relativisation to x for pH-sentences. We assume also w.l.o.g. that x = 1. Let
Ξ be the set of simple A-shops ξ s.t. ξ(1) = [n]. Since each ξ is not a she of A, we have a
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quantifier-free formula with 2n−1 variables Rξ that consists of a single positive atom (not
all variables need appear explicitly in this atom) such that A |= Rξ(1, . . . , 1, 2, . . . , n)7,
but A |=/ Rξ(ξ1, . . . , ξn, ξ(2), . . . , ξ(n)) for some ξ1, . . . , ξn ∈ [n] = ξ(1).

This means that for each η : {2, . . . , n} → [n] there is some 2n− 1-ary “atom” Rη
such that A |= Rη(1, . . . , 1, 1, 2, . . . , n)8, but A |=/ Rη(ξ1, . . . , ξn, η(2), . . . , η(n)) for some
ξ1, . . . , ξn ∈ [n]. Let E = [n][n−1] denotes the set of ηs.

Suppose we had universal relativisation to 1. Then we know that

A |=
∧
η∈E

Rη(1, . . . , 1, 1, 2, . . . , n),

that is,

A |= ∃y1, . . . , yn
∧
η∈E

Rη(1, . . . , 1, y1, y2, . . . , yn).

According to relativisation this means also that

A |= ∃y1, . . . , yn∀x1, . . . , xn
∧
η∈E

Rη(x1, . . . , xn, y1, y2, . . . , yn).

But we know

A |= ∀y1, . . . , yn∃x1, . . . , xn
∨
η∈E

¬Rη(x1, . . . , xn, y1, y2, . . . , yn),

since the ηs range over all maps [n] to [n]. Contradiction.

Theorem 48. Let B be a structure. The following are equivalent.

(i) B is 0-collapsible from source C

(ii) B|C| is 0-collapsible from some (any) singleton source x which is a (rainbow)
|C|-tuple containing all elements of C.

Proof. Let B = {1, 2, . . . , b}.
• (downwards). Let x be |B|-tuple containing all elements of B, wlog x = (1, 2, . . . , b).

Let ϕ be a pH sentence. Assume that A|B| |= ϕ�(x,x,...,x). Equivalently, for any
i in B, A |= ϕ�(i,i,...,i). Thus, 0-collapsibility from source B implies that A |= ϕ.
Since A and its power satisfy the same pH-sentences[12, 18] we may conclude that
A|B| |= ϕ.

• (upwards). Assume that for any i in B, A |= ϕ�(i,i,...,i). Equivalently, A|B| |=
ϕ�(x,x,...,x) where x is any |B|-tuple containing all elements of B. By assumption,

A|B| |= ϕ and we may conclude that A |= ϕ.

7There are n ones.
8There are n ones.
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