Edinburgh Research Explorer

One Context Unification Problems Solvable in Polynomial Time

Citation for published version:

Gascon, A, Tiwari, A & Schaus, MS 2015, One Context Unification Problems Solvable in Polynomial Time.
in Logic in Computer Science (LICS), 2015 30th Annual ACM/IEEE Symposium on. Institute of Electrical
and Electronics Engineers (IEEE), pp. 499-510. https://doi.org/10.1109/LICS.2015.53

Digital Object Identifier (DOI):
10.1109/LICS.2015.53

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Logic in Computer Science (LICS), 2015 30th Annual ACM/IEEE Symposium on

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 19. Mar. 2024

https://doi.org/10.1109/LICS.2015.53
https://doi.org/10.1109/LICS.2015.53
https://www.research.ed.ac.uk/en/publications/b4407c05-42a5-4d95-ba95-63f45b2a6632

One Context Unification Problems Solvable in
Polynomial Time

Adria Gascén and Ashish Tiwari
SRI International, Menlo Park, USA

Abstract—One context unification extends first-order unifi-
cation by introducing a single context variable, possibly with
multiple occurrences. One context unification is known to be in
NP, but it is not known to be solvable in polynomial time. In
this paper, we present a polynomial time algorithm for certain
interesting classes of the one context unification problem. Our
algorithm is presented as an inference system that nontrivially
extends the usual inference rules for first-order unification. The
algorithm is of independent value as it can be used, with slight
modifications, to solve other problems, such as the first-order
unification problem that tolerates one clash.

I. INTRODUCTION

The problem of checking satisfiability of a set of equations
plays a central role in any mathematical science. From the
perspective of computer science, a lot of effort is devoted to
finding efficient decision procedures for different families of
equations. The problem of satisfiability of word equations, also
known as word unification, figures prominently as one of the
most intriguing problems of that form. The first algorithm
for that problem was given by Makanin [15]], and the best
known upper bound (PSPACE) is due to Plandowski [19].
On the other hand, its PSPACE-hardness is an open question.
Several particular cases of that problem, such as the ones that
result from fixing the number of variables in the equations
to a constant, have also been studied. For instance, efficient
algorithms for satisfiability of word equations with one [4],
[17], [11] and two [3]] variables have been discovered.

Another fundamental operation in symbolic computation
systems is the well-known first-order unification problem. This
problem consists of solving equations of the form s = ¢, where
s and t are terms with first-order variables. The goal is to
find a mapping from variables to (first-order) terms that would
make the terms s and ¢ syntactically equal. This problem was
firstly introduced as such in the work by J.A. Robinson, which
established the foundations of automated theorem proving
and logic programming. More concretely, Robinson presented
in [20] a procedure to determine the validity of a first-order
sentence that has term unification as its main ingredient. Later,
term unification was also used by Knuth and Bendix as a key
component of their critical pairs method to determine local
confluence of term rewrite systems (see [[L] for a general survey
on unification theory). The syntactic unification and matching
problems were deeply investigated in the last century. Among
other results, linear time algorithms were discovered [16], [18].
Moreover, more expressive variants of term unification such as
unification modulo theories have also drawn a lot of attention.

Manfred Schmidt-Schauss
Goethe-Universitit, Frankfurt, Germany

In this notion of term unification, equality between terms
is interpreted under equational theories such as associativity,
commutativity, and distributivity, among others [1].

An interesting connection between word and term unification
is the context unification problem. In context unification, the
terms s,t in the equation s = ¢ may contain context variables.
For example, consider the equation F'(f(z,b)) = f(a, F(y)).
where z,y are first-order variables ranging over terms and F
is a context variable that can be replaced by any context. One
of the possible solutions of this instance is the substitution
{F — f(a,®),z — a,y +— b}. Note that when we instantiate
F by f(a,e) in the equation, replacing the occurrence of e
by the argument of F' in each of its occurrences, we get
fla, f(z,b)) = f(a, f(a,y)), and thus both sides of the
equations become equal after applying {x — a,y — b}.
Note that, simply using a unary signature, word unification
reduces to context unification. On the other hand, context
unification is a particular case of second-order unification,
which is undecidable [9]. The decidability of context unification
remained open for a long time, until recently a PSPACE
algorithm was presented by Jez [12].

Several variants of context unification with decision proce-
dures in NP, such as stratified context unification and well-
nested context unification, have been considered. Such variants
have applications in computational linguistics and unification
up to several positions [13], [5], [14]. Furthermore the variant
of context unification where one of the sides of the equation is
ground, called context matching, has also been investigated [21]],
[6] and, although the problem is in general NP-hard, polynomial
time algorithms are known for some cases. In this paper we
revisit the particular case of context unification where only
one context variable, possibly with many occurrences, occurs
in the input equations. This problem is known as one context
unification (1-CU). In [7]], a non-deterministic polynomial
time algorithm for 1-CU was presented. That result has later
been extended [2] also to the case where the input terms are
represented with Singleton Tree Grammars, a grammar-based
compression mechanism more general than Directed Acyclic
Graphs. On the other hand, 1-CU is not known to be NP-hard
nor solvable in polynomial time. This gap motivates the work
described in this paper. We also remark here that initial interest
in one context unification came from interprocedural program
analysis [10], where context variables are used to represent
(the yet unknown) summaries of procedures. In particular, one
context unification problems (over uninterpreted terms) arise

when analyzing programs using an abstract domain consisting
of (uninterpreted) terms.

A. Related Work

A non-deterministic polynomial time procedure for one
context unification was presented in [[7]. There are instances
where that algorithm provably takes exponential worst-case
running time. For example, let s be f(xzo,x0) and let "
be the term recursively defined as f(f(z,,z,),t" 1) for
n > 0, and t = f(a,b). Consider the 1-CU instance
{F(a) = s,F(b) = t"}, where z1,...,x, are pairwise
different first-order variables and F' is a the context variable.
This instance has an exponential number of solutions, and [7]]
will take exponential time. However, our algorithm solves this
class of problems in polynomial time.

This paper extends the results of [7] by providing polynomial
time solutions to several interesting classes of the one context
unification problem such as, classes containing left- and right-
ground instances, a class containing disjoint first-order variables
on the two sides, and a class containing a constant number
of equations. In fact, we do not have a class of examples for
which our procedure takes exponential time.

Our algorithm can actually be seen as following a “divide and
conquer” paradigm and it relies on polynomial time algorithms
for some base cases. One of the most important base cases
are instances of the form {F(ry) = s, F(ry) = t}, where the
context variable F' does not occur in neither r; nor ro. We
call this the 2-restricted 1-CU problem. The algorithm for this
case is presented in a companion paper [8], and while there is
some overlap in the technical development with [8], the results
here are disjoint from the result in [8] and they non-trivially
build upon them. It was infeasible to coherently include the
results in [8] in this paper.

II. PRELIMINARIES

We assume a fixed ranked alphabet F and a set of variables
X containing first-order variables and exactly one context
variable. We denote the context variable by F and first-
order variables by x with possible subindexes. Our algorithm
introduces fresh first-order variables from a set), which we
denote by y with possible subindexes. We denote X U) as
V and use z to denote variables in V. We will argue about
terms in 7 (F,X), T(F,V) and T(F,X) U Y, and contexts
in C(F,X), C(F,V) and C(F,X)U).

With < we denote the prefix relation among positions and
with < the subterm relation among terms. We also define, for
aterm t = a(ty,...,t,), topsymbol(t) = a.

In this work, we deal with multiequations on terms, de-
noted by m with possible subindexes. Given a multiequation
m=(t1 =... =t,), we call the set |J; {t;} the rop terms
of m, denoted topterms(m). Similarly, for a multiset A of
multiequations, topterms(A) denotes | J,,. A (topterms(m)).
Similarly, topvars(m) = topterms(m) N V. We also
extend topsymbols from terms to multiequations as
topsymbols(m) = U,eqopserns(m) (tOPSymbols(t)). By [A|
we denote the number of multiequations in A. Moreover, we

consider our multiequations to be ordered and use m[i] to refer
to t;, for every i € {1,...,n}.

A substitution, denoted by 0,6, 7, is a total function o :
YV — T(F,V)UC(F,V) such that ac € T(F,V) if a is a
first-order variable and ao € C(F,V) if « is a context variable.

The domain of a substitution o, denoted dom(o), is defined
as usual, i.e. dom(c) = {z € V | zo # z}. The composition
of o and 0, denoted 6 o o, is defined as {a — aof | a €
dom(c) U dom(6)}.

For substitutions 0,0, o = 6 holds if Vz € Y : zo0 = 26.
Moreover, o is more general than 6, denoted o < 6, if there
exists 7 such that 0 = 6 on.

Substitutions are extended to be mappings from terms to
terms, ie. o : T(F,V) — T(F,V), as g(t1,...,tp)0 =
g(t10,...,tyo) and F(t)o = Fo(to). In addition, substitu-
tions are also extended, in a similar way, to be mappings
from contexts to contexts, i.e. o : C(F,V) — C(F,V). We
also define mo = (t;0 = ... = t,0), for a multiequation

m= (t1 = ... = tn), Ao = lY,,ca(mo), for a multiset of
multiequations A, and Lo = (t10,...,t,0), for a list of terms
L={(t1,... ty).

A unifier of two terms s, is a substitution o such that
so = to. A unifier does not always exist. We capture that
situation by simply saying that the unifier of s and ¢ is L.
We define the most general unifier of terms s and ¢, denoted
mgu(s = t), as any substitution o such that, for every unifier
0 of s and t, o < 6 holds. If such substitution does not exist
we say that mgu(s = t) is not defined, denoted mgu(s =
t) = L. In an abuse of notation, we assume that to = L
for every term ¢ if o = | and extend the definitions for the
application of a substitution on a term, multiequation, multiset
of multiequations, and list of terms accordingly. Moreover, mgu
is extended to multiequations in the natural way.

Although 1-CU is defined as a set of equations over terms
in T(F,X), we can always transform an 1-CU instance (by
several applications of the usual decomposition operation) to the
following more restricted definition without loss of generality.

Definition II.1 (1-CU). An instance Z of the 1-CU problem is
a set of equations {F(s1) = t1,...,F(sn) = t,}, where
Vi € {1,...,n} : topsymbol(t;) # F. A solution of
T is a substitution o such that F(s;)o = t;0, for every
ie{l,...,n}

Definition I1.2 (size). Let Z be a 1-CU instance. The size of
Z, denoted ||Z||, is defined as the sum of the sizes of the terms
in the equations of Z.

We assume the DAG representation for terms and hence the
size ||Z]|| is just the number of nodes in the DAG representing
all terms in Z. In the sequel, we assume this measure for 1-CU
instances and hence we do not state it explicitly every time we
refer to a polynomial time algorithm. Moreover, when we state
that a unification problem can be solved in polynomial time,
we refer to both its decisional version (deciding unifiability)
and functional version (finding a unifier).

Decompose

{ } State2

Decompose

{ } State22

Shrink l

{ } State221

Decompose and Shrink alternate and repeat in the main branch

v
Nodes terminated State0

immediately by calls

to special procedures
N v,

State2

State22
Main branch of
search tree

State21

Fig. 1. Visualizing the Procedure

III. OVERVIEW OF THE PROCEDURE

In this section, we present a very high-level overview of our
procedure for solving the one context unification problem.

Our procedure builds a search tree starting from an initial
state that encodes the input problem. We present inference
rules that can be used to generate child states from a parent
state. As shown in the illustration in Figure (1| (left), a state
can be decomposed to give a new state that encodes several
subproblems that together solve the original problem. Repeated
decomposition steps can yield larger and larger number of
subproblems. To keep the number of subproblems polynomially
bounded, we have shrink rules that eliminate some subproblems
and reduce the total number of subproblems contained in one
state (see Figure [I).

Some inference rules can potentially create multiple children
(as shown in Figure |1| right). However, in all such cases, there
will be exactly one child on which the inference rules are
recursively applied. All other children are solved by specialized
(polynomial-time) procedures immediately. This keeps the
complexity of our procedure in polynomial time.

There are two possible outcomes when calling a specialized
procedure. Either the specialized procedure is successful in
finding unifiers or it concludes there is no unifier (for the
subproblem). If the specialized procedure is successful, then
the whole search terminates. If not, the search continues along
the main branch.

IV. SPECIAL CASES

In this section we present particular cases of 1-CU that
can be solved in polynomial time. Our procedure relies on
these particular cases. In particular, these particular cases will
help in either shrinking the main branch of our search tree, or
immediately terminate the side branches of our search tree.

Claim IV.1 (Clash). Let Z be a 1-CU instance of the form
IT=T U{F(u1) = f(s1,.--,8m), F(uz) = g(t1, ..., tm)},

with f # g. Then, T can be solved in polynomial time and
every solution o satisfies Fo = |e].

Proof. The fact that every solution o must satisfy Fo = [e]
directly follows from f # g. Hence, this particular case reduces
to the first-order unification problem 7’ = Z{F — e}, which
can be solved in polynomial time w.r.t. ||Z]|. O

Every unifier for a 1-CU problem maps F' to some context
C'[e]. The position of the hole e in CJe] is called the hole
position of C' and denoted by hp(C'). A unifier o of a 1-
CU problem can be found immediately once we fix hp(Fo):
once hp(Fo) is fixed, a 1-CU problem reduces to a first-order
unification problem.

Next, consider another special case where we have one
equation that contains F' on both sides. This special case was
solved in a previous paper [7]. In the case of the equation
F(s) = C[F(t)], one of the key observations is that the hole
position of every context that is a solution for F' has to be a
prefix or exponentiation of hp(C').

Theorem IV.1 ([7]). Let Z be a 1-CU instance of the form
I =T U{F(s) = C[F(t)]}, where C is a non-empty context.
Then, I can be solved in polynomial time.

Finally, consider the case when we have equations F'(u1) =
s and F'(ug) = C[s] and C is nonempty.

Claim IV.2 (cyclic). Let Z be a 1-CU instance of the form
I =TU{F(u1) = s, F(uz2) = C[s]}, where C is a non-empty
context. Then, T can be solved in polynomial time.

Proof. Consider the instance Z" = Z U {F (uz) = C[F(u1)]}.
The lemma follows from the fact that Z and Z" have the same
set of solutions, ||Z”|| is polynomial w.r.t. ||Z||, and Z" can
be solved in polynomial time by Theorem [[V.I} O

V. INFERENCE RULES FOR ONE CONTEXT UNIFICATION

We present inference rules for solving the one context
unification problem in this section.

A. Defining the State

Our inference rules operate on states (configurations), which
are pairs of the form

(A L)

where A is a multiset of multiequations and L is a list of
terms. Given a 1-CU instance {F(s1) = t1,..., F(sp) =1tn},
the initial state of our algorithm is

<{{t1ﬁ...itn}},<51,...,3n>>

Our states preserve the invariant that each multiequation in A
has |L| top terms and the value |L| remains unchanged. Hence,
if we start with the above initial state, then for every state
(A, L) generated by our inference rules, we will have that
(a) |L| =n and

(b) the multiequations in A have n top terms.

In the sequel, especially in the section proving correctness of
our procedure, whenever we say state, we implicitly assume
that it satisfies (a) and (b).

Since A is a multiset, we fix the following convention:
whenever we refer to a multiequation m € A, we will mean
one specific element of A and not all the multiple occurrences
of the element m in A. We will later see that our inference
rules will guarantee that A always turns into a set, and it is a
multiset only in “transient” states.

B. Mapping State to 1-CU Instances

We will next formally define a mapping from states to 1-CU
instances. This mapping will help in stating the soundness and
completeness of the inference rules.

Definition V.1. Given a multiset of multiequations A and
m € A, we define the context unifier of m in A, denoted
cmgu(m, A) (or simply cmgu(m) when A is clear from the
context), as mgu(A\ {m}).

Similarly, let = mgu(m). We define Alz as (A\ {m})6.

An intermediate state (A, L) of our procedure spans |A]
1-CU instances.

Definition V.2. Let S = (A, (uq,...,u,)) be a state, let m €
A be a multiequation, and let 0 = cmgu(m). We define the
1-CU instance spanned by m in S, denoted P(m, S) (or simply
P(m) if S is clear from the context), as

where ml[i] denotes the i-th top term in the multiequation m.

Note that several copies of the same multiequation in A span
the same problem. Our Shrinking rules appropriately handle
such situation to avoid solving the same subproblem twice.

C. The ForcedDecompose Rule

A useful observation to understand our procedure is
that, given a solution ¢ to a 1-CU instance {F(s;) =
t1,...,F(sy) = tn}, hp(Fo) completely characterizes o.
Roughly speaking, to recover o from hp(Fo), it is enough
to (i) unify all terms in ¢1,...,t, at positions disjoint with
hp(Fo) and (ii) solve a first-order unification problem. Hence,
a procedure for 1-CU may proceed by guessing hp(Fo). Our
procedure builds on that idea by incrementally constructing
hp(Fo). However, the cases where a guess is unavoidable
are handled carefully to avoid considering exponentially many
cases.

Recall the decomposition rule for first-order unification
which replaces the equation f(s,t) = f(u,v) by two equations
s = w and t = v. Our algorithm uses a variant of this usual
term decomposition inference rule. This rule is applied on the
multiequations in A. Such decomposition leads to a multiset
of multiequations. For example, consider the following 1-CU
instance:

{F(s0) = fax, F(s1) = fuivi, ..., F(sn) = funv,}

where we have removed braces and written f(u1,v1) as fujv;.
As mentioned above, this 1-CU instance corresponds to the
following initial state of our algorithm:

So = ({fzx = furvr = ... = fusvn}, (S0, -, Sn))

Checking whether hp(F'o) = A (or, equivalently Fo = [e]) is
a solution reduces to first-order unification. If we can find a
solution o where F'o = [e], we are done. If not, then we should
consider the cases where |hp(Fo)| > 0. After decomposition,
we obtain the following state:

Si=(f{z=u1=...=up, =01 =... = vy}, (s0,-..

This state, according to Definition spans the following
two 1-CU instances:

D {F(soo1) = x0o1,F(s101) = wio1,...,F(spo1) =
Uno1, }, where o1 = mgu(z =v; =... =v,), and

2) {F(S()O'Q) = .’L'O'Q,F(SlO'Q) = ’1)10'2,...,F(8n0'2) =
UnO2, }, Where oo = mgu(z = uy = ... = uy).

Note that (1) corresponds to the cases where 1 < hp(Fo),
and (2) corresponds to the case where 2 < hp(Fo) and
hence our state does not miss any solution of the original
problem where |hp(F'o)| > 0. However, considering both cases
above and solving the corresponding subproblem separately
is not a good idea, since the algorithm may end up exploring
too many equivalent possibilities. In fact, this is one reason
for the exponential running time of the algorithm presented
in [7l], which is relevant the class of instances presented in the
introduction.

A possible alternative is to “delay” the computation and
application of the substitutions o; and o5 as much as possible.
But, we can not apply the usual decomposition rule on state S
since both multiequations in it have a variable z. So, how do
we make progress? Here we use our first key idea: we extend

»Sn))

the decomposition rule to allow minimal instantiation of = that
will allow us to progress (with decomposition steps).

Concretely, let us assume that the wu;’s and v;’s of our
1,2 1,2

example are of the forms w; = f(u;, ;) and v; = f(v;,v7).
In this case, note that o7 would have instantiated x by a
term of the form f(_,_) and oo would also have instantiated
x by a (possibly different) term of the same form. Hence,
we can keep both options open for z in the next state by
instantiating x in terms of fresh variables y1, ys. That is, we
apply a substitution of the form = — f(y1,y2), where f is
uniquely determined by A. This allows us to proceed with
decompose and avoiding committing to any one branch. We
call this inference rule the ForcedDecompose rule, and it is
shown in Figure [3] Unfortunately, the ForcedDecompose rule

adds new variables to our problem.

After applying the ForcedDecompose rule, we get the
following state in our example:

— -1 - 1
SQ—<{y1—u1—...—un,
-2 -2
Yo =uUj =...=u;,
LI R =1
yl—Ul—...—Un,
= 2 = = 2
ya=vi=...=0v.},

(so{lz = f(y1,v2)}, - sulz — f(y1,92)}))

Our approach consists of applying this lazy instantiation
followed by term decomposition (the ForcedDecompose rule),
but ensuring that, every time we apply this rule, we decrease the
measure |subterms(topterms(A))\)|, i.e. the total number
of terms occurring in the multiequations of A that are not fresh
variables. If we apply the ForcedDecompose rule arbitrarily,
then the above measure may not decrease. Even in regular
first-order unification, a decomposition step is not guaranteed
to remove some subterm from A.

Here we use our second key idea: instead of decomposing
arbitrarily any/all multiequations in A, we enforce that the
above measure decreases by decomposing only a non-empty
submultiset I' C A of multiequations at a time. The selected
submultiset T" satisfies that every term in topterms(T') is
maximal with respect to term inclusion in A. Note that
the same idea can be used in usual first-order unification:
by decomposing on maximal terms, one can guarantee that
those terms will get removed from A. A consequence of
this side condition in our ForcedDecompose rule is that the
variables in)} will never occur in the multiequations in A as
subterms of other terms, i.e., we will maintain the invariant
that topterms(A) C (T(X,X)U)).

We formally define the ForcedDecompose rule next. First,
let us recall a variant of the traditional term decomposition
rule for multiequations.

Definition V.3. Let A be a set of multiequations and let m =
f(shooo sty =...= f(sk, ... sF) be a multiequation in A
such that topvars(m) = () and topsymbols(m) = {f}, with
[=ar(f).
o By Decompose(m) we denote the multiset of multiequa-
tions Ui:1({311 =...=sk},

o by Decompose(A,m) denote A \ {m} U
Decompose(m), and

e Decompose is also extended to a submultiset of multi-
equations ' C A as Decompose(A,T) = (A\T) U
U,ner Decompose(m).

Definition V4. Let S = (A,L) be a state of the al-
gorithm, let T C A be a subset of multiequations such
that topsymbols(I') = {f}, and let Y be a set of first-
order variables disjoint with vars(S). Let {x1,...,z} be
topvars(T') and let o be Ul_,({z; = f(yi,... Yer(r)))
where y§ ey forie{l,...;k}and j €{1,...,ax(f)}

Then, ForcedDecompose(S,T',)) is defined as the state
((A\T) UDecompose(Ac,T'o), Lo).

we

Note that the substitution o is not applied to A\ " in the
definition of ForcedDecompose(S,I",)). This will not be a
problem, due to the conditions for the application of rule
ForcedDecompose; see Figure

D. The Shrinking Rules

If we only rely on decomposition, we will end up with ex-
ponentially many multiequations in A. To avoid this explosion,
we exhaustively apply a sequence of shrinking operations to A
before applying every decomposition step. Such shrinking rules
are shown in Figure [2] The shrinking rules simplify the current
state (A, L) of the algorithm by either completely solving one
of the problems spanned by (A, L) in polynomial time (rules
CycleOrClash and TwoNonVar), or applying substitutions that
preserve all solutions (rules InvEq, NoSol).

A crucial property of our algorithm (captured in
Lemma is that, if none of the shrinking rules can
be applied, then |A| is (bounded by) a polynomial function
of |subterms(topterms(A)) \ Y|. This fact, together with
the fact that every application of ForcedDecompose reduces
|subterms(topterms(A))\)| and the application of the other
rules does not increase that value, completes our termination
argument, by induction on |subterms(topterms(A))\ V.

We will now describe the shrinking inference rules. The first
three rules each remove a multiequation m from the multiset
A. The last rule will simplify the problem by applying a
substitution. If P(m) (Definition has no solution, then
we can delete m from A. In what cases can we easily deduce
that P(m) has no solution?

a) The NoSol inference rule: If A—{m} is not unifiable,
then it means that hole position of F' can not lie at (or below)
position corresponding to m. Hence, we can remove m. To
remove m, we have to unify m, apply the unifier to all other
multiequations in A and continue. This is captured in the NoSol
rule in Figure [2| which states that if there is a multiequation
m € A such that its context unifier (Definition [V.I)) is L, then
we can remove m from A and update A to Alz. Recall that
if 6 = mgu(m), then A|z is defined as (A \ {m})6.

b) The CycleOrClash inference rule: If the 1-CU in-
stance P(m) has two equations of the form F'(ui) = f(...)
and F(uz) = g(...) for some f # g, then we can easily
determine if P(m) has a solution using Claim Similarly,

if the 1-CU instance P(m) has two equations of the form
F(uy) = s and F(ug) = C|[s] for some nonempty context C,
then we can easily determine if P(m) has a solution using
Claim In both these cases, if P(m) has a solution, we
can terminate the search and report success. If P(m) has no
solution, then we can remove m from A. This process is
formalized in the CycleOrClash inference rule.

¢) The TwoNonVar inference rule: Let us assume that we
have access to an oracle that can solve problems P(m) that
have at most two different non-variable terms on the right-hand
side. The inference rule TwoNonVar uses this oracle to remove
such branches. This rule works in the same way as the rule
CycleOrClash.

d) The InvEq inference rule: Rather than removing
multiequations m from A, our last shrinking rule InvEq
removes variables from the state by applying substitutions

that can be deduced to hold in every branch of the search tree.

How to find such “globally” valid substitutions? We need a
few definitions for this purpose.

Definition V.5. Let A be a multiset of term multiequations.
Let A be the set obtained by marking each occurrence of a
multiequation m in A with a different marlﬂ The graph G(A)
is defined as the undirected graph that has topterms(A) U
A as the nodes and the relation {(s,m!) | m' € Al,s ¢
topterms(m)} as the edges.

Cycles in the graph G(A) are special: if terms s, ¢ liec on a
cycle, then every solution o of every problem P(m) should
unify s and ¢.

Definition V.6. Let A be a set of multiequations and let s,t €
topterms be distinct terms. We say that A induces the equality
s =t, denoted A |= (s =t), if s and t lie on some cycle in
G(A).

It follows directly from the definition above that equations
induced by A can be computed efficiently.

Lemma V.7. Given a multiset A of multiequations, terms
s,t € topterms such that A |= (s =t), if they exist, can be
Sound in polynomial time with respect to |Al.

If s =t is an induced equality, then every solution o of the
1-CU problem should make so = to, and hence, we can unify
s and t and apply the unifier to our state without losing any
solutions. This action is performed by the InvEq rule.

Note that all the shrinking rules rely on the application of a
most general unifier. Such unifier § does not necessarily always
exist and hence, by our convention mentioned in Section [}
in that case § = L and (A6, LA) = (L, 1). This allows to
simplify the presentation by having a single failing rule Fail
(Figure [3) while still making the failing cases explicit.

Remark V.8. If A has two copies of the same multiequation
m, say $1 = -+ = Sp, then we have A = (s1 = -+ = $p).
The InvEq can be used to unify all the s;’s in the state, and as
a result the problem P(m) has all right-hand side terms equal.

'If A has m twice in it, then the set A’ has two elements, say m!1, m!2.

The inference rule TwoNonVar can remove such m. Hence, if
the multiset A has multiple occurrences of m, it can get rid
of the copies and get converted to a set.

E. The algorithm

All our inference rules are presented in Figures 2] and B} To
obtain a polynomial time procedure, we will apply our inference
rules according to a particular strategy. Specifically, our strategy
gives priority to the shrinking rules over the ForcedDecompose
rule and thus can be described as sequences of rule application
of the form: (Shrink' - ForcedDecompose)' where Shrink
refers to (CycleOrClash | TwoNonVar | InvEq | NoSol).

Our procedure currently uses an oracle to solve some
subproblems. Assuming that the oracle runs in polynomial
time, to prove polynomial running time of our procedure, we
have to argue that

(a) all intermediate subproblems have polynomial size,

(b) every application of ForcedDecompose yields polynomi-
ally many subproblems, and

(c) the derivations in our algorithm have polynomial length.

Note that, roughly speaking, to prove (a) and (b) it suffices to
argue that every state (A, L) considered by our algorithm can
be represented in polynomial space. Regarding correctness, we
must argue that our rules neither miss solutions (completeness)
nor introduce new solutions (soundness).

FE Correctness

Let us first extend our definition of a solution of an 1-CU
instance to define solution of a state.

Definition V.9. Let (A L) be a state of our procedure. A
solution for (A, L) is a pair {(m,0), where m € A is a
multiequation such that P(m) # 1, and 0 is a solution for
P(m).

Lemma V.10. Let S = ({m’} U A,L) be a state of our
algorithm. S has a solution if and only if either P(m) has a
solution or (A|—, Lo) has a solution, where o = mgu(m).

Proof. This Lemma easily follows from Definition by
induction on |A|. Note that, for any solution (m’,6) with
m’ # m, mgu(m) < 0. Also note that if mgu(m) = L, then
(Alm, Loy = (L, 1) and (A|z#, Lo) has no solution. O

We denote an application of an inference rule using infix —
notation, possibly labeled with the name of the inference rule.
Correctness of rules CycleOrClash, TwoNonVar, and NoSol,
stated in the next two lemmas, is a direct consequence of the
previous lemma.

Lemma V.11. Let (A L) —,. (solve(Py,) | (A’ L'))) be an
inference step with r € {CycleOrClash, TwoNonVar}. Then,
(A,L) has a solution if and only if either P(m,A) has a
solution or (A’ L") has a solution.

Lemma V.12. Let (A, L) —yosor (A, L)) be an inference
step. Then, (A, L) has a solution if and only if (A’ L") has a
solution.

(A, L)

TuoNonVar: g reP(m)) | (AL, Lugu(m))
Im € A : |topnonvars(memgu(m))| < 2
CycleOrClash: (4, L)
YERERERRASE TSolve(P(m)) | (Alm, Lugu(m))
Im € A : P(m) satisfies the conditions of Lemma [[V.2| or Lemma [[V.]
: (A L) (o= _ -
InvEqQ: o, Lo) AE(s=t)and o =mgu(s =1t)
(A, L)
NoSol:
(Alm, Lmgu(m))
Im € A: cmgu(m) = L
Fig. 2. Shrinking rules of the 1-CU algorithm
F dD . (A=TUA L)
orcedheconpose: solve(P(m1)o) | ... | solve(P(ma|)o) | ForcedDecompose((A, L),T',))
|topsymbols(T')| = 1 and
every t € topterms(I') is maximal in A
w.r.t. term inclusion and o = {F — [e]}.
. (L, 1)
Fail: Fail

Fig. 3. Decomposition and failing rules of the 1-CU algorithm

Proof. Note that P(m) = L, where m € A is the multi-
equation that satisfies the condition for the application of

NoSol. O
Lemma V.13. Let (A, L) —ForcedDecompose
(solve(P(mq)o) | solve(P(ma))o) | (A, L))

be an inference step. Then, (A, L) has a solution {m,0) if
and only if either FO = |o] and the first-order unification
problem P(m)o has a solution or (A'; L") has a solution.

Proof. Note that, if (A,L) has a solution (m,#) then ei-
ther § maps F to [e] or it does not. The former case
is checked by solving the first-order unification problem
P(m)o = P(m){F +— [e]}, whereas the latter case implies
that (A’ L) has a solution, since the ForcedDecompose
operation simply decomposes some multiequations without
making any assumptions. For the other implication, note that the
ForcedDecompose operation is only defined if the top symbol
in all the non-variable terms in the decomposed multiequations
are the same, and hence this rule application does not introduce
new solutions. O

Lemma V.14. Let (A, L) —1nq (A', L)) be a derivation
in our algorithm. Then, (A, L) has a solution if and only if
(A’ L") has a solution.

Proof. The correctness of rule InvEq follows from Defini-
tion [V.6] and the fact that A = (s = t) holds for some state

S = (A, L) if and only if mgu(s,t) < 6, for any solution
(m, 0) of S. O

We conclude that each inference rule preserves unifiability.
We next show progress; that is, any derivation starting from an
initial state either terminates early (with success) or it reaches
a “terminal” state, if we apply the rules exhaustively. Proof of
the following lemma can be found in the appendix.

Lemma V.15. Let S = (A, L) be a state of our procedure
such that no rule can be applied to S. Then, A = (.

The correctness of the algorithm follows from the previous
lemmas.

Theorem V.16. The algorithm is correct regardless of the rule
application strategy.

Now we need to establish the procedures complexity. As
seen in the example of Section [[-A] a rule application strategy
is required to guarantee termination.

G. Runtime analysis

Henceforth we assume that our algorithm applies the rules
of Figures [2| and [3| according to the strategy (Shrink' -
ForcedDecompose)’, where Shrink is the collection of all
four shrinking rules. Let us remark that we assume that terms
are represented using a directed acyclic graphs (DAG). The
size of a DAG is defined as its number of nodes. We assume
that all the terms (including subterms) involved in our problem

(m)

(v)
-

N

Fig. 4. An example acyclic graph with an unbounded number of m-nodes
(red nodes), where each red node has two neighbours that can both reach
some f-node (blue node) (using light blue v-nodes).

are represented as nodes in a single DAG D. Without loss of
generality, we assume that D is minimal in size, and hence the
correspondence between terms and nodes is bijective. Hence,
We can then refer to nodes of D and subterms of the problem
as if they were the same thing. A crucial observation is that
the number of terms represented in DAG is preserved by
the application of substitutions resulting from the unification
of terms of the DAG. This is because application of such
substitutions can be achieved by manipulating only the edges
of the DAG, leaving its nodes untouched.

The only source of difficulty is that our procedure introduces
fresh variables from a set), and hence the DAG D will grow.
However, in this section we prove a bound on the size of D
that does not depend on the number of introduced variables.
In the rest of the paper we will not refer to D, We instead
prove that our algorithm is polynomial w.r.t. the total number
of different subterms occurring in the input Z, which is the
same as the size of the DAG representing 7.

The following property, mentioned in the previous sections,
is related to the previous observation about the DAG representa-
tion for terms: The algorithm does not increase the total number
of subterms in the multiequations of A that are not freshly
introduced variables from). Moreover, the ForcedDecompose
rule strictly reduces this measure. The maximality of I" in the
conditions for ForcedDecompose is crucial here.

Lemma V.17. Let (Ao, Lo) —* (Ag, L)
be a derivation starting from a valid initial
state. Then, |subterms(topterms(Ag) \ V)] <

|subterms(topterms(Ag) \ V)|. Moreover, if (Ao, Lo) —*
<Aka Lk> _>ForcedDecompose <Ak:+1a Lk+1>> is a derivation fFOI’)’l
a valid initial state, then, |subterms(topterms(Ag41))\V| <
|subterms(topterms(Ag)) \ V|

One of the key facts about our inference system is that
the cardinality of A in any state generated in a derivation
is polynomially bounded. The main part of the proof can be
explained as a puzzle: given n blue nodes, assume we have
to construct a bipartite graph by adding any number of red
nodes and any number of light blue nodes with the following
constraints: (a) the graph is acyclic, (b) all red nodes are in
one partition and the blue and light blue nodes are in the other
partition, and (c) each red node has 3 neighbours, and there
is a path from each neighbour to a blue node. The problem
is to find a bound on the maximum possible number of red
nodes that one can add. As part of the proof of the lemma
below, we prove a quadratic bound for the above puzzle. Note
that if each red node is required to have only 2 neighbours
(with the same property), then the number of red nodes can

Induction hypothesis

Induction hypothesis

Fig. 5. Proof of induction step: the node m in the middle is removed from
the graph to obtain at least two disjoint graphs shown in the left and right.

be unbounded, as demonstrated in the graph in Figure f]

Lemma V.18. Let (Ao, Lo) —* (Ag, Li) be a derivation start-
ing from a valid initial state. Then, |Ay| < |topterms(Ag) \
V|’maxarity.

Proof. We prove the lemma by induction on the length of
the derivation, taking into account the strategy (Shrink' -
ForcedDecompose)'. The lemma trivially holds for Ay, since
|Ag| = 1. Note that the property of the lemma is pre-
served by the application of the four shrinking rules, namely
CycleOrClash, TwoNonVar, InvEq and NoSol, since these
rules do not increase the size of A. Hence, it suffices
to show that, if (i) a state S = (Ag_1,Lr_1) satisfies
the condition of the lemma, (ii) the rules CycleOrClash,
TwoNonVar, InvEq and NoSol cannot be applied to .S,
and (111) S _>ForcedDecompose <Aka Lk>’ then ‘Ak| <
|subterms(topterms(Ag)) \ V|’maxarity.

Consider the graph G(A,_1) (Definition [V.3). Recall that the
nodes V of G(Ay_1) is the set AL, Utopterms(Ag_1). First
of all, note that G must be acyclic due to the non-applicability
of InvEq and hence it is a forest. Therefore, Ay _ is really a
set; that is, Aﬁc_l in Definition is the same as Ap_1. We
refer to the nodes in V' N Ay_1 as m-nodes, i.e. the nodes of
G that are multiequations and we refer to the nodes of G that
are non-variable terms as f-nodes.

Without loss of generality we assume that G is a tree.
We prove that the number M of m-nodes is bounded by
T2, where T is the number of f-nodes. (The following
argument is the solution to the above puzzle.) Note that
T = |topterms(Ak_1) \ V|. We use induction on M. For
base case, if M =1, then T' > 3 due to the non-applicability
of TwoNonVar, and hence M < T2 in this case.

For the inductive step, note that, again due to the non-
applicability of TwoNonVar, G must contain an f-node. Among
all the f-nodes, pick one, say vy, that has degree one: such
an f-node must exist, since if every f-node has degree atleast
2, then the graph will have a cycle (note that every m-node
has degree 3).

The f-node vy should have an edge to some m-node, say
V. If we remove all outgoing edges from v,,, we should get
atleast 3 disjoint trees (see illustration in Figure [5)) that contain
f-nodes (due to the non-applicability of TwoNonVar). One of
those trees contains just one node — the f-node v;. Assume
that we get [+ I’ other subtrees Gy, ...,Gy, Giiq, - -
and the first [contain f-nodes. (The number [is 2 in Figure 3]

Gy,

and !’ is 0.)

Let M; be the number of m-nodes in (7;, and let T; be the
number of f-nodes in G;, for all i. Note that My, =--- =
My =0 and Tj4q = --- = T4y = 0, and that the trees
Gi+;’s contain just one v-node each. Therefore, we have that
M=M+...M;+1and that T =T, +...7; + 1, where
the last one is for the node vy. Let us ignore the subtrees
Gl+1, ey Gl+l/~

By assumption, every G; contains an f-node, and fewer
than M m-nodes. We want to use the induction hypothesis,
but before we can do that we need to make sure each G;
satisfies our original constraint that every m-node has atleast
3 neighbours and that there is a path from each of those
neighbours to a different f-node. Removing node v,, may
cause violation of this property. This happens if v,, has an
edge to a v-node in G;. This is the case in the illustration in
Figure [5] for the subgraphs that are encircled. We treat that
v-node as an f-node and then apply induction hypothesis to
get M; < (T; + 1)? for all i. Thus, we now have

l
M o= O M)+1

INA
M-
=
+
=
+
+

= (O_T)+1)=> 21T, +1

i=1 J#k
= T?-) 2Ty +1
Gk
< TP-() 2)+1
i#k
= T?-l(l-1)+1 < T?

For the last step in the above derivation, note that [> 2 and
hence, I < I(I — 1) is always true.

Finally, note that the number of multiequations in S is
bounded by |[topterms(A_1)\Y|* and, since the application
of ForcedDecompose increases the number of multiequations
by at most a factor of maxarity we have that |Ag| <
|topterms(Ay) \ V|’maxarity. O

Every subproblem generated during a derivation will have
polynomial size.

Lemma V.19. Let (Ao, Lg) —* (A, Li) be a derivation
starting from a valid initial state. Then, for every multiequation
m € |Ag|, P(m) has polynomial size with respect to k.

Proof. The lemma follows from Lemma (stated and
proved in the appendix) and DefinitionV.2] and relies on the
DAG representation for terms. Note that, thanks to the DAG
representation, the terms in L; have polynomial size in k. [

Finally, our main result is the following, whose proof follows
from the previous lemmas and can be found in the appendix.

Theorem V.20. The I-CU problem is solvable in polynomial
time assuming a polynomial time oracle for 1-CU instances
with at most two non-variable terms in the right hand-side of
equations.

VI. ONE CONTEXT UNIFICATION PROBLEMS SOLVABLE IN
POLYNOMIAL TIME

The results in the previous section (Theorem [V.20] and
Lemmas and [[V.1) give us a reduction from the general
1-CU problem to the following restricted problem.

Definition VI.1. An I-CU instance I is called reduced if it is
of the form

{Fu;) =z |1 =1,2,... }U{F(vj;) =s|j=1,2,...}
U {Flwy) =t|k=1,2,...})

where s,t do not contain F; that is, the right hand-side of the
equations have at most two non-variable terms.

So far, we relied on an oracle to solve reduced instances. We
will present special classes of 1-CU problems whose reduced
instances can be solved in polynomial time. Certain reduced
instances could have only one or two “non-trivial” equations.
So, we first present results on solving 1-CU instances that have
exactly one or two equations. These will help in solving more
general reduced instances later.

A. One Equation 1-CU Problem

We prove that a single equation 1-CU problem can be effi-
ciently solved. If the equation is of the form F(s) = C[F(t)]
and C' is nonempty, then we can use Theorem to solve
it. Next, consider an equation of the form F(C[F(s)]) = t.
It has the nice property that the hole position of any context
that is a solution for F' can not be an extension of a nonlinear
positions in t. A position p is nonlinear in t if there exists
another position ¢ # p such that ¢|, = ¢|,. We also call ¢, a
nonlinear subterm of t.

Lemma VIL.2. Let Z be a I-CU instance consisting of one
single equation of the form F(C[F(s)]) = t such that F
does not occur in t (but F' can occur in C). Let P = {p €
pos(t) | t|, = v and v is a non-linear subterm of t}. Then,
Vp € P : hp(Fo) 2 p, for every solution o of F(C[F(s)]) =
t.

Proof. Let o be a solution contradicting the conditions of
the lemma, i.e. there is a term v occurring at two distinct
positions p and ¢ of ¢ such that hp(F'o) = p.p/, form some p'.
It follows that F'o = to[e], ., to[e], |4 = vo and hence we
have vo = C[F(s)lc = Co[Fo(so)] = Colto[e], [so]] =
Coltole]y.p [s0]]|hp(c).q = V0|ap(c).q = vO, a contradiction.

O

There are only a (linear number of) linear positions in a
term. (In contrast, there can be exponentially many nonlinear
positions in a term). It follows from Lemma that for the
equation F(C[F(s)]) = t, we only need to test the (small
number of) linear positions as possible hole positions. In fact,

we can enumerate a complete set of unifiers: a set of unifiers is
complete if any other unifier (for the problem) is an instance of
some unifier in the set. Here, a unifier is allowed to instantiate
a context variable F' in terms of a new context variable F”.

Lemma V1.3. Let T be a I-CU instance consisting of one
single equation of the form F(C[F(s)]) =t such that F does
not occur in t. Then, a complete set of unifiers U of T of
polynomial size can be computed in polynomial time. Any
substitution o in U satisfies one of the two conditions below:

1) Either Fo = t[e],, with p € pos(t),

2) Or o = {F = t[F'(e)ly, = = F'(CI[F'(s)]4])},
where x does not occur in F(C[F(s)]), t|q =, and F’
is a new context variable different from F.

Proof of the above lemma can be found in the appendix.
Using the special cases in Lemma and Theorem [[V.1] we
can now prove that the special case when we have only one
equation can be solved.

Claim VL1 (l-eqn). Let Z be a 1-CU instance consisting
of one single equation F(s) = t, where topsymbol(t) # F.
Then, T can be solved in polynomial time.

Proof. Note that the case where F' occurs in ¢t holds by
Theorem Note that the case where F' occurs in s holds
by the previous lemma. So, we are left with the case where
F does not occur in s or t. In this case, it is easy to see
that a unifier exists iff one exists where hp(F'o) € pos(t). To
determine existence of solutions where hp(F'o) € pos(t), we
just need to find a subterm of ¢ that unifies with s. Whereas
the total number of subterms of ¢ might be exponential due
to the DAG representation, the number of distinct subterms is
polynomial. Hence, we can simply check, in polynomial time,
all terms v € subterms(¢) that unify with s. O

B. Two Equation 1-CU Problem

We show that 1-CU problems consisting of exactly two
equations can be solved efficiently, but under a technical
condition. To motivate the technical condition, note that the
instance Z = {F(r1) = z, F(r2) = z} can encode an arbitrary
1-CU instance 7' = {F(s1) = t1,..., F(sn) = tn}, by having
r1 = C[F(s1),...,F(sy)] and ro = C[t1,...,ty]. So, two
equation case is as hard as an arbitrary number of equations.
However, if we are interested in solutions o so that hp(Fo) is
not below a position p where both right-hand side terms have
the same variable, then we can solve two equation problems.

First, consider two equations in which one has a nested
on one side.

Lemma VI4. Let T = {F(C[F(u)]) = s,F(v) = t} be
a I-CU instance such that s,t are non-variable terms not
containing F. If we are only interested in solutions o such that

not(3p,x : (sl = t[, = = and hp(Fo) > p)),

then such a solution o of I can be found in polynomial time.

10

Proof of the above lemma can be found in the appendix.
Note that the ignored solutions make s,¢ equal, but not all
solutions that make s, ¢ equal are ignored.

Using the previous result, we can now solve the two
equation case, but also when it is extended with some “variable
definitions”, under an extension of the same technical condition.

Claim VL2 (2-nonvar). Let Z be a 1-CU instance of the form
U, ({F(u;) = x;}) U{F(v1) = s, F(v2) = t} such that the
terms s,t, and uq, . . . ,u, do not contain F, and s,t,x1,...,x,
are pairwise different. If we are only interested in solutions o
such that

not(s,t do not contain any x;, and

vy or vy contains either ' or some x;, and
3Ip,x : (s|p =t|p, =z and hp(F'o) > p)),

then such a solution o for I can be found in polynomial time.

Proof. Note that, if some x; occurs in either s or t, it has to
occur properly, and the lemma follows from Lemma

Hence assume that s,¢ do not contain any z;. We define
the instance Z’ as the result of exhaustively replacing z; by
F(u;) everywhere. If there is a cycle and this replacement can
not be performed exhaustively, then Z' = L. Note that every
solution of Z’' can be easily extended to be a solution of Z,
that Z’ can be obtained from Z in polynomial time, and that
[|Z’|] is polynomial w.r.t. ||Z||. Moreover, Z' is either of the
form

1) 1, or

2) {F(v1) = s,F(va2) = t}, where vy,vs,s,t do not

contain F' or

3) {F(v1) = s,F(ve) =t}, where s,t do not contain F’

and either vy or vy contains F'.

In case 1 Z’ has no solutions. In case 2, Z' is a 2-restricted
1-CU instance that we have shown can be efficiently solve in a
companion paper [8]. Finally, case 3 follows from Lemma [V1.4]
while noting that the new technical condition maps to the
condition in that lemma. O

C. Disjoint Variables and Constant Number of Equations

Now that we have results for one and two equations, we next
present sufficient conditions for polynomial time solvability of
1-CU problem. In each case, we will show that we can solve
the corresponding reduced problems in polynomial time. Let
us fix the following notation for the rest of the section.

7z {F(s1) =t1,...,F(sp) =t,}

V1 = Set of all first-order variables in s1,..., S,
Vo = Set of all first-order variables in tq,...,t,
Ti = {u]| u=F'), si|, =wu for some i,p,u'}
T2 = {u | u=F'), til, = u for some i,p,u'}

Instance where T3 # () can be solved in polynomial time using
Theorem Hence, the proofs below will implicitly assume
T2 =0.

Theorem VLS. The class of 1-CU instances where T, = ()
and V1 N Vo = 0 is solvable in polynomial time.

Proof. (Sketch) Corresponding to any instance from this class,
the reduced instances generated will also belong to this class.
We solve reduced instances by unifying the left-hand sides
corresponding to equal right-hand sides, and applying the
unifier to the rest. Under the assumption that 7; = @, this
unifier will be a first-order substitution. Since V; NV, = (), the
right-hand side terms do not change. The simplified reduced
instance would be solved by either Theorem [IV.1] or using
Claim [VL] or using Claim [VI.2] See appendix for details. [

Theorem subsumes the V; = () case, for which the
best known algorithm is the NPtime procedure from [7]]. In
fact, we showed a family of examples from such a class in the
introduction that would cause the algorithm from [7]] to run
in worst-case exponential time, whereas Theorem would
solve it in polynomial time.

Due to the technical condition in Claim we could
miss certain solutions that make two left-hand side terms (or
equivalently, right-hand side terms) equal. But, if we have a
constant number of equations, then we could systematically
explore all possible combinations (of which left-hand sides are
equal and which not) to get a complete procedure.

Theorem VL.6. The class of 1-CU instances where T; = () and
the cardinality |Z| is assumed to be a constant k (independent
of the input problem size) is solvable in polynomial time.

Proof. For each possible equivalence relation ~ on Z, we do
the following: If F'(s) =t ~ F(s') = t', we (first-order)
unify ¢,¢ and s,s’ and apply the most-general unifier to all
the equations in Z. Let Z’ be the new instance. Note that the
number of equations in Z’ is equal to the number of equivalence
classes induced by ~. We then apply our inference rules on 7.
We need to show how to solve the reduced instances generated
from Z'. We use the following algorithm for this purpose: If the
reduced instance has two equations with identical right-hand
sides, then we return “no solution” (for that reduced instance).
If not, the reduced instance should have the form mentioned
in Claim and we solve it using Claim

We claim that Z has a solution iff for some ~, the procedure
above finds a solution. If the procedure above finds a solution,
then clearly Z has a solution. If 7 has a solution o, define ~
as follows: F(s) =t ~ F(s') =t if so = s'o. When we
use our procedure to solve instance 7’ generated from Z using
~, we are guaranteed to find a solution. This is because, while
Claim [VL2] can miss solutions, it never misses a solution that
makes all left-hand side terms (in Z”) different. O]

We can extend the previous result to allow 7; # ().

Corollary VL7. The class of I-CU instances where the
cardinality | T1|+|Z| is assumed to be a constant k (independent
of the input problem size) is solvable in polynomial time.

Proof. If T; # (), then we introduce new variables and get an
instance where 7; = (). Specifically, if u € 77, then we add

11

the equation u = x to the instance (where z is a new variable),
and replace u by = everywhere else. Applying this repeatedly,
we get an instance for which 77 = (), and now we can use
Theorem O

D. Left- and Right-Ground 1-CU Problems
Right-ground 1-CU instances can be efficiently solved.

Theorem VL.8. The class of 1-CU instances where Vo = () is
solvable in polynomial time.

Proof. If the instance has 2 equations, we solve it using
Claim Note that we do not miss any solutions due to the
technical condition. If the instance has 3 or more equations,
we use our inference rules. The procedure will not generate
any reduced instances to solve since all (> 3) right-hand side
terms are always ground (in any generated subproblem). [

The result in Theorem was already known [6]], but now
we can a new proof using our procedure. We can generalize
Theorem to a class that does not require all right-hand
sides terms to be ground, but just two of them.

Theorem VIL.9. Let T be a 1-CU instance of the form ' U
{F(s1) = s, F(s2) = t}, where s,t are distinct ground terms.
Then T can be solved in polynomial time.

Proof. Clearly, for every solution o, hp(Fo) € pos(s) N
pos(t). Hence, | = |hp(Fo)| is polynomial even when s and
t are DAGs. We now argue that, once [is fixed, there is
only one choice for hp(F'o), and thus also Fo. If [= 0 the
claim holds trivially. hence assume [> 0 and, without loss
of generality, let s = f(s1,s2) and t = f(t1,t2). Note that,
since s # t, i € {1,2} : t; # s; holds. Also note that,
if Vi € {1,2} : t; # s; holds then there is no solution of
length [. In the remaining case either sy = t; or sy = to,
say so = to. Then hp(Fo) = 1.hp(F’), Fo = t[F’'(e)];, and,
since |hp(F”)| < I the claim holds by induction hypothesis.
Since there are only polynomially many choices for hp(Fo),
we can enumerate them all and solve Z using polynomially
many calls to a first-order unification procedure. O

Left-ground 1-CU instances can also be efficiently solved.

Theorem VI.10. The class of 1-CU instances where V; =
T1 = 0 is solvable in polynomial time.

Proof. We apply our inference rules and use the following
algorithm to solve the generated reduced instances: If the
reduced instance has two equations with identical right-hand
sides, then we return “no solution” (for the reduced instance) if
the left-hand sides are not identical, and we delete one equation
from Z if the left-hand sides are identical. Let Z' be the new
reduced instance. Let F'(u) = x be an equation in Z'. If =
occurs in any other right-hand side term in Z’, then we use
Theorem Since V; = 0, x can not occur in left-hand
side terms. So, we can remove F(u) = x from Z'. Hence,
finally Z’ will have at most two equations. If Z’ has zero or
one equations, then we are done by Claim So, assume
T’ has exactly two equations, say F(v) = s and F(w) = t. If

v # w, we can use Claim (we will not miss any solutions
since v and w are ground and therefore they will be different
in all solutions.) If v = w, then we unify s and ¢ and solve
the resulting one equation. O

Finally, we generalize Theorem to remove the require-
ment 71 = (), and consider instances where only V; = (). Note
that the context matching problem matching with a constant
number of context variable was solved in polynomial time
in [6], but the class V; =) falls out of the class solved in [G].

Theorem VIL11. The class of 1-CU instances where Vi = ()
is solvable in polynomial time.

Proof. We follow along the lines of the proof of Theorem [VL.I0|
We now use the following algorithm to solve any generated
reduced instance, say of form given in Equation [T} If the
reduced instance Z' has two equations F'(u) = r and F(u') =
r with identical right-hand sides, then we use (first-order)
decomposition rule on u = u’ exhaustively to get a set of
equations, where each equation is of the form F(uy) = uo,
where F'(uq) € T; and us is a first-order ground term whose
top symbol is not F, but uy possibly contains F'. We add
these equations to the reduced instance and remove one of the
original equations, say F'(u) = r, from Z'. If us contains F,
then we can solve Z’ using Theorem Hence, assume the
first-order ground term wo does not contain F'.

Let Z” denote the reduced instance we get after we have
processed all repeated right-hand side equations as above. Let
F(u) = x be an equation in Z"”. If x occurs in any other
right-hand side term in Z”, then we use Theorem Since
Vi = 0, x can not occur in left-hand side terms. So, we can
remove F(u) = z from Z” without changing its solvability.
Hence, finally Z” will have the form:

F(v) =s, Fw) =t,F(uy) =u},...,F(ux) = u)

where s,t¢ are the non-variable terms in the original reduced
instance, and the last k equations are generated from unification
of left-hand sides. The terms uf, ...,) are all ground. We
can assume all u; are distinct, otherwise we could just repeat
the above process.

If k£ > 2, we are done by Theorem

If £ = 0, then we solve using Claim but to overcome
the incompleteness there, we additionally solve the instance
I obtained by unifying s and ¢, and then adding equations
obtained by decomposing v = w. The instance Z"”’ has at most
one non-ground right-hand side. If it has two or more distinct
ground right-hand sides, then again we can use Theorem
If it has exactly one ground right-hand side, and one non-
ground, then we Claim again, and this time, the instance
we need to solve to overcome the incompleteness there, will
have only ground right-hand sides (for which we can use either
Theorem or Claim [VLI).

If £ = 1, then we have 3 equations, where one has a ground
right-hand side. We use our inference system on these three
equations to obtain new reduced instances. Each new reduced
instance has 3 equations: one has a variable on the right, one

12

has a ground term, and the third can have an arbitrary first-
order term. We can again remove the equation with a variable
on the right and get instances like in case £ = 0 above. [

E. The General 1-CU Problem

We can actually use our procedure to solve the general
1-CU problem in stages as follows: (a) first we reduce an
instance Z to polynomially many reduced instances Z, . .., Zy,
(b) for each reduced instance Z;, we unify left-hand sides
that have equal right-hand sides, apply the substitution and
obtain new reduced instances Z,...,Z;, and (c) finally we
apply our procedure recursively on each new reduced instance.
We conjecture that this procedure yields a polynomial time
algorithm for the general 1-CU problem.

VII. CONCLUSION

We presented an inference system for solving the one context
unification problem. We proved that the inference system yields
a polynomial time algorithm for several classes of one context
unification problems. The inference system itself has many
interesting features: the proof search continues along one main
branch, while the side branches are immediately terminated
using polynomial time procedures. The main branch itself can
generate a large number of subproblems, but their number is
bounded using an interesting graph argument, which could be
of independent interest.

REFERENCES
[1] Franz Baader and Wayne Snyder. Unification theory. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 445-532. Elsevier and MIT Press,
2001.
Carles Creus, Adria Gascon, and Guillem Godoy. One-context Unification
with STG-Compressed Terms is in NP. In RTA, pages 149-164, 2012.
Robert Dabrowski and Wojciech Plandowski. Solving two-variable word
equations (extended abstract). In Automata, Languages and Programming:
31st International Colloquium, ICALP 2004, Turku, Finland, July 12-16,
2004. Proceedings, pages 408-419, 2004.
Robert Dabrowski and Wojciech Plandowski. On word equations in one
variable. Algorithmica, 60(4):819-828, 2011.
Katrin Erk and Joachim Niehren. Dominance constraints in stratified
context unification. Inf. Process. Lett., 101(4):141-147, 2007.
Adria Gascén, Guillem Godoy, and Manfred Schmidt-Schauf3. Context
Matching for Compressed Terms. In LICS, pages 93-102, 2008.
Adria Gascén, Guillem Godoy, Manfred Schmidt-Schaul3, and Ashish
Tiwari. Context Unification with One Context Variable. J. Symb. Comput.,
45(2):173-193, 2010.
Adria Gascon, Manfred Schmidt-Schauss, and Ashish Tiwari. One context
unification and fault-tolerant unification, 2015. http://www.csl.sri.com/
users/tiwari/1cu-2r.pdf.
Warren D. Goldfarb. The Undecidability of the Second-Order Unification
Problem. Theor. Comput. Sci., 13:225-230, 1981.
Sumit Gulwani and Ashish Tiwari. Computing procedure summaries for
interprocedural analysis. In 16th European Symposium on Programming
Languages and Systems, ESOP 2007, part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga,
Portugal, March 24 - April 1, 2007, pages 253-267, 2007.
Artur Jez. One-variable word equations in linear time. In Automata,
Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages 324-335,
2013.
Artur Jez. Context unification is in PSPACE. In Proc. ICALP 2014, Part
11, volume 8573 of Lecture Notes in Computer Science, pages 244-255.
Springer, 2014.

[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

(11]

[12]

http://www.csl.sri.com/users/tiwari/1cu-2r.pdf
http://www.csl.sri.com/users/tiwari/1cu-2r.pdf

[13] Jordi Levy, Joachim Niehren, and Mateu Villaret. Well-Nested Context
Unification. In 20th International Conference on Automated Deduction,
Tallinn, Estonia, July 22-27, 2005, Proceedings, pages 149-163, 2005.
Jordi Levy, Manfred Schmidt-Schauf}, and Mateu Villaret. On the
complexity of bounded second-order unification and stratified context
unification. Logic Journal of the IGPL, 19(6):763-789, 2011.

G. S. Makanin. On the decidability of the theory of free groups (in
russian). In Fundamentals of Computation Theory, FCT ’85, Cottbus,
GDR, September 9-13, 1985, pages 279-284, 1985.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm.
ACM Trans. Program. Lang. Syst., 4(2):258-282, 1982.

S. Eyono Obono, Pavel Goralcik, and M. N. Maksimenko. Efficient
solving of the word equations in one variable. In Mathematical
Foundations of Computer Science 1994, 19th International Symposium,
MFCS’94, Kosice, Slovakia, August 22 - 26, 1994, Proceedings, pages
336-341, 1994.

Mike Paterson and Mark N. Wegman. Linear unification. J. Comput.
Syst. Sci., 16(2):158-167, 1978.

Wojciech Plandowski. Satisfiability of word equations with constants is
in PSPACE. J. ACM, 51(3):483-496, 2004.

John Alan Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23-41, 1965.

Manfred Schmidt-Schauf} and Jiirgen Stuber. The complexity of linear and
stratified context matching problems. Theory Comput. Syst., 37(6):717—
740, 2004.

[14]

[15]

[16]

[17]

[18]

[19

[20]

[21]

APPENDIX

Lemma A.l. Ler (Ag,Lg) —* (Ag, L) be a derivation
starting from some valid initial state (corresponding to some
1-CU instance). Let T be subterms(topterms(Ay)\Y). The
possible substitutions applied to the state (A, Ly) by the
inference rules are of the forms

1) z—1t wherex e X, t €T,

2) y—t, wherey€ Y andt €T,

3) y1 > Y2, wWhere y1,y2 € Y, and

4 x> f(Y1,---,Ym), where x € X and y1,...,ym € V.
Moreover, subterms(topterms(A;) \ V) NY 0, ie.
the variables in) only occur at the top in the terms in
topterms(Ag).

Proof. The lemma follows by induction on the length of the
derivation, distinguishing cases according to the last applied
rule. The only non-trivial case is the ForcedDecompose rule,
where variables from) are introduced. This case follows
from the maximality of I" in the rule application, and the fact
ForcedDecompose((A, L), T',)) decomposes every instanti-
ated term, under the assumption that variables from) are
always instantiated in terms of variables from X'. O

Lemma A.2 (Lemma [V.15). Let S = (A, L) be a state of our
procedure such that no rule can be applied to S. Then, A = ().

Proof. We prove by contradiction. Assume that A is non-
empty and no rule can be applied to S. In particular, the
ForcedDecompose rule is not applicable. This can happen if
(i) either the (strict) subterm relation on topterms(A) is cyclic,
which caused failure to find an appropriate T,

(ii) or we could find an T', but |topsymbols(T')| # 1.

First assume that (i) holds. Then, there must be multi-
equations my,...,my in A, terms S, ..., s and contexts
Co, ..., Cy satisfying s; € m; and Cy[s;] € Mm% k41)s
for all ¢ € {0,...,k}. Note that mgu({my,...,ms}) = L.
This implies that A = {my, ..., my}, since otherwise NoSol

13

would be applicable. Moreover, for all i, mgu({mg,...,mg}\
{m;}) # L, again because NoSol is not applicable. Hence,
by Definition every 1-CU instance P(m;) contains two
equations of the form F(u) = s}, F(v) = C![s}] and hence
in particular P(my) satisfies the conditions of Lemma [IV.2}
This implies that the CycleOrClash rule is applicable, a
contradiction.

Now consider the case when (ii) holds. First assume that
|topsymbols(I')| = 0. In this case, for every multiequation
m in I' contains only variables and these variables do not
occur as subterms in other multiequations in A. Hence,
these variables are not instantiated by cmgu(m) and hence
topnonvars(mcmgu(m)) = 0. Hence, rule TwoNonVar is
applicable in this case, a contradiction.

Finally, assume that |[topsymbols(I')] > 1. Without
loss of generality, among all possible choices for I', pick
one that is of smallest cardinality. For such a I, if
|topsymbols(I')] > 1 and m € T, then it is also the
case that |topsymbols(mcmgu(m))| > 1. Thus, there is
multiequation m € A such that P(m) satisfies the conditions
of Lemma [[V.I] Hence, CycleOrClash is applicable, which
is a contradiction. O

Theorem A.3 (Theorem [V.20). The 1-CU problem is solvable
in polynomial time assuming a polynomial time oracle for
1-CU instances with at most two non-variable terms in the
right hand-side of equations.

Proof. Let 7 be a 1-CU instance and let (Ao, Lo) —*
(Ag, L) be its corresponding derivation in the our algo-
rithm. By Lemma |subterms(topterms(A;) \ V)| <
|subterms(topterms(Ag) \ V)| < ||Z|| for all . In other
words, the number of different non-variable subterms in the A;s
does not increase. By Lemma |A;| < |topterms(A;)\
V|maxarity, for all 4, and hence the size of the A;s is always
bounded by |subterms(topterms(Ag) \)V)|maxarity <
||Z||maxarity.

Note that an application of a shrinking rule either reduces
the number of multiequations in A; or unifies two terms
in topterms(A;), for i € {0,...,k}. It follows that a
sequence of applications of shrinking rules has length at most
n|subterms(topterms(Ag) \ V)|maxarity < |)|, where n
is the size of the multiequations in the A;s, i.e. the number of
equations in Z.

Finally, by Lemma every application of
ForcedDecompose reduces |subterms(topterms(4;)) \ V|
and hence every derivation contain at most ||Z|| application of
this rule, which gives a quadratic bound ||Z||’maxarity for
the length of any derivation. To conclude, note the rules can
be checked for applicability, applied, and the corresponding
spanned problems can be generated in polynomial time and
have polynomial size by Lemma [V.19] O

Lemma A4 (Lemma [VL3). Let Z be a I-CU instance
consisting of one single equation of the form F(C[F(s)]) =t
such that F does not occur in t. Then, a complete set of unifiers
U of T of polynomial size can be computed in polynomial time.

Any substitution o in U satisfies one of the two conditions
below:
1) Either Fo = t[e],, with p € pos(t),
2) Or o {F — t[F'(o)]ly, x — F'(CIt[F'(s)]4])}
where x does not occur in F(C[F(s)]), t|; =, and F’
is a new context variable different from F.

Proof. We distinguish two cases. First consider solutions o
satisfying that hp(Fo) € pos(t). By Lemma for each
of such solutions, hp(F'o) must be in the set Q = {p €
pos(t) | t|, = v and v is a linear subterm of t}. Note that
{F — t[e],} < 0. Since |Q)] is polynomial w.r.t. |¢| even in
the DAG representation, then U has a polynomial number of
solutions of this form. Now consider solutions ¢ such that
hp(Fo) ¢ pos(t). Let p = p;1.ps, where p; is the longest
prefix of p defined in ¢. Note that t|,, must be a variable
x linear in ¢ by Lemma Moreover, since o satisfies
x0l|p, = C[F(s)]o, does not occur in C[F(s)]. Hence, o
is of the form {F' — ¢t[D],,,z — DC[t[D(s)]p,]}, for an
arbitraty context D such that hp(D) = ps. Hence, all solutions
o such that hp(F'o) = ¢.q' and q.¢' & pos(t), with ¢ € @, can
be represented by a substitution § = {F > t[[F"(e)]]q,z —
F'(C[t[F'(s)]q])}, where t|, = , F' is a new context variable
different from F, since 6 < ¢ holds. O]

Lemma A.5 (Lemma [VI4). Let T = {F(C[F(u)))
s, F(v) =t} be a 1-CU instance such that s, t are non-variable
terms not containing F. If we are only interested in solutions
o such that

not(dp,x : (s|p, =t|, = x and hp(Fo) > p)),
then such a solution o of I can be found in polynomial time.

Proof. 1f either s or t is a constant, the lemma is straigh-
forward. Hence, assume that s and ¢ are both not constants.
By Lemma we can compute, in polynomial time, a
complete set of unifiers U = 64, ...,0; of the single equa-
tion F(C[F(u)]) = s of polynomial size. Moreover, every
substitution # € U satisfies one of the two conditions below:

1) Fo = s[e],, with p € pos(s), or

2) o0 ={F > s[F'(e)]y,x +— F'(C[s[F'(u)],])}, where z
does not occur in F(C[F(u)]), s|g = , and F” is a new
context variable different from F'.

Hence, to obtain a polynomial time algorithm, it is enough to
check if some substitution in U can be extended to solve also
the equation F'(v) = ¢, and thus Z. Consider the two cases of
a substitution 0 € U.
(1) If 6 is such that Fo = s[e],, then the check can clearly
be done in polynomial time, since F'(v)f = ¢6 is a first-order
unification instance of polynomial size thanks to the DAG
representation.
(2) Otherwise, 0 is of the form {F +— s[F'(e)];,z
F'(C[s[F'(u)]q])}, where s, = =z, we distinguish cases
depending on whether x occurs in ¢, and if so, where.

(1) First assume that x occurs in ¢ at a position p such that
either p < q or p > ¢. Since we are looking for solution o
where hp(Fo) > ¢, these cases can be rewritten into a form

14

that is covered by Theorem Note that since p # ¢, C in
Theorem is nonempty.

(ii) Assume that, for some p, t|, = x and p is disjoint with g.
In this case, every solution o that is an extension of 6 satisfies
that |Fo| > |Folqo| = |zo| = |F(C[F(u)])o| > |Fo|, a
contradiction. Hence we know that if = occurs in ¢ at a position
disjoint with ¢ there are no solutions that are extensions of
and thus there is no need to test 6.

(iii) Consider now the case where t|, = x. We are explicitly
not interested in these solutions.

(iv) Finally consider the case where = does not occur in ¢.
Then we have (F(v)0 = t0) = (F(v)0 =t) = s[F'(v0)], = t.
Note that, since s does not contain F', we can use a few (first-

order unification) Decompose steps to get a single equation
F'(v') =t that can be solved by Claim O

Theorem A.6 (Theorem [VLS). The class of 1-CU instances
where T{ = 0 and Vy NVy = () is solvable in polynomial time.

Proof. Corresponding to any instance from this class, the
reduced instances generated will also belong to this class.
Consider a reduced instance of form shown in Equation [T} We
unify the left-hand sides corresponding to equal right-hand
sides, and apply the unifier to the rest. Under the assumption
that 7; = 0, this unifier will be a first-order substitution.
Since V; NV, = (), the right-hand side terms do not change.
Thus, the simplified reduced instance would be of the form
{Fuj; =z1,...,Fuy, = zp, Fv = w, Fv' = w'}, where x;’s
are all different. If any x; occurs in w,w’, we are done by
Theorem If not, we can remove equations with z; on
right-hand side, and just solve {Fv = w, Fv' = w'} in two
steps: first, we unify w,w’ and v, v’ and get one equation and
solve it using Claim and if we do not find a solution to
that one equation, then we find a solution for the two equations
using Claim Note that (a) the first step (one equation)
guarantees that we do not miss any solutions that are missed
due to the technical condition in Claim and (b) it was
possible to do so because V; NV, = () and unifiers of terms
on one side do not instantiate the other side. O

	Introduction
	Related Work

	Preliminaries
	Overview of the Procedure
	Special Cases
	Inference Rules for One Context Unification
	Defining the State
	Mapping State to 1-CU Instances
	The ForcedDecompose Rule
	The Shrinking Rules
	The algorithm
	Correctness
	Runtime analysis

	One Context Unification Problems Solvable in Polynomial Time
	One Equation 1-CU Problem
	Two Equation 1-CU Problem
	Disjoint Variables and Constant Number of Equations
	Left- and Right-Ground 1-CU Problems
	The General 1-CU Problem

	Conclusion
	References
	Appendix

