
ar
X

iv
:1

50
1.

04
83

5v
1

 [
cs

.F
L

]
 2

0
Ja

n
20

15

Regularity Preserving but not Reflecting

Encodings

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Department of Computer Science

VU University Amsterdam

Abstract

Encodings, that is, injective functions from words to words, have been
studied extensively in several settings. In computability theory the notion
of encoding is crucial for defining computability on arbitrary domains, as
well as for comparing the power of models of computation. In language
theory much attention has been devoted to regularity preserving functions.

A natural question arising in these contexts is: Is there a bijective
encoding such that its image function preserves regularity of languages,
but its preimage function does not? Our main result answers this question
in the affirmative: For every countable class L of languages there exists a
bijective encoding f such that for every language L ∈ L its image f [L] is
regular.

Our construction of such encodings has several noteworthy conse-
quences. Firstly, anomalies arise when models of computation are com-
pared with respect to a known concept of implementation that is based on
encodings which are not required to be computable: Every countable de-
cision model can be implemented, in this sense, by finite-state automata,
even via bijective encodings. Hence deterministic finite-state automata
would be equally powerful as Turing-machine deciders.

A second consequence concerns the recognizability of sets of natural
numbers via number representations and finite automata. A set of num-
bers is said to be recognizable with respect to a representation if an au-
tomaton accepts the language of representations. Our result entails that
there exists a number representation with respect to which every recursive
set is recognizable.

1 Introduction

In order to define computability of number-theoretic functions through compu-
tational models that operate on strings of symbols from an alphabet Σ (rather
than defining computability directly via recursion schemes) one usually employs
(number) representations, that is, injective functions r : N → Σ∗. A function

1

http://arxiv.org/abs/1501.04835v1

f : N → N is called r-computable (computable by a Turing machine using repre-
sentation r) if there exists a Turing-computable function ϕ : Σ∗ → Σ∗ such that
ϕ◦ r = r ◦ f . For representations r that are informally computable (i.e., there is
a machine-implementable algorithm that always terminates, and computes r),
it can be argued on the basis of Church’s thesis (similar as e.g. in [20, p. 28])
that r-computability does not depend on the specific choice of r, and coincides
with partial recursiveness.

Shapiro [25] studied the influence that (unrestricted) bijective representa-
tions r have on the notion of r-computability. He found that the only functions
that are r-computable with respect to all bijective representations r are the al-
most constant and almost identity functions; and that there are functions that
are not r-computable for any representation r. Furthermore, he defines ‘accept-
able’ number representations: a bijective representation r is called ‘acceptable’
if the successor function lifted to the r-coded natural numbers is Turing com-
putable. He goes on to show that, a representation r is acceptable, if and only
if r-computability coincides with partial recursiveness.

In this paper we focus on the notion of computability by finite automata of
sets of natural numbers. In particular, we investigate how number representa-
tions determine the sets of natural numbers that are computable by finite-state
automata. Such sets are called ‘recognizable’: a set S ⊆ N is called r-recogniz-
able (recognizable with respect to representation r), if there is a finite automaton
that for all n ∈ N decides membership of n in S when r(n) is given to it as
input.

We are interested in comparing representations r with respect to their com-
putational power as embodied by the r-recognizable sets. This idea gives rise to
a hierarchy via a subsumption preorder between representations: r1 : N → A∗

subsumes r2 : N → B∗ if all r2-recognizable sets are also r1-recognizable. There
are several natural questions concerning this preorder; to name a few:

(i) When does a number representation subsume another?

(ii) Is the hierarchy proper: do there exist representations r1 and r2 such that
r1 subsumes r2, but not vice versa?

(iii) Is there a representation that subsumes all others?

(iv) Is every (injective) number representation subsumed by a bijective number
representation?

(v) What classes C ⊆ ℘(N) of sets of natural numbers are recognizable with
respect to a number representation?

As our computational devices are finite automata, all of these questions boil
down to problems in language theory. In particular the comparison of number
representations is intimately connected with encodings, injective mappings from
words to words, that have the property that their image function preserves
regularity of languages. For bijective number representations f : N → A∗ and

2

g : N → B∗, we have that f subsumes g if and only if the set function

(f ◦ g−1)[]

preserves regularity of languages; here we use the notation h[] to denote the im-
age function of a function h. Regularity preserving functions play an important
role in different areas of computer science, and have been studied extensively.
An important result in this area is the work [16, 14] of Pin and Silva, providing
a characterization of regularity preservation of preimage functions in terms of
uniformly continuous maps on the profinite topology.

A natural question that presents itself then is the following:

Are there bijective functions f : Σ∗ → Σ∗ whose image function
f [] preserves regularity of languages, but whose preimage function
f−1[] does not?

For bijective word functions we experienced this to be a very challenging ques-
tion, which to the best of our knowledge, has remained unanswered in the liter-
ature. Using the results of [16, 14], it can equivalently be formulated as follows:

Are there bijective functions f : Σ∗ → Σ∗ such that f is uniformly
continuous, but f−1 is not uniformly continuous in the profinite
topology?

Concerning recognizable sets and the hierarchy of number representations, the
question translates to:

Are there bijective number representations f and g such that f strictly
subsumes g?

If this were not the case, subsumption would imply equivalence for bijective
number representations, and the hierarchy would collapse.

Our main result (Theorem 8), which allows us to answer all of the above
questions, is the following:

Main Theorem. For every countable class L ⊆ ℘(Σ∗) of languages over a
finite alphabet Σ, and for every alphabet Γ with |Γ| ≥ 2, there exists a bijective
encoding f : Σ∗ → Γ∗ such that for every language L ∈ L its image f [L] is
regular.

With respect to computability theory and recognizable sets of natural num-
bers, this result can be restated as follows:

For every countable decision model M ⊆ ℘(N), there exists a bi-
jective representation f : N → Σ∗ such that every set M ∈ M is
f -recognizable.

3

As a direct consequence, when allowing for arbitrary bijective number represen-
tations, we find the unsought:

Finite automata are as strong as Turing-machine deciders. (E)

That is, there is a bijective representation such that finite automata can recog-
nize any computable set of natural numbers.

Our result also has consequences in the context of the work by Boker and
Dershowitz on comparing the power of computational models, as described be-
low. Models over different domains are typically compared with the help of
encodings that translate between different number representations. In order to
prevent encodings from changing the nature of the problem, they are usually
required to be ‘informally algorithmic’, ‘informally computable’, or ‘effective’
(see e.g. [20, p.27]). However, the latter concepts are rather vague, and in any
case non-mathematical. Therefore they are unsatisfactory from the viewpoint
of a rigorous conceptual analysis.

In the formal approach for comparing models of computation proposed by
Boker and Dershowitz in [3, 5, 4], encodings are merely required to be injective.
On the basis of this stipulation, a computational model M2 is defined to be ‘at
least as powerful as’ M1, denoted by M1 . M2, if there exists an encoding
ρ : Σ∗

1 → Σ∗
2 with the property that for every function f computed by M1 there

is a function g computed by M2 such that the following diagram commutes:

Σ∗
1 Σ∗

2

Σ∗
1 Σ∗

2

ρ

ρ

f ∈ M1 g ∈ M2
M1 .ρ M2

(In order to highlight the encoding used, M1 .ρ M2 is written.) Although
encodings are not required to be (informally) computable, this approach works
quite well in practice.

However, in analogy to what we found for recognizability, one runs into the
anomaly (E) again, namely when comparing the power of decision models with
the preorder .. Our main result implies C . DFA for every countable class of
decision problems C, where DFA denotes the class of deterministic finite-state
automata. Even stronger, it follows that there is a bijective encoding ρ such
that C .ρ DFA. As a consequence we obtain that TMD .ρ DFA holds for the
class TMD of Turing-machine deciders, and a bijective encoding ρ.

Further Related Work

For a general introduction to automata and regular languages we refer to [21, 8].
We briefly mention related work with respect to regularity preserving functions
apart from work [16, 14] of Pin and Silva that we have already discussed above.
The works [26, 9, 13, 22, 10, 23, 12] investigate regularity preserving relations;

4

in particular, [23] provides a characterization of prefix-removals that preserve
regularity. In [15], Pin and Sakarovitch study operations and transductions that
preserve regularity. In [11], Kozen gives a characterization of word functions over
a one-letter alphabet whose preimage function preserves regularity of languages.
The paper [2] by Berstel, Boasson, Carton, Petazzoni and Pin characterizes
language preserving ‘filters’; a filter is a set F ⊆ N used to delete letters from
words of the language as indexed by elements of the filter.

2 Preliminaries

We use standard terminology and notation, see, e.g., [1]. Let Σ be an alphabet,
i.e., a finite non-empty set of symbols. We denote by Σ∗ the set of all finite
words over Σ, and by ε the empty word. The set of infinite sequences over Σ is
ΣN = {σ | σ : N → Σ} with N = {0, 1, 2, . . .}, the set of natural numbers.

A deterministic finite-state automaton (DFA) is a tuple A = 〈Q,Σ, δ, q0, F 〉
consisting of a finite set of statesQ, an input alphabet Σ, a transition function δ :
Q × Σ → Q, an initial state q0 ∈ Q, and a set F ⊆ Q of accepting states. The
transition function δ is extended to δ∗ : Q× Σ∗ → Q by

δ∗(q, ε) = q δ∗(q, aw) = δ∗(δ(q, a), w) ,

for all states q ∈ Q, letters a ∈ Σ and words w ∈ Σ∗. We will write just δ for
δ∗. A word w ∈ Σ∗ is accepted by A if δ(q0, w), the state reached after reading
w, is an accepting state. We write Lang(A) for the language accepted by the
automaton A, i.e., Lang(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

A DFA with output (DFAO) is a tuple 〈Q,Σ, δ, q0,∆, λ〉, with the first four
components as in the definition of a DFA, but with, instead of a set of accepting
states, an output alphabet ∆, and an output function λ : Q → ∆. A DFAO
A = 〈Q,Σ, δ, q0,∆, λ〉 realizes a function mapping words over Σ to letters in ∆;
we denote this function also by A, that is, we define A : Σ∗ → ∆ by

A(w) = λ(δ(q0, w)) for all w ∈ Σ∗.

A DFA 〈Q,Σ, δ, q0, F 〉 can thus be viewed as a DFAO 〈Q,Σ, δ, q0, {0, 1}, χF 〉
where χF is the characteristic function of F ; instead of a state being accepting
or not, it has output 1 or 0 respectively.

Two automata A and A′ over the same input alphabet Σ are equivalent on
a set X ⊆ Σ∗ if A(x) = A′(x) for all x ∈ X. We use this functional notation
also for a DFA A, stipulating: A(x) = 1 (A(x) = 0) iff A accepts x (A does not
accept x).

A partition P of a set U is a family of sets P ⊆ ℘(U) such that ∅ 6∈ P ,
⋃

A∈P A = U , and for all A,B ∈ P with A 6= B, A ∩B = ∅.
The pigeon hole principle (PHP) states that if n pigeons are put into m

pigeonholes with n > m, then at least one pigeonhole contains more than one
pigeon. PHP for infinite sets is that if infinitely many pigeons are put into
finitely many holes, then one hole must contain infinitely many pigeons.

5

Let A, B, X , and Y be sets, with X ⊆ A and Y ⊆ B. For a function A → B
we write f [X] for the image of X under f , that is, f [X] = {f(x) | x ∈ X}.
Likewise, we write f−1[Y] for the preimage of Y under f , i.e., f−1[Y] = {x |
f(x) ∈ Y }.

A function F : ℘(Σ∗) → ℘(Γ∗) preserves regularity if F (L) is regular when-
ever L is a regular language.

3 Main Results

In this section, we prove our main results. We first work towards Theorem 8
stating that for every countable class L of languages there exists a bijective
encoding f : Σ∗ → Γ∗ such that f [L] is regular for every language L ∈ L. The
proof proceeds in two stages: we first prove the existence of injective encodings
(Lemma 2), and then strengthen this result to bijective functions (Lemma 6).
From Theorem 8 we then obtain the existence of bijective functions that are
regularity preserving but not regularity reflecting, Corollary 9.

For injective encodings f we cannot require the images f [L] to be regular;
instead we require f [L] to be recognizable among f [Σ∗]. This leads to the notion
of ‘relatively regular in’.

Definition 1. Let L,M ⊆ Σ∗ be formal languages over the alphabet Σ, with
L ⊆ M . Then L is relatively regular in M if there exists a regular language R
such that L = R ∩M .

So a regular language S ⊆ Σ∗ is relatively regular in Σ∗.

Lemma 2. Let Σ and Γ be finite alphabets, with |Γ| ≥ 2. Let L ⊆ ℘(Σ∗) be a
countable set of formal languages. There exists an injective function f : Σ∗ → Γ∗

such that for every L ∈ L, f [L] is relatively regular in f [Σ∗].

Proof. Let L1, L2, L3, . . . be an enumeration of L, and let v0, v1, v2, . . . be an
enumeration of Σ∗. For i ≥ 1, we write χi : Σ

∗ → {0, 1} for the characteristic
function of Li, that is,

χi(v) =

{

1 if v ∈ Li

0 otherwise
for all v ∈ Σ∗.

Without loss of generality we assume Γ = {0, 1, . . . , k − 1} for some k ≥ 2.
Define the function f : Σ∗ → Γ∗ by

f(vn) = χ1(vn)χ2(vn) · · · χn(vn) , for all n ∈ N.

For every i = 1, 2, . . ., we construct a DFAOAi and show that f [Li] = Lang(Ai)∩
f [Σ∗] witnessing that f [Li] is relatively regular in f [Σ∗], as required.

Fix an arbitrary integer i ≥ 1. Define Ai = 〈Q,Γ, δ, 0, λ〉 where Q =
{0, 1, . . . , i − 1} ∪ {i0, i1}, Γ = {0, 1, . . . , k − 1}, δ : Q × Γ → Q is defined

6

by

δ(q, a) = q + 1 for all q ∈ {0, 1, . . . , i− 2} and a ∈ Γ,

δ(i − 1, 0) = i0

δ(i− 1, a) = i1 for all a ∈ Γ \ {0},

δ(ij , a) = ij for all j ∈ {0, 1},

and λ : Q → Γ is defined, for all q ∈ {0, 1, . . . , i− 1}, by

λ(q) = χi(vq) λ(i0) = 0 λ(i1) = 1 .

The automaton Ai is depicted in Figure 1.

0/χi(v0) 1/χi(v1) 2/χi(v2) · · · i− 1/χi(vi−1)

i0/0 i1/1

Γ Γ Γ Γ

0 1,2,...,k−1

Γ Γ

Figure 1: The DFAO Ai used in Lemma 2. A transition labelled Γ stands for
transitions labelled a for every a ∈ Γ.

We show that f [Li] = Lang(Ai) ∩ f [Σ∗]; equivalently, for all v ∈ Σ∗,

v ∈ Li ⇐⇒ f(v) ∈ Lang(Ai) .

Let v ∈ Σ∗, so v = vn for some n ∈ N. Note that |f(vn)| = n. Hence, if n ≤ i,
the automaton Ai is in state n after having read the word f(vn) and outputs
χi(vn). If n ≥ i, then after having read f(vn), the automaton is in state ij ,
where j is the i-th letter of f(vn), that is, j = χi(vn). In both cases we get
vn ∈ Li if and only if f(vn) ∈ Lang(Ai).

For lifting the result of Lemma 2 from injective to bijective encodings, we
need some preliminary notions and results.

Definition 3. Let U be a set and I, C ⊆ U . The set C is attracted to I if C ⊆ I
whenever C ∩ I is finite. For a partition E of U , we say that E is attracted to
I, when, for every C ∈ E, C is attracted to I.

Equivalently, E is attracted to I if for every C ∈ E, if C \ I 6= ∅ then C ∩ I
is infinite.

Lemma 4. Let E = {C0, C1 . . . , Cn−1} be a finite partition of Σ∗ with Ci ⊆ Σ∗

a regular set for every i ∈ {0, 1, . . . , n − 1}. Let I ⊆ Σ∗ and assume that E is

7

attracted to I. For every DFA A there exists a DFA A′ such that A′ is equivalent
to A on I and the refined partition

E′ = {C′
i,j | i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1}}

is attracted to I, where, for i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1} ,

C′
i,j = Ci ∩ {u ∈ Σ∗ | A′(u) = j} .

Proof. We start with A′ = A, and repeatedly adapt A′ (and therewith E′) until
E′ is attracted to I, in such a way that equivalence with A is upheld.

Assume that E′ is not attracted to I. Then there exist i ∈ {0, 1, . . . , n− 1}
and j ∈ {0, 1} such that C′

i,j \ I 6= ∅ but C′
i,j ∩ I is finite. Without loss of

generality, assume that j = 0. Since Ci = C′
i,j ∪C′

i,1−j it follows that Ci \I 6= ∅

and hence Ci ∩ I is infinite by assumption. By the pigeonhole principle (for
infinite sets) it follows that C′

i,1∩I is infinite. Since Ci is a regular set and A′ is
a finite automaton, it follows that C′

i,0 is regular as it is the intersection of two
regular sets. As C′

i,0∩I is finite, also C′
i,0\I is regular. As a consequence we can

change the finite automaton A′ to accept the terms in C′
i,0 \ I (and otherwise

to behave as before). This adaptation preserves equivalence, and we now have
that C′

i,j is attracted to I for j = 0, 1, since, after the adaptation, C′
i,0∩I = C′

i,0

and C′
i,1 ∩ I is infinite. We repeat the procedure until C′

i,j is attracted to I for
every i ∈ {0, 1, . . . , n− 1} and j ∈ {0, 1} .

The following lemma, Lemma 6, is a key contribution of our paper. It states
that every injection f : A → Γ∗ (with A some countably infinite set) can be
transformed into a bijection g : A → Γ∗ such that, for all L ⊆ A, g[L] is a
regular language whenever f [L] is relatively regular in the image f [A]. Before
proving the lemma, we sketch the construction. We construct g as the limit of
a sequence of adaptations of f . Roughly speaking, we make f ‘more bijective’
in every step. We let

– v0, v1, v2, . . . be an enumeration of A, and

– w0, w1, w2, . . . be an enumeration of Γ∗.

Figure 2 sketches an injective function f ; an arrow from vi to wj indicates that
f(vi) = wj .

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .

Figure 2: Starting situation: the function f .

The idea is that we change the target of arrows such that all words wi for i ∈ N

become part of the image. For every natural number n = 0, 1, 2, . . . we will pick
(while avoiding repetitions) a word vkn

(for kn ∈ N) from the input domain and

8

then adapt f by stipulating vkn
7→ wn. Then, in the limit, every word w ∈ Γ∗

will be in the image. (In order for the limit of the adaptation to be a function,
we also need to guarantee that every vkn

will be picked precisely once.)
The crucial point of the construction is the following: when changing arrows,

we need to ensure that

(⋆) the limit of the process preserves relative regularity.

Note that for bijective functions g : A → Γ∗ we have that g[L] is relatively
regular in the image g[A] = Γ∗ if and only if g[L] is regular. Thus if we can
ensure (⋆), the resulting bijective function g will have the desired property.

How to pick the vkn
for ensuring (⋆)? Let A0, A1, A2, . . . be an enumeration

of all finite automata over the alphabet Γ. We write u ∼n v if for every i < n,
the automaton Ai accepts the word u if and only if it accepts the word v. We
then pick for every natural number n ∈ N, a word vkn

such that f(vkn
) ∼n wn

(and the word vkn
has not been picked before). In other words, we pick vkn

such that the first n automata A0, A1, . . . , An−1 cannot distinguish f(vkn
) from

the image wn after the adaptation vkn
7→ wn. This choice guarantees that

every automaton Ai (i ∈ N) is only affected by a finite number of adaptations,
namely the first i transformation steps. For every further adaptation (j > i), the
behavior of the automaton Ai is taken into account for the choice of vkj

, and as
a consequence the modification vkj

7→ wj preserves the acceptance behavior of
Ai. Then for the limit g of the adaptation process we have for almost all n ∈ N

that Ai accepts f(vn) if and only if Ai accepts g(vn). In order to guarantee that
every vi will be picked eventually and that the adaptation preserves injectivity,
we pick among the suitable candidates for vkn

the one which appears first in
the enumeration w0, w1,

Remark 5. There is a caveat here that we will ignore in this sketch of the
construction. We actually need to make sure that a word vkn

with these prop-
erties exist. To ensure this, the equivalence classes with respect to ∼n must be
attracted to the image of f . This is in general not the case, but we can employ
Lemma 4 to adapt the automata outside of the image of f . We refer to the
proof of Lemma 6 for the details.

We explain this process at the example of the function f given in Figure 2.
For the first step n = 0, we want to adapt f such that w0 becomes part of the
image of f . Note that the relation ∼0 relates all words of Γ∗. As a consequence
we can pick any word vk0

. We choose vk0
= v1 since the image f(v1) appears

first in the sequence w0, w1, . . ., and we adapt the function f by v1 7→ w0.

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .
0 1 1 0 1 0 0 1 0

Figure 3: Result of the first adaptation of the function f .

9

The result of this first adaptation is shown in Figure 3. For the second step
(n = 1) we want that w1 becomes part of the image. Now ∼1 relates words
that have equal behavior with respect to acceptance by the automaton A0. The
numbers 0 and 1 below the words wi in Figure 3 indicate whether A0 accepts the
word wi (1) or not (0). The word w1 is accepted by A0 and likewise are f(v2)
and f(v4). Among these candidates, we choose vk1

= v4 since f(v4) appears
first in the sequence w1, w2, We modify the function f by setting v4 7→ w1.

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .
01 10 10 01 11 00 00 10 01

Figure 4: Result of the second adaptation of the function f .

The result of the second adaptation is shown in Figure 4. Now n = 2 and
∼2 relates words that have equal acceptance behavior with respect to automata
A0 and A1. To this end, we now write A0(wi)A1(wi) below each word wi

in Figure 4. The word w2 is accepted by A0 but rejected by A1. The only
(displayed) candidate for vk2

exhibiting the same behavior is f(v2). The result
of this third adaptation is shown in Figure 5.

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .

Figure 5: Result of the third adaptation of the function f .

This process continues for every n ∈ N, and the limit of this process is
a bijective function g with the desired properties. The construction is made
precise in the proof of Lemma 6.

Lemma 6. Let A be a countably infinite set. For every injection f : A → Γ∗

there exists a bijection g : A → Γ∗ such that for all L ⊆ A, if f [L] is relatively
regular in the image f [A], then g[L] is a regular language.

Proof. Let f : A → Γ∗ be an injective function. Let

– v0, v1, v2, . . . be an enumeration of the set A, and let

– w0, w1, w2, . . . be an enumeration of the set Γ∗, and let

– A0, A1, A2, . . . be an enumeration of all finite-state automata over Γ.

We abstract away from the domain by defining c : N → Γ∗ by

c(i) = f(vi) for all i ∈ N.

10

In this proof, will construct a bijective function d : N → Γ∗ such that for all
S ⊆ N, if c[S] is relatively regular in the image c[N], then d[S] is a regular
language.

Then we can define the function g : A → Γ∗ by

g(wi) = d(i) for all i ∈ N.

The bijectivity of g follows immediately from bijectivity of d, and for every
L ⊆ A with f [L] is relatively regular in f [A], we have: let S ⊆ N such that
L = { vi | i ∈ S }, then c[S] = f(L) is relatively regular in c[N] = f [A], and
hence d[S] = g[L] is regular. As a consequence, it suffices to construct a function
d with the properties above.

For every n ∈ N we will define a finite-state automaton A′
n with properties

described below. For each n ∈ N, we define the equivalence relation∼n ⊆ Γ∗×Γ∗

by

u ∼n u′ ⇐⇒ ∀i ∈ {0, 1, . . . , n− 1}. A′
i(u) = A′

i(u
′) ,

for all u, u′ ∈ Γ∗. So ∼n relates words that are not distinguished by the automata
A′

0, A
′
1, . . . , A

′
n−1. The relation ∼n gives rise to a partition

En = { [u]∼n
| u ∈ Γ∗ }

where [u]∼n
= {u′ ∈ Γ∗ | u ∼n u′} is the equivalence class of u with respect to

∼n.
We are ready to carry out the central construction. We first describe what

objects we will define and their main properties. Then we give specifications
of these objects, and afterwards we show that the objects are well-defined and
that the properties hold.

We are going to define, by induction on n ∈ N,

(i) a natural number kn ∈ Kn , where

Kn = N \Kn Kn = {k0, k1, . . . , kn−1} ,

such that

c(kn) ∼n wn . (1)

(ii) a bijective map dn : N → In , where

In = c[Kn] ∪Wn Wn = {w0, w1, . . . , wn−1} ,

(iii) an automaton A′
n , such that

(a) ∀u ∈ In. An(u) = A′
n(u) , and

(b) En+1 is attracted to In+1.

11

We will now give specifications of (i)–(iii), and thereafter show that they are
well-defined, and satisfy the above mentioned properties.

(i) We define kn ∈ Kn as follows:

kn = c−1(min([wn]∼n
∩ c[Kn])) ,

where min denotes the minimum with respect to the order < on Γ∗ given
by the enumeration w0 < w1 < w2 < · · · .

(ii) The map dn : N → In is defined for all i ∈ N by

dn(i) =

{

wj if i = kj for some j ∈ {0, 1, . . . , n− 1} ,

c(i) if i ∈ Kn.

(iii) For A′
n we choose the automaton A′ guaranteed to exist by Lemma 4

where the lemma is invoked with A = An, I = In+1, and E = En.

We note that ∼0 = Γ∗ × Γ∗, and, by definition of ∼n, it follows that

En is finite and every C ∈ En is a regular language. (2)

We prove that (i)–(iii) are well-defined, and that the following properties
hold:

(a) c[Kn] ∩Wn = ∅ ,

(b) En is attracted to In,

(c) dn is a bijection, and

(d) kn is well-defined.

We first show that, for every n ∈ N, items (c) and (d) follow from (a) and (b).

(c) We show that dn : N → In is bijective. Surjectivity of dn is immediate
by definition of In. To show injectivity, assume there exist i1, i2 ∈ N such
that dn(i1) = dn(i2). From (a) and the definition of dn, it follows that
either i1, i2 ∈ Kn or i1, i2 ∈ Kn. If i1, i2 ∈ Kn, then there are j1, j2 ∈
{0, 1, . . . , n − 1} such that i1 = kj1 and i2 = kj2 . Then it follows that
wj1 = dn(i1) = dn(i2) = wj2 , which can only be in case if j1 = j2. Hence
i1 = kj1 = kj2 = i2. If i1, i2 ∈ Kn, then c(i1) = dn(i1) = dn(i2) = c(i2). By
injectivity of c we have i1 = i2.

(d) To see that kn is well-defined it suffices to show that [wn]∼n
∩ c[Kn] is

non-empty. By (b) we know that either |[wn]∼n
∩ In| = ∞, or [wn]∼n

⊆ In:

– For |[wn]∼n
∩ In| = ∞, it follows that |[wn]∼n

∩ c[Kn]| = ∞.

– For [wn]∼n
⊆ In, we get wn ∈ ([wn]∼n

∩ In). Since In = c[Kn] ∪Wn,
and wn /∈ Wn, (a) entails wn ∈ c[Kn], and hence [wn]∼n

∩ c[Kn] 6= ∅.

12

We note that, indeed, (1) follows by the choice of kn.

We now prove (a) and (b) by induction on n ∈ N. For the base case we have:

(a) c[K0] ∩W0 = ∅ since W0 = ∅, and

(b) E0 = {Γ∗} is attracted to I0 = c[N].

For the induction step, let n ∈ N be arbitrary. We assume c[Kn] ∩ Wn =
∅ and that En is attracted to In (induction hypothesis). We first prove the
implication

wn ∈ c[Kn] =⇒ wn = c(kn) . (3)

If wn ∈ c[Kn], also wn ∈ ([wn]∼n
∩ c[Kn]). Since c[Kn] ∩ Wn = ∅ by induc-

tion hypothesis, wn is the smallest element in [wn]∼n
∩ c[Kn]. Hence wn =

min([wn]∼n
∩ c[Kn]) and c(kn) = wn.

(a) By the induction hypothesis we have c[Kn] ∩ Wn = ∅, and so we have
c[Kn+1] ∩ Wn = ∅. To see that c[Kn+1] ∩ Wn+1 = ∅, it suffices to show
wn 6∈ c[Kn+1]. Assume, to derive a contradiction, that wn ∈ c[Kn+1].
Then also wn ∈ c[Kn]. Hence, by (3), we have wn = c(kn). This contradicts
wn ∈ c[Kn+1], since, by injectivity of c, we have c[Kn+1] = c[Kn]\{c(kn)} =
c[Kn] \ {wn}.

(b) We have to prove that En+1 is attracted to In+1. We first show that

En is attracted to In+1. (4)

By injectivity of c we have In+1 = c[Kn] \ {c(kn)} ∪Wn ∪ {wn}. Moreover,
since by induction hypothesis c[Kn]∩Wn = ∅, we have c[Kn]\{c(kn)}∪Wn∪
{wn} = (c[Kn]∪Wn)\ {c(kn)}∪{wn}. Hence In+1 = (In \ {c(kn)})∪{wn}.
Let C ∈ En be arbitrary. By induction hypothesis we know that C is
attracted to In; we distinguish the following two cases:

– If |C ∩ In| = ∞, then |C ∩ In+1| = ∞. Hence C is attracted to In+1.

– Assume C ⊆ In. If c(kn) 6∈ C, then clearly C ⊆ In+1. If c(kn) ∈ C,
then C = [wn]∼n

since c(kn) ∼n wn due to (1). From wn ∈ C ⊆ In,
we obtain wn ∈ c[Kn]. Hence, by (3) we have wn = c(kn) and so
In = In+1.

This concludes the proof of (4).

Recall that A′
n is the automaton A′ obtained by invoking Lemma 4 with

A = An, I = In+1, and E = En. Both requirements of the lemma are
established above, in (2) and (4), so the automaton A′

n is well-defined. Let,
moreover, E′ be the resulting partition obtained in the lemma. Lemma 4
guarantees that E′ is attracted to In+1. Moreover, by definition of En+1,
we have E′ = En+1. Hence En+1 is attracted to In+1.

13

We now establish that every natural number k will be picked as a kn even-
tually. That is, for every k ∈ N there exists n ∈ N such that kn = k. Let k ∈ N.
For every n ∈ N, the set c[Kn] is the image under c of all natural numbers that
have not yet been picked as a ki for 0 ≤ i ≤ n − 1. Since w0, w1, . . . is an
enumeration of Γ∗, there exists n ∈ N such that c(k) ∈ Wn. Hence k 6∈ Kn since
c[Kn] ∩Wn = ∅ by property (a). Thus k will be picked eventually.

We define the encoding d : N → Γ∗ by

d(i) = lim
n→∞

dn(i) (i ∈ N)

These limits are well-defined since, for every i ∈ N: there exists n ∈ N with
i = kn, and we have dm(i) = c(i) for all m ≤ n and dm(i) = wn for all m > n.

From the above, it follows that the function d has the following property:

d(kn) = wn for all n ∈ N . (5)

We now show that d is indeed a bijection. Since by construction, everyw0, w1, w2, . . .
occurs precisely once in the image of d, d is injective. Moreover, we have seen
above, that the set {k0, k, k2, . . .}, the domain of d, contains all natural numbers.
Hence d is a bijection.

Finally, we show that for all L ⊆ N, if c[L] is relatively regular in the image
c[N], then d[L] is a regular language. Let L ⊆ N be such that c[L] is relatively
regular in c[N]. Then there exists a regular languageR such that c[L] = R ∩ c[N].
Let m ∈ N be such that R = Lang(Am). Then for all n ∈ N,

n ∈ L ⇐⇒ c(n) ∈ Lang(Am) . (6)

By the above construction we have for all w ∈ Im

w ∈ Lang(A′
m) ⇐⇒ w ∈ Lang(Am) .

By definition, Im coincides with c[N] for all but finitely many words. Hence for
almost all n ∈ N

c(n) ∈ Lang(Am) ⇐⇒ c(n) ∈ Lang(A′
m) . (7)

By the definition of d, and property (1), we find:

d(kn) = wn ∼n c(kn) for all n ∈ N .

Due to ∼n ⊆ ∼m for every n ≥ m, we obtain that

d(kn) ∼m c(kn) for all n ≥ m,

and hence, since N = {kn : n ∈ N} holds, that

d(i) ∼m c(i) for almost all i ∈ N .

14

Hence for almost all n we have

d(n) ∈ Lang(A′
m) ⇐⇒ c(n) ∈ Lang(A′

m)

⇐⇒ c(n) ∈ Lang(Am) by (7)

⇐⇒ n ∈ L by (6).

As d is bijective, we obtain

w ∈ Lang(A′
m) ⇐⇒ w ∈ d(L)

for almost all w ∈ Γ∗. Hence d(L) differs only by finitely many elements from a
regular language and is consequently itself regular.

The following proposition states that, under certain conditions, the bijective
function g constructed in Lemma 6 is computable. Obviously, the injective
function f that is lifted to g must be computable to start with. Moreover,
we need to be able to decide for regular languages whether their intersection
with the image of f is empty, finite or infinite. This enables us, in case of
a finite intersection, to compute this intersection, and to decide whether the
equivalence classes En are attracted to the image of f (and In). This suffices to
ensure computability of g constructed in the proof of Lemma 6.

Proposition 7. Let A be a computable, countably infinite set and let f : A → Γ∗

be a computable injection such that for every regular language R (given by an
automaton), emptiness and finiteness of the set R ∩ f [Γ∗] is decidable. There
exists a computable bijection g : A → Γ∗ such that for all L ⊆ A, if f [L] is
relatively regular in the image f [A], then g[L] is a regular language.

Proof. By close inspection of the proofs of Lemmas 4 and 6 it can be estab-
lished that the construction of the encoding g from the encoding f preserves
computability under the stated conditions and by choosing computable enumer-
ations v0, v1, . . . and w0, w1, . . . of A and Γ∗, respectively.

We are ready to state our main result.

Theorem 8. Let Σ and Γ be finite alphabets, with |Γ| ≥ 2. Let L ⊆ ℘(Σ∗) be a
countable set of formal languages. There exists a bijective function g : Σ∗ → Γ∗

such that for every L ∈ L, the image g[L] is a regular language.

Proof. By Lemmas 2 and 6.

The following corollary justifies the title of this paper.

Corollary 9. There exists a computable bijective function f : Σ∗ → Γ∗ such
that the image function f [] is regularity preserving, but the preimage function
f−1[] is not.

15

Without the requirement on the function f to be computable, we could
prove the statement as follows: Let L ⊆ ℘(Σ∗) be the (countable) set of all
recursive languages over Σ. By Theorem 8 there exists a bijective mapping
f : Σ∗ → Γ∗ such that f [L] is regular for all L ∈ L. Then, clearly, f [] is
regularity preserving while f−1[] is not. However, the function f obtained in
this way is not computable. To obtain a computable function, we argue as
follows.

Proof of Corollary 9. Let Σ = {0, 1}. We define a ‘balancedness’ function b :
Σ∗ → Σ for all w ∈ Σ∗ by b(w) = 1 if the word w contains an equal number of
zeros and ones, and b(w) = 0 otherwise. Then we define f : Σ∗ → Σ∗ by

f(w) = b(w)w

for every w ∈ Σ∗. Then we have:

(i) For every regular language L ⊆ Σ∗, we have that f [L] is relatively regular
in f [Σ∗] (an automaton can simply ignore the first letter).

(ii) However, the function f−1[] is not preserving (relative) regularity. To see
this, let X = {w | b(w) = 1}. Clearly f−1[f [X]] = X is not regular. But
f [X] is relatively regular in f [Σ∗], since f [X] consists precisely of those
words in f [Σ∗] that start with letter 1.

We now invoke Proposition 7 for lifting f to a computable, bijective g. The
conditions of the proposition are satisfied since f is computable, and the image
f [Σ∗] of f is a context-free language. The intersection of context-free languages
with regular languages is context-free, and finiteness and emptiness are de-
cidable. The proposition guarantees the existence of a computable, bijective
function g : Σ∗ → Σ∗ such that for every L ⊆ Σ∗ that is relatively regular
in f [Σ∗] we have that g[L] is regular. Then by (i) we have that g[] preserves
regularity. From (ii) it follows that g[X] is regular while g−1[g(X)] = X is not.
Hence g−1[] does not preserve regularity.

We strengthen the statement of Corollary 9 by extending it to the preser-
vation of membership in countable classes of languages that include the regular
languages. For this, we use the following stipulation. For an arbitrary set S
of languages over A, we say that a function F : ℘(A∗) → ℘(B∗) preserves
membership in S if, for all languages over A, L ∈ S implies F (L) ∈ S.

Corollary 10. Let S ⊆ ℘(Σ∗) be a countable set of languages that includes the
regular languages. Then there exists a bijective function f : {0, 1}∗ → {0, 1}∗

such that f [] preserves membership in S, but f−1[] does not.

Proof. Let S ′ = S ∪ {X} where X is a language not in S. By Theorem 8 there
exists a bijective function f : Σ∗ → Γ∗ such that f [L] is regular for all L ∈ S ′.
Then, f [] preserves membership in S while f−1[]; note that f(X) is regular
and hence f(X) ∈ S, but f−1[f(X)] = X 6∈ S.

16

4 Consequences for Comparing

Models of Computation

It turns out that our main results have some remarkable consequences in the
context of comparing computational models using concepts proposed by Boker
and Dershowitz in a series of publications [3, 5, 4]. The authors summarize their
goal as follows:

“We seek a robust definition of relative power that does not it-
self depend on the notion of computability. It should allow one
to compare arbitrary models over arbitrary domains via a quasi-
ordering that successfully captures the intuitive concept of compu-
tational strength. [. . .]1” [5]

This motivation leads them to specific choices of simple and liberal conditions
on encodings. Encodings are typically used to translate between models of
computation that act on different domains. So an encoding ρ : D1 → D2

can facilitate the simulation of the input-output behavior of a machine M1

belonging to a model M1 with domain D1 by a machine M2 from a model M2

with domain D2 :

D1 D2

D1 D2

ρ

ρ

M1 M2

To prevent codings from participating too strongly in the simulation of a
computation on a machine M1 through a computation on a machine M2 (and
thereby from substantially alleviating, for the simulating machine M2, the task
that is solved by the simulated machine M1), codings are usually required to be
computable in some sense. Frequently, one of the following two restrictions are
stipulated (see for example Rogers’ classic book [20, p.27,28]):

(1) Codings must be ‘informally algorithmic’, ‘informally computable’, or ‘ef-
fective’ in the sense that they can be carried out by an in principle mech-
anizable procedure.

(2) Codings are required to be computable with respect to a specific model,
for example by a Turing machine.

Boker and Dershowitz reject such prevalent stipulations:

1This passage continues: “Eventually, we want to be able to prove statements like ‘analogue
machines are strictly more powerful than digital devices’, even though the two models operate
over domains of different cardinalities.”

17

“Effectivity is a useful notion; however, it is unsuitable as a gen-
eral power comparison notion. The first, informal approach is too
vague, while the second can add computational power when dealing
with subrecursive models and is inappropriate when dealing with
non-recursive models.” [4]

As a consequence, they go on to use classes of encodings that do not constrain
(at least not explicitly) the cost that is necessary to compute an encoding. In
particular, they define three concepts of comparison (see Definition 17 below)
that are, respectively, based on:2

(i) encodings (injective functions) without any additional requirement;

(ii) encodings that are ‘decent’ with respect to the simulating model M2 that
shoulders the simulation, in the sense that M2 is able to recognize the
image of the coding;

(iii) bijective encodings.

We will show that each of these concepts admits some quite counterintuitive
consequences. At first these anomalies pertain only to decision models, the
subclass of all models that only obtain ‘yes’/‘no’ as computation result. But it
turns out these phenomena apply also to more broad classes of models.

In order to formally state our results, we repeat here the basic definitions in
[5, 4], and extend them by straightforward adaptations for decision models.

By abstracting away from all intensional aspects of models of computation
that concern mechanistic aspects of stepwise computation processes, Boker and
Dershowitz define a model extensionally as an arbitrary set of (extensionally
represented) partial functions over some domain.

Definition 11 ([5, Def. 2.1]). A model of computation is a pair M = 〈D,F〉,
where D is a set of elements, the domain of M, and F = {f | f : D → D∪{⊥}}
is a set of functions with ⊥ 6∈ D. We write domM for the domain of M. (We
assume that ⊥ is a fixed element not contained in the domain of any model.)

We define decision models as models of computation consisting of total func-
tions that yield a definite ‘yes’/‘no’ answer.

Definition 12. A decision model (model of computation for decision models) is
a model of computation M = 〈D,F〉, such that {0, 1} ⊆ D, and f [D] ⊆ {0, 1},
for all f ∈ F .

Now codings between domains of models are defined.

Definition 13 ([5, Def. 2.2]). Let D1 and D2 be domains of models of computa-
tion. A coding (from D1 to D2) is an injective function ρ : D1∪{⊥} → D2∪{⊥}
such that ρ(x) = ⊥ if and only if x = ⊥, for all x ∈ D1.

2Note that encodings of the notions (i) and (ii) here are more liberal than those in (1) and
(2) above, and that therefore the use of such encodings does not address the concern raised
in the preceding quotation regarding the addition of computational power when dealing with
subrecursive models.

18

For codings ρ between decision models it could be desirable to demand that
ρ(0) = 0 and ρ(1) = 1. We do not to take up this restriction, for a pragmatic
reason connected to the definition of ‘simulation’ immediately below. If namely
a non-constant function f in a decision model M1 is simulated via ρ by a
function g in a decision model M2, then it follows that either ρ(0) = 0 and
ρ(1) = 1, or ρ(0) = 1 and ρ(1) = 0. In both cases it can be said that decisions
taken by f are faithfully modelled by corresponding decisions taken by g.

Definition 14 ([5, Def. 2.3]). Let M1 = 〈D1,F1〉 and M2 = 〈D2,F2〉 be
models of computation. Let ρ be a coding from D1 to D2. We define:

(i) For g ∈ F2 and f ∈ F1 we say that g simulates f via ρ if g ◦ ρ = ρ ◦ f
holds, as in the following diagram:

D1 D2

D1 D2

ρ

ρ

f g

(ii) M2 simulates M1 via ρ, denoted by M1 .ρ M2, if for every f ∈ F1 there
is a g ∈ F2 such that g simulates f via ρ.

The ‘decency’ requirement for codings mentioned before is defined as follows
in [4]. There, Boker stresses that this requirement follows classic definitions of
computable groups by Rice [18, p. 298] and Rabin [17, p. 343].

Definition 15 ([4, Def. 52]). Let M1 = 〈D1,F1〉 andM2 = 〈D2,F2〉 be models
of computation. A coding ρ from D1 to D2 is called decent with respect to M2

if the image ρ[D1] can be recognized by M2, in the sense that there is a total
function g ∈ F2 such that ρ[D1] = g[D2] and for all y ∈ D2, we have g(y) = y
if and only if y ∈ ρ[D1].

We note that according to Definition 15 a coding ρ can be decent with respect
to a decision model M2 only if ρ[D1] ⊆ {0, 1}. Since ρ is injective, |D1| ≤ 2
follows, and so M1 can only be a rather trivial model. Therefore we adapt the
notion of decency in an obvious way to accommodate decision models.

Definition 16. Let M1 = 〈D1,F1〉 and M2 = 〈D2,F2〉 be models of compu-
tation. A coding ρ from D1 to D2 is called decent∗ with respect to M2 if the
image ρ[D1] can be recognized by M2, in the sense that there is a total func-
tion g ∈ F2 and an element d ∈ D2 such that for all y ∈ D2, we have g(y) = d
if and only if y ∈ ρ[D1].

With the concepts ‘model of computation’ and ‘simulation’ defined, Boker
and Dershowitz introduce three comparison preorders for models, which are
based on three classes of codings as mentioned above. In addition to the preorder
induced by decent codings, we also define a variant preorder induced by decent∗

codings.

19

Definition 17 ([4, Def. 52]). Let M1 = 〈D1,F1〉 andM2 = 〈D2,F2〉 be models
of computation. We define:

(i) M2 is at least as powerful as M1, denoted by

M1 . M2 ,

if M1 .ρ M2 for some ρ .

(ii) M2 is at least as powerful as M1 via a decent coding, which we denote by

M1 .decent M2 ,

if M1 .ρ M2 for some decent coding ρ with respect to M2. M2 is at
least as powerful as M1 via a decent∗ coding, which we denote by

M1 .decent∗ M2 ,

if M1 .ρ M2 for some decent∗ coding ρ with respect to M2.

(iii) M2 is at least as powerful as M1 via a bijective coding, which we denote
by

M1 .bijective M2 ,

if M1 .ρ M2 for some bijective coding ρ .

With these definitions in place, we are now able to state, and prove, our
results concerning the comparison of decision models. For this we denote, for
an alphabet Γ with {0, 1} ⊆ Γ, by DFA(Γ) = 〈Γ∗,D〉 with

D =
{

f : Γ∗ → {0, 1}
∣

∣

∣

∃M DFA ∀w ∈ Γ∗

(f(w) = 1 ⇔ M accepts w)

}

the decision model consisting of all functions f : Γ∗ → {0, 1} that describe
the acceptance/non-acceptance behavior of a DFA with input alphabet Γ. The
model TMD(Γ) over input alphabet Γ of Turing-machine deciders is defined
analogously.

The proposition below is an easy consequence of Lemma 2.

Proposition 18. Let Σ, Γ be alphabets, where {0, 1} ⊆ Γ. Then for every
countable decision model M with domain Σ∗

M . DFA(Γ) , (8)

holds, that is, deterministic finite state automata with input alphabet Γ are at
least as powerful as M.

20

Proof. Every decision model M = 〈Σ∗,F〉 with domain Σ∗ and with count-
able set F of computed functions corresponds to the countable set LM =
{Lf | f ∈ F} of languages that are defined, for f ∈ F , as Lf = {w ∈ Σ∗ | f(w) = 1}.
By Lemma 2 there exists an injective function ρ : Σ∗ → Γ∗ such that ρ[Lf] is
relatively regular in ρ[Σ∗], for all f ∈ F . Now it is straightforward to verify that
ρ is a coding between the domains of the models M and DFA(Γ) that facilitates
the simulation of every f ∈ F by a function g : Γ∗ → {0, 1} that denotes the
acceptance/non-acceptance behavior of a deterministic finite-state automaton
with input alphabet Γ. This shows (8).

Proposition 19. Let Γ be an alphabet with {0, 1} ⊆ Γ. Then there is a coding
ρ : Γ∗ → Γ∗ such that TMD(Γ) .ρ DFA(Γ) holds. But any such a coding ρ
cannot be computable.

Proof. The main statement follows from Proposition 18. That ρ cannot be com-
putable can be seen as follows. Suppose that ρ is computable. Let A0, A1, . . . and
w0, w1, . . . be recursive enumerations of all finite automata and words over Σ.
Then the language L = {wn | n ∈ N, ρ(wn) /∈ Lang(An)} is Turing computable,
but ρ[L] is not regular.

This statement can be strengthened to a bijective, and therefore (see the
proof) also decent∗, simulation with finite-state automata by using Lemma 6
and Theorem 8.

Corollary 20. Let Σ and Γ be alphabets, where {0, 1} ⊆ Γ. Then for every
countable decision model M with domain Σ∗ the following two statements hold:

(i) M .bijective DFA(Γ),

(ii) M .decent∗ DFA(Γ).

That is, deterministic finite-state automata with input alphabet Γ are at least as
powerful as the model M, both via bijective and via decent∗ codings.

Proof. Statement (i) follows by an argumentation analogous to the proof of
Proposition 18 in which the use of Lemma 2 is replaced by an appeal to our
main theorem, Theorem 8.

Statement (ii) follows directly from statement (i): For bijective codings ρ :
Σ∗ → Γ∗, the image of ρ coincides with Γ∗, which is trivially recognizable by a
finite-state automaton.

Remark 21. As mentioned above (just before Definition 16), decent codings
in the sense of [4] do not form a sensible notion for decision models. However,
for every countable decision model M and every alphabet Γ with {0, 1} ⊆ Γ it
holds that

M .decent DFAid(Γ)

21

where DFAid(Γ) is the extension of DFAid(Γ) by adding the identity function
id : Γ∗ → Γ∗.

Sequential finite-state transducers FST(Γ) (see e.g. [21]) over alphabet Γ
form a natural computational model that extends DFAid(Γ). Thus for an alpha-
bet Γ with {0, 1} ⊆ Γ we also obtain the very counterintuitive result:

M .decent FST(Γ) ,

that is, sequential finite-state transducers are at least as strong via a decent
coding as every countable decision model. (Here we consider finite-state trans-
ducers that are able to recognize the end of a word.) In particular, every Turing-
machine decider can be simulated by a sequential finite state transducer via a
decent coding.

Remark 22. These results raise the question, whether these anomalies only
concern decision models. In particular, one may wonder whether the comparison
of computational models avoids counterintuitive results when additional require-
ments are imposed on the models that are compared. A candidate requirement
would be to enforce that the output of the models must have an infinite range.
Or, even stronger, we could require the following property: A class of models
M = 〈D,F〉 is image-complete if for every non-empty computable set I ⊆ D
there exists f ∈ F such that f [D] = I.

Let T = 〈Σ∗,F〉 consist of all Turing machines such that for every f ∈ F
we have there exists a finite set Lf ⊆ Σ∗ and for all x ∈ Σ∗ we have f(x) ∈
{x}∪Lf ∪{⊥} . Thus functions f ∈ T map words either to themselves or into a
finite set that may depend on f . The class T is a natural model because it can
be implemented by a recursively enumerable set of Turing machines3. Note that
T is a strict extension of Turing-machine deciders and it is an image-complete
model. This can be seen as follows: Let I ⊆ Σ∗ be any non-empty computable
set. Let i ∈ I and define the function f : Σ∗ → Σ∗ for all x ∈ Σ∗ by: f(x) = x
if x ∈ I and f(x) = i, otherwise. Then f [Σ∗] = I and f ∈ T .

Then the model T can be simulated by two-way sequential, finite-state trans-
ducers [7] via decent codings:

T .decent 2-FST(Γ) .

We have already argued that the Turing-machine deciders can be simulated by
FST(Γ). This can easily be generalized to a finite number of output words L
(finite-state transducers can output words instead of only symbols). Now we
assume that one symbol w ∈ L symbolizes the identity output; then the two-way
finite-state transducer, instead of producing this output word, can walk back to
the beginning of the input and reproduce the input word as output word.

Our results suggest that there are definite limitations to the concepts of
power comparison for models of computation by Boker and Dershowitz. These

3The idea is to enumerate all Turing machines and finite sets Lf , and adapt the machines
to check on termination whether the output is in Lf and otherwise make sure that the output
is equal to the input. In this way, we obtain all machines that are necessary to implement T .

22

concepts have an ‘absolute’ flavor insofar as they do not formulate any explicit
constraints on the computability of encodings used for simulations. The coun-
terintuitive consequences pertain primarily to decision models (yet this is a
blurry concept, see Remark 22), and do not extend to models that include all
partial-recursive functions (see Corollary 24 below). Yet they demonstrate that
these comparison concepts lack the desired robustness.

We note that our results are not the first indications of anomalies. In [5,
Example 5.1] Boker and Dershowitz show that Turing-machine deciders are
not a complete model of computation, in the sense that this model can be
strictly extended to incorporate a non-recursive set. Our results strengthen
this example naturally in the following three ways: (i) to bijective, and decent
encodings, (ii) to use finite automata instead of Turing-machine deciders, and
(iii) to arbitrary countable models as extensions. This is because, as we have
shown, finite automata can be extended, via decent codings, to any countable
decision model, and consequently the same holds for Turing-machine deciders.
Hence, even decent encodings facilitate the simulation of all Turing-machine
deciders by finite automata, more precisely, by finite-state transducers.

The following theorem is an easy consequence of the concepts developed by
Shapiro in [25]. He calls a number representation r : N → Σ∗ acceptable if it
is bijective, and if the successor function succ : N → N can be simulated by a
Turing machine on the representations, that is, if the lifting succ

r : Σ∗ → Σ∗ of
succ with the property:

succ
r(r(n)) = r(succ(n)) , for all n ∈ N,

is Turing computable.

Theorem 23. A bijective encoding f : Σ∗ → Γ∗ is computable if and only if
there is an acceptable number representation r such that f ◦ r is acceptable as
well.

This theorem implies that Corollary 20 (i) does not generalize to models
that compute the partial-recursive functions.

Corollary 24. There is no bijective encoding ρ : Σ∗ → Σ∗ such that TM(Σ) .ρ

2-FST(Σ) holds, where TM(Σ) is the model of Turing machines over alphabet
Σ.

While certainly more investigation is needed, we also interpret our results as
follows. For comparing the computational power of models of computation over
different domains, it is crucial to make clear how computational power should
be measured for the purpose at hand. After having settled on a reasonable
measure, this measure can then be used to constrain the computational power
of admissible codings that may act as a trustworthy intermediary between the
models.

23

5 Consequences for Generalized Automaticity

Finite-state automata can be used to generate infinite sequences, see [1]. This is
usually done using the standard base-k representation (n)k ∈ {0, 1, . . . , k − 1}∗

of the natural numbers n ∈ N. A sequence σ ∈ ∆N is called k-automatic if, for
some deterministic finite-state automaton A with output (DFAO, see Section 2)
we have σ(n) = A((n)k) for all n ∈ N.

This concept has been generalized in several ways, where different number
representations are fed to the automaton, see, e.g., [24, 19, 6]. This motivates
the study of automaticity with respect to arbitrary number representations,
which is part of work in progress of the present authors with Clemens Kupke,
Larry Moss, and Jan Rutten.

Definition 25. Let c : N → Γ∗ be a number representation. A sequence σ ∈ ∆N

over an alphabet ∆ is c-automatic if there exists a DFAO A such that σ(n) =
A(c(n)) for all n ∈ N.

Lemma 26. Let c : N → Γ∗ be a number representation. A sequence σ ∈ ∆N

is c-automatic if and only if for every a ∈ ∆ the ‘fiber’ {c(n) | σ(n) = a} is
relatively regular in c[N].

Proof. Along the lines of Lemma 5.2.6 in [1].

Corollary 27. For every injective function c : N → Γ∗ there is a bijective
function d : N → Γ∗ such that for every σ ∈ ∆N we have: if σ is c-automatic,
then σ is also d-automatic.

Proof. Let c : N → Γ∗ be an injection. Let d : N → Γ∗ be the bijective function
obtained from c by Lemma 6. Let σ ∈ ∆N be c-automatic. We show that σ
is d-automatic by an application of Lemma 26. Let a ∈ ∆. Then the fiber
{c(n) | σ(n) = a} is relatively regular in c[N] by Lemma 26. By Lemma 6 we
obtain that the fiber {d(n) | σ(n) = a} is regular (and consequently relatively
regular in d[N] = Γ∗). Hence, by Lemma 26, σ is d-automatic.

The following proposition shows that the implication in Corollary 27 cannot
be strengthened to equivalence of c- and d-automaticity: not for all injective c
there is a bijective d so that c-automaticity and d-automaticity coincide.

Proposition 28. Define the representation c : N → {0, 1}∗ by c(n) = 0n!. Then
we have:

(i) For every sequence σ ∈ ∆N, σ is c-automatic if and only if σ is ultimately
constant.

(ii) For every bijection d : N → {0, 1}∗, there is a d-automatic sequence that
is not ultimately constant.

Proof. We first prove the two implications of (i).

24

(⇒) Let σ ∈ ∆N be c-automatic. That is, for some automaton A, σ(n) =
A(c(n)) for all n ∈ N. As there are finitely many states in A, there exists
n0, ℓ ∈ N such that ℓ > 0 and δ(q0, 0

n) = δ(q0, 0
n+ℓ) for all n ≥ n0,

where δ is the transition function of A and q0 its starting state. Let
m0 ∈ N be the smallest integer such that m0! ≥ n0 + ℓ. Then we have
δ(q0, 0

m!) = δ(q0, 0
m0!) for all m ≥ m0. The reason is that m0! ≥ n0 and,

for all m ≥ m0, m! is a multiple of ℓ (so that m! = m0! + kℓ for some
k ∈ N).

(⇐) Let σ ∈ ∆N be ultimately constant, that is, there exists n0 ∈ N such that
σ(n) = σ(n0) for all n ≥ n0. Letm = n0! . We define an automatonA with
states q0, q1, . . . , qm, and transition function δ defined by δ(qi, 0) = qi+1

for all i ∈ {0, 1, . . . ,m − 1} and δ(qm, 0) = qm. For the output of qi
(0 ≤ i ≤ m) we take σ(j) if i = j! . The output of the other states is
irrelevant. Clearly we now have σ(n) = A(c(n)) for all n ∈ N, and so σ is
c-automatic.

For (ii), let d : N → {0}∗ be a bijective encoding. Let A be an automaton
such that A(02n) = 0 and A(02n+1) = 1 for all n ∈ N, and define σ ∈ {0, 1}N

by σ(n) = A(d(n)) for n ∈ N. Note that σ is d-automatic by definition. As d
is bijective, there are infinitely many m ∈ N such that d(m) is of the form 02n,
and there are infinitely many m ∈ N such that d(m) is of the form 02n+1. Hence
σ is not ultimately constant.

The following corollaries are reformulations of our main result, Theorem 8,
for recognizability and, more generally, automaticity, respectively.

Corollary 29. For every countable class C of sets of natural numbers there is
a bijective function r : N → Σ∗ such that every S ∈ C is r-recognizable (i.e.,
there is a finite automaton deciding membership n ∈ S on the input of r(n)).

Corollary 30. For every countable class S ⊆ ∆N of infinite sequences over a
finite alphabet ∆, there exists a bijective number representation d : N → Γ∗ such
that every σ ∈ S is d-automatic.

6 Conclusion and Further Questions

Our main result, Theorem 8, states that for every countable class L ⊆ ℘(Σ∗)
of languages over a finite alphabet Σ, and for every alphabet Γ with more than
two symbols, there exists a bijective encoding f : Σ∗ → Γ∗ such that for every
language L ∈ L its image f [L] under f is regular.

Furthermore we have shown that this result has a number of noteworthy con-
sequences in language theory for regularity preserving functions, in computabil-
ity theory for a concept for comparing the power of models of computation, and
in the theory of automatic sequences for a generalization of this concept with
respect to arbitrary number representations:

25

(A) There exists a computable bijective function f : Σ∗ → Γ∗ such that the
image function f [] of f is regularity preserving, but the preimage function
f−1[] is not (Corollary 9).

(B) In the sense of [5], finite-state automata are as powerful as any countable
decision model (e.g., Turing-machine deciders) (Proposition 18). This even
holds for the strongest notion of comparison in [5], namely that with respect
to bijective encodings (Corollary 20). Similar counterintuitive consequences
also affect computational models beyond decision models.

(C) For every countable class C of sets of natural numbers there is a bijective
number representation r : N → Σ∗ such that every set S ∈ C is r-recogniz-
able (i.e., there is a finite automaton deciding membership n ∈ S on the
input of r(n)) (Corollary 29).

More generally, for every countable class S ⊆ ∆N of infinite sequences over a
finite alphabet ∆, there exists a bijective number representation d : N → Γ∗

such that every σ ∈ S is d-automatic (Corollary 30).

These results also answer the questions in Section 1 concerning the hierar-
chy of number representations. From (A) it follows that the hierarchy is proper:
there are bijective representations r1 and r2 such that r1 subsumes r2, but not
vice versa. From (C) it follows that every countable class C ⊆ ℘(N) of languages
is contained in the countable class of all r-recognizable languages, for some rep-
resentation r. Moreover, (C) implies that every injective number representation
is subsumed by a bijective number representation, and that no representation
subsumes all others, since the class of r-recognizable sets of natural numbers is
always countable.

We conclude with two questions:

– How far can computable bijective encodings f : Σ∗ → Γ∗ extend the
class of recognizable languages, that is, what classes Lf = {L ⊆ Σ∗ |
f [L] is a regular language} can we obtain for a computable bijective f?
For example, is there a computable (bijective) encoding that makes pre-
cisely all context-free languages recognizable?

– Rigo [19] describes a class of number representations that characterizes
the morphic sequences. Our results entail the existence of a bijective
representation r : N → Σ∗ such that every morphic sequence is r-automa-
tic. Is there a computable bijective representation r such that precisely
the morphic sequences are r-automatic?

Acknowledgment

We want to thank Nachum Dershowitz and Udi Boker for their remarks and
a discussion about our results in Section 4, as well as for several pointers to
specific parts of their papers.

26

References

[1] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications,
Generalizations. Cambridge University Press, New York, 2003.

[2] J. Berstel, L. Boasson, O. Carton, B. Petazzoni, and J.-É. Pin. Operations
preserving regular languages. Theoretical Computer Science, 354(3):405–
420, 2006.

[3] U. Boker. Comparing Computational Power. Master’s thesis, Tel Aviv
University, 2004.

[4] U. Boker. The Influence of Domain Interpretations on Computational Mod-
els. PhD thesis, Tel Aviv University, 2008.

[5] U. Boker and N. Dershowitz. Comparing Computational Power. Logic
Journal of the IGPL, 14(5):633–647, 2006.

[6] J. Endrullis, C. Grabmayer, and D. Hendriks. Mix-Automatic Sequences.
In Proc. of the 7th International Conference on Language and Automata
Theory and Applications (LATA 2013), number 7810 in LNCS, 2013.

[7] J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions
and two-way finite-state transducers. Transactions of the American Math-
ematical Society, 2(2):216–254, 2001.

[8] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 2nd edition, 2000.

[9] S. R. Kosaraju. Finite State Automata with Markers. In Proc. 4th An-
nual Princeton Conference on Information Sciences and Systems. Prince-
ton, 1970.

[10] S. R. Kosaraju. Regularity preserving functions. SIGACT News, 6(2):16–
17, 1974.

[11] D. Kozen. On regularity-preserving functions. Bulletin of the European
Association for Theoretical Computer Science, pages 131–138, 1996.

[12] P. Květoň and V. Koubek. Functions preserving classes of languages. In
Proc. Conf. on Developments in Language Theory, pages 81–102. World
Scientific, 1999.

[13] A. B. Matos. Regularity-preserving letter selections. DCC-FCUP Interal
Report.

[14] J.-É. Pin. Profinite Methods in Automata Theory. In Proc. of the 26th
Symposium on Theoretical Aspects of Computer Science (STACS 2009),
pages 31–50. IBFI Schloss Dagstuhl, 2009.

27

[15] J.-É. Pin and J. Sakarovitch. Some operations and transductions that
preserve rationality. Theoretical Computer Science, 145:277–288, 1982.

[16] J.-É. Pin and P. V. Silva. A topological approach to transductions. Theo-
retical Computer Science, 340(2):443–456, 2005.

[17] M. O. Rabin. Computable algebra, general theory and theory of computable
fields. Transactions of the American Mathematical Society, 95(2):341–360,
1960.

[18] H. G. Rice. Recursive and recursively enumerable orders. Transactions of
the American Mathematical Society, 83(2):277–300, 1956.

[19] M. Rigo. Generalization of automatic sequences for numeration systems on
a regular language. Theoretical Computer Science, 244(1-2):271–281, 2000.

[20] H. Rogers. Theory of Recursive Functions and Effective Computability.
MacGraw–Hill, 1967.

[21] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[22] J. I. Seiferas. A note on prefixes of regular languages. SIGACT News,
6(1):25–29, 1974.

[23] J. I. Seiferas and R. McNaughton. Regularity-preserving relations. Theo-
retical Computer Science, 2(2):147–154, 1976.

[24] J. Shallit. A Generalization of Automatic Sequences. In 6th Symposium
on Theoretical Aspects of Computer Science (STACS 1989), volume 349 of
LNCS, pages 156–167. Springer, 1989.

[25] S. Shapiro. Acceptable notation. Notre Dame Journal of Formal Logic,
23(1):14–20, 1982.

[26] R. E. Stearns and J. Hartmanis. Regularity preserving modifications of
regular expressions. Information and Control, 6(1):55–69, 1963.

28

	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Consequences for Comparing Models of Computation
	5 Consequences for Generalized Automaticity
	6 Conclusion and Further Questions
	Acknowledgment

