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Abstract—Diagrammatic techniques for reasoning about
monoidal categories provide an intuitive understanding of the
symmetries and connections of interacting computational pro-
cesses. In the context of categorical quantum mechanics, Coecke
and Kissinger suggested that two 3-qubit states, GHZ and W,
may be used as the building blocks of a new graphical calculus,
aimed at a diagrammatic classification of multipartite qubit en-
tanglement that would highlight the communicational properties
of quantum states, and their potential uses in cryptographic
schemes.

In this paper, we present a full graphical axiomatisation of
the relations between GHZ and W: the ZW calculus. This
refines a version of the preexisting ZX calculus, while keeping
its most desirable characteristics: undirectedness, a large degree
of symmetry, and an algebraic underpinning. We prove that the
ZW calculus is complete for the category of free abelian groups
on a power of two generators - “qubits with integer coefficients”
- and provide an explicit normalisation procedure.

I. I NTRODUCTION

After a certain number of quantum systems have interacted
with each other, the results of observations on the individual
systems may present correlations that cannot possibly be
explained by their local features (a “hidden variable theory”).
This phenomenon is calledquantum non-locality.

Even though it is appealing to see these correlations as
a form of “instantaneous communication” between systems
- whereby it is the actions of one observer that inform the
observations of another, however distant they may be - no
information can actually be transmitted from one location to
the other, in this way.

In a broader sense, however, communication is about obtain-
ing to share some knowledge - and theseentangledstates can
be used as generators of shared information. This is the idea
behind entanglement-based key exchange protocols, pioneered
by Ekert’s E91 [1].

Arguably, the kind of information that we could expect to
share from a distance can all be digitised. Hence, for purposes
of communication, we can restrict our attention toqubits:
quantum systems that only accept yes/no questions.

When only two users are involved, there is not much else
that one can desire, besides perfect correlation. With three or
more users, however, a variety of scenarios may arise. Suppose
the third user decides to not cooperate: are the other two still
to obtain some sharing of information, or should they remain
empty-handed?

It turns out that there exists a 3-qubit state, the GHZ state
[2], for which an uncooperating user results in the other two
being disconnected, and another 3-qubit state, the W state,
where a communication channel persists between any pair of
users. So, one is faced with the following problem:

• find a classification ofn-qubit entangled states which
reflects their differentcommunicationalproperties, and
potential uses in quantum cryptography.

Clearly, we should allow for some local “pre-processing”
by individual users, prior to measurement: as long as the
performed operations are invertible, this can be seen just as
a translation of the system into their preferredformat, not
affecting the communication.

If we ask that this pre-processing be a part of the protocol,
that is, pre-determined, we obtain the so-calledLOCC clas-
sification of quantum states (Local Operations and Classical
Communication). If we only want users to perform the “cor-
rect” pre-processing with non-zero probability, we obtainthe
SLOCC classificationof quantum states, which corresponds to
allowing arbitrary invertible local operations on the systems
[3].

For 2 qubits, only two SLOCC classes exist, corresponding
to the “connected” and “disconnected” cases, respectively. For
3 qubits, the GHZ and W states are representatives of the only
two classes of connected states. Forn ≥ 4 qubits, however,
there areinfinite classes, as can be shown by a simple count
of degrees of freedom [3], and only inductive classifications in
super-classes, with little insight about operational behaviour,
are known [4], [5].

Quantum systems satisfy a property calledmap-state dual-
ity: it is possible to turn any input of a quantum operation
into an output, and vice versa, so that - for instance - any
tripartite state may also be seen as abinary operation. In
[6], Coecke and Kissinger showed that the GHZ and W states
correspond, as binary operations, to certainFrobenius algebras
- in a particular sense, the only two possible kinds of Frobenius
algebras on qubits. Moreover, as quantum gates, together with
single-qubit states, they are universal for quantum computing,
which suggested they could be used asbuilding blocksfor a
compositional classification of multipartite entanglement.

Coecke and Kissinger formulated their result in the frame-
work of categorical quantum mechanics(CQM), initiated by
[7]. CQM heavily relies onstring diagramsas a graphical
language for monoidal categories [8]: while the latter are a
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natural home to the formalisation of computational processes
and their interactions, the diagrams provide a high-level lan-
guage for reasoning about them, which bypasses some of the
bookkeeping that is associated with algebraic category theory,
allowing one to focus on the connections, and the flow of
information between such processes.

In particular, a diagrammatic theory of Frobenius algebras
is the basis of theZX calculus[9], whose completeness for
the importantstabiliser fragment of quantum mechanics has
recently been proven [10]. In [11], [12], a graphical axioma-
tisation of the relations between the GHZ and W algebras
was started, with a similar calculus in mind; but this was not
brought to completion, and only results about universalityand
classification were obtained.

In this paper, we present theZW calculus, a diagrammatic
axiomatisation of the relations between the GHZ and W
algebras, which incorporates a version of the ZX calculus and
shares some of its best properties, such as

• featuringundirecteddiagrams, that are “as symmetrical
as they look”, and

• having a small number of graphical elements and axioms,
• described in terms of important algebraic structures and

relations.

We prove that the ZW calculus is complete for the category
Ab2,free of free abelian groups on a power of two genera-
tors; more informally, it is complete for “qubits with integer
coefficients”, which embed into generic qubits through the
inclusion of integers into complex numbers. We achieve this
by providing a normal form for string diagrams, and an explicit
normalisation procedure. We also derive completeness results
for mild extensions of the calculus.

The hope is that, having a complete axiomatisation and a
workable calculus at hand, it will be possible to focus on
rewrite strategies that are tailored specifically to identifying
the SLOCC class of a state, whose communicational properties
should be easily read off a properly normalised diagram. These
strategies could be then implemented in automated graph-
rewriting software, like Quantomatic [13].

Background:While familiarity with graphical languages for
monoidal categories would help, the paper only presupposes
a basic knowledge of algebra and category theory, including
the definition of (symmetric) monoidal category and monoidal
functor.

String diagrams are featured prominently; there are lim-
itations on how well one can portray spatial reasoning on
paper, but we tried to give them an appearance of depth,
using different visual devices. In particular, we often draw
parts of diagrams in a lighter shade, putting them “in the
background”, either to convey that they are not the current
focus of a computation, or that their precise structure is not
important. Likewise, if we want to suggest that a certain
pattern is repeatedn times, we only draw the extremities, and
one repetition in a lighter shade, followed by the numbern.

II. T HE LANGUAGE

We describe the ZW calculus in the framework of PROPs
[14], thinking of its basic diagrams as thegenerators, and
its rules as therelations that make up the presentation of a
PROP. A PROP is a symmetric strict monoidal category that
hasN as its set of objects, and a monoidal product given,
on objects, by the sum of natural numbers; morphismsn →
m are meant to represent operations withn inputs andm
outputs. Diagrammatically, these are depicted as verticeswith
n incoming wires andm outgoing wires (time flows from
bottom to top):

m

n .

Composition is depicted as the vertical “plugging” of wires,
and monoidal product as the horizontal juxtaposition of dia-
grams.

A little uncustomarily, we will depict the symmetric braid-
ing as

= ,

in order to leave “intersecting wires” available for a different
morphism, thecrossing.

Let SD be the freeself-dual, compact closed PROP, that is,
a PROP with two generators∪ : 0 → 2, ∩ : 2 → 0 satisfying

= ,

= ,

= .

=

The Kelly-Laplaza coherence theorem for compact closed
categories [15] allows us to be as lax as necessary with the
ordering of wires, and the distinction between inputs and
outputs, in the diagrammatic calculus.

If T is a set of operations of a certain arity, letSD[T ] denote
the PROP obtained by freely adjoining all morphisms inT to
SD. Then, if R is an equivalence relation of morphisms in
SD[T ], pairwise of the same type,SD[T/R] will denote the
PROP obtained fromSD by adjoining the generators inT
modulo the equivalenceR. We will call pairs inR rewrite
rules, with graph rewriting in mind (see [12] for a review of
the subject).

In this formalism, proving the soundness and completeness
of the calculus with generatorsT , and rewrite rulesR, for
a monoidal categoryC, amounts to exhibiting amonoidal
equivalencebetweenSD[T/R] andC.

We present two equivalent versions of the ZW calculus. The
condensedversion has the following, infinite set of generators:

Tc :=

{ }

n,m∈N

., ,
n m

The expandedversion has a finite set of generatorsT ⊆ Tc,
containing only binary and ternary black and white vertices.



We interpret these diagrams inAb, the monoidal category
of abelian groups and homomorphisms, with monoidal product
given by the tensor product of abelian groups; or rather, in its
full subcategoryAb2,free, generated, under tensoring, by the
free abelian group on two generators,Z⊕ Z.

It is a standard equivalence that abelian groups are the same
asZ-modules; the inclusionZ →֒ C induces an inclusion of
Ab2,free into the category of finiteC-modules, that is, complex
vector spaces.

In fact, it is convenient to write the elements of these groups,
and the homomorphisms between them, in thebra-ketnotation
commonly used for vectors and linear maps. Hence, letting|0〉,
|1〉 denote the two generators ofZ⊕Z, we will write n |0〉+
m |1〉, n,m ∈ Z, for an arbitrary element ofZ⊕ Z; then, we
will write |00〉 := |0〉⊗|0〉, and|0〉〈11| for the homomorphism
(Z⊕ Z)⊗2 → Z⊕ Z that sends|11〉 to |0〉, and so on.

The semantics of the ZW calculus are defined by a monoidal
functor F : SD[Tc] → Ab2,free, fixed by the following
interpretation of the generators:

7→ |00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11| ,

7→ |00〉+ |11〉 ,

7→ 〈00|+ 〈11| ,

n

7→ |10 . . .0〉+ |01 . . .0〉+ . . .+ |00 . . . 1〉 ,

n

7→ |0 . . . 0〉 − |1 . . . 1〉 ,

7→ |00〉〈00|+ |01〉〈10|+ |10〉〈01| − |11〉〈11| .

The interpretation of the braiding and of the dualities is self-
explanatory. Then-ary black vertex corresponds,modulonor-
malisation, to the quantum state|Wn〉, then-ary generalisation
of the W state. Then-ary white vertex, on the other hand,
corresponds to then-ary Z spider from the ZX calculus,
with a π phase [9]. Save for this phase and normalisation,
this is interpreted as the quantum state|GHZn〉, the n-ary
generalisation of the GHZ state [2].

The crossingneeds some further explanation. One should
keep in mind that this isnot a braiding inAb2,free: such maps
have been considered, with applications to supersymmetry
[16], in the theory ofsuper vector spaces, or super modules
- that is, Z2-graded modules, with a “bosonic” part and a
“fermionic” part, such that swapping two fermionic states
induces a sign change. In our case,|1〉 would be singled out
as the fermionic generator ofZ⊕ Z. However, the categories
of super vector spaces and super modules are restricted to so-
called evenmaps - that is, maps that preserve the grading:
in our case, the ones whose vector expression has an even
number of1s in each term - for which the crossing is an
actual symmetric braiding.

Moreover, the crossing is not a necessary addition to the
graphical language. Crossings are not featured in our normal

form for diagrams, and we will provide a systematic procedure
for eliminating them. However, their inclusion has some
advantages.

First of all, the axioms of the ZW calculus become simpler,
and can all be described in terms of well-known algebraic
structures and relations, such as Hopf algebras. Only a couple
of simple rules needs to be introduced to handle the crossings
specifically, plus an elimination rule.

Furthermore, the binary white vertex has the same interpre-
tation as a self-crossing wire, that is,

,

and can be eliminated in favour of it.
Since the black vertices are interpreted asodd, that is, grade-

reversing maps - having an odd number of1s in each term -
this leaves the ternary white vertex as the only vertex, in the
expanded calculus, that is interpreted as an “impure” map:
that is, one which is not even, nor odd. This leaves open the
possibility of amonochromaticfragment of the ZW calculus,
containing only crossings and black vertices, being complete
for a subcategory of purely even and purely odd maps.

III. T HE RULES

We now present the rule set of theexpandedZW calculus.
There were some choices to make in its selection and pre-
sentation, for which we adopted the following criteria: most
subsets of rules should have a short description, linking them
to well-known algebraic structures and relations; and the rules
of algebraic nature should only contain (weakly) “planar”
diagrams, that is, diagrams with crossings instead of braidings.

Rule 0. The black and white vertices are symmetric.

⇔
0a

⇔
0b 0b′

⇔

⇔
0c

⇔
0d 0d′

⇔

Remark1. This rule allows us to treat the black and white
vertices as vertices of anundirected graph; in particular,
we can turn inputs into outputs, using the dualities, without
worrying about which particular wire has been turned around.

For instance, one can speak unambiguously of “the white

vertex with 2 inputs and 1 output”, and depict it as . We
will use Rule 0 implicitly, reshuffling the wires attached toa
vertex as needed.

We will take advantage of this undirectedness throughout,
for instance by speaking ofpluggings of string diagrams,
instead of compositions and monoidal products.

Rule 1. ,

( )

and ,

( )

are monoids.

⇔
1a

⇔
1b



⇔
1c

⇔
1d

Remark2. Rule 0 implies that the two are actually commu-
tative monoids, which automatically yields the right unitality
rules.

Rule 2. and are involutions.

⇔
2a

⇔
2b

Rule 3. is an automorphism of ,

( )

, and of

,

( )

.

⇔
3a

⇔
3b

Remark3. We omitted the rules on and preserving units,
for they are implied by2a+ 3a, and2b+ 3b, respectively.

Rule 4. ,

( )

and ,

( )

form a Frobenius
algebra.

⇔
4

Rule 5. ,

( )

and ,

( )

form a Hopf algebra

with antipode .

⇔
5a 5b

⇔

⇔
5c 5d

⇔

Remark4. I omitted the adjoint (“vertical flip”) of rule5b,
which is implied by symmetry.

Rule 6. ,

( )

and ,

( )

form a “Hopf algebra”

with antipode .

⇔
6a 6b

⇔
6c

⇔

Remark5. Since ,

( )

is not a comonoid, this is not,
properly speaking, a Hopf algebra, but merely a pair satisfying

the defining equations of a Hopf algebra. I skipped the two
additional equations that coincide with5c and the adjoint of
5b.

Rule 7. is an even map, while is odd.

⇔
7a

⇔
7b

Remark6. The appearance of the white involution - which, as
we mentioned, can be replaced with a self-crossing wire - on
the other branch of the crossing can be seen as a diagrammatic
definitionof oddness.

This completes the set of algebraic rules; we single out the
last one, which appears to have a purely computational value.

Rule X. The elimination rule for crossings.

⇔
X

Definition 1. Theexpanded ZW calculusis the setZW of all
rewrite rules contained in Rules 0-7 and X.

It can be verified that all rules are sound for our interpre-
tation, that is, the functorF : SD[T ] → Ab2,free commutes
through the quotientSD[T ] ։ SD[T/ZW].

While the expanded ZW calculus is complete, it is hardly
the most convenient version with which to work, for it does
not exploit all the information that can be encoded in the
symmetries of string diagrams. The bridge between expanded
and condensed diagrams is given by thespider rules- actually,
rule schemata, forn,m ∈ N.

n m

spn,m

W

⇔
n+m

⇔
trW

n m

spn,m

Z

⇔
n+m

⇔
trZ

These rules are sound for our interpretation, and, togetherwith
rules 2a and 2b, they imply Rule 1, for which they can be
substituted:

⇔
sp2,2

W
,

⇔
sp2,2

W

trW

⇔
sp0,2

W

⇔ ⇔
2a

,

and similarly for white vertices. Moreover, Rule 0, together
with the spider rules, implies that then-ary vertices are
symmetric for alln ∈ N.



Derived rules

We now proceed to prove the validity of several useful
derived rules.

Lemma 1. commutes with , that is,

⇔ .

Remark7. In the terminology of [17], is a phasefor .

Proof: First of all,

⇔
2b 4

⇔ ⇔
sp2,2

Z

⇔
trZ ; 2b

;

then,

⇔
1d

⇔
4

⇔
2b

⇔ ,

where the last step utilises the previous derivation.
This derived rule, together with Rule 1, implies Rule 4, and

can be used to replace it.

Proposition 2 (Generalised phase rule). commutes with
all white vertices: for alln ∈ N,

⇔ .

nn

phn

Proof: For n = 0, 1, 2 there is nothing to prove. Forn >
2, the claim follows from Lemma 1, by

⇔

.

sp2,n−2

Z

n n−2

⇔
n−2

sp2,n−2

Z

⇔
n

⇔

The previous is the first of a series of inductive generalisa-
tions of the basic rules, with proofs all very similar to each
other: we start from the case of ternary vertices, and use the
spider rule for the inductive step. We will omit their details.

Proposition 3 (Generalised automorphism rules). The follow-
ing are derived rewrite rules, for alln ∈ N:

⇔
,n n n

⇔
n .amn

Z amn
W

Proof: The casesn = 0, 1, 2 are given by Rules 2 and 3.
For n > 2, proceed by induction.

Proposition 4 (Generalised bialgebra rule, I). The following
is a derived rewrite rule, for alln,m ∈ N:

⇔

,
n

m m

n

ban,m

W

where, in the RHS, there is a single wire connecting each top
vertex to each bottom vertex.

Proof: Combined with rule2a, the casen = m = 0 is
rule 5c; the casen = 1 or m = 1 is trivial; n = 0 andm > 1,
or vice versa, is an easy inductive generalisation of rule5b;
andn = m = 2 is rule 5a. From here on, proceed by double
induction onn andm.

Proposition 5 (Generalised loop rule, I). The following is a
derived rewrite rule, for alln,m ∈ N, n ≥ m:

lpn,m

W

⇔n m n−m

.

Proof: Form = 0, there is nothing to prove. Form > 0,
observe that

sp2,n+m−1

W

⇔n m n m

5d

⇔ n−1 m−1

,

and use the inductive hypothesis onm− 1.

Remark8. The casen < m can be handled as follows:

2b

⇔n m

amn+m
W

⇔n m mn

,

and then apply the previous Proposition, recalling the all
internal wires can be reordered by symmetry.

Lemma 6. The following is a derived rewrite rule:

⇔

.

Proof: We have

⇔
;1d

⇔
ph3



then

⇔
.X

⇔
1d ; ph3

The claim immediately follows.

Proposition 7 (Generalised bialgebra rule, II). The following
is a derived rewrite rule, for alln ∈ N, m > 0:

⇔

.
n

m m

n

ban,m

Proof: The proof is basically the same as that of Propo-
sition 4, where we omit the cases withm = 0, use rule
6b instead of5b, and rule6a, with a braiding replacing the
crossing as by Lemma 6, instead of rule5a.

Remark9. In fact, Proposition 7 also holds forn = m = 0:

⇔
trZ ba0,2

⇔
ba0,0

W

⇔
.

Proposition 8 (Generalised loop rule, II). The following is a
derived rewrite rule, for alln ≥ 2:

lpn

⇔n

.

Proof: Follows from

sp2,n

Z
; sp2,n

W

⇔
n n−1

6c

⇔
n−2

ba0,n−1

⇔
n−1

⇔
sp0,k

W .

⇔

Definition 2. The condensed ZW calculusis the setZWc

consisting of

1) the rewrite rules contained in Rules 0, 2, 7 and X, plus
trW and trZ ;

2) for all n,m ∈ N, the rulesspn,mW , spn,mZ , phn, amn
W ,

amn
Z , ban,mW , lpn+m,m

W , ban,m+1, and lpn+2.

We write FZW : SD[Tc/ZWc] → Ab2,free for the functor
induced fromF by soundness of the rewrite rules.

Even though the condensed ZW calculus has, technically,
infinite rewrite rules, which may seem to be a disadvantage, all
of its rule schemata are suitable for an implementation using
!-graphs[18] in Quantomatic. This leads, after all, to a smaller
ruleset, as well as shorter derivations.

By the proofs contained in this section, the condensed ZW
calculus is equivalent to the expanded ZW calculus,modulo
the spider rules; that is,SD[T/ZW] and SD[Tc/ZWc] are
monoidally equivalent PROPs. In the next section, we will
prove the completeness of the latter forAb2,free, obtaining,
at the same time, that of the former.

IV. COMPLETENESS

Any elementψ of (Z⊕Z)⊗n can be uniquely written as a
sum

q
∑

i=1

(−1)pi mi |bi,1 . . . bi,n〉 , (1)

for someq ≤ 2n, mi > 0, andpi, bi,j ∈ {0, 1}, i = 1, . . . , q,
j = 1, . . . , n, such that no pair of sequencesbi,1 . . . bi,n is
equal.

We defineN(ψ) to be the string diagram

m1 mq

p1 pq

n

q

b1,1
bq,n−1

,

( )( )

where

• the “sign changer” vertex marked withpi is only there
if pi = 1, and

• the wire marked withbi,j , connecting theith white vertex
to the jth black vertex, is only there ifbi,j = 1.

By symmetry, the ordering of the internal wires is irrelevant,
although it is possible to fix an arbitrary criterion, if needed
for uniqueness.

Remark10. The diagram could be additionally simplified by
using the spider rule for black vertices, and rule2b to eliminate
some binary white vertices. However, we priviliged this form,
for it exposes all the individual computational components.

All homomorphismsf : (Z ⊕ Z)⊗n1 → (Z ⊕ Z)⊗n2 are
the partial transpose of some stateψf of (Z⊕Z)⊗(n1+n2), so
we can defineN(f) to beN(ψf ) with some of the outputs
turned into inputs, using the dualities.

We say that a string diagramG is in normal form if there
exists a morphismf of Ab2,free such thatG = N(f).

Remark11. Speaking of a normal form is a slight abuse of
terminology, since the term is usually associated to terminat-
ing, confluent rewrite systems. However, as long as a directed,
confluent version of the ZW calculus has not been developed,
it should be acceptable.



Remark 12. An embryo of this normal form appeared in
[19], where an axiomatisation of a subcategory ofFRel, the
category of finite sets and relations - as modules over the
semiring of Booleans - was proposed, using the analogues of
the GHZ and W monoids.

This axiomatisation was complete for the theory considered
there, but had a large number of convoluted axioms, including
a complicated axiom schema with one rule for alln ∈ N.
However, it stirred further work on algebras of connectors for
the study of concurrent systems [20], which ended up crossing
paths with research on the ZX calculus [21].

We claim thatFN(f) = f ; it suffices to check this for
statesψ ∈ (Z⊕Z)⊗n. In fact, we will always consider string
diagrams corresponding to states; dualities take care of the
general case.

1) First of all,
q

gives a state|Wq〉 = |10 . . . 0〉+ . . .+
|0 . . . 01〉. The ith individual summand,|0 . . . 010 . . .0〉,
has a single1 in the ith position.

2) Then, fori = 1, . . . , q,

mi

pi

F
7→ |0〉〈0|+ (−1)pi mi |1〉〈1| .

( )

The ith summand is transformed into
(−1)pi mi |0 . . . 010 . . .0〉.

3) Finally, the

k
F
7→ |0 . . . 0〉〈0|+ |1 . . . 1〉〈1|

copy both 0s and 1s. The 0s of |0 . . . 010 . . . 0〉 get
“absorbed” by the black vertices:

⇔
sp0,k

W
,

leaving only a diagram of the form

bi,1

bi,j

i
amk

Z ; ba0,k

⇔ F
7→ |bi,1 . . . bi,n〉 .

Overall, the ith summand is transformed into
(−1)pi mi |bi,1 . . . bi,n〉, and |Wq〉 into ψ.

This proves that our interpretationF is a full functor over
Ab2,free. Completeness of the ZW calculus forAb2,free will
ensue from the following two facts:

(a) N is a monoidal functorAb2,free → SD[Tc/ZWc];
(b) N is a left inverse forFZW.

Lemma 9 (Delooping). A string diagram in normal form can
be rewritten in a loop-free form, that is,

m

n

( ) ( )

.
(2)

Remark13. This operation corresponds, basically, to writing

mi as the sum

mi
︷ ︸︸ ︷

1 + . . .+ 1.

Proof: Follows from

( )

m

k

⇔
amm

W

k

m( ) mbam,k (

⇔
)

k

,

performed on all loops, with a final application of the spider
rule to merge all the black vertices on the bottom.

Remark14. Conversely, we can rewrite in normal form any
diagram that is in a form like (2), and may additionally

• have more than one wire connecting a pair of a black and
a white vertex: these can be eliminated with the ruleslpn;

• have two white vertices connected to the same outputs,
one with a sign changer, the other without it.

The latter, intuitively, correspond to a term1 − 1 in the
summation, and should cancel out. By retracing the proof of
Lemma 9, we see that these pairs end up being rewritten as a
loop

n m

,

to which the rulelpn,mW can be applied, either directly, or
through the steps of Remark 8.

We say that such diagrams are inpre-normal form. In most
of the following proofs, we will deloop diagrams in normal
form, and perform certain operations that will, in general,
only yield a diagram in pre-normal form; that this is sufficient
follows from the considerations of Remark 14.

Lemma 10 (Negation). The plugging of into one end of
a diagram in (pre-)normal form can be rewritten in normal
from, and has the effect of “negating” its connections to the
white vertices; that is,

⇔

( ) ( ) ( )( ) .( ) ( )( ) ( )
n m mn



Proof: Suppose first thatn > 0. By using the spider rules
and the phase rules, we can “detach” the part of the diagram
containing the connections of the vertex that is involved:

⇔
( ) ( )

( )

( )

;
n n

applying the bialgebra ruleba2,n, this is rewritten as

( )

( )

n
⇔

n
( ) ( )am2

Z ; ph3

,

( ) ( )
m

where we used the automorphism rule to push through,
and moved vertices around a bit to make the next step clearer.
In the casen = 0, we can directly skip to this point:

⇔
m

( ) ( )
( ) ( )

m

2a ; ba0,2 .

Using the bialgebra rulebam,2, and rule2b to eliminate
some binary white vertices, we rewrite this as

⇔
spn,m

W

( ) m ( )

( ) ( )
mn

( ) ( )

,

which completes the proof.
In particular, through negation in the sense of this lemma, a

disconnected black vertex can be connected toall the topmost
white vertices.

Lemma 11(Trace). LetG be a string diagram in (pre-)normal
form. The plugging of two open ends ofG into each other,

m

n

( ) ( )

,

can be rewritten in normal form.

Proof: We apply negation repeatedly; since this only
affects the connections of the two ends involved, we can avoid
drawing the rest of the diagram. We distinguish four groups
of white vertices, based on their being connected to both ends,
only one end, or no ends:

⇔

.

i ii iii iv

iiiii ivi

⇔
negation

Then, using the spider rule to merge the black vertices, and
the lp2 rule to eliminate group i, we rewrite this as

⇔ ,

iviiiii ivii iii

where we used negation again. Finally, focusing on group iv,

⇔
ba1,j

W
; phk

ba0,k

⇔
.

⇔

Modulo the automorphism rule, wires on the bottom all lead
to black vertices, so we can apply the spider rule, obtaininga
diagram in (pre-)normal form.

The nullary black vertex is interpreted as0; the next lemma
proves that it acts this way.

Lemma 12 (Absorption). For all diagrams in (pre-)normal
form, the following is a valid rewrite rule:

m

n

( ) ( )

⇔

n

.



Proof: Using negation, we obtain

m

n

⇔
( )

n

( )
m

⇔

sp0,0

W

( ) ( )
m

n

,

where the new vertex is connected to all the topmost white
vertices. From here, we can proceed as in the last part of
Lemma 11.

With the negation, trace and absorption lemmata on hand,
we are able to give the central proof of our completeness
theorem.

Theorem 13. LetG, H be two string diagrams in (pre-)normal
form. Then the plugging ofG andH along any number of wires
can be rewritten in normal form.

Proof: As usual, deloopG andH if they are not already
loop-free. Suppose thatno end ofG is plugged into one ofH,
that is, the two diagrams are simply juxtaposed. Then, we can
rewrite the result as

q

p

( ) ( )

⇔

( ) ( )
q

pn

( )( )
m

( )

n

( )
m

,

⇔

where we introduced a in the picture, usingba0,0W , and
applied negation twice. The diagram so obtained is a plugging
along a single end.

On the other hand, if more ends ofG are plugged into ends
of H, we can factor the plugging as a single-end plugging,
followed by a sequence of traces, as in Lemma 11. Therefore,
it suffices to consider the case where one end ofG is plugged
into an end ofH.

If one of the open ends that are being plugged is discon-
nected from white vertices, or both of them are, we can apply
2a, and then negation to both of them. The only cases when
this still leaves one end disconnected are

(a) when one of the diagrams is of the form

n

,

and we can use the nullary black vertex to absorb the
other diagram;

(b) when one end was connected to all the topmost white
vertices, and the other to none. In this case, by only
negating the first, we can obtain , and apply the
absorption lemma again.

Therefore, we can assume that both ends are connected to at
least one white vertex of their respective diagrams.

Focusing on one side of the plugging - say,G - and the
connected white vertices, we have a subdiagram of the form

⇔
bai,j

W
; phk

i

j

i

j

⇔

baj,k

i

.

⇔

Modulo the automorphism rule, the wires on the bottom all
lead to black vertices, which we can merge with the spider
rules.

In particular, one wire for each of the initial white vertices
leads to the “bottom” black vertex ofG; hence, there is one
black vertex to which all of the newly created white vertices
are connected. This allows us to use rule X on any pair of
white vertices, and turn all the crossings of the diagram into
braidings.

Proceeding symmetrically on the side ofH, we can push
all the white vertices in the middle, at which point, applying
the spider rules and2b as much as needed, we obtain a string
diagram in pre-normal form. This completes the proof.

Corollary 14. N is a monoidal functor Ab2,free →
SD[Tc/ZWc].

Proof: Both composition and monoidal product in
SD[Tc/ZWc] correspond to certain pluggings (possibly along
zero wires) of string diagrams. Moreover, by uniqueness of the
normal form and soundness of the rewrite rules, ifN(g)◦N(f)
is rewritten into N(h) for some homomorphismh, then
necessarilyh = g ◦ f ; similarly for N(g)⊗N(f).

Since, by Theorem 13, such a rewrite is always possible, it
follows thatN is a monoidal functor.



Theorem 15. Every string diagram can be rewritten in normal
form.

Proof: First of all, using the spider rules, we can rewrite
every string diagram into a diagram with only ternary and
binary black and white vertices. Such a diagram is equal to
a plugging of generators inT , dualities, and braidings; by
Theorem 13, it suffices to prove that these can be rewritten in
normal form.

The black vertices are trivial:

⇔
2a ; 2b ,

⇔
2a ; 2b .

For the ternary white vertex:

⇔
sp0,3

Z
; 2b

⇔
am0

Z ; 2a ,

and similarly for the binary one. For the dualities:

⇔ ⇔
am0

Z ; 2a ,

where the first rewrite was derived in the proof of Lemma 1.
Finally, for the crossings, observe first that

⇔
2a 7b

⇔

⇔
am2

Z ; ph3 X

⇔
;

⇔

from which, retracing some steps, we obtain

⇔
.

Then, having rewritten

⇔
,

we have

⇔
7a

⇔
,

to which ruleX can be applied, yielding a diagram in normal
form. The braidings are handled similarly.

Remark15. If the initial diagram has no crossings, rule7b is
not needed for its normalisation.

Corollary 16 (Completeness of the ZW calculus). FZW :
SD[Tc/ZWc] → Ab2,free andN : Ab2,free → SD[Tc/ZWc]
form a monoidal equivalence.

Proof: We already know thatN is a right inverse for
F . By uniqueness of the normal form, and soundness of the
rewrite rules, if a diagramG is rewritten intoN(f) for some
homomorphismf , then necessarilyf = F (G).

Since, by Theorem 15, such a rewrite is always possible,
G = NFZW(G) for all morphismsG of SD[Tc/ZWc].

Although we only explicitly stated the completeness of
the condensed ZW calculus, that of the expanded version
immediately ensues.

One consequence that we can draw at once is that, under
a suitable reinterpretation of the latter’s diagrams, the ZW
calculus contains the ZX calculus withπ phases, and is, to
all effects, a refinement of it. This follows from the fact that
a triangle of ternary W vertices corresponds to the ternary X
vertex from the ZX calculus, with aπ phase:

:= 7→ |1〉〈00|+ |0〉〈10|+ |0〉〈01|+ |1〉〈11|.

In particular, it is provable in the ZW calculus that

,

( )

and ,

( )

form a strongly complementary pairin the sense of [22].
Moreover, the ZW calculus completes the axiomatisation of

the GHZ/W calculus with additive inverses, as started in [11],
and can be used to encode rational arithmetic as suggested
there.

With little effort, we can obtain completeness results for
mild extensions of the ZW calculus. For alln ∈ N, let Ab2,n

be the subcategory ofAb generated, under tensoring, byZn⊕
Zn, whereZn is the cyclic group of ordern; and letZWn

be the (expanded or condensed) ZW calculus augmented with
the rule

orn

⇔n

.

There is a quotient functorAb2,free → Ab2,n induced by the
quotientZ ։ Zn, and we can see that the rewrite ruleorn is



precisely the implementation, on diagrams in normal form, of
the action of this functor. Thus, we can state the following.

Corollary 17. For all n ∈ N, SD[Tc/ZWn] is monoidally
equivalent toAb2,n.

The casen = 2 is particularly interesting, for it becomes
provable that

,⇔ ⇔ ;

these two rules, alone, can then replace2b, 3b, 4, 7a, 7b and
X, leading to a significantly simplified calculus. In fact, even
or2 becomes just a consequence of rule5a:

⇔
2a ; sp0,2

W

⇔

⇔
5a 5b

⇔
.

⇔
5c

⇔

The categoryAb2,2 was considered in [23] as a toy model
of quantum theory - the theory of (pure)mobits. The ZW2

calculus is a complete axiomatisation of it.
It is conceivable that the ZW calculus might be adapted

to describe modules over more general rings and semirings.
In the important example ofFRel, that is, modules over the
semiring of Booleans, one obvious step would be to replace
rule 5d with

⇔
;

however, there is no such clear substitute for rule5a.

V. CONCLUSIONS AND OUTLOOK

In this paper, we set out to improve and complete the
axiomatisation started in [11], [12] of the relations between
the GHZ and W 3-qubit quantum states.

This led us to a new diagrammatic calculus, the ZW calcu-
lus, of which we defined two equivalent versions: expanded
and condensed. We proved the soundness and completeness of
the ZW calculus with respect to an interpretation inAb2,free,
the category of abelian groups and homomorphisms generated
by Z⊕Z under tensoring, by describing a normal form for its
condensed version, and an explicit normalisation procedure.
With that, we also proved that the ZW calculus refines a
version of the ZX calculus, while retaining its symmetry and
simple algebraic characterisation.

While this result may have a certain conceptual interest by
itself, it is but one small step in a wider programme, which
can be carried on in several directions.

Our normalisation procedure was tailored to making the
completeness proof short and perspicuous, but it is by no
means an efficient one. One obvious next step would be
to study and improve the computational properties of the
ZW calculus, looking for clever rewrite strategies, equivalent
rulesets with a better performance, and, possibly, different
normal forms.

Indeed, our normal form, devised for the sake of the com-
pleteness proof, is exactly as informative as the sum expression
(1), and has none of the advantages of the diagrammatic
notation for states, such as representing theirseparabilityas
topological disconnectedness, so it might be worth exploring
some alternatives. This may be done with the help of Quan-
tomatic [13].

On a different subject, to make the ZW calculus more
useful for calculations, one would need a way to boost it from
the integers to real numbers (or approximations thereof), and
interpret it in the category of real vector spaces. The fact that

n F
7→ n

suggests that wires are already used for counting in the ZW
calculus, in the only way they possibly can, being measureless:
one each. Then, a possibility that comes to mind is adding
wires with asigned measureon top, and defining

F
7→ |0〉〈0|+ eλ |1〉〈1|

λ

for a wire that is “long” λ ∈ (−∞,+∞); this is similar
to the ZX calculus with arbitrary phases. From here, and in
the direction of SLOCC classification, the next step would
be reaching complex numbers. One could just proceed in a
similar fashion, adding phases like in the ZX calculus; but,
possibly, a further “geometrisation” of the ZW calculus will
suggest unexpected, more natural ways of encoding complex
phases.

However, as much as it is worth investigating extensions of
the ZW calculus, the same is true of its fragments. One that we
mentioned before is the monochromatic fragment, consisting
of black vertices and crossings, and whose interpretation is
restricted to purely even and purely odd maps. Eliminating the
second colour, in a way, leaves us with pure topology, and the
fact that a self-crossing wire corresponds to the “sign changer”
hints at some specific topological phenomenon lurking behind.

Moreover, there are hints that this topology might already
contain indications for SLOCC classification. For tripartite
states,

,

correspond to the two distinct maximally entangled SLOCC
classes, and they very obviously have a different topology.



Similarly, for quadripartite states,

, , ,,
(000,W) (GHZ,W) (0kΨ,0kΨ) (0kΨ,GHZ) (000,000)

are all representatives of distinct SLOCC super-classes, as
defined in [5], with the corresponding right singular subspace
written below each diagram. We do not know, for now, exactly
which states, in how many SLOCC classes, are expressible in
the monochromatic language, but it might be worth tackling
their classification first.

To end on a speculative note: the completeness of the
expanded ZW calculus shows thatAb2,free is fully captured
by undirected string diagrams with vertices of two colours -
in fact, binary and ternary vertices suffice - and a few alge-
braically motivated axioms; and the ordering and directionality
that are imposed by the categorical description come to be seen
as redundant structure, over a simplergeometry of morphisms.

Taking this one step further, we wonder: is there an under-
lying geometry of the GHZ and W states that fully captures
our axioms, in the way that the simpler theory of commutative
Frobenius algebras is captured by 2-dimensional topological
quantum field theories [24]?

Understanding the compositional structure of multipartite
entanglement is likely to involve an original interplay of alge-
bra and geometry; monoidal categories, with their associated
diagrammatic languages, might just provide the bridge thatis
needed.

ACKNOWLEDGMENT

The author is supported by an EPSRC Doctoral Training
Grant. Many thanks to Bob Coecke, Stefano Gogioso, Aleks
Kissinger, Jamie Vicary, and Linde Wester for useful discus-
sions and suggestions. All diagrams were drawn with TikZiT
[25], whose developers also have the author’s gratitude.

REFERENCES

[1] A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Physical
Review Letters, vol. 67, no. 6, p. 661, 1991.

[2] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s
theorem without inequalities,”Am. J. Phys, vol. 58, no. 12, pp. 1131–
1143, 1990.

[3] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two
inequivalent ways,”Physical Review A, vol. 62, no. 6, p. 062314, 2000.

[4] L. Lamata, J. León, D. Salgado, and E. Solano, “Inductive classifica-
tion of multipartite entanglement under stochastic local operations and
classical communication,”Physical Review A, vol. 74, no. 5, p. 052336,
2006.

[5] ——, “Inductive entanglement classification of four qubits under
stochastic local operations and classical communication,” Physical Re-
view A, vol. 75, no. 2, p. 022318, 2007.

[6] B. Coecke and A. Kissinger, “The compositional structure of multipartite
quantum entanglement,” inAutomata, Languages and Programming.
Springer, 2010, pp. 297–308.

[7] S. Abramsky and B. Coecke, “A categorical semantics of quantum
protocols,” inLogic in Computer Science, 2004. Proceedings of the 19th
Annual IEEE Symposium on. IEEE, 2004, pp. 415–425.

[8] P. Selinger, “A survey of graphical languages for monoidal categories,”
in New structures for physics. Springer, 2011, pp. 289–355.

[9] B. Coecke and R. Duncan, “Interacting quantum observables,” in Au-
tomata, Languages and Programming. Springer, 2008, pp. 298–310.

[10] M. Backens, “The ZX-calculus is complete for stabilizer quantum
mechanics,”arXiv preprint arXiv:1307.7025, 2013.

[11] B. Coecke, A. Kissinger, A. Merry, and S. Roy, “The GHZ/W-calculus
contains rational arithmetic,”arXiv preprint arXiv:1103.2812, 2011.

[12] A. Kissinger, “Pictures of processes: Automated graphrewriting for
monoidal categories and applications to quantum computing,” Ph.D.
dissertation, University of Oxford, 2012.

[13] A. Kissinger, A. Merry, L. Dixon, R. Duncan, M. Soloviev, B. Frot,
D. Quick, and V. Zamdzhiev, “Quantomatic,” Software available on-line
at http://sites.google.com/site/quantomatic/.

[14] S. MacLane, “Categorical algebra,”Bulletin of the American Mathemat-
ical Society, vol. 71, no. 1, pp. 40–106, 1965.

[15] G. M. Kelly and M. L. Laplaza, “Coherence for compact closed
categories,”Journal of Pure and Applied Algebra, vol. 19, pp. 193–213,
1980.

[16] V. S. Varadarajan,Supersymmetry for mathematicians: an introduction.
American Mathematical Soc., 2004.

[17] B. Coecke, B. Edwards, and R. W. Spekkens, “Phase groupsand
the origin of non-locality for qubits,”Electronic Notes in Theoretical
Computer Science, vol. 270, no. 2, pp. 15–36, 2011.

[18] A. Merry, “Reasoning with !-graphs,” Ph.D. dissertation, University of
Oxford, 2014.

[19] R. Bruni, I. Lanese, and U. Montanari, “A basic algebra of stateless
connectors,”Theoretical Computer Science, vol. 366, no. 1, pp. 98–120,
2006.

[20] R. Bruni, H. Melgratti, U. Montanari, and P. Sobociński, “Con-
nector algebras for C/E and P/T nets’ interactions,”arXiv preprint
arXiv:1307.0204, 2013.
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