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Abstract—Diagrammatic techniques for reasoning about It turns out that there exists a 3-qubit state, the GHZ state
monoidal categories provide an intuitive understanding ofthe  [2] for which an uncooperating user results in the other two
symmetries and connections of interacting computational m- being disconnected, and another 3-qubit state, the W state,

cesses. In the context of categorical quantum mechanics, €cke S . .
and Kissinger suggested that two 3-qubit states, GHZ and W, where a communication channel persists between any pair of

may be used as the building blocks of a new graphical calculys USers. So, one is faced with the following problem:

aimed at a diagrammatic classification of multipartite qubit en- « find a classification ofn-qubit entangled states which
tanglement that would highlight the communicational propeties reflects their differenttommunicationalproperties, and
gih%ﬁg;um states, and their potential uses in cryptographi potential uses in quantum cryptography.

In this paper, we present a full graphical axiomatisation of  Clearly, we should allow for some local “pre-processing”
the relations between GHZ and W: the ZW calculus. This by individual users, prior to measurement: as long as the
refines a version of the preexisting ZX calculus, while keepg performed operations are invertible, this can be seen st a

its most desirable characteristics: undirectedness, a lge degree 3 translation of the system into their preferrimat, not
of symmetry, and an algebraic underpinning. We prove that tte affecting the communication

ZW calculus is complete for the category of free abelian grops

on a power of two generators - “qubits with integer coefficiets” If we ask that thi§ pre-processi.ng be a part of the protocol,
- and provide an explicit normalisation procedure. that is, pre-determined, we obtain the so-call€dCC clas-
sification of quantum statesLfcal Operations and Classical
. INTRODUCTION Communicatioh If we only want users to perform the “cor-

) ) rect” pre-processing with non-zero probability, we obttie
After a certain number of quantum systems have interactgflocc classificationf quantum states, which corresponds to

with each other, the results of Qbservations on the ind?"“duallowing arbitrary invertible local operations on the syss
systems may present correlations that cannot possibly

explained by their local features (a “hidden variable th&or = £qor 2 qubits, only two SLOCC classes exist, corresponding
This phenomenon is calleguantum non-locality to the “connected” and “disconnected” cases, respectiFely

Even though it is appealing to see these correlations @gubits, the GHZ and W states are representatives of the only
a form of “instantaneous communication” between systerigo classes of connected states. Fob 4 qubits, however,

- whereby it is the actions of one observer that inform th@ere areinfinite classes, as can be shown by a simple count
observations of another, however distant they may be - gpdegrees of freedom|[3], and only inductive classification
information can actually be transmitted from one location super-classes, with little insight about operational béha,

the other, in this way. are known 4], [5].

In a broader sense, however, communication is about obtainQuantum systems satisfy a property caltedp-state dual-
ing to share some knowledge - and thesangledstates can ity: it is possible to turn any input of a quantum operation
be used as generators of shared information. This is the idg®@ an output, and vice versa, so that - for instance - any
behind entanglement-based key exchange protocols, pithearipartite state may also be seen asiaary operation In
by Ekert's E91I[1]. [6], Coecke and Kissinger showed that the GHZ and W states

Arguably, the kind of information that we could expect t@orrespond, as binary operations, to cerfambenius algebras
share from a distance can all be digitised. Hence, for p@pos in a particular sense, the only two possible kinds of Fralen
of communication, we can restrict our attention dabits algebras on qubits. Moreover, as quantum gates, togethier wi
guantum systems that only accept yes/no questions. single-qubit states, they are universal for quantum comgut

When only two users are involved, there is not much elsghich suggested they could be usedbasiding blocksfor a
that one can desire, besides perfect correlation. Withetbre compositional classification of multipartite entanglemen
more users, however, a variety of scenarios may arise. Seppo Coecke and Kissinger formulated their result in the frame-
the third user decides to not cooperate: are the other tWo sivork of categorical quantum mechani¢€QM), initiated by
to obtain some sharing of information, or should they remajid]. CQM heavily relies onstring diagramsas a graphical
empty-handed? language for monoidal categories [8]: while the latter are a
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natural home to the formalisation of computational proesss Il. THE LANGUAGE

and their interactions, the diagrams provide a high-leaet | \\e describe the ZW calculus in the framework of PROPs

guage for reasoning about them, which bypasses some of [’.]':lj]' thinking of its basic diagrams as thgenerators and

bookkeeping that is associated with algebraic categomyrihe jts ryles as theelations that make up the presentation of a

allowing one to focus on the connections, and the flow @Rrop, A PROP is a symmetric strict monoidal category that

information between such processes. hasN as its set of objects, and a monoidal product given,
In particular, a diagrammatic theory of Frobenius algebras objects, by the sum of natural numbers; morphisms

is the basis of th&zX calculus[9], whose completeness form are meant to represent operations withinputs andm

the importantstabiliser fragment of quantum mechanics hasutputs. Diagrammatically, these are depicted as venidis

recently been proven [10]. In_[11], [12], a graphical axieman incoming wires andm outgoing wires (time flows from

tisation of the relations between the GHZ and W algebrasttom to top):

was started, with a similar calculus in mind; but this was not m
brought to completion, and only results about universalitg
classification were obtained. n

In this paper, we present tH&W calculus a diagrammatic Composition is depicted as the vertical “plugging” of wires

aX|omat|sat|qn Qf the relations be_tvveen the GHZ and \é(nd monoidal product as the horizontal juxtaposition of dia
algebras, which incorporates a version of the ZX calculus aBrams

shares some of its best properties, such as A little uncustomarily, we will depict the symmetric braid-

. featuringundirecteddiagrams, that are “as symmetrical"d S RN
as they look”, and \ = /
« having a small number of graphical elements and axioms, 7 N
« described in terms of important algebraic structures ari}q order to leave “intersecting wires” available for a ditfat

relations. morphism, thecrossing

We prove that the ZW calculus is complete for the category Let SD b,e the freeself-dual compact closed PROP' that Is,
Aby 1. Of free abelian groups on a power of two generé’l PROP with two generatots: 0 — 2, N : 2 — 0 satisfying

tors; more informally, it is complete for “qubits with integ o
coefficients”, which embed into generic qubits through the N - ‘ - m ,
inclusion of integers into complex numbers. We achieve this ) _

by providing a normal form for string diagrams, and an explic b N U ' Q = ﬂ .

normalisation procedure. We also derive completenesdtsesu
for mild extensions of the calculus. The Kelly-Laplaza coherence theorem for compact closed

The hope is that, having a complete axiomatisation andcgtegories/[15] allows us to be as lax as necessary with the
workable calculus at hand, it will be possible to focus ofrdering of wires, and the distinction between inputs and
rewrite strategies that are tailored specifically to idgitg ©UtPUtS, in the diagrammatic calculus.
the SLOCC class of a state, whose communicational proertie If 7' i @ set of operations of a certain arity, #D[7] denote
should be easily read off a properly normalised diagramsghdh€ PROP obtained by freely adjoining all morphismgino

strategies could be then implemented in automated graph?: Then, if R is an equivalence relation of morphisms in
rewriting software, like Quantomatic [L3]. SD[T], pairwise of the same typ&D[T'/R] will denote the
_— o o ) PROP obtained fron8D by adjoining the generators i’
Background:While familiarity with graphical languages for o qulo the equivalenceR. We will call pairs in R rewrite

monoidal categories would help, the paper only presupposgfss with graph rewriting in mind (seé [12] for a review of

a basic knowledge of algebra and category theory, includigg, subject).

the definition of (symmetric) monoidal category and monbida |, this formalism, proving the soundness and completeness

functor. of the calculus with generatorE, and rewrite rulesR, for
String diagrams are featured prominently; there are lina- monoidal categoryC, amounts to exhibiting anonoidal

itations on how well one can portray spatial reasoning aquivalencebetweenSD|T'/R] and C.

paper, but we tried to give them an appearance of depthWe present two equivalent versions of the ZW calculus. The

using different visual devices. In particular, we oftenwlra condensedersion has the following, infinite set of generators:

parts of diagrams in a lighter shade, putting them “in the

background”, either to convey that they are not the current T. ::{\nJ m >< } .

focus of a computation, or that their precise structure is no ° ' \OJ ' nomeN

important. Likewise, if we want to suggest that a certain '

pattern is repeated times, we only draw the extremities, andThe expandedversion has a finite set of generatarsC 7.,

one repetition in a lighter shade, followed by the numbher containing only binary and ternary black and white vertices



We interpret these diagrams &b, the monoidal category form for diagrams, and we will provide a systematic procedur
of abelian groups and homomorphisms, with monoidal productr eliminating them. However, their inclusion has some
given by the tensor product of abelian groups; or rathertsin iadvantages.
full subcategoryAb: fee, generated, under tensoring, by the First of all, the axioms of the ZW calculus become simpler,
free abelian group on two generato?rsg Z. and can all be described in terms of well-known algebraic

It is a standard equivalence that abelian groups are the sastractures and relations, such as Hopf algebras. Only aleoup
as Z-modules; the inclusiotZ — C induces an inclusion of of simple rules needs to be introduced to handle the crossing
Abs #ce iNto the category of finit€-modules, that is, complex specifically, plus an elimination rule.
vector spaces. Furthermore, the binary white vertex has the same interpre-

In fact, it is convenient to write the elements of these gsyuptation as a self-crossing wire, that is,
and the homomorphisms between them, inlileeketnotation
commonly used for vectors and linear maps. Hence, lefting 6 '
|1) denote the two generators Bf® Z, we will write n |0) +
m|1), n,m € Z, for an arbitrary element dZ @ Z; then, we and can be eliminated in favour of it.
will write |00) := |0) ®10), and|0)11]| for the homomorphism  Since the black vertices are interpreteddsd, that is, grade-

(Z ®7)®* — Z @ Z that sends11) to |0), and so on. reversing maps - having an odd numberlsfin each term -

The semantics of the ZW calculus are defined by a monoidhls leaves the ternary white vertex as the only vertex, @ th
functor F : SD[T,] — Abg e, fixed by the following expanded calculus, that is interpreted as an “impure” map:

interpretation of the generators: that is, one which is not even, nor odd. This leaves open the
Y, possibility of amonochromatidragment of the ZW calculus,
% = |00X00] + |01)(10] + [10){01] + [11)11], containing only crossings and black vertices, being cotaple

for a subcategory of purely even and purely odd maps.

\__/ — |00) + [11),

I1l. THE RULES
m (00 + (11] We now present the rule set of tlegpandedZW calculus.
’ There were some choices to make in its selection and pre-

" sentation, for which we adopted the following criteria: nos
\oJ = [10...0)+{01...0) +...+00...1), subsets of rules should have a short description, linkiegnth

n to well-known algebraic structures and relations; and thesr
\QJ = 10...0)—[1...1), of algebraic nature should only contain (weakly) “planar”

diagrams, that is, diagrams with crossings instead of brgsd

>< = |00X00] + JOTX10] + [10X01] — [11)11]. Rule 0. The black and white vertices are symmetric.

The interpretation of the braiding and of the dualities i-se X) = L J ’ W it ‘ it ( <
e Oa @ . 0b o oy’ o

explanatory. Thew-ary black vertex correspondsiodulonor-

malisation, to the quantum std¥,,), then-ary generalisation AN L o o )
of the W state. Then-ary white vertex, on the other hand, @ 0e U QJ od w od’ @
corresponds to then-ary Z spider from the ZX calculus,

with a = phase [[3]. Save for this phase and normalisatiofemark1. This rule allows us to treat the black and white
this is interpreted as the quantum sta@Z,), the n-ary erfices as vertices of anndirected graph in particular,

generalisation of the GHZ state! [2]. we can turn inputs into outputs, using the dualities, withou

The crossingneeds some further explanation. One ShOuWorrying about which particular wire has been turned around

keep in mind that this isota braiding iNAby free: SUCh MaPS £ instance, one can speak unambiguously of “the white
have been considered, with applications to supersymmetrgt ith 2 inout 4 1 outout” and depict it a@ Wi
[16], in the theory ofsuper vector space®r super modules Vertex wi INpUts an output’, and depict 1 - Ve

_ that is, Zo-graded modules, with a “bosonic” part and ()j(vill use Rule 0 implicitly, reshuffling the wires attacheddo

“fermionic” part, such that swapping two fermionic state¥erteX as needed. , .
induces a sign change. In our cass, would be singled out We will take advantage of this undirectedness throughout,

as the fermionic generator @ & Z. However, the categoriesfort'nsdtar:cCe by sptgakmg gplugglqgslof S;”n? diagrams,
of super vector spaces and super modules are restricted to'l§g-ead Of compositions and monoidal products.

called evenmaps - that is, maps that preserve the grading: ( ‘: g ) (E\ 8 )
in our case, the ones whose vector expression has an eRate 1. \ 7>+ © /) and ' are monoids.

number of1s in each term - for which the crossing is an

o o °
actual symmetric braiding. ./° °\. ./'
Moreover, the crossing is not a necessary addition to the s W = ( b4 ° W =
graphical language. Crossings are not featured in our Horma N La N 1b



the defining equations of a Hopf algebra. | skipped the two
o & additional equations that coincide wittz and the adjoint of
lc 1d 5b.

o |
Remark2. Rule 0 implies that the two are actually commuRule 7. #. is an even map, whilé® is odd.
tative monoids, which automatically yields the right uliiya

° \
rules. °
: . . ° = o =
Rule 2. ® and ¢ are involutions. rj'\ a QJ ﬁ 7 Q

\
[}
| <
[ ]

‘2(1

54
2b

Remark6. The appearance of the white involution - which, as
we mentioned, can be replaced with a self-crossing wire - on
the other branch of the crossing can be seen as a diagrammatic

definitionof oddness.
Rule 3. ® is an automorphism o(g\ ' 8 ) and Q of

e o This completes the set of algebraic rules; we single out the
(/‘\ , ® ) last one, which appears to have a purely computational value

: ° S Rule X. The elimination rule for crossings.
<:> . <:> : | |
/&» 30 /é\ & m AN : :

.
| =4
Remark3. We omitted the rules or? and¢ preserving units, g% < %%
for they are implied by2a + 3a, and2b + 3b, respectively. A
(g\ 8 ) (g ? ) ~ Definition 1. The expanded ZW calculus the setZW of all
Rule 4. : and ’ form a Frobenius rewrite rules contained in Rules 0-7 and X.
algebra.

It can be verified that all rules are sound for our interpre-
L tation, that is, the functoF' : SD[T] — Abg ee COMMutes
< through the quotien8D[T] — SD[T/ZW].
While the expanded ZW calculus is complete, it is hardly
6 o the most convenient version with which to work, for it does
Rule 5. (/o\ . ® ) and( ) form a Hopf algebra not epr(_Jlt all th(_a |nf(_3rmat|on that can be encoded in the
. . o symmetries of string diagrams. The bridge between expanded
with antipode . and condensed diagrams is given by spéler rules- actually,

4

e

Yy

N s o N rule schemata, fon, m € N.
P o (0 Pooe s e ")) e
AL¥y g udd .o UUP AN
Q 3 $
° ) &
! - U oe o W
© N [ ] [ J

Remark4. | omitted the adjoint (“vertical flip”) of rulesb, These rules are sound for our interpretation, and, togethbr

S rules 2a and 2b, they imply Rule 1, for which they can be
which is implied by symmetry. substituted:
o o @
\
Rule 6. (/.\ , © ) and(\g , ? ) form a “Hopf algebra” b4

with antipode | .

® é/ o o
\60,% ‘6b®®

(g @ ) and similarly for white vertices. Moreover, Rule 0, togethe
Remark5. Since » "/ is not a comonoid, this is not, with the spider rules, implies that the-ary vertices are
properly speaking, a Hopf algebra, but merely a pair satigfy symmetric for alln € N.

/’\Wspw R (/‘\
|
o PR

trW 2a

==
e ¢
0@ (oo



Derived rules Proposition 4 (Generalised bialgebra rule,. [The following
We now proceed to prove the validity of several usefdf @ derived rewrite rule, for alk, m < N:

derived rules. m o oom
! 0 tht N
Lemma 1. commutes with/\ , that is, ‘ o < >
L4 n,m
A AL G R

where, in the RHS, there is a single wire connecting each top

Remark?. In the terminology of [17],¢ is aphasefor A © vertex to each bottom vertex.

Proof: First of all, ) ) )
Proof: Combined with rule2a, the casen = m =0 is

rule 5¢; the caser = 1 orm = 1 is trivial; n = 0 andm > 1,
/i N N PN Qfm N m or vice versa, is an easy inductive generalisation of fbte
2% 4 sp2? try 20 »andn = m = 2 is rule 5a. From here on, proceed by double

induction onn andm. [ |

then, Proposition 5 (Generalised loop rule, .I)The following is a

g derived rewrite rule, for alln,m € N, n > m:

-
A - < % W - % < P;K
where the last step utilises the previous derivation. ] lpW

This derived rule, together with Rule 1, implies Rule 4, and

can be used to replace it. Proof: For m = 0, there is nothing to prove. Fon > 0,

Proposition 2 (Generalised phase rule)¢ commutes with OPserve that

all white vertices: for alln € N, :
- doc (
s ((}} 2 (53 s Gl
2, the claim follows from Lemma&l1, by and use the inductive hypothesis on— 1. |

Proof: Forn = 0, 1, 2 there is nothing to prove. For >
Remark8. The casen < m can be handled as follows:
- . . s
sz i o/cf. o
o= . 2b K\. amcv*'m ,
: * 14 14

2,n—2
ng

-o ogo_o}o -
3

m and then apply the previous Proposition, recalling the all
The previous is the first of a series of inductive generalishlternal wires can be reordered by symmetry.

tions of the basic rules, with proofs all very similar to eaciemma 6. The following is a derived rewrite rule:
other: we start from the case of ternary vertices, and use the

spider rule for the inductive step. We will omit their degail

o o o o
] .\ @
Proposition 3 (Generalised automorphism rulegjhe follow- <
ing are derived rewrite rules, for alh € N:

/é\ g Proof: We have
| | (Koo Lh o £
Proof: The cases = 0, 1,2 are given by Rules 2 and 3. 1d o /

For n > 2, proceed by induction. [ ]



then

Py A

The claim immediately follows. [ ]

Proposition 7 (Generalised bialgebra rule, llThe following
is a derived rewrite rule, for allh € N, m > 0:

N w

Even though the condensed ZW calculus has, technically,
infinite rewrite rules, which may seem to be a disadvantdbe, a
of its rule schemata are suitable for an implementationgusin
I-graphs[18] in Quantomatic. This leads, after all, to a smaller
ruleset, as well as shorter derivations.

By the proofs contained in this section, the condensed ZW
calculus is equivalent to the expanded ZW calculmsdulo
the spider rules; that iSSD[T/ZW] and SD[T./ZW_.] are
monoidally equivalent PROPs. In the next section, we will
prove the completeness of the latter fAb, .., Obtaining,
at the same time, that of the former.

IV. COMPLETENESS
Any elementy of (Z @ Z)®™ can be uniquely written as a

sum .
Z (=1)Pimy |bi...bin) 1)
i=1
Proof: The proof is basically the same as that of Propgg, somegq < 2", m; > 0, andp;, b, ; € {0,1}, i = 1,. __’q,
sition [4, where we omit the cases with = 0, use rule j =1,...,n, such that no pair of sequencas; ...b;., is
6b instead of5b, and rule6a, with a braiding replacing the equal.
crossing as by Lemnid 6, instead of role u We defineN(v)) to be the string diagram
Remark9. In fact, Propositio]7 also holds far = m = 0: . .
% = % = o o < g
7 @ bat? bay;’ 1(.) PdQ)
L
Proposition 8 (Generalised loop rule, I)The following is a <m1> < >
derived rewrite rule, for alln > 2: 4
: : N, o
C%) < where
Ip" [ A . .
® « the “sign changer” verte>§> marked withp; is only there
if p, =1, and
Proof: Follows from « the wire marked wittb; ;, connecting théth white vertex
‘ ¢ w to the jth black vertex, is only there #; ; = 1.
¢ 1 By symmetry, the ordering of the internal wires is irrelelyan
n n—1 N n—2 : N although it is possible to fix an arbitrary criterion, if need
ey sz " for uniqueness.
? v Remark10. The diagram could be additionally simplified by
° ° using the spider rule for black vertices, and r2deo eliminate
& .,ozt?o\. o ° some binary white vertices. However, we priviliged thisnfor
bal 71 H spy” s for it exposes all the individual computational components

All homomorphismsf : (Z ® Z)*™ — (Z & Z)®™ are
m the partial transpose of some statg of (Z @ Z)®(™1+72)| so
we can defineV(f) to be N(¢;) with some of the outputs
turned into inputs, using the dualities.
We say that a string diagrag is in normal formif there
1) the rewrite rules contained in Rules 0, 2, 7 and X, plusxists a morphisnf of Ab, g0 such thatG = N(f).

trw andtrz; n Remarkl1. Speaking of a normal form is a slight abuse of
2) for all n,m € §+n£hn? ruIstle‘{V : bpzn#gph » ANy, terminology, since the term is usually associated to teatnin
am?, bag™, Ip , ba andlp ing, confluent rewrite systems. However, as long as a didecte
We write Fyw : SD[T./ZW.] — Aby . for the functor confluent version of the ZW calculus has not been developed,
induced fromF by soundness of the rewrite rules. it should be acceptable.

Definition 2. The condensed ZW calculus the setZW,
consisting of



Remark 12. An embryo of this normal form appeared inLemma 9 (Delooping) A string diagram in normal form can
[19], where an axiomatisation of a subcategon#del, the be rewritten in a loop-free form, that is,
category of finite sets and relations - as modules over the w

semiring of Booleans - was proposed, using the analogues of o
the GHZ and W monoids. /
This axiomatisation was complete for the theory considered m
there, but had a large number of convoluted axioms, inctudin é)\ @)

a complicated axiom schema with one rule for alle N. ° ' (2)

However, it stirred further work on algebras of connect«mszemarle This operation corresponds, basically, to writing
the study of concurrent systems [20], which ended up crgssin m;

paths with research on the ZX calculusl[21]. m; as the suml + ...+ 1.

We claim thatFN(f) = f; it suffices to check this for Proof: Follows from
statesy € (Z & Z)®". In fact, we will always consider string

k
diagrams corresponding to states; dualities take care ef th \é) \%J
general case. %
@
¢

q
1) First of aII,\oJ gives a stateW,) = |10...0)+...+ am?y, { }) bam™#
|0...01). Theith individual summand|0...010...0),
has a singlée in the ith position.

2) Then, fori =1,...,q, performed on all loops, with a final application of the spider
rule to merge all the black vertices on the bottom. [ ]
Remarkl14. Conversely, we can rewrite in normal form any
. i diagram that is in a form liked{2), and may additionally
i 0XO[ + (=1)P"m; [1)1]. ; . ;
« have more than one wire connecting a pair of a black and

a white vertex: these can be eliminated with the rlii€s
« have two white vertices connected to the same outputs,

The ith summand is transformed into one with a sign changer, the other without it.
(=1)P*m; [0...010...0). The latter, intuitively, correspond to a terh— 1 in the
3) Finally, the summation, and should cancel out. By retracing the proof of

Lemma[®, we see that these pairs end up being rewritten as a

k
I
\%J 0. 0)0[ +[1...1)1] oop .
o
copy both0s and 1s. The Os of |0...010...0) get ((D
o ’

“absorbed” by the black vertices:

through the steps of Remalrk 8.

We say that such diagrams arepre-normal form In most
of the following proofs, we will deloop diagrams in normal
leaving only a diagram of the form form, and perform certain operations that will, in general,
only yield a diagram in pre-normal form; that this is suffitie

QJ f follows from the considerations of Remdrk] 14.

/o.\\o &

pw

\ to which the rulelp);™ can be applied, either directly, or

g b4 B bt bin).  Lemma 10 (Negation) The plugging of® into one end of
;9 ¥mzibav a diagram in (pre-)normal form can be rewritten in normal
from, and has the effect of “negating” its connections to the
Overall, the ith summand is transformed intowhite vertices; that is,

(=1)Pimy |bsa ... bin), and|Wg) into . \
[ 4

|

[ 4

This proves that our interpretatiafi is a full functor over :
Ab; free. Completeness of the ZW calculus fArbg g will

ensue from the following two facts:
(@) N is a monoidal functoA by free — SD[T./ZW ]; }j %
(b) N is a left inverse forFyy .




Proof: Suppose first that > 0. By using the spider rules can be rewritten in normal form.
and the phase rules, we can “detach” the part of the diagram ) ] .
containing the connections of the vertex that is involved: Proof: We apply negation repeatedly; since this only
affects the connections of the two ends involved, we candavoi
P’y ‘ drawing the rest of the diagram. We distinguish four groups
H s © of white vertices, based on their being connected to botls,end
/.\ 2 o only one end, or no ends:

n Aad ; ©
@ (%) . ;
<

£ 3
AT

AN,

_ \ Then, using the spider rule to merge the black vertices, and
where we used the automorphism rule to push through, the1p? rule to eliminate group i, we rewrite this as

and moved vertices around a bit to make the next step clearer.
In the casen = 0, we can directly skip to this point:

where we used negation again. Finally, focusing on group iv,

Using the bialgebra rul&a™?, and rule2b to eliminate

i
: SR
some bhinary white vertices, we rewrite this as PN PN
\. \ ba%}{/j ; ph* /é\ Ké\

[ 4
A 54 [ SR J [ SR J
ox 909 LA
@m© & o /- b
.\././

Modulo the automorphism rule, wires on the bottom all lead
to black vertices, so we can apply the spider rule, obtaiaing
which completes the proof. B diagram in (pre-)normal form. ]

In particular, through negation in the sense of this lemma, aTpe nullary black vertex is interpreted @sthe next lemma
disconnected black vertex can be connectealltthe topmost proves that it acts this way.

white vertices.

Lemma 11(Trace) LetG be a string diagram in (pre-)normal If_oermmt?\elfzol(lﬁbgr?rptslog) ;odr se” ?'tzgrrag_s in(pre-)normal
form. The plugging of two open ends &finto each other, ' wing 1S a valid rewnte rute.

|
o o n [ ] n
- 0 [

[
m m <:>
©® " © (& /% .
® , L



Proof: Using negation, we obtain (a) when one of the diagrams is of the form

|
[ ] n
[

3
(2 2 )

|
[ ] n
[ ]

m ) and we can use the nullary black vertexto absorb the
W other diagram;

(b) when one end was connected to all the topmost white
n vertices, and the other to none. In this case, by only
negating the first, we can obtaine , and apply the
absorption lemma again.

& m & Therefore, we can assume that both ends are connected to at
least one white vertex of their respective diagrams.
Focusing on one side of the plugging - s&y,- and the

connected white vertices, we have a subdiagram of the form
where the new vertex is connected to all the topmost white

vertices. From here, we can proceed as in the last part of i et '
Lemmal1l [ | K j

With the negation, trace and absorption lemmata on hand, .‘ M
we are able to give the central proof of our completeness i
theorem.

Theorem 13. LetG, H be two string diagrams in (pre-)normal
form. Then the plugging &f andH along any number of wires
can be rewritten in normal form.

. .
Proof: As usual, deloo; and# if they are not already ><
loop-free. Suppose thab end ofG is plugged into one oH,
that is, the two diagrams are simply juxtaposed. Then, we can ‘:* /% &
rewrite the result as bal* 3/ . 3/ .

e o n e o7
® /\ °
Modulo the automorphism rule, the wires on the bottom all

lead to black vertices, which we can merge with the spider
©) rules.
In particular, one wire for each of the initial white vertice
leads to the “bottom” black vertex @f; hence, there is one
n black vertex to which all of the newly created white vertices

are connected. This allows us to use rule X on any pair of
A white vertices, and turn all the crossings of the diagram int
& braidings.
. Proceeding symmetrically on the side &f, we can push

all the white vertices in the middle, at which point, applyin
the spider rules an#lb as much as needed, we obtain a string

. o . . .
where we introduced ae in the picture, usingay;, and diagram in pre-normal form. This completes the proof. m
applied negation twice. The diagram so obtained is a pluggin

along a single end. Corollary 14. N is a monoidal functor Abs free —

On the other hand, if more ends @fare plugged into ends SD[T/ZW.].
of H, we can factor the plugging as a single-end plugging, Proof: Both composition and monoidal product in
followed by a sequence of traces, as in Lenimia 11. TherefogD(7,./ZW .| correspond to certain pluggings (possibly along
it suffices to consider the case where one engd of plugged zero wires) of string diagrams. Moreover, by uniquenesbef t
into an end ofH. normal form and soundness of the rewrite rulesy{fy)o N (f)

If one of the open ends that are being plugged is discois- rewritten into N(h) for some homomorphisnh, then
nected from white vertices, or both of them are, we can apphgcessarilyh = g o f; similarly for N(g) ® N(f).
2a, and then negation to both of them. The only cases whenSince, by Theorerm 13, such a rewrite is always possible, it
this still leaves one end disconnected are follows that N is a monoidal functor. [ |

0,0



Theorem 15. Every string diagram can be rewritten in normalwe have

form.

Proof: First of all, using the spider rules, we can rewrite
every string diagram into a diagram with only ternary and
binary black and white vertices. Such a diagram is equal to
a plugging of generators ifi', dualities, and braidings; by
Theoreni 1B, it suffices to prove that these can be rewritten in

normal form.
The black vertices are trivial:

NP @ JERGEAR]

For the ternary white vertex:

o o o
[ ] ® [ ]
= Q =
sp%’3 ; 2b am% ; 2a i '
@

and similarly for the binary one. For the dualities:

UREL RS &

where the first rewrite was derived in the proof of Lemha

Finally, for the crossings, observe first that

]
= g g
2a (O |

° °

° °

o |

amQZ ; ph? X [ ]

from which, retracing some steps, we obtain

2 A,

Then, having rewritten

UU‘E’%%},

to which ruleX can be applied, yielding a diagram in normal
form. The braidings are handled similarly. ]

Remark15. If the initial diagram has no crossings, ruié is
not needed for its normalisation.

Corollary 16 (Completeness of the ZW calculusfyzw :
SD[T./ZW.] = Abg free aNd N : Abg free — SD[T./ZW ]
form a monoidal equivalence.

Proof: We already know thatV is a right inverse for
F. By unigueness of the normal form, and soundness of the
rewrite rules, if a diagrang is rewritten intoN (f) for some
homomorphismyf, then necessarily = F(G).

Since, by Theorerh 15, such a rewrite is always possible,
G = NFzw(9) for all morphismsG of SD[T,./ZW_]. [ |

Although we only explicitly stated the completeness of
the condensed ZW calculus, that of the expanded version
immediately ensues.

One consequence that we can draw at once is that, under
a suitable reinterpretation of the latter’s diagrams, thé Z
calculus contains the ZX calculus with phases, and is, to
all effects, a refinement of it. This follows from the fact tha
a triangle of ternary W vertices corresponds to the ternary X
JVertex from the ZX calculus, with a phase:

A - ,/f\,H |1)(00] + [0)10] + [0XO1| + |1)(11].

In particular, it is provable in the ZW calculus that

(AS)) and (}%8)

form a strongly complementary pain the sense of [22].
Moreover, the ZW calculus completes the axiomatisation of
the GHZ/W calculus with additive inverses, as started ir],[11
and can be used to encode rational arithmetic as suggested
there.
With little effort, we can obtain completeness results for
mild extensions of the ZW calculus. For alle N, let Ab, ,,
be the subcategory &fb generated, under tensoring, By, ®
Z.,, whereZ,, is the cyclic group of order; and letZW,,
be the (expanded or condensed) ZW calculus augmented with

the rule
°
L
° or™
®

There is a quotient functoA by tec — Abs ,, induced by the
quotientZ — Z,, and we can see that the rewrite rul¢' is



precisely the implementation, on diagrams in normal forfn, 0 Our normalisation procedure was tailored to making the
the action of this functor. Thus, we can state the following.completeness proof short and perspicuous, but it is by no
Corollary 17. For all n € N, SD[T,/ZW,,] is monoidally means an effi_cient one. One obviogs next step. would be
equivalent t0Abs .. to study and improve the compute_monal prqperues _of the
’ ZW calculus, looking for clever rewrite strategies, eqléva
The casen = 2 is particularly interesting, for it becomesrulesets with a better performance, and, possibly, differe

provable that normal forms.
Indeed, our normal form, devised for the sake of the com-
>< - X - pleteness proof, is exactly as informative as the sum esjores
/ ' ; (@), and has none of the advantages of the diagrammatic

notation for states, such as representing tseparabilityas
these two rules, alone, can then replaée3b, 4, 7a, 7b and  topological disconnectedness, so it might be worth exptpri
X, leading to a significantly simplified calculus. In fact, eveSOmMe alternatives. This may be done with the help of Quan-

or? becomes just a consequence of ride tomatic [13].
On a different subject, to make the ZW calculus more

[ J [ d
ﬁ 4 ] 4 ﬁ useful for calculations, one would need a way to boost it from
<.> o <X> o Q><> o the integers to real numbers (or approximations thereaf), a
Y 24 5p%2 @ : ‘ . interpret it in the category of real vector spaces. The faat t
[ ] [ 4 [ ] [ 4 [ ]
| . | o | °
o $ 3 Ora
[ ] L
& ‘ s &
5a o 5b 5¢c

; ' suggests that wires are already used for counting in the ZW
calculus, in the only way they possibly can, being meassasele

The categoryAb, > was considered il [23] as a toy modebne each. Then, a possibility that comes to mind is adding

of quantum theory - the theory of (pure)obits The ZW, Wwires with asigned measuren top, and defining

calculus is a complete axiomatisation of it.

N
/

It is conceivable that the ZW calculus might be adapted T

to describe modules over more general rings and semirings. = [0X0] + e [1X(1]

In the important example dfRel, that is, modules over the

semiring of Booleans, one obvious step would be to replace

rule 5d with for a wire that is “long” A € (—oo,+00); this is similar
‘ to the ZX calculus with arbitrary phases. From here, and in
O N the direction of SLOCC classification, the next step would
- : be reaching complex numbers. One could just proceed in a
¢ similar fashion, adding phases like in the ZX calculus; but,

_ _ possibly, a further “geometrisation” of the ZW calculus Iwil
however, there is no such clear substitute for fule suggest unexpected, more natural ways of encoding complex
V. CONCLUSIONS AND OUTLOOK phases. o _ o .
In this paber. we set out to improve and complete t However, as much as it is worth investigating extensions of
. > Paper, i : P : b r}ﬁe ZW calculus, the same is true of its fragments. One that we
axiomatisation started n [11]L112] of the relations beewe mentioned before is the monochromatic fragment, congjstin
thﬁ.ﬁ:ég:ﬁ :’c\)/:ﬁ:ﬁ';ﬁ;?gﬁg;gﬁ;wIus the ZW calcﬁ)f black vertices and crossings, and whose interpretagon i
. ) 9 . o rgstricted to purely even and purely odd maps. Eliminatieg t
lus, of which we defined two equivalent versions: expand(,eSec nd colour, in a way, leaves us with pure topology, and the
and condensed. We proved the soundness and Completene§s (t)? ' L0 w27
the ZW calculus with respect to an interoretationdi. - act that a self-crossing wire corresponds to the “sign geéh
. P P - Tfreer  wints at some specific topological phenomenon lurking bkhin
the category of abelian groups and homomorphisms generate oreover, there are hints that this topology might already

by Z & 7 under tensoring, by describing a normal form for its AR LS N
condensed version, and an explicit normalisation pro&du?ontam indications for SLOCC classification. For tripiti

With that, we also proved that the ZW calculus refines gjates,
version of the ZX calculus, while retaining its symmetry and i ha\
simple algebraic characterisation. N A&
While this result may have a certain conceptual interest by
itself, it is but one small step in a wider programme, whichorrespond to the two distinct maximally entangled SLOCC
can be carried on in several directions. classes, and they very obviously have a different topology.



Similarly, for quadripartite states,

o—o - \, / o o
N Y 3t el 1
/ \ s PadN , PN s PadiN s PadN
(000, W) (GHZ,W) (0,¥,0,¥)  (0,%,GHZ)  (000,000)

are all representatives of distinct SLOCC super-classss,
defined in [5], with the corresponding right singular sulzspa

[20]
[11]

[12]

[13]

written below each diagram. We do not know, for now, exactly4]
which states, in how many SLOCC classes, are expressibl«ilié]
the monochromatic language, but it might be worth tackling

their classification first.

To end on a speculative note: the completeness of Hél

expanded ZW calculus shows thab ¢.. is fully captured

[17]

by undirected string diagrams with vertices of two colours -
in fact, binary and ternary vertices suffice - and a few algf-l—g]

braically motivated axioms; and the ordering and directliyn

that are imposed by the categorical description come to & sélL9]

as redundant structure, over a simmgeometry of morphisms

Taking this one step further, we wonder: is there an undegsg)
lying geometry of the GHZ and W states that fully captures
our axioms, in the way that the simpler theory of commutati\{gl]
Frobenius algebras is captured by 2-dimensional topadbgic

guantum field theories [24]?

Understanding the compositional structure of multipartit[zz]

entanglement is likely to involve an original interplay dfe-

bra and geometry; monoidal categories, with their assediat
diagrammatic languages, might just provide the bridge ihat!?®]

needed.
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