
Quantitative Semantics of the Lambda Calculus:
Some Generalisations of the Relational Model

C.-H. Luke Ong
University of Oxford

Abstract—We present an overview of some recent work on the
quantitative semantics of the λ-calculus. Our starting point is
the fundamental degenerate model of linear logic, the relational
model. We show that three quantitative semantics of the simply-
typed λ-calculus are equivalent: the relational semantics, HO/N
game semantics, and the Taylor expansion semantics. We then
consider two recent generalisations of the relational model: first,
R-weighted relational models where R is a complete commutative
semiring, as studied by Laird et al.; secondly, generalised species
of structures, as introduced by Fiore et al. In each case, we briefly
discuss some applications to quantitative analysis of higher-order
programs.

I. AN OVERVIEW OF QUANTITATIVE MODELS

Denotational semantics (or Scott-Strachey semantics) [73]
is an approach to formalising the meanings of programs by
mapping them into some abstract domain of mathematical
objects. A central tenet of denotational semantics is that the
semantics should be defined compositionally. The theory of
equality induced by the denotational semantics gives a natural
notion of program equivalence: two programs are equal if
they have the same denotation. On the other hand, according
to operational semantics, the meaning of a program is the
behaviour of some (typically abstract) machine when running
it. There is a compelling notion of program equivalence
based on operational semantics: two program phrases are
observationally equivalent just if they compute the same
outcome when one is replaced by the other in all possible
program contexts. A central problem in the semantics of
programming languages is to construct, for a given class of
languages, a denotational semantics that agrees with the oper-
ational semantics. The strongest such goodness-of-fit criterion
is full abstraction [62, 70]: the coincidence of the denotational
equality of programs with observational equivalence.

Though the basis of a successful programming language
theory, the notion of observational equivalence, and the related
developments in denotational and operational semantics, have
tended to ignore quantitative notions such as time, space and
energy as computational resource, or in the case of nonde-
terministic and probabilistic computation, such quantities as
the probability of a successful computation, and the expected
termination time.

A major step in quantitative semantics was Girard’s linear
logic [39]. A refinement of classical and intuitionistic logic,
linear logic emphasises the rôle of formulas as resources. The
use of linear logic as an organisational principle in semantics

of computation has the advantage of immediately revealing
information about resource usage. Unsurprisingly models of
linear logic are quantitative. This is already evident in the
simplest degenerate model, the relational model [13, 39], in
which multisets are used to record the number of times a
resource is used.

Around the time of the introduction of linear logic [39],
Girard also proposed the normal functor semantics of the
λ-calculus [40]. In this semantics, a term is interpreted as
a formal power series with set-valued coefficients, i.e., as a
functor X → Set, where the set X is the denotation of a
data type. In that work, Girard was “mainly concerned with a
quantitative approach: not only to say when f takes the value
· · · at argument · · · , but also how many times it does” [40,
p. 172]. His original intuitions came from linear algebra: data
types are interpreted as vector spaces; a resource of type A is
a vector

∑
a∈base(A)ma · a where the coefficient ma gives the

multiplicity of the atomic datum a of type A in the resource.
Programs are interpreted as power series or analytic functions;
programs that use their input exactly once then correspond to
linear functions. The idea is that, by choosing the appropriate
coefficients, we should be able to use such a semantics to
analyse programs, not only qualitatively, with respect to “what
they can do”, but also quantitatively, with respect to “in how
many steps”, or “in how many different ways”, or “with what
probability”.

Girard’s work [39, 40] engendered a rich vein of research,
initially in models of linear logic. In his normal functor model,
the scalars are sets. Ehrhard’s Köthe sequence spaces [23] and
finiteness spaces [24] recast Girard’s intuitions on actual vector
spaces over fields (the former over R and C, and the latter
over any field). In the weighted relational models of Lamarche
[56] and Laird et al. [51, 55], the scalars are elements of
any continuous commutative semiring, or, more generally, any
complete commutative semiring. In the quantitative model
of a higher-order quantum programming language studied
by Pagani et al. [67], the scalars are completely positive
maps of a finite dimension. Girard has suggested how his
coherence spaces model [38, 39] of linear logic can be refined
to give an account of probabilistic computation. Building on
Girard’s ideas, Danos, Ehrhard et al. [18, 31] have analysed
probabilistic coherence spaces as a model of higher-order
probabilistic computation.

In (idealised) quantitative semantics, programs are analytic
functions, which are infinitely differentiable. This motivates
the question of understanding differentiation as a program-978-1-5090-3018-7/17/$31.00 c©2017 IEEE

ming construct in a higher-order setting; and it led Ehrhard
and Regnier to introduce the differential λ-calculus [27], a
differential calculus for higher-order functions, and an accom-
panying differential linear logic [29]. In a follow-up paper
[30], Ehrhard and Regnier introduced the Taylor expansion
of a λ-term as a formal sum (with rational coefficients)
of terms of the resource calculus [30, 69], which may be
viewed as linear approximants of the λ-term. Models of the
differential λ-calculus (and resource λ-calculus) [6, 14] are
naturally quantitative. Many models of linear logic give rise to
models of the differential λ-calculus / linear logic. Particularly
attractive is the category CVS of convenient vector spaces
(c∞-complete locally convex topological vector spaces) and
bornological linear maps [7], in the sense of Frölicher and
Kriegl [36]. The category CVS supports a linear exponential
comonad for which the Kleisli category is the category of
smooth maps on convenient vector spaces.

There are proposals, from the programming language com-
munity, of denotational and operational semantics that carry
quantitative information. Game semantics [1, 44, 63] is a de-
notational semantics with a strong operational flavour that
typically captures more intensional information about the
computation (such as the number of times an input argument
is evaluated) than the more abstract Scott-Strachey style deno-
tational semantics. Exploiting the quantitative nature of HO/N
game model [44], Férée [32] has recently proposed a definition
of complexity for higher-order functions, as well as a class
of polynomial time computable higher-order functions. Sand’s
theory of improvement [71, 72] gives an operational account
of cost based on a refined notion of program equivalence.
Inspired by Sand’s ideas, Ghica has given a game semantics,
called slot games [37], which is induced by a notion of
observation formalised in Sand’s theory of improvement.

Outline of the paper

In this survey paper, we start from the relational model, and
consider two ways to generalise it.

In Section II we introduce MRel, the Kleisli category of
the finite-multiset comonad on the category Rel of sets and
relations. We then study three quantitative semantics of the
simply-typed λ-calculus: (i) relational semantics (ii) HO/N
game semantics, and (iii) Taylor expansion semantics. We
show that they are equivalent in an appropriate sense.

In Section III we consider the first generalisation of the
relational model, namely, the weighted relational models,
where the weights are elements of any continuous commuta-
tive semiring, and, more generally, any complete commutative
semiring. We briefly discuss some applications of these mod-
els to quantitative analysis of nondeterministic higher-order
computation.

Section IV concerns the second generalisation of the rela-
tional model, which is in a 2-categorical direction. We intro-
duce the bicategory Prof of profunctors, and the cartesian
closed bicategory ESP of generalised species of structures.
We analyse the ESP-semantics of the nondeterministic λY-
calculus, and show that it coincides with the rigid Taylor

expansion semantics. Rigid Taylor expansion of a λ-term is
a version of Taylor expansion that uses linear approximants in
the form of rigid resource terms, which are list-based (as op-
posed to bag-based), and considered modulo an isomorphism
action.

II. THE RELATIONAL MODEL AND ITS VARIOUS FACES

The relational model [40] is the simplest degenerate model
of the linear logic. It underlies most denotational models of
(differential) linear logic [27, 39], and serves to motivate the
general constructions of quantitative models in Sections III
and IV. The relational semantics of the λ-calculus is equivalent
to type assignment in a system of commutative, associative
and nonidempotent, intersection refinement types. We relate
the relational semantics to HO/N game semantics on the one
hand, and to Taylor expansion semantics on the other.

A. The relational model MRel

We start from the category Rel of sets and relations. Given
sets A and B, Rel(A,B) := P(A × B). The identities are
the diagonal relations: idA = {(a, a) | a ∈ A}; and the
composite of s ∈ Rel(A,B) and t ∈ Rel(B,C) is just
relational composition:

(s ; t) := {(a, c) ∈ A× C | ∃b ∈ B . (a, b) ∈ s ∧ (b, c) ∈ t}.

Given sets A and B, their tensor product A ⊗ B = A × B
is the cartesian product, with unit 1 = {∗}, an arbitrary
singleton set. Rel is ∗-autonomous: the linear function space
A(B = A×B, with the natural bijection Rel(C⊗A,B) ∼=
Rel(C,A (B) being induced by the cartesian product
associativity isomorphism. The categorical product A1 u A2

is the disjoint union, and the terminal object > = ∅. The
dualising object ⊥ = 1, and so, Rel is compact closed.

Notation: We represent a finite multiset m over a set A as
an unordered list [a1, · · · , an], and say that n is its cardinality.
We write the union of multisets m and m′ as m + m′, and
Mfin(A) for the set of finite multisets over A.

The finite-multiset construction, Mfin, is a comonad on
Rel, acting on morphisms s ∈ Rel(A,B) as Mfin(s) :=
{([a1, . . . , an], [b1, . . . , bn]) | ∀i ≤ n.(ai, bi) ∈ s}, with unit
derA := {([a], a) | a ∈ A} :Mfin(A)→ A and multiplication
digA := {(θ1 + · · · + θn, [θ1, . . . , θn]) | ∀i ≤ n . θi ∈
Mfin(A)} :Mfin(A)→Mfin(Mfin(A)).

We define the category MRel as the Kleisli category of
the Mfin comonad. It is useful to give a direct description of
MRel.
• The objects of MRel are sets.
• A morphism from A to B is a relation from Mfin(A) to
B. I.e. MRel(A,B) := P(Mfin(A)×B).

The identity map of A is the relation idA := {([a], a) | a ∈ A}.
The composite of s ∈MRel(A,B) and t ∈MRel(B,C) is

(s ; t) := {(m, c) | ∃(m1, b1), . . . , (mk, bk) ∈ s .
m = m1 + · · ·+mk ∧ ([b1, . . . , bk], c) ∈ t}.

MRel is cartesian closed. The products in Rel give the
products in MRel. It is convenient to regard the canonical

2

bijection Mfin(A1)×Mfin(A2) ∼=Mfin(A1 +A2) as equal-
ity. Thus we will still write (m1,m2) for the corresponding
element ofMfin(A1 +A2). Given sets A and B, the exponen-
tial object BA is Mfin(A)×B, and the evaluation morphism
evA,B ∈MRel(BA uA,B) is

evA,B := {(([(m, b)],m), b) | m ∈Mfin(A), b ∈ B}

Given s ∈MRel(C uA,B), its exponential transpose

λ(s) := {(m, (m′, b)) | ((m,m′), b) ∈ s} ∈MRel(C,BA).

MRel is a differential λ-category [6, 14]: the
homsets are endowed with the semi-additive structure
(MRel(A,B),+, ∅). Given s ∈ MRel(A,B), we define
its derivative D(s) ∈MRel(A uA,B) as

D(s) := {(([a],m), b) | (m+ [a], b) ∈ s}.

B. Relational semantics as refinement type assignment

Simple types are defined by the grammar: A,B ::= o | A→
A, where o is the unique atomic type. The relational semantics
of a λ-term-in-context Γ `M : A, written JΓ `M : AKMRel,
is determined by the cartesian closed structure of MRel, once
the interpretation of the atomic type o is given. Let X be
a fixed set which is assumed to be countably infinite. (The
assumption is not necessary for the relational semantics to be
well-defined; see Remark 8.) Define JAKMRel inductively by

JoKMRel := X
JA→ BKMRel :=Mfin(JAKMRel)× JBKMRel.

Let Γ = x1 : A1, . . . , xn : An. The relational semantics
JΓ `M : AKMRel is then a subset of(
Mfin(JA1KMRel)× · · · ×Mfin(JAnKMRel)

)
× JAKMRel.

Refinement types: A simple but important observation is
that the relational semantics JAKMRel of a simple type A can
be seen as the set of all nonidempotent intersection types that
refine A [12, 20]. Let α and β be elements of X . Then an
element of JoKMRel is an atomic type α ∈ X . Given a sequence
a1, . . . , an of elements in JAKMRel, we write a1 ∧ · · · ∧ an to
mean the multiset [a1, . . . , an] ∈ Mfin(JAKMRel). It follows
that the intersection connective ∧ is commutative, associative
and nonidempotent, as in Kfoury’s treatment [49] and, more
recently, de Carvalho’s [20]. An element of JA→ BKMRel =
Mfin(JAKMRel) × JBKMRel is then a pair (θ, a), which we
write as θ (a.

Thus, given a simple type A, JAKMRel can be seen as the
set of intersection types defined by the grammar

a, b ::= α | θ (a θ ::= a1 ∧ · · · ∧ an (n ≥ 0)

that refines A (written a C A), where the refinement relation
aCA and θ C !A is defined by the following rules.

αC o

θ C !A bCB

(θ (b) C (A→ B)

∀i ≤ n. ai CA

a1 ∧ · · · ∧ an C !A

We write > for the empty intersection; (associates to the
right, and ∧ takes precedence over (. In case aCA, we say

x : a ` x : a

∆0 `M : θ (b ∆1 ` N : θ

∆0,∆1 `M N : b

∆, x : a1, . . . , x : an `M : b x /∈ dom(∆)

∆ ` λx.M : (a1 ∧ · · · ∧ an) (b

∀i ≤ n. ∆i `M : ai

∆1, . . . ,∆n `M : a1 ∧ · · · ∧ an
Fig. 1. Rules of the type system corresponding to the relational semantics

a is a refinement type of A; similarly in case θ C !A, we say
θ is a refinement intersection of A.

A refinement type judgement is a triple of the form ∆ `
M : b where ∆ is an environment, which is defined to be a
finite multiset of type bindings of the form x : a such that a
is a refinement of the simple type of x. Given environments
∆1 and ∆2, we write ∆1,∆2 for their multiset union, and
define dom(∆) := {x | ∃a. (x : a) ∈ ∆}, the domain of ∆.
Figure 1 lists the typing rules.

The refinement type system is equivalent to the relational
semantics in the following sense. Take a λ-term-in-context
Γ `M : A with Γ = x1 : A1, · · · , xn : An, and a refinement-
type environment ∆ such that dom(∆) ⊆ dom(Γ). Suppose
∆ = [x1 : a11, · · · , x1 : a1r1]+· · ·+[xn : an1, · · · , xn : anrn];
write ∆ = (a11 ∧ · · · ∧ a1r1 , · · · , an1 ∧ · · · ∧ anrn). Then we
have:

Theorem 1. ∆ `M : a iff (∆, a) ∈ JΓ `M : AKMRel.

Thus the relational semantics and refinement type assign-
ment are equivalent, and we shall use them interchangeably.

C. Playful types are the inhabited refinement types

First a quick review of the syntax of the resource λ-
calculus [11, 25, 30]. Resource terms and bags are given by
the grammar:

M,N := x | λx.M |M P

P,Q := [M1, . . . ,Mn] (n ≥ 0).

We call M a term, and call P , which is a finite multiset of
terms, a bag. Since a bag is a multiset, it is identified with a
permutation of its elements; as is standard, α-equivalent terms
(respectively bags) are identified. Henceforth we shall only
consider simply-typed resource terms and bag (which means
that all terms in a bag must have the same simple type). A
typed term is β-normal if it does not have a subterm of the
form (λx.M)P ; it is η-long if every application and variable
in the term is fully applied. A resource term is normal if it is
β-normal and η-long.

We define a refinement type assignment system for resource
λ-terms. The typing rules are listed in Fig. 2 (except for the
last, they are the same as the rules in Fig. 1). We make the
same assumptions about environments ∆ as in the system for
the λ-terms. It follows that every provable judgement respects
the simple types of the terms and bags.

3

x : a ` x : a

∆1 `M : θ (b ∆2 ` P : θ

∆1,∆2 `M P : b

∆, x : a1, x : a2, . . . , x : an `M : b x /∈ dom(∆)

∆ ` λx.M : (a1 ∧ · · · ∧ an) (b

∀i ≤ n.∆i `Mi : ai

∆1, . . . ,∆n ` [M1, . . . ,Mn] : a1 ∧ · · · ∧ an

Fig. 2. Rules of the refinement type system for resource λ-terms

Say that a refinement type aCA is inhabited if `M : a, for
some (closed) resource term M of simple type A. A natural
question is to characterise the inhabited refinement types.

Every refinement type (intersection, respectively) defines a
finite unordered X -node-labelled tree (forest, respectively) as
follows.

• If, for each i ≤ n, Ti is the tree defined by ai, then
the forest defined by the intersection a1 ∧ · · · ∧ an is the
disjoint union of (labelled) forests {T1}+ · · ·+ {Tn}.

• If, for each i ≤ n, Fi is the forest defined by θi, then
the tree defined by the type θ1 (· · ·(θn (α is the
tree whose root node is labelled α, and the set of the root
node’s child-subtrees is F1 + · · ·+ Fn.

Given a refinement type a, let us call the tree thus defined Ta.

Say that a refinement type a is involutive if each atomic
type in a has exactly one contravariant and one covariant
occurrence. (Nodes of the tree Ta inherit their polarity from
a: nodes at levels 0, 2, 4, · · · are covariant; the other nodes
are contravariant.) An involutive refinement type a induces a
directed graph Ga whose nodes are those of Ta, and whose
edges are given by:

(1) edges of Ta from contravariant nodes, and
(2) edges linking a covariant node to the other node in Ga

labelled by the same atomic type.

Definition 2 ([78]). An involutive refinement type a is playful
if the induced graph Ga is acyclic; and for each edge (v, v′)
of the tree Ta, there is a path in Ga from v to v′.

Example 3. Consider the (playful) refinement type a C A
where A = ((o→ o)→ o)→ o and

a =

(
(δ (β) ∧ (>(γ)

)
(α
∧

(>(δ) (β
∧

>(γ

(α.

The induced tree Ta (with edges indicated by straight arrows,
either solid or dotted) and graph Ga (with edges as solid

arrows, either straight or curved) are depicted as follows.

α

}} ww �� ��
α

�� ��

β

��

γ

β

��

88

γ

==

δ

qqδ

Theorem 4. A refinement type is inhabited iff it is playful.

A proof can be found in [78].

Remark 5. The original intuition behind the playfulness con-
dition came from (P-visibility in) HO/N game semantics.
However an involutive refinement type induces a proof struc-
ture, and playfulness is closely connected to the correctness
criterion [19, 39] of multiplicative linear logic.

D. MRel, HO/N games and resource λ-calculus

We show that the following quantitative semantics of the
simply-typed λ-calculus are equivalent [78]:

1) Relational semantics (or refinement type assignment)
2) HO/N game semantics [44, 63]
3) Taylor expansion semantics [30]
Take a λ-term M . In the relational semantics, M is in-

terpreted as a collection of refinement types. In HO/N game
semantics, M is interpreted as a collection of plays. In the
Taylor expansion semantics, M is interpreted as a collection
of resource terms in normal form.

Underpining the equivalence of the three semantics is the
following technical result [78]:

Theorem 6. There exists a family of bijections parametrised
by simple types A

$A : { plays of arena A } /∼ →
{

normal resource
terms of type A

}
that preserves composition,, where ∼ is the alternating homo-
topy relation of Melliès [59, 77]. Via the bijections, the game
semantics of a λ-term coincides with its Taylor expansion
followed by normalisation.

As a consequence, we can define a functor from the category
of HO/N games to the Kleisli category MRel.

Corollary 7. The category of HO/N games is isomorphic to a
sub-cartesian closed category of the Kleisli category MRel.

Remark 8. Laird et al. [54] developed a method to construct a
differential category [6] from a symmetric monoidal category,
and then reconstructed a known category of games from a new
category of exhausting games. It follows from this construction
that there is a functor from a category of games to the
relational model. Compared to our work, this functor can be

4

seen as the “colourless” version (i.e. the set of atomic types
X is singleton) of the functor of Corollary 7.

In the rest of this section, we explain the bijective corre-
spondence between the following collections (and direct the
reader to [78] for the other details):

1) playful refinement types
2) (∼-equivalence classes of) plays
3) normal resource terms
(Because of the length restriction, we will assume basic

knowledge of HO/N games, and refer the reader to [44, 77].)
A rough and informal sketch of the idea is depicted in Figure 3.
A resource term in normal form can be written as a tree, as in
the middle of Figure 3. Each node is labelled by λ-abstraction
followed by a head variable.1 The edges express the relation-
ship between functions and arguments: the child of a node
is an argument of the head variable of the parent. Then we
line up the nodes of the tree in such a way that every node is
located to the left of its children. The resulting sequence of λ-
abstractions and variables is equipped with leftward pointers:
the pointer from an abstraction (solid lines in Figure 3) comes
from the parent-child relation in the tree, and the pointer from
a variable (dotted lines) is determined by the binder-bindee
relation. The sequence with pointers is reminiscent of a play
in the HO/N game model; indeed one can construct a play
from it by replacing λ-abstraction and variables with O- and
P-moves, respectively, in an appropriate way. (The structure
that is obtained—as shown on the rightmost of Figure 3—is
called traversal, as studied in [64, 65].)

A resource term generates a set of plays because the process
of lining up is nondeterministic. The main theorem states
that the set of plays generated by a resource term is a ∼-
equivalence class. Moreover every play is generated by a
resource term.

The idea should now be intuitively clear. However, to define
the bijection $A of Theorem 6, it is instructive to use the
refinement type assignment (or, equivalently, the relational
model) as a bridge, because refinement type assignment sys-
tems for both the resource calculus and the game model have
already been studied: the relational model is a common tool
for studying resource terms [11], and game semantics for an
intersection type assignment system has been studied [66].

The definition of the bijection $A of Theorem 6 is illus-
trated in Figure 4, and is divided into four steps. The simple
type in question is A = ((o111 → o11)→ o1)→ oε. (We use
subscripts to distinguish the occurrences of the atomic type o

in A.)
Step 1: Colouring a play: We assign a “colour” (written

as α, β, γ and δ in Fig. 4) to each occurrence of moves in
such a way that
• every pair of consecutive O-P moves have the same

colour, and
• different occurrences of O-moves (respectively P-moves)

have different colours.

1We consider λ-abstraction that can bind a (possibly empty) sequence of
variables, although only sequences of length 1 appear in Figure 3.

Thus one needs n colours to annotate a play of length 2n.
Step 2: Representing a coloured play by a tree: This step

simply forgets the sequential structure of the (coloured) play.
The resulting structure is a tree whose edge is a justification
pointer of the play and whose node is labelled by a pair of a
move and a colour. For example, the move and colour of the
node named l7 in Figure 4 is o11 and δ. The node named li
corresponds to the ith move in the original play. This structure
is called a valuated thick subtree in [9], a high-level arena in
[66], and a partitioned position in [21].

Step 3: Constructing a refinement type: High-level arenas
(or, valuated thick subtrees) bijectively correspond to intersec-
tion types that refine the simple type. Let us write ai for the
type corresponding to the subtree rooted at li. For example

(i) a8 is an atomic type δ that refines o111,
(ii) a3 is the type δ (β that refines o111 (o11,

(iii) a5 is the type >(γ that refines o111 (o11, where >
is the empty intersection type, and

(iv) a2 is the type ((δ (β) ∧ (> (γ)) (α that refines
(o111 (o11) (o1.

The type a1 = (a2 ∧ a4 ∧ a6) (α is written in Figure 4.
Step 4: Computing the inhabitant: The resource term cor-

responding to the play is the inhabitant of the refinement type.
An inhabitant always exists uniquely (up to α-conversion) for
an refinement type constructed in this way.

There are several difficulties in proving bijectivity of the
map defined above. In particular, in the last step, the existence
and uniqueness of an inhabitant are challenging to establish.
Our strategy is to study the map defined by Steps 1-3 and
the inverse of Step 4. We characterise the images of those
maps, using game semantics, and show their coincidence.
Then, given a refinement type in the image, we construct a
play and a resource term and prove their uniqueness. See [78]
for the details.

Preservation of composition by the bijection is relatively
easy to prove by applying known results.

E. Taylor expansion as game semantics

For a term L of the simply-typed nondeterministic λ-
calculus, we define L∗ by:

x∗ := {x } (λx.L)∗ := {λx.M |M ∈ L∗ }
(LL′)∗ := {M [N1, . . . , Nk] |

M ∈ L∗, k ≥ 0, ∀i ≤ k.Ni ∈ (L′)∗ }
(L1 + L2)∗ := L∗1 ∪ L∗2

We call L∗ the Taylor expansion of L. For example,(
λf.f(λx.f(λy.y))

)∗
contains resource terms λf.f [] and

λf.f [λx′.f [], λx.f [λy.y]] (and others). Let M be a set of
resource terms; we write NF(M) for the set of normal forms
of elements of M. We write JΓ `M : AKG for the game
semantics of a simply-typed term-in-context Γ `M : A. As an
application of Theorem 6, we have the following result [78].

Theorem 9. For every η-long nondeterministic λ-term-in-
context Γ `M : A, we have $(JΓ `M : AKG) = NF(M∗).

5

Fig. 3. Idea of the correspondence

32

1 4

Fig. 4. Illustration of the correspondence (where the simple type, or the arena, is A = ((o111 → o11)→ o1)→ oε.)

III. WEIGHTED RELATIONAL MODELS

In this section, we generalise the relational model with
weights. The category of weighted relations over a complete
commutative semiring R (equivalently, free R-semimodules
and linear functions) was introduced as a model of linear
logic by Lamarche [56]. This model was further developed by
Laird et al. (see [51, 55] among other) and its computational
properties analysed via a semantics of R-weighted PCF.

A. Lafont category: a model of intuitionistic linear logic

We begin with a categorical description of models of linear
logic as studied in Lafont’s PhD thesis [50]. There are more
general definitions, but Lafont’s simple formulation suits our
purpose. For a systematic analysis of categorical semantics
of linear logic, see Melliés’ monograph [60]. Also relevant
is Ehrhard’s account [26] from a differential linear logic
perspective.

Recall that an object A of a symmetric monoidal category
(SMC) (C,⊗, 1) is a commutative comonoid if it is equipped
with a multiplication morphism c : A → A ⊗ A, and a unit
morphism w : A → 1, such that the usual commutativity,
associativity, and unit diagrams commute. A comonoid mor-
phism f from (A, c,w) to (A′, c′,w′) is given by a morphism
f ∈ C(A,A′) satisfying f ;c′ = c;(ϕ⊗ϕ), and f ;w′ = w. Given
a SMC (C,⊗, 1), the category Comon(C) has commutative
comonoids of C as objects, and comonoid morphisms as
morphisms.

Definition 10 (Lafont category). A symmetric monoidal
closed category (C,⊗,(, 1) is a Lafont category just if

(i) C has finite products: the SMC (C,×,>) is cartesian,

(ii) C has free linear exponentials: the forgetful functor U
from Comon(C) to C has a right adjoint !.

Condition (ii) above says C has all free commutative
comonoids. That is to say, for every A, there is an object !A—
the free commutative comonoid generated by A—endowed
with a commutative comonoid structure

ctrA : !A→ !A⊗ !A wkA : !A→ 1

and a morphism derA : !A → A satisfying the universal
property: for every commutative comonoid B, and every
morphism f : B → A, there is a unique comonoid morphism
f† : B → !A satisfying f† ; derA = f . The multiplication
(called contraction) and unit (call weakening) morphisms of
!A are named after the standard structural rules in proof theory;
and derA is called dereliction in the language of linear logic.

We describe the comonad (!, der, dig) induced by the
(monoidal) adjunction U a ! in full. The endofunctor ! maps
a morphism f : A → B to (derA ; f)† : !A → !B. The
multiplication morphism, called digging, is digA = (id!A)† :
!A→ !!A. The unit morphism is just dereliction derA : !A→
A. We call the induced comonad the free linear exponential
of the Lafont category. Furthermore, setting the mediating
morphisms

m0
> : 1→ !>

m2
A,B : !A⊗ !B → !(A×B)

as m0
> = (>1)† and m2

A,B = 〈derA ⊗ wkB ,wkA ⊗ derB〉†,
which are natural isomorphisms, makes

(!,m0,m2) : (C,⊗, 1)→ (C,×,>)

a strong symmetric monoidal functor. The natural isomor-
phisms m0 and m2 are called Seely isomorphisms [39].

6

The Kleisli category C! over the comonad (!, der, dig) is
automatically cartesian closed. The products in C give the
products in C!, and the intuitionistic function space A ⇒ B
is !A (B, which is often called the Girard translation
[39]. The existence of an adjunction (·) × A a A ⇒ (·) is
a consequence of the symmetric monoidal closure of C and
the Seely isomorphisms:

C!(C ×A,B) = C(!(C ×A), B)
∼= C(!C ⊗ !A,B)
∼= C(!C, !A(B) = C!(C, !A(B)

Remark 11. The linear exponentials of a Lafont category are
free constructions, by definition. The relational and weighted
relational models considered in Sections II and III are Lafont
categories, but there are models of linear logic where several
linear exponential modalities may coexist (for example, coher-
ence and hypercoherence spaces models [38, 58], game models
[58], and the bicategory of profunctors [16]). To account for
this more general setting, Melliés has proposed new-Lafont
category [60], which is a symmetric monoidal closed category
C with finite products such that the (restriction to M) forgetful
functor U : M → C has a right adjoint, where M is a full
subcategory of Comon(C) closed under tensor and containing
the unit comonoid 1.

B. Constructing free linear exponentials from SMC

We discuss a folklore result: a symmetric monoidal category
C has free linear exponentials if it has countable distributive
biproducts2, and all symmetric tensor powers. In the following
we write A⊗n for the nth tensor power of A, i.e., A⊗0 := 1
and A⊗(n+1) := A⊗n ⊗A.

Definition 12 (Lafont linear exponential). A family of objects
{A[n] | n ∈ ω} of a symmetric monoidal category are the
symmetric tensor powers of A if

(i) for each n ≥ 0, the set of n! permutation automorphisms
on A⊗n has an equaliser eqn : A[n] → A⊗n, and

(ii) these equalisers are preserved by the tensor, i.e., for all
m,n ≥ 0

eqm ⊗ eqn : A[m] ⊗A[n] → A⊗m ⊗A⊗n

is an equaliser for the tensor product of pairs of permu-
tation automorphisms.

We say that an object !A of a SMC with biproducts is the
Lafont linear exponential of A if it is the biproduct of all the
symmetric tensor powers of A, i.e., !A =

⊕
n∈ω A

[n].

The Lafont linear exponential !A is endowed with a com-
mutative comonoid structure with weakening and contraction
morphisms as follows

wkA = π0 : !A→ 1

ctrA = 〈πm+n ; σm,n | m,n ∈ ω〉 : !A→ !A⊗ !A

2Given a SMC with countable biproducts, we say that the tensor distributes
over biproducts if (

⊕
i∈I Ai) ⊗ B =

⊕
i∈I(Ai ⊗ B) for every countable

indexing set I .

where σm,n : A[m+n] → A[m] ⊗A[n] is the unique morphism
satisfying eqm+n = σm,n ; (eqm ⊗ eqn), and πn : !A→ A[n]

is the nth projection.

Proposition 13 ([61]). Let C be a SMC with countable
distributive biproducts. If C has Lafont linear exponentials,
then they are the free linear exponentials.

C. Constructing Lafont categories from complete semirings

Consider Rel, a simple example of Lafont category. Mor-
phisms from A to B may be viewed as (A×B)-matrices over
the Boolean semiring B, and the composite of s ∈ Rel(A,B)
and t ∈ Rel(B,C) is just matrix multiplication: the (a, c)-
entry of the composite (s ; t) is the B-indexed sum

(s ; t) (a, c) :=
∨
b∈B

s(a, b) ∧ t(b, c)

using the sum (disjunction) and multiplication (conjunction) of
the semiring B. A natural way to generalise this construction
is to consider as morphisms matrices over semirings that
are closed under set-indexed sums. This brings us to the
notion of complete commutative semiring, and the free set-
indexed biproduct completion of such a semiring (qua one-
object category), which gives rise to a Lafont category [55].
The simplest example of the construction is of course Rel,
which is itself the free biproduct completion of the Boolean
semiring B.

Recall that a (countably) complete monoid is a pair (S,
∑

)
of a set S with a sum operation

∑
on (countably) indexed

families of elements of S, satisfying

(i) Partition associativity: for every partitioning of the
indexing set I into {Ij | j ∈ J},

∑
i∈I ai =∑

j∈J
∑
i∈Ij ai

(ii) Unary sum:
∑
i∈{j} ai = aj .

We write 0 for the sum of the empty family, which is the
neutral element of the sum. Every complete monoid is a
commutative monoid in the usual sense, with binary sum
a1 + a2 :=

∑
i∈{1,2} ai.

A complete semiring is a tuple R = (|R|,
∑
, ·, 1) where

(|R|,
∑

) is a complete monoid, and (|R|, ·, 1) is a monoid
which distributes over

∑
, i.e.,

∑
i∈I(a · bi) = a ·

∑
i∈I bi and∑

i∈I(bi · a) = (
∑
i∈I bi) · a. We say that R is commutative

if (|R|, ·, 1) is a commutative monoid.
Free biproduct completion RΠ of a complete commutative

semiring R: Fix a complete commutative semiring R =
(|R|,

∑
, ·,1). For convenience we use the Kronecker notation

δ: given a set A and a, a′ ∈ A, define

δ(a, a′) :=

{
1 if a = a′

0 otherwise

We define the category RΠ. The objects of RΠ are sets,
and the morphisms from A to B are the (A × B)-matrices
over R, i.e., elements of |R|A×B . The identity over A is the
diagonal matrix, idA(a, a′) := δ(a, a′), for all a, a′ ∈ A. The

7

composite of s ∈ RΠ(A,B) and t ∈ RΠ(B,C) is the usual
matrix multiplication: for a ∈ A and c ∈ C

(s ; t) (a, c) :=
∑
b∈B

s(a, b) · t(b, c).

The category RΠ is ∗-autonomous (actually compact
closed). The bifunctor ⊗ : RΠ × RΠ → RΠ acts like the
cartesian product: A ⊗ B = A × B, and for s ∈ RΠ(A,C)
and t ∈ RΠ(B,D), s⊗ t : A⊗B → C ⊗D is defined as

(s⊗ t)((a, b), (c, d)) := s(a, c) · t(b, d)

The bifunctoriality of tensor follows from the commutativity
of R. The unit of the tensor is 1 = {∗}, an arbitrary singleton
set. RΠ is symmetric monoidal closed: A(B = A×B; and
evA,B(((a, b), a′), b′) := δ((a, b), (a′, b′)), and the exponential
transpose is defined as λ(s)(c, (a, b)) := s((c, a), b) for s ∈
C(C ⊗ A,B). The object ⊥ = 1 is dualising; it follows that
RΠ is compact closed.

By construction RΠ has products given as disjoint union.
Since RΠ is compact closed, products are automatically
biproducts [43], which we write as ⊕. Given a set I of indices,⊕

i∈I Ai :=
⋃
i∈I{i} ×Ai, and

πj((i, a), a′) := ιj(a, (i, a)) := δ((i, a), (j, a′))

where πj is the projection onto Aj , and ιj the injection from
Aj . The terminal object > = ∅.

Since RΠ is symmetric monoidal closed and has count-
able biproducts, it follows from Section III-B that RΠ has
free linear exponentials given by the Lafont exponentials.
Let us spell out the symmetric tensor powers. Given an
object A and n ∈ ω, eqA,n : Mn(A) → A⊗n is the
equaliser of the n! permutation automorphisms of A⊗n, where
Mn(A) is the set of multisets over A of cardinality n, and
eqA,n(m, (a1, . . . , an)) := δ(m, [a1, . . . , an]). These equalis-
ers are preserved by tensor product. We construct the Lafont
exponentials accordingly:

!A :=
⊕
n∈ω
Mn(A) ∼=Mfin(A);

derA(m, a) := δ(m, [a])

ctrA(m, (m1,m2)) := δ(m,m1 +m2)

wkA(m, ∗) := δ(m, []).

To summarise:

Proposition 14. Given a complete commutative semiring
R, the free biproduct completion RΠ is a Lafont category,
such that each homset is endowed with the structure of a
semimodule3 over R.

D. Lafont categories from continuous semirings

Continuous semirings [22, 41] are an important class
of complete semirings. A continuous semiring R =
(|R|,+, ·,0,1,≤) is a semiring equipped with a partial order

3A semimodule over a semiring is like a module over a ring except that it
is only required to be a commutative monoid (rather than an abelian group).

≤ such that (|R|,≤) is a directed-complete partial order (CPO)
with 0 as the least element, and the operators + and · are
continuous. Thanks to directed completeness, we can define
I-indexed sum over R as∑

r∈I
r :=

∨
F⊆finI

(∑
r∈F

r
)

for any subset I ⊆ |R|. It follows that every continuous
semiring has a top element∞, and p+∞ =∞ for all p ∈ |R|.

Examples: The following semirings, endowed with their
natural ordering, are continuous.

1) Boolean: B = ({t, f},∨,∧, f , t,≤) where f < t.
2) Completed numbers: N = (N ∪ {∞},+, ·, 0, 1,≤).
3) Completed reals: P = (R+ ∪ {∞},+, ·, 0, 1,≤).
A continuous semimodule (M,+,0) over a continuous

semiring R is a semimodule over R with a CPO structure
such that 0 is the least element, and addition and scalar
multiplication are continuous.

Proposition 15 ([55]). Given a continuous commutative
semiring R, the Kleisli category RΠ

! is a cartesian closed
category such that each homset is endowed with the structure
of a continuous semimodule over R, and composition is
continuous.

A Lafont category with countable biproducts has a canonical
enrichment over the category of countably complete monoids
(see e.g. [51]), but it may not be CPO-enriched. However,
Laird showed [51] that by constructing a bifree algebra (i.e. an
initial algebra for which the inverse is a terminal coalgebra) for
the free exponential, one can construct fixpoints of morphisms
of the Kleisli category without assuming any order-theoretic
structure. This is in essence an application of the observation
(due to Freyd [35], and Simpson and Plotkin [74]) that uniform
fixpoint operators exist (and are unique) for any comonad
which is an algebraically compact functor [3]. These fixpoints
correspond to infinite sums of finitary approximations indexed
over nested finite multisets, each representing a unique call-
pattern for computation of the fixpoint.

E. Applications to quantitative program analysis
By choosing appropriate continuous commutative semirings

R, the Kleisli category RΠ
! can be used to model interesting

quantitative operational properties of higher-order computa-
tion [55]. Consider the nondeterministic functional language
PCFor, which is PCF [70] augmented with nondeterministic
branching. The interpretation of PCFor-terms in the CPO-
enriched cartesian closed categoryRΠ

! , written JΓ `M : AKR,
is standard. The base type int is interpreted as the set of natu-
ral numbers. The semantics of the PCF-terms is determined by
the cartesian closed structure of RΠ

! , interpreting the fixpoint
operator YA by the least fixpoint construction. For the branch-
ing term, we set JΓ `M orNKR := JΓ `MKR+ JΓ ` NKR,
where + is the sum operation of the corresponding homset.

Theorem 16 ([55]). For all PCFor-program (closed term of
type int) M and all n ≥ 0, J `MKN (∗, n) gives the number
of reduction sequences from M to the numeral n.

8

Laird et al [55] showed that, by using the appropriate
continuous commutative semiring, the weighted relational
model can be used to reason about such quantitative properties
of PCFor as may- and must-convergence, and compute such
quantities as the probability of convergence, and the minimum
and maximum number of reduction steps to convergence.

Weighted relations have shown themselves to be a versatile
model for the quantitative analysis of computation. In recent
work [52], Laird has given a R-weighted relational model
of the solos calculus [57], which presents an elegantly eco-
nomical syntax for describing name mobility in distributed
systems. The semantics of a solos term is a matrix over a
complete semiring R; it corresponds to the sum in R of the
values associated to the independent reduction paths of the
term. The semantics is fully abstract with respect to the sum-
of-path evaluation.

Interestingly Laird [53] shows that there is a systematic way
to construct accurate quantitative models by transformation
from intensional qualitative models (such as games), using
the technique of change of base of an enriched category [17]
This transformation is induced by a monoidal functor from
the category of coherence spaces to the category of modules
over a complete semiring. Applying this transformation to the
game semantics [2] of Idealized Algol (which bears a natural
enrichment over the category of coherence spaces), one obtains
a R-weighted relational model which is fully abstract.

IV. PROFUNCTORS AND GENERALISED SPECIES OF
STRUCTURES

This section is about the second generalisation of the
relational model, in a 2-categorical direction:

Relational Model 2-categorical Generalisation
Category Set 2-category Cat
Category Rel Bicategory Prof

Comonad Mfin Pseudo-comonad P
Category MRel Bicategory ESP

We introduce the bicategory Prof of profunctors, which
corresponds to Rel; and the cartesian closed bicategory ESP
of generalised species of structures, which corresponds to
MRel. We then discuss a recent development [76] of the
generalised species of structures as a quantitative model of
the nondeterministic λY-calculus.

A. The bicategory of profunctors

The relational model may be generalised in another way,
categorically, to a 2-dimensional level. Given small categories
A and B, a profunctor (or distributors; see e.g. [4, 5] and
[8, § 7.7]) from A to B is a functor f : A × Bop → Set,
which is written f : A −7−→ B. Profunctors are a categorical
generalisation of relations: a relation R ⊆ A × B can be
seen as a profunctor fR between sets (qua discrete categories)
such that fR(a, b) is either a singleton set or the empty set,
depending on whether (a, b) ∈ R. One should view f : A −7−→ B
as a set-valued relation between the categories A and B. The
bicategory Prof has small categories as 0-cells; profunctors as

1-cells, and natural transformations between profunctors as 2-
cells. The identities are just the hom-functors. Take profunctors
f : A −7−→ B and g : B −7−→ C. A morphism ϕ ∈ Bop(b′, b) acts
on elements in the set f(a, b′) by y 7→ f(a, ϕ)(y) ∈ f(a, b)
and in g(b, c) by z 7→ g(ϕ, c)(z) ∈ g(b′, c), which we write
y[ϕ] and {ϕ}z, respectively. The composite f ; g is defined
by

(f ; g)(a, c) :=
∐
b∈B

(
f(a, b)× g(b, c)

)
/∼ (1)

where ∼ is the least equivalence relation containing
(y, {ϕ}z) ∼ (y[ϕ], z), for every morphism ϕ in B. Equiva-
lently the composite profunctor f ;g : A −7−→ C can be described
by a coend formula

(f ; g)(a, c) =

∫ b

f(a, b)× g(b, c).

The 1-cells of Prof are functors F : A × Bop → Set,
and so correspond to functors λ(F) : A → B̂, writing
B̂ = [Bop,Set] for the presheaf category. Because presheaf
categories are free colimit completions, profunctors from A to
B correspond to colimit-preserving functors between presheaf
categories from Â to B̂. The bicategory Prof is equivalent to
the 2-category Cocont whose 0-cells are small categories,
whose 1-cells are colimit-preserving functors between the
corresponding presheaf categories, and whose 2-cells are the
natural transformations between such functors. The bicategory
Prof has enough structure to model linear logic; it is what
may be called a compact closed bicategory [16, 48]. With a
suitable choice of pseudo-comonad (and there are several such
constructions that satisfy the Seely isomorphisms [16, § 9]),
Prof can be made into a (degenerate) Seely model [60] of
linear logic in an appropriate bicategorical sense.

B. Generalised species of structures

We give a direct description of the Kleisli bicategory of a
pseudo-comonad on the bicategory Prof of profunctors. First
a notation. Let C be a small category, we write P C for the
free symmetric strict monoidal category on C, whose objects
are finite sequences 〈ci〉i≤n of objects of C, and morphisms
from 〈ci〉i≤n to 〈di〉i≤m are tuples (σ, 〈fi〉i≤n) where σ :
{1, · · · , n} → {1, · · · ,m} is a bijection, and fi ∈ C(ci, dσ(i))
for all i ≤ n.

Given small categories A and B, a (A,B)-species of
structures [33, 34] is a functor PA × Bop → Set, i.e., a
profunctor PA −7−→ B. This gives rise to a bicategory ESP
whose 0-cells are small categories, 1-cells are (A,B)-species
of structures, and 2-cells are natural transformations. The
identity species of structures idA : PA −7−→ A is defined by
idA(θ, a) := PA(〈a〉, θ). Given a (A,B)-species of structures
f : PA −7−→ B, we define its lifting f] : PA −7−→ PB as the
following coend:

f](θ, 〈b1, . . . , bk〉)

:=

∫ (θi)i∈[k]∈(PA)k (∏
i∈[k]

f(θi, bi)
)
× PA(θ1 · · · θk, θ)

9

where θ1 · · · θk is the concatenation of lists. Given f : PA −7−→
B and g : PB −7−→ C, their composite f ; g : PA −7−→ C is defined
as the profunctorial composite f] ; g.

Fiore et al. [33, 34] have shown that the bicategory ESP is
cartesian closed, and can be seen as the Kleisli bicategory of
a pseudo-comonad P on the bicategory Prof of profunctors
whose action on 0-cells coincides with that of P.

Generalised species of structures are a generalisation of both
Girard’s normal functors [40], which are functors X → Set,
where the set X is the denotation of a type, and Joyal’s
combinatorial species [46, 47], which are functors P→ Set,
where P is the category of finite cardinals and bijections.
There are obvious connections between between these two
types of functors, and Hasegawa [42], amongst others, has
investigated the connections. There is however an important
difference between the two: the domain of (the power series
representation of) a normal functor is any set, by which
one can interpret a type; whereas a combinatorial species
uses P, which has non-trivial (iso)morphisms. Unifying them,
generalised species of structures between small categories have
domains with enough variations to interpret types and non-
trivial (iso)morphisms.

C. ESP-semantics of nondeterministic λY-calculus

Profunctors are a good semantic basis for quantitative
analysis of higher-order computation. Because the bicategory
of profunctors is a proof-relevant refinement of the relational
model, we can expect the bicategorical framework of gen-
eralised species of structures to support a more intensional
and precise quantitative analysis. The use of profunctors as
a semantic model of computation goes back to the work of
Winskel et al. from the 1990s [15, 16, 79]; their motivation was
a need of a domain theory for concurrency with a satisfactory
account of bisimulation. Also relevant is Hyland’s expansive
study [45], generalising domain theory from the relational
model to give a range of models based on the bicategory of
profunctors. More recently Tsukada and Asada [75] gave a
profunctorial reformulation of the HO/N games [44] in which
plays are graphs: they constructed a pseudofunctor from the
category of HO/N games to the bicategory of profunctors,
refining a similar result in [78].

As the bicategory ESP is cartesian closed, it is a model
of the λ-calculus. (In fact, it is a differential λ-(bi)category,
and so a model of the differential / resource λ-calculus.) But
what kind of a quantitative model is it? What is the quan-
titative property captured by the ESP-semantics? Targeting
the simply-typed nondeterministic λY-calculus, λndY, these
questions have been investigated by Tsukada et al. [76]. For
simplicity, simple types are generated from a unique atomic
type o, and (raw) λndY-terms are defined by:

M,N := x | λxA.M |MM | YAM |M ⊕AM

where YA is the fixpoint operator of type (A→ A)→ A and
M ⊕A N is the nondeterministic branching where M and N
are of type A.

Given an interpretation of the atomic type JoK as the cate-
gory with one object ? and one morphism, the interpretation
of the function types is determined by the cartesian closed
structure of ESP (equivalently, compact closure of Prof via
the Girard translation):

J!AK := PJAK
JA→ BK := J!A(BK = PJAKop × JBK.

Observe that types are interpreted as groupoids. Similarly, in-
terpreting the nondeterministic branching as the disjoint union,
and the fixpoint operator YESP

A as the least fixpoint construct,
the interpretation of a λndY-term-in-context as a generalised
species of structures, JMKESP : PJΓKop × JAK → Set, is
determined by the cartesian closed structure of ESP.

D. Rigid resource calculus and rigid Taylor expansion

Tsukada et al. [76] have given a characterisation of the
ESP-semantics JMKESP as the rigid Taylor expansion of
M , denoted JMKrTay. Intuitively JMKrTay is the set of (∼-
equivalence classes of) linear approximants of M in the form
of rigid resource terms, where the relation ∼ coincides with
the equivalence relation (1) in the definition of profunctor
composition.

The rigid resource calculus is a variant of the resource cal-
culus [10, 30, 69] in which bags of arguments are replaced by
lists, written 〈u1, . . . , un〉. In the rigid calculus, a permutation
of elements in a bag is distinct from but isomorphic to the
original bag. Raw terms of the rigid resource calculus are
defined by:

t, u := x | λ~x.t | t µ | t⊕ • | • ⊕ t µ := 〈u1, . . . , un〉

where • is a place holder for the unused part of branching
and ~x is a (possibly empty) sequence of variables. Note that
(well-typed) rigid resource terms are linear by construction,
i.e., each variable appears exactly once. A rigid resource term
is designed to describe a reduction sequence of a λndY-term
it approximates. For example, t⊕• means that the left-branch
should be chosen here; since the right branch is irrelevant
in this case, a rigid resource raw term simply ignores it. In
contrast to the standard resource calculus, reduction of the
rigid resource calculus is deterministic, and this is a significant
advantage for the quantitative analysis of λndY-calculus.

Fix an infinite sequence z1, z2, . . . , zn, . . . of distinct vari-
ables, and write ~z for a prefix of this sequence. Let x1 :
B1, . . . , xm : Bm ` M : A be a λndY-term in η-long form.
Formally

JMKrTay(~b, a) := {[t]∼ | ~z C ~x ` tCM and ~z : ~b ` t : a}

for bi ∈ Obj(JBiK), and a ∈ Obj(JAK). The judgement, ~z : ~b `
t : a, is just type assignment judgement, viewing objects of
the groupoid JAK as the rigid nonidempotent intersection types
that refine A. Here rigid nonidempotent intersection types are
just the standard nonidempotent intersection types except that
an intersection is not finite multiset but rather finite sequence
of types. The judgement, ~z C ~x ` t CM , says that the rigid

10

resource term t (with free variables ~z) approximates the λndY-
term M (with free variables ~x).

As mentioned before, a key result of Tsukada et al. [76]
is the coincidence of the ESP-semantics with the rigid Taylor
expansion semantics.

Theorem 17. For every term-in-context Γ `M : A, we have
the following natural isomorphism

JMKESP ∼= JMKrTay : PJΓKop × JAK→ Set. (2)

Recall that each rigid resource term t that approximates a
λndY-term (in the sense of the judgement ~z C ~x ` t CM)
corresponds to a evaluation sequence of M . In fact, there is
a one-to-one correspondence between equivalence classes [t]∼
and evaluation sequences of M . The quantitative import of the
coincidence in (2) is a compositional method for computing
the set of evaluation sequences of λndY-terms. Note that this
is an intensional (or proof-relevant) version of the quantitative
result for PCFor in Section III-E.

E. Reasoning about coefficients of the Taylor expansion

The Taylor expansion of a λ-term [30] is a formal sum of
(standard) resource terms with real number coefficients. The
properties of its support (i.e. terms with non-zero coefficients)
has been well-studied, but the coefficients of the Taylor ex-
pansion are difficult to reason about. A fundamental property
of the Taylor expansion is the commutation property, which
states that, for a given class L of λ-terms, the Böhm tree
computation BT(·) commutes with the Taylor expansion (·)∗,
i.e., NF(M∗) = (BT(M))∗, for all M ∈ L. The commutation
property was first established by Ehrhard and Regnier [28, 30]
for the untyped (deterministic) λ-calculus; it was claimed to
hold for System F with weighted branching in [25]. Sub-
sequently Pagani et al. [68] proved that the commutation
property is satisfied by weighted nondeterministic strongly
normalizing (and so also nondeterministic System F) terms.
Using the rigid Taylor expansion semantics, Tsukada et al. [76]
have established the commutation property for λndY, although
the coefficients may be infinite.

Another application of the quantitative semantics is the
calculation of coefficients by a groupoid of isomorphisms and
its action on rigid resource terms [76], in a way reminiscent
of the generating series of combinatorial species. A resource
term can be seen as an orbit of the action, and the coefficient is
the ratio of the number of elements in the orbit to the number
of all isomorphims. From this point of view, the rigid resource
calculus may be seen as a developed form of the combinatorial
concepts studied in [30].

Acknowledgements

Much of this work was done in collaboration with Takeshi
Tsukada, and also with Kazuyuki Asada. The author is grateful
to Takeshi Tsukada and Michele Pagani for corrections and
comments which greatly improved the manuscript, and to
EPSRC for financial support via grant EP/M023974/1.

REFERENCES

[1] S. Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for
PCF,” Inf. Comput., vol. 163, no. 2, pp. 409–470, 2000. I

[2] S. Abramsky and G. McCusker, “Linear, sharing and state: a fully
abstract semantics for idealized algol with active expressions,” in Algol-
like Languages, P. O’Hearn and R. Tennent, Eds. Birkhauser, 1997.
III-E

[3] M. Barr, “Algebraically compact functors,” Journal of Pure and Applied
Algebra, vol. 82, pp. 211–231, 1993. III-D

[4] J. Bénabou, “Les distributeurs,” Tech. Rep. 33, 1973. IV-A
[5] ——, “Distributors at work,” 2000, course notes, TU Darmstadt. IV-A
[6] R. Blute, J. R. B. Cockett, and R. A. G. Seely, “Differential categories,”

MSCS, vol. 16, no. 6, pp. 1049–1083, 2006. I, II-A, 8
[7] R. Blute, T. Ehrhard, and C. Tasson, “A convenient differential category,”

Cahiers de Topologie et Géométrie Différentielle Catégoriques, vol. LIII-
3, pp. 211–232, 2012. I

[8] F. Borceux, Handbook of Categorical Algebra I. CUP, 1994. IV-A
[9] P. Boudes, “Thick Subtrees , Games and Experiments,” in TLCA, 2009,

pp. 65–79. II-D
[10] G. Boudol, P. Curien, and C. Lavatelli, “A semantics for lambda calculi

with resources,” MSCS, vol. 9, no. 4, pp. 437–482, 1999. IV-D
[11] A. Bucciarelli, A. Carraro, T. Ehrhard, and G. Manzonetto, “Full

abstraction for the resource lambda calculus with tests, through taylor
expansion,” LMCS, vol. 8, pp. 1–44, Oct. 2012. II-C, II-D

[12] A. Bucciarelli and T. Ehrhard, “On phase semantics and denotational
semantics: the exponentials,” Ann. Pure Appl. Logic, vol. 109, no. 3,
pp. 205–241, 2001. II-B

[13] A. Bucciarelli, T. Ehrhard, and G. Manzonetto, “A relational model of
a parallel and non-deterministic lambda-calculus,” in LFCS, 2009, pp.
107–121. I

[14] ——, “Categorical models for simply typed resource calculi,” Electr.
Notes Theor. Comput. Sci., vol. 265, pp. 213–230, 2010. I, II-A

[15] G. L. Cattani, M. P. Fiore, and G. Winskel, “A theory of recursive
domains with applications to concurrency,” in LICS, 1998, pp. 214–225.
IV-C

[16] G. L. Cattani and G. Winskel, “Profunctors, open maps and bisimula-
tion,” MSCS, vol. 15, no. 3, pp. 553–614, 2005. 11, IV-A, IV-C

[17] G. Cruttwell, “Normed spaces and change of base for enriched cate-
gories,” Ph.D. dissertation, Dalhousie University, 2008. III-E

[18] V. Danos and T. Ehrhard, “Probabilistic coherence spaces as a model of
higher-order probabilistic computation,” Inf. Comput., vol. 209, no. 6,
pp. 966–991, 2011. I

[19] V. Danos and L. Regnier, “The structure of multiplicatives,” Arch. Math.
Log., vol. 28, no. 3, pp. 181–203, 1989. 5

[20] D. de Carvalho, “Execution time of λ-terms via denotational semantics
and intersection types,” Mathematical Structures in Computer Science,
pp. 1–35, 2017. II-B

[21] P. Di Gianantonio and M. Lenisa, “Innocent Game Semantics via
Intersection Type Assignment Systems,” in CSL, vol. 2013, 2013, pp.
231–247. II-D

[22] M. Droste and W. Kuich, “Semirings and formal power series,” in
Handbook of Weighted Automata, M. Droste, W. Kuich, and H. Volger,
Eds. Springer-Verlag, 2009. III-D

[23] T. Ehrhard, “On Köthe sequence spaces and linear logic,” MSCS, vol. 12,
no. 5, pp. 579–623, 2002. I

[24] ——, “Finiteness spaces,” MSCS, vol. 15, no. 4, pp. 615–646, 2005. I
[25] ——, “A finiteness structure on resource terms,” in LICS, 2010, pp.

402–410. II-C, IV-E
[26] ——, “An introduction to differential linear logic: proof-nets, models

and antiderivatives,” Mathematical Structures in Computer Science, pp.
1–66, 2017. III-A

[27] T. Ehrhard and L. Regnier, “The differential lambda-calculus,” Theor.
Comput. Sci., vol. 309, no. 1-3, pp. 1–41, 2003. I, II

[28] ——, “Böhm Trees, Krivine’s Machine and the Taylor Expansion of
Lambda-Terms,” in CiE, 2006, pp. 186–197. IV-E

[29] ——, “Differential interaction nets,” Theor. Comput. Sci., vol. 364, no. 2,
pp. 166–195, 2006. I

[30] ——, “Uniformity and the Taylor expansion of ordinary lambda-terms,”
Theor. Comput. Sci., vol. 403, no. 2-3, pp. 347–372, 2008. I, II-C, 3,
IV-D, IV-E

[31] T. Ehrhard, C. Tasson, and M. Pagani, “Probabilistic coherence spaces
are fully abstract for probabilistic PCF,” in POPL, 2014, pp. 309–320.
I

11

[32] H. Férée, “Game semantics approach to higher-order complexity,” J.
Comput. Syst. Sci., vol. 87, pp. 1–15, 2017. I

[33] M. P. Fiore, “Mathematical models of computational and combinatorial
structures,” in FoSSaCS, 2005, pp. 25–46. IV-B

[34] M. P. Fiore, N. Gambino, J. M. E. Hyland, and G. Winskel, “The
cartesian closed bicategory of generalised species of structures,” J.
London Math. Soc., vol. 77, pp. 203–220, 2008. IV-B

[35] P. Freyd, “Algebraically complete categories,” in Proceedings of Cate-
gory Theory, Como 1990, ser. LNM Vol. 1488. Springer, 1990. III-D

[36] A. Frölicher and A. Kriegl, Linear Spaces and Differentiation Theory.
Wiley, 1988. I

[37] D. R. Ghica, “Slot games: a quantitative model of computation,” in
POPL, 2005, pp. 85–97. I

[38] J. Girard, “The system F of variable types, fifteen years later,” Theor.
Comput. Sci., vol. 45, no. 2, pp. 159–192, 1986. I, 11

[39] ——, “Linear logic,” Theor. Comput. Sci., vol. 50, pp. 1–102, 1987. I,
II, 5, III-A

[40] ——, “Normal functors, power series and λ-calculus,” Ann. Pure Appl.
Logic, vol. 37, no. 2, pp. 129–177, 1988. I, II, IV-B

[41] I. Guessarian, Algebraic Semantics, ser. Lecture Notes in Computer
Science. Springer, 1981, vol. 99. III-D

[42] R. Hasegawa, “Two applications of analytic functors,” Theor. Comput.
Sci., vol. 272, no. 1-2, pp. 113–175, 2002. IV-B

[43] R. Houston, “Finite products are biproducts in a compact closed cate-
gory,” Journal of Pure and Applied Algebra, vol. 212, no. 2, pp. 394 –
400, 2008. III-C

[44] J. M. E. Hyland and C.-H. L. Ong, “On Full Abstraction for PCF: I, II,
and III,” Inf. Comput., vol. 163, no. 2, pp. 285–408, 2000. I, 2, II-D,
IV-C

[45] J. M. E. Hyland, “Some reasons for generalising domain theory,” MSCS,
vol. 20, no. 2, pp. 239–265, 2010. IV-C

[46] A. Joyal, “Une théorie combinatoire des séries formelles,” Adv. Math.,
vol. 42, p. 182, 1981. IV-B

[47] ——, “Foncteurs analytiques et espèces de structures,” in Combinatoire
Énumérative. Springer, 1986, pp. 126–159. IV-B

[48] G. M. Kelly and M. L. Laplaza, “Coherence for compact closed
categories,” Journal of Pure and Applied Algebra, vol. 19, pp. 193–213,
1980. IV-A

[49] A. J. Kfoury, “A linearization of the lambda-calculus and consequences,”
J. Log. Comput., vol. 10, no. 3, pp. 411–436, 2000. II-B

[50] Y. Lafont, “Logiques, catégories et machines,” Ph.D. dissertation, Uni-
versité Paris 7, 1988. III-A

[51] J. Laird, “Fixed points in quantitative semantics,” in LICS, 2016. I, III,
III-D

[52] ——, “Weighted relational models for mobility,” in FSCD, 2016, pp.
24:1–24:15. III-E

[53] ——, “From qualitative to quantitative semantics - by change of base,”
in FoSSaCS, 2017, pp. 36–52. III-E

[54] J. Laird, G. Manzonetto, and G. McCusker, “Constructing differential
categories and deconstructing categories of games,” Information and
Computation, vol. 222, pp. 247–264, 2013. 8

[55] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani, “Weighted
relational models of typed lambda-calculi,” in LICS, 2013, pp. 301–310.
I, III, III-C, 15, III-E, 16, III-E

[56] F. Lamarche, “Quantitative domains and infinitary algebras,” Theor.
Comput. Sci., vol. 94, no. 1, pp. 37–62, 1992. I, III

[57] C. Laneve and B. Victor, “Solos in concert,” MSCS, vol. 13, no. 5, pp.
657–683, 2003. III-E

[58] P.-A. Melliès, “Comparing hierarchies of types in models of linear
logic,” Inf. Comput., vol. 189, no. 2, pp. 202–234, 2004. 11

[59] ——, “Asynchronous games 2: The true concurrency of innocence,”
Theor. Comput. Sci., vol. 358, no. 2-3, pp. 200–228, 2006. 6

[60] P.-A. Melliès, Categorical Semantics of Linear Logic, ser. Panoramas et
Synthèses 27, 2009. III-A, 11, IV-A

[61] P.-A. Melliès, N. Tabareau, and C. Tasson, “An explicit formula for the
free exponential modality of linear logic,” in ICALP, 2009, pp. 247–260.
13

[62] R. Milner, “Fully abstract models of typed lambda-calculi,” Theor.
Comput. Sci., vol. 4, no. 1, pp. 1–22, 1977. I

[63] H. Nickau, “Hereditarily sequential functionals,” in LFCS, 1994, pp.
253–264. I, 2

[64] C.-H. L. Ong, “On model-checking trees generated by higher-order
recursion schemes,” in LICS, 2006, pp. 81–90. II-D

[65] ——, “Normalisation by traversals,” CoRR, vol. abs/1511.02629, 2015.
II-D

[66] C.-H. L. Ong and T. Tsukada, “Two-level game semantics, intersection
types, and recursion schemes,” in ICALP, 2012, pp. 325–336. II-D, II-D

[67] M. Pagani, P. Selinger, and B. Valiron, “Applying quantitative semantics
to higher-order quantum computing,” in POPL, 2014, pp. 647–658. I

[68] M. Pagani, C. Tasson, and L. Vaux, “Strong normalizability as a
finiteness structure via the taylor expansion of λ-terms,” in FoSSaCS,
2016, pp. 408–423. IV-E

[69] M. Pagani and P. Tranquilli, “Parallel reduction in resource lambda-
calculus,” in APLAS, 2009, pp. 226–242. I, IV-D

[70] G. D. Plotkin, “LCF considered as a programming language,” Theor.
Comput. Sci., vol. 5, no. 3, pp. 223–255, 1977. I, III-E

[71] D. Sands, “Operational theories of improvement in functional languages
(extended abstract),” in Proceedings of Glasgow Workshop on Func-
tional Programming, 1991, pp. 298–311. I

[72] ——, “Total correctness by local improvement in the transformation of
functional programs,” ACM Trans. Program. Lang. Syst., vol. 18, no. 2,
pp. 175–234, 1996. I

[73] D. Scott and C. Strachey, “Toward a mathematical semantics for com-
puter languages,” in Symposium on Computers and Automata, J. Fox,
Ed., 1971. I

[74] A. K. Simpson and G. D. Plotkin, “Complete axioms for categorical
fixed-point operators,” in LICS, 2000, pp. 30–41. III-D

[75] T. Tsukada and K. Asada, “Strategies in HO/N games as profunctors,”
2016, contributed talk, GaLoP Workshop. IV-C

[76] T. Tsukada, K. Asada, and C.-H. L. Ong, “Generalised species of rigid
resource terms,” in LICS, 2017. IV, IV-C, IV-D, IV-E

[77] T. Tsukada and C.-H. L. Ong, “Nondeterminism in game semantics via
sheaves,” in LICS, 2015, pp. 220–231. 6, II-D

[78] ——, “Plays as resource terms via non-idempotent intersection types,”
in LICS, 2016, pp. 237–246. 2, II-C, II-D, II-D, II-D, II-D, II-E, IV-C

[79] G. Winskel, “A presheaf semantics of value-passing processes,” in
CONCUR, 1996, pp. 98–114. IV-C

12

	An overview of quantitative models
	The relational model and its various faces
	The relational model MRel
	Relational semantics as refinement type assignment
	Playful types are the inhabited refinement types
	MRel, HO/N games and resource -calculus
	Taylor expansion as game semantics

	Weighted relational models
	Lafont category: a model of intuitionistic linear logic
	Constructing free linear exponentials from SMC
	Constructing Lafont categories from complete semirings
	Lafont categories from continuous semirings
	Applications to quantitative program analysis

	Profunctors and generalised species of structures
	The bicategory of profunctors
	Generalised species of structures
	ESP-semantics of nondeterministic Y-calculus
	Rigid resource calculus and rigid Taylor expansion
	Reasoning about coefficients of the Taylor expansion

	References

