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Abstract

Decidability of the determinization problem for weighted automata over the semiring (Z∪{−∞},max,+),
WA for short, is a long-standing open question. We propose two ways of approaching it by constrain-

ing the search space of deterministic WA: k-delay and r-regret. A WA N is k-delay determinizable if

there exists a deterministic automaton D that defines the same function as N and for all words α in

the language of N , the accepting run of D on α is always at most k-away from a maximal accepting

run of N on α. That is, along all prefixes of the same length, the absolute difference between the

running sums of weights of the two runs is at most k. A WA N is r-regret determinizable if for all

words α in its language, its non-determinism can be resolved on the fly to construct a run of N such

that the absolute difference between its value and the value assigned to α by N is at most r.

We show that a WA is determinizable if and only if it is k-delay determinizable for some k. Hence

deciding the existence of some k is as difficult as the general determinization problem. When k and

r are given as input, the k-delay and r-regret determinization problems are shown to be EXPtime-

complete. We also show that determining whether a WA is r-regret determinizable for some r is in

EXPtime.

1 Introduction

Weighted automata. Weighted automata generalize finite automata with weights on transitions [DKV09].
They generalize word languages to partial functions from words to values of a semiring. First introduced
by Schützenberger and Chomsky in the 60s, they have been studied for long [DKV09], with applications in
natural language and image processing for instance. More recently, they have found new applications in
computer-aided verification as a measure of system quality through quantitative properties [CDH10], and
in system synthesis, as objectives for quantitative games [FGR12]. In this paper, we consider weighted
automata N over the semiring (Z ∪ {−∞},max,+), and just call them weighted automata (WA). The
value of a run is the sum of the weights occurring on its transitions, and the value of a word is the
maximal value of all its accepting runs. Absent transitions have a weight of −∞ and runs of value −∞
are considered non-accepting. This defines a partial function denoted JN K : Σ∗ → Z whose domain is
denoted by LN .

Determinization problem. Most of the good algorithmic properties of finite automata do not transfer
to WA. Notably, the (quantitative) language inclusion JAK ≤ JBK is undecidable for WA [Kro92] (see
also [DGM16] and [ABK11] for different proofs based on reductions from the halting problem for two-
counter machines). This has triggered research on sub-classes or other formalisms for which this problem
becomes decidable [FGR14, CE+10]. This includes the class of deterministic WA (DWA, also known
as sequential WA in the literature), which are the WA whose underlying (unweighted) automaton is

∗This work was partially supported by the ERC Starting grant 279499 (inVEST), the ARC project Transform (Fédération
Wallonie-Bruxelles), and the Belgian FNRS CDR project Flare. E. Filiot is an F.R.S.-FNRS research associate, I. Jecker
an F.R.S.-FNRS Aspirant fellow, and G. A. Pérez an F.R.S.-FNRS Aspirant fellow and FWA post-doc fellow.
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deterministic. Another scenario where it is desirable to have a DWA is the quantitative synthesis problem,
undecidable even for unambiguous WA, yet decidable for DWA [FGR12]. However, and in contrast with
finite unweighted automata, WA are not determinizable in general. For instance, the function which
outputs the maximal value between the number of a’s and the number of b’s in a word α ∈ {a, b}∗ is not
realizable with a DWA. This motivates the determinization problem: given a WA N , is it determinizable?
I.e. is there a DWA defining the same (partial) function as N ?

The determinization problem for computational models is fundamental in theoretical computer sci-
ence. For WA in particular, it is sometimes more natural (and at least exponentially more succinct) to
specify a (non-deterministic) WA, even if some equivalent DWA exists. If the function is specified in a
weighted logic equivalent to WA, such as weighted MSO [DG07], the logic-to-automata transformation
may construct a non-deterministic, but determinizable, WA. However, despite many research efforts, the
largest class for which this problem is known to be decidable is the class of polynomially ambiguous
WA [KL09], and the decidability status for the full class of WA is a long-standing open problem. Other
contributions and approaches to the determinization problem include the identification of sufficient con-
ditions for determinizability [Moh97], approximate determinizability (for unambiguous WA) where the
DWA is required to produce values at most t times the value of the WA, for a given factor t [AKL13],
and (incomplete) approximation algorithms when the weights are non-negative [CD16].

Bounded-delay & regret determinizers. In this paper, we adopt another approach that consists in
constraining the class of DWA that can be used for determinization. More precisely, we define a class of
DWA C as a function from WA to sets of DWA, and say that a DWA D is a C-determinizer of a WA N
if (i) D ∈ C(N ) and (ii) JN K = JDK. Then, N is said to be C-deteminizable if it admits a C-determinizer.
If DWA denotes the function mapping any WA to the whole set of DWA, then obviously the DWA-
determinization problem is the general (open) determinization problem. In this paper, we consider two
restrictions.

First, given a bound k ∈ N, we look for the class of k-delay DWA Delk, which maintain a strong
relation with the sequence of values along some accepting run of the non-deterministic automaton. More
precisely, a DWA D belongs to Delk(N ) if for all words α ∈ LD, there is an accepting run ̺ of N with
maximal value such that the running sum of the prefixes of ̺ and the running sum of the prefixes of
the unique run ̺D of D on α are constantly close in the following sense: for all lengths ℓ, the absolute
value of the difference of the value of the prefix of ̺ of length ℓ and the value of the prefix of ̺D of
length ℓ is at most k. Then the Delk-determinization problem amounts to deciding whether there exists
D ∈ Delk such that JN K = JDK. And if k is left unspecified, it amounts to decide whether there
exists D ∈

⋃

k∈N
Delk(N ) such that JN K = JDK. We note Del the function mapping any WA N to

⋃

k Delk(N ). We will show that the Delk-determinization problem is complete for EXPtime, and the
Del-determinization problem is equivalent to the general (unconstrained) determinization problem.

The notion of delay has been central in many works on automata with outputs. For instance, it
has been a key notion in transducer theory (automata with word outputs) for the determinization and
the functionality problems [BCPS03], and the decomposition of finite-valued transducers [SdS08]. The
notion of delay has been also used in the theory of WA, for instance to give sufficient conditions for
determinizability [Moh97] or for the decomposition of finite-valued group automata [FGR14].

Example 1. Let A = {a, b} and k ∈ N. The left automaton of Fig. 1 maps any word in AaA∗ to 0, and
any word in AbA∗ to 1. It is Delk-determinizable by the right automaton of Fig. 1. After one step, the
delay of the DWA is k with both transitions of the left WA. After two or more steps, the delay is always
0. It is not Delj-determinizable for any j < k. (A second example of a bounded-delay determinizable
automaton is shown in Fig. 2.)

Second, we consider the class Hom of so-called homomorphic DWA. Intuitively, any DWA D ∈
Hom(N ) maintains a close relation with the structure of N : the existence of an homomorphism from
D to N . An alternative definition is that of a 0-regret game [HPR16] played on N : Adam chooses input
symbols one by one (forming a word α ∈ LN ), while Eve reacts by choosing transitions of N , thus
constructing a run ̺ of N on the fly (i.e. without knowing the full word α in advance). Eve wins the
game if ̺ is accepting and its value is equal to JN K(α), i.e. ̺ is a maximal accepting run on α. Then, any
(finite memory) winning strategy for Eve can be seen as a Hom-determinizer of N and conversely. This
generalizes the notion of good-for-games automata, which do not need to be determinized prior to being
used as observers in a game, from the Boolean setting [HP06] to the quantitative one. In some sense,
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Figure 1: A WA (left) and one of its k-delay determinizers (right)
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b,−2k
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b, 2k

Figure 2: Another WA (left) and one of its 2k-delay determinizers (right)

Hom-determinizable WA are “good for quantitative games”: when used as an observer in a quantitative
game, Eve’s strategy can be applied on the fly instead of determinizing the WA and constructing the
synchronized product of the resulting DWA with the game arena. This notion has been first introduced
in [AKL10] with motivations coming from the analysis of online algorithms. In [AKL10], it was shown
that the Hom-determinization problem is in Ptime.

Example 2. The following WA maps both ab and aa to 0. It is not Hom-determinizable because Eve
has to choose whether to go left or right on reading a. If she goes right, then Adam wins by choosing
letter b. If she goes left, Adam wins by picking a again. However, it is almost Hom-determinizable by
the DWA obtained by removing the right part, in the sense that the function realized by this DWA is
1-close from the original one. This motivates approximate determinization.

a, 0a, 0 a, 1
a, 0
b, 0

Figure 3: A WA that is Del0-determinizable and (1,Hom)-determinizable, but not Hom-determinizable

Approximate determinization. Approximate determinization of a WA N relaxes the determiniza-
tion problem to determinizers which do not define exactly the same function as N but approximate it.
Precisely, for a class C of DWA, D a DWA and r ∈ N, we say that D is an (r,C)-determinizer of N
if (i) D ∈ C(N ), (ii) LD = LN and (iii) for all words α ∈ LN , |JN K(α) − JDK(α)| ≤ r. Then, N is
(r,C)-determinizable if it admits some (r,C)-determinizer, and it is approximately C-determinizable if it
is (r,C)-determinizable for some r.

As Example 2 shows, there are WA that are approximately Hom-determinizable but not Hom-
determinizable, making this notion appealing for the class of homomorphic determinizers. However,
there are classes C for which a WA is approximately C-determinizable if and only if it is C-determinizable,
making approximate determinization much less interesting for such classes. This is the case for classes
C which are complete for determinization (Theorem 1), in the sense that any determinizable WA is
also C-determinizable. Obviously, the class DWA is complete for determinization, but we show it
is also the case for the class of bounded-delay determinizers Del (Theorem 2). Therefore, we study
approximate determinization for the class of homomorphic determinizers only. We call such determinizers
r-regret determinizers, building on the regret game analogy given above. Indeed, a WA N is (r,Hom)-
determinizable if and only if Eve wins the regret game previously defined, with the following modified
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winning condition: the run that she constructs on the fly must be such that |JN K(α) − JDK(α)| ≤ r, for
all words α ∈ LN that Adam can play. We say that a WA N is approximately Hom-determinizable if
there exists a r ∈ N such that N is (r,Hom)-determinizable.

Contributions. We show that the Delk-determinization problem problem is EXPtime-complete, even
when k is fixed (Theorems 3 and 4). We also show that the class Del is complete for determinization, i.e.
any determinizable WA N is k-delay determinizable for some k (Theorem 2). This shows that solving
the Del-determinization problem would solve the (open) general determinization problem. This also
gives a new (complete) semi-algorithm for determinization, which consists in testing for the existence
of k-delay determinizers for increasing values k. We exhibit a family of bounded-delay determinizable
WA, for delays which depend exponentially on the WA. Despite our efforts, exponential delays are the
highest lower bound we have found. Interestingly, finding higher lower bounds would lead to a better
understanding of the determinization problem, and proving that one of these lower bound is also an upper
bound would immediately give decidability. To decide Delk-determinization, we provide a reduction to
Hom-determinization (i.e. 0-regret determinization), which is known to be decidable in polynomial
time [AKL10].

We show that the approximate Hom-determinization problem is decidable in exponential time (The-
orem 7), a problem which was left open in [AKL10]. This result is based on a non-trivial extension to
the quantitative setting of a game tool proposed by Kuperberg and Skrzypczak in [KS15] for Boolean
automata. In particular, our quantitative extension is based on energy games [BFL+08] while parity
games are sufficient for the Boolean case. If r is given (in binary) the (r,Hom)-determinization problem
is shown to be EXPtime-complete (Theorems 5 and 8). The hardness holds even if r is given in unary.
In the course of establishing our results, we also show that every WA A that is approximately Hom-
determinizable is also exactly determinizable but there may not be a homomorphism from a deterministic
version of the automaton to the original one (Lemma 22 and Theorem 6). Hence, the decision proce-
dure for approximate Hom-determinizability can also be used as an algorithmically verifiable sufficient
condition for determinizability.

Other related works. In transducer theory, a notion close to the notion of k-delay determinizer has
been introduced in [FJLW16], that of k-delay uniformizers of a transducer. A uniformizer of a transducer
T is an (input)-deterministic transducer such that the word-to-word function it defines (seen as a binary
relation) is included in the relation defined by T , and any of its accepting runs should be k-delay close
from some accepting run of T . While the notion of k-delay uniformizer in transducer theory is close to
the notion of k-delay determinizer for WA, the presence of a max operation in WA makes the k-delay
determinization problem conceptually harder.

2 Preliminaries

We denote by Z the set of all integers; by N, the set of all non-negative integers, i.e. the natural
numbers—including 0; by S⊳x, the subset {s ∈ S | s ⊳ x} of any given set S. Finally, by ε we denote
the empty word over any alphabet.

Automata. A (non-deterministic weighted finite) automaton N = (Q, I,A,∆, w, F ) consists of a finite
set Q of states, a set I ⊆ Q of initial states, a finite alphabet A of symbols, a transition relation
∆ ⊆ Q × A × Q, a weight function w : ∆ → Z, and a set F ⊆ Q of final states. By wmax we
denote the maximal absolute value of a transition weight, i.e. wmax := maxδ∈∆ |w(δ)|. We say N is
pair-deterministic if |I| = 1 and for all (q, a) ∈ Q × A we have that (q, a, q1), (q, a, q2) ∈ ∆ implies
q1 = q2 or w(q, a, q1) 6= w(q, a, q2); deterministic, if |I| = 1 and for all (q, a) ∈ Q × A we have that
(q, a, q1), (q, a, q2) ∈ ∆ implies q1 = q2.

A run of N on a word a0 . . . an−1 ∈ A∗ is a sequence ̺ = q0a0q1 . . . qn−1an−1qn ∈ (Q ·A)∗Q such that
(qi, ai, qi+1) ∈ ∆ for all 0 ≤ i < n. We say ̺ is initial if q0 ∈ I; final, if qn ∈ F ; accepting, if it is both
initial and final. The automaton N is said to be trim if for all states q ∈ Q, there is a run from a state
qI ∈ I to q and there is a run from q to some qF ∈ F . The value of ̺, denoted by w(̺), corresponds to

the sum of the weights of its transitions: w(̺) :=
∑n−1

i=0 w(qi, ai, qi+1).
The automaton N has the (unweighted) language LN = {α ∈ A∗ | there is an accepting run of

N on α} and defines a function JN K : LN → Z as follows α 7→ max{w(̺) | ̺ is an accepting run of N
on α}. A run ̺ of N on α is said to be maximal if w(̺) = JN K(α).
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Determinization with delay. Given k ∈ N and two automata N = (Q, I,A,∆, w, F ) and N ′ =
(Q′, I ′, A,∆′, w′, F ′), we say that N is k-delay-included (or k-included, for short) in N ′, denoted by
N ⊆k N ′, if for every accepting run ̺ = q0a0 . . . an−1qn of N , there exists an accepting run ̺′ =
q′0a0 . . . an−1q

′
n of N ′ such that w′(̺′) = w(̺), and for every 1 ≤ i ≤ n, |w′(q′0 . . . q

′
i) − w(q0 . . . qi)| ≤ k.

For an automaton N , we denote by Delk(N ) the set {D ∈ DWA | D ⊆k N}.
An automaton N is said to be k-delay determinizable if there exists an automaton D ∈ Delk(N )

such that JDK = JN K. Such an automaton is called a k-delay determinizer of N .

Determinization with regret. Given two automata N = (Q, I,A,∆, w, F ) and N ′ = (Q′, I ′, A,∆′, w′, F ′),
a mapping µ : Q → Q′ from states in N to states in N ′ is a homomorphism from N to N ′ if µ(I) ⊆ I ′,
µ(F ) ⊆ F ′, {(µ(p), a, µ(q)) | (p, a, q) ∈ ∆} ⊆ ∆′, and w′(µ(p), a, µ(q)) = w(p, a, q). For an automaton
N , we denote by Hom(N ) the set of deterministic automata D for which there is a homomorphism from
D to N . The following lemma follows directly from the preceding definitions.

Lemma 1. For all automata N , for all D ∈ Hom(N ), we have that LD ⊆ LN and JDK(α) ≤ JN K(α)
for all α ∈ LN .

Given r ∈ N and an automaton N , we say N is r-regret determinizable if there is a deterministic
automaton D such that: (i) D ∈ Hom(N ), (ii) LN = LD, and (iii) supα∈LN

|JN K(α) − JDK(α)| ≤ r.
The automaton D is said to be an r-regret determinizer of N . Note that (i) implies we can remove the
absolute value in (iii) because of Lemma 1.

Regret games. Given r ∈ N and an automaton N = (Q, I,A,∆, w, F ), an r-regret game is a two-player
turn-based game played on N by Eve and Adam. To begin, Eve chooses an initial state. Then, the game
proceeds in rounds as follows. From the current state q, Adam chooses a symbol a ∈ A and Eve chooses
a new state q′ (not necessarily a valid a-successor of q). After a word α ∈ LN has been played by Adam,
he may decide to stop the game. At this point Eve loses if the current state is not final or if she has not
constructed a valid run of N on α. Furthermore, she must pay a (regret) value equal to JN K(α) minus
the value of the run she has constructed.

Formally, a strategy for Adam is a finite word α ∈ A∗ from runs to symbols and a strategy for Eve is a
function σ : (Q ·A)∗ → Q from state-symbol sequences to states. Given a word (strategy) α = a0 . . . an−1,
we write σ(α) to denote the sequence q0a0 . . . an−1qn such that σ(ε) = q0 and σ(q0a0 . . . qiai) = qi+1 for
all 0 ≤ i < n. The regret of σ is defined as follows: regσ(N ) := supα∈LN

JN K(α) − Val(σ(α)) where, for
all sequences ̺ ∈ (Q ·A)∗Q, the function Val(̺) is such that ̺ 7→ w(̺) if ̺ is an accepting run of N and
̺ 7→ −∞ otherwise. We say Eve wins the r-regret game played on N if she has a strategy such that
regσ(N ) ≤ r. Such a strategy is said to be winning for her in the regret game.

Games & determinization. A finite-memory strategy σ for Eve in a regret game played on an
automaton N = (Q, I,A,∆, w, F ) is a strategy that can be encoded as a deterministic Mealy machine
M = (S, sI , A, λu, λo) where S is a finite set of (memory) states, sI is the initial state, λu : S × A→ S
is the update function and λo : S× (A∪{ε}) → Q is the output function. The machine encodes σ in the
following sense: σ(ε) = λo(sI , ε) and σ(q0a0 . . . qnan) = λo(sn, an) where s0 = sI and si+1 = λu(si, ai)
for all 0 ≤ i < n. We then say that M realizes the strategy σ and that σ has memory |S|. In particular,
strategies which have memory 1 are said to be positional (or memoryless).

A finite-memory strategy σ for Eve in a regret game played on N defines the deterministic automaton
Nσ obtained by taking the synchronized product of N and the finite Mealy machine (S, sI , A, λu, λo)
realizing σ. Formally Nσ is the automaton (Q × S, (λo(sI , ε), sI), A,∆

′, w′, F × S) where: ∆′ is the set
of all triples ((q, s), a, (q′, s′)) such that (q, s) ∈ Q × S, a ∈ A, s′ = λu(s, a), and q′ = λo(s, a); and w′ is
such that ((q, s), a, (q′, s′)) 7→ w(q, a, q′).

We remark that, for all r ∈ N, for all finite-memory strategies σ for Eve such that regσ(N ) ≤ r, we
have that Nσ is an r-regret determinizer of N . Indeed, the desired homomorphism from Nσ to N is the
projection on the first dimension of Q× S, i.e. (q, s) 7→ q. Furthermore, from any r-regret determinizer
D of N , it is straightforward to define a finite-memory strategy for Eve that is winning for her in the
r-regret game.

Lemma 2. For all r ∈ N, an automaton N is r-regret determinizable if and only if there exists a
finite-memory strategy σ for Eve such that regσ(N ) ≤ r.

In [AKL10] it was shown that if there exists a 0-regret strategy for Eve in a regret game, then a
0-regret memoryless strategy for her exists as well. Furthermore, deciding if the latter holds is in Ptime.
Hence, by Lemma 2 we obtain the following.
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Proposition 3 (From [AKL10]). Determining if a given automaton is 0-regret determinizable is decidable
in polynomial time.

A sufficient condition for determinizability. Given B ∈ N, we say an automaton N is B-bounded
if it is trim and for every maximal accepting run ̺p = p0a0p1 . . . an−1pn of N , for every 0 ≤ i ≤ n, and
for every initial run ̺q = q0a0q1 . . . ai−1qi, we have w(̺q)− w(p0a0p1 . . . ai−1pi) ≤ B.

We now prove that, given a B-bounded automaton, we are able to build an equivalent deterministic
automaton.

Proposition 4. Let B ∈ N and let N = (Q, I,A,∆, w, F ) be an automaton. If N is B-bounded, then
there exists a deterministic automaton D such that JDK = JN K, and whose size and maximal weight are
polynomial w.r.t. wmax and B, and exponential w.r.t. |Q|.

Sketch. The result is proved by exposing the construction of the deterministic automaton D, inspired by
the determinization algorithm presented in [Moh97]. On each input word α ∈ A∗, D outputs the value
of the maximal initial run ̺α of N on α (respectively the maximal accepting run if α ∈ LN ), and keeps
track of all the other initial runs on α by storing in its state the pairs (q, wq) ∈ Q × {−B, . . . , B} such
that the maximal initial run on α that ends in q has weight w(̺α)+wq. If for some state q the delay wq

gets lower than −B, the B-boundedness assumption allows D to drop the corresponding runs without
modifying the function defined: whenever a run has a delay smaller than −B with respect to ̺α, no
continuation will ever be maximal. This ensures that our construction always yields a finite automaton,
unlike the determinization algorithm, that does not always terminate.

On complete-for-determinization classes. Given r ∈ N, a class C of DWA, and an automa-
ton N , we say N is (r,C)-determinizable if there exists D ∈ C(N ) such that: (i) LN = LD, and
(ii) supα∈LN

|JN K(α) − JDK(α)| ≤ r.
We will now confirm our claim from the introduction: approximate determinization is not interesting

for some classes.

Proposition 5. Let N = (Q, I,A,∆, w, F ) be a trim automaton such that the range of JN K is included
into {−B, . . . , B}, for some B ∈ N. Then N is determinizable.

Proof. Let ̺p = p0a0p1 . . . an−1pn be a maximal accepting run of N and let ̺q = q0a0q1 . . . ai−1qi be an
initial run of length i ≤ n. We define ̺ip = p0a0p1 . . . ai−1pi for i ≤ n.

By assumption, we have w(̺p) ≥ −B. By trimness assumption, the state qi can reach a final state
and we have w(̺q) − |Q|wmax ≤ B otherwise there would be an accepting run of value greater than
B. Similarly, since state pi can be reached from an initial state, we have −|Q|wmax + a ≤ B, with
a = w(piai . . . an−1pn) = w(̺p) − w(̺ip). By combining the three constraints, we obtain: w(̺q) −

|Q|wmax − |Q|wmax + a− w(̺p) ≤ 3B which, once rearranged, yields: w(̺q) − w(̺ip) ≤ 3B + 2|Q|wmax.
Thus, N is (3B + 2|Q|wmax)-bounded and determinizable (by Proposition 4).

Recall that a class C of DWA is complete for determinization if any determinizable automaton is also
C-determinizable.

Theorem 1. Given a complete-for-determinization class C of DWA, an automaton N is (r,C)-determinizable,
for some r ∈ N, if and only if it is C-determinizable.

Proof. If N is determinizable, then in particular it is (r,C)-determinizable for any r. Conversely, let us
assume that D is an (r,C)-determinizer of N , for some r.

Then one can construct an automaton M such that JMK = JN K − JDK by taking the product of
N and D with transitions weighted by the difference of the weights of N and D. Since D is r-close to
N , the range of M is included in the set {−r, . . . , r}. This means, according to Propositions 5, that
M (once trimmed) is determinizable and that one can construct a deterministic automaton realizing
JDK + JMK = JN K. Since C is complete for determinization, the result follows.
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3 Deciding k-delay determinizability

In this section we prove that deciding k-delay determinizability is EXPtime-complete. First, however, we
show that k-delay determinization is complete for determinization: if a given automaton is determinizable,
then there is a k such that it is k-delay determinizable as well. Hence, exposing an upper bound for k
would lead to an algorithm for the general determinizability problem. We also give a family of automata
for which an exponential delay is required.

3.1 Completeness for determinization

Theorem 2. If an automaton N is determinizable, then there exists k ∈ N such that N is k-delay
determinizable.

Proof. We proceed by contradiction. Suppose N = (Q, I,A,∆, w, F ) is determinizable. Denote by
D = (Q′, {q′I}, A,∆

′, w′, F ′) a deterministic automaton such that JDK = JN K. Let us assume, towards a
contradiction, that for all k ∈ N there is no deterministic automaton E such that E ⊆k N and JDK = JEK.
In particular, we have that D 6⊆χ N for χ := |Q||Q′|(wmax + w′

max). This means that there is a word
α = a0 . . . an−1 ∈ LN such that for a maximal accepting run ̺ = q0a0 . . . an−1qn of N on α it holds that

|w(q0a0 . . . aℓ−1qℓ)− w′(q′0a0 . . . aℓ−1q
′
ℓ)| > χ (1)

for some 0 ≤ ℓ ≤ n and q′0a0 . . . an−1q
′
n the unique initial run of D on α. We consider the two possibilities.

Suppose that w(q0a0 . . . aℓ−1qℓ)−w′(q′0a0 . . . aℓ−1q
′
ℓ) > χ. Then, at least one final state qn is reachable

in N from qℓ, and the shortest path to it consists of at most |Q| transitions. Since χ ≥ |Q|(wmax+w
′
max),

D does not realize the same function as N , which contradicts our hypothesis.
Suppose that w′(q′0a0 . . . aℓ−1q

′
ℓ) − w(q0a0 . . . aℓ−1qℓ) > χ. Using the fact that χ = |Q||Q′|(wmax +

w′
max), we expose a loop that can be pumped down to present a word mapped to different values by D and

N . For every 0 ≤ j ≤ |Q||Q′|, let 0 ≤ ij ≤ ℓ denote the minimal integer satisfying w′(q′0a0 . . . aij−1q
′
ij
)−

w(q0a0 . . . aij−1qij ) ≥ j(wmax + w′
max). Then there exist 0 ≤ j < k ≤ |Q||Q′| such that qij = qik ,

q′ij = q′ik . Moreover, since wmax and w′
max correspond to the maximal weights of N and D respectively,

ij 6= ik holds, and w(qijaij . . . aik−1qik) > w′(q′ijaij . . . aik−1q
′
ik
). Since D is deterministic, it assigns a

strictly lower value than JN K to the word a0 . . . aij−1aik . . . an−1, which contradicts our assumption that
D realizes the same function as N .

Although we do not have an upper bound on the k needed for a determinizable automaton to be
k-delay determinizable, we are able to provide an exponentially large lower bound.

Proposition 6. Given an automaton N = (Q, I,A,∆, w, F ), a delay k as big as 2O(|Q|) might be needed
for it to be k-delay determinizable.

To prove the above proposition we will make use of the language of words with a j-pair [KZ15].

Words with a j-pair. Consider the alphabet A = {1, . . . , n}. Let α = a0a1 · · · ∈ A∗ and j ∈ A. A
j-pair is a pair of positions i1 < i2 such that ai1 = ai2 = j and ak ≤ j, for all i1 ≤ k ≤ i2.

Lemma 7. For all j ∈ A: (i) for all α ∈ A∗, if α contains no j-pair, then |α| < 2n; (ii) for all j ∈ A,
there exists α ∈ A∗ such that |α| = 2n − 1 and α contains no j-pair.

Proof. A proof of the first claim is given by Klein and Zimmermman in [KZ15] (Theorem 1).
To show the second claim holds as well, we can inductively construct a word with the desired property.

As the base case, consider α1 = 1. Thus, for some i, there is αi which contains no j-pair, contains no
letter bigger than i, and is of length 2i − 1. For the inductive step, we let αi = αi−1iαi−1. It is easy to
verify that the properties hold once more.

We will now focus on the function f : A∗ → Z, which maps a word α to 0 if it contains a j-pair and
to −|α| otherwise. Fig. 4 depicts the automaton N realizing f with 3n + 1 states. Proposition 6 then
follows from the following result.

Lemma 8. Any determinizer of automaton N (see Fig. 4), which realizes the function f , has a delay
of at least 2n − 1.
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∀j ∈ A :
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A,−1

A \ j, 0
j, 0

{a < j}, 0

{a > j}, 0

j, 0

A, 0

Figure 4: Automaton N realizing function f which outputs the (negative) length of the word if it has
no j-pair.

Proof. Consider a word α of length 2n − 1 containing no j-pair—which exists according to Lemma 7.
Further consider an arbitrary k-determinizer D for N . We remark that JDK(α) = JN K(α) = 1− 2n, since
both automata realize f and α does not contain a j-pair. It follows from Lemma 7 that α · a contains a
j-pair (that is, for all a ∈ A). Hence, for all a ∈ A, we have JN K(α ·a) = 0. Furthermore, by construction
of N , for all maximal accepting runs q0a0 . . . a|α|+1q|α|+2 of N on α · a we have w(q0 . . . qi) = 0 for all
1 ≤ i ≤ |α| + 2. In particular, for i = |α| + 1, we have JDK(α) − w(q0 . . . qi) = 2n − 1 which proves the
claim.

3.2 Upper bound

We now argue that 0-delay determinizability is in EXPtime. Then, we show how to reduce (in exponen-
tial time) k-delay determinizability to 0-delay determinizability. We claim that the composition of the
two algorithms remains singly exponential.

Proposition 9. Deciding the 0-delay problem for a given automaton is in EXPtime.

The result will follow from Propositions 3 and 12. Before we state and prove Proposition 12 we need
some intermediate definitions and lemmas. The following properties of k-inclusion, which follow directly
from the definition, will be useful later.

Lemma 10. For all automata N , N ′, and N ′′, for all k, k′ ∈ N, the following hold:
1. if N ⊆k N ′ and k ≤ k′, then N ⊆k′ N ′;
2. if N ⊆k N ′ and N ′ ⊆k′ N ′′, then N ⊆k+k′ N ′′;
3. if N ⊆k N ′, then LN ⊆ LN ′ , and for every α ∈ LN , JN K(α) ≤ JN ′K(α).

We now show how to decide 0-delay determinizability by reduction to 0-regret determinizability. Let
us first convince the reader that 0-regret determinizability implies 0-delay determinizability.

Proposition 11. If an automaton N is 0-regret determinizable, then it is 0-delay determinizable.

Proof. We have, from Lemma 2, that Eve has a finite-memory winning strategy σ in the 0-regret game
played on N . Then, by definition of the regret game, LN = LNσ

, and for every α ∈ LN , JN K(α) −
JNσK(α) ≤ 0, hence JN K = JNσK. Moreover, as Eve chooses a run in N , we have Nσ ⊆0 N . Therefore
Nσ is a 0-delay determinizer of N .

The converse of the above result does not hold in general (see Fig. 3). Nonetheless, it holds when
the automaton is pair-deterministic. We now show that, under this hypothesis, an automaton is 0-regret
determinizable if and only if the automaton is 0-delay determinizable.

Proposition 12. A pair-deterministic automaton N is 0-delay determinizable if and only if it is 0-regret
determinizable.

Sketch. If N is 0-regret determinizable, then N is 0-delay determinizable by Proposition 11. Now
suppose that N is 0-delay determinizable, and let D be a 0-delay determinizer of N . For every initial
run ̺α = p0a0p1 . . . an−1pn of D on input α = a0 . . . an−1, there exists exactly one initial run ̺′α =
p′0a0p

′
1 . . . an−1p

′
n of N such that for every 1 ≤ i ≤ n, w(p′0 . . . p

′
i) = w′(p0 . . . pi). The existence of ̺′α is

8



guaranteed by the fact that D is a 0-delay determinizer of N , and, since N is pair-deterministic, such a
run is unique. Then the strategy for Eve in the 0-regret game played on N obtained by following, given
an input word α, the run ̺′α of N , is winning.

We observe that any automaton N = (Q, I,A,∆, w, F ) can be transformed into a pair-deterministic
automaton P(N ) with at most an exponential blow-up in the state-space. Intuitively, we merge all the
states from the original automaton which can be reached by reading a ∈ A and taking a transition with
weight x ∈ Z. This is a generalization of the classical subset construction used to determinize unweighted
automata. Critically, the construction is such that P(N ) ⊆0 N and N ⊆0 P(N ). (For completeness, the
construction is given in appendix.) The next result then follows immediately from the latter property
and from Lemma 10 item 2.

Proposition 13. An automaton N is 0-delay determinizable if and only if P(N ) is 0-delay determiniz-
able if and only if P(N ) is 0-regret determinizable.

We now show how to extend the above techniques to the general case of k-delay.

Theorem 3. Deciding the k-delay problem for a given automaton is in EXPtime.

Given an automaton N and k ∈ N, we will construct a new automaton δk(N ) that will encode
delays (up to k) in its state space. In this new automaton, for every state-delay pair (p, i) and for every
transition (p, a, q) ∈ ∆, we will have an a-labelled transition to (q, j) with weight i + w(p, a, q) − j for
all −k ≤ j ≤ k. Intuitively, i is the amount of delay the automaton currently has, and to get to a point
where the delay becomes j via transition (p, a, q) a weight of i+w(p, a, q)− j must be outputted. We will
then show that the resulting automaton is 0-delay determinizable if and only if the original automaton
is k-delay determinizable.

k-delay construction. Let N = (Q, I,A,∆, w, F ) be an automaton. Let δk(N ) = (Q′, I ′, A,∆′, w′, F ′)
be the automaton defined as follows.

• Q′ = Q× {−k, . . . , k};
• I ′ = I × {0};
• ∆′ = {((p, i), a, (q, j)) | (p, a, q) ∈ ∆};
• w′ : ∆′ → Z, ((p, i), a, (q, j)) 7→ i+ w(p, a, q)− j;
• F ′ = F × {0}.

Lemma 14. The k-delay construction satisfies the following properties.
1. δk(N ) ⊆k N ;
2. for every automaton M such that M ⊆k N , we have M ⊆0 δk(N );
3. Jδk(N )K = JN K.

Proof.

1) Let (q0, i0)a0(q1, i1) . . . an−1(qn, in) be an accepting run of δk(N ). Then q0a0q1 . . . an−1qn is an ac-
cepting run of N , and for every 0 ≤ j < n,

∣

∣

∣

∑j
ℓ=0 w

′((qℓ, iℓ), aℓ, (qℓ+1, iℓ+1))−
∑j

ℓ=0w(qℓ, aℓ, qℓ+1)
∣

∣

∣

=
∣

∣

∣

∑j
ℓ=0(iℓ + w(qℓ, aℓ, qℓ+1)− iℓ+1 − w(qℓ, aℓ, qℓ+1))

∣

∣

∣

=|i0 − ij| = |ij | ≤ k (since i0 = 0).

Therefore δk(N ) ⊆k N .

2) Let M = (Q′′, I ′′, A,∆′′, w′′, F ′′) be an automaton such that M ⊆k N . For every accepting run
p0a0 . . . an−1pn of M, there exists an accepting run q0a0 . . . an−1qn of N such that for every 0 ≤ j < n

∑j
l=0 (w(ql, al, ql+1)− w′′(pl, al, pl+1)) ∈ {−k, . . . , k}.

Let ij denote the above value. Then (q0, i0)a0 . . . an−1(qn, in) is an accepting run of δk(N ), and for every
0 ≤ j < n,

w′((qj , ij), aj , (qj+1, ij+1))

= ij + w(qj , aj , qj+1)− ij+1 = w′′(pj , aj , pj+1).

Therefore M ⊆0 δk(N ).
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3) This property follows immediately from the first property, the second property in the particular case
M = N , and Lemma 10 item 3.

The next result follows immediately from the preceding Lemma and Lemma 10 item 2.

Proposition 15. An automaton N is k-delay determinizable if and only if δk(N ) is 0-delay determiniz-
able.

The above result raises the question of whether, for all k, 0-delay determinization can be reduced
to k-delay determinization. We give a positive answer to this question in the form of Lemma 16 in
Section 3.3.

We now proceed with the proof of Theorem 3.

Proof of Theorem 3. It should be clear that 2EXPtime membership follows from Proposition 15 and
Proposition 9. We now observe that the subset construction used to decide 0-delay determinizability
need only be applied on the first component of the state space resulting from the use of the delay
construction. In other words, once both constructions are applied, a state will correspond to a function
f : Q → {−k, . . . , k} ∪ {⊥}, where q 7→ ⊥ signifies that q is not in the subset. The size of the resulting
state space is then 2O(|Q| log2 k). Thus, the composition of this two constructions yields only a single
exponential.

3.3 Lower bound

We reduce the 0-delay uniformization problem for synchronous transducers to that of deciding whether
a given automaton is k-delay determinizable (for any fixed k ∈ N). As the former problem is known to
be EXPtime-complete (see [FJLW16]), this implies the latter is EXPtime-hard.

Theorem 4. Deciding the k-delay problem for a given automaton is EXPtime-hard, even for fixed
k ∈ N.

For convenience, we will first prove that the 0-delay problem reduces to the k-delay problem for any
fixed k. We then show the former is EXPtime-hard.

Lemma 16. The 0-delay problem reduces in logarithmic space to the k-delay problem, for any fixed
k ∈ N.

Let us fix some k ∈ N. Given the automaton N = (Q, I,A,∆, w, F ) we denote by x·N the automaton
(Q, I,A,∆, x ·w,F ), where x ·w is such that d 7→ x ·w(d) for all d ∈ ∆. Lemma 16 is a direct consequence
of the following.

Lemma 17. For every automaton N = (Q, I,A,∆, w, F ), the following statements are equivalent.
1. N is 0-delay determinizable;
2. (4k + 1) · N is 0-delay determinizable;
3. (4k + 1) · N is k-delay determinizable.

Proof. Given a 0-delay determinizer D of N , the automaton (4k + 1) · D is easily seen to be a 0-delay
determinizer of (4k + 1) · N . This proves that the first statement implies the second one. Moreover, as
a direct consequence of Lemma 10 item 1, the second statement implies the third one. To complete the
proof, we argue that if (4k + 1) · N is k-delay determinizable, then N is 0-delay determinizable. Let
D′ = (Q′, I ′, A,∆′, w′, F ′) be a k-delay determinizer of (4k + 1) · N . Let γ be the function mapping
every integer x to the unique integer γ(x) satisfying |(4k + 1)γ(x) − x| ≤ 2k, and let γ(D′) denote the
deterministic automaton (Q′, I ′, A,∆′, γ ◦ w′, F ′). We now argue that γ(D′) is a 0-delay determinizer
of N . For every sequence ̺′ = q′0a0 . . . an−1q

′
n ∈ (Q′ · A)∗Q′, since the states and transitions of D′ and

γ(D′) are identical, ̺′ is an accepting run of D′ if and only if it is an accepting run of γ(D′). Therefore,
since D′ is a k-delay determinizer of (4k + 1) · N , if ̺′ is an accepting run of γ(D′), there exists an
accepting run ̺ = q0a0 . . . an−1qn of N such that (4k + 1)w(̺) = w′(̺′), and for every 0 ≤ i ≤ n,
|(4k + 1)w(q0 . . . qi)− w′(q′0 . . . q

′
i)| ≤ k. As a consequence, for every 1 ≤ i ≤ n we have

|(4k + 1)w(qi−1ai−1qi)− w′(q′i−1ai−1q
′
i)|

= |(4k + 1)w(q0 . . . qi)− (4k + 1)w(q0 . . . qi−1)− w′(q′0 . . . q
′
i) + w′(q′0 . . . q

′
i−1)|

≤ |(4k + 1)w(q0 . . . qi)− w′(q′0 . . . q
′
i)|+ |w′(q′0 . . . q

′
i−1)− (4k + 1)w(q0 . . . qi−1)| ≤ 2k,
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hence w(qi−1ai−1qi) = γ(w(q′i−1ai−1q
′
i)). As a consequence, γ(D′) is a 0-delay determinizer of N .

We can now show that the k-delay problem is EXPtime-hard by arguing that the 0-delay problem
is EXPtime-hard. Let us introduce some notation regarding transducers.

Transducers. A (synchronous) transducer T from an input alphabet AI to an output alphabet AO is an
unweighted automaton (Q, I,AI ×AO,∆, F ). We denote the domain of T by dom(T ) := {a0 . . . an−1 ∈
A∗

I | (a0, b0) . . . (an−1, bn−1) ∈ (AI ×AO)
∗}. The transducer T is said to be input-deterministic if for all

p ∈ Q, for all a ∈ AI , there exist at most one state-output pair (q, b) ∈ Q×AO such that (p, (a, b), q) ∈ ∆.
A transducer U from AI to AO is a 0-delay uniformizer of T if (i) U is input-deterministic, (ii) LU ⊆ LT ,
and (iii) dom(U) = dom(T ). If such a transducer exists, we say T is 0-delay uniformizable. Given a
transducer, to determine whether it is 0-delay uniformizable is an EXPtime-hard problem [FJLW16].

Intuitively, a transducer induces a relation from input words to output words. We construct an
automaton that replaces the output alphabet by unique positive integer identifiers. For convenience, we
also make sure the constructed automaton defines a function which maps every word in its language to
0.

From transducers to weighted automata. Given a transducer T = (Q, I,AI × AO,∆, F ) with
A0 = {1, . . .M}, we construct a weighted automaton NT = (Q′, I, AI ∪ {#},∆′, w, F ) as follows:

• Q′ = Q ∪Q×AO,
• ∆′ = {(p, a, (q,m)) , ((q,m),#, q) | (p, (a,m), q) ∈ ∆},
• w : ∆′ → Z, (p, a, (q,m)) 7→ m and ((q,m),#, q) 7→ −m.

Lemma 18. The translation from transducers to weighted automata satisfies the following properties.
1. q0(a0,m0) . . . (an−1,mn−1)qn is a run of T if and only if q0a0(q0,m0)# . . . (qn−1,mn−1)#qn is a

run of NT . Moreover, for all 0 ≤ i ≤ n
• w(q0 . . . qi) = 0, and
• w(q0 . . . (qi,mi)) = mi;

2. LNT
= {a0# . . .#an# | a0 . . . an ∈ dom(T )};

3. JNT K(α) = 0 for all α ∈ LNT
.

Proof. The first item follows by construction of the automaton NT . Items 2 and 3 are direct consequences
of item 1.

We are now ready to show the 0-delay uniformization problem reduces in polynomial time to the
0-delay determinization problem. To do so, we show that any 0-delay uniformizer of a transducer T can
be transformed into a 0-delay determinizer of NT , and vice versa.

Lemma 19. Deciding the 0-delay problem for a given automaton is EXPtime-hard.

Proof. Given a transducer T = (Q, I,AI × AO,∆, F ) with A0 = {1, . . . ,M}, we construct NT =
(Q′, I, AI ∪ {#},∆′, w, F ). Suppose U = (S, {s0}, AI ×AO, R,G) is a 0-delay uniformizer of T . In what
follows we argue that NU is a 0-delay determinizer of NT . Since U is input-deterministic, the automaton
NU is deterministic. Also, since U is a 0-delay uniformizer of T , then we have that dom(U) = dom(T ).
Hence, from Lemma 18 item 2 it follows that LNT

= LNU
. Since both automata map their languages to

the value 0 (see Lemma 18 item 3), we have that JNU K = JNT K. Finally, by using Lemma 18 item 1, we
get that NU ⊆0 NT from the fact that LU ⊆ LT .

Assume D = (S, {s0}, AI ∪ {#}, R, µ,G) is a 0-delay determinizer of NT . Let U be the transducer
(S, {s0}, AI×AO, R

′, G) where R′ = {(p, (a,m), s)) | (p, a, q), (q,#, s) ∈ R∧µ(p, a, q) = −µ(q,#, s) = m}.
Since D is deterministic, we have that U is input-deterministic. By construction, we have that

dom(U) = {a0a1 . . . an | a0#a1# . . .#an# ∈ LD}.

Therefore, since LNT
= LD, from Lemma 18 item 2 we get that dom(U) = dom(T ). Also, by construction,

we have that s0(a0,m0) . . . (an−1,mn−1)sn is a run of U if and only if s0a0q0#s1a1q1# . . . qn−1#sn is a
run of D such that µ(s0 . . . qi) = mi for all 0 ≤ i ≤ n. Moreover, since D is a 0-delay determinizer of
NT , µ(s0 . . . si) = 0 for all 0 ≤ i ≤ n (see Lemma 18 item 3). Finally, because D ⊆0 NT , we get that
LU ⊆ LT by Lemma 18 item 1 and the above argument.
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Figure 5: Energy game with reset edges E̺ = {(v1, v2)} where Eve wins from v0 with initial credit c0 = 3

4 Deciding r-regret determinizability

In this section we argue that the r-regret problem is EXPtime-complete. It will be convenient to
suppose all automata we work with are trim. This is no loss of generality with regard to r-regret
determinizability, i.e. an automaton N is r-regret determinizable if and only if its trim version, N ′, is
r-regret determinizable. Clearly, an r-regret determinizer of N ′ is also an r-regret determinizer of N .
Also, it is easy to show that the trim version D′ of an r-regret determinizer D of N must also be an
r-regret determinizer of N ′. Furthermore, any automaton can be trimmed in polynomial time.

4.1 Upper bound

We will now give an exponential time algorithm to determine whether a given automaton is r-regret deter-
minizable, for a given r. The algorithm is based on a quantitative version of the Joker game introduced
by Kuperberg and Skrzypczak to study the determinization of good-for-games automata [KS15]. More
precisely, the Joker game will correspond to generalization of the classical energy games [CdAHS03].

The algorithm is as follows: construct an energy game with resets (which we call the Joker game)
based on the given automaton and decide if Eve wins it; if this is not the case, then for all r ∈ N the
automaton is not r-regret determinizable; otherwise, using the winning strategy for Eve in the Joker
game, construct a deterministic automaton D realizing the same function as N and use it to decide if N
is r-regret determinizable. The last step of the algorithm is the simplest. Given a deterministic version of
the original automaton, one can use it as a “monitor” and reduce the r-regret determinizability problem
to deciding the winner in an energy game.

Theorem 5. Deciding the r-regret problem for a given automaton is in EXPtime.

Energy games with resets. An energy game with resets (EGR for short) is an infinite-duration
two-player turn-based game played by Eve and Adam on a directed weighted graph. Formally, an EGR
G = (V, V∃, E,E̺, w) consists of: a set V of vertices, a set V∃ ⊆ V of vertices of Eve—the set V∀ := (V \V∃)
of vertices thus belongs to Adam, a set E ⊆ V × V of directed edges, a set E̺ ⊆ E of reset edges such
that E̺ ⊆ V∀ × V , and a weight function w : E → Z. (Observe that if E̺ = ∅, we obtain the classical
energy games without resets [CdAHS03].) Pictorially, we represent Eve vertices by squares and Adam
vertices by circles. We denote by wmax the value maxe∈E |w(e)|. Intuitively, from the current vertex u,
the player who owns u (i.e. Eve if u ∈ V∃, and Adam otherwise) chooses an edge (u, v) ∈ E and the play
moves to v. We formalize the notions of strategy and play below.

A strategy for Eve (respectively, Adam) in G is a mapping σ : V ∗ ·V∃ → V (respectively, τ : V ∗ ·V∀ →
V ) such that σ(v0 . . . vn) = vn+1 (τ(v0 . . . vn) = vn+1) implies (vn, vn+1) ∈ E. As in regret games, a
strategy σ for either player is one which can be encoded as a deterministic Mealy machine (S, sI , λu, λo)
with update function λu : S × V → S and output function λo : S × V → V . The machine encodes σ in
the following sense: σ(v0 . . . vn) = λu(sn, vn) where s0 = sI and si+1 = λu(si, vi) for all 0 ≤ i < n. As
usual, the memory of a finite-memory strategy refers to the size of the Mealy machine realizing it.

A play in G from v ∈ V corresponds to an infinite path in the underlying directed graph (V,E).
That is, a sequence π = v0v1 . . . such that (vi, vi+1) ∈ E for all i ∈ N. Since an EGR is played for
an infinite duration, we will henceforth assume they are played on digraphs with no sinks: i.e. for all
u ∈ V , there exists v ∈ V such that (u, v) ∈ E. We say a play π = v0v1 . . . is consistent with a strategy
σ for Eve (respectively, τ for Adam) if it holds that vi ∈ V∃ implies σ(v0 . . . vi) = vi+1 (vi 6∈ V∀ implies
τ(v0 . . . vi) = vi+1). Given a strategy σ for Eve and a strategy τ for Adam, and a vertex v ∈ V there is
a unique play πv

στ compatible with both σ and τ from v.
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Given a finite path ϕ in G, i.e. a sequence v0 . . . vn such that (vi, vi+1) ∈ E for all 0 ≤ i < n, and

an initial credit c0 ∈ N, we define the energy level of ϕ as ELc0(ϕ) := c0 +
∑n−1

j=i0
w(vj , vj+1) where

0 ≤ i0 < n is the minimal index such that (vℓ, vℓ+1) 6∈ E̺ for all i0 < ℓ < n.
We say Eve wins the EGR from a vertex v ∈ V with initial credit c0 if she has a strategy σ such that,

for all strategies τ for Adam, for all finite prefixes ϕ of πv
στ we have ELc0(ϕ) ≥ 0. Adam wins the EGR

from v with initial credit c0 if and only if Eve does not win it.

Example 3. Consider the EGR shown in Fig. 5. In this game, Eve wins from v0 with initial credit 2.
Indeed, whenever Adam plays from v1 to v0 the energy level drops by 1 but is then increased by 1 when
the play returns to v1; when he plays from v1 to v2 the energy level is first reset to 2 and then drops to
0 when the play reaches v0. Clearly then, Adam cannot force a negative energy level. However, if E̺

were empty, then Eve would lose the game regardless of the initial credit.

The following properties of energy games (both, with or without resets), which include positional
determinacy, will be useful in the sequel. A game is positionally determined if: for all instances of the
game, from all vertices, either Eve has a positional strategy which is winning for her against any strategy
for Adam, or Adam has a positional strategy which is winning for him against any strategy for Eve.

Proposition 20. For any energy game (both, with or without resets) G = (V, V∃, E,E̺, w) the following
hold.

1. The game is positionally determined if c0 ≥ |V |wmax.
2. For all v ∈ V , Eve wins from v ∈ V with initial credit |V |wmax if and only if there exists c0 ∈ N

such that she wins from v ∈ V with initial credit c0.
3. Determining if there exists c0 ∈ N such that Eve wins from v ∈ V with initial credit c0 is decidable

in time polynomial in |V |, |E|, and wmax.

Sketch. All three properties are known to hold for energy games without resets (see, e.g. [CdAHS03,
BCD+11]).

For EGRs the arguments to show these properties hold are almost identical to those used in [BCD+11].
We first define a finite version of the game which is stopped after the first cycle is formed and in which
the winner is determined based on properties of that cycle. If we let Eve win if and only if the cycle
has non-negative sum of weights or it contains a reset, then we can show she wins this First Cycle
Game [AR14] if and only if she wins the EGR with initial credit |V |wmax. Furthermore, using a result
from [AR14] we obtain that positional strategies suffice for both players in both games, i.e. the games
are positionally determined.

The second property follows from the relationship between the EGR and the first cycle game we
construct. More precisely, we show that winning strategies for both players transfer between the games.
In the first cycle game, Adam wins if he can force cycles which have a negative sum of weights. Hence, if
Eve does not win the EGR with initial credit |V |wmax, then by determinacy, Adam wins the first cycle
game, and his strategy—when played on the original EGR—ensures only negatively-weighted cycles are
formed, which in turn means that he wins the EGR with any initial credit.

Finally, to obtain an algorithm, we reduce the problem of deciding if Eve wins the EGR from v ∈ V
with a given initial credit c0 to her winning a safety game [AG11] played on an unweighted digraph where
the states keep track of the energy level (up to a maximum of |V |wmax).

Energy games will be our main tool for the rest of this section. They allow us to claim that, given an
automaton N and a deterministic automaton D which defines the same function, we can decide r-regret
determinizability.

Proposition 21. Given an automaton N = (Q, I,A,∆, w, F ) and D = (Q′, {q′I}, A,∆
′, w′, F ′) such

that D is deterministic and JDK = JN K, the r-regret problem for N is decidable in time polynomial in
|Q|, |Q′|, |A|, wmax, and w′

max.

Sketch. We construct an energy game without resets which simulates the regret game played on N
while using D to compare the weights of transitions chosen by Eve to those of the maximal run of N .
Intuitively, Eve chooses an initial state in N , then Adam chooses a symbol, and Eve responds with a
transition t ∈ ∆ in N . Finally, the state of D is deterministically updated via transition t′. The weight
of the whole round is w(t) − w′(t′). We also make sure Eve loses if in the regret game she reaches a
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non-final state and the run of D is at a final state; or if she reaches a final state with too low an energy
level (implying a large regret). Formally, the energy game without resets is G = (V, V∃, E,∅, µ) where:

• V = Q2 ∪Q3 ×A ∪ {⊤,⊥,⊥r
1,⊥

r
2};

• V∃ = Q3 ×A;
• E contains edges to simulate transitions of N and D, i.e. {((p, q), (p, q, q′, a)) | (q, a, q′) ∈ ∆′} ∪

{((p, q, q′, a), (p′, q′)) | (p, a, p′) ∈ ∆}, edges required to verify Eve does not reach a non-final
state when D accepts, i.e. {((p, q),⊥) | p 6∈ F ∧ q ∈ F ′} ∪ {(⊥,⊥)}, edges used to make sure the
regret is at most r when on final states, i.e. {((p, q),⊥r

1) | p ∈ F ∧ q ∈ F ′} ∪ {(⊥r
1,⊥

r
2), (⊥

r
2,⊥

r
1)},

and edges to punish one of the players if an automaton blocks, i.e. {((p, q),⊤) | ¬∃(q, a, q′) ∈
∆′} ∪ {((p, q, q′, a),⊥) | ¬∃(p, a, p′) ∈ ∆} ∪ {(⊤,⊤)};

• µ : E → Z is such that
– ((p, q, q′, a), (p′, q′)) 7→ w(p, a, p′)− w′(q, a, q′),
– (⊥,⊥) 7→ −1,
– ((p, q),⊥r

1) 7→ 1− |Q′|(wmax + w′
max),

– (⊥r
1,⊥

r
2) 7→ −1, (⊥r

2,⊥
r
1) 7→ 1,

– (⊤,⊤) 7→ 1, and
– e 7→ 0 for all other e ∈ E.

We then claim that for some pI ∈ I, Eve wins the energy game without resets G from (pI , q
′
I) with initial

credit r+ |Q′|(wmax+w
′
max) if and only if N is r-regret determinizable. The result then follows from the

fact G is of size polynomial w.r.t. D and N , and the application of the algorithm (see Proposition 20)
to determine the winner of G.

The Joker game. The Joker game (JG) is a game played by Eve and Adam on an automaton
(Q, I,A,∆, w, F ). It is played as follows: Eve chooses as initial state p ∈ I and Adam an initial state
q ∈ I and the initial configuration becomes (p, q) ∈ I2. From the current configuration (p, q) ∈ Q2 (Step
i): Adam chooses a symbol a ∈ A, (Step ii): then Eve chooses a transition (p, a, p′) ∈ ∆, and (Step
iii): Adam can (Step iii.a): choose a transition (q, a, q′) ∈ ∆ or (Step iii.b): play joker and choose
a transition (p, a, q′) ∈ ∆. The new configuration is then (p′, q′). The weight assigned to each round
corresponds to the weight of the transition chosen by Eve minus the weight of that chosen by Adam. If
Adam played joker, then the sum of weights is reset before adding the weight of the configuration change.
Additionally, if Eve moves to a non-final state and Adam moves to a final state, or if Eve can no longer
extend the run she is constructing, then (Step ⋆): we ensure Eve loses the game.

We formalize the JG played on N = (Q, I,A,∆, w, F ) as an EGR (V, V∃, E,E̺, µ) with V = V∃ ∪ V∀,
E =

⋃

1≤i≤3E∀i
∪ E∃ ∪ E̺ ∪ {(⊥,⊥)} where:

• V∃ = Q2 ×A ∪ {⊥};
• V∀ = Q2 ∪Q3 ×A;
• (Step i): E∀1

= {((p, q), (p, q, a)) | (p, q) ∈ Q2, (q, a, q′) ∈ ∆};
• (Step ii): E∃ = {((p, q, a), (p, q, p′, a)) | (p, q, a) ∈ V∃, (p, a, p

′) ∈ ∆};
• (Step iii.a): E∀2

= {((p, q, p′, a), (p′, q′)) | (p, q, p′, a) ∈ Q3 ×A, (q, a, q′) ∈ ∆};
• (Step iii.b): E̺ = {((p, q, p′, a), (p′, p′′)) | (p, q, p′, a) ∈ Q3 ×A, (p, a, p′′) ∈ ∆};
• (Step ⋆): E∀3

= {((p, q),⊥) | p 6∈ F ∧ q ∈ F or ∃a ∈ A, ∀p′ ∈ Q : (p, a, p′) 6∈ ∆} ∪ {(⊥,⊥)}; and
• µ is such that

– (⊥,⊥) 7→ −1,
– e 7→ w(p, a, p′)− w(q, a, q′) for all e = ((p, q, p′, a), (p′, q′)) ∈ E∀2

,
– e 7→ w(p, a, p′)− w(p, a, p′′) for all e = ((p, q, p′, a), (p, p′′)) ∈ E̺,
– and e 7→ 0 for all other e ∈ E.

It is easy to verify that there are no sinks in the EGR.

Winning the Joker game. We say Eve wins the JG played on (Q, I,A,∆, w, F ) if there is p ∈ I
such that, for all q ∈ I, she wins from (p, q) with initial credit |V |µmax (where µmax := maxe∈E |µ(e)|).
Proposition 20 tells us that, if Eve wins with some initial credit, then she also wins with initial credit
|V |µmax.

We now establish a relationship between r-regret determinization and the JG.

Lemma 22. If an automaton N = (Q, I,A,∆, w, F ) is r-regret determinizable, for some r ∈ N, then
Eve wins the JG played on N .
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Proof. We will actually prove the contrapositive holds. Suppose Eve does not win the JG. By determinacy
of EGRs (Proposition 20 item 1) we know that Adam, for all p0 ∈ I, has a strategy τ to force from some
(p0, q0) ∈ I2 a play which eventually witnesses a negative energy level. Furthermore, he can do so for any
initial credit (Proposition 20 item 2). Let us now assume, towards a contradiction, that Eve wins the
r-regret game with a strategy σ such that σ(ε) = p0. Since σ is winning for her in the regret game, then
for all α ∈ A∗, σ(α) is an initial run of N . Hence σ can be converted into a strategy for Eve in the JG
by ignoring the transitions chosen by Adam and following σ when Adam chooses a symbol a ∈ A. If Eve

follows σ to play in the JG against τ , then there exists q0 ∈ I such that π
(p0,q0)
στ eventually witnesses a

negative energy level even if the initial credit is r+ 2|Q|wmax (because τ is winning for Adam in the JG

with any initial credit). Moreover, π
(p0,q0)
στ never reaches the vertex ⊥, since σ(α) is an initial run of N

for all α ∈ A∗. If we let ϕ = (p0, q0)(p0, q0, a0)(p0, q0, p1, a0) . . . (pn, qn) be the first prefix that witnesses
a negative energy level with initial credit r+2|Q|wmax, and 0 ≤ i0 < n be the minimal index such that no
reset occurs for all i0 < ℓ < n, then ̺ = p0a0p1a1 . . . pn and ̺′ = p0a0 . . . pi0ai0qi0+1 . . . qn are two runs
in N such that w(̺′) > w(̺) + r + 2|Q|wmax. Since N is trim, there is a final run qnan . . . am−1qm such
that m − n ≤ |Q|. Hence, we have that JN K(a0 . . . am−1) − Val(σ(a0 . . . am−1)) > r, which contradicts
the fact that σ is winning for Eve in the regret game. It follows that there cannot be a winning strategy
for Eve in the r-regret game.

From the above results we have that if we construct the JG for the given automaton and Eve does
not win the JG, then the automaton cannot be r-regret determinizable (no matter the value of r). We
now study the case when Eve does win.

Using the JG to determinize an automaton. Let N = (Q, I,A,∆, w, F ) be an automaton. We will
assume that Eve wins the JG played on N . Denote by W JG ⊆ Q2 the winning region of Eve. That is,
W JG is the set of all (p, q) ∈ Q2 such that Eve wins the EGR from (p, q) with initial credit |V |µmax. Also,
let us write QJG for the projection of W JG on its first component. Moreover, for every (p, q) ∈ W JG, let
Cr(p, q) denote the minimal integer c ∈ N such that Eve wins the JG from (p, q) with initial credit c.

We will now prove some properties of the sets W JG and QJG. First, the relation W JG is transitive.

Lemma 23. For all p, q, t ∈ Q, if (p, q), (q, t) ∈W JG then (p, t) ∈ W JG.

Sketch. For every (p, q) ∈W JG, let σ(p,q) denote a winning strategy for Eve in the JG played from (p, q)
with initial credit Cr(p, q). We define a strategy σ for Eve in the JG as follows. For (p, q), (q, t) ∈ W JG,
let qp,t ∈ Q denote the state such that Cr(p, qp,t) + Cr(qp,t, t) is minimal. For every (p, t, a) ∈ Q2 ×A, if
(p, q), (p, t) ∈ W JG, we then set σ ((p, t, a)) = σ(p,qp,t)((p, qp,t)(p, qp,t, a)). We then claim that for every

(p, q)(q, t) ∈ W JG, the strategy σ is winning for Eve in the EGR starting from (p, t) with initial credit
Cr(p, qp,t) + Cr(qp,t, t).

Another property which will be useful in the sequel is that, all the a-successors of a state p ∈ QJG

are related (by W JG) to the a-successor chosen by a winning strategy for Eve.

Lemma 24. For all (p, q) ∈ W JG and a ∈ A, let σJG be a winning strategy for Eve in the JG from (p, q)
with initial credit c ∈ N, and let (p, q, p′, a) = σJG ((p, q)(p, q, a)). Then, for all (t, a, p′′) ∈ ∆ such that
t ∈ {p, q}, it holds that (p′, p′′) ∈W JG, and Cr(p′, p′′) ≤ c+ w(p, a, p′)− w(t, a, p′′).

Proof. Observe that from any (p, q) ∈ W JG in the JG, after Adam has chosen a letter a ∈ A and Eve
a transition (p, a, p′) ∈ ∆, Adam could play joker and choose any transition (p, a, p′′) ∈ ∆ or (without
playing joker) choose any transition (q, a, p′′). Hence, for any winning strategy σJG for Eve in the JG
played from (p, q) with initial credit c such that σJG ((p, q)(p, q, a)) = (p, q, p′, a), for any (t, a, p′′) ∈ ∆
such that t ∈ {p, q}, reaching (p′, p′′) is consistent with σJG. It follows that σJG must be winning for Eve
from (p′, p′′) with initial credit c1 = c+w(p, a, p′)−w(t, a, p′′). If c1 ≤ |V |µmax, we are done. Otherwise,
by Proposition 20, there is a strategy σ′ winning for Eve from (p′, p′′) with initial credit |V |µmax. From
the definition of W JG we get that (p′, p′′) ∈W JG as required, and the result follows.

Corollary 25. If there are winning strategies σJG
1 , σJG

2 for Eve in the JG with initial credit |V |µmax

from (p, q1), (p, q2), respectively, such that σJG
1 ((p, q1)(p, q1, a)) = (p, q1, p1, a) and σJG

2 ((p, q2)(p, q2, a)) =
(p, q2, p2, a) for some a ∈ A, then (p1, p2), (p2, p1) ∈ W JG.

Finally, we note that by following a winning strategy for Eve in the JG, we are sure all alternative
runs of an automaton are related (by W JG) to the run built by Eve.
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Lemma 26. For all play prefixes (p0, q0)(p0, q0, a0) . . . (pn−1, qn−1, pn, an−1)(pn, qn) consistent with a
winning strategy for Eve in the JG from (p0, q0) with initial credit |V |µmax, for all runs p0a0p

′
1a1 . . . an−1p

′
n

of N on a0 . . . an−1 we have that (pn, p
′
n) ∈ W JG.

Proof. Let σJG
1 denote the winning strategy referred to in the claim.

First, it is easy to show by induction that (pi, qi) ∈ W JG for all 0 ≤ i ≤ n. Intuitively, using the
fact that σJG

1 is winning for Eve with initial credit |V |µmax from (p0, q0) we get that for any (pi, qi)
the strategy σJG

1 is winning for her with some initial credit. Then, by Proposition 20, there is another
strategy σ′ that is winning from (pi, qi) with initial credit |V |µmax.

We will now argue, by induction, that (pi, p
′
i) ∈ W JG for all 0 < i ≤ n. For the base case, it

should be clear that (p1, p
′
1) ∈ W JG. This follows from Lemma 24. Hence, we can assume the claim

holds for some 0 < i < n. By definition of W JG we have that Eve has a winning strategy σJG
2 in

the JG from (pi, p
′
i) with initial credit |V |µmax. It follows from Corollary 25 that (pi+1, t) ∈ W JG

where (pi, qi, pi+1, ai) = σJG
1 ((p0, q0) . . . (pi, qi, ai)) and (pi, qi, t, ai) = σJG

2 ((p0, p0) . . . (pi, p
′
i, ai)) . Using

Lemma 24 we get that (t, p′i+1) ∈ W JG. Now, by transitivity of W JG (see Lemma 23) we conclude that
(pi+1, p

′
i+1) ∈W JG. The claim then follows by induction.

We now prove that if Eve wins the JG played on N , then the automaton N is determinizable. In
order to do so, we first prove that N is 2|V |µmax-bounded.

Proposition 27. Let N = (Q, I,A,∆, w, F ) be such that Eve wins the JG played on N . Then N is
2|V |µmax-bounded.

Proof. Let ̺p = p0a0p1 . . . an−1pn be a maximal accepting run of N , let i ∈ {0, . . . , n}, and let
̺q = q0a0q1 . . . ai−1qi be an initial run. Let us prove that w(̺q) − w(p0a0p1 . . . ai−1pi) ≤ 2|V |µmax.
Let ̺p,1 denote the run p0a0p1 . . . ai−1pi, let ̺p,2 denote the run piaipi+1 . . . an−1pn. First, let σJG

1

be a winning strategy for Eve in the JG from (p′0, q0) (for some p′0 ∈ I) with initial credit |V |µmax.
Let ϕq = (p′0, q0)(p

′
0, q0, a0)(p

′
0, q0, p

′
1, a0)(p

′
1, q1) . . . (p

′
i, qi) be the play prefix consistent with σJG

1 that
corresponds to Adam playing the word a0 . . . ai−1 and choosing the states from the run ̺q. Since
σJG
1 is winning, Adam cannot enforce a negative energy level, in other words EL|V |µmax

(ϕq) ≥ 0,
hence: w(̺q) − w(p′0a0p

′
1 . . . ai−1p

′
i) ≤ |V |µmax. Second, by Lemma 26, (p′i, pi) ∈ W JG, hence Eve

has a winning strategy σJG
2 in the JG starting from (p′i, pi) with initial credit |V |µmax. Let ϕp,2 =

(p′i, pi)(p
′
i, pi, ai)(p

′
i, pi, p

′
i+1, ai)(p

′
i+1, pi+1) . . . (p

′
n, pn) be the play prefix consistent with σJG

2 that cor-
responds to Adam playing the word ai . . . an and choosing the states from the run ̺p,2. Since σJG

2 is
winning, p′n is a final state and (for the same reason as above) we have w(̺p,2)−w(p′iaip

′
i+1 . . . an−1p

′
n) ≤

|V |µmax = |V |µmax. Finally, since ̺p is maximal by hypothesis, w(p′0a0p
′
1 . . . an−1p

′
n) ≤ w(̺p). Since

w(̺p) = w(̺p,1) + w(̺p,2), the desired result follows.

Since, by definition of the JG, both |V | and µmax are polynomial w.r.t. |Q| and wmax, using Propo-
sition 4 gives us the following.

Theorem 6. Given an automaton N = (Q, I,A,∆, w, F ), if Eve wins the JG played on N , then there
exists a deterministic automaton D such that JDK = JN K, and whose size and maximal weight are
polynomial w.r.t. wmax, and exponential w.r.t. |Q|.

With the results above, we are now in position to prove an EXPtime upper bound for the r-regret
problem.

Proof of Theorem 5. Given an automaton N and r ∈ N, we first determine whether Eve wins the JG
played on N = (Q, I,A,∆, w, F ). To do so, we determine the winner of the corresponding EGR from all
(p, q) ∈ I2 with initial credit |V |µmax. We can then, in polynomial time, decide if there exists p ∈ I such
that, for all q ∈ I, Eve can win the EGR from (p, q). If the latter does not hold, then by contrapositive
of Lemma 22, N is not r-regret determinizable. Otherwise, we construct D such that JDK = JN K and
D is deterministic using Theorem 6. Finally, we use D to decide if Eve wins the r-regret game using
Proposition 21. Since D is of size exponential w.r.t. to N but its maximal weight is polynomial w.r.t.
wmax, the resulting energy game without resets can be solved in exponential time by Proposition 20.
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As a corollary, we obtain that the existential version of the r-regret problem is also decidable. More
precisely, using the techniques we have just presented, we are able to decide the question: does there
exist r ∈ N such that a given automaton N is r-regret determinizable? The algorithm to decide the
latter question is almost identical to the one we give for the r-regret problem. The only difference lies in
the last step, that is, the energy game without resets constructed from the deterministic version of the
automaton that one can obtain from the JG. Instead of using a function of r as initial credit, we ask if
Eve wins the energy game with initial credit |V |µmax—we also remove the gadget using vertices ⊥r

1,⊥
r
2

which ensure a regret of at most r.

Theorem 7. Given an automaton, deciding whether there exists r ∈ N such that it is r-regret deter-
minizable is in EXPtime.

4.2 Lower bound

In this section we argue that the complexity of the algorithm we described in the previous section is
optimal. More precisely, the r-regret problem is EXPtime-hard even if the regret threshold r is fixed.

Theorem 8. Deciding the r-regret problem for a given automaton is EXPtime-hard, even for fixed
r ∈ N>0.

Observe that, in regret games, Eve may need to keep track of all runs of the given automaton on the
word α which is being “spelled” by Adam. Indeed, if she has so far constructed the run ̺ and Adam
chooses symbol a next, then her choice of transition to extend ̺ may depend on the set of states at which
alternative runs of the automaton on α end. The set of all such configurations is exponential.

Our proof of the r-regret problem being EXPtime-hard makes sure that Eve has to keep track of a
set of states as mentioned above. Then, we encode configurations of a binary counter into the sets of
states so that the set of states at which Eve believes alternative runs could be at, represent a valuation of
the binary counter. Finally, we give gadgets which simulate addition of constants to the current valuation
of the counter. These ingredients allow us to simulate Countdown games [JSL08] using regret games.
As the former kind of games are EXPtime-hard, the result follows. The same reduction has been used
to show that regret minimization against eloquent adversaries in several quantitative synthesis games is
EXPtime-hard [HPR16].

5 Further research directions

When the regret r is given, the r-regret determinization problem is EXPtime-complete. When r is not
given, the problem is in EXPtime but we did not found any lower bound other than Ptime-hardness.
Characterizing the precise complexity of this problem is open.

The latter is related to the following question. From our decision procedure for solving the existential
regret problem, it appears that if a WA is r-regret determinizable for some r, it is also r′-regret deter-
minizable for some r′ that depends exponentially on the WA. So far, we have not found any family of
WA that exhibit exponential regret behaviour, and the best lower bound we have is quadratic in the size
of the WA (see Appendix E).

Finally, we would like to investigate the notions of delay- and regret-determinization for other mea-
sures, such as discounted sum [CDH10] or ratio [FGR12]. These notions also make sense for other
problems, such as comparison and equality of weighted automata (which are undecidable for max-
plus automata), and disambiguation (deciding whether a given WA is equivalent to some unambiguous
one) [KL09].
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A On Proposition 3

Ratio vs. difference. We remark that the results from [AKL10] are on minimizing regret with respect
to the ratio measure and not the difference. However, ratio 1 coincides with difference 0.

Determinization by pruning & (N,min,+) vs. (Z,max,+). In [AKL10] the authors actually
consider automata over the tropical semiring. That is, their automata can only have non-negative
integers and they use min instead of max to aggregate multiple runs of the automaton over the same
word. However, it is easy to see that Eve wins an r-regret game played on an automaton N with integer
weights if and only if she wins an r-regret game on the same automaton with weights “shifted” so they
all become negative (recall we use max and not min). More precisely we subtract wmax from the weights
of all transitions, then multiply them all by −1, and denote the resulting automaton by M. Clearly,
the (N ∪ {+∞},min,+)-automaton M is r-regret determinizable if and only if the (Z ∪ {−∞},max,+)-
automaton N is r-regret determinizable.

B Proof of Proposition 4

We present here in details the sketched construction. Let us define D = (Q′, {q′I}, A,∆
′, F ′, w′) as follows.

• Q′ is the set of functions from Q to the set {−B, . . . , B} ∪ {−∞}. The idea is that, on input u, D
deterministically chooses a run ̺ of N on u, outputs the corresponding weight, and uses its state
to keep in memory, for each state q ∈ Q, the delay between ̺ and the maximal run of N on u
ending in q;

• q′I is the function mapping each initial state of N to 0, and all the other states to −∞;
• We now define ∆′ and w′. For every pair (g, a) ∈ Q′×A, we have (g, a, δg,a) ∈ ∆′ and w′(g, a, g′) =
wg,a, where δg,a and wg,a are constructed as follows. First, we update the information concerning
the runs of N contained in g. For every q ∈ Q, let

mq = max{w + µ | (p, w) ∈ g, w(p, a, q) = µ}.

The runs whose weight is too low are dropped. Let QB ⊆ Q be the set of states q such that
mp −mq ≤ B for every p ∈ Q. In particular, if mq = −∞, q /∈ QB. For every q ∈ Q \ QB, we
set δg,a(q) = −∞. Then, wg,a is defined as the weight corresponding to the maximal accepting
run, if any is left, and to the value of the maximal (non accepting) run otherwise. Formally, if
QB ∩ F = ∅, then wg,a = max{mq | q ∈ Q}, otherwise wg,a = max{mq | q ∈ F}. Finally, the
state is updated accordingly. For every q ∈ QB, we set δg,a(q) = mq − wg,a.

• F ′ is the set of functions g ∈ Q′ such that g(qf ) 6= −∞ for some final state qf ∈ F .
By definition, D is complete and deterministic, |Q′| = (2B+2)|Q| and its maximal weight is B+wmax.

In order to complete the proof of Theorem 6, we need to prove that JDK = JN K. To do so, we expose
three properties satisfied by D.

Given a run ̺ = p0a0p1 . . . an−1pn of N , let us call ̺ good if for every 0 ≤ i ≤ n, and for every run
̺q = q0a0q1 . . . ai−1qi,

w(p0a0p1 . . . ai−1pi) ≥ w(̺q)−B.

Proposition 27 ensures us that every maximal accepting run of N is good. Let u ∈ A∗, let g0a0g1 . . . an−1gn
be the run of D on u, and for every 0 ≤ i ≤ n let wi denote the weight w′(g0a0g1 . . . ai−1gi).

P1: For every q ∈ F , gn(q) ≤ 0, and if gn(p) 6= −∞ for at least one state p ∈ F , then there exists q ∈ F
such that gn(q) = 0.

P2: Let q ∈ Q. If gn(q) 6= −∞, then there exists an initial run ̺ = q0a0q1 . . . an−1qn of N on u such
that qn = q and w(̺) = wn + gn(q).

P3: Let ̺ = p0a0p1 . . . an−1pn be an initial run of N on u. If ̺ is good, then wn + gn(qn) ≥ w(̺).

Proof. P1 follows immediately from the definition of ∆′. P2 and P3 are proved by induction on the size
of u. If u = ε, then the state gn reached by D on input u is the initial state q′I of D, and the weight wn

corresponding to this run is 0. Then, by definition of I ′, for every q ∈ Q either q is initial and q′I(q) = 0,
which is the value of the initial run ̺′ = q of N on ε, or q is not initial and q′I(q) = −∞. This proves P2.
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Conversely, every initial run ̺ of N on u is of the form qI for some qI ∈ I, and q′I(qI) = 0, which proves
P3. Now suppose that u = va for some v ∈ A∗ and a ∈ A, and that P2 and P3 hold for v.

Let us first prove that P2 holds for u. Suppose that gn(q) 6= −∞. By definition of ∆′, there exists
p ∈ Q and (p, a, q) ∈ ∆ such that gn(q) = gn−1(p) + w(p, a, q) − w′(gn−1, a, gn). Then gn−1(p) 6= −∞,
hence, by the induction hypothesis, there exists an initial run ̺′ = q0a0q1 . . . an−2qn−1 of N on v such
that qn−1 = p and w(̺′) = wn−1 + gn−1(p). Then the run ̺′aq of N on u satisfies the statement of P2,
since

w(̺′aq) = w(̺′) + w(p, a, q)
= wn−1 + gn−1(p) + w(p, a, q)
= wn − w′(gn−1, a, gn) +

gn−1(p) + w(p, a, q)
= wn + gn(q).

Finally, we prove P3. Suppose that ̺ is good. First, note that the run p0a0p1 . . . an−2pn−1 on v,
which is obtained by removing the last transition of ̺, is also good. Hence, by the induction hypothesis,

wn−1 + gn−1(pn−1) ≥ w(̺′).

Second, if we suppose that gn(pn) = −∞, we obtain a contradiction with the fact that ̺ is good, since,
using P2 and the definition of ∆′, we are able to build a run ψ on u such that w(̺) < B −w(ψ). Hence
gn(pn) 6= −∞, and, by definition of ∆′,

w′(gnagn+1) + gn(pn) ≥ w(pn−1apn) + gn−1(pn−1).

These inequalities imply the correctness of P3, since

wn + gn(pn) = wn−1 + w′(gnagn+1) + gn(pn)
≥ wn−1 + gn−1(pn−1) + w(qn−1apn)
≥ w(̺′) + w(qn−1apn)
= w(̺).

Corollary 28. The function defined by D is equal to JN K.

Proof. Let us begin by proving that for every input word u, JN K(u) ≥ JDK(u). Let u ∈ LD, and let g be
the state reached by D on input u. Then g is final, hence, by definition of F ′, there exists a state qf ∈ F
such that g(qf ) 6= −∞. Moreover, by P1, there exists a final state pf ∈ F such that gn(pf ) = 0. This
implies, by P2, the existence of an initial run ̺ = p0a0p1 . . . an−1pn of N on u such that pn = pf ∈ F
and w(̺) = JDK(u). Since qn is a final state, ̺ is accepting, hence JN K(u) ≥ w(̺) = JDK(u).

Finally, we prove that, conversely, for every input word v, JDK(u) ≥ JN K(u). Let v ∈ LN , let ψ be a
maximal accepting run of N on v, and let q ∈ F be the corresponding final state. Let gv be the state
of D reached on input v, and let wv be the associated output. By Proposition 27, ψ is good, hence by
P3, wv + gv(q) ≥ w(ψ) = JN K(v). Therefore gv(q) 6= −∞, and, since q is a final state of N , gv is a final
state of D. Moreover, by P1, gv(q) ≤ 0, hence JDK(u) = wv ≥ JN K(u).

C Proof of Lemma 12

Proof. If N is 0-regret determinizable, then N is 0-delay determinizable by Proposition 11. Now suppose
that N is 0-delay determinizable, and let D be a 0-delay determinizer of N . Using D, we define a winning
strategy σD for Eve in the 0-regret game played on N . Given a sequence q0a0 . . . qn−1an−1 in (Q·A)∗, the
state σD(q0a0 . . . qn−1an−1) is defined as follows. Let α denote the input word a0 . . . an−1. If D has no
initial run on α, this word is not a prefix of any word of LN , hence whatever Eve does, Adam will not be
able to win. We set σD(q0a0 . . . qn−1an−1) = qn−1. Otherwise, let ̺α = p0a0 . . . pn−1an−1pn be the initial
run of D on α. Since D is a 0-delay determinizer of N , there exists an initial run ̺′α = p′0a0 . . . p

′
n−1an−1p

′
n

of N such that for every 1 ≤ i ≤ n, w(p′0 . . . p
′
i) = w′(p0 . . . pi). Moreover, since N is pair-deterministic,

such a run is unique. We set σD(q0a0 . . . qn−1an−1) = p′n. Note that, for every 1 ≤ i ≤ n − 1, the run
̺a0...ai

is equal to the prefix p0a0 . . . piaipi+1 of ̺α, since D is deterministic. Therefore, the run ̺′a0...ai
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is equal to the prefix p′0a0 . . . p
′
iaip

′
i+1 of ̺′α, since N is pair-deterministic. Then σ(p′0a0 . . . p

′
iai) = p′i+1

for every 1 ≤ i ≤ n− 1, hence σ(a0 . . . an−1) = ̺′ and

Val(σ(α)) = Val(̺′) = Val(̺) = JDK(α) = JN K(α).

This proves that σD is a winning strategy for the 0-regret game played on N .

D Making an automaton pair-deterministic

Subset construction. Let N = (Q, I,A,∆, w, F ) be an automaton. Let P(N ) = (Q′, I ′, A,∆′, w′, F ′)
be the automaton defined as follows.

• Q′ = P(Q);
• I ′ = {I};
• ∆′ = {(U, a,∆x

a(U)) | a ∈ A, x ∈ Im(w)}, where ∆x
a(U) =

⋃

p∈U{q ∈ Q | (p, a, q) ∈ ∆, w(p, a, q) =
x};

• w′ : ∆′ → Z, (U, a,∆x
a(U)) 7→ x;

• F ′ = {P ⊂ Q | P ∩ F 6= ∅}.

Lemma 29. The subset construction satisfies the following properties.
1. N ⊆0 P(N );
2. P(N ) ⊆0 N ;
3. JP(N )K = JN K.

Proof.

1. Let ̺ = q0a0 . . . an−1qn be an accepting run of N . Let U0 = I, and for every 1 ≤ i ≤ n, let

Ui = ∆
w(qi−1,ai−1,qi)
ai−1

(Ui−1). Note that for every 0 ≤ i ≤ n, qi ∈ Ui. Then ̺′ = U0a0 . . . an−1Un

is an accepting run of P(N ), and for every 0 ≤ i < n, w′(Ui, ai, Ui+1) = w(qi, ai, qi+1). Therefore,
N ⊆0 P(N ).

2. Let ̺ = U0a0 . . . an−1Un be an accepting run of P(N ). Let qn be any element of Un ∩ F . For
every 0 < i < n, suppose that qi+1 ∈ Ui+1 is defined, and let qi ∈ Ui be inductively defined as follows.

By definition of ∆′, Ui+1 = ∆
w′(Ui,ai,Ui+1)
ai (Ui), hence, as qi+1 ∈ Ui+1, there exists qi ∈ Ui such that

(qi, ai, qi+1) ∈ ∆ and w(qi, ai, qi+1) = w′(Ui, ai, Ui+1). Then ̺′ = q0a0 . . . an−1qn is an accepting run of
N , and w(qi, ai, qi+1) = w′(Ui, ai, Ui+1) for all 0 ≤ i < n. Therefore, P(N ) ⊆0 N .

3. This property follows immediately from the two others and Lemma 10 item 3.

E A lower bound on the required r for r-regret determinizability

In this section we give an example of an automaton which requires a quadratic regret threshold r for it
to be r-regret determinizable.

Proposition 30. Given an automaton N , a regret r as big as O(|V |) might be needed for it to be r-regret
determinizable.

Proof. Let k ∈ N>0 and consider the corresponding Nk automaton constructed as shown in Fig. 6. Note
that Nk consists of two deterministic automata. As the latter are also disjoint, the only decision for Eve
to make in this game is to start from p1 or from q1. Further, notice that if she does start in p1, then any
word with more than k consecutive a’s forces her into the state ⊥ which is not accepting. An alternative
run starting from q1 reaches qk, which is accepting, when reading the same word. Thus, Eve really has
no choice but to start in q1 to realize at least the domain of Nk.

Observe that any word with more than k consecutive a’s is not accepted by the left sub-automaton.
Hence, the maximal regret of the strategy for Eve which starts from q1 is witnessed by a word of the
form ai1bj1 . . . ainbjn where iℓ ≤ k for all 1 ≤ ℓ ≤ n. Such a word is assigned a value of

∑n
ℓ=1 iℓ by the

left sub-automaton. On the other hand, any word with k or more b’s is assigned a value equivalent to
the length of the word minus k by the right automaton. It is now easy to see that, if Eve starts in q1,
she will have a regret value of at least k2. This value is realized, for instance, by the word (akb)k.
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Figure 6: Automaton Nk with 2(k + 1) + 1 states and A = {a, b}.

F Proof of Proposition 20 (On Energy Games with Resets)

In this section we study the properties of EGRs. Let us start by establishing that they are uniformly
positionally determined. (The latter is even stronger than positional determinacy. A game is uniformly
positionally determined if, for all instances of the game, it is always the case that both players have a
positional strategy which is winning from all vertices from which it is possible for that player to win,
i.e. his winning region.) In order to prove this, we will make use of a First Cycle Game [AR14].

To simplify our arguments, in the sequel we will fix an arbitrary unique initial vertex vI from which
the game starts.

First cycle energy games. A first cycle energy game (FCEG) is played by Eve and Adam. Formally,
an FCEG is—just like an EGR—a tuple G = (V, V∃, vI , E,E̺, w) where the digraph (V,E) has no sinks.
We call G the arena on which both an EGR or an FCEG could be played. The main difference between
the FCEG and the EGR played on G is that the former is a finite game. More precisely, the FCEG is
played up to the point when the first cycle is formed. The winner of the game is then determined by
looking at the cycle: if it has a negative sum of weights and it does not contain a reset edge, then Adam
wins; else Eve wins. In other words, Adam and Eve choose edges, from vI to form a lasso, i.e. a finite
path ϕ = v0 . . . vi . . . vn such that vn = vi and vj 6= vk for all 0 ≤ j < k < n. We then say that ϕ is

winning for Eve if and only if (vj , vj+1) ∈ E̺ for some i ≤ j < n or
∑n−1

ℓ=i w(vℓ, vℓ+1) ≥ 0, otherwise ϕ
is winning for Adam. (Note that the property of ϕ being winning for Eve is determined solely on the
“cycle part” of the lasso. More specifically, the cycle vi . . . vn.)

EGRs are greedy. Let Y be a cycle property. We say an infinite-duration game is Y -greedy (or just
greedy, when Y is clear from the context) if and only if:

• all plays π such that every cycle in π satisfies Y are winning for Eve; and

• all plays π such that every cycle in π does not satisfy Y are winning for Adam.

We will now focus on the cycle property used to determine if Eve wins the FCEG defined above:
either the cycle contains a reset edge or the sum of the weights of cycle is non-negative. Let us start
with the following observation.

Lemma 31. If a play π is such that all of its cycles have negative sum of weights, then for all c0 ∈ N

there is a finite path ϕ which is a prefix of π and for which it holds that ELc0(ϕ) < 0.

We claim that EGRs are greedy with respect to this property.

Lemma 32. An EGR G = (V, V∃, vI , E,E̺, w) with initial credit |V |wmax is greedy.

Proof. For convenience, we will focus on simple cycles.
Let π = v0v1 . . . be a play of the game such that all cycles from π either contain a reset edge or have

non-negative sum of weights. We will argue that, for all prefixes ϕ of π with length at most n we have
that ELc0(ϕ) ≥ 0. We proceed by induction on n. If n = 0 then the claim holds trivially. Now, let us
consider an arbitrary prefix ϕ = v0 . . . vn+1. By induction hypothesis, we have that ELc0(v0 . . . vn) ≥ 0.
Let i be the index of the latest occurrence of a reset edge in ϕ (with i = 0 if there is no such edge). If
ELc0(ϕ) < 0 then clearly n − i > |V | since at least |V | edges are necessary to go from c0 = |V |wmax to
a negative number in G. Furthermore, it follows that between i and n we have cycle χ = vi . . . vj which
does not contain a reset edge and such that the sum of its transition weights is negative. This contradicts
our assumption that all cycles from π have a reset edge or non-negative sum of weights. Hence, the claim
holds by induction and the play is winning for Eve with initial credit |V |wmax.
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Let π = v0v1 . . . be a play of the game such that all cycles from π have negative sum of weights.
From Lemma 31 we have that for some prefix ϕ of π the energy level becomes negative, i.e. ELc0(ϕ) < 0.
Hence, the play is winning for Adam.

Since EGRs are greedy, it follows from [AR14] that strategies transfer between an EGR and an FCEG
played on the same arena. More formally,

Proposition 33. Let G = (V, V∃, vI , E,E̺, w) be an arena. Every memoryless strategy s for Eve (Adam)
in the ERG played on G with initial credit |V |wmax is winning for her (him) if and only if s is winning
for her (him) in the FCEG played on G.

More cycle properties. Let Y be a cycle property. We say Y is closed under cyclic permutations if
for any cycle χ = v0v1 . . . vn−1v0 such that χ |= Y we have that v1v2 . . . vn−1v0v1 |= Y . We also say Y is
closed under concatenation if for any two cycles χ = v0v1 . . . vn−1v0 and χ′ = v0v

′
1 . . . v

′
m−1v0 such that

χ, χ′ |= Y we have that χv̇′1 . . . v
′
m−1v0 |= Y .

Lemma 34. The property of a cycle being winning for Eve (Adam) in an FCEG is closed under cyclic
permutations and concatenation.

Proof. Clearly, a cycle being winning for Adam is closed under both operations. Indeed, by commutativity
of addition, if a cycle has negative sum of weights, the order of the weights does not matter. Additionally,
the concatenation of two negatively weighted cycles concatenated yields a negatively weighted cycle.

Let us consider now the property of a cycle being winning for Eve. If it contains a reset edge then
any cyclic permutation of the cycle will also contain it. If it does not have a reset edge then it must
have a non-negative sum of weights. Thus, the result follows by commutativity of addition. Additionally,
concatenation preserves containment of a reset edge and, again, two positively weighted cycles can only
yield a positively weighted cycle when concatenated.

It then follows immediately from Lemmas 32, 34 and [AR14] that EGRs and FCEGs are uniformly
positionally determined.

Proposition 35. Let G = (V, V∃, vI , E,E̺, w) be an arena. The EGR played on G with initial credit
|V |wmax and the FCEG played on G are both uniformly positionally determined.

Using Lemma 31 and Proposition 35 we can show that Eve wins an EGR with some initial credit
c0 ∈ N if and only if she wins with initial credit |V |wmax.

Proposition 36. Let G = (V, V∃, vI , E,E̺, w) be an arena Eve wins the EGR played on G with initial
credit |V |wmax if and only if she wins it with some initial credit c0 ∈ N.

Proof. One direction is obvious: if Eve wins the EGR with initial credit c0 = |V |wmax then clearly she
wins the EGR with some initial credit. We argue that if there exists some initial credit with which she
wins the EGR then |V |wmax suffices. We will, in fact, show that the contrapositive holds. Suppose that
Eve does not win the EGR with initial credit |V |wmax. Then by determinacy of the EGR with that
initial credit (Proposition 35), and using Proposition 33 together with Lemma 31 we have that Adam
has a strategy τ in the EGR which, regardless of the initial credit, ensures a negative energy level is
witnessed. Hence, there is no initial credit for which Eve wins.

A pseudo-polynomial algorithm. We will reduce the problem of deciding if Eve wins an EGR with a
given initial credit c0 ∈ N to that of deciding if she wins a safety game [AG11]. Safety games are played
by Eve and Adam on an unweighted arena (V, V∃, vI , E, U) with a set U ⊆ V of unsafe vertices which
determine the goals of the players. Eve wins the safety game if she has a strategy which ensures no the
play does not contain vertices from U , otherwise Adam wins. Safety games are known to be uniformly
positionally determined and solvable in linear time [AG11].

More formally, for a given EGR (V, V∃, vI , E,E̺, w) and initial credit c0, we define a safety game
played on (V ′, V ′

∃, v
′
I , E

′, U) where
• V ′ = V × ({⊥} ∪ {0, 1, . . . , |V |wmax}),
• V ′

∃ = V × ({⊥} ∪ {0, 1, . . . , |V |wmax}),
• v′I = (vI , c0),
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• E′ includes the edge ((u, c), (q, v)) if and only if
– (u, v) ∈ E \ E̺, c 6= ⊥, and d = max{w(u, v) + c, |V |wmax} or
– (u, v) ∈ E̺, c 6= ⊥, and d = max{w(u, v) + c0, |V |wmax or
– c = ⊥, d = ⊥, and u = v.

• U = V × {⊥}.
Informally, if the energy level goes above |V |wmax then we “bounce” it back to |V |wmax.

Proposition 37. Eve wins the EGR (V, V∃, vI , E,E̺, w) with initial credit c0 ∈ N if and only if she
wins the safety game played on (V ′, V ′

∃, v
′
I , E

′, U).

Proof. Clearly, if Eve wins the safety game then she wins the EGR with initial credit c0.
Conversely, if she has a strategy σ to win the EGR with initial credit c0, then, by Proposition 35 she

can do so with a uniformly positional strategy. That is, she has a strategy σ′ which ensures that from any
vertex from which she can win with some initial credit, she wins with σ′ and initial credit |V |wmax. We
claim that Eve must also be able to win the safety game. Indeed, at least until the first time the energy
level is “bounced” back, by playing according to σ, the energy level cannot become negative. For any
play which does reach a point at which the energy level is “bounced” back, we observe that the reached
vertex u (the first component of the safety-game vertex (u, c)) is also reachable in the EGR by a play
consistent with σ. Hence, σ must be winning for Eve in the EGR played from u with some initial credit.
By Proposition 36, |V |wmax should suffice for σ′ to be winning for her in the EGR from u. Henceforth,
she plays according to σ′ and the energy level cannot become negative by the above argument.

The result then follows by determinacy of safety games.

G Proof of Proposition 21

Given an automaton N = (Q, I,A,∆, w, F ) and D = (Q′, {q′I}, A,∆
′, w′, F ′) such that D is deterministic

and JDK = JN K, we construct the energy game without resets is G = (V, V∃, E,∅, µ) as described in the
sketch provided in the main body of the paper.

Since G is of size polynomial w.r.t. D and N , and we have a pseudo-polynomial algorithm to determine
the winner of energy games, it suffices for us to prove the following claim.

Lemma 38. The automaton N is r-regret determinizable if and only if there exists pI ∈ I such that Eve
wins the energy game without resets G from (pI , q

′
I) with initial credit r + |Q′|(wmax + w′

max).

Proof. We will argue that if Eve wins the energy game, then she wins the r-regret game and if Adam wins
the energy game, then she cannot win the r-regret game. The desired result follows from determinacy
of energy games (Proposition 20).

Assume Eve wins the game from some (pI , q
′
I) with strategy σ. Clearly, any play consistent with

σ never reaches the vertex ⊥. The strategy σ can be turned into a strategy σ′ for Eve in the regret
game as follows: for every symbol given by Adam in the regret game, σ′ selects a transition of N
based on what σ does in response to the deterministic transition of D. More formally, for any word
α = a0 . . . an−1 ∈ A∗ which can be extended to a word α′ ∈ LN , we have σ′(ε) = pI and σ′(α) =
σ ((p0, q0)(p0, q0, q1, a0) . . . (pn−1, qn−1, qn, an−1)) where p0 = pI , q0 = q′I and

(p0, q0)(p0, q0, q1, a0) . . . (pn−1, qn−1, qn, an−1)

is consistent with σ. The latter is well defined since we have argued that no play consistent with σ
reaches ⊥. Additionally, since Adam can choose to avoid ⊤r

1,⊤
r
2, there are plays consistent with any

strategy of Eve which do not reach these vertices. Finally, since we have assumed α can be extended to
a word in the language of N , ⊤ cannot be reached. For words which cannot be extended in this way, σ′

behaves arbitrarily. Observe that if α ∈ LN , then α ∈ LD and thus pn ∈ F since otherwise Adam could
reach ⊥ in the energy game when playing against σ, and this would contradict the fact that σ is winning.
Furthermore, we have that JN K(α)− Val(σ′(α)) ≤ r since otherwise Adam could reach ⊥r

1 in the energy
game when playing against σ and make her lose the game (since JN K(α) = JDK(α) = w(q0 . . . qn)), again
contradicting the fact that σ is winning not be winning.

Assume Adam wins the game G from every (pI , q
′
I). Suppose, for a contradiction, that Eve has a

strategy σ with which she wins the r-regret game. Let σ(ε) = p0 and τ be the strategy for Adam in the
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energy game which is winning for him from (p0, q
′
I). The strategy σ can be turned into a strategy for

Eve in the energy game by ignoring the states of D and choosing transitions of N when Adam chooses a

symbol. Hence, the play π
(p0,q

′
0)

στ in the energy game must be losing for Eve, by choice of τ . If the play is
losing because vertex ⊥ is reached, then either σ does not reach a final state of N after reading a word
in LN or she got stuck and cannot continue choosing transitions. In both cases, this contradicts the
fact that σ is winning for her in the regret game. If the play is losing because vertices ⊥r

1 and ⊥r
2 were

reached, then σ cannot be winning in the regret game because it assigns a weight to a word α ∈ LN that
is too low w.r.t. to JDK(α) = JN K(α). Finally, if the play is losing because the energy level drops below
0, despite the initial credit of r + |Q′|(wmax + w′

max), after prefix ϕ = . . . (pn, qn), then since D is trim,
there is a word β = b0 . . . bm−1 such that m ≤ |Q′| and there is an accepting of D from qn on β. Clearly
then, the difference between the value of the run constructed by σ and the value assigned by D to the
overall word is strictly greater than r. Hence, σ cannot be winning for Eve in the regret game.

H Proof of Lemma 23

Proof. Let W ′ denote the set of pairs (p, t) ∈ Q2 such that (p, q), (q, t) ∈ W JG for some q ∈ Q. Given
(p, t) ∈ W ′, let qp,t ∈ Q denote the state such that Cr(p, qp,t) + Cr(qp,t, t) is minimal. We prove that for
every (p, t) ∈ W ′, Cr(p, t) ≤ Cr(p, qp,t) + Cr(qp,t, t). The lemma then follows, by Proposition 20 and the
definition of W JG.

The proof is done by exposing a positional strategy σ for Eve in the JG played on N = (Q, I,A,∆, w, F ).
For every (p, q) ∈W JG, let σ(p,q) denote a winning strategy for Eve in the JG played from (p, q) with ini-
tial credit Cr(p, q). For every (p, t, a) ∈ Q2×A, if (p, t) ∈W ′, let σ((p, t, a)) = σ(p,qp,t)((p, qp,t)(p, qp,t, a)).
We now prove that, for every p, t ∈ W ′, the strategy σ is winning for Eve in the JG played on N starting
from (p, t), with initial credit Cr(p, qp,t) + Cr(qp,t, t). Suppose, towards a contradiction, that there exists
a play consistent with σ

ϕ = (p0, t0)(p0, t0, a0)(p0, t0, p1, a0)(p1, t1) . . . (pn, tn)

such that ELc0(ϕ) < 0, where c0 = Cr(p0, qp0,t0) + Cr(qp0,t0 , t0). Moreover, let us suppose that we have
chosen the play ϕ such that there exists no play of shorter length satisfying this property.

First, let us set
ϕ′ = (p1, t1)(p1, t1, a1)(p1, t1, p2, a1)(p2, t2) . . . (pn, tn)

and c1 = Cr(p1, qp1,t1) + Cr(qp1,t1 , t1). By the hypothesis of minimality over the length of ϕ, we obtain
that ELc1(ϕ

′) ≥ 0. Now, let q0 = qp0,t0 and let q′1 = σ(q0,t0)((p0, t0, a)). Note that, by definition of
σ, p1 = σ(p0,q0)((p0, q0, a)). Therefore, by Lemma 24, Cr(p1, q

′
1) ≤ Cr(p0, q0) + w(p0, a, p1) − w(q0, a, q

′
1)

and Cr(q′1, t1) ≤ Cr(q0, t0) + w(q0, a, q
′
1)− w(t0, a, t1). Moreover, by definition of qp1,t1 , c1 ≤ Cr(p1, q

′
1) +

Cr(q′1, t1), hence
c1 ≤ c0 + w(p0, a, p1)− w(t0, a, t1).

Therefore, we obtain

ELc0(ϕ) = EL0(ϕ) + c0
= EL0(ϕ

′) + c0 + w(p0, a, p1)− w(t0, a, t1)
≥ c0 − c1 + w(p0, a, p1)− w(t0, a, t1)
≥ 0,

which is a contradiction.

I Proof of Theorem 7

We will adapt the proof of Proposition 21 to show that the existential r-regret problem can be solved
by reduction to an energy game if a deterministic version of the automaton is known. Together with
the techniques developed in Section 4.1, this will imply the existential r-regret problem is decidable in
exponential time.
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Proposition 39. Given an automaton N = (Q, I,A,∆, w, F ) and D = (Q′, {q′I}, A,∆
′, w′, F ′) such that

D is deterministic and JDK = JN K, the existential r-regret problem for N is decidable in time polynomial
in |Q|, |Q′|, |A|, wmax, and w′

max.

Proof. As for the proof of Proposition 21, we construct an energy game without resets which simulates
the regret game played on N while using D to compare the weights of transitions chosen by Eve to those
of the maximal run of N . Crucially, we will not add gadgets to punish Eve if she does not ensure a regret
of at most r. This is because we do not fix such an r a priori. Formally, the energy game without resets
is G = (V, V∃, E,∅, µ) where:

• V = Q2 ∪Q3 ×A ∪ {⊤,⊥};
• V∃ = Q3 ×A;
• E contains edges to simulate transitions of N and D, i.e. {((p, q), (p, q, q′, a)) | (q, a, q′) ∈ ∆′} ∪

{((p, q, q′, a), (p′, q′)) | (p, a, p′) ∈ ∆}, edges required to verify Eve does not reach a non-final state
when D accepts, i.e. {((p, q),⊥) | p 6∈ F ∧ q ∈ F ′} ∪ {(⊥,⊥)}, and edges to punish one of the
players if an automaton blocks, i.e. {((p, q),⊤) | ¬∃(q, a, q′) ∈ ∆′}∪{((p, q, q′, a),⊥) | ¬∃(p, a, p′) ∈
∆} ∪ {(⊤,⊤)};

• µ : E → Z is such that
– ((p, q, q′, a), (p′, q′)) 7→ w(p, a, p′)− w′(q, a, q′),
– (⊥,⊥) 7→ −1,
– (⊤,⊤) 7→ 1, and
– e 7→ 0 for all other e ∈ E.

We then claim that for some pI ∈ I, Eve wins the energy game without resets G from (pI , q
′
I) with initial

credit |V |µmax if and only if N is r-regret determinizable for some r ∈ N. As before, the result will follow
from the fact G is of size polynomial w.r.t. D and N , and the application of the pseudo-polynomial
algorithm to determine the winner of G.

Assume Eve wins the game from some (pI , q
′
I) with strategy σ. Clearly, any play consistent with

σ never reaches the vertex ⊥. The strategy σ can be turned into a strategy σ′ for Eve in the regret
game as follows: for every symbol given by Adam in the regret game, σ′ selects a transition of N
based on what σ does in response to the deterministic transition of D. More formally, for any word
α = a0 . . . an−1 ∈ A∗ which can be extended to a word α′ ∈ LN , we have σ′(ε) = pI and σ′(α) =
σ ((p0, q0)(p0, q0, q1, a0) . . . (pn−1, qn−1, qn, an−1)) where p0 = pI , q0 = q′I and

(p0, q0)(p0, q0, q1, a0) . . . (pn−1, qn−1, qn, an−1)

is consistent with σ. The latter is well defined since we have argued that no play consistent with σ
reaches ⊥. Also, since we have assumed α can be extended to a word in the language of N , ⊤ cannot
be reached. For words which cannot be extended in this way, σ′ behaves arbitrarily. Observe that if
α ∈ LN , then α ∈ LD and thus pn ∈ F since otherwise Adam could reach ⊥ in the energy game when
playing against σ, and this would contradict the fact that σ is winning. Furthermore, we have that
JN K(α) − Val(σ′(α)) ≤ |V |µmax, since σ is winning for eve in the energy game. Hence, Eve wins the
r-regret game for r = |V |µmax.

Suppose Eve does not win the game from some (pI , q
′
I) with initial credit |V |µmax, then by Propo-

sition 20, Adam wins the game for every (pI , q
′
I) regardless of the initial credit c0. Suppose, for a

contradiction, that Eve has a strategy σ with which she wins the r-regret game for some r ∈ N. Because
of our reduction from r-regret games to EGRs, we obtain from Proposition 20 that σ can be assumed
to be a finite memory strategy. Let mσ be the amount of memory used by the machine realizing σ,
i.e. the size of the machine. Let σ(ε) = p0 and τ be the strategy for Adam in the energy game which is
winning for him from (p0, q

′
I). The strategy σ can be turned into a strategy for Eve in the energy game

by ignoring the states of D and choosing transitions of N when Adam chooses a symbol. Hence, the play

π
(p0,q

′
0)

στ in the energy game must be losing for Eve, by choice of τ . If the play is losing because vertex ⊥
is reached, then either σ does not reach a final state of N after reading a word in LN or she got stuck
and cannot continue choosing transitions. In both cases, this contradicts the fact that σ is winning for
her in the regret game. Now, we will focus on the case where the play is losing because the energy level
drops below 0. Recall that this will be the case, regardless of the initial credit, by choice of τ . Thus,

let c0 = |V |µmaxmσ and let ϕ = . . . (pn, qn) be the minimal prefix of π
(p0,q

′
0)

στ such that ELc0(ϕ) < 0.
Clearly ϕ contains a negatively-weighted cycle χ which, furthermore, is a cycle on the machine realizing
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Figure 7: Initial gadget used in reduction from countdown games.
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A, 2
A, 0

A, 0

Figure 8: Counter gadget.

σ. Hence, Adam can “pump” χ. A bit more precisely: after ϕ, Adam can repeat r + |Q′|(wmax + w′
max)

times the cycle χ and then spell any word which will make N accept the word (recall N is trim, so this is
always possible from every state) and make sure the regret of σ is greater than r. The latter contradicts
the fact that σ is winning for Eve in the r-regret game. The result thus follows.

J Proof of Theorem 8

Our proof is by reduction from countdown games. A countdown game C consists of a weighted graph
(S, T ), where S is the set of states and T ⊆ S ×N \ {0}× S is the transition relation, and a target value
N ∈ N. If t = (s, d, s′) ∈ T then we say that the duration of the transition t is d. A configuration of
a countdown game is a pair (s, c), where s ∈ S is a state and c ∈ N. A move of a countdown game
from a configuration (s, c) consists in player Counter choosing a duration d such that (s, d, s′) ∈ T for
some s′ ∈ S followed by player Spoiler choosing s′ such that (s, d, s′) ∈ T , the new configuration is then
(s′, c + d). Counter wins if the game reaches a configuration of the form (s,N) and Spoiler wins if the
game reaches a configuration (s, c) such that c < N and for all t = (s, d, s′) ∈ T we have that c+ d > N .

Deciding the winner in a countdown game C from a configuration (s, 0)—where N and all durations
in C are given in binary—is EXPtime-complete [JSL08].

Let us fix a countdown game C = ((S, T ), N) and let n = ⌊log2N⌋+ 2.

Simplifying assumptions. Clearly, if Spoiler has a winning strategy and the game continues beyond
his winning the game, then eventually a configuration (s, c), such that c ≥ 2n, is reached. Thus, we
can assume w.l.o.g. that plays in C which visit a configuration (s,N) are winning for Counter and plays
which don’t visit a configuration (s,N) but eventually get to a configuration (s′, c) such that c ≥ 2n are
winning for Spoiler.

Additionally, we can also assume that T in C is total. That is to say, for all s ∈ S there is some
duration d such that (s, d, s′) ∈ T for some s′ ∈ S. If this were not the case then for every s with no
outgoing transitions we could add a transition (s,N + 1, s⊥) where s⊥ is a newly added state. It is easy
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Figure 9: Adder gadget: depicted +9.

to see that either player has a winning strategy in this new game if and only if he has a winning strategy
in the original game.

Reduction. We will now construct a sum-automaton N with wmax = 2 such that, in a regret game
played on N , Eve can ensure regret value strictly less than 2 if and only if Counter has a winning strategy
in C. It will be clear from the proof how to generalize the argument to any (strict or non-strict) regret
threshold.

The alphabet of the automaton N = (Q, {qI}, A,∆, w, F ) is A = {bi | 0 ≤ i ≤ n} ∪ {ci | 0 < i ≤
n} ∪ {bail, choose} ∪ S. We assume all states are final, i.e. Q = F . We now describe the structure of N
(i.e. Q, ∆ and w).

Initial gadget. Fig. 7 depicts the initial state of the automaton. Here, Eve has the choice of playing
left or right. If she plays to the left then Adam can play bail and force her to ⊥0 while the alternative
run resulting from her having chosen to go right goes to ⊥2. Hence, playing left already gives Adam a
winning strategy to ensure regret 2, so she plays to the right. If Adam now plays bail then Eve can go
to ⊥2 and as W = 2 this implies the regret will be 0. Therefore, Adam plays 0.

Counter gadget. Fig. 8 shows the left sub-automaton. All states from {xi | 0 ≤ i ≤ n} have incoming
transitions from the left part of the initial gadget with symbol A \ {bail} and weight 0. Let y0 . . . yn ∈ B

be the (little-endian) binary representation of N , then for all xi such that yi = 1 there is a transition
from xi to ⊥0 with weight 0 and symbol bail. Similarly, for all xi such that yi = 0 there is a transition
from xi to ⊥0 with weight 0 and symbol bail. All the remaining transitions not shown in the figure cycle
on the same state, e.g. xi goes to xi with symbol choose and weight 0.

The sub-automaton we have just described corresponds to a counter gadget (little-endian encoding)
which keeps track of the sum of the durations “spelled” by Adam. At any point in time, the states of this
sub-automaton in which Eve believes alternative runs are now will represent the binary encoding of the
current sum of durations. Indeed, the initial gadget makes sure Eve plays into the right sub-automaton
and therefore she knows there are alternative runs that could be at any of the xi states. This corresponds
to the 0 value of the initial configuration.

Adder gadget. Let us now focus on the right sub-automaton in which Eve finds herself at the moment.
The right transition with symbol A \ {bail} from the initial gadget goes to state s—the initial state from
C. It is easy to see how we can simulate Counter’s choice of duration and Spoiler’s choice of successor.
From s there are transitions to every (s, c), such that (s, c, s′) ∈ T for some s′ ∈ S in C, with symbol
choose and weight 0. Transitions with all other symbols and weight 1 going to ⊥1—a trapping state with
a 0-weight cycle with every symbol—from s ensure Adam plays choose, else since wmax = 2 the regret
of the game will be at most 1 and Eve wins.

Fig. 9 shows how Eve forces Adam to “spell” the duration c of a transition of C from (s, c). For
concreteness, assume that Eve has chosen duration 9. The top source in Fig. 9 is therefore the state
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(s, 9). Again, transitions with all the symbols not depicted go to ⊥1 with weight 1. Hence, Adam will
play b0 and Eve has the choice of going straight down or moving to a state where Adam is forced to
play c1. Recall from the description of the counter gadget that the belief of Eve encodes the binary
representation of the current sum of delays. If she believes a play is in x1 (and therefore none in x1) then
after Adam plays b0 it is important for her to make him play c1 or this alternative run will end up in
⊥2. It will be clear from the construction that Adam always has a strategy to keep the play in the right
sub-automaton without reaching ⊥1 and therefore if any alternative run from the left sub-automaton is
able to reach ⊥2 then Adam wins (i.e. can ensure regret 2). Thus, Eve decides to force Adam to play c1.
As the duration was 9 this gadget now forces Adam to play b4 and again presents the choice of forcing
Adam to play c5 to Eve. Clearly this can be generalized for any duration. This gadget in fact simulates
a cascade configuration of n 1-bit adders.

Finally, from the bottom trap in the adder gadget, we have transitions with symbols from S with
weight 0 to the corresponding states (thus simulating Spoiler’s choice of successor state). Additionally,
with any symbol from S and with weight 0 Eve can also choose to go to a state qbail where Adam is
forced to play bail and Eve is forced into ⊥0.

Proof. Note that if the simulation of the counter has been faithful and the belief of Eve encodes the
value N then by playing bail, Adam forces all of the alternative runs in the left sub-automaton into
the ⊥0 trap. Hence, if Counter has a winning strategy and Eve faithfully simulates the C she can force
this outcome of all plays going to ⊥0. Note that from the right sub-automaton we have that ⊥2 is not
reachable and therefore the highest value assigned to any word is 1. Therefore, her regret is of at most
1.

Conversely, if both players faithfully simulate C and the configuration N is never reached, i.e. Spoiler
had a winning strategy in C, then eventually some alternative run in the left sub-automaton will reach
xn and from there it will go to ⊥2. Again, the construction makes sure that Adam always has a strategy
to keep the play in the right sub-automaton from reaching ⊥1 and therefore this outcome yields a regret
of 2 for Eve.
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