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Perfect Half Space Games

Thomas Colcombet Marcin Jurdzinski
IRIF

CNRS & Université Paris-Diderot

Abstract—We introduce perfect half space games, in which
the goal of Player 2 is to make the sums of encountered multi-
dimensional weights diverge in a direction which is consistent
with a chosen sequence of perfect half spaces (chosen dynamically
by Player 2). We establish that the bounding games of Jurdzinski
et al. ICALP 2015) can be reduced to perfect half space games,
which in turn can be translated to the lexicographic energy games
of Colcombet and Niwinski, and are positionally determined in a
strong sense (Player 2 can play without knowing the current
perfect half space). We finally show how perfect half space
games and bounding games can be employed to solve multi-
dimensional energy parity games in pseudo-polynomial time
when both the numbers of energy dimensions and of priorities
are fixed, regardless of whether the initial credit is given as part
of the input or existentially quantified. This also yields an optimal
2-EXPTIME complexity with given initial credit, where the best
known upper bound was non-elementary.

I. INTRODUCTION

A d-dimensional energy game [5, 14] sees two players
compete in a finite game graph, whose edges are decorated
with vectors of weights in Z<. The d weights represent various
discrete resources that can be consumed or replenished by
the actions of the game. The objective of Player 1, given an
initial credit in N9, is to play indefinitely without depleting
any of the resources—more precisely to keep the current
sum of encountered weights plus initial credit non-negative
in every dimension—while Player 2 attempts to foil this. The
primary motivation for these games is controller synthesis
for resource-sensitive reactive systems, where they are also
closely related to multi-dimensional mean-payoff games—and
actually equivalent if finite-memory strategies are sought for
the latter [14, Lemma 6]. But they appear in diverse settings:
for example, in process algebra, they are equivalent to the
simulation problem between a finite state system and a Petri
net or a basic parallel process [10, Propositions 6.2 and 6.4]; in
artificial intelligence, they allow to solve the model-checking
problem for the resource-bounded logic RB£ATL [3, 2].

The algorithmic issues surrounding multi-dimensional energy
games have come under considerable scrutiny. Deciding
whether there exists an initial credit that would allow Player 1
to win is coNP-complete [14, Theorem 3], while the complexity
when the initial credit is given as part of the input becomes
2-EXPTIME-complete [10, 12]. Finally, both decision problems
are in pseudo-polynomial time when d is fixed [12].

Open Questions: However, these recent advances do not
settle the case of multi-dimensional energy parity games [7],
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where Player 1 must ensure that, in addition to the quantita-
tive energy objective (specifying resource consumption and
replenishment), she also complies with a qualitative w-regular
objective in the form of a parity condition (specifying functional
requirements). These games with arbitrary initial credit are
still coNP-complete as a consequence of [7, Lemma 4]. With
given initial credit, they were first proven decidable by Abdulla,
Mayr, Sangnier, and Sproston [1], and used to decide both
the model-checking problem for a suitable fragment of the
p-calculus against Petri net executions and the weak simulation
problem between a finite state system and a Petri net; they also
allow to decide the model-checking problem for the resource
logic RB+ATL* [2]. As shown by Jancar [11], d-dimensional
energy games using 2p priorities can be reduced to ‘extended’
multi-dimensional energy games of dimension d’ = d+p, with
complexity upper bounds shown earlier by Brazdil, Jancar,
and Kucera [5] to be in (d' — 1)-EXPTIME when d’' > 2 is
fixed, and in TOWER when d’ is part of the input, leaving
a substantial complexity gap with the 2-EXPTIME-hardness
shown in [10].

Contributions: We introduce in Section II perfect half space
games, both

« as intermediate objects in a chain of reductions from multi-
dimensional energy parity games to mean-payoff games
(see Figure 1), allowing us to derive new tight complexity
upper bounds based on recent advances by Comin and
Rizzi [9] on the complexity of mean-payoff games, and

e as a means to gain a deeper understanding of how winning
strategies in energy games are structured.

More precisely, in perfect half-space games, positions are
pairs: a vertex from a d-dimensional game graph as above,
together with a d-dimensional perfect half space. The latter
is a maximal salient blunt cone in Q%: a union of open half
spaces of dimensions d, d — 1, ..., 1, where each is contained
in the boundary of the previous one. In these games, Player 1
may not change the current perfect half space, but Player 2
may change it arbitrarily at any move. However, the goal of
Player 2 is to make the sums of encountered weights diverge
in a direction which is consistent with the chosen perfect half
spaces; thus the greater the dimension of the component open
half spaces that Player 2 varies infinitely often, the harder
it is for him to win. For example, with d = 2, if Player 2
eventually settles on the perfect half space that consists of the
half plane x < 0 and the half line x = 0 A y < 0, then he
wins provided the sequence of total weights is such that either



their x-coordinates diverge to —oo, or their z-coordinates do
not diverge to +oo and their y-coordinates diverge to —oo; if
however Player 2 switches between the two half lines of z = 0
infinitely often, then he can only win in the former manner.
Firstly, we show that perfect half space games can be easily
translated to the lexicographic energy games of Colcombet and
Niwinski [8]. The translation amounts to normalising the edge
weights with respect to the current perfect half spaces, and
inserting another d dimensions in which we encode appropriate
penalties for Player 2 that are imposed whenever he changes the
perfect half space (cf. Section III-B). We deduce that perfect
half space games are positionally determined, and moreover that
Player 2 has winning strategies that are oblivious to the current
perfect half space. Along the way, we provide in Section III-A
a proof of the positional determinacy of lexicographic energy
games, along with pseudo-polynomial complexity upper bounds
for their decision problem when d is fixed, based on the recent
results of Comin and Rizzi [9] for mean-payoff games.
Secondly, we establish that perfect half space games capture
bounding games (cf. Section IV). The latter were central
to obtaining the tight complexity upper bounds for multi-
dimensional energy games [12]. They are played purely on
the d-dimensional game graphs and have a simple winning
condition: the goal of Player 1 is to keep the total absolute value
of weights bounded (i.e., contained in some d-dimensional
hypercube). One reading of this reduction is that whenever
Player 2 has a winning strategy in a bounding game, he has
one that ‘announces’ at every move some perfect half space
and succeeds in forcing the total weights to be unbounded in a
direction consistent with the infinite sequence of his announce-
ments. The proof is difficult, and relies on a construction from
the previous paper [12] of a winning strategy for Player 1 in
the bounding game given her winning strategy in a first-cycle
game featuring perfect half spaces. Composing this with our
complexity bounds for lexicographic energy games gives us
a new approach to solving bounding games, improving the
time complexity from the previously best (|V/]- B[ [12,
Corollary 3.2] to (|V|- ||EH)O(d3), where V is the set of vertices
and || E'|| the maximal absolute value over the weights in the
input multi-dimensional game graph (cf. Corollary IV.6).
Thirdly, building on Jancar’s reduction, we show how multi-
dimensional energy parity games can be solved by means
of bounding games (cf. Section V). For the given initial
credit problem, we obtain 2-EXPTIME-completeness, closing
the aforementioned complexity gap. When the dimension d
and the number of priorities 2p are fixed, we obtain that, for
both arbitrary and given initial credits, the winner is decidable
in pseudo-polynomial time. With arbitrary initial credit, our
new bound (|V| - || E||)O(d+p)*leg(d+P)) improves when p = 0
over the previously best (|V] - HE||)O(d4) [12, Theorem 3.3].
Structure of the Paper: The chain of reductions we use in
this paper is depicted in Figure 1, and we shall essentially
work our way up through it. In Section II we introduce multi-
dimensional game graphs and perfect half space games. In
Section III we show how to employ lexicographic energy
games for solving perfect half space games. We apply these

EnPar: multi-dimensional energy parity games [7]
(11, Lemma 1]
ExtEn: extended multi-dimensional energy games [5]
lProposition V.4
Bnd: bounding games [12]

lTheorem v.2
PHS: perfect half space games [this paper]

| Lemma 111.7
LexEn: lexicographic energy games [8]

lLemma II1.5
MP: mean-payoff games [15, 9]

Fig. 1. The reductions between the various games in this paper.

results to bounding games in Section IV and multi-dimensional
energy parity games in Section V, before concluding.

II. PERFECT HALF SPACE GAMES
A. Multi-Weighted Game Graphs

We consider multi-dimensional game graphs whose edges
are labelled by multi-weights, which are vectors of integers.
They are tuples of the form (V, E, d), where d is the dimension
in Nyo, V = V1 WV, is a finite set of vertices partitioned into
Player 1 vertices and Player 2 vertices, and E is a finite set of
edges included in V x Z¢ x V, such that every vertex has at
least one outgoing edge. We may write just ‘weight’ instead
of ‘multi-weight’ when there is no risk of confusion, and also
v <% v’ to denote an edge (v, w,’). Given a path P in the
game, we denote by w(P) the sum of the weights encountered.

For a vector w in Z%, we let ||w|| = max;<;<q |w(i)| denote
its infinity norm; we define the norm || E|| = max S en lw]|
as the maximum of the norms of edge weights. We assume
all our integers to be encoded in binary, hence || E|| might be
exponential in the size of the multi-weighted game graph.

Without loss of generality, we assume that the players strictly
alternate (v — v’ in E implies v in V; and v’ in V5_; for
some 7 in {1,2}), the weight of every edge is determined by
its vertices (v — v/ and v — ¢/ in F implies w = w’), and
not all weights are zero (||E|| > 0).

Example 11.1. Figure 2 shows on its left-hand-side an example
of a 2-dimensional weighted game graph. Throughout this
paper, Player 1 vertices are depicted as triangles and Player 2
vertices as squares. O

B. Perfect Half Spaces

We represent partially perfect half spaces by tuples H =
(hy,...,hy) of k£ < d mutually normal nonzero d-dimensional
integer vectors, which are normal to the represented half spaces.
For this, let < denote the (strict) lexicographic ordering, and
for any d-dimensional vector a, let a - H denote the pointwise
dot-product (a-hy,...,a-hy). The partially perfect half space
denoted by H is then {a € Q¢ : a-H < 0}.
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Fig. 2. A 2-dimensional game graph (V, E,2) and two perfect half spaces.

def

Let |H| = k. When |H| = d, the representation is a (full)
perfect half space; when |H| = 0, it is the empty set since
there is only one O-dimensional vector and the ordering < is
strict.

We define the norm |H|| as the maximum of |hy]|,
hy||.

Example 11.2. The two perfect half spaces of interest on the
right-hand side of Figure 2 are {(z,y) : x+y < 0}U{(z,y) :
z+y=0Az >0} denoted by Hy = ((1,1),(—1,1)), and
{(z,y) : z4+y < 0}U{(z,y) : 24+y =0A2z < 0}
denoted by Hy = ((1,1), (1, —1)). They have the half-plane
{(z,y) : v+y < 0} with normal vector (1,1) in common, but
differ on which half-line of its boundary {(z,y) : © +y = 0}

they contain. O

We shall reason sometimes directly on the representations
of partially perfect half spaces through the prefix ordering. We
write H <P H’ when H is a prefix of H’, and lcp; H; for
the longest common prefix of a finite or infinite set of partially
perfect half spaces Hy, Hs,.... Observe that, if a- H' < 0
and H <P H’ then a- H < 0.

ceey

C. Perfect Half Space Games

We write (‘7, E, d) for the weighted game graph obtained
from (V, E, d) by pairing vertices in V' with perfect half spaces
of appropriately bounded norms, which may be changed only
by Player 2:

o for both i € {1,2}, V; £ V; x H where H is the set of

all perfect half spaces of norm at most |V - | E||;

o E is the set of all (v,H) < (v/,H’) such that v < o/

isin E and if v € V4 then H = H'.

Let PHS(‘A/,E,d) denote the perfect half space game in
which the goal of Player 2 is for the total weight to diverge in
a direction consistent with the chosen perfect half spaces:

Definition II.3 (Winning Condition for Perfect Half-Space
Games). An infinite play (vo,Ho) —= (v;,H;) 2
(ve,Hs) -+ is winning for Player 2 if there exists a partially
perfect half space (g1, . .., &) with k > 0 that is a prefix of H;
for all sufficiently large i, s.t. limsup,, Z?Zl W; - g = —00
and, for all 1 < ¢ < k, liminf, Z?Zl w; - g < +oo.

Observe that whether Player 2 wins from (v, H) does not
depend on H, hence we say that Player 2 wins from v if there
exists H € # such that he wins from (v, H)—equivalently, he
wins from (v, H) for all H € H{—, and similarly for Player 1.

Given a finite path

def

P = (v9,Ho) % (v, Hy) - (U1, Hpo1) % (v, Hy)

def

in a perfect half space game, we denote by lep(P) =
lepg<;<,, H; the longest partially perfect half space that agrees
with all the perfect half spaces seen along the path. We also
inherit the notation w(P) = 7'  w; that accounts for the
sum of the weights in P. We say that P is winning for Player 1
if w(P) -lcp(P) = 0. Similarly, P is winning for Player 2 if
w(P) -lep(P) < 0. Note that when P is in fact a cycle, then
its infinite iteration is winning for a player if and only if the
cycle is winning for them according to this definition.

Example 11.4. Player 2 wins the perfect half space game on the
graph of Example II.1 from any vertex by choosing the perfect
half space Hy, from Example II.2 when going to vy, and Hp
when going to vr. Indeed, either Player 1 eventually only uses
the left (blue) cycle, in which case (g1,82) “H; itself can
be used as witness in Definition II.3, or she eventually only
uses the right (violet) cycle, in which case (g1, g) = Hp, fits,
or she alternates infinitely often between vg and vy (using
the cyan cycle), in which case the partially perfect half space
(g1) = ((1,1)) is a witness of his victory. O

III. SOLVING PERFECT HALF SPACE GAMES

As an intermediate step towards the proof of our determinacy
and complexity results for perfect half space games (Theo-
rem II1.8), we employ another winning condition introduced
in [8]: that of lexicographic energy games. We start by
presenting a proof of their positional determinacy, and an
upper bound for their decision problem using the state-of-the-
art results of Comin and Rizzi [9] for mean-payoff games. We
then proceed to show how perfect half space games can be
reduced to lexicographic energy ones in Section III-B.

A. Solving Lexicographic Energy Games

1) Lexicographic Energy Games [8] are played on multi-
weighted game graphs (V, F,d), as described in Section II.
An infinite play vy — v; —2» - - - is winning for Player 2 if
there exists 1 < k < d s.t. limsup,, Z?Zl w;(k) = —oo and,
for all 1 < £ <k, liminf, Y37, w;({) < 400.!

Put differently, lexicographic energy games are akin to
perfect half space games, except that the same full perfect
half space (—eq,...,—e4) is associated to every vertex of the
game graph, where e; for 1 < ¢ < d denotes the unit vector
with 1 in coordinate 7 and 0 everywhere else.

ILexicographic energy games bear a superficial resemblance to two different
definitions of lexicographic mean-payoff games, due respectively to Bloem
et al. [4] and to Bruyere et al. [6]. However, the definition that would best
match lexicographic energy games would be multi-dimensional ‘pointwise’
lexicographic mean-payoff games, which do not enjoy positional determinacy,
and all these definitions are unfit for our purposes.



Example TII.1. Let us consider the multi-weighted game graph
of Example II.1. Player 1 wins the lexicographic energy game
from any initial vertex, by moving to v;, and looping on the
left (blue) loop. O

2) Strategies: A strategy for a player is positional if, from
each of her vertices, the player using it always chooses the
same outgoing edge, no matter where the play started or how it
evolved so far. We say that a game is positionally determined if
the two players have positional strategies o and 7, respectively,
such that for every vertex v € V, either o is winning for
Player 1 from v, or 7 is winning for Player 2 from v.

3) Reduction to Mean-Payoff Games: A mean-payoff game
is played on a weighted game graph, i.e. a 1-dimensional
weighted game graph (V; E, 1), and is denoted MP(V, E). From
an infinite play vg Lo vy, Player 1 (‘Max’) gains a
payoff lim inf,, o (u1 +- - -+u,)/n, whereas Player 2 (‘Min’)
loses a payoff limsup,, . (u1 + -+ + u,)/n. A strategy for
Max is optimal for her if by following it she is guaranteed to
gain at least as much as when using any other strategy, and
optimal strategies for Min are defined symmetrically. By the
positional determinacy of mean-payoff games [15], there exist
positional optimal strategies for both players, yielding the same
payoff for both from each initial vertex, called the value of
the vertex.

A strategy for Max is winning from some initial vertex if
by following it she is guaranteed to gain at least > 0, and a
strategy for Max is winning if by following it he is guaranteed
to lose at least < 0. Note that not every winning strategy for
Min needs to be optimal, but that if she wins then any optimal
strategy is winning: Min wins the game if and only if the value
of the initial vertex is > 0, and Max wins otherwise.

For a multi-weighted game graph (V, E, d), and for every 1,

1 < ¢ < d, let the set F(i) consist of the edges v RUONS

where v — v’ € E.

Theorem IIL.2. (i) Lexicographic energy games are posi-
tionally determined.
(ii) There is an algorithm for solving lexicographic
energy games whose running time is in
d .
O (IVI*- Bl - TIL, 1B ).

We start by describing a translation from lexicographic
energy games to mean-payoff games, similar to the classical
translation from parity games [13]: the idea is to write
the d-dimensional weights into a single weight by shifting
the most significant components by appropriate amounts.
We define accordingly the sets of weighted edges E(*) for
i=d,d—1,...,1 as follows:

o B = E(d);

o foralli=d—1,d—2,...,1, and for all v %5 v/ € E,

if v 2 o' € BEOTY then v 5 o € E®), where
ri = w(i) - (V] [IECY |+ 1) + i
We will argue directly that positional optimal strategies for the
two players in the mean-payoff game MP(V, E(Y)) witness
positional determinacy of the lexicographic energy game
LexEn(V, E,d).

0 —7
D%/D
. ﬂ
~ |
6 =3 D(—O/ 0
Fig. 3. The weighted game graph (V, E())) constructed from the graph of
Figure 2.

Example 111.3. The weighted game graph obtained from the
multi-weighted game graph of Example II.1 is depicted in
Figure 3 (indeed |V| - ||[E®)|| + 1 = 7). Max has a positional
optimal strategy consisting in moving to vy, and using the left
(blue) loop; every vertex has value 6. O]

The outcome of this encoding of d-dimensional weights in
EW is the following, easy to establish, proposition.

Proposition IIL.4. The total weight of a simple cycle in the
multi-weighted game graph (V, E,d) is < 0 (or =0, or > 0,
respectively) if and only if the total weight of the cycle in the
weighted game graph (V, E (1)) is negative (or zero, or positive,
respectively).

In order to show the positional determinacy of lexicographic
energy games, we rely on the following lemma proven in the
appendix.

Lemma IILS. If the value of the mean-payoff game
MP(V, E(l)) is non-negative (negative, resp.) at a vertex v,
then by using a positional optimal strategy from that mean-
payoff game, Player 1 (Player 2, resp.) wins the corresponding
lexicographic energy game LexEn(V, E, d) from v.

Proof of Theorem II1.2. By Lemma IIL5, in order to compute
a positional winning strategy for one the players in a lexi-
cographic energy game LexEn(V, E,d), it suffices to find a
positional optimal strategy in the corresponding mean-payoff
game MP(V, E(Y)). This entails the positional determinacy
of lexicographic energy games (cf., e.g., [15]). Regarding
complexity, the state-of-the-art algorithm for solving mean-
payoff games due to Comin and Rizzi [9] runs in time
O (|V|*-|E| - |E||). Observe that |[E™V| = |E| and |[EM || =
0 <|V|d*1 : Hle 1E®)] ) and hence the algorithm of Comin
and Rizzi can be used to solve lexicographic energy games in
time O(V|*+ - | B| - T, |1 EG) ) O

B. Translation to Lexicographic Energy Games

We now reduce perfect half space games to lexicographic
energy games. Given a perfect half space game played on a
d-dimensional multi-weighted game graph, the idea is to play
a lexicographic energy game on a 2d-dimensional game graph,
where the extra dimensions are used to penalise Player 2 for
changing of perfect half space.

1) Flag Vectors and Interleavings: For any d-dimensional
perfect half spaces H and H', let the flug vector em u’ be
defined for all i = 1,...,d by egm/(i) = 0 if the i-th

coordinates of H and H' are identical, and ex m (%) |
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Fig. 4. The translation of the graph from Figure 2 to lexicographic energy games.

otherwise. For any d-dimensional vectors a and b, let a A b
be their interleaving (a(1),b(1),...,a(d), b(d)).

2) Translation: We write (V, E, 2d) for the weighted game
graph obtained from (IA/,E,d) by doubling the dimension,
where the even indices of weights in E contain the cor-
responding weights from FE but normalised with respect
to the current perfect half space, and the odd indices are
occupied by flag vectors that penalise Player 2 for changing
the perfect half spaces. More precisely, E' is the set of all

en pu/ A(w-H) w .
(v,H) ——— (¢v/,H) such that (v,H) — (v, H’) is
in E. B
Let LexEn(‘/}, E, 2d) denote the lexicographic energy game
played on the multi-weighted game graph (XA/ E.2d).

Example 111.6. We depict in Figure 4 a fragment of the
translated game graph (V E 2d) for the perfect half space
game from Example I1.4. The vertices on the left of the median
dashed line are all paired with Hy, while those on the right are
paired with Hg. The flag vector en, 1, = (0,1) = enp H,
is interleaved with the normalised vectors on the two middle
edges entering vy and vy,.

In contrast to Example III.1, Player 1 now loses the
lexicographic energy game in Figure 4. Indeed, if she plays
the middle simple cycle (in cyan) infinitely often, then the
energy on the first coordinate converges to 0 and the energy in
the second coordinate diverges to —oo. Otherwise (i.e., if the
number of occurrences of the middle cycle is bounded), the
energy in the first three coordinates does not diverge and the
energy in the fourth coordinate diverges to —oo O

The correctness of this translation is a direct consequence
of the definitions, as shown in the following lemma proven in
the appendix.

Lemma IIL.7. The winning strategies of Player i, i € {1,2},
are the same in PHS(V, E, d) and LexEn(V, E, 2d).

Define a strategy 7 for Player 2 in the perfect half space
game PHS(‘/}, E, d) to be (perfect half space) oblivious at v for
v € V4 if it chooses the same move in (v, H) for all H. It is
perfect half space oblivious if it is oblivious at all vertices v €
V5. We are now ready to prove the main theorem of this section.

Theorem IIL8. (i) There is an algorithm for solving per-
fect half space games whose running time is in
O (V]- Ee”).
(ii) If Player 2 has a winning strategy in the perfect half
space game PHS(V E ,d), then he has one that is perfect
half space oblivious.

Proof of Theorem I11.8(i). The upper bound on the running
time is a consequence of Lemma II1.7 and Theorem IIL.2.ii.
Observe that the vertex set is of size |V| V|- |H| <

V- @V]- B+ )T < @B[V]- IIEII)d 1. Regarding the
norms, || Bl = max{|w - HH cv 5 v € B,H € H}, hence
|E| < d-|V]-|E|* < (3|V]-||E|)?"°s4. Hence a time

bound in O ((3|V|-||E||)™) where m = (d* + 1)(2d + 3) +
2d(2 + logd) < 2(d +1)3.

Proof of Theorem II1.8(ii). The idea of the following proof
is to show that, for any vertex of the weighted game graph
winning for Player 2, there is a ‘good’ perfect half space H
such that following a positional strategy 7y winning from
(v, H) will also win from any (v, H').

More formally, we prove by induction on k < |V5| that there
exists a winning positional strategy 7 for Player 2 which is
perfect half space oblivious at k distinct vertices in V5.

The induction hypothesis obviously holds for £ = 0 by
using a positional strategy in PHS(V E d), which exists by
Theorem III.2 and Lemma IIL.7. For the induction step, let us
suppose that 7 is a winning positional strategy for Player 2
oblivious at k < |V5| distinct vertices vy,...,vx € V. Let v
be another v € V5 distinct from vq, ..., v vertices; 7 and v
are now fixed for the remainder of the proof.

For all perfect half spaces H, let us denote by 7y the
strategy 7 modified in such a way that it behaves in (v, H’)
as in (v, H) for all H' # H. The result is still a valid strategy
(by definition of the perfect half space game) and is of course
oblivious at v as well as at vq,...,v;. We want to show that
there exists H such that 7g fulfils the induction hypothesis.
This is the case for any H if v is not in the winning region.
We shall therefore assume that v is in the winning region for
Player 2; thus 7 is winning from every (v, H) but might use
different moves depending on H.

a) Good Perfect Half-Spaces: Let us call a perfect half
space H good (for 7 and v) if 1 is winning for Player 2
starting in (v, H), and bad otherwise. As shown in the appendix,
there must exist a good perfect half space, as otherwise Player 2
would not win from v.

Claim IIL.9. There exists a good perfect half space.

b) A Winning Strategy tr1: Let H be a good perfect half
space that exists according to Claim IIL.9. Let us show that 743
fulfils the condition of the induction hypothesis. As already
mentioned, it is oblivious at {v, vy, ..., v, }. We have to prove
that it is winning. For this, let us consider any play consistent
with gz starting from some (v’, H') in the winning region for



Player 2. Two cases can happen. Either this play does not visit
the vertex v, and in this case it was already a run consistent
with 7, and hence it is winning for Player 2. Otherwise it
visits v, and after that point it continues in a way consistent
with 7y starting from (v, H), and hence is winning for Player 2
since H is good. This establishes the induction hypothesis, and
thus completes the proof of Theorem IIL.8(ii). O

IV. BOUNDING GAMES

In this section, we define bounding games (as introduced in
[12]) and show how these can be reduced to perfect half space
games (Theorem IV.2 below). Corollary IV.6 then summarises
our knowledge about bounding games.

For a weighted game graph (V,E,d), we denote by
Bnd(V, E, d) the bounding game in which Player 1 (‘Guard’)
strives to contain the total weight within some d-dimensional
hypercube, while Player 2 ( Fugltlve ) attempts to escape. More
precisely, an infinite play vg — vq —2 vg--- is winning
for Player 1 if and only if the set {|| lelwlﬂ :n e N}
of norms of total weights of all finite prefixes of the play is
bounded.

Example IV.1. Consider again the multi-weighted game graph
of Example II.1. Observe that Player 1 cannot choose to play
solely in the left (blue) cycle, as the accumulated weights would
drift towards (+00, —00); a similar argument holds with the
right (violet) cycle. Hence, she must somehow balance the
effect of the two cycles by switching infinitely often between
vy, and vy, but the effect of the middle (cyan) cycle then makes
the simulated weights drift towards (—oo, —00). In fact, by the
upcoming Theorem IV.2 and as seen in Example I1.4, Player 2
wins this game. O

Theorem IV.2. Let (V, E,d) be a multi-weighted game graph,
v be a vertex in'V, and i € {1,2}. Player i wins the bounding
game Bnd(V, E.,d) from v if and only if Player i wins the
perfect half space game PHS(V | E, d) from v.

By Theorem IIL.8, perfect half space games are determined,
hence we can focus on Player 2. One implication is_straight-
forward: a winning strategy for Player 2 in PHS(V E ,d) also
wins Bnd(V, E, d) when ignoring the perfect half spaces. Note
that this translates an oblivious strategy in PHS(V E ,d) into
a positional one in Bnd(V, E, d).

Lemma IV.3. If Player 2 wins PHS(‘A/, E, d) from v, then he
wins Bnd(V, E, d) from v with the same strategy (where perfect
half spaces are projected away).

Proof sketch. Let Player 2 follow a winning strategy for the
perfect half space game, projected onto the arena of the
bounding game, and consider any resulting play. By the winning
condition of the former game, the total weights have unbounded
distances from some hyperplane, and so have unbounded
norms. O

It remains therefore to establish the converse implication in
order to complete the proof of Theorem IV.2.

Lemma IV4. If Player 2 wins Bnd(V, E, d) from v, then he
wins PHS(V, E, d) from v.

The proof of this lemma relies on [12, Lemma 5.5]—the
most involved result in that paper—, which shows how to
construct a winning strategy for Player 1 from v in Bod(V, F, d)
from a winning strategy in a first-cycle variant FC(V, E, d) of
PHS(V, E, d) from v. As these first-cycle games are determined,
this entails that, if Player 2 wins from v in Bnd(K, E, d), then
he also wins from v in the first-cycle game FC(V, E, d), and
it remains to show how to build a winning strategy for him in
PHS(V E ,d). The reasoning itself is surprisingly subtle, and
similar to the one employed in the proof of [12, Lemma 5.3].

Proof of Lemma IV.4. By [12, Lemma 5.5], there exists a
winning strategy o for Player 2 from some (v,H) in the
following first-cycle game FC(V E ,d):

1) the game finishes as soon as the play has a suffix C' =
(’U(),Ho) Xl—) (Ul,Hl) X'z_> Xn% (’Un,Hn) such that
vg = v, € V7

2) Player 2 wins if and only if Hy = H,, and C' is winning
for him: the total weight w(C) = w1 + - - - + w,, of the
cycle is in the partially perfect half space defined by the
longest common prefix, i.e. w(C) - lep(C) < 0 (recall
that lep(C) = lep, <, Ho).

Let 0* denote the strategy for Player 2 from (v, H) in
PHS(V,E,d) that amounts to following o and repeatedly
cutting out the winning cycles. We want to show that o* is win-
ning: consider for this a play (vo, Ho) —% (v1, Hy) 2
consistent with ¢* starting from vy = v.

Let us consider the Vi cycle decomposition of this play: the
latter is the infinite sequence of ‘V;-simple’ cycles C' obtained
by pushing the triples of visited vertices and perfect half spaces
and indices (vg, Ho,0), (v1,Hy,1),... onto a stack, and as
soon as we push a pair (v, H, e) with an element (vs, Hg, )
with v, = v, € Vj already present in the stack, we pop the
cycle C thus formed from the stack and push (v, H, ) back
on top. We call the indices 5(C) = s and e(C) = e the start and
end of the cycle, and denote by lep(C') and w(C') the longest
common prefix of its perfect half spaces and total weight
respectively. Because o is winning in FC(V, E,d), all the
cycles C' formed in the cycle decomposition satisfy condition 2
above, hence H,(¢y = H.(¢) and w(C) - 1cp(C) < 0.

Let us now consider the longest P such that there exists a
sufficiently large index ip such that P = lcp)>;, (Iep(C)).
We call a partially perfect half space representation H recurring
if H = lep(C) for infinitely many cycles C in the V; cycle
decomposition of our play; such a vector H is necessarily
non-empty.

Claim IV.5. P is recurring.

Proof of Claim 1V.5. We reason on the height of the stack used
to construct the V3 cycle decomposition of the play. Let us
call p; the stack at step 4. Since its height |p;| is bounded by
2|V4], there is a smallest height & that occurs infinitely often,
and a minimal index i; such that h is the minimal height in
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Fig. 5. Stack heights in the proof of Claim IV.5.

the infinite suffix starting from ;. We depict the stack heights
along the play in blue in Figure 5.

Let us call a downward path a sequence of cycles C, ...,C,
such that, for all 1 < i < n, C; and C;y; are either two
successive cycles with [pyc,)| > [ps(c,, )| or two cycles (not
necessarily successive) with ec, = s¢,, ,. Observe that in both
cases, they visit a common perfect half space H hence

eci B

lep(C;) and lep(Cyy 1) are comparable for the prefix ordering.

Assume there are two recurring representations of partially
perfect half spaces H and H’. Let us show that they have a
common prefix that is also recurring. For this, consider two
occurrences lcp(C) = H and lep(C”) = H' of H and H' with
in < s(C) < s(C"). As shown by the thick dashed violet line
in Figure 5, and since a stack height of h occurs infinitely
often, there must be two downward paths C' = C1,...,C,
resp. C' = Cpam, ..., Cy from C resp. C’ to a single cycle
C),. Thus the sequence C' = C1,...,Cp,...,Cpipm = C' is
such that, for all 1 < i < n +m, lep(C;) and lep(Cy41) are
comparable for the prefix ordering. The set {lcp(C;) : 1 <i <
n+m} is a finite meet-semilattice for the prefix ordering, thus
with a bottom element G <P H, H'. As there are infinitely
many such pairs of occurrences of the recurring H and H’ and
finitely many different such G with |G| < |V|- || E||, one of
the latter must be recurring.

To conclude the proof, assume now that P is not recurring
and let us derive a contradiction. Note that, for all cycles C'
with s(C) > ip, P <P lcp(C). Since P is not recurring,
there must be two incomparable recurring H and H’, such
that P <P H and P <P*f H'; we shall further assume that
H is minimal in length with this property. By the previous
argument, they have a common prefix G <P H, H’, which
is also recurring, and which we shall also assume minimal in
length. Since H was chosen minimal, there is no recurring
G’ incomparable with G, and since G is minimal, there is no
recurring G’ <Pref G either, hence there exists an index ¢ such
that G = lcp, () (Iep(C)). As P <P G and P was chosen
of maximal length with this property, P = G is recurring. [

Let us conclude the proof of Lemma IV.4. Write P as
(P1,...,pyp|). For all cycles C' with s(C) > ip, P <P*f
lep(C') shows that w(C')-P =< 0. There are then |P|+ 1 cases
for such cycles C': either there is 1 < k < |P| with w(C)-pj, <
0Oand w(C) -p,=0forall 1 <{¢{<Ek, orw(C)-P=0.By
Claim IV.5, the |P| first cases occur (cumulatively) infinitely
often; let k* with 1 < k* < |P| be the smallest that does. Then,
as there are only finitely many occurrences of cases k < k*,

and finitely many w; and H; not taken into account in the set
of cycles C with s(C) > ip, (p1,-.-,Pk+) is a witness for
Definition I1.3: Player 2 wins the play. O

By Theorem III.8, Theorem IV.2 and the proof of
Lemma IV.3, we now have the following improvement over
[12, Corollary 3.2].

Corollary IV.6. (i) There is an algorithm for solving bound-
ing games whose running time is in (|V|- || E|)°@").
(ii) Player 2 has positional winning strategies for bounding
games.

V. MULTI-DIMENSIONAL ENERGY PARITY GAMES

In this section, we define multi-dimensional energy parity
games (as introduced in [7]) as well as extended multi-
dimensional energy games (from [5]), and show how to solve
them with an arbitrary (Corollary V.5) or a given (Corollary V.7)
initial credit.

A. Multi-Dimensional Energy Parity Games

The multi-dimensional energy parity games are played on
finite multi-weighted game graphs (V, E, d) enriched with a
priority function 7:V — Nsg; we let p be the number of
distinct even priorities. Given an initial credit ¢ € N4, we
denote by EnPar.(V, E,d,p) the multi-dimensional energy
parity game where Player 1 wins a play vy —= v] —=2 vg - - -
if it satisfies

o the energy objective: for all 7 > 0, her energy level at step

i is non-negative on all components: ¢ + » j<iW; =0,
where comparisons are taken componentwise, and

o the parity objective: the least priority 7(v;) that appears

infinitely often is odd;
Player 2 wins the play otherwise. A multi-dimensional energy

game ignores the parity condition—equivalently 7(v) = 1 for
allveV.

Example V.1. Let us consider once more the graph of Ex-
ample II.1. Player 2 wins the energy game with any initial
credit: if Player 1 eventually uses only the left (blue) loop,
then the second component will eventually become negative,
and similarly for the right (violet) loop and the first component.
Hence she must switch infinitely often between her two vertices
using the middle (cyan) loop, but this decreases the 1-norm of
her current energy level. O

Example V.2. Consider the 1-weighted game graph with
priorities of Figure 6. Player 1 is losing for all initial credits ¢
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Fig. 7. An extended 3-weighted game graph encoding Figure 6.

in this game: due to the energy objective the violet loop on
the right can be played at most ¢ times, and eventually only
the cyan loop on the left will be played, but then the parity
objective is not satisfied by the play. O

B. Extended Multi-Dimensional Energy Games

Extended multi-dimensional energy games allow special
weights (denoted by ‘w’) that let Player 1 choose any value
she wants for the component. Formally, let Z,, = Z & {w}; in
infinity norms of the extended multi-weights, w is treated as 1.
An extended (finite) multi-dimensional weighted game graph
(V,E,d), where E C (V; xZ% x V5)U (V2 dexvl) A play on
such a graph is an infinite sequence vg 2 vr 5 0y - - - such
that v; RaaRN vi+1 € F forall 0 <7 and w4 instantiates u;1
by replacing w’s with values from N; strategies for Player 1
now have to specify how to instantiate w’s to form plays.
Using the energy objective as before to determine winners of
plays, we obtain the extended multi-dimensional energy game
ExtEn.(V, E, d) where c is the initial credit [5].

The following proposition shows how to get rid of priorities
in multi-dimensional energy parity games at the price of extra
dimensions and the use of extended games: each even priority
is associated with an extra dimension, which is decremented by
one upon entering a vertex with this priority, and incremented
by w upon entering a vertex with a smaller odd priority (a
pair of additional vertices might need to be introduced if the
originating vertex was a Player 2 vertex); see Figure 7 for the
extended multi-weighted game thus constructed from Figure 6.

Fact V.3 (Jancar [11, Lemma 1]). Let (V, E,d) be a weighted
game graph, v € V an initial vertex, ™ a priority function
with p distinct even priorities, and ¢ € N an initial credit.
We can construct in logarithmic space an extended weighted
game graph (V' E' d+p) with V C | <3|V, |E'| <
|E| + 2|V, and |E'|| = | E|| such that:

(i) Player 1 wins EnPar.(V,E,d,p) from v if and
only if there exists ¢/ € NP such that she wins
ExtEnce (V', E',d + p) from v, and

(ii) Player 2 wins EnPar.(V, E,d,p) from v if and only if
for all ¢’ € NP he wins ExtEnce (V' E',d + p) from v.

Fig. 8. Part of the translation of Figure 7 for bounding games.

C. Arbitrary Initial Credit

We show how extended multi-dimensional energy games, in
case the initial credit is existentially quantified for Player 1
(this is the arbitrary initial credit problem), can be solved
efficiently by translating them to bounding games. The ideas
behind the translation are simple: enable Player 1 to keep the
energy bounded at all times by artificial decreasing self-loops,
and to instantiate w weights arbitrarily by encoding them as
increasing self-loops. However, the proof of correctness (cf.
Proposition V.4) is unexpectedly non-trivial and makes use of
perfect half space games.

The translation is an extension of the translation in [12,
Section 2.3], which did not handle w weights, and performs
the following:

« at every vertex owned by Player 1 and for every coordi-

nate 7, a self-loop is inserted whose weight is the negative
unit vector —e; (these make use of new dummy Player 2
vertices, to meet the requirements of player alternation
and weight determinacy);

o for every edge whose weight u is not in Z¢, all w coor-

dinates in u are replaced by 0, and then a dummy Player
2 vertex is inserted succeeded by a new Player 1 vertex
that has a self-loop of weight e; for each coordinate ¢
that was w in u (the latter make use of further dummy
Player 2 vertices as before).
Figure 8 illustrates this construction on the right violet loop
of the graph of Figure 7.

Proposition V4. Let (V,E,d) be an extended multi-
dimensional weighted game graph and v € V an initial vertex.
We can construct in logarithmic space a multi-dimensional
weighted game graph (V1,ET d) with V. C VT, [VT| <
(d+DV|+ (d+2) (d+1) , and
|Et|| = || E|| such that:
(i) Player 1 wins ExtEn.(V, E,d) from v for some ¢ € N¢
if and only if she wins Bnd(V'1, ET, d) from v, and
(ii) Player 2 wins ExtEnc(V, E,d) from v for all ¢ € N¢ if
and only if he wins Bnd(VT, ET, d) from v.

Proof. Regarding the right-to-left implication in item (i), by
[12, Lemma 3.1], Player 1 has a winning strategy o in
Bnd(VT, Ef d) from v that ensures that all total weights are
at most B £ (4|VT| - | E1|)2@+2° In particular, o does not
get stuck in any of the artificial self-loops. Hence, o gives rise
to a winning strategy in ExtEn g, p)(V, E,d) from v.



By the determinacy of bounding games (cf. Theorem IV.2,
Theorem III.8 and Theorem III.2), it now suffices to establish
the right-to-left implication in item (ii). Let 7 be a winning strat-
egy of Player 2 in the perfect half space game PHS(VT, Et d),
that is positional and perfect half space oblivious, and let 7 be
its projection onto the extended graph (V, E, d).

Consider any ¢ € N9, any play 7 in ExtEnc(V, £, d) from v
that is consistent with 7, and let 7' be a play in PHS(V'T, E't, d)
from v that corresponds to 7 (i.e., where the instantiations of
w weights in 7 are reproduced by the corresponding increasing
self-loops). Observe that any Player 2 vertex v’ in 7 also occurs
in 7f, and so the perfect half space chosen by 7 at v' must
contain every negative unit vector —e; (otherwise, Player 1
could proceed to win by repeating forever one of the artificial
self-loops at the successor of v'), i.e., be disjoint from the
non-negative orthant Q2.

Since 7 is winning, there exists a partially perfect half space
(g1,.-.,8k) which is a prefix of all perfect half spaces that
are chosen by 7 along a suffix of 7f, and there exist aq, b1,
..., Qk—1, br—1 such that:

« the dot products of the total weights along 7w with gy
are unbounded below, and

o forevery =1,...,k— 1, the dot products of the total
weights along w1 with g, are in the interval [ag, by].

Hence, for the sequence of total weights along 7 with ¢
subtracted, the same holds. But, by the observation above, the
denotation of (gi,...,gx) is disjoint from the non-negative
orthant, implying that

{x-gr:c+x>0and V1 <{l<k,x-g € [ag,bi}

is bounded below. We conclude that the total weights along 7
are not contained in N? — ¢, showing as required that 7 is a
winning strategy in ExtEn.(V, E, d). O

From Corollary IV.6, Fact V.3 and Proposition V.4, we obtain
our first improved upper bound.

Corollary V.5. The arbitrary initial credit problem for multi-

dimensional energy parity games on (V,E,d) with p even
3

priorities is solvable in time (|V|- | E||)©((d+p)"log(d+p)),

We also deduce that Player 2 has positional winning
strategies in multi-dimensional energy parity games with
arbitrary initial credit; this could already be derived by Fact V.3
from the case of extended energy games with arbitrary initial
credit, shown in Lemma 19 in the arXiv version of [5].

D. Given Initial Credit

The given initial credit problem for multi-dimensional energy
parity games takes as input a multi-weighted game graph
(V,E,d), a priority function 7, an initial vertex v, and an
initial credit ¢ in N and asks whether Player 1 wins the multi-
dimensional energy parity game EnPar.(V, F,d, ) from v.

Following [12, Lemma 3.4], we show that any multi-
dimensional energy parity game with a given initial credit

is equivalent to a bounding game played over a doubly-
exponentially larger graph in terms of d, and exponentially
larger in terms of p.

Lemma V.6. be a multi-weighted game graph, w a priority
function with p distinct even priorities, and v € V. One can
construct in time O(|V*}| - |E| +d -log||c||) a multi-weighted
game graph (V¥ E* d er? and a vertex ve in V¥, where
Vs in (V] [|E)2°" ™ and |E*|| = | E|| such that,
for all i € {1,2}, Player i wins the multi-dimensional energy
parity game EnPar.(V, E,d, ) from v if and only if Player i
wins the bounding game Bnd(V*, E*, d 4 p) from ve.

Proof sketch. We use the same arguments as in the proof of [12,
Lemma 3.4]. The only difference is that we need to handle
the parity condition, and thus to go through extended multi-
dimensional energy games and replace [12, Proposition 2.2]
with the combination of Fact V.3 and Proposition V.4. These
only incur a polynomial overhead in the size of the weighted
game graphs, hence a bound for [V#| in (|V]- ||EH)20((le o)
with dt £ d+ p can be deduced directly from [12, Lemma 3.4].

We refine this bound by observing that only the first d
components of the (d 4 p)-dimensional bounding game we
construct should be treated as initialised, while the p remaining
ones in Fact V.3 are arbitrary, hence the blowing-up construction
of [12, Lemma 3.4] only needs to be apglied d times, yielding
instead a bound in (|V] - ||E||)20(dlogd ’: see Eq. (9) in the
arXiv version of [12]. O

By applying Corollary IV.6 to the game graph (V*, E* d+4-p)
and since |E| < |V|?, we obtain a 2-EXPTIME upper bound
on the given initial credit problem, which is again pseudo-
polynomial when d and p are fixed.

Corollary V.7. The given initial credit problem with initial
credit ¢ for multi-dimensional energy parity games on (V, E,d)
with p even priorities is solvable in time

20 (d-log(d+p))

(V] - [1£1) +0(d-log c]) -

This matches the 2-EXPTIME lower bound from [10], and
generalises [12, Theorem 3.5] to multi-dimensional energy
parity games. Because the given initial credit problem for
energy games of fixed dimension d > 4 and number of even
priorities p = 0 is already EXPTIME-hard [10], there is no hope
of improving the pseudo-polynomial bound in Corollary V.7
to a polynomial one.

VI. CONCLUDING REMARKS

In this paper, we have shown a chain of reductions and
strategy transfers from multi-dimensional energy parity games
to perfect half space games and lexicographic energy games,
see Figure 1.

There are two main outcomes. On the complexity side, we
obtain tighter upper bounds for multi-dimensional energy parity
games, both with arbitrary and given initial credit. In particular,
in addition to closing the complexity gap with given initial
credit, our 2-EXPTIME upper bound in Corollary V.7 also
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closes complexity gaps for several problems already mentioned
in the introduction:

« deciding extended multi-dimensional energy games with
given initial input [5],

o deciding whether a Petri net weakly simulates a finite state
system, or satisfies a formula of the u-calculus fragment
defined in [1], and

« deciding the model-checking problem for RB+ATL [2].

The second outcome is a rather precise description of the
winning strategies for Player 2 in these games. Here, the
perfect half space viewpoint is especially enlightening: Player 2
can win by ‘announcing’ in which perfect half spaces it is
attempting to escape.

APPENDIX
A. Proof of Theorem III.2

Lemma IILS. If the value of the mean-payoff game
MP(V, E(l)) is non-negative (negative, resp.) at a vertex v,
then by using a positional optimal strategy from that mean-
payoff game, Player 1 (Player 2, resp.) wins the corresponding
lexicographic energy game LexEn(V, E, d) from v.

Proof. We prove the lemma for Player 2 (in mean-payoff termi-
nology, Min); the argument for Player 1 (Max) is analogous. For
this, let us fix ourselves a positional optimal strategy for Min
in the mean-payoff game (V, E(1)). We show that this strategy
is also winning for Player 2 in the lexicographic energy game
LexEn(V, E, d). Hence, in the rest of the proof, we consider
a play P consistent with this strategy in LexEn(V, E, d), and
we aim at showing that it is winning.

Let C1,C5,... be the infinite sequence of simple cycles
obtained by the ‘cycle decomposition’ of the play P: we start
with an empty sequence of cycles, we then push successive
vertices of the play on a stack, and each time we push a vertex
that is already present on the stack, we pop the resulting
simple cycle from the top of the stack and add it to the
sequence of simple cycles. Observe (x) that every simple cycle
C1,C5, ... has total multi-weight < 0. Indeed, as a cycle in
the strategy subgraph of an optimal strategy for Min in the
mean-payoff game MP(V, E(Y)) with a negative value, it has
a negative total weight [15], and hence the observation (%)
follows by Proposition III.4.

For a cycle C' in the multi-weighted game graph (V, E, d),
call the leading dimension the least k = 1,...,d such that
w(C)(k) # 0 (recall that w(C) is the total multi-weight of the
edges in the cycle). The leading dimension £* of the play P
is the smallest dimension that is the leading dimension of
infinitely many cycles Cy,Cy,...; note that in the proof for
Player 1, k* can equal d + 1.

The core of the proof is now contained in the following
claims A.1 and A.2.

Claim A.l. For all 1 < ¢ < k*, liminf, Y1 w(C;)(£) <
—+00.

Proof of Claim A.1. Indeed, by the definition of k*, for all
¢ < k*, we have that w(C;)(£) = 0 for all sufficiently large i.

Hence the sequence of sums Y., w(C;)(¢) is eventually
constant, so its inferior limit is finite. O

Claim A.2. If k* < d, then limsup, > ., w(C;)(k*) =

—0OQ.

Proof of Claim A.2. Indeed, from the definition of k* and the
fact that every cycle in the decomposition has total weight
=< 0, we have that w(C;)(k*) is:

o < —1 for infinitely many ¢;

e <0 for all sufficiently large 1.
The sequence of sums Y ., w(C;)(k) therefore has limit
superior —oo. O

From the two above claims, we get that the play P is
won by Min. The reader may worry that the expressions of
the form )", w(C;)(¢)” differ from those in the definition
of lexicographic energy games: there might be a non-empty
simple path remaining indefinitely ‘on the stack’ of the cycle
decomposition, and thus not taken into account. However, if we
want just to determine whether the corresponding limit inferior
(superior, resp.) is less than +o0o (equal to —oo, resp.), then
the discrepancy is benign because, for every simple path P,
we have |[w(P')(k)| < V]| E|. O

B. Proof of Lemma II1.7

Lemma IIL7. The winning strategies of Player i, i € {1,2},
are the same in PHS(V | E, d) and LexEn(V, E, 2d).

Proof. Consider any infinite play

P = (01, Hy) =5 (vg, Hy) =5 -+

in the perfect half space game PHS(IA/7 E, d) along with its
corresponding play

en; Hy A(wi-Hy) eH, H; A(wz-Ha)
% P

P (v1,Hy) (v2, Hy)

in the lexicographic energy game LexEn(IA/7 E, 2d).

We show that P is winning for Player 7 in PHS(V, E, d)
if and only if P is winning for the same player in
LexEn(V, E, 2d). This in turn entails that winning strategies
for each player can be transferred between the two games.

It suffices to show this for Player 2. If P is winning
for Player 2, then there exists 1 < k < 2d such that
limsup, -7, (en; 1,,, Aw;-H;)(k) = —oc and forall 1 <
¢ <k, liminf, 37 (en; n,,, A w; - H;)(¢) < +o0. Since
the coefficients eq; 1,,, are all non-negative, k£ cannot corre-
spond to one of these dimensions. Hence k is even; let EY g /2.
Because liminf,, 37, (em, m,,, Aw;-H;)(¢) < +oo for all
odd 1 < { < k, we deduce that the visited perfect half spaces
H,,H,,... differ on their first k coordinates only finitely many
times. Hence there is an infinite suffix of the play where all the
perfect half spaces share a common prefix (g,...,g;). Then
lim sup,, YWy - g = lim sup,, z:;:l(eHjH].Jrl Awj-
H;)(2k) = —oc and for all 1 < ¢ < k, liminf, >37_, w; -
g; = liminf, 37 (en; 1,,, Aw; -H;)(2{) < 400, hence
P is also winning for Player 2 in the perfect half space game.



Conversely, if P is winning for Player 2 in the perfect
half space game PHS(V, E, d), then there is an infinite suffix
starting at some index ¢ with G = lcp;>, H; satisfying
Definition I1.3, and let & o G|. The k first odd coordinate~s
of the weights in the corresponding infinite suffix in P
are thus all 0, hence the energy will not diverge on these
coordinates. Furthermore, the k first even coordinates in the
same suffix are such that limsup,, X:E»L:i(elij.’Hj+1 Awj-
H;)(2k) = limsup, >>7_,;w; - g& = —oo and, for all
1 < ¢ < k, liminf,, Z;L:i(eHj7Hj+}v A W - Hj)(Qg) =
liminf,, 3 7, w; - g¢ < +oo. Thus P is also winning for

Player 2 in LexEn(V, E, 2d). O

C. Proof of Theorem I11.8(ii)

Key Remark: For a strategy 7’ of Player 2, we say that
a path is (77, v)-elementary path if it is consistent with 7/, it
starts in some (v, H), ends in some (v, H'), and does not visit
the vertex v in between. Consider a (7, v)-elementary path P
starting in (v, H) and ending in (v, H'). Then there is a (7, v)-
elementary path PH’ that is exactly like P but for the fact that
it begins in (v, H’). This one happens to be a cycle consistent
with 7. Then we clearly have lep(P) <P lep(PH'), since
every perfect half space that occurs in PH already occurs in
P. Since furthermore w(PH') = w(P), this means that if P
is winning for Player 2, then the same holds for PH',

Claim A.3. If a perfect half space H is bad then there exists
a (1,v)-elementary path starting in (v,H) and losing for
Player 2.

Proof of Claim A.3. Indeed, if H is bad, there exists a play
resulting from playing a strategy for Player 1 from (v, H)
against 7g, which is winning for Player 1; by Theorem II1.2
and Lemma III.7 we can assume this strategy to be positional.
Two cases may happen: Either this play never visits v (except
at the initial position). In this case, this play was already a play
consistent with 7, contradicting the fact that the strategy 7 was
winning from (v, H). Otherwise, the infinite play encounters at
least once more some vertex (v, H'). Let P be the prefix of the
play from (v, H) to (v, H’). This is a (7, v)-elementary path.
Since P has been obtained from the fight of a positional strategy
for Player 1 against 7¢g, the infinite play ultimately repeats the
cycle PH'. Thus PH' is losing for Player 2. According to the
above key remark, P was thus already losing for Player 2. [

Claim IIL9. There exists a good perfect half space.

Proof of Claim I11.9. Assume for the sake of contradiction
that all perfect half spaces are bad. We shall prove that in this
case 7 was losing from (v, H). Let us fix for all perfect half
spaces H a (7, v)-elementary path P(H) starting from (v, H)
ending in some (v, f(H)) and losing for Player 2 (it exists
according to Claim A.3). Let us now construct a play consistent
with 7 starting from (v, H) as follows: assuming the partial play
constructed so far ends in (v, H), we extend it by concatenating
the path P(H) to it, yielding a longer play ending in (v, f(H)).
We iterate this process and, going to the limit, we obtain an

infinite play P consistent with 7. However, this play is an
infinite concatenation of finitely many P(H) paths, which
are all losing for Player 2. Hence P is losing for Player 2.
This contradicts the fact that 7 was assumed to be winning
from (v,H). The claim is proved: there has to be a good
perfect half space. O
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