
ar
X

iv
:1

70
1.

07
60

1v
3 

 [
cs

.L
O

] 
 1

3 
A

pr
 2

01
7

Quotients in monadic programming:

Projective algebras are equivalent to coalgebras

Dusko Pavlovic∗ Peter-Michael Seidel

University of Hawaii, Honolulu HI, USA

Abstract

In monadic programming, datatypes are presented as free algebras, generated

by data values, and by the algebraic operations and equations capturing some com-

putational effects. These algebras are free in the sense that they satisfy just the

equations imposed by their algebraic theory, and remain free of any additional

equations. The consequence is that they do not admit quotient types. This is, of

course, often inconvenient. Whenever a computation involves data with multiple

representatives, and they need to be identified according to some equations that

are not satisfied by all data, the monadic programmer has to leave the universe of

free algebras, and resort to explicit destructors. We characterize the situation when

these destructors are preserved under all operations, and the resulting quotients

of free algebras are also their subalgebras. Such quotients are called projective.

Although popular in universal algebra, projective algebras did not attract much at-

tention in the monadic setting, where they turn out to have a surprising avatar: for

any given monad, a suitable category of projective algebras is equivalent with the

category of coalgebras for the comonad induced by any monad resolution. For a

monadic programmer, this equivalence provides a convenient way to implement

polymorphic quotients as coalgebras. The dual correspondence of injective coal-

gebras and all algebras leads to a different family of quotient types, which seems

to have a different family of applications. Both equivalences also entail several

general corollaries concerning monadicity and comonadicity.

1 Introduction

1.1 The story

Background: Monadic programming. Monads are one of functional programmers’

favorite tools, and possibly one of the most popular categorical concepts [14, 13]. As a

type constructor, a monad gives rise to datatypes that capture not only the data values,

but also some computational effects of interest [35, 42]. While this is achieved using
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a very simple and convenient set of tools, the history of the underlying ideas is convo-

luted, and the conceptual and technical background of monadic programming covers

enough territory of algebra and of category theory to conceal many mathematical mys-

teries.

The conceptual origin of monadic programming was probably the idea that data

structures can be captured as algebraic theories, which goes back to the early days

of semantics of computation [20, 21]. The technical origin of monadic programming

was then the idea that algebraic theories can be captured as monads, which goes back

even further, to the early days of category theory [33, 34, Ch. I]. The upshot of the

view of data-structures-as-algebraic-theories is that computational datatypes, as do-

mains of inductive and recursive definitions, can be viewed as initial, or free algebras,

implementing induction as a universal property. The upshot of the view of algebraic-

theories-as-monads in this context is the fact that monads encapsulate and hide behind

their standard structure1 the diverse and often bewildering sets of algebraic operations,

and make them available only through uniformly structured monadic combinators.

The main feature of computational monads is thus their succinct and elegant ren-

dering of inductive datatypes as free algebras. But this main feature is perhaps also

their main limitation: the quotients of free algebras are not free algebras.

Problem: Quotient types. Whenever a data value can be given by different repre-

sentatives, its datatype is a quotient. E.g., each rational number can be represented by

infinitely many fractions ( 3
7
=

39
91
=

273
637
= · · · ), so the datatype of rationals is a quo-

tient of the datatype of ordered pairs of integers. Sets are a quotient of bags, bags are

a quotient of lists, and so on. Identifying the equivalent representatives can be a hard

and important computational task, tackled in type theory from the outset, going back

to Martin-Löf, and still further back to Leibniz. Different applications often justify

different implementations [1, 6], which vary from simply carrying explicit equivalence

relations with setoids [11, 31], through carrying coherent equivalences with groupoids
[25, 24, 3], all the way to the rich structure of homotopy types [8, 40], where the prob-

lem of quotients in type theory and the problem of invariants in geometry seem to be

solving each other.

The basic idea of monadic programming, to present datatypes as free algebras, pre-

cludes direct implementations of quotient types, since a quotient of a free algebra is in

general not free. This is often viewed as a feature, since polymorphism requires that all

data satisfy exactly the same equations, which for algebras means that they should sat-

isfy just the equations imposed by their algebraic theory, and no additional equations.

When necessary, the additional equations can be imposed by explicit destructors, but

the polymorphic constructions generally do not carry over to such quotients, unless the

destructors preserve them. Under which conditions does that happen?

Solution: Projective algebras. In the present paper, we study a special family of

quotients of free algebras: those that also happen to be their subalgebras. This means

that they can be implemented not only by imposing additional equations, but also by

1Godement introduced monads under the name standard construction, standardizing the sheaf cohomol-

ogy construction [19].
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adjoining suitable operations, called projectors, as described below. An algebra which

is both a quotient and a subalgebra of a free algebra, i.e. its retract, is said to be projec-
tive [22, §82]2. Since projectors induce precisely the quotients that are preserved by all

functors [36], this aproach seems necessary and sufficient for extending polymorphic

constructions from free algebras to their quotients. The equivalence of projective alge-

bras for a monad and all coalgebras for any of the corresponding comonads, claimed

in the title of the paper, suggests a link between the problem of polymorphic quotients

in monadic programming and the ideas of comonadic programming, put forward by

several authors [17, 41, 2]. The dual link of injective algebras for a comonad and all

algebras for any of the corresponding monads suggests a link between polymorphic

quotients of cofree coalgebras and unrestricted quotients of algebras. We proceed to

work out these links.

Prerequisites

This is a paper about categorical semantics of computation, so the prerequisites are

mostly categorical. The main background definitions are reproduced in the Appendix.

A very succinct overview of the underlying concepts can be found in [28, Sec. I.3].

1.2 Motivating example

Let C be a cartesian closed category, i.e. given with an adjunction

C C

A×
⊥

A⇒

(1)

for every object A. Fix an object S as a state space, and consider the monad

←−
S : C −→ C (2)

X 7→ S ⇒ (S × X)

induced by the adjunction (1) instantiated to S . As explained in [35], the category of

free
←−
S -algebras C←−

S
captures computations with explicit state, or with side effects. A

computation over the inputs of type A, the outputs of type B, and the states of type S is

presented as a free algebra homomorphism f ∈ C←−
S

(A, B), which can be conveniently

viewed as a C-morphism in the form A
f
−−−→ S ⇒ (S × B) [32]. This computation

thus maps every input a ∈ A to a function S
f (a)
−−−−→ S × B, determining at each state

s ∈ S a next state, and an output. Equivalently, such morphisms can be viewed in the

transposed form S × A
f ′

−−−−→ S × B, assigning to each state and every input a next state

and an output. This transposed form of homomorphisms between free algebras will

turn out to be more convenient for the purposes of this paper. In the case of the state

monad
←−
S , such homomorphisms capture Mealy machines [15, 23, 26, Sec. 2.7(a)].

2The name is borrowed from theory of modules, where the retracts of free modules are also called pro-

jective.
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Towards a more concrete example, consider the following model of data release

policies from [39]. Suppose that a Mealy machine S × A
f
−→ S × B models a database.

S are its states, A are the inputs (insertions, queries, . . . ) that the users may enter, and

B are the outputs supplied by the database. A stateless map A
g
−→ B can be thought of a

rudimentary deterministic channel, just mapping data of type A to data of type B. Since

there are multiple users, there may be privacy policies, and authorization policies that

need to be implemented. A privacy policy can be viewed as a map S × B
ψ
−→ S × B,

which projects any output b ∈ B of the database at a state s ∈ S to a sanitized, public

component ψ(s, b) of the state and the output of the database, and filters out all private

data. An authorization policy can be similarly viewed as a map S × A
ϕ
−→ S × A, which

projects any database state s ∈ S , and any user input a ∈ A (including the relevant

credentials) to the authorized component ϕ(s, a) of the state and the input. Since the

public components should not contain any private residue to be filtered out in a second

run of ψ, and the authorized components should not contain any unauthorized residue,

the policies should be idempotent, i.e. satisfy the equations

ϕ ◦ ϕ = ϕ ψ ◦ ψ = ψ

Such equations define projectors. There are at least two different ways to interpret

projectors as policies. One is to view them as policy specifications. The database

S × A
f
−→ S × B then implements the policies S × B

ψ
−→ S × B and S × A

ϕ
−→ S × A if it

satisfies the equation

f = ψ ◦ f ◦ ϕ (3)

which is easily seen to be equivalent to the pair of equations

ψ ◦ f = f = f ◦ ϕ (4)

In other words, a compliant database only ever supplies public data, and only ever

permits authorized requests.

A different view to interpret projectors as policies is to view them as policy im-

plementations. The database S × A
f
−→ S × B then does not implement the policies

itself, but needs to be precomposed with the authorization policy S × A
ϕ
−→ S × A and

postcomposed with the privacy policy S × B
ψ
−→ S × B. However, since each of these

policies regulates the same data release, the database S × A
f
−→ S × B is consistent with

the policies S × B
ψ
−→ S × B and S × A

ϕ
−→ S × A if it satisfies the equation

ψ ◦ f = f ◦ ϕ (5)

It is obvious that compliance implies consistency. A consistent database, however,

does not have to be compliant. The reason is that a consistent database does not have

to implement the policies itself, but it requires separate policy implementations at the

input and at the output. On its own, such a database may accept unauthorized requests

and it may supply private data. Its consistency means that if we make sure that no
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unauthorized requests are submitted, then we can be sure that no private responses will

be supplied, and vice versa. More precisely, a database f is consistent with the policies

ϕ and ψ whenever a request consistent with ϕ results in a response consistent with

ψ, and all responses consistent with ψ can be obtained on requests consistent with ϕ.

Since the two policies thus precisely enforce each other on a database consistent with

them, they implement the same data release process on this database, which can thus

be implemented either as an authorization policy, or as a privacy policy.

Lifting this distinction between compliance and consistency from databases and

state monads, to a distinction between two types of homomorphisms between projec-

tive algebras, we arrive at the main results of the paper.

1.3 The setting and the result

Every adjunction F∗ ⊣ F∗ : B −→ A determines

• the monad
←−
F = F∗F∗ : A −→ A, with the induced categories of

– free algebras A←−
F

,

– projective algebras A	←−
F

, and

– all algebras A
←−
F ,

and on the other hand

• the comonad
−→
F = F∗F∗ : B −→ B, with the induced categories of

– cofree coalgebras B−→
F

,

– injective coalgebras B	−→
F

, and

– all coalgebras B
−→
F .

The other way around, given a monad
←−
F : A −→ A, any adjunction F∗ ⊣ F∗ : B −→ A

such that
←−
F = F∗F∗ is a resolution of

←−
F ; and given a comonad

−→
F : B −→ B, any

adjunction such that
−→
F = F∗F∗ is a resolution of

−→
F . Each of the above categories

defined for a monad (resp. for a comonad) gives its resolution. The definitions are

standard, and can be found in the Appendix. In this paper, we introduce the categories

of

• projective algebras with consistent morphisms A"
F

, and

• injective coalgebras with consistent morphisms B#F .

We prove the following equivalences of categories

A
←−
F ≃ B#F B

−→
F ≃ A"

F
(6)
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under the assumption that the categories A and B are Cauchy3 complete, which means

that they split idempotents. This is a very mild assumption, since the Cauchy comple-

tion, the weakest of all categorical completions, is easy to construct for any category,

as spelled out in Prop. 2.2.

Overview of the paper

Sec. 2 begins with a discussion about projectors, and analyzes projectors over free

algebras, which determine projective algebras. In Sec. 3 we state and prove the main

theorem, showing that projectors over free algebras correspond to coalgebras. We also

state the dual version, which says that projectors over cofree coalgebras correspond to

algebras. In Sec. 4, we return to the motivating example from Sec. 1.2, and analyze

the different categorical formalisations of data release policies. Sec. 5 closes the paper

with comments about the related past work, and about the future work.

2 Projectors over algebras and coalgebras

2.1 Projectors in general

Consider an equalizer and coequalizer diagram

E A A Qi
ϕ

id

q

for an arbitrary endomorphismϕ. Intuitively, the equalizer E consists of the fixed points
of ϕ, whereas the coequalizer Q is the quotient where each element of A is identified

with all of its direct and inverse images along ϕ, which together form its orbit. The

obvious map E −→ Q maps each fixed point into a unique orbit; but some orbits may not

contain any fixed points. We are interested in the situation when each orbit does contain

a fixed point, so that each equivalence class from Q has a canonical representative in

E. This means that the iterated applications of ϕ push each element of A along its

orbit towards a fixed point. It can be shown that this situation is characterized by the

requirement that the following countably extended diagram commutes

A A A · · ·
ϕ

id

ϕ ϕ

In terms of elements, this means that for every x ∈ A there is some n ∈ N such that

ϕn+1(x) = ϕn(x). In other words, ϕ thus equips A with the structure of a forest, where

the equivalence classes that form Q are the component trees, and the elements of E are

their roots. Projectors are the special case of this situation, where already the diagram

A A A
ϕ

id

ϕ

3The habit of attributing categorical concepts to XIX century mathematicians and philosophers has styled

the terminology in some parts of category theory.
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commutes. The forest thus reduces to a shrub, where each component may branch

at the root as wide as it likes, but can only grow one layer tall, and cannot grow any

further branches. The following summarizes [7, Sec. IV.7.5].

Proposition 2.1. For any endomorphism ϕ with an epi-mono factorization

A A

B

ϕ

q i

the following statements are equivalent:

(a) ϕ ◦ ϕ = ϕ

(b) q ◦ i = id

(c) i is an equalizer and q is a coequalizer of ϕ and the identity

B

A A

i

ϕ

id

q

Definition 2.1. An endomorphism A
ϕ
−→ A is called a projector (or idempotent) if

ϕ ◦ ϕ = ϕ. Its splitting is an object B with a pair of arrows A B
q

i
such that

i ◦ q = ϕ and q ◦ i = id. More succinctly, we write A
ϕ
# B.

Since the projectors and their splittings are defined by equations, every functor

must preserve them. Since a splitting consists of an equalizer and a coequalizer, it is an

equalizer and a coequalizer that must be preserved by all functors.

Definition 2.2. A categorical property is called absolute when it is preserved by all

functors. A category that has all absolute limits and absolute colimits is said to be

Cauchy complete.

It follows from the results of [36], as well as from the different approach in [16,

Sec. I.6.5], that all absolute limits and colimits boil down to splittings.

Proposition 2.2. For any category C the following statements are equivalent

(a) C is Cauchy complete,

(b) all projectors split in C,

(c) the obvious embedding C →֒ C	 is an equivalence, where

7



|C	| =
∐

A∈|C|

{A
ϕ
−→ A | ϕ ◦ ϕ = ϕ}

C
	(A

ϕ
−→ A, B

ψ
−→ B) =































f ∈ C(A, B)
∣

∣

∣

∣

A B

A B

f

ϕ

f

ψ































The absolute completionC	 is sometimes called Karoubi envelope ofC [7, Sec. IV.7.5].

Two categories are Morita equivalent when their Cauchy completions are equivalent

[16, Thm. 7.9.4]. Note that the condition ψ ◦ f ◦ ϕ = f is equivalent with the require-

ment that both f ◦ ϕ = f and ψ ◦ f = f are valid.

Assumption. In the rest of this paper, we assume that each of the categories under

consideration is Cauchy complete, i.e. that projectors split in it. Any category C

that does not fulfill this assumption should be replaced by its Karoubi envelope C	,

described in Prop. 2.2(c).

2.2 Projective algebras over free algebras

In homological algebra, projective modules are usually defined as direct summands of

free modules. In the terminology of the preceding section, this means that they arise

by splitting the projectors over free modules. It is natural to define projective algebras

in a similar way: as projectors over free algebras [22, §82].

In the usual (Kleisli) view of the category of free algebras [32], reproduced in the

Appendix, a morphism f ∈ A←−
F

(A, B) is a morphism A
f
−→
←−
F B inA, and its composition

with g ∈ A←−
F

(B,C), which is B
g
−→
←−
FC in A is defined by

g ◦←−
F

f =













A
f
−−→
←−
F B

←−
F g
−−→
←−
F
←−
FC

µ
−−→
←−
FC













∈ A←−
F

(A,C)

A projector ϕ ∈ A←−
F

(A, A) over the free algebra generated by A is thus an A-morphism

A
ϕ
−→
←−
F A such that ϕ ◦←−

F
ϕ = µA ◦

←−
Fϕ ◦ ϕ = ϕ. As they expand, the calculations with

projectors in the Kleisli form of category A←−
F

do get increasingly clumsy.

When a monad
←−
F : A −→ A is induced by an adjunction F∗ ⊣ F∗ : B −→ A so that

←−
F = F∗F∗, then the category of free algebras can be equivalently defined by

|A←−
F
| = |A|

A←−
F

(X, Y) = B(F∗X, F∗Y) (7)

It is easy to check that the natural bijections

A(X, F∗F
∗Y) � B(F∗X, F∗Y)

map the Kleisli composition of the morphisms inA(X,
←−
FY) to the ordinary composition

of their adjunction transposes in B(F∗X, F∗Y). When the homomorphisms between
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free
←−
F -algebras are presented as the elements of B(F∗X, F∗Y), then a projector ϕ ∈

A←−
F

(X, X) is just a B-morphism F∗X
ϕ
−→ F∗X such that ϕ ◦ ϕ = ϕ. The category of

projective
←−
F -algebras and compliant homomorphisms (explained in Sec. 1.2) is thus

defined as follows:

|A	←−
F
| =

∐

X∈|A|

{

ϕ ∈ B(F∗X, F∗X)
∣

∣

∣

∣

ϕ ◦ ϕ = ϕ
}

A
	
←−
F

(ϕ, ψ) =































h ∈ B(F∗X, F∗Y)
∣

∣

∣

∣

F∗X F∗Y

F∗X F∗Y

h

ϕ

h

ψ































(8)

where ψ ∈ B(F∗C, F∗C) is another projective algebra, viewed as a projector over the

free algebra generated by C ∈ |A|.
We note that the category A←−

F
, defined in (7), is clearly isomorphic with the usual

Kleisli category, recalled in Appendix A. It follows that the category A←−
F

, with its pro-

jectors, its compliant homomorphisms, and its consistent homomorphisms in the next

section, only depends on the monad
←−
F , and not on the resolution F∗ ⊣ F∗. The cate-

gory B and the adjoint F∗ are used in the above definitions only for convenience. The

relevant concepts could be equivalently defined within in the standard Kleisli category,

and that definition is in fact the special case of the above, for the Kleisli resolution

from Def.A.4. But our results would look seem significantly more complicated in that

framework.

2.3 Projective algebras among all algebras

The category of free
←−
F -algebras A←−

F
embeds fully and faithfully into the category A

←−
F

of all
←−
F -algebras by the functor

A←−
F

A
←−
FM

(9)

defined by

X ∈
∣

∣

∣A←−
F

∣

∣

∣

(

←−
F
←−
F X

µ
−→
←−
F X
)

∈
∣

∣

∣A
←−
F
∣

∣

∣

and

(

F∗X
h
−→ F∗Y

)

∈ A←−
F

(X, Y)
(

←−
F X

F∗h
−−→
←−
FY
)

∈ A
←−
F (µX , µY

)

where F∗h is an algebra homomorphism because µ = F∗ε, and the naturality of ε thus

implies F∗h ◦ µX = µY ◦
←−
F F∗h. Since the projectors in A

←−
F split whenever they split in

A, as assumed here, the embedding M has a unique extension M	,

A
	
←−
F

A
←−
F

A←−
F

M	

M
(10)

9



which maps each ϕ ∈ |A	←−
F
| to a splitting α of the projector F∗ϕ ∈ A

←−
F (µX , µX)

←−
F
←−
F X

←−
F A

←−
F
←−
F X

←−
F X A

←−
F X

←−
F q

µ α

←−
F i

µ

F∗ϕ

q i

(11)

An
←−
F -algebra

←−
F A

α
−→ A is thus projective if it is a retract of some free algebra

←−
F
←−
F X

µ
−→

←−
F X, i.e. if there are an X ∈ |A| and some homomorphisms q ∈ A

←−
F (µX , α) and i ∈

A
←−
F (α, µX) such that q ◦ i = id.

It turns out, however, that each projective algebra
←−
F A

α
−→ A is not just a retract of a

free algebra over some X ∈ |A|, but a retract of the free algebra over its own carrier A.

Proposition 2.3. An algebra
←−
F A

α
−→ A is projective if and only if there is a unique

algebra homomorphism α ∈ A
←−
F (α, µA) such that α ◦ α = id.

←−
F A

←−
F
←−
F A

←−
F A

A
←−
F A A

←−
Fα

α

←−
Fα

µA α

α α

Proof. To construct α ∈ A
←−
F (α, µA), extend the algebra homomorphism q ∈ A

←−
F (µX , α)

to
←−
F (q◦η) ∈ A

←−
F (µX , µA) and precompose with i ∈ A

←−
F (α, µX). Hence α =

←−
Fq◦

←−
Fη◦ i ∈

A
←−
F (α, µA), as displayed in the middle row of the following diagram.

←−
F A

←−
F
←−
F X

←−
F
←−
F
←−
F X

←−
F
←−
F A

A
←−
F X

←−
F
←−
F X

←−
F A

←−
F X A

α

←−
F i

µ

←−
F
←−
Fη

µ

←−
F
←−
F q

µ

i

←−
Fη

id

←−
F q

µ α

q

The commutativity of the upper three squares implies that α is an
←−
F -algebra homomor-

phism. The commutativity of the lower square and the triangle implies that α ◦ α =
q ◦ i = id.

To see that α is unique, i.e. that it is the only way to display
←−
F A

α
−→ A as a subalge-

bra of
←−
F
←−
F A

µ
−→
←−
F A, note that the composite homomorphism α ◦α is a projector on the

10



free algebra
←−
F
←−
F A

µ
−→
←−
F A, and that

←−
F A

α
։ A is the splitting of this projector.

←−
F
←−
F A

←−
F A

←−
F
←−
F A

←−
F A A

←−
F A

←−
Fα

µ

←−
Fα

α µ

α α

While the splitting of a projector is unique up to an isomorphism, fixing one component

of the splitting determines the other one on-the-nose: since α is an epi, α0 ◦ α = α1 ◦ α
implies that α0 = α1. �

The preceding proposition thus says that every projective algebra
←−
F A

α
։ A has a

unique embedding A
α
֌
←−
F A into the free algebra µA over its carrier A. With no loss

of generality, the full subcategory A
←−
F
	

of the (Eilenberg-Moore) category A
←−
F of all

←−
F -algebras spanned by the projective

←−
F -algebras can thus be viewed in the form

|A
←−
F
	
| =

{(

←−
F A

α
−→ A
)

∈ |A
←−
F |
∣

∣

∣ ∃α ∈ A
←−
F (α, µA). α ◦ α = idA

}

�

∐

α∈|A
←−
F |

{

α ∈ A
←−
F (α, µA)

∣

∣

∣ α ◦ α = idA

}

A
←−
F
	

(α, γ) =











































f ∈ A(A,C)
∣

∣

∣

∣

←−
F A

←−
FC

A C

α

←−
F f

γ

f











































(12)

Lemma 2.4. Let
←−
F A

α
։ A be a projective

←−
F-algebra and A

α
֌
←−
F A the

←−
F-algebra

monomorphism, as constructed in Prop.2.3, that makes α into a subalgebra of the free

algebra µA. Then the transpose F∗A
α′

−→ F∗A of A
α
−→ F∗F∗A is idempotent4, and thus

a projector in A←−
F

. Moreover

α ◦ α = F∗α
′ (13)

Proof. The fact that α′ ◦ α′ = α′ can be seen by transposing the following diagram

along the adjunction F∗ ⊣ F∗.

A
←−
F A

←−
F
←−
F A

A
←−
F A

α

id

←−
Fα

α µ

α

4If the category of free algebras A←−
F

is presented in the Kleisli form, then A
α
−→
←−
F A itself is an idempotent

morphism, and thus a projector in it.

11



Equation (13) also follows from the commutativity of the square on the above diagram,

and the observation that

µ ◦
←−
Fα = F∗ε ◦ F∗F

∗α = F∗ (ε ◦ F∗α) = F∗α
′

�

Lemma 2.5. Let
←−
F A

α
−→ A and

←−
FC

γ
−→ C be projective

←−
F-algebras, with the

←−
F-

algebra monomorphisms A
α
֌∈

←−
F A and C

γ
֌
←−
FC including them into the free

←−
F-algebras µA and µC , respectively, as in Prop. 2.3. Then every

←−
F-algebra homo-

morphism f ∈ A
←−
F (α, γ) = A

←−
F
	

(α, γ) induces the homomorphism H f = γ′ ◦ F∗ f =
F∗ f ◦ α′ ∈ A	←−

F
(α′, γ′), which is compliant in the sense of (3), since

f ◦ α = γ ◦
←−
F f ⇐⇒ γ′ ◦ H f ◦ α′ = H f

Proposition 2.6. There is an equivalence of categories

A
←−
F
	

A
	
←−
F

H
≃

K
(14)

where the object part of the functor H is defined using Lemma 2.4
(

α
α
֌ µA

)

∈
∣

∣

∣A
←−
F
	

∣

∣

∣

Hα =
〈

A, F∗A
α′

−→ F∗A
〉

∈
∣

∣

∣A
	
←−
F

∣

∣

∣

whereas the arrow part is defined in Lemma 2.5.

f ∈ A
←−
F
	

(α, γ)

H f = γ′ ◦ F∗ f = F∗ f ◦ α′ ∈ A	←−
F

(Hα,Hγ)

The functor K, on the other hand, is the factorization of the functor M	 : A	←−
F
−→ A

←−
F

from (10) through the inclusion A
←−
F
	
→֒ A

←−
F . More precisely, its object and the arrow

parts
〈

X, F∗X
ϕ
−→ F∗X

〉

∈
∣

∣

∣A
	
←−
F

∣

∣

∣

(

←−
F A

Kϕ
−−→ A

)

∈
∣

∣

∣A
←−
F
	

∣

∣

∣

and
h ∈ A	←−

F
(ϕ, ψ)

Kh ∈ A
←−
F
	

(

Kϕ,Kψ
)

are defined by the projector splittings

µX Kϕ

µY Kψ

F∗ϕ

q

F∗h

i

Kh

F∗ψ

p

j

(15)

12



Proof. Both functors are clearly well defined. Towards the isomorphism HKϕ � ϕ,

we first split the projector µX
F∗ϕ
−−−→ µX in A

←−
F
	

to get the subalgebra Kϕ =
(

←−
F A

α
−→ A
)

of the free algebra
←−
F
←−
F X

µ
−→
←−
F X, and then construct the homomorphism A

α
−→
←−
F A,

like in Prop. 2.3, to get the projector HKϕ = Hα = α′. The isomorphism ϕ � HKϕ

in A	←−
F

is realized by the transpose F∗A
i′
−→ F∗X of the monic component A

i
−→ F∗F∗X

of the splitting F∗ϕ =
(

F∗F∗X
q
։ A

i
֌ F∗F∗X

)

in (11). The fact that i′ is a projector

homomorphism from α′ = HKϕ to ϕ in A	←−
F

boils down to the equations ϕ ◦ i′ = i′ =

i′ ◦α′. To see that the first one holds, take a look at the adjunction transposes of its two

sides:

F∗ϕ ◦ i = i ◦ q ◦ i = i

To see that the second equation holds, consider the following diagram:

A
←−
F X

←−
F
←−
F X

←−
F A

A

←−
F X

←−
F
←−
F X

i

i

α

q

F∗ϕ

η

←−
F F∗ϕ

←−
F q

←−
F i

i

η

µ

The two paths around this diagram correspond to the transposes of the two sides of

the second equation. Hence i′ ∈ A	←−
F

(α′, ϕ). To show that i′ is an isomorphism in A	←−
F

,

consider

i′′ =
(

F∗X
F∗η
−−−→ F∗F∗F

∗X
F∗q
−−−→ F∗A

α′

−→ F∗A
)

(16)

The equations

i′′ ◦ i′ = α′ and i′ ◦ i′′ = ϕ (17)

follow directly from the definitions. Since this immediately implies i′′◦ϕ = i′′ = α′◦i′′,
it follows that i′′ ∈ A	←−

F
(ϕ, α′). Equations (17) mean that i′ and i′′ are each other’s

inverses in A	←−
F

. Hence HKϕ � ϕ, where HKϕ = α′.

The isomorphism KHα � α may seem surprising. How can the functor H f =
γ′ ◦ F∗ f = F∗ f ◦ α′ be faithful when F∗ in general does not have to be faithful? The

13



answer is in the following diagram:

←−
F A

←−
FC C

←−
FC

A C C

←−
F A

←−
FC C

←−
FC

←−
F f

F∗H f=F∗γ
′
◦F∗F∗ f

F∗Hα=F∗α
′

α γ

γ γ

γ

F∗Hγ=F∗γ
′f

α γ

id

γ

F∗H f=F∗γ
′
◦F∗F∗ f

←−
F f γ γ

On the left and on the right are the projectors F∗Hα and F∗Hγ. By (15), splitting them

gives KHα � α and KHγ � γ. On the top and on the bottom is the projector morphism

F∗H f . Also by (15), it induces the morphism KH f ∈ A
←−
F
	

(α, γ) between the splittings

of F∗Hα and F∗Hγ. It is denoted by the dashed arrow through the middle. We show

that KH f = f . Since the projector splittings are given as the epi-mono factorizations,

KH f is the unique morphism from A on the left to C on the right making the rectangle

above it and the rectangle below it commute. But the vertical arrow
←−
FC ։ C ֌

←−
FC

is also an epi-mono factorization, and

• f is the unique morphism making the upper left rectangle and the lower left

rectangle commute (the latter by Lemma 2.5);

• id is the unique morphism making the upper right rectangle and the lower right

rectangle commute (because γ ◦ γ = id).

Hence KH f = f . �

3 Equivalences between algebras and coalgebras

In this Section we prove the main theorem, establishing the equivalence between pro-

jective algebras and all coalgebras, and state the dual theorem, establishing the equiv-

alence between injective coalgebras and all algebras. The equivalences, however, re-

quire the consistent homomorphisms, as in (5), and not the compliant homomorphisms,

like in (3) and A	←−
F

.

3.1 Consistent homomorphisms

We define the category of projective
←−
F -algebras and consistent homomorphisms in

two forms, one over the projectors in A←−
F

, one as a subcategory of A
←−
F again. The first

14



version is:

|A"
F
| =

∐

X∈|A|

{

ϕ ∈ B(F∗X, F∗X)
∣

∣

∣ ϕ ◦ ϕ = ϕ ∧
←−
F X

F∗ϕ
# X

}

A"
F

(ϕ, ψ) =































f ∈ A(X, Y)
∣

∣

∣

∣

F∗X F∗Y

F∗X F∗Y

F∗ f

ϕ ψ

F∗ f































(18)

where
←−
F X

F∗ϕ
# X is the notation from Def. 2.1, meaning that F∗ϕ splits in the form

←−
F X ։ X ֌

←−
F X. The second version is:

|AF
"| =

∐

α∈|A
←−
F |

{

α ∈ A
←−
F (α, µA)

∣

∣

∣ α ◦ α = idA

}

A
F
"

(α, γ) =











































f ∈ A
←−
F (α, γ)

∣

∣

∣

∣

←−
F A

←−
FC

A C

←−
F f

α

f

γ











































(19)

Remarks. Note that theAF
"-morphisms in (19) are required to be inA

←−
F , and thus sat-

isfy the requirement of (12); but that they are moreover required to commute with the

splitings α and γ. Concerning the A"
F

-homomorphisms, note that the intuitive distinc-

tion between compliant and consistent databases from (3–5), has now been promoted

to the formal distinction between the compliant homomorphisms defined in (8) and

the consistent homomorphisms defined in (18). A compliant h lives in B and satisfies

h = ψ ◦ h ◦ ϕ, whereas a consistent f lives in A and satisfies ψ ◦ F∗ f = F∗ f ◦ ϕ. As

for the objects, note that in A	←−
F

we did not require that every projector F∗X
ϕ
−→ F∗X

satisfies
←−
F X

F∗ϕ
# X, which is required in the definition of A"

F
above. The reason is that

in A	←−
F

, every projector F∗X
ϕ
−→ F∗X is isomorphic to a projector F∗A

α′

−→ F∗A, induced

by a projective
←−
F -algebra

←−
F A

α
−→ A. This latter projector always satisfies the require-

ment
←−
F A

F∗α
′

# A, because F∗α′ splits into
←−
F A

α
։ A

α
֌
←−
F A, as proved in Lemma 2.4.

This isomorphism ϕ � α′ was spelled out in the proof of Prop. 2.6, leading to the nat-

ural isomorphism ϕ � HKϕ. However, this isomorphism is generally not consistent:

it is present in A	←−
F

, but not in A"
F

. This is why the requirement
←−
F A

F∗ϕ
# A needs to be

explicitly imposed on the objects of A"
F

, if the equivalenceA
←−
F
	
≃ A	←−

F
from Prop. 2.6 is

to be extended to AF
" ≃ A"F

.
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Proposition 3.1. There is an equivalence of categories

A
F
" A"

F

H
≃

K

where the object parts of both functors are as defined in Prop. 2.6, whereas the arrow
parts are

f ∈ AF
"

(α, γ)

H f = f ∈ A"
F

(α′, γ′)
and

h ∈ A"
F

(ϕ, ψ)

Kh ∈ AF
"

(

Kϕ,Kψ
)

Proof. We begin like in the proof of Prop. 2.6: towards the isomorphism HKϕ � ϕ,

we first split the projector µX
F∗ϕ
−−−→ µX in AF

" to µX
α
։ α

α
֌ µX . This time, however,

the assumption
←−
F A

F∗α
′

# A means that F∗ϕ has a splitting in the form
←−
F X

q
։ X

i
֌
←−
F X.

The carrier of the algebra α must be isomorphic to X, and can be chosen to be X itself.

Since µX is a free algebra, it has a unique
←−
F -algebra homomorphism to α. Since both

α and q are homomorphisms µX −→ α, it follows that q = α. Since each component of a

splitting determines the other one, it follows that i = α. Hence F∗ϕ = α ◦ α. It follows

that ϕ = α′, because

ϕ′ = F∗ϕ ◦ η = α ◦ α ◦ η = α

Thus HKϕ = α′ = ϕ. The natural isomorphism KHα � α is constructed like in

Prop. 2.6. The only additional observation is that the condition defining the consistent

morphisms in A"
F

and the condition defining the inclusion preserving
←−
F -algebra homo-

morphisms in AF
"

are each other’s adjunction tranpose. �

3.2 Projective algebras as coalgebras

Theorem 3.2. For every adjunction F∗ ⊣ F∗ : B −→ A, with the induced monad
←−
F = F∗F∗ and comonad

−→
F = F∗F∗, the category of

−→
F-coalgebras is equivalent with

the category of projective
←−
F-algebras and consistent homomorphisms, provided that B

is Cauchy complete. The equivalence is given by the functors

B
−→
F

A"
F

R
≃

L

where the rules
(

B
β
−→
−→
F B
)

∈
∣

∣

∣B

−→
F
∣

∣

∣

Rβ =
〈

F∗B,
−→
F B

ε
−→ B

β
−→
−→
F B
〉

∈
∣

∣

∣A"
F

∣

∣

∣

and
(

B
g
−→ D
)

∈ B
−→
F (β, δ)

Rg =













−→
F B

−→
F g
−−→
←−
F D













∈ A"
F

(

Rβ,Rδ
)
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define R, whereas the object part of L
〈

A, F∗A
ϕ
−→ F∗A

〉

∈
∣

∣

∣A"
F

∣

∣

∣

Lϕ =
(

B
i
−→ F∗A

F∗q′

−−−→ F∗F∗B
)

∈
∣

∣

∣B
−→
F
∣

∣

∣

and its arrow part
(

A
f
−→ C
)

∈ A"
F

(ϕ, ψ)
(

B
L f
−−→ D

)

∈ B
−→
F (Lϕ, Lψ

)

are defined using the projector splittings in the following diagram

F∗F∗B F∗A B F∗A F∗F∗B

F∗F∗D F∗C D F∗C F∗F∗D

F∗F∗L f

∼
F∗q′′

q

ϕ

F∗ f

Lϕ

L f

i

F∗ f

∼
F∗q′

F∗F∗L f

∼
F∗ p”

p

ψ
Lψ

j
∼

F∗ p′

(20)

where q′ is the transpose of q in the projector splitting ϕ =
(

F∗A
q
։ B

i
֌ F∗A

)

, and

q′′ is the inverse of q′, as explained above (23); and where p′ and p′′ are derived from
ψ in a similar way.

Proof. The functor R is well defined, i.e. it lands in A"
F

, because ε ◦ β = idB, which

implies that Rβ is a projector:

Rβ ◦ Rβ = β ◦ ε ◦ β ◦ ε = β ◦ ε = Rβ

The fact that Rg =













−→
F B

−→
F g
−−→
−→
F D













is a consistent A"
F

-morphism follows from the natu-

rality of ε and the fact that B
g
−→ D is an

−→
F -coalgebra homomorphism.

To show that the functor L is well defined, we need to prove that Lϕ = F∗q′ ◦ i is an
−→
F -coalgebra, and that L f , as defined in (20), is an

−→
F -coalgebra homomorphism. The

former requirement means that Lϕ must satisfy the coalgebra equations:

ε ◦ Lϕ = idB (21)

F∗F∗Lϕ ◦ Lϕ = F∗η ◦ Lϕ (22)

To spell this out, consider diagram (20). The object B is defined by the splitting F∗A
q
։

B
i
֌ F∗A of the projector ϕ; the object D is defined by the splitting F∗C

p
։ D

j
֌ F∗C

of the projector ψ. On the other hand, using the equivalence of categories AF
"

H
−−→ A"

F
from Prop. 3.1, we can assume without loss of generality that ϕ = Hα = α′ and
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ψ = Hγ = γ′ for some projective algebras α, γ ∈ |AF
"
|, where the inclusions α

α
֌ µA

and γ
γ
֌ µC transpose to F∗A

α′

−→ F∗A and F∗C
γ′

−→ F∗C. Lemma 2.4 says that

the projector F∗ϕ = F∗α
′

splits into F∗F∗A
α
։ A

α
֌ F∗F∗A. Since every functor

preserves projector splittings, the F∗-image of the splitting F∗A
q
։ B

i
֌ F∗A of ϕ is

also a splitting of F∗ϕ. The two splittings of F∗ϕ induce an isomorphism A � F∗B. By

chasing the following diagram, we see that this isomorphism is the transpose A
q′

−→ F∗B

of F∗A
q
−→ B.

F∗B

F∗F∗A F∗F∗A

A

F∗ iF∗q

α

q′

α

η

(23)

A chase of a similar diagram, extended by F∗F∗A
α
−→ A on the right, shows that the

inverse of A
q′

−→ F∗B is the composite q′′ =
(

F∗B
F∗ i
−−→ F∗F∗A

α
−→ A
)

. But already the

fact that q′ is an isomorphism with an inverse q′′ yields the transposition

(

F∗B
q′′

−−→ A
q′

−→ F∗B
)

= idF∗B

(

F∗F∗B
F∗q′′

−−−→ F∗A
q
−→ B
)

= εB

As an extension of the projector splitting ϕ = i ◦ q along the isomorphism F∗q′ on the

right and along its inverse F∗q′′ on the left, the composite Lϕ ◦ ε is clearly a projector

splitting. Hence (21).

Towards (22), consider the following split equalizer5 in A	←−
F

ϕ F∗F∗ϕ F∗F∗F∗F∗ϕ
F∗η◦ϕ F∗F∗(F∗η◦ϕ)

F∗η ◦ F∗F∗ϕ
ϕ◦ε

F∗F∗ϕ ◦ ε

(24)

Splitting the projectors in B yields the following split equalizer

B F∗F∗B F∗F∗F∗F∗B
Lϕ F∗F∗Lϕ

F∗η
ε

ε

(25)

which gives (22).

The same reasoning applied to ψ and its splitting in (20) shows that Lψ, as defined

there, is also an
−→
F -coalgebra. Combining (23) with the analogous diagram for F∗ψ,

5The commutativity convention is explained in Appendix B.
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splitting into γ and γ, furthermore gives

F∗L f = p′ ◦ f ◦ q′′

The definition of L f in (20) then displays the equation
−→
F f ◦Lϕ = Lψ◦ f , which means

that L f is an
−→
F -coalgebra homomorphism from Lϕ to Lψ. This completes the proof

that the functors R and L are well defined.

To see that the counit e : LR −→ Id is a natural isomorphism, set in (20) ϕ = Rβ
and A = F∗B, which makes q′ = q′′ = id. Since the definition of R gives the splitting

Rβ = β ◦ ε, and the definition of L says that LRβ is the monic part of that splitting

(followed by F∗q′, which is now identity), we have LRβ = β. The counit e : LR −→ Id

is thus the identity.

The fact that h : Id −→ RL is a natural isomorphism can be seen on (20), which

displays not only ϕ and Lϕ = F∗q′ ◦ i, but also RLϕ = Lϕ◦ε = (F∗q′ ◦ i)◦ (q ◦F∗q′′) =

F∗q′ ◦ϕ◦F∗q′′. The isomorphism hϕ ∈ A"
F

(ϕ,RLϕ) is thus hϕ =
(

A
q′

−→ F∗B
)

in A. The

fact that it is consistent, i.e. an A"
F

-morphism, is clear from the following commutative

diagram.

F∗A F∗F∗B

F∗A

F∗A

F∗A F∗F∗B

hϕ=F∗q′
∼

ϕ

F∗q′′

RLϕϕ

F∗q′

F∗q′
∼

(26)

This completes the proof that L ⊣ R : B
−→
F −→ A"

F
is an equivalence of categories. �

3.3 Injective coalgebras as algebras

As it is usually the case with algebras and coalgebras, the dual constructions are sym-

metric, but their interpretations and concrete applications are quite different. For the

moment, we just spell out the dual structures and propositions, and leave the dual proofs

as an exercise.

While every algebra is a quotient of a free algebra, and projective algebras are also

subalgebras of free algebras, every coalgebra is a subalgebra of a cofree coalgebra, and

injective coalgebras are also quotients of cofree coalgebras. The category of injective
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−→
F -coalgebras and compliant homomorphisms is thus

|B	−→
F
| =

∐

X∈|B|

{

ϕ ∈ A(F∗X, F∗X)
∣

∣

∣

∣
ϕ ◦ ϕ = ϕ ∧ F∗F∗X

F∗ϕ
# X

}

B
	
−→
F

(ϕ, ψ) =



































h ∈ A(F∗X, F∗Y)
∣

∣

∣

∣

F∗X F∗Y

F∗X F∗Y

h

ϕ

h

ψ



































On the other hand, the category of injective coalgebras and consistent homomorphisms

is

|B#F | =
∐

X∈|B|

{

ϕ ∈ A(F∗X, F∗X)
∣

∣

∣ ϕ ◦ ϕ = ϕ
}

B
#

F (ϕ, ψ) =



































f ∈ B(X, Y)
∣

∣

∣

∣

F∗X F∗Y

F∗X F∗Y

F∗ f

ϕ ψ

F∗ f



































Theorem 3.3. For every adjunction F∗ ⊣ F∗ : B −→ A, with the induced monad
←−
F = F∗F∗ and comonad

−→
F = F∗F∗, the category of

←−
F-algebras is equivalent with the

category of injective
−→
F-algebras and consistent homomorphisms. The equivalence is

given by the functors

A
←−
F

B
#

F

R
≃

L

where the rules
(

←−
A

α
−→ A
)

∈
∣

∣

∣A
←−
F
∣

∣

∣

Rα =
〈

F∗A,
←−
F A

α
−→ A

η
−→
←−
F A
〉

∈
∣

∣

∣B
#

F

∣

∣

∣

and
(

A
f
−→ C
)

∈ A
←−
F (α, γ)

R f =













←−
F A

←−
F f
−−→
←−
FC













∈ B#F
(

Rα,Rγ
)

define R, whereas the object part of L
〈

B, F∗B
ϕ
−→ F∗B

〉

∈
∣

∣

∣B
#

F

∣

∣

∣

Lϕ =
(

F∗F
∗A

F∗ i′
−−−→ F∗B

q
−→ A
)

∈
∣

∣

∣A
←−
F
∣

∣

∣

and its arrow part
(

B
g
−→ D
)

∈ B#F (ϕ, ψ)
(

A
Lg
−−→ C

)

∈ A
←−
F (Lϕ, Lψ

)
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are defined using the projector splittings in the following diagram

F∗F∗A F∗B A F∗B F∗F∗A

F∗F∗C F∗D C F∗D F∗F∗C

Lϕ

F∗F∗Lg

∼
F∗ i′

q

ϕ

F∗g Lg

i

F∗g

∼
F∗ i′′

F∗F∗Lg

Lψ

∼
F∗ j′

p

ψ

j
∼

F∗ j′′

(27)

4 Application

Interpreted along the lines of the example from Sec. 1.2, the category C"
S

of projectors

and consistent homomorphisms, induced by the state monad
←−
S on a cartesian closed

category C, can be viewed as a model of data release policies. The idea is that

• a projector

(

S × A
ϕ
−→ S × A

)

∈

∣

∣

∣

∣

C"
S

∣

∣

∣

∣

filters private data a ∈ A and private states

s ∈ S and releases a public pair

ϕ(s, a) = 〈ϕ0(s, a), ϕ1(s, a)〉 ∈ S × A

• a morphism

(

A
f
−→ B
)

∈ C"
S

(ϕ, ψ) can be thought of as a deterministic channel

which maps data of type A to data of type B in such a way that the following

requirements are satisfied

ψ0 (s, f (a)) = ϕ0(s, a) (28)

ψ1 (s, f (a)) = f (ϕ1(s, a)) (29)

where

(

S × B
ψ
−→ S × B

)

∈

∣

∣

∣

∣

C"
S

∣

∣

∣

∣

is another policy.

Conditions (28–29) guarantee that the channel f behaves consistently with the policies

ϕ and ψ. Note that this is a special case of the model from Sec. 1.2, in the sense that

we are not capturing the consistency of a database S × A
g
−→ S × B with the policies

S × A
ϕ
−→ S × A and S × B

ψ
−→ S × B, but only the consistency of a stateless channel

A
f
−→ B.

If we accept this restriction for a moment, the equivalence C"
S
≃ C

−→
S provides an

interesting characterization of data release policies, with the consistent channels as the

morphisms between them: they are equivalent to coalgebras for the comonad

−→
S : C −→ C (30)

X 7→ S × (S ⇒ X)
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with the coalgebra homomorphisms. More precisely, a projective
←−
S -algebra S × A

ϕ
−→

S × A, which we viewed as a Mealy machine [26, Sec. 2.7(a)]

S × A
ϕ0

−−→ S S × A
ϕ1

−−→ A (31)

induces a coalgebra B
β
−→ S × (S ⇒ B), which boils down to a pair of maps reminding

of a Moore machine [26, Sec. 2.7(b)]

B
β0

−→ S B × S
β1

−→ B (32)

It is conspicuous, however, that the state space S of the Mealy machine ϕ has become

the alphabet in the corresponding Moore machine β = Lϕ, where L is the functor from

Thm. 3.2. The state space B of the Moore machine β arises from the construction of

Lϕ in (20) as the set of public pairs:

B = {〈s, a〉 ∈ S × A | ϕ(s, a) = 〈s, a〉}

Note, however, that both machines are of a very special kind: the Mealy machine is

idempotent, and the Moore machine satisfies the coalgebra conditions

ε ◦ β = id
−→
S β ◦ β = ν ◦ β

which for the components in (32) correspond to the following equations

β0 (β1(b, s)) = s

β1 (b, β0(b)) = b

β1 (β1(b, s), t)) = β1(b, t)

In a sense (formalized by Thm. 3.2), these equations realize on the set of public pairs

B precisely the data filtering condition that was realized on the set of all pairs S × A by

the idempotence of ϕ.

To go beyond the stateless morphisms, and capture not just channels in the form

A
f
−→ B, but also databases in the form S × A

g
−→ S × B, consider the adjunction

C C←−
S

S ♭

⊥

S ♭

(33)

where

S ♭X = X S ♭X =
←−
S X

S ♭ f = (S × f ) S ♭ f = (S ⇒ f )
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The category of injective coalgebras in C←−
S

is now as follows:

|C#←−
S
| =

∐

A∈|C|

{

ϕ ∈ C(
←−
S A,
←−
S A)
∣

∣

∣

∣

ϕ ◦ ϕ = ϕ
}

C
#
←−
S

(ϕ, ψ) =















































g ∈ C(S × A, S × B)
∣

∣

∣

∣

←−
S A

←−
S B

←−
S A

←−
S B

S⇒g

ϕ ψ

S⇒g















































The consistent homomorphisms S × A
g
−→ S × B can now be construed as databases.

The policies with which they are consistent are more general than those considered so

far. Policies S × A −→ S × A in C"
S

filtered private states and data and supplied the

corresponding public pairs. Policies
←−
S A −→

←−
S A in C#←−

S
filter entire stateful behaviors.

Interestingly, though, Thm. 3.3 provides the equivalence C#←−
S
≃ C

←−
S , and one of

its corollaries6 provides an equivalence C
←−
S ≃ C. The equivalences are nontrivial,

and may require further research. They suggest that implementing policies within a

model of data release, and using these policies to filter out the private data, and to

extract the public data alone, leads to an equivalent model, but this time consisting

of the public data alone. Filtering out the private data can thus be formalized as an

equivalence. Privacy policies can be formalized to make the publicly released data

structurally indistinguishable from all data.

5 Related and further work

Although the presented constructions emerged within a practice-driven effort towards

modeling and analyzing data release policies using the salient tools of monadic pro-

gramming, the research path led through the realm of basic monad theory, with some

old questions still lurking, and with the theoretic repercussions surpassing not only our

practical goals, but probably also our current understanding. Back in 1968, in the first

of the Batelle volumes, Barr [9] raised the question of comonadicity of the left adjoint

of a monadic functor. More precisely, he considered the adjunctions in the form

A A
←−
T

T ♯

⊥

T♯

(34)

and asked under which conditions would the functor T ♯ be comonadic. This means that

the comparison functor

A

(

A
←−
T
)

−→
T

6to be presented elsewhere
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should be an equivalence, where
−→
T = T ♯T♯. Barr provided the answer for the special

cases when A is the category of sets, pointed or not, and when it is the category of

vector spaces and linear operators. He suggested that the general answer might be

difficult. The question seems to have been reemerging regularly in various guises, most

recently in Jacobs’ work on coalgebras over algebras as an abstract form of the concept

of basis [27], extending the results of [18] about bases as Sweedler-style coalgebras to

bases as coalgebras for comonads.

Theorem 3.2 provides the equivalence B
−→
F ≃ A"

F
for any resolution F∗ ⊣ F∗ : B −→

A of the monad
←−
F . More precisely, if besides the adjunction F∗ ⊣ F∗ : B −→ A there

is also G∗ ⊣ G∗ : C −→ A, and the monads G∗G∗ � F∗F∗ are isomorphic to a monad

T : A −→ A, coherently with respect to the monad structures [10, Sec. 3.6], then

B
−→
F ≃ A"

T
≃ C

−→
G

Instantiating to the adjunction displayed in (34) gives

(

A

←−
T
)

−→
T

≃ A"
T

The question of comonadicity of T ♯ can thus be studied on the comparison functor

A A"
T

which the reader may enjoy as an exercise. In a similar way, Beck’s General Monadic-

ity Theorem [12, 10, Thm. 3.3.13] can be stated and proved by unravelling the pro-

jectors from behind the split coequalizers in the original formulation. In general, the

projector view of algebras and coalgebras, opened by Theorems 3.2 and 3.3, seems to

facilitate analyses of monadicity, and even enable analysis of relative monadicity [4, 5].

On the other hand, it opens up an alley towards classifying resolutions in general, as

illustrated in the following diagram.

A

B
	
−→
F

B A"
F

B−→
F

A
	
←−
F

B
#

F B
−→
F

A←−
F

A
←−
F

⊣F∗

⊣F	

F∗

⊣F• ≃

⊣F♭

F	 F•

≃ ⊣F♯
F♭

F♯
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Of special interest here is the adjunction (F• ⊣ F•) : B#F −→ A"F
defined by

〈

A, F∗A
ϕ
−→ F∗A

〉

∈
∣

∣

∣A"
F

∣

∣

∣

〈

F∗F∗Bϕ, F∗F
∗F∗Bϕ

F∗ε
−−→ F∗Bϕ

η
−−→ F∗F

∗F∗Bϕ

〉

∈
∣

∣

∣B
#

F

∣

∣

∣

and
〈

D, F∗D
ψ
−→ F∗D

〉

∈
∣

∣

∣B
#

F

∣

∣

∣

〈

F∗F
∗Cψ, F∗F∗F

∗Cψ
ε
−−→ F∗Cψ

F∗η
−−−→ F∗F∗F

∗Cψ

〉

∈
∣

∣

∣A"
F

∣

∣

∣

where F∗A ։ Bϕ ֌ F∗A and F∗D ։ Cψ ֌ F∗D are the splittings of ϕ and of ψ,

respectively. The adjunction (F• ⊣ F•) : B#F −→ A"F
is the nucleus of the adjunction

F∗ ⊣ F∗ : B −→ A [37, 38, 30, 29, 43, 44]. The fact that the functor F• is monadic, and

the functor F• is comonadic will be proved in the full version of this paper.
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A Appendix: Adjunctions, monads, comonads

Definition A.1. An adjunction F = (F∗ ⊣ F∗ : B −→ A) consists of the following data

• categories A and B

• functors F∗ : A −→ B and F∗ : B −→ A, called left adjoint and right adjoint,
respectively

• natural transfromations η : idA −→ F∗F∗ and ε : F∗F∗ −→ idB, called the adjunc-
tion unit and counit, respectively,

such that

A

B

A

B

F∗

id

F∗

id

η

F∗

ε

=

A

B

F∗

B

A

B

A

F∗

id

F∗

id

ε

F∗

η

=

B

A

F∗

Definition A.2. A monad (T, η, µ) consists of the following data

• category A

• functor T : A −→ A

• natural transformations η : idA −→ T and µ : TT −→ T , called, respectively, the

monad unit and evaluation (or cochain)

which satisfy the following conditions

A A

A

A

T

T

T

T
µ

T

µ
=

A

A

A A

T

T

T
T

µ

T

µ
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A

A

A

id

T

T

η

T

µ
=

A

A

T =

A

A

A

T

T

id

T
η

µ

Definition A.3. A comonad (S , ε, ν) consists of the following data

• category A

• functor S : A −→ A

• natural transfromations ε : S −→ idA and ν : S −→ S S , called the comonad counit
and coevaluation (or chain), respectively,

which satisfy the following conditions

A A

A

A

S

S

S

S
ν

S

ν =

A

A

A A

S

S

S
S

ν

S

ν

A

A

A

id

S

S

ε

S

ν =

A

A

S =

A

A

A

S

S

id

S
ε

ν

Definition A.4. The Kleisli construction maps the monad T : A −→ A to the adjunction
←−
KT =

(

T ♭ ⊣ T♭ : A←−
T
−→ A
)

where the category A←−
T

consists of

• free algebras as objects, which boil down to |A←−
T
| = |A|;
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• algebra homomorphisms as arrows, which boil down to A←−
T

(x, x′) = A(x, T x′);

with the composition

A←−
T

(x, x′) × A←−
T

(x′, x′′)
◦
−→ A←−

T
(x, x′′)

〈

x
f
−→ T x′ , x′

g
−→ T x′′

〉

7−→
(

x
f
−→ T x′

Tg
−−→ TT x′′

µ
−→ T x′′

)

and with the identity on x induced by the monad unit η : x −→ T x

Definition A.5. The Eilenberg-Moore construction maps the monad T : A −→ A to the

adjunction
←−
ET =

(

T ♯ ⊣ T♯ : A
←−
T −→ A

)

where the category A
←−
T consists of

• all algebras as objects:

|A
←−
T | =

∑

x∈|A|

{

α ∈ A(T x, x) | α ◦ η = id ∧ α ◦ Tα = α ◦ µ
}

• algebra homomorphisms as arrows:

A
←−
T (T x

α
−→ x, T x′

γ
−→ x′) =

{

f ∈ A(x, x′) | f ◦ α = γ ◦ T f
}

B Appendix: Split equalizers

Split equalizers and coequalizers [10, 12] are conventionally written as partially com-

mutative diagrams: the straight arrows commute, the epi-mono splittings compose to

identities on the quotient side, and to equal idempotents on the other side.

Proposition B.1. Consider the split equalizer diagram

A B Ci
f

j
q

r

where
q ◦ i = idA r ◦ j = idB f ◦ r ◦ f = j ◦ r ◦ f

Then

• r ◦ f is idempotent and

• i is the equalizer of f and j if and only if i ◦ q = r ◦ f .
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