
ar
X

iv
:1

70
1.

01
46

1v
1 

 [
cs

.C
C

] 
 5

 J
an

 2
01

7

Understanding the complexity of #SAT using knowledge

compilation∗

Florent Capelli

Birkbeck College, University of London

florent@dcs.bbk.ac.uk

August 14, 2018

Abstract

Two main techniques have been used so far to solve the #P-hard problem #SAT. The first
one, used in practice, is based on an extension of DPLL for model counting called exhaustive
DPLL. The second approach, more theoretical, exploits the structure of the input to compute
the number of satisfying assignments by usually using a dynamic programming scheme on a
decomposition of the formula. In this paper, we make a first step toward the separation of these
two techniques by exhibiting a family of formulas that can be solved in polynomial time with the
first technique but needs an exponential time with the second one. We show this by observing
that both techniques implicitely construct a very specific boolean circuit equivalent to the input
formula. We then show that every β-acyclic formula can be represented by a polynomial size
circuit corresponding to the first method and exhibit a family of β-acyclic formulas which cannot
be represented by polynomial size circuits corresponding to the second method. This result
shed a new light on the complexity of #SAT and related problems on β-acyclic formulas. As a
byproduct, we give new handy tools to design algorithms on β-acyclic hypergraphs.

1 Introduction

The problem #SAT of counting the satisfying assignments of a given CNF-formula is a central prob-
lem to several areas such as probabilistic reasoning [Rot96, BDP03] and probabilistic databases [BLRS14,
BLRS13, JS13]. This problem is much harder than SAT, its associated decision problem. For exam-
ple, the problem 2-SAT of deciding if a formula having at most two literals per clause if satisfiable
is easy where counting those satisfying assignments is as hard as #SAT. Even computing a 2n

1−ǫ

-
approximation in the restricted case of monotone 2-SAT is hard for any ǫ > 0 [Rot96].

In order to tackle this problem, two main approaches have been used so far. The first approach
– applied in practical tools for solving #SAT – follows the successful road paved by SAT-solvers: it
is based on a variation of DPLL [DP60] called exhaustive DPLL [HD05] and the approach is mainly
focused on improving the heuristics used for eliminating variables and choosing which subformulas
should be cached during the computation. The performance of such tools – though impressive for
such a hard problem [HD05, SBB+04, Thu06, BDP03] – lag far behind the state-of-the-art SAT-
solvers. This gap is mainly explained by the differences between the hardness of both problems,

∗This work was partially supported by ANR AGGREG.

1

http://arxiv.org/abs/1701.01461v1


but also by the fact that optimizations for exhaustive DPLL are inspired by those used in SAT-
solvers and not always relevant for model counting [SBK05]. The second – more theoretical –
approach focuses on structural restrictions of the input formula. The main idea of this approach is
to solve #SAT more quickly on formulas where interaction between the clauses and the variables is
restricted. This interaction is usually represented by a graph derived from the input CNF-formula.
The complexity of #SAT is then studied on inputs where the associated graph belongs to a restricted
class of graphs. Samer and Szeider [SS10] were the first to formalize this idea for #SAT by showing
that if this graph is of bounded tree width, then #SAT can be solved in polynomial time. This
result has then been improved and completed by different work showing the tractability of #SAT

for more general or incomparable classes of formulas [PSS16, SS13, HSTV14, CDM14], the intended
goal being to understand the frontier of tractibility for #SAT.

Contributions. The main contribution of this paper is to propose a formal framework, using tools
from knowledge compilation, to study both algorithmic techniques and to compare their respective
power. We then make a first step toward the separation of both techniques by exhibiting a class of
formulas having the following property: for every formula F of this class, there exists an elimination
order of the variables for which exhaustive DPLL returns the number of satisfying assignments of
F in linear time while algorithms based on structural restrictions needs exponential time.

The class of formulas we are using to separate both technique are β-acyclic formulas, a class
already known to be tractable [BCM15]. The algorithm used to solve this class was however very
different from the one that are usually used by structure-based algorithms. Our result gives a
formal explanation of why the usual techniques fail on this class, a question that has puzzled the
community since SAT has been shown tractable on this class of formulas without generalizing to
counting [OPS13].

Moreover, in Section 3, we give tools that are useful for designing algorithms on β-acyclic
hypergraphs and are of independent interest.

Methodology. It has been observed that the trace of every implementation of exhaustive DPLL
actually constructs a very specific Boolean circuit equivalent to the input formula [HD05]. Such
circuits are known in knowledge compilation under the name of decision Decomposable Negation
Normal Form (dec-DNNF). We first show in Section 3 that β-acyclic formulas can be represented
by linear size dec-DNNF, which can be interpreted as the fact that exhaustive DPLL may solve this
class of formula in polynomial time, if it chooses the right order to eliminate variables and the right
caching methods.

Similarly, all structure-based algorithms for #SAT use the same kind of dynamic programming
scheme and it has been shown that they all implicitly construct a very specific Boolean circuit
equivalent to the input formula [BCMS15]. Such circuits are known under the name of structured
deterministic DNNF. We start by arguing in Section 2 that every algorithm using techniques similar
to the one used by structure-based algorithms will implicitly construct a circuit having a special
property called determinism. In Section 4, We exhibit a class of β-acyclic formulas having no
polynomial size equivalent structured DNNF, thus separating both methods.

Related work. The class of β-acyclic formulas we use to prove the separation have already
been shown to be tractable for #SAT and not tractable to the state-of-the-art structure-based
algorithms [BCM15] but this result does not rule out the existence of a more general algorithm

2



based on the same technique and solving every known tractable class. Our result is sufficiently
strong to rule out the existence of such an algorithm.

New lower bounds have been recently shown for circuits used in knowledge compilation [BCMS16,
BLRS14, BLRS13, BL15, PD10]. Moreover, knowledge compilation has already been used to prove
limits of algorithmic techniques in the context of model counting. Beame et al. [BLRS13] for
example have exhibited a very interesting class of queries on probabilistic databases that can be
answered in polynomial time by using specific techniques but that cannot be represented by circuits
corresponding to exhaustive DPLL. They conclude that solving the query by using well-known re-
duction to #SAT and then calling a #SAT-solver is weaker than using their technique. Our result
uses somehow the same philosophy but on a different algorithmic technique.

Organization of the paper. The paper is organized as follows: Section 2 contains the needed
definitions and concepts used through the paper. Section 3 describes the algorithm to transform
β-acyclic formulas into circuits corresponding to the execution of an exhaustive DPLL algorithm.
Finally, Section 4 contains the formalization of the framework for studying algorithms based on
dynamic programming along a branch decomposition and a proof that the β-acyclic case is not
covered by this framework.

2 Preliminaries

2.1 CNF-formulas.

A literal is a variable x or a negated variable ¬x. A clause is a finite set of literals. A clause
is tautological if it contains the same variable negated as well as unnegated. A (CNF) formula
(or CNF, for short) is a finite set of non-tautological clauses. If x is a variable, we let var(x) =
var(¬x) = x. Given a clause C, we denote by var(C) =

⋃
ℓ∈C var(ℓ) and given a CNF-formula, we

denote by var(F ) =
⋃

C∈F var(C). The size of a CNF-formula F , denoted by size(F ), is defined to
be

∑
C∈F |var(C)|. A CNF-formula is monotone if it does not contain negative literals.

Let X be a set of variables. An assignment τ of X is a mapping from X to {0, 1}. The set of
assignments of X is denoted by {0, 1}X . Given an assignment τ of X and X ′ ⊆ X, we denote by
τ |X′ the restriction of τ on X ′. Given two sets X,X ′, τ ∈ {0, 1}X and τ ′ ∈ {0, 1}X′

, we denote by
τ ≃ τ ′ if τ |X∩X′ = τ ′|X∩X′ . If τ ≃ τ ′, we denote by τ ∪ τ ′ the assignment of X ∪X ′ such that for
all x ∈ X, (τ ∪ τ ′)(x) = τ(x) and for all x ∈ X ′, (τ ∪ τ ′)(x) = τ ′(x).

A boolean function f on variables X is a mapping from {0, 1}X to {0, 1}. We denote by τ |= f
if τ ∈ {0, 1}X is such that f(τ) = 1 and by sat(f) = {τ ∈ {0, 1}X | τ |= f}. Given Y ⊆ X
and τ ∈ {0, 1}Y , we denote by f [τ ] the boolean function on variables X \ Y defined by for every
τ ′ ∈ {0, 1}X\Y , f [τ ](τ ′) = f(τ ∪ τ ′).

A CNF-formula F naturally induces a boolean function. Extending assignments to literals in
the usual way, we say that an assignment τ satisfies a clause C if there is a literal ℓ ∈ C such that
τ(ℓ) = 1. An assignment satisfies a formula F if it satisfies every clause C ∈ F . In this paper, we
often identify the CNF-formula and its underlying boolean function. Thus, given a CNF-formula F
on variables X and an assignment τ of Y ⊆ X, we will use the notation F [τ ] in the same way as
for any other boolean function. Observe that F [τ ] is still represented by a CNF-formula of size less
than size(F ): it is the CNF-formula where we have removed satisfied clauses from F and removed
the variables of Y in each remaining clause.

3



1 2

34

1 2 3 4

t

1 2

34

Figure 1: From left to right: a graph G = (V,E), a branch decomposition of G and G[Vt, V \ Vt]

2.2 Graphs and branch decompositions.

We assume the reader is familiar with the basics of graph theory. An introduction to the topic can
be found in [Die12]. Given a graph G = (V,E), we often denote by V (G) the set of vertices of G
and by E(G) the set of edges of G if they have not been named explicitly before. G is said bipartite
if there exists a partition V1 ⊎ V2 of V such that for every e ∈ E, one end-point of e is in V1 and
the other is in V2. Given a graph G = (V,E) and X,Y ⊆ V , we denote by G[X,Y ] = (V ′, E′)
the bipartite graph such that V ′ = X ∪ Y and E′ = {{u, v} ∈ E | u ∈ X, v ∈ Y }. An induced
matching M is a matching of G such that for every e, f ∈ M , if e = {u, v} and f = {u′, v′}, we
have {u, u′} /∈ E, {u, v′} /∈ E, {v, u′} /∈ E and {v, v′} /∈ E.

A branch decomposition of G is a binary rooted tree T whose leaves are in one-to-one correspon-
dence with V . Given t a vertex of T , we denote by Tt the subtree of T rooted in t. We denote by
Vt the set of leaves of Tt.

The maximal induced matching width [Vat12], MIM-width for short, of a vertex t of T is the size
of the largest induced matching M of G[V \ Vt, Vt]. The MIM-width of T , denoted as mimw(T ),
is the maximal MIM-width of its vertices. The maximal induced matching width of a graph G,
denoted as mimw(G), is the minimal MIM-width of all branch decomposition of G. Figure 1
depicts a graph G together with a branch decomposition of G. The distinguished node t of this
branch decomposition has MIM-width 1 as the biggest induced matching of G[Vt, V \ Vt] is of size
one because the matching {{1, 4}, {2, 3}} is not induced.

2.3 Hypergraphs and β-acyclicity.

A hypergraph H is a finite set of finite sets, called edges. We denote by V (H) =
⋃

e∈H e the set of
vertices of hypergraph H.

Most notions on graphs may be naturally generalized to hypergraph. A hypergraph H′ is a
subhypergraph of H if H′ ⊆ H. Given S ⊆ V (H), we denote by H\S = {e \S | e ∈ H}. A walk of
length n from edge e ∈ H to f ∈ H is a sequence (e1, x1, . . . , xn, en+1) of vertices and edges such
that: e = e0, f = en+1 and for every i ≤ n, xi ∈ ei ∩ ei+1. A path is a walk that never goes twice
through the same vertex nor the same edge. It is easy to check that if there is a walk from e to f
in H, then there is also a path from e to f .

There exist several generalizations of acyclicity to hypergraph introduced by Fagin [Fag83] in
the context of database query answer. An extensive presentation of hypergraph acyclicity notions
may be found in [BB14]. In this paper, we focus on the β-acyclicity, which is the most general
of such notions for which #SAT is still tractable. A hypergraph H is β-acyclic if there exists an
order (x1, . . . , xn) of V (H) such that for all i ≤ n, for all e, f ∈ H such that xi ∈ e ∩ f , then either
e \ {x1, . . . , xi} ⊆ f or f \ {x1, . . . , xi} ⊆ e. Such an order is called a β-elimination order of H. A
β-acyclic hypergraph can be found on Figure 2. The order {1, 2, 3, 4, 5} is an β-elimination order.

Given a hypergraph H, the incidence graph of H is defined as the bipartite graph whose vertices

4



5

3

42

1
H4

e5 = H

5 42

1
H3

e5

3

4

H3
e2

Figure 2: An example of Hx
e

are V (H)∪H and there is an edge between e ∈ H and x ∈ V (H) if and only if x ∈ e. The incidence
MIM-width of a hypergraph is the MIM-width of its incidence graph. The incidence MIM-width of
β-acyclic hypergraphs can be very large:

Theorem 1 ([BCM15]). There exists an infinite family of β-acyclic hypergraphs of incidence
MIM-width Ω(n) where n is the number of vertices of the hypergraph.

2.4 Structure of formulas.

Let F be a CNF-formula. The incidence graph of F , denoted by Ginc(F ), is the bipartite graph
whose vertices are the variables and the clauses of F and there is an edge between a variable x and
a clause C if and only if x ∈ var(C). The incidence MIM-width of a formula F is the MIM-width
of Ginc(F ). The hypergraph of F , denoted by H(F ), is defined as H(F ) = {var(C) | C ∈ F}. A
CNF-formula is said to be β-acyclic if and only if its hypergraph is β-acyclic.

2.5 Knowledge compilation

DNNF. In this paper we focus on so-called DNNF introduced by Darwiche [Dar01]. An extensive
presentation of different target languages with their properties may be found in [DM02]. A Boolean
circuit C on variables X is in Negation Normal Form, NNF for short, if its input are labeled by
literals on X and its internal gates are labeled with either a ∧-gate or a ∨-gate. We assume that
such circuit has a distinguished gate called the output. An NNF circuit D computes the boolean
function computed by its output gate and we will often identify the circuits and its computed
Boolean function. We denote by size(D) the number of gates of D and by var(D) the set of
variables labeling its input. If v is a gate of D, we denote by Dv the circuit given by the maximal
the sub-circuits of D rooted in v and whose output is v. If v is an ∧-gate, it is said decomposable if
for every v1, v2 that are distinct inputs of v, it holds that var(Dv1)∩var(Dv2) = ∅. An NNF circuit is
in Decomposable Normal Form if all its ∧-gates are decomposable. We will refer to such circuits as
DNNF. It is easy to see that one can find a satisfying assignment of a DNNF D in time O(size(D)).
Moreover, if D is a DNNF on variables X, Y ⊆ X and τ ∈ {0, 1}Y , then D[τ ] is computed by a
DNNF smaller than D since we can plug the values of literals in Y in the circuit D.

Deterministic and Decision DNNF. Let D be a DNNF. An ∨-gate in D is called deterministic
if for every v1, v2 that are distinct inputs of v, it holds that Dv1 ∧Dv2 ≡ 0. D is said deterministic
if all its ∨-gates are deterministic. Observe that determinism is a semantic condition and is hard
to decide from the DNNF only. In this paper, we will be mostly interested in decision gates that
are a special case of deterministic gates. An ∨-gate v of D is a decision gate if it is binary and if
there exists a variable x and two gates v1, v2 of D such that v is of the form (x ∧ v1) ∨ (¬x ∧ v2).
A decision DNNF, dec-DNNF for short, is a DNNF for which every ∨-gate is a decision gate. It is

5



∨
∧ ∧

∨x ¬x
y z y z x

Figure 3: A DNNF and a vtree

easy to see that a dec-DNNF is deterministic. Figure 3 depicts a DNNF. The output is represented
by a square and the DNNF computes the boolean function (¬x ∧ z) ∨ (x ∧ (y ∨ z)). It is easy to
check that both ∧-gates are decomposable. The output gate is also a decision gate on variable x.
The other ∨-gate is not deterministic since the boolean function y ∧ z is satisfiable.

Structuredness. Structuredness is a constraint on the way variables can be partitioned by a
DNNF. It may be seen as a generalization to trees of the variable ordering that is sometimes required
in data structures such as OBDD [Weg00] and was introduced in [PD08]. Let D be a DNNF on
variables X. A vtree T on X is a binary tree whose leaves are in one-to-one correspondence with X.
An ∧-gate v of D respects a vertex t of T if it has exactly two inputs v1, v2 and if var(Dv1) ⊆ Xt1

and var(Dv2) ⊆ Xt2 where t1, t2 are the children of t in T and Xt1 (resp. Xt2) is the set of variables
that appears in the leaves of Tt1 (resp. Tt2). A DNNF D respects a vtree T if for every ∧-gate v
of D, there exists a vertex t of T such that v respects t. A DNNF D is structured if there exists a
vtree T such that D respects T . It can be checked that the DNNF depicted in Figure 3 respects
the vtree given on the same figure.

2.6 Structuredness and Branch Decomposition

In this section, we explain how most of the structure-based algorithms for #SAT work and how we
can relate this to the fact that they are implicitly constructing a structured DNNF equivalent to
the input formula.

The current techniques for solving #SAT by exploiting the structure of the input are all based
on the same technique: they start by computing a “good” branch decomposition T of the incidence
graph of the formula F . Each vertex t of the branch decomposition is then used to define a sub-
formula Ft and partial assignments a1, . . . , ak of its variables. The number of solutions of Ft[ai] is
then computed by dynamic programming along the branch decomposition in a bottom-up fashion.
In all algorithms, the variables of Ft are the variables of F that label the leaves of Tt. The number
of solutions of Ft on some partial assignment ai is computed by multiplying and summing the
number of solutions of Ft1 and of Ft2 , where t1, t2 are the children of t on restrictions of ai to the
variables of Ft1 and Ft2 respectively. Those multiplications can be seen as a decomposable ∧-gate
and the sums can be seen as deterministic ∨-gates. Thus, the underlying DNNF constructed by
those algorithms is naturally structured along the vtree obtained from the branch decomposition
T by forgetting the leaves that are labeled by clauses of the formula.

In this paper, we will thus say that a class of formula can be solved by using the standard
(dynamic programming) technique if it can be compiled into deterministic structured DNNF. The
most general known algorithm exploiting the structure of the input, that we will call, from the
author names, the STV-algorithm [HSTV14], uses exactly this technique. It has been observed
in [BCMS15] that this algorithm is actually implicitly constructing a deterministic structured DNNF

6



equivalent to the input CNF-formula, which reinforces the idea that the notion of structuredness
captures the essence of the standard technique for solving #SAT.

3 Compilation of β-acyclic formulas into dec-DNNF

We show how to construct a linear size dec-DNNF equivalent to a given β-acyclic formula F (The-
orem 8). We use a dynamic programming approach by iteratively constructing dec-DNNF for sub-
formulas of F . These subformulas are defined using general remarks on the structure of β-acyclic
hypergraphs.

3.1 Structure of β-acyclic hypergraphs.

In this section, we fix a β-acyclic hypergraphH with n vertices and a β-elimination order (x1, . . . , xn)
of its vertices denoted by <. We denote by <H the order on H defined as the lexicographical order
on H where e ∈ H is seen as the {0, 1}n-vector ~e such that ~ei = 1 if xn−i ∈ e and ~ei = 0 otherwise.
In other words, e <H f if and only if max(e∆f) ∈ f .

From these orders, we construct a family of subhypergraphs of H which will be interesting for
us later. Let x ∈ V and e ∈ H. We denote by V≤x = {y ∈ V | y ≤ x}. V<x, V≥x and V>x are
defined similarly. We denote by Hx

e the subhypergraph of H that contains the edges f ∈ H such
that there is a walk from f to e that goes only through edges smaller than e and vertices smaller
than x.

Observe that, by definition, Hx
e is a connected subhypergraph of H, with e ∈ Hx

e and for all
f ∈ Hx

e , f ≤H e. Observe also that even if there is a walk from f ∈ Hx
e to e that goes only through

vertices smaller than x, f may hold vertices that are bigger than x. We insist on the fact that the
whole edge f is in Hx

e and not only its restriction to V≤x.
We start by giving an example. Let H = {{1, 2}, {3, 4}, {2, 5}, {4, 5}, {2, 4, 5}} be the hyper-

graph depicted on Figure 2. One can easily check that 1 < 2 < 3 < 4 < 5 is a β-elimination
order and that the order <H is the following: e1 = {1, 2} <H e2 = {3, 4} <H e3 = {2, 5} <H e4 =
{4, 5} <H e5 = {2, 4, 5}. H4

e5 is the whole hypergraph since one can reach any edge from e5 by
going through vertices smaller than 4. H3

e5 however is lacking the edge e2 = {3, 4} since the only
way of reaching e2 from e5 is to go through the vertex 4 which is not allowed.

Observe that these subhypergraphs are naturally ordered by inclusion:

Lemma 2. Let x, y ∈ V (H) such that x ≤ y and e, f ∈ H such that e ≤H f and V (Hx
e )∩ V (Hy

f )∩
V≤x 6= ∅. Then Hx

e ⊆ Hy
f . In particular, for all y, if e ∈ Hy

f then Hy
e ⊆ Hy

f .

Proof. Let z ∈ V (Hx
e ) ∩ V (Hy

f ) ∩ V≤x and let g1 ∈ Hx
e and g2 ∈ Hy

f be such that z ∈ g1 ∩ g2. By
definition, there exists a walk P1 from f to g2 going through vertices smaller than y and edges
smaller than f and a walk P2 from g1 to e going through vertices smaller than x and edges smaller
than e. Since z ≤ x ≤ y and e ≤H f , P = (P1, z,P2) is a walk from f to e going through edges
smaller than f and vertices smaller than y, that is e ∈ Hy

f . Now let h ∈ Hx
e and let P3 be a path

from e to h going through vertices smaller than x and edges smaller than e. Then (P,P3) is a walk
from f to h going through vertices smaller than y and edges smaller than f . That is h ∈ Hy

f , so

Hx
e ⊆ Hy

f .

We now state the main result of this section. Theorem 3 relates the variables of Hx
e to those of

V≥x and e. This is crucial for the dynamic programming scheme of our algorithm:

7



Theorem 3. For every x ∈ V and e ∈ H, V (Hx
e ) ∩ V≥x ⊆ e.

In order to prove Theorem 3, we need two easy intermediate lemmas:

Lemma 4. Let e, f ∈ H such that there exists x ∈ e ∩ f . If e <H f then e ∩ V≥x ⊆ f .

Proof. By definition of β-acyclic elimination order, we must have either e ∩ V≥x ⊆ f ∩ V≥x or
f ∩ V≥x ⊆ e ∩ V≥x. Now since e <H f , we have m = max(e∆f) ∈ f . If m ≤ x, we have
e ∩ V≥x = f ∩ V≥x. Otherwise, we have e ∩ V≥x ⊆ f ∩ V≥x since m ∈ (f \ e) ∩ V≥x.

A path P = (e0, x0, . . . , xn−1, en) in H is called decreasing if for all i, ei >H ei+1 and xi > xi+1.

Lemma 5. For every x ∈ V , e ∈ H and f ∈ Hx
e , there exists a decreasing path from e to f going

through vertices smaller than x.

Proof. By definition of Hx
e , there exists a path P = (e0, x0, . . . , xn−1, en) with e0 = e and en = f

such that for all i ≤ n, ei ≤H e and xi ≤ x. We show that if P is a shortest path among those
going through vertices smaller than x, then it is also decreasing. Assume toward a contradiction
that P is a non-decreasing such shortest path. Remember that by definition of paths, the edges
(ei) are pairwise distinct. The same is true for the vertices (xi). Moreover, observe that since P is
a shortest path, then it holds that:

∀i < n∀j /∈ {i, i+ 1}, xi /∈ ej . (⋆)

Indeed, if there exists i and j /∈ {i, i+1} such that xi ∈ ej , P could be shortened by going directly
from ei to ej if j > i+ 1 or from ej to ei+1 if j < i.

Let i = min{j | xj+1 > xj or ej+1 >H ej} be the first indices where P does not respect the
decreasing condition, which exists if P is not decreasing by assumption.

First assume i = 0. By definition of P, e0 = e >H e1. Thus it must be that x0 < x1. By
definition, x0 ∈ e0∩e1 and by Lemma 4, e1∩V≥x0

⊆ e0. Since x1 > x0, x1 ∈ e1∩V≥x0
, thus x1 ∈ e0

which contradicts (⋆).
Now assume i > 0. First, assume that ei+1 >H ei. By definition of P, it holds that xi ∈ ei∩ei+1

and then by Lemma 4, ei ∩ V≥xi
⊆ ei+1. Now observe that by minimality of i, xi−1 > xi. Since

xi−1 ∈ ei, xi−1 ∈ ei ∩ V≥xi
⊆ ei+1, which contradicts (⋆).

Otherwise, ei >H ei+1 and then xi+1 > xi. By Lemma 4 again, ei+1 ∩ V≥xi
⊆ ei. Since

xi+1 ∈ ei+1, this implies that xi+1 ∈ ei+1 ∩ V≥xi
⊆ ei, which contradicts (⋆). It follows that such i

does not exist, that is, P is decreasing.

Proof (of Theorem 3). We show by induction on n that for any decreasing path P = (e0, x0, . . . , en)
from e0 to en, we have e0 ⊇ en∩V≥x0

. If n = 0, then en = e0 and the inclusion is obvious. Now, let
P = (e0, x0, . . . , en, xn, en+1). By induction, e0 ⊇ en∩V≥x0

since (e0, x0, . . . , en) is a decreasing path
from e0 to en. Now by Lemma 4, since xn ∈ en+1 ∩ en and en+1 <H en, we have en+1 ∩ V≥xn

⊆ en.
Since x0 > xn, en+1∩V≥x0

⊆ en+1∩V≥xn
⊆ en. Thus en+1∩V≥x0

⊆ en∩V≥x0
⊆ e0 which concludes

the induction.
Now let e ∈ H, x ∈ V (H) and f ∈ Hx

e . By Lemma 5, there exists a decreasing path from
e to f going through vertices smaller than x. From what precedes, f ∩ V≥x ⊆ e. Therefore
V (Hx

e ) ∩ V≥x ⊆ e.

8



3.2 Constructing the dec-DNNF.

Given a CNF-formula F with hypergraph H, we can naturally define a family of subformulas F x
e

from Hx
e as the conjunction of clauses corresponding to the edges in Hx

e , that is F x
e = {C ∈ F |

var(C) ∈ Hx
e}. Theorem 3 implies in particular that var(F x

e ) ⊆ (e∪V<x). Thus, if τ is an assignment
of variables (e ∩ V>x), then F x

e [τ ] has all its variables in V≤x. We will be particularly interested in
such assignments: for a clause C ∈ F , denote by τC the only assignment of var(C) such that τC 6|= C
and by τxC := τC |V>x

. We construct a dec-DNNF D by dynamic programming such that for each
clause C with var(C) = e and variable x ∈ V , there exists a gate in D computing F x

e [τ
x
C ], which

is a formula with variables in V≤x. Lemma 6 and Corollary 7 describe everything needed for the
dynamic programming algorithm by expressing F x

e as a decomposable conjunction of precomputed
values.

Lemma 6. Let x ∈ var(F ) such that x 6= x1 and let y ∈ var(F ) be the predecessor of x for <. Let
e ∈ H(F ) and τ : (e ∩ V≥x) → {0, 1}. Then either F x

e [τ ] ≡ 1 or there exists U ⊆ Hx
e and for all

g ∈ U a clause C(g) ∈ F x
e with var(C(g)) = g such that

F x
e [τ ] ≡

∧

g∈U
F y
g [τ

y
C(g)].

Moreover, this conjunction is decomposable and U can be found in polynomial time in size(F ).

Proof. Assume first that for all C ∈ F x
e , τ |= C. Thus F x

e [τ ] ≡ 1 since every clause of F x
e is satisfied

by τ .
Now assume that there exists C ∈ F x

e is such that τ 6|= C. This means that τ ≃ τC . We let
A = {var(C) | C ∈ F x

e and τ 6|= C} 6= ∅ by assumption. Observe that

F x
e [τ ] ≡

∧

C∈Fx
e

var(C)∈A

C[τ ]

since for every C ∈ F x
e , if var(C) /∈ A, τ |= C by construction of A.

Let U = {g ∈ A | ∀f ∈ A \ {g}, g /∈ Hy
f}. For each g ∈ U , we choose an arbitrary clause C(g)

such that var(C(g)) = g and τ 6|= C(g). Such a clause exists since U ⊆ A. We claim that U meets
the conditions given in the statement of the lemma.

We start by observing that U can be computed in polynomial time in size(F ). Indeed, computing
F x
e for all e, x can be done in polynomial time as it boils down to a computation of connected

component in a hypergraph. Now to compute A, it is enough to test for every C ∈ F x
e that τ 6|= C

which can be done in polynomial time in size(F ). Finally, extracting U from A can also be done
in polynomial time by testing for every g ∈ A if g respects the given condition: it is enough to test
for every f ∈ A \ {g} if g /∈ Hy

f , which is possible since we can compute Hy
f easily.

Now let f ∈ A. We show that there exists g ∈ U such that f ∈ Hy
g . If f ∈ U , then we are

done since f ∈ Hy
f . Now assume that f /∈ U . By definition of U , B = {g ∈ A \ {f} | f ∈ Hy

g} 6= ∅.
We choose g to be the maximum of B for ≤H. We claim that g ∈ U . Indeed, assume there exists
g′ ∈ A such that g ∈ Hy

g′ and g < g′. By Lemma 2, Hy
g ⊆ Hy

g′ and since f ∈ Hy
g , we also have

f ∈ Hy
g′ , that is, g

′ ∈ B. Yet, g = max(B) and g ≤ g′, that is, g = g′. Thus g ∈ U .

We thus have proved that for all f ∈ A, there exists g ∈ U such that f ∈ Hy
g . Thus if C is a

clause of F x
e , either var(C) /∈ A and then τ |= C by definition of A, or var(C) ∈ A, then there exists

9



g ∈ U such that var(C) ∈ Hy
g , that is, C ∈ F y

g . Now, if C ∈ F y
g for some g ∈ U , then C ∈ F x

e too
since by Lemma 2, F y

g ⊆ F x
e . Thus

F x
e [τ ] ≡

∧

g∈U
F y
g [τ ].

Let g ∈ U . We show that τ |var(F y
g )

= τyC(g). Observe that by Theorem 3, var(F y
g ) ∩ V≥x =

V (Hy
g) ∩ V≥x ⊆ g ∩ V≥x. Since τ assigns variables from e ∩ V≥x:

τ |var(F y
g ) = τ |var(F y

g )∩V≥x∩e

= τ |g∩V≥x∩e

Moreover, since g ∈ Hx
e , we have g∩V≥x ⊆ e∩V≥x by Theorem 3 again. Thus g∩V≥x∩e = g∩V≥x.

In other words, τ |var(F y
g ) = τ |g∩V≥x

.
Since τ assigns all variables of e ∩ V≥x by assumption, τ |g∩V≥x

assigns all variables of g ∩ V≥x.
Finally, since τ 6|= C(g) by construction of C(g), we have τ ≃ τy

C(g)
. Since by definition var(C(g)) =

g, it follows that τ |var(F y
g ) = τyC(g). So far, we have proven that

F x
e [τ ] ≡

∧

g∈U
F y
g [τ

y
C(g)].

It remains to show that this conjunction is decomposable, that is, for all g1, g2 ∈ U , var(F y
g1 [τ

y
C(g1)

])∩
var(F y

g2 [τ
y
C(g2)

]) = ∅. Let g1, g2 ∈ U with g1 <H g2 and assume there exists z ∈ var(F y
g1 [τ

y
C(g1)

]) ∩
var(F y

g2 [τ
y
C(g2)

]), that is, z ∈ var(F y
g1)∩ var(F y

g2)∩V≤y. From what precedes, τ assigns every variable

of F y
g1 greater than x. By Lemma 2, we have F y

g1 ⊆ F y
g2 , which contradicts the fact that g1 ∈ U .

Corollary 7. Let x ∈ var(F ) such that x 6= x1 and let y ∈ var(F ) be the predecessor of x for <.
For every C ∈ H(F ), there exist U0, U1 ⊆ Hx

var(C) and for all g ∈ U0 ∪ U1 a clause C(g) ∈ F x
var(C)

with var(C(g)) = g such that

F x
var(C)[τ

x
C ] ≡ (x ∧

∧

g∈U1

F y
g [τ

y
C(g)]) ∨ (¬x ∧

∧

g∈U0

F y
g [τ

y
C(g)]).

Moreover, all conjunctions are decomposable and U0, U1 can be found in polynomial time in size(F ).

Proof. Let τ1 = τxC ∪ {x 7→ 1} and τ0 = τxC ∪ {x 7→ 0}. We observe that

F x
var(C)[τ

x
C ] = (x ∧ F x

var(C)[τ1]) ∨ (¬x ∧ F x
var(C)[τ0]).

Clearly, x /∈ var(F x
var(C)[τ1]) and x /∈ var(F x

var(C)[τ0]), thus, both conjunctions are decomposable.

Now, applying Lemma 6 on F x
var(C)[τ0] and on F x

var(C)[τ1] yields the desired decomposition.

Theorem 8. Let F be a β-acyclic CNF-formula. One can construct in polynomial time in size(F )
a dec-DNNF D of size O(size(F )) and fanin at most |H| computing F .

Proof. Let H be the hypergraph of F and < a β-elimination order. Let var(F ) = {x1, . . . , xn}
where xi < xj if and only if i < j. We construct by induction on i a dec-DNNF Di of fanin |H| at
most such that for each e ∈ H, C ∈ F such that var(C) = e and j ≤ i, there exists a gate in Di

10



computing F
xj
e [τ

xj

C ] and |Di| ≤ 7 · (∑i
j=1 c(xj)) where c(xj) is the number of clauses in F holding

xj.
We start by explaining how D1 is constructed. Let e ∈ H. If x1 /∈ e, then F x1

e contains only
the clauses C such that e = var(C). For such a C, τx1

C = τC , thus F
x1

e [τC ] = 0. Now, if x1 ∈ e, F x1

e

contains only clauses D such that x1 ∈ var(D) ⊆ e since x1 is the first element of the elimination
order. Let C be a clause such that var(C) = e. For every D ∈ F x1

e , var(D) ⊆ var(C), thus F x1

e [τx1

C ]
has only one variable: x1. Thus F x1

e [τx1

C ] is equivalent to either x1, ¬x1 or 0. We thus define
D1 to be the dec-DNNF with at most three gates x1,¬x1 and 0, which are input gates. We have
|D1| ≤ 3 ≤ 7 · c(x1).

Now lets assume Di is constructed. To ease notations, let x = xi+1. Let e ∈ H and C be a
clause such that var(C) = e. We want to add a gate in Di that will compute F x

e [τ
x
C ]. If x /∈ e, then

Hx
e = Hxi

e since by Theorem 3, var(Hxi
e ) ⊆ (e ∪ V<xi

). Thus F x
e = F xi

e and τxC = τxi

C . Therefore,
there is already a gate computing F x

e [τ
x
C ] in Di.

Assume now that x ∈ e. By Corollary 7, we can compute F x
var(C)[τ

x
C ] for every C with var(C) = e

by adding at most one decision-gate and a fanin |H| decomposable and-gate toDi since for all values
appearing in the statement of Corollary 7 there exists a gate in Di computing it. Moreover such
gate can be found in polynomial time. That is, we add to Di at most 7 gates to compute F x

var(C)[τ
x
C ].

We have to do this for each C ∈ F such that x ∈ var(C). We thus add at most 7c(x) gates in Di.
Thus |Di+1| ≤ 7 ·∑j≤i+1 c(xj).

To conclude, assume that H is connected and let e = max(H). We have Hxn
e = H since there

is a path from e to every other edge in H. Thus F xn
e = F . Let C be a clause with var(C) = e. The

assignment τxn

C is empty, thus F xn
e [τxn

C ] ≡ F . Hence, there is a gate in Dn that computes F and
Dn is of size at most 7 · size(F ) and fanin |H| at most. Each step can be done in polynomial time
in size(F ).

If H is not connected, then each connected component of H is β-acyclic, thus we can compile
them independently and take the decomposable conjunction of these dec-DNNF.

We conclude this section by giving insights on the significance of Theorem 8 from a practical
point of view. Most practical tools for #SAT are based on an algorithm called exhaustive DPLL
with caching [HD05, SBB+04, Thu06, BDP03] which works as follows: given F , the algorithm
starts by trying to write F as F1 ∧ F2 with F1 and F2 having no common variables. If it succeeds,
it computes recursively #F1, #F2 and returns #F1 ·#F2. Otherwise, it chooses a variable x and
returns #F [x 7→ 0] + #F [x 7→ 1]. In addition, these tools use caching techniques to avoid redoing
the same computation twice. It was observed in [HD05] that the trace of such algorithms is exactly
a dec-DNNF. It is not hard to see that the construction given in Theorem 8 is the trace of a run
of an exhaustive DPLL algorithm where the variables are chosen in a reverse β-elimination order.
This shows that if the right elimination order of the variables is chosen (and this order can be
computed greedily in polynomial time), then practical tools for solving #SAT can in theory solve
β-acyclic formulas in polynomial time.

4 Deviation from the technique based on branch decompositions

In this section, we finally prove that standard techniques based on branch decompositions fail on
β-acyclic formulas. Recall that we have defined in Section 2.6 the standard technique to be the

11



implicit construction of a polynomial size structured DNNF equivalent to the input formula. We
formally prove the following:

Theorem 9. There exists an infinite family F of β-acyclic CNF-formulas such that for every F ∈ F
having n variables, there is no structured DNNF of size less than 2Ω(

√
n) computing F .

We use techniques based on communication complexity tools developed in [BCMS16] to prove
lower bounds on the size of structured DNNF.

Definition 10. Let r be a boolean function on variables X and let (Y,Z) be a partition of X. The
function r is a (Y,Z)-rectangle if and only if for every τ, τ ′ ∈ {0, 1}X such that τ |= r and τ ′ |= r,
we have (τ |Y ∪ τ ′|Z) |= r. A (Y,Z)-rectangle cover of a boolean function f is a set R = {r1, . . . , rq}
of (Y,Z)-rectangles such that sat(f) =

⋃q
i=1 sat(ri).

Theorem 11 ([BCMS16],[PD10]). Let D be a DNNF on variables X respecting the vtree T . For
every vertex t of T , there exists a (Xt,X \ Xt)-rectangle cover of D of size at most |D|, where
Xt = var(Tt).

Given a CNF-formula F , we define F̂ to be the formula {K ∪ {cK} | K ∈ F} on variables
{cK | K ∈ F} ∪ var(F ). Intuitively, F̂ is the formula obtained by adding one fresh variable cK
in each clause K of F . Our main lower bound relates the incidence MIM-width of a monotone
CNF-formula to the size of structured DNNF computing F̂ .

Theorem 12. Let F be a monotone formula of incidence MIM-width k. Any structured DNNF

computing F̂ is of size at least 2k/2.

The proof of Theorem 12 heavily relies on the following lower bound and on Theorem 11:

Lemma 13. Let X = {x1, . . . , xk} and Y = {y1, . . . , yk} be two disjoint sets of k variables. The
number of (X,Y )-rectangles needed to cover the CNF-formula F =

∧k
i=1(xi ∨ yi) is at least 2k.

Proof. Let {R1, . . . , Rq} be a (X,Y )-rectangle cover of F . For K ⊆ {1, . . . , k}, we denote by τK the
assignment such that τK(xi) = 1 if i ∈ K and 0 otherwise and τK(yi) = 1− τK(xi). Observe that
by definition, for every K ⊆ {1, . . . , k}, τK |= F . We claim that if τK |= Ri then for any K ′ 6= K,
we have τK ′ 6|= Ri. For the sake of contradiction, assume there exist K,K ′ such that K 6= K ′,
τK |= Ri and τK ′ |= Ri. Without loss of generality, we can assume that there exists i ∈ K \ K ′.
By definition of rectangles, τ ′ = τK ′ |X ∪ τK |Y |= Ri. But τ ′(xi) = τ ′(yi) = 0 and then τ ′ 6|= F
which contradicts the definition of Ri. Since there are 2k different subsets of {1, . . . , k} and each
τK satisfies disjoint rectangles, we have that q ≥ 2k.

Proof (of Theorem 12). Let G = Ginc(F ) and D be a structured DNNF computing F̂ . We claim
that |D| ≥ 2k/2.

Let T be the vtree respected by D. Observe that the variables of F̂ are in one to one correspon-
dence with V (G) thus we can see T as a branch decomposition of G. Since G is of MIM-width k,
there exists a vertex t of T such that there is an induced matching M = {(x1, y1), . . . , (xq, yq)} with
q ≥ k in G[Vt, V (G)\Vt] where Vt denotes the labels of the leaves of Tt. Let e = (x, y) be an edge of
M . Since it is an edge of G, too, one end point of e corresponds to a variable xe of F and the other
to a clause ce ∈ F . Let M ′ be the set of edges e of M such that xe ∈ Vt and ce /∈ Vt and let M ′′

be the set of edges e of M such that xe /∈ Vt and ce ∈ Vt. It is readily verified that M = M ′ ⊎M ′′.

12



Let N be the largest of these two sets. N is thus an induced matching of G[Vt, V (G) \ Vt] of size
at least k/2. Moreover, if e, e′ ∈ N are distinct, we have xe′ /∈ ce. Indeed, if xe′ ∈ ce then they are
connected by an edge of G and this edge is across Vt and V (G) \ Vt by construction of N . Thus, if
such an edge exists, it violates the assumption that N is an induced matching of G[Vt, V (G) \ Vt].

Now let τ be the following partial assignment of var(F̂ ): if C is a clause that does not appear
in N , we let τ(C) = 1. If x is a variable of F that does not appear in N , we let τ(x) = 0. We claim
that F̂ [τ ] ≡ ∧

e∈N (xe ∨ ce). Indeed, each clause C that does not appear in N is already satisfied in

F̂ [τ ] since τ(C) = 1 and for the remaining clauses, the variables that do not appear in N disappear
as they are set to 0 (remember that F is monotone). Moreover, if e, e′ ∈ N are distinct edges of N ,
we have that xe /∈ ce′ thus the only variables remaining in the clause ce is xe for each e ∈ N .

Now since F̂ is computed by D, F̂ [τ ] is computed by D′ = D[τ ] which is a structured DNNF

smaller than D. By Theorem 11, there is a (Vt, V (G) \ Vt)-rectangle cover of D′ of size at most
size(D′) and by Lemma 13, we need at least 2|N | ≥ 2k/2 rectangles to cover F [τ ]. Thus, size(D) ≥
size(D′) ≥ 2k/2.

Theorem 9 is a corollary of Theorem 12 and Theorem 1:

Proof of Theorem 9. Let F be a β-acyclic formula. We claim that F̂ is also β-acyclic. Indeed,
let (x1, . . . , xn) be a β-elimination order for H(F ). We claim that (c1, . . . , cm, x1, . . . , xn) is a β-
elimination order of H(F̂ ) where c1, . . . , cm are the variables of F̂ corresponding to the clauses of F .
Indeed, for all i, ci is in exactly one edge of H(F̂ ) and can thus be eliminated from the start. Finally,
H(F̂ ) \ {c1, . . . , cm} = H(F ), thus (x1, . . . , xn) is a β-elimination order of H(F̂ ) \ {c1, . . . , cm}.

To every hypergraph H, we can associate a monotone formula CNF(H) whose variables are
the vertices of H and clauses are the edges of H without negations. It is readily verified that the
hypergraph of CNF(H) is H. Let G be the family of β-acyclic hypergraphs with MIM-width of Ω(n)

from Theorem 1 and let F = { ̂CNF(H) | H ∈ G}. From what precedes, F is a family of β-acyclic
hypergraphs and by Theorem 12, if F ∈ F has m clauses and N = n + m variables then any
structured DNNF computing F is of size at least 2Ω(n). The statement of Theorem 9 follows since
the number of edges in a β-acyclic hypergraph with n vertices is at most n(n + 1)/2 (Remark 13
in [BB14]). Thus, N = O(n2), i.e. n = Ω(

√
N).

5 Discussion

We discuss here further directions that can be studied from the results presented in this paper.
In Section 4, we have shown that β-acyclic formulas cannot be compiled into structured DNNF

contrary to other known tractable classes. It would be interesting to study the opposite question,
that is, to understand if classes tractable with respect to the STV-algorithm can be compiled into
dec-DNNF. A positive answer to this question would open interesting perspectives as it would imply
that all known tractable structural restrictions for #SAT can be processed using exhaustive DPLL
with caching, which could lead to a practical use of such theoretical result and to the design of
interesting heuristic for the order in which variables are eliminated in DPLL based on structural
restrictions. A negative answer would show that some “easy” cases are missed by practical tools
and that it would be worth investing time to develop practical tools taking the formula structure
into account.

Another direction is suggested by Theorem 12 which says that the MIM-width of the formula is
closely related to the size of the smallest structured DNNF for F̂ . The most general graph parameter

13



that is known to lead to polynomial time execution with the STV-algorithm is the MIM-width:
#SAT can be solved in time mΩ(k)poly(n + m) on a formula with m clauses, n variables and of
MIM-width k. Theorem 12 almost proves the optimality of such running time for compilation into
structured DNNF.

References

[BB14] Johann Brault-Baron. Hypergraph Acyclicity Revisited. ArXiv e-prints, March 2014.

[BCM15] Johann Brault-Baron, Florent Capelli, and Stefan Mengel. Understanding Model Count-
ing for beta-acyclic CNF-formulas. In 32nd International Symposium on Theoretical
Aspects of Computer Science, volume 30 of LIPIcs, pages 143–156. Schloss Dagstuhl,
2015.

[BCMS15] Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. On Compiling
CNFs into Structured Deterministic DNNFs. In Theory and Applications of Satisfiabil-
ity Testing, Lecture Notes in Computer Science, pages 199–214. Springer International
Publishing, September 2015.

[BCMS16] Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Knowledge Com-
pilation Meets Communication Complexity. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 1008–1014, 2016.

[BDP03] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and Complexity
Results for #SAT and Bayesian Inference. In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’03, pages 340–, Washington,
DC, USA, 2003. IEEE Computer Society.

[BL15] Paul Beame and Vincent Liew. New limits for knowledge compilation and applications
to exact model counting. In Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence, pages 131–140, 2015.

[BLRS13] Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Lower bounds for exact model
counting and applications in probabilistic databases. In Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, 2013.

[BLRS14] Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Counting of query expressions: Lim-
itations of propositional methods. In Proc. 17th International Conference on Database
Theory (ICDT), pages 177–188, 2014.

[CDM14] Florent Capelli, Arnaud Durand, and Stefan Mengel. Hypergraph Acyclicity and Propo-
sitional Model Counting. In Theory and Applications of Satisfiability Testing - SAT 2014
- 17th International Conference, pages 399–414, 2014.

[Dar01] Adnan Darwiche. Decomposable Negation Normal Form. J. ACM, 48(4):608–647, 2001.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathe-
matics. Springer, 2012.

14



[DM02] Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. Journal of
Artificial Intelligence Research, 17:229–264, 2002.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory.
J. ACM, 7(3):201–215, July 1960.

[Fag83] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
Journal of the ACM, 30(3):514–550, 1983.

[HD05] Jinbo Huang and Adnan Darwiche. DPLL with a trace: From SAT to knowledge com-
pilation. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pages 156–162, 2005.

[HSTV14] Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. Solving MaxSAT and
#SAT on Structured CNF Formulas. In Theory and Applications of Satisfiability Test-
ing, pages 16–31, 2014.

[JS13] Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory:
Compiling queries to decision diagrams. Theory Comput. Syst., 52(3):403–440, 2013.

[OPS13] S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and almost acyclic
CNF formulas. Theoretical Computer Science, 481:85–99, 2013.

[PD08] Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based on Struc-
tured Decomposability. In Proceedings of the Twenty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI, pages 517–522, 2008.

[PD10] Thammanit Pipatsrisawat and Adnan Darwiche. A Lower Bound on the Size of De-
composable Negation Normal Form. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, July 2010.

[PSS16] Daniël Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model Counting for CNF
Formulas of Bounded Modular Treewidth. Algorithmica, 76(1):168–194, 2016.

[Rot96] Dan Roth. On the Hardness of Approximate Reasoning. Artificial Intelligence,
82(12):273 – 302, 1996.

[SBB+04] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Com-
bining Component Caching and Clause Learning for Effective Model Counting. Theory
and Applications of Satisfiability Testing, 4:7th, 2004.

[SBK05] Tian Sang, Paul Beame, and Henry A. Kautz. Heuristics for fast exact model counting.
In Theory and Applications of Satisfiability Testing, 8th International Conference, SAT
2005, St. Andrews, UK, June 19-23, 2005, Proceedings, pages 226–240, 2005.

[SS10] Marko Samer and Stefan Szeider. Algorithms for propositional model counting. Journal
of Discrete Algorithms, 8(1):50–64, 2010.

[SS13] Friedrich Slivovsky and Stefan Szeider. Model Counting for Formulas of Bounded Clique-
Width. In Algorithms and Computation - 24th International Symposium, ISAAC, pages
677–687, 2013.

15



[Thu06] Marc Thurley. SharpSAT – Counting Models with Advanced Component Caching and
Implicit BCP. In Theory and Applications of Satisfiability Testing, pages 424–429.
Springer, 2006.

[Vat12] Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen,
2012.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

16


	1 Introduction
	2 Preliminaries
	2.1 -formulas.
	2.2 Graphs and branch decompositions.
	2.3 Hypergraphs and -acyclicity.
	2.4 Structure of formulas.
	2.5 Knowledge compilation
	2.6 Structuredness and Branch Decomposition

	3 Compilation of -acyclic formulas into dec-DNNF
	3.1 Structure of -acyclic hypergraphs.
	3.2 Constructing the dec-DNNF.

	4 Deviation from the technique based on branch decompositions
	5 Discussion

